Science.gov

Sample records for activity eva missions

  1. STS-64 Mission Photograph - Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Mark Lee floats freely as he tests the new backpack called the Simplified Aid for EVA Rescue (SAFER) system. SAFER is designed for use in the event a crew member becomes untethered while conducting an EVA. The STS-64 mission marked the first untethered U.S. EVA in 10 years, and was launched on September 9, 1994, aboard the Space Shuttle Orbiter Discovery.

  2. STS-64 Mission Onboard Photograph - Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Mark Lee (red stripe on extravehicular activity suit) tests the new backpack called Simplified Aid for EVA Rescue (SAFER), a system designed for use in the event a crew member becomes untethered while conducting an EVA. The Lidar-In-Space Technology Experiment (LITE) is shown in the foreground. The LITE payload employs lidar, which stands for light detection and ranging, a type of optical radar using laser pulses instead of radio waves to study Earth's atmosphere. Unprecedented views were obtained of cloud structures, storm systems, dust clouds, pollutants, forest burning, and surface reflectance. The STS-64 mission marked the first untethered U.S. EVA in 10 years, and was launched on September 9, 1994, aboard the Space Shuttle Orbiter Discovery.

  3. Extravehicular Activity (EVA) 101: Constellation EVA Systems

    NASA Technical Reports Server (NTRS)

    Jordan, Nicole C.

    2007-01-01

    A viewgraph presentation on Extravehicular Activity (EVA) Systems is shown. The topics include: 1) Why do we need space suits? 2) Protection From the Environment; 3) Primary Life Support System (PLSS); 4) Thermal Control; 5) Communications; 6) Helmet and Extravehicular Visor Assy; 7) Hard Upper Torso (HUT) and Arm Assy; 8) Display and Controls Module (DCM); 9) Gloves; 10) Lower Torso Assembly (LTA); 11) What Size Do You Need?; 12) Boot and Sizing Insert; 13) Boot Heel Clip and Foot Restraint; 14) Advanced and Crew Escape Suit; 15) Nominal & Off-Nominal Landing; 16) Gemini Program (mid-1960s); 17) Apollo EVA on Service Module; 18) A Bold Vision for Space Exploration, Authorized by Congress; 19) EVA System Missions; 20) Configurations; 21) Reduced Gravity Program; and 22) Other Opportunities.

  4. Climbing the Extravehicular Activity (EVA) Wall - Safely

    NASA Technical Reports Server (NTRS)

    Fuentes, Jose; Greene, Stacie

    2010-01-01

    The success of the EVA team, that includes the EVA project office, Crew Office, Mission Operations, Engineering and Safety, is assured by the full integration of all necessary disciplines. Safety participation in all activities from hardware development concepts, certification and crew training, provides for a strong partnership within the team. Early involvement of Safety on the EVA team has mitigated risk and produced a high degree of mission success.

  5. Study to evaluate the effect of EVA on payload systems. Volume 1: Executive summary. [project planning of space missions employing extravehicular activity as a means of cost reduction

    NASA Technical Reports Server (NTRS)

    Patrick, J. W.; Kraly, E. F.

    1975-01-01

    Programmatic benefits to payloads are examined which can result from the routine use of extravehicular activity (EVA) during space missions. Design and operations costs were compared for 13 representative baseline payloads to the costs of those payloads adapted for EVA operations. The EVA-oriented concepts developed in the study were derived from these baseline concepts and maintained mission and program objectives as well as basic configurations. This permitted isolation of cost saving factors associated specifically with incorporation of EVA in a variety of payload designs and operations. The study results were extrapolated to a total of 74 payload programs. Using appropriate complexity and learning factors, net EVA savings were extrapolated to over $551M for NASA and U.S. civil payloads for routine operations. Adding DOD and ESRO payloads increases the net estimated savings of $776M. Planned maintenance by EVA indicated an estimated $168M savings due to elimination of automated service equipment. Contingency problems of payloads were also analyzed to establish expected failure rates for shuttle payloads. The failure information resulted in an estimated potential for EVA savings of $1.9 B.

  6. EVA crew workstation provisions for Skylab and Space Shuttle missions

    NASA Technical Reports Server (NTRS)

    Brown, N. E.; Saenger, E. L.

    1973-01-01

    A synopsis of scheduled extravehicular activities (EVA) for a nominal Skylab mission is presented with an overview of EV workstation equipment developed for the program. Also included are the unprogrammed extravehicular activities and supporting equipment that was quickly developed and retrofitted in a series of successful operations to salvage the crippled Skylab Cluster during the Skylab 1 Mission. Because EVA appears to be a requirement for the Space Shuttle Program, candidate EV workstations are discussed in terms of effective and economical Shuttle payload servicing and maintenance. Several such concepts, which could provide a versatile, portable EV support system, are presented.

  7. Extravehicular Activity (EVA) Hardware & Operations Overview

    NASA Technical Reports Server (NTRS)

    Moore, Sandra; Marmolejo, Jose

    2014-01-01

    The objectives of this presentation are to: Define Extravehicular Activity (EVA), identify the reasons for conducting an EVA, and review the role that EVA has played in the space program; Identify the types of EVAs that may be performed; Describe some of the U.S. Space Station equipment and tools that are used during an EVA, such as the Extravehicular Mobility Unit (EMU), the Simplified Aid For EVA Rescue (SAFER), the International Space Station (ISS) Joint Airlock and Russian Docking Compartment 1 (DC-1), and EVA Tools & Equipment; Outline the methods and procedures of EVA Preparation, EVA, and Post-EVA operations; Describe the Russian spacesuit used to perform an EVA; Provide a comparison between U.S. and Russian spacesuit hardware and EVA support; and Define the roles that different training facilities play in EVA training.

  8. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the

  9. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  10. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  11. Asteroid Redirect Mission: EVA and Sample Collection

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Stich, Steve

    2015-01-01

    Asteroid Redirect Mission (ARM) Overview (1) Notional Development Schedule, (2) ARV Crewed Mission Accommodations; Asteroid Redirect Crewed Mission (ARCM) Mission Summary; ARCM Accomplishments; Sample collection/curation plan (1) CAPTEM Requirements; SBAG Engagement Plan

  12. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of

  13. Astronaut Noriega During Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  14. Overview of EVA PRA for TPS Repair for Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Duncan, Gary; Roeschel, Eduardo; Canga, Michael

    2010-01-01

    Following the Columbia accident in 2003, NASA developed techniques to repair the Thermal Protection System (TPS) in the event of damage to the TPS as one of several actions to reduce the risk to future flights from ascent debris, micro-meteoroid and/or orbital debris (MMOD). Other actions to help reduce the risk include improved inspection techniques, reduced shedding of debris from the External Tank and ability to rescue the crew with a launch on need vehicle. For the Hubble Space Telescope (HST) Servicing Mission the crew rescue capability was limited by the inability to safe haven on the International Space Station (ISS), resulting in a greater reliance on the repair capability. Therefore it was desirable to have an idea of the risk associated with conducting a repair, where the repair would have to be conducted using an Extra-Vehicular Activity (EVA). Previously, focused analyses had been conducted to quantify the risk associated with certain aspects of an EVA, for example the EVA Mobility Unit (EMU) or Space Suit; however, the analyses were somewhat limited in scope. A complete integrated model of an EVA which could quantify the risk associated with all of the major components of an EVA had never been done before. It was desired to have a complete integrated model to be able to assess the risks associated with an EVA to support the Space Shuttle Program (SSP) in making risk informed decisions. In the case of the HST Servicing Mission, this model was developed to assess specifically the risks associated with performing a TPS repair EVA. This paper provides an overview of the model that was developed to support the HST mission in the event of TPS damage. The HST Servicing Mission was successfully completed on May 24th 2009 with no critical TPS damage; therefore the model was not required for real-time mission support. However, it laid the foundation upon which future EVA quantitative risk assessments could be based.

  15. Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)

    NASA Technical Reports Server (NTRS)

    Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.

    2007-01-01

    An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.

  16. Mission Specialists Mario Runco and Greg Harbaugh suiting up for EVA.

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Candid view of EVA Mission Specialists Mario Runco and Greg Harbaugh suiting up for EVA in the middeck with the assistance of Mission Specialist Susan Helms (reviewing the operation with a procedural checklist).

  17. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronaut Rex J. Walheim, accompanied by astronaut Steven L. Smith (out of frame) translates along the Destiny laboratory on the International Space Station (ISS) during the third scheduled EVA session. The duo released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm. The STS-110 mission prepared the ISS for future space walks by installing and outfitting the S0 (S-Zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  18. Active Solid State Dosimetry for Lunar EVA

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

    2006-01-01

    The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

  19. Approaches to decompression safety support of EVA for orbital and interplanetary missions

    NASA Astrophysics Data System (ADS)

    Katuntsev, Vladimir P.

    2010-01-01

    The paper is devoted to the analysis of possible methods for decompression safety support of extravehicular activity (EVA) in order to ground the perspective approaches for solution of decompression sickness (DCS) problem in space missions of the near and distant future. Current DCS risk mitigation strategies reduce operational efficiency: preoxygenation extends the time required on preparation to EVA. The crewmembers often experience general and hand fatigue during long EVA due to the lack of flexibility of space suits enclosure operated at 30-40 kPa. To create the safe and comfortable working conditions for EVA crewmembers on the Lunar and Martian surfaces the main biomedical requirements to a planetary space suit have to include low mass of EVA system, high mobility and flexibility of space suit enclosure and reliable protection against DCS with a short or zero preoxygenation period. Reviewed here are the possibilities for the use of preoxygenation, hypobaric gas atmosphere in space cabin and/or planetary habitat, idea of substitution of nitrogen in normobaric gas atmosphere to another inert gas (helium and neon) as countermeasures against DCS in EVA crewmembers. Physiological aspects of the conception for space suit with high operating pressure are considered.

  20. STS-37 Mission Specialist Ross in OV-104's payload bay (PLB) during EVA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-37 Mission Specialist (MS) Jerry L. Ross, suited in extravehicular mobility unit (EMU), peers into Atlantis', Orbiter Vehicle (OV) 104's, aft flight deck viewing window while performing emergency extravehicular activity (EVA) procedures in the payload bay (PLB). The unscheduled EVA was necessary to manually extend the Gamma Ray Observatory's (GRO's) high gain antenna (HGA). The GRO grappled by the remote manipulator system (RMS) end effector and held above the PLB is visible in the background. The entire scene is backdropped against the blue and white surface of the Earth.

  1. Study of roles of remote manipulator systems and EVA for shuttle mission support, volume 1

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Micocci, A. J.

    1974-01-01

    Alternate extravehicular activity (EVA) and remote manipulator system (RMS) configurations were examined for their relative effectiveness in performing an array of representative shuttle and payload support tasks. Initially a comprehensive analysis was performed of payload and shuttle support missions required to be conducted exterior to a pressurized inclosure. A set of task selection criteria was established, and study tasks were identified. The EVA and RMS modes were evaluated according to their applicability for each task and task condition. The results are summarized in tabular form, showing the modes which are chosen as most effective or as feasible for each task/condition. Conclusions concerning the requirements and recommendations for each mode are presented.

  2. STS-37 Mission Specialist (MS) Ross during EVA in OV-104's payload bay

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-37 Mission Specialist (MS) Jerry L. Ross drifts outside Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB) as he attaches a tether to a port side guidewire during extravehicular activity (EVA). OV-104's wing tip is visible below Ross. The Crew and Equipment Translation Aid (CETA) deployable track appears mounted inside the PLB. Only the shoulder and upper arm of the deployed remote manipulator system (RMS) are visible at the right.

  3. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  4. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Blanco, Raul A.; Watson, Richard D.; Kelly, Cody; Buffington, Jesse; Sipila, Stephanie A.

    2014-01-01

    This paper discusses the Asteroid Redirect Crewed Mission (ARCM) space suit and Extravehicular Activity (EVA) architecture trade study and the current state of the work to mature the requirements and products to the mission concept review level. The mission requirements and the resulting concept of operations will be discussed. A historical context will be presented as to present the similarities and differences from previous NASA missions. That will set the stage for the trade study where all options for both pressure garment and life support were considered. The rationale for the architecture decisions will then be presented. Since the trade study did identity risks, the subsequent tests and analyses that mitigated the risks will be discussed. Lastly, the current state of the effort will be provided.

  5. STS-111 Exrtravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-111 Mission Specialists Franklin R. Chang-Diaz (left) and representing the French Space Agency (CNES), Philippe Perrin (right) work on the Mobile Remote Servicer Base System (MBS) on the International Space Station (ISS). The boxes in front of the spacewalkers are the Remote Power Control Modules (RPCM) and partially visible in the background is the S0 (S-zero) truss, to which the MBS was installed. Delivered in June 2002 by the STS-111 mission aboard the Space Shuttle Endeavour, the MBS is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station which is neccessary for future construction tasks. In addition, STS-111 delivered a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the MBS to the Mobile Transporter on the S0 (S-zero) truss, the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  6. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  7. STS-114 Astronauts Participate in Extra-Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module (MPLM) and the External Stowage Platform-2. In this photograph, astronaut Soichi Noguchi, STS-114 mission specialist representing the Japan Aerospace Exploration Agency (JAXA), participates in the mission's first scheduled session of Extra-Vehicular Activity (EVA). Noguchi and crew mate Stephen K. Robinson (out of frame) completed a demonstration of Shuttle thermal protection repair techniques and enhancements to the ISS's attitude control system during the successful 6 hour, 50 minute space walk.

  8. Hubble Space Telescope Servicing Mission Four (HST SM4) EVA Challenges for Safe Execution of STS-125

    NASA Technical Reports Server (NTRS)

    Dedalis, Robert P.; Hill, William H.; Rice, Karin Bergh; Cooter, Ann M.

    2010-01-01

    In May of 2009, the world-renowned Hubble Space Telescope (HST) received a suite of new instruments and a refurbished bus to enable science for many years to come. The restoration was conducted on-orbit by four space-walkers on five carefully scripted Extra-Vehicular Activity (EVA) days. Assuring the safety of the space-walkers and their crew-mates required careful attention to tool development, detailed procedures for every activity and many rehearsals with engineers and crew to ensure that everything worked together. Additionally, evolution of EVA requirements since the last servicing mission in 2002, and the broad scope of the mission demanded a much higher degree of safety participation in hardware design and risk acceptance than for previous servicing missions.

  9. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    NASA Technical Reports Server (NTRS)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  10. The Effects of Lunar Dust on EVA Systems During the Apollo Missions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2007-01-01

    Mission documents from the six Apollo missions that landed on the lunar surface have been studied in order to catalog the effects of lunar dust on Extra-Vehicular Activity (EVA) systems, primarily the Apollo surface space suit. It was found that the effects could be sorted into nine categories: vision obscuration, false instrument readings, dust coating and contamination, loss of traction, clogging of mechanisms, abrasion, thermal control problems, seal failures, and inhalation and irritation. Although simple dust mitigation measures were sufficient to mitigate some of the problems (i.e., loss of traction) it was found that these measures were ineffective to mitigate many of the more serious problems (i.e., clogging, abrasion, diminished heat rejection). The severity of the dust problems were consistently underestimated by ground tests, indicating a need to develop better simulation facilities and procedures.

  11. The Effects of Lunar Dust on EVA Systems During the Apollo Missions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2005-01-01

    Mission documents from the six Apollo missions that landed on the lunar surface have been studied in order to catalog the effects of lunar dust on Extra-Vehicular Activity (EVA) systems, primarily the Apollo surface space suit. It was found that the effects could be sorted into nine categories: vision obscuration, false instrument readings, dust coating and contamination, loss of traction, clogging of mechanisms, abrasion, thermal control problems, seal failures, and inhalation and irritation. Although simple dust mitigation measures were sufficient to mitigate some of the problems (i.e., loss of traction) it was found that these measures were ineffective to mitigate many of the more serious problems (i.e., clogging, abrasion, diminished heat rejection). The severity of the dust problems were consistently underestimated by ground tests, indicating a need to develop better simulation facilities and procedures.

  12. EVA Requirements for Exploration EVAs

    NASA Technical Reports Server (NTRS)

    Webbon, Bruce; Luna, Bernadette

    2005-01-01

    The exploration program proposed by the President will require extensive extravehicular operations in a wide range of environments. These include Og EVAs in planetary orbits as well as potential contingency EVAs during inter-planetary flight and surface operations on the moon and Mars. The EVA environments and mission requirements are very different for each of these. Commonality among such systems is highly desirable from the programmatic standpoint but the dramatic differences in EVA environments will have a profound impact on EVA system design. This paper will examine the relevant environmental parameters and discuss their impacts on EVA system design. An EVA design philosophy that maximizes EVA system commonality will be discussed.

  13. STS-110 Astronaut Jerry Ross Performs Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. In this photograph, Astronaut Jerry L. Ross, mission specialist, anchored on the end of the Canadarm2, moves near the newly installed S0 truss. Astronaut Lee M. E. Morin, mission specialist, (out of frame), worked in tandem with Ross during this fourth and final scheduled session of EVA for the STS-110 mission. The final major task of the space walk was the installation of a beam, the Airlock Spur, between the Quest Airlock and the S0. The spur will be used by space walkers in the future as a path from the airlock to the truss.

  14. Real-Time EVA Troubleshooting

    NASA Technical Reports Server (NTRS)

    Leestma, David

    2013-01-01

    David Leestma was EV-1 for the STS-41G extravehicular activity (EVA) with Kathy Sullivan (first American female spacewalker). They conducted an EVA to fully demonstrate the feasibility of refueling satellites from the Space Shuttle, and performed the first contingency EVA task involving the Ku-band antenna. STS-41G was the fourth Space Shuttle mission to perform an EVA, and Leestma related his experiences with training, the spacesuit, and EVA tasks that were conducted on October 11, 1984 during this mission.

  15. STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  16. 7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT IS $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  17. EVA worksite analysis--use of computer analysis for EVA operations development and execution.

    PubMed

    Anderson, D

    1999-01-01

    To sustain the rate of extravehicular activity (EVA) required to assemble and maintain the International Space Station, we must enhance our ability to plan, train for, and execute EVAs. An underlying analysis capability has been developed to ensure EVA access to all external worksites as a starting point for ground training, to generate information needed for on-orbit training, and to react quickly to develop contingency EVA plans, techniques, and procedures. This paper describes the use of computer-based EVA worksite analysis techniques for EVA worksite design. EVA worksite analysis has been used to design 80% of EVA worksites on the U.S. portion of the International Space Station. With the launch of the first U.S. element of the station, EVA worksite analysis is being developed further to support real-time analysis of unplanned EVA operations. This paper describes this development and deployment of EVA worksite analysis for International Space Station (ISS) mission support.

  18. Extravehicular Activity (EVA) Microbial Swab Tool

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2015-01-01

    When we send humans to search for life on Mars, we'll need to know what we brought with us versus what may already be there. To ensure our crewed spacecraft meet planetary protection requirements--and to protect our science from human contamination--we'll need to know whether micro-organisms are leaking/venting from our ships and spacesuits. This is easily done by swabbing external vents and surfaces for analysis, but there was no US EVA tool for that job. NASA engineers developed an EVA-compatible swab tool that can be used to collect data on current hardware, which will influence eventual Mars life support and EVA hardware designs.

  19. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  20. 8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT OF SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  1. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  2. Extravehicular Activity (EVA) Power, Avionics, and Software (PAS) 101

    NASA Technical Reports Server (NTRS)

    Irimies, David

    2011-01-01

    EVA systems consist of a spacesuit or garment, a PLSS, a PAS system, and spacesuit interface hardware. The PAS system is responsible for providing power for the suit, communication of several types of data between the suit and other mission assets, avionics hardware to perform numerous data display and processing functions, and information systems that provide crewmembers data to perform their tasks with more autonomy and efficiency. Irimies discussed how technology development efforts have advanced the state-of-the-art in these areas and shared technology development challenges.

  3. The role of EVA on Space Shuttle. [experimental support and maintenance activities

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1974-01-01

    The purpose of this paper is to present the history of Extravehicular Activity (EVA) through the Skylab Program and to outline the expected tasks and equipment capabilities projected for the Space Shuttle Program. Advantages offered by EVA as a tool to extend payload capabilities and effectiveness and economic advantages of using EVA will be explored. The presentation will conclude with some guidelines and recommendations for consideration by payload investigators in establishing concepts and designs utilizing EVA support.

  4. Advanced EVA system design requirements study, executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the space station advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related EVA support equipment were established. The EVA mission requirements, environments, and medical and physiological requirements, as well as operational, procedures and training issues were considered.

  5. EVA-SCRAM operations

    NASA Technical Reports Server (NTRS)

    Flanigan, Lee A.; Tamir, David; Weeks, Jack L.; Mcclure, Sidney R.; Kimbrough, Andrew G.

    1994-01-01

    This paper wrestles with the on-orbit operational challenges introduced by the proposed Space Construction, Repair, and Maintenance (SCRAM) tool kit for Extra-Vehicular Activity (EVA). SCRAM undertakes a new challenging series of on-orbit tasks in support of the near-term Hubble Space Telescope, Extended Duration Orbiter, Long Duration Orbiter, Space Station Freedom, other orbital platforms, and even the future manned Lunar/Mars missions. These new EVA tasks involve welding, brazing, cutting, coating, heat-treating, and cleaning operations. Anticipated near-term EVA-SCRAM applications include construction of fluid lines and structural members, repair of punctures by orbital debris, refurbishment of surfaces eroded by atomic oxygen, and cleaning of optical, solar panel, and high emissivity radiator surfaces which have been degraded by contaminants. Future EVA-SCRAM applications are also examined, involving mass production tasks automated with robotics and artificial intelligence, for construction of large truss, aerobrake, and reactor shadow shield structures. Realistically achieving EVA-SCRAM is examined by addressing manual, teleoperated, semi-automated, and fully-automated operation modes. The operational challenges posed by EVA-SCRAM tasks are reviewed with respect to capabilities of existing and upcoming EVA systems, such as the Extravehicular Mobility Unit, the Shuttle Remote Manipulating System, the Dexterous End Effector, and the Servicing Aid Tool.

  6. Human performance profiles for planetary analog extra-vehicular activities: 120 day and 30 day analog missions

    NASA Astrophysics Data System (ADS)

    Swarmer, Tiffany M.

    Understanding performance factors for future planetary missions is critical for ensuring safe and successful planetary extra-vehicular activities (EVAs). The goal of this study was to gain operational knowledge of analog EVAs and develop biometric profiles for specific EVA types. Data was collected for a 120 and 30 day analog planetary exploration simulation focusing on EVA type, pre and post EVA conditions, and performance ratings. From this five main types of EVAs were performed: maintenance, science, survey/exploratory, public relations, and emergency. Each EVA type has unique characteristics and performance ratings showing specific factors in chronological components, environmental conditions, and EVA systems that have an impact on performance. Pre and post biometrics were collected to heart rate, blood pressure, and SpO2. Additional data about issues and specific EVA difficulties provide some EVA trends illustrating how tasks and suit comfort can negatively affect performance ratings. Performance decreases were noted for 1st quarter and 3rd quarter EVAs, survey/exploratory type EVAs, and EVAs requiring increased fine and gross motor function. Stress during the simulation is typically higher before the EVA and decreases once the crew has returned to the habitat. Stress also decreases as the simulation nears the end with the 3rd and 4th quarters showing a decrease in stress levels. Operational components and studies have numerous variable and components that effect overall performance, by increasing the knowledge available we may be able to better prepare future crews for the extreme environments and exploration of another planet.

  7. STS-111 Astronaut Perrin Performs Extra Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).

  8. Results from an Investigation into Extra-Vehicular Activity (EVA) Training Related Shoulder Injuries

    NASA Technical Reports Server (NTRS)

    Johnson, Brian J.; Williams, David R.

    2004-01-01

    The number and complexity of extravehicular activities (EVAs) required for the completion and maintenance of the International Space Station (ISS) is unprecedented. The training required to successfully complete this magnitude of space walks presents a real risk of overuse musculoskeletal injuries to the EVA crew population. There was mounting evidence raised by crewmembers, trainers, and physicians at the Johnson Space Center (JSC) between 1999 and 2002 that suggested a link between training in the Neutral - Buoyancy Lab (NBL) and the several reported cases of shoulder injuries. The short- and long-term health consequences of shoulder injury to astronauts in training as well as the potential mission impact associated with surgical intervention to assigned EVA crew point to this as a critical problem that must be mitigated. Thus, a multi-directorate tiger team was formed in December of 2002 led by the EVA Office and Astronaut Office at the JSC. The primary objectives of this Tiger Team were to evaluate the prevalence of these injuries and substantiate the relationship to training in the NBL with the crew person operating in the EVA Mobility Unit (EMU). Between December 2002 and June of 2003 the team collected data, surveyed crewmembers, consulted with a variety of physicians, and performed tests. The results of this effort were combined with the vast knowledge and experience of the Tiger Team members to formulate several findings and over fifty recommendations. This paper summarizes those findings and recommendations as well as the process by which these were determined. The Tiger Team concluded that training in the NBL was directly linked to several major and minor shoulder injuries that had occurred. With the assistance of JSC flight surgeons, outside consultants, and the lead crewmember/physician on the team, the mechanisms of injury were determined. These mechanisms were then linked to specific aspects of the hardware design, operational techniques, and the

  9. Astronaut Bernard Harris on RMS during EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Bernard A. Harris, Jr., payload commander, watches astronaut C. Michael Foale (out of frame), mission specialist, during the late phases of their shared extravehicular activity (EVA) in the STS-63 Space Shuttle Discovery's cargo bay.

  10. Astronaut Bernard Harris on RMS during EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Bernard A. Harris, Jr., payload commander, standing on a foot restraint attached to the Remote Manipulator System (RMS) arm carries astronaut C. Michael Foale, mission specialist, during their shared extravehicular activity (EVA) in the Space Shuttle Discovery's cargo bay.

  11. Extravehicular activities limitations study. Volume 2: Establishment of physiological and performance criteria for EVA gloves

    NASA Technical Reports Server (NTRS)

    Ohara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1988-01-01

    One of the major probelms faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human hand capabilities. This report describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based on an assessment of general human hand functioning and EVA task requirements several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure. A test program was conducted to evaluate the tests using a representative EVA glove. Eleven test subjects participated in a repeated-measures design. The report presents the results of the tests in each capability domain.

  12. Astronauts Harris and Foale ready to egress airlock for EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronauts Bernard A. Harris, Jr., payload commander, (top) and C. Michael Foale, mission specialist, are ready to egress airlock for an extravehicular activity (EVA) during the STS-63 mission on the Space Shuttle Discovery.

  13. Risk Management in EVA

    NASA Technical Reports Server (NTRS)

    Hall, Jonathan; Lutomski, M.

    2006-01-01

    This viewgraph presentation reviews the use of risk management in Extravehicular Activities (EVA). The contents include: 1) EVA Office at NASA - JSC; 2) EVA Project Risk Management: Why and When; 3) EVA Office Risk Management: How; 4) Criteria for Closing a Risk; 5) Criteria for Accepting a Risk; 6) ISS IRMA Reference Card Data Entry Requirement s; 7) XA/ EVA Office Risk Activity Summary; 8) EVA Significant Change Summary; 9) Integrated Risk Management Application (XA) Matrix, March 31, 2004; 10) ISS Watch Item: 50XX Summary Report; and 11) EVA Project RM Usefulness

  14. STS-111 Astronaut Chang-Diaz Performs Extra Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valery G. Korzun, commander; and Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Franklin R. Chang-Diaz participates in the first scheduled session of extra vehicular activity (EVA) for the STS-111 mission. During the space walk, Chang-Diaz and Perrin attached a Power and Data Grapple Fixture onto the ISS's P6 Truss, setting the stage for the future relocation of the P6. The next major task was to remove Service Module Debris Panels from Space Shuttle Endeavour's payload bay and attach them to their temporary location on Pressurized Mating Adapter 1 (PMA-1). The space walkers also removed thermal blankets to prepare the MBS for installation onto the station's Mobile Transporter (MT).

  15. Eva Physiology, Systems, and Performance (EPSP) Project Overview

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2007-01-01

    Extravehicular activity (EVA) is any activity performed by astronauts outside their space vehicle or habitat. EVA may be performed on orbit, such as outside the Space Shuttle or the International Space Station, or on a planetary surface such as Mars or on the moon. Astronauts wear a pressurized suit that provides environmental protection, mobility, life support, and communications while they work in the harsh conditions of a microgravity environment. Exploration missions to the moon and Mars may last many days and will include many types of EVAs; exploration, science, construction and maintenance. The effectiveness and success of these EVA-filled missions is dependent on the ability to perform tasks efficiently. The EVA Physiology, Systems and Performance (EPSP) project will conduct a number of studies to understand human performance during EVA, from a molecular level to full-scale equipment and suit design aspects, with the aim of developing safe and efficient systems for Exploration missions and the Constellation Program. The EPSP project will 1) develop Exploration Mission EVA suit requirements for metabolic and thermal loading, optional center of gravity location, biomedical sensors, hydration, nutrition, and human biomedical interactions; 2) develop validated EVA prebreathe protocols that meet medical, vehicle, and habitat constraints while minimizing crew time and thus increasing EVA work efficiency; and 3) define exploration decompression sickness (DCS) risks, policy, and mission success statistics and develop a DCS risk definition report.

  16. EVA - Don't Leave Earth Without It

    NASA Technical Reports Server (NTRS)

    Cupples, J. Scott; Smith, Stephen A.

    2011-01-01

    Modern manned space programs come in two categories: those that need Extravehicular Activity (EVA) and those that will need EVA. This paper discusses major milestones in the Shuttle Program where EVA was used to save payloads, enhance on-orbit capabilities, and build structures in order to ensure success of National Aeronautics and Space Administration (NASA) missions. In conjunction, the Extravehicular Mobility Unit s (EMU) design, and hence, its capabilities evolved as its mission evolved. It is the intent that lessons can be drawn from these case studies so that EVA compatibility is designed into future vehicles and payloads.

  17. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral

  18. One hundred US EVAs: a perspective on spacewalks.

    PubMed

    Wilde, Richard C; McBarron, James W; Manatt, Scott A; McMann, Harold J; Fullerton, Richard K

    2002-01-01

    In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.

  19. Automatic antenna switching design for Extra Vehicular Activity (EVA) communication system

    NASA Technical Reports Server (NTRS)

    Randhawa, Manjit S.

    1987-01-01

    An Extra Vehicular Activity (EVA) crewmember had two-way communications with the space station in the Ku-band frequency (12 to 18 GHz). The maximum range of the EVA communications link with the space station is approximately one kilometer for nominal values for transmitter power, antenna gains, and receiver noise figure. The EVA Communications System, that will continue to function regardless of the astronaut's position and orientation, requires an antenna system that has full spherical coverage. Three or more antennas that can be flush mounted on the astronaut's space suit (EMU) and/or his propulsive backpack (MMU), will be needed to provide the desired coverage. As the astronaut moves in the space station, the signal received by a given EVA antenna changes. An automatic antenna switching system is needed that will switch the communication system to the antenna with the largest signal strength. A design for automatic antenna switching is presented and discussed.

  20. Astronaut Dale Gardner rehearses control of MMU during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC.

  1. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1988-01-01

    The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.

  2. Studies Relating to EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.

  3. Space Station Human Factors Research Review. Volume 1: EVA Research and Development

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Vykukal, H. C. (Editor)

    1988-01-01

    An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.

  4. EVA Training and Development Facilities

    NASA Technical Reports Server (NTRS)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  5. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2010-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new concept of operations will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), the Japan Aerospace Exploration Agency's (JAXA's) H-II Transfer Vehicle (HTV) and the Boeing Delta IV Heavy (DIV-H). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  6. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Blome, Elizabeth; Tetsuya, Sakashita

    2011-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new operations concept will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), and the Japan Aerospace Exploration Agency's (JAXA s) H-II Transfer Vehicle (HTV). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  7. Investigation of the effects of extravehicular activity (EVA) gloves on performance

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.; Klute, Glenn

    1993-01-01

    The objective was to assess the effects of extravehicular activity (EVA) gloves at different pressures on human hand capabilities. A factorial experiment was performed in which three types of EVA gloves were tested at five pressure differentials. The independent variables tested in this experiment were gender, glove type, pressure differential, and glove make. Six subjects participated in an experiment where a number of dexterity measures, namely time to tie a rope, and the time to assemble a nut and bolt were recorded. Tactility was measured through a two point discrimination test. The results indicate that with EVA gloves strength is reduced by nearly 50 percent, there is a considerable reduction in dexterity, performance decrements increase with increasing pressure differential, and some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand. The implications for the designer are discussed.

  8. Human Research Program Human Health Countermeasures Element Extravehicular Activity (EVA) Risk Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Norfleet, William; Harris, Bernard

    2009-01-01

    The Extravehicular Activity (EVA) Risk Standing Review Panel (SRP) was favorably impressed by the operational risk management approach taken by the Human Research Program (HRP) Integrated Research Plan (IRP) to address the stated life sciences issues. The life sciences community at the Johnson Space Center (JSC) seems to be focused on operational risk management. This approach is more likely to provide risk managers with the information they need at the time they need it. Concerning the information provided to the SRP by the EVA Physiology, Systems, and Performance Project (EPSP), it is obvious that a great deal of productive activity is under way. Evaluation of this information was hampered by the fact that it often was not organized in a fashion that reflects the "Gaps and Tasks" approach of the overall Human Health Countermeasures (HHC) effort, and that a substantial proportion of the briefing concerned subjects that, while interesting, are not part of the HHC Element (e.g., the pressurized rover presentation). Additionally, no information was provided on several of the tasks or how they related to work underway or already accomplished. This situation left the SRP having to guess at the efforts and relationship to other elements, and made it hard to easily map the EVA Project efforts currently underway, and the data collected thus far, to the gaps and tasks in the IRP. It seems that integration of the EPSP project into the HHC Element could be improved. Along these lines, we were concerned that our SRP was split off from the other participating SRPs at an early stage in the overall agenda for the meeting. In reality, the concerns of EPSP and other projects share much common ground. For example, the commonality of the concerns of the EVA and exercise physiology groups is obvious, both in terms of what reduced exercise capacity can do to EVA capability, and how the exercise performed during an EVA could contribute to an overall exercise countermeasure prescription.

  9. Physiological and technological considerations for Mars mission extravehicular activity

    NASA Technical Reports Server (NTRS)

    Waligora, James M.; Sedej, Melaine M.

    1986-01-01

    The nature of the suit is a function of the needs of human physiology, the ambient environment outside the suit, and the type of activity to be accomplished while in the suit. The physiological requirements that must be provided for in the Martian Extravehicular Activity (EVA) suit will be reviewed. The influence of the Martian environment on the EVA suit and EVA capabilities is elaborated, and the Martian environment is compared with the lunar environment. The differences that may influence the EVA design are noted. The type, nature, and duration of activities to be done in transit to Mars and on the Martian surface will be evaluated and the impact of these activities on the requirements for EVA systems will be discussed. Furthermore, the interaction between Martian surface transportation systems and EVA systems will be covered. Finally, options other than EVA will be considered such as robotics, nonanthropometric suits, and vehicles with anthropometric extremities or robotic end effectors.

  10. A human factors analysis of EVA time requirements

    NASA Technical Reports Server (NTRS)

    Pate, D. W.

    1996-01-01

    Human Factors Engineering (HFE), also known as Ergonomics, is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. A human factors motion and time study was initiated with the goal of developing a database of EVA task times and a method of utilizing the database to predict how long an ExtraVehicular Activity (EVA) should take. Initial development relied on the EVA activities performed during the STS-61 mission (Hubble repair). The first step of the analysis was to become familiar with EVAs and with the previous studies and documents produced on EVAs. After reviewing these documents, an initial set of task primitives and task time modifiers was developed. Videotaped footage of STS-61 EVAs were analyzed using these primitives and task time modifiers. Data for two entire EVA missions and portions of several others, each with two EVA astronauts, was collected for analysis. Feedback from the analysis of the data will be used to further refine the primitives and task time modifiers used. Analysis of variance techniques for categorical data will be used to determine which factors may, individually or by interactions, effect the primitive times and how much of an effect they have.

  11. Astronaut Dale Gardner rehearses during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner works to deploy a large stinger device designed for locking onto the orbiting satellites via entering a spent engine's nozzle.

  12. Astronaut Dale Gardner rehearses during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner handles a stinger device to make initial contact with one of the two satellites they will be working with.

  13. Interoperability Trends in Extravehicular Activity (EVA) Space Operations for the 21st Century

    NASA Technical Reports Server (NTRS)

    Miller, Gerald E.

    1999-01-01

    No other space operations in the 21 st century more comprehensively embody the challenges and dependencies of interoperability than EVA. This discipline is already functioning at an W1paralleled level of interagency, inter-organizational and international cooperation. This trend will only increase as space programs endeavor to expand in the face of shrinking budgets. Among the topics examined in this paper are hardware-oriented issues. Differences in design standards among various space participants dictate differences in the EVA tools that must be manufactured, flown and maintained on-orbit. Presently only two types of functional space suits exist in the world. However, three versions of functional airlocks are in operation. Of the three airlocks, only the International Space Station (ISS) Joint Airlock can accommodate both types of suits. Due to functional differences in the suits, completely different operating protocols are required for each. Should additional space suit or airlock designs become available, the complexity will increase. The lessons learned as a result of designing and operating within such a system are explored. This paper also examines the non-hardware challenges presented by interoperability for a discipline that is as uniquely dependent upon the individual as EVA. Operation of space suits (essentially single-person spacecrafts) by persons whose native language is not that of the suits' designers is explored. The intricacies of shared mission planning, shared control and shared execution of joint EVA's are explained. For example, once ISS is fully functional, the potential exists for two crewmembers of different nationality to be wearing suits manufactured and controlled by a third nation, while operating within an airlock manufactured and controlled by a fourth nation, in an effort to perform tasks upon hardware belonging to a fifth nation. Everything from training issues, to procedures development and writing, to real-time operations is

  14. Astronaut hazard during free-flight polar EVA

    NASA Technical Reports Server (NTRS)

    Hall, W. N.

    1985-01-01

    Extravehicular Activity (EVA) during Shuttle flights planned for the late 1980's includes several factors which together may constitute an astronaut hazard. Free-flight EVA is planned whereas prior United States Earth orbit EVA has used umbilical tethers carrying communications, coolant, and oxygen. EVA associated with missions like LANDSAT Retrieval will be in orbits through the auroral oval where charging of spacecraft may occur. The astronaut performing free flight EVA constitutes an independent spacecraft. The astronaut and the Shuttle make up a system of electrically isolated spacecraft with a wide disparity in size. Unique situations, such as the astronaut being in the wake of the Shuttle while traversing an auroral disturbance, could result in significant astronaut and Shuttle charging. Charging and subsequent arc discharge are important because they have been associated with operating upsets and even satellite failure at geosynchronous orbit. Spacecraft charging theory and experiments are examined to evaluate charging for Shuttle size spacecraft in the polar ionosphere.

  15. Use MACES IVA Suit for EVA Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  16. Extra-Vehicular Activity (EVA) glove evaluation test protocol

    NASA Technical Reports Server (NTRS)

    Hinman-Sweeney, E. M.

    1994-01-01

    One of the most critical components of a space suit is the gloves, yet gloves have traditionally presented significant design challenges. With continued efforts at glove development, a method for evaluating glove performance is needed. This paper presents a pressure-glove evaluation protocol. A description of this evaluation protocol, and its development is provided. The protocol allows comparison of one glove design to another, or any one design to bare-handed performance. Gloves for higher pressure suits may be evaluated at current and future design pressures to drive out differences in performance due to pressure effects. Using this protocol, gloves may be evaluated during design to drive out design problems and determine areas for improvement, or fully mature designs may be evaluated with respect to mission requirements. Several different test configurations are presented to handle these cases. This protocol was run on a prototype glove. The prototype was evaluated at two operating pressures and in the unpressurized state, with results compared to bare-handed performance. Results and analysis from this test series are provided, as is a description of the configuration used for this test.

  17. EVA Radio DRATS 2011 Report

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Bakula, Casey J.

    2012-01-01

    In the Fall of 2011, National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) participated in the Desert Research and Technology Studies (DRATS) field experiments held near Flagstaff, Arizona. The objective of the DRATS outing is to provide analog mission testing of candidate technologies for space exploration, especially those technologies applicable to human exploration of extra- terrestrial rocky bodies. These activities are performed at locations with similarities to extra-terrestrial conditions. This report describes the Extravehicular Activity (EVA) Dual-Band Radio Communication System which was demonstrated during the 2011 outing. The EVA radio system is designed to transport both voice and telemetry data through a mobile ad hoc wireless network and employs a dual-band radio configuration. Some key characteristics of this system include: 1. Dual-band radio configuration. 2. Intelligent switching between two different capability wireless networks. 3. Self-healing network. 4. Simultaneous data and voice communication.

  18. Space Shuttle/Orbiter EVA and EVA provisions

    NASA Technical Reports Server (NTRS)

    Goodman, J. R.

    1980-01-01

    EVA objectives, procedures, and equipment for the Shuttle are reviewed. The EVA will occur as a planned excursion, to complete a mission objective, or on a contingency basis as support for the mission or to effect repairs to the Orbiter or its payload. Configurations for the placement of the airlock for EVA with and without Spacelab payloads are discussed, along with the various EVA tasks which could be expected as necessary for mission completion. Handholds have been placed in strategic positions on the RMS and along the payload doors, and a safety tether has been incorporated with line extension out to 25 ft. Off-the-shelf tools such as needlenose pliers, forceps, diagonal cutters, etc. are carried as standard equipment for the repair of malfunctioning equipment and doorlatches. Finally, attention is given to EVA lighting, communication, life-support, and work station restraint systems.

  19. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Mesloh, Miranda; Thompson, Shelby; England, Scott; Benson, Liz

    2009-01-01

    With the new vision of space travel aimed at traveling back to the Moon and eventually to Mars, NASA is designing a new spacesuit glove. The purpose of this study was to baseline hand strength while wearing the current Extravehicular Activity (EVA) glove, the Phase VI. By varying the pressure in the glove, hand strength could be characterized as a function of spacesuit pressure. This finding is of extreme importance when evaluating missions that require varying suit pressures associated with different operations within NASA's current human spaceflight program, Constellation. This characterization fed directly into the derivation of requirements for the next EVA glove. This study captured three types of maximum hand strength: grip, lateral pinch, and pulp-2 pinch. All three strengths were measured under varying pressures and compared to a bare-hand condition. The resulting standardized data was reported as a percentage of the bare-hand strength. The first wave of tests was performed while the subjects, four female and four male, were wearing an Extravehicular Mobility Unit (EMU) suit supported by a suit stand. This portion of the test collected data from the barehand, suited unpressurized, and suited pressurized (4.3 psi) conditions. In addition, the effects of the Thermal Micrometeoroid Garment (TMG) on hand strength were examined, with the suited unpressurized and pressurized cases tested with and without a TMG. It was found that, when pressurized and with the TMG, the Phase VI glove reduced applied grip strength to a little more than half of the subject s bare-hand strength. The lateral pinch strength remained relatively constant while the pulp-2 pinch strength actually increased with pressure. The TMG was found to decrease maximum applied grip strength by an additional 10% for both pressurized and unpressurized cases, while the pinch strengths saw little to no change. In developing requirements based on human subjects, it is important to attempt to derive

  20. Study of space shuttle EVA/IVA support requirements. Volume 2: EVA/IVA tasks, guidelines, and constraints definition

    NASA Technical Reports Server (NTRS)

    Webbon, B. W.; Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    The guidelines for EVA and IVA tasks to be performed on the space shuttle are defined. In deriving tasks, guidelines, and constraints, payloads were first identified from the mission model. Payload requirements, together with man and manipulator capabilities, vehicle characteristics and operation, and safety considerations led to a definition of candidate tasks. Guidelines and constraints were also established from these considerations. Scenarios were established, and screening criteria, such as commonality of EVA and IVA activities, were applied to derive representative planned and unplanned tasks. The whole spectrum of credible contingency situations with a potential requirement for EVA/IVA was analyzed.

  1. Advanced extravehicular activity systems requirements definition study. Phase 2: Extravehicular activity at a lunar base

    NASA Technical Reports Server (NTRS)

    Neal, Valerie; Shields, Nicholas, Jr.; Carr, Gerald P.; Pogue, William; Schmitt, Harrison H.; Schulze, Arthur E.

    1988-01-01

    The focus is on Extravehicular Activity (EVA) systems requirements definition for an advanced space mission: remote-from-main base EVA on the Moon. The lunar environment, biomedical considerations, appropriate hardware design criteria, hardware and interface requirements, and key technical issues for advanced lunar EVA were examined. Six remote EVA scenarios (three nominal operations and three contingency situations) were developed in considerable detail.

  2. Space Station Freedom airlock - The integration of IVA and EVA capabilities in an orbital element

    NASA Astrophysics Data System (ADS)

    Moore, Thomas O., Jr.; Matthews, Anthony P.

    1992-07-01

    In order to meet mission goals, the Space Station Freedom (SSF) airlock must maximize crew efficiency while supporting a range of extravehicular activity (EVA) and intravehicular activity (IVA) operations. EVA will be a frequently planned occurrence on SSF. In order to maximize the usefulness of the limited EVA resource, overhead times must be minimized. This paper discusses how the SSF airlock outfitting design responds to both IVA and EVA requirements. An overview of the SSF airlock and the missions it must accomplish are also provided. The focus of this paper is on how the outfitting and man systems designs provide solutions to multiple requirements, explicitly stated as well as derived requirements. The Space Station airlock is evaluated as an integrated system in the functional assessments of the EVA task, and this paper explains how station common hardware and systems are adapted to the unique airlock environment.

  3. EVA Systems Flight Controller Talks With Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, EVA Systems Flight Controller Sandy Fletcher participates in a Digital Learning Network (DLN) event with students from Northtowne Ele...

  4. EVA safety: Space suit system interoperability

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.; McBarron, J. W.; Abramov, L. P.; Zvezda, A. O.

    1995-01-01

    The results and the recommendations of the International Academy of Astronautics extravehicular activities (IAA EVA) Committee work are presented. The IAA EVA protocols and operation were analyzed for harmonization procedures and for the standardization of safety critical and operationally important interfaces. The key role of EVA and how to improve the situation based on the identified EVA space suit system interoperability deficiencies were considered.

  5. Extravehicular Activity Probabilistic Risk Assessment Overview for Thermal Protection System Repair on the Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Canga, Michael A.; Duncan, Gary

    2010-01-01

    The Shuttle Program initiated an Extravehicular Activity (EVA) Probabilistic Risk Assessment (PRA) to assess the risks associated with performing a Shuttle Thermal Protection System (TPS) repair during the Space Transportation System (STS)-125 Hubble repair mission as part of risk trades between TPS repair and crew rescue.

  6. NEEMO 21: Tools, Techniques, Technologies & Training for Science Exploration EVA

    NASA Technical Reports Server (NTRS)

    Graff, Trevor

    2016-01-01

    The 21st mission of the NASA Extreme Environment Mission Operations (NEEMO) was a highly integrated operational test and evaluation of tools, techniques, technologies, and training for science driven exploration during Extravehicular Activity (EVA).The 16-day mission was conducted from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo, FL. The unique facility, authentic science objectives, and diverse skill-sets of the crew/team facilitate the planning and design for future space exploration.

  7. Extravehicular activity at geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Shields, Nicholas, Jr.; Schulze, Arthur E.; Carr, Gerald P.; Pogue, William

    1988-01-01

    The basic contract to define the system requirements to support the Advanced Extravehicular Activity (EVA) has three phases: EVA in geosynchronous Earth orbit; EVA in lunar base operations; and EVA in manned Mars surface exploration. The three key areas to be addressed in each phase are: environmental/biomedical requirements; crew and mission requirements; and hardware requirements. The structure of the technical tasks closely follows the structure of the Advanced EVA studies for the Space Station completed in 1986.

  8. Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Kesterson, Matthew; Bue, Grant; Trevino, Luis

    2006-01-01

    In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series off tubes through which cooling water is circulated. To better predict the effectiveness of the LCG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained. Currently, increasing the fabric s thermal conductivity along with also examining an increase in the cooling tube conductivity to more efficiently remove the excess heat generated during EVA is being simulated. Initial trials varied cooling water temperature, water flow rate, garment conductivity, tube conductivity, and total number of cooling tubes in the LCVG. Results indicate that the total number of cooling tubes could be reduced to 22 and still achieve the desired heat removal rate of 361 W. Further improvements are being made to the garment network used in the model to account for temperature gradients associated with the spacing of the cooling tubes over the surface of the garment

  9. Metabolic rate control during extravehicular activity simulations and measurement techniques during actual EVAS

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.

    1975-01-01

    A description of the methods used to control and measure metabolic rate during ground simulations is given. Work levels attained at the Space Environment Simulation Laboratory are presented. The techniques and data acquired during ground simulations are described and compared with inflight procedures. Data from both the Skylab and Apollo Program were utilized and emphasis is given to the methodology, both in simulation and during flight. The basic techniques of work rate assessment are described. They include oxygen consumption, which was useful for averages over long time periods, heart rate correlations based on laboratory calibrations, and liquid cooling garment temperature changes. The relative accuracy of these methods as well as the methods of real-time monitoring at the Mission Control Center are discussed. The advantages and disadvantages of each of the metabolic measurement techniques are discussed. Particular emphasis is given to the problem of utilizing oxygen decrement for short time periods and heart rate at low work levels. A summary is given of the effectiveness of work rate control and measurements; and current plans for future EVA monitoring are discussed.

  10. Force-endurance capabilities of extravehicular activity (EVA) gloves at different pressure levels

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.; Klute, Glenn K.

    1993-01-01

    The human hand is a very useful multipurpose tool in all environments. However, performance capabilities are compromised considerably when gloves are donned. This is especially true to extravehicular activity (EVA) gloves. The primary intent was to answer the question of how long a person can perform tasks requiring certain levels of exertion. The objective was to develop grip force-endurance relations. Six subjects participated in a factorial experiment involving three hand conditions, three pressure differentials, and four levels of force exertion. The results indicate that, while the force that could be exerted depended on the glove, pressure differential, and the level of exertion, the endurance time at any exertion level depended just on the level of exertion expressed as a percentage of maximum exertion possible at that condition. The impact of these findings for practitioners as well as theoreticians is discussed.

  11. EVA Physiology

    NASA Video Gallery

    An introduction to the risk of decompression sickness (DCS) in astronauts during EVA. This will include an explanation of Prebreathe Protocols (PB), to affect nitrogen washout as a primary risk mit...

  12. Astronaut Harrison Schmitt retrieving lunar samples during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison Schmitt, Apollo 17 lunar module pilot, with his adjustable sampling scoop, heads for a selected rock on the lunar surface to retrieve the sample for study. The action was photographed by Apollo 17 crew commander, Astronaut Eugene A. Cernan on the mission's second extravehicular activity (EVA-2), at Station 5 (Camelot Crater) at the Taurus-Littrow landing site.

  13. A Human Factors Analysis of EVA Time Requirements

    NASA Technical Reports Server (NTRS)

    Pate, Dennis W.

    1997-01-01

    Human Factors Engineering (HFE) is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. During the summer of 1995, a human factors motion and time study was initiated with the goals of developing a database of EVA task times and developing a method of utilizing the database to predict how long an EVA should take. Initial development relied on the EVA activities performed during the STS-61 (Hubble) mission. The first step of the study was to become familiar with EVA's, the previous task-time studies, and documents produced on EVA's. After reviewing these documents, an initial set of task primitives and task-time modifiers was developed. Data was collected from videotaped footage of two entire STS-61 EVA missions and portions of several others, each with two EVA astronauts. Feedback from the analysis of the data was used to further refine the primitives and modifiers used. The project was continued during the summer of 1996, during which data on human errors was also collected and analyzed. Additional data from the STS-71 mission was also collected. Analysis of variance techniques for categorical data was used to determine which factors may affect the primitive times and how much of an effect they have. Probability distributions for the various task were also generated. Further analysis of the modifiers and interactions is planned.

  14. Overview of Umbilical Extravehicular Activity (EVA) Interfaces in Life Support Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie J.; Jordan, Nicole C.; Barido, Richard A.

    2007-01-01

    Extravehicular Activities (EVAs) for manned spacecraft vehicles have been performed for contingencies and nominal operations numerous times throughout history. This paper will investigate how previous U.S. manned spacecraft vehicles provided life support to crewmembers performing the EVA. Specifically defined are umbilical interfaces with respect to crewmember cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal. As historical data is available, the need for planned versus contingency EVAs in previous vehicles as well as details for a nominal EVA day versus a contingency EVA day will be discussed. The hardware used to provide the cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal, and the general functions of that hardware, will also be detailed, as information is available. The Crew Exploration Vehicle (CEV or Orion) EVA interfaces will be generically discussed to provide a glimpse of how similar they are to the EVA interfaces in previous vehicles. Conclusions on strategies that should be used for CEV based on previous spacecraft EVA interfaces will be made in the form of questions and recommendations.

  15. Investigation of the effects of Extra Vehicular Activity (EVA) and Launch and Entry (LES) gloves on performance

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.

    1992-01-01

    Human capabilities such as dexterity, manipulability, and tactile perception are unique and render the hand as a very versatile, effective and a multipurpose tool. This is especially true for unknown environments such as the EVA environment. In the microgravity environment interfaces, procedures, and activities are too complex, diverse, and defy advance definition. Under these conditions the hand becomes the primary means of locomotion, restraint, and material handling. Facilitation of these activities, with simultaneous protection from the cruel EVA environment are the two, often conflicting, objectives of glove design. The objectives of this study was (1) to assess the effects of EVA gloves at different pressures on human hand capabilities, (2) to devise a protocol for evaluating EVA gloves, (3) to develop force time relations for a number of EVA glove pressure combinations, and (4) to evaluate two types of launch and entry suit gloves. The objectives were achieved through three experiments. The experiments for achieving objectives 1, 2, and 3 were performed in the glove box in building 34. In experiment 1 three types of EVA gloves were tested at five pressure differentials. A number of performance measures were recorded. In experiment 2 the same gloves as in experiment 1 were evaluated in a reduced number of pressure conditions. The performance measure was endurance time. Six subjects participated in both the experiments. In experiment 3 two types of launch and entry suit gloves were evaluated using a paradigm similar to experiment 1. Currently the data is being analyzed. However for this report some summary analyses have been performed. The results indicate that a) With EVA gloves strength is reduced by nearly 50 percent, b) performance decrements increase with increasing pressure differential, c) TMG effects are not consistent across the three gloves tested, d) some interesting gender glove interactions were observed, some of which may have been due to the

  16. Utilization of ISS to Develop and Test Operational Concepts and Hardware for Low-Gravity Terrestrial EVA

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    NASA has considerable experience in two areas of Extravehicular Activities (EVA). The first can be defined as microgravity, orbital EVAs. This consists of everything done in low Earth orbit (LEO), from the early, proof of concept EVAs conducted during the Gemini program of the 1960s, to the complex International Space Station (ISS) assembly tasks of the first decade of the 21st century. The second area of expertise is comprised of those EVAs conducted on the lunar surface, under a gravitational force one-sixth that of Earth. This EVA expertise encapsulates two extremes - microgravity and Earthlike gravitation - but is insufficient as humans expand their exploration purview, most notably with respect to spacewalks conducted on very low-gravity bodies, such as near- Earth objects (NEO) and the moons of Mars. The operational and technical challenges of this category of EVA have yet to be significantly examined, and as such, only a small number of operational concepts have been proposed thus far. To ensure mission success, however, EVA techniques must be developed and vetted to allow the selection of operational concepts that can be utilized across an assortment of destinations whose physical characteristics vary. This paper examines the utilization of ISS-based EVAs to test operational concepts and hardware in preparation for a low-gravity terrestrial EVA. While the ISS cannot mimic some of the fundamental challenges of a low-gravity terrestrial EVA - such as rotation rate and surface composition - it may be the most effective test bed available.

  17. Pre-Mission Input Requirements to Enable Successful Sample Collection by A Remote Field/EVA Team

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Lim, D. S. S.; Young, K. E.; Brunner, A.; Elphic, R. E.; Horne, A.; Kerrigan, M. C.; Osinski, G. R.; Skok, J. R.; Squyres, S. W.; Saint-Jacques, D.; Heldmann, J. L.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team, part of the Solar System Exploration Virtual Institute (SSERVI), is a field-based research program aimed at generating strategic knowledge in preparation for human and robotic exploration of the Moon, near-Earth asteroids, Phobos and Deimos, and beyond. In contract to other technology-driven NASA analog studies, The FINESSE WCIS activity is science-focused and, moreover, is sampling-focused with the explicit intent to return the best samples for geochronology studies in the laboratory. We used the FINESSE field excursion to the West Clearwater Lake Impact structure (WCIS) as an opportunity to test factors related to sampling decisions. We examined the in situ sample characterization and real-time decision-making process of the astronauts, with a guiding hypothesis that pre-mission training that included detailed background information on the analytical fate of a sample would better enable future astronauts to select samples that would best meet science requirements. We conducted three tests of this hypothesis over several days in the field. Our investigation was designed to document processes, tools and procedures for crew sampling of planetary targets. This was not meant to be a blind, controlled test of crew efficacy, but rather an effort to explicitly recognize the relevant variables that enter into sampling protocol and to be able to develop recommendations for crew and backroom training in future endeavors.

  18. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  19. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  20. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and crewmembers (CMs) ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVA, and provides a historical look at energy expenditure during EVA through the Apollo program.

  1. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2012-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and, as a result, crew members ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVAs, and provides a historical look at energy expenditure during EVAs through the Apollo Program.

  2. Extra dose due to extravehicular activity during the NASA4 mission measured by an on-board TLD system

    NASA Technical Reports Server (NTRS)

    Deme, S.; Apathy, I.; Hejja, I.; Lang, E.; Feher, I.

    1999-01-01

    A microprocessor-controlled on-board TLD system, 'Pille'96', was used during the NASA4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the extra dose to two astronauts in the course of their extravehicular activity (EVA). For the EVA dose measurements, CaSO4:Dy bulb dosemeters were located in specially designed pockets of the ORLAN spacesuits. During an EVA lasting 6 h, the dose ratio inside and outside Mir was measured. During the EVA, Mir crossed the South Atlantic Anomaly (SAA) three times. Taking into account the influence of these three crossings the mean EVA/internal dose rate ratio was 3.2. Internal dose mapping using CaSO4:Dy dosemeters gave mean dose rates ranging from 9.3 to 18.3 microGy h-1 at locations where the shielding effect was not the same. Evaluation results of the high temperature region of LiF dosemeters are given to estimate the mean LET.

  3. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    NASA Technical Reports Server (NTRS)

    Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar

    2010-01-01

    The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.

  4. Effective Presentation of Metabolic Rate Information for Lunar Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Mackin, Michael A.; Gonia, Philip; Lombay-Gonzalez, Jose

    2010-01-01

    During human exploration of the lunar surface, a suited crewmember needs effective and accurate information about consumable levels remaining in their life support system. The information must be presented in a manner that supports real-time consumable monitoring and route planning. Since consumable usage is closely tied to metabolic rate, the lunar suit must estimate metabolic rate from life support sensors, such as oxygen tank pressures, carbon dioxide partial pressure, and cooling water inlet and outlet temperatures. To provide adequate warnings that account for traverse time for a crewmember to return to a safe haven, accurate forecasts of consumable depletion rates are required. The forecasts must be presented to the crewmember in a straightforward, effective manner. In order to evaluate methods for displaying consumable forecasts, a desktop-based simulation of a lunar Extravehicular Activity (EVA) has been developed for the Constellation lunar suite s life-support system. The program was used to compare the effectiveness of several different data presentation methods.

  5. Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2004-01-01

    This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

  6. Activities During Spacelab-1 Mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This STS-9 mission (Spacelab-1) onboard photograph shows astronaut Owen Garriott drawing a blood sample from astronaut Byron Lichtenberg inside Spacelab-1 science module for one of the life sciences experiments, called 'Effects of Prolonged Weightlessness on the Humoral Immune Response of Humans.' The purpose of this experiment was to determine the effect of weightlessness on the body's immune response or ability to resist disease. Blood samples were obtained from crewmembers at designated times before, during, and after flight. These specimens were analyzed for changes in antibody levels. More than 70 experiments in 5 disciplines from 14 nations were conducted during the mission. The five disciplines included Astronomy and Solar Physics, Space Plasma Physics, Atmospheric Physics and Earth Observations, Life Sciences, and Materials Science. The Spacelab mission (STS-9), managed by the Marshall Space Flight Center, was launched on November 28, 1983.

  7. Skylab 3 crewmen practice EVA procedures

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The three prime crewmen of the Skylab 3 mission practice procedures which will be used during the extravehicular activity (EVA) portion of the scheduled Skylab rate gyro six-pac installation. They are Scientist-Astronaut Owen K. Garriott (center), Astronaut Alan L. Bean (center background) and Astronaut Jack R. Lousma (right). Garriott is working with a mock-up of a trunion plug plate which is on the space station's deployment assembly. This picture was taken during Skylab 3 prelaunch training at JSC. In the left foreground with back to camera is Astronaut Russell L. Schweickart, who is assisting with the Skylab 3 training. Another training officer is in the left background (31322); Lousma practices procedures for EVA in his extravehicular mobility unit (EMU). He is working with a mock-up of a trunion plug plate which is on the space station's deployment assembly (31323).

  8. EVA Glove Research Team

    NASA Technical Reports Server (NTRS)

    Strauss, Alvin M.; Peterson, Steven W.; Main, John A.; Dickenson, Rueben D.; Shields, Bobby L.; Lorenz, Christine H.

    1992-01-01

    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area.

  9. US space flight experience. Physical exertion and metabolic demand of extravehicular activity: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Moore, Thomas P.

    1989-01-01

    A review of physical exertion and metabolic demands of extravehicular activity (EVA) on U.S. astronauts is given. Information is given on EVA during Gemini, Apollo and Skylab missions. It is noted that nominal EVA's should not be overstressful from a cardiovascular standpoint; that manual-intensive EVA's such as are planned for the construction phase of the Space Station can and will be demanding from a muscular standpoint, primarily for the upper extremities; that off-nominal unplanned EVA's can be physically demanding both from an endurance and from a muscular standpoint; and that crewmembers should be physically prepared and capable of performing these EVA's at any time during the mission.

  10. 12 CFR 940.3 - Core mission activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Core mission activities. 940.3 Section 940.3 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK MISSION CORE MISSION ACTIVITIES § 940.3 Core mission activities. The following Bank activities qualify as core mission activities:...

  11. Mission Operations Control Room Activities during STS-2 mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission Operations Control Room (MOCR) activities during STS-2 mission. Overall view of the MOCR in the Johnson Space Center's Mission Control Center. At far right is Eugene F. Kranz, Deputy Director of Flight Operations. At the flight director console in front of Kranz's FOD console are Flight Directors M.P. Frank, Neil B. Hutchinson and Donald R. Puddy as well as others (39506); Wide-angle view of flight controllers in the MOCR. Clifford E. Charlesworth, JSC Deputy Director, huddles with several flight directors for STS-2 at the flight director console. Kranz, is at far right of frame (39507); Dr. Christopher C. Kraft, Jr., JSC Director, center, celebrates successful flight and landing of STS-2 with a cigar in the MOCR. He is flanked by Dr. Maxime A Faget, left, Director of Engineering and Development, and Thomas L. Moser, of the Structures and Mechanics Division (39508); Flight Director Donald R. Puddy, near right, holds replica of the STS-2 insignia. Insignias on the opposite wall

  12. The main results of EVA medical support on the Mir Space Station.

    PubMed

    Katuntsev, V P; Osipov, Yu Yu; Barer, A S; Gnoevaya, N K; Tarasenkov, G G

    2004-04-01

    The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9-13 kcal/min and 150-174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.

  13. The main results of EVA medical support on the Mir Space Station

    NASA Astrophysics Data System (ADS)

    Katuntsev, V. P.; Osipov, Yu. Yu.; Barer, A. S.; Gnoevaya, N. K.; Tarasenkov, G. G.

    2004-04-01

    The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9- 13 kcal/ min and 150- 174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.

  14. A new method of measuring the stiffness of astronauts' EVA gloves

    NASA Astrophysics Data System (ADS)

    Mousavi, Mehdi; Appendino, Silvia; Battezzato, Alessandro; Bonanno, Alberto; Chen Chen, Fai; Crepaldi, Marco; Demarchi, Danilo; Favetto, Alain; Pescarmona, Francesco

    2014-04-01

    Hand fatigue is one of the most important problems of astronauts during their missions to space. This fatigue is due to the stiffness of the astronauts' gloves known as Extravehicular Activity (EVA) gloves. The EVA glove has a multilayered, bulky structure and is pressurized against the vacuum of space. In order to evaluate the stiffness of EVA gloves, different methods have been proposed in the past. In particular, the effects of wearing an EVA glove on the performance of the hands have been published by many researchers to represent the stiffness of the EVA glove. In this paper, a new method for measuring the stiffness of EVA gloves is proposed. A tendon-actuated finger probe is designed and used as an alternative to the human index finger in order to be placed inside an EVA glove and measure its stiffness. The finger probe is equipped with accelerometers, which work as tilt sensors, to measure the angles of its phalanges. The phalanges are actuated by applying different amount of torque using the tendons of the finger probe. Moreover, a hypobaric glove box is designed and realized to simulate the actual operating pressure of the EVA glove and to measure its stiffness in both pressurized and non-pressurized conditions. In order to prove the right performance of the proposed finger probe, an Orlam-DM EVA glove is used to perform a number of tests. The equation of stiffness for the PIP joint of this glove is extracted from the results acquired from the tests. This equation presents the torque required to flex the middle phalanx of the glove. Then, the effect of pressurization on the stiffness is highlighted in the last section. This setup can be used to measure the stiffness of different kinds of EVA gloves and allows direct, numerical comparison of their stiffness.

  15. Russian-American Cooperation in EVA Area (from Russian Perspective)

    NASA Astrophysics Data System (ADS)

    Tsygankov, O. S.; Alexandrov, A. P.; Poleschuk, A. F.

    Russian and American extravehicular activity (EVA) specialists started cooperation after Russia entered the ISS Program. Practical work began in the framework of the Mir-NASA Program, when astronauts J. Linenger, M. Foale and D. Wolf were trained in Russia and participated in the EVA on MIR. This was the intercourse of two experiences, two equal schools each formed under specific conditions. The Report studies the peculiarities of national EVA schools, shows the experience in their integration for the ISS purposes. Organizational aspects of the ISS Program to optimize the implementation of the EVA tasks are presented. It gives examples of the cooperation and development of the hardware equally compatible both with EMU and ORLAN-M space suits, impacts of different schools on the operational methods. It presents proposals on the further integration of the Russian and American schools, considers the prerequisites and perspectives of maximally integrated EVA system for the ISS and the possibility of its incorporation in future in to the mission to Mars.

  16. EVA Skills Training

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    Dr. Parazynski and a colleague from Extravehicular Activity (EVA), Robotics, & Crew Systems Operations (DX) worked closely to build the EVA Skills Training Program, and for the first time, defined the gold standards of EVA performance, allowing crewmembers to increase their performance significantly. As part of the program, individuals had the opportunity to learn at their own rate, taking additional water time as required, to achieve that level of performance. This focus on training to one's strengths and weaknesses to bolster them enabled the Crew Office and DX to field a much larger group of spacewalkers for the daunting "wall of EVA" required for the building and maintenance of the ISS. Parazynski also stressed the need for designers to understand the capabilities and the limitations of a human in a spacesuit, as well as opportunities to improve future generations of space. He shared lessons learned (how the Crew Office engaged in these endeavors) and illustrated the need to work as a team to develop these complex systems.

  17. An EVA Suit Fatigue, Strength, and Reach Model

    NASA Technical Reports Server (NTRS)

    Maida, James C.

    1999-01-01

    The number of Extra-Vehicular Activities (EVAs) performed will increase dramatically with the upcoming Space Station assembly missions. It is estimated that up to 900 EVA hours may be required to assemble the Space Station with an additional 200 hours per year for maintenance requirements. Efficient modeling tools will be essential to assist in planning these EVAS. Important components include strength and fatigue parameters, multi-body dynamics and kinematics. This project is focused on building a model of the EVA crew member encompassing all these capabilities. Phase 1, which is currently underway, involves collecting EMU suited and unsuited fatigue, strength and range of motion data, for all major joints of the body. Phase 2 involves processing the data for model input, formulating comparisons between the EMU suits and deriving generalized relationships between suited and unsuited data. Phase 3 will be formulation of a multi-body dynamics model of the EMU capable of predicting mass handling properties and integration of empirical data into the model. Phase 4 will be validation of the model with collected EMU data from the Neutral Buoyancy Laboratory at NASA/JSC. Engineers and designers will use tie EVA suit database to better understand the capabilities of the suited individuals. This knowledge will lead to better design of tools and planned operations. Mission planners can use the modeling system and view the animations and the visualizations of the various parameters, such as overall fatigue, motion, timelines, reach, and strength to streamline the timing, duration, task arrangement, personnel and overall efficiency of the EVA tasks. Suit designers can use quantifiable data at common biomechanical structure points to better analyze and compare suit performance.

  18. Development of an air-bearing fan for space extravehicular activity (EVA) suit ventilation

    NASA Technical Reports Server (NTRS)

    Fukumoto, Paul; Allen, Norman; Stonesifer, Greg

    1992-01-01

    A high-speed/variable flow fan has been developed for EVA suit ventilation which combines air bearings with a two-pole, toothless permanent-magnet motor. The fan has demonstrated quiet and vibration-free operation and a 2:1 range in flow rate variation. System weight is 0.9 kg, and input powers range from 12.4 to 42 W.

  19. STS-57 astronauts Low and Wisoff perform DTO 1210 EVA in OV-105's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During STS-57 extravehicular activity (EVA), Mission Specialist (MS) and Payload Commander (PLC) G. David Low (foreground) secures portable foot restraint (PFR) (manipulator foot restraint (MFR)) to the remote manipulator system (RMS) end effector using a PFR attachment device (PAD). MS3 Peter J.K. Wisoff performs operations next to Low at the stowed European Retrievable Carrier (EURECA). This EVA, designated Detailed Test Objective (DTO) 1210, included evaluation of procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. The scene is backdropped against the blackness of space with Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB) and payloads appearing in the foreground.

  20. Astronaut Harrison Schmitt standing next to boulder during third EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed standing next to a huge, split boulder during the third Apollo 17 extravehicular activity (EVA-3) at the Taurus-Littrow landing site on the Moon. The lunar rover, which transported Schmitt and Eugene A. Cernan, mission commander, to this extravehicular station from their Lunar Module, is seen in the background. Schmitt is the Apollo 17 lunar module pilot. The mosaic is made from two frames from Apollo 17 Hasselblad magaine 140.

  1. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more

  2. The feasibility of Doppler monitoring during EVA.

    PubMed

    Barer, A; Filipenkov, S; Katuntsev, V; Vogt, L; Wenzel, J

    1995-07-01

    During extravehicular activities (EVA) outside the spacecraft, astronauts have to work under reduced pressure in a space suit. This pressure reduction induces the risk of decompression sickness (DCS) by the formation of gas bubbles from excess nitrogen dissolved in the organism by breathing air at normal pressure. Under laboratory conditions the gas bubbles moving in the blood stream can be detected by the non-invasive ultrasonic Doppler method. By early detection of excessive bubble formation the development of DCS symptoms may be prevented by early application of preventative measures. The method could also be useful when applied in the space suit in order to compare the results of laboratory tests with operational results, because there is a discrepancy according to the DCS risk of laboratory experiments and actual EVA missions, where no symptoms have been reported yet. A prototype Doppler sensor has been developed and implemented in the Russian Orlan suit. To investigate the feasibility of this method under simulated space conditions, the equipment has been used in a series of 12 thermovacuum chamber tests with suited subjects, where intravenous bubble formation was compared to unsuited control experiments. In more than 50% of the suited tests good Doppler recordings could be achieved. In some cases with unsatisfying results the signal could be improved by breathholding. Although the results do not yet allow any conclusion about a possible difference between suited and unsuited subjects due to the small number of tests performed, the method proved its feasibility for use in EVA suits and should be further developed to enhance the safety of EVA procedures.

  3. Pre-Mission Input Requirements to Enable Successful Sample Collection by a Remote Field/EVA Team

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Young, K. E.; Lim, D. S.

    2015-01-01

    This paper is intended to evaluate the sample collection process with respect to sample characterization and decision making. In some cases, it may be sufficient to know whether a given outcrop or hand sample is the same as or different from previous sampling localities or samples. In other cases, it may be important to have more in-depth characterization of the sample, such as basic composition, mineralogy, and petrology, in order to effectively identify the best sample. Contextual field observations, in situ/handheld analysis, and backroom evaluation may all play a role in understanding field lithologies and their importance for return. For example, whether a rock is a breccia or a clast-laden impact melt may be difficult based on a single sample, but becomes clear as exploration of a field site puts it into context. The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team is a new activity focused on a science and exploration field based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, near-Earth asteroids (NEAs) and Phobos and Deimos. We used the FINESSE field excursion to the West Clearwater Lake Impact structure (WCIS) as an opportunity to test factors related to sampling decisions. In contract to other technology-driven NASA analog studies, The FINESSE WCIS activity is science-focused, and moreover, is sampling-focused, with the explicit intent to return the best samples for geochronology studies in the laboratory. This specific objective effectively reduces the number of variables in the goals of the field test and enables a more controlled investigation of the role of the crewmember in selecting samples. We formulated one hypothesis to test: that providing details regarding the analytical fate of the samples (e.g. geochronology, XRF/XRD, etc.) to the crew prior to their traverse will result in samples that are more likely to meet specific analytical

  4. Study of EVA operations associated with satellite services

    NASA Technical Reports Server (NTRS)

    Nash, J. O.; Wilde, R. D.

    1982-01-01

    Extravehicular mobility unit (EMU) factors associated with satellite servicing activities are identified and the EMU improvements necessary to enhance satellite servicing operations are outlined. Areas of EMU capabilities, equipment and structural interfaces, time lines, EMU modifications for satellite servicing, environmental hazards, and crew training are vital to manned Eva/satellite services and as such are detailed. Evaluation of EMU capabilities indicates that the EMU can be used in performing near term, basic satellite servicing tasks; however, satellite servicing is greatly enhanced by incorporating key modifications into the EMU. The servicing missions involved in contamination sensitive payload repair are illustrated. EVA procedures and equipment can be standardized, reducing both crew training time and in orbit operations time. By standardizing and coordinating procedures, mission cumulative time lines fall well within the EMU capability.

  5. Mission and science activity scheduling language

    NASA Technical Reports Server (NTRS)

    Hull, Larry G.

    1993-01-01

    To support the distributed and complex operational scheduling required for future National Aeronautics and Space Administration (NASA) missions, a formal, textual language, the Scheduling Applications Interface Language (SAIL), has been developed. Increased geographic dispersion of investigators is leading to distributed mission and science activity planning, scheduling, and operations. SAIL is an innovation which supports the effective and efficient communication of scheduling information among physically dispersed applications in distributed scheduling environments. SAIL offers a clear, concise, unambiguous expression of scheduling information in a readable, hardware independent format. The language concept, syntax, and semantics incorporate language features found useful during five years of research and prototyping with scheduling languages in physically distributed environments. SAIL allows concise specification of mission and science activity plans in a format which promotes repetition and reuse.

  6. Next Generation Life Support (NGLS): High Performance EVA Glove (HPEG) Technology Development Element

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah; Barta, Daniel; Stephan, Ryan; Gaddis, Stephen

    2015-01-01

    The overall objective is to develop advanced gloves for extra vehicular activity (EVA) for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. The glove prototypes that result from the successful completion of this technology development activity will be delivered to NASA's Human Exploration Operations Mission Directorate (HEOMD) and ultimately to be included in an integrated test with the next generation spacesuit currently under development.

  7. What's NEXT for EVA

    NASA Astrophysics Data System (ADS)

    Fullerton, R. K.

    The NASA Exploration Team (NEXT) promotes a vision of new capabilities through an ongoing, integrated and prioritized investment in leap ahead concepts and technologies. The wise marriage of robotic and human work systems is a key element of this vision. To enable a wide array of future destinations and applications, it is important to develop and implement systems which are scalable, environmentally adaptable, reliable and efficiently productive. This paper highlights a few of the recently envisioned customers and applications for advanced extravehicular activity (EVA) systems. It also summarizes recent conceptual and practical studies to define the features and options of such a system. More importantly, it communicates the need and progress of knowledge capture, clearly defined performance targets, credible decision making tools, tangible benefits and creative leverage. With this integrated long range approach, space exploration and EVA can accelerate and enable the future for all generations.

  8. Astronaut David Scott on slope of Hadley Delta during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, mission commander, performs a task at the Lunar Roving Vehicle parked on the edge of Hadley Rille during the first Apollo 15 lunar surface extravehicular activity (EVA-1). This photograph was taken by Astronaut James B. Irwin, lunar module pilot, from the flank of St. George Crater. The view is looking north along the rille.

  9. Exploration Architecture Options - ECLSS, TCS, EVA Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don

    2011-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. The Augustine Commission evaluated human space flight for the Obama administration then the Human Exploration Framework Teams (HEFT and HEFT2) evaluated potential exploration missions and the infrastructure and technology needs for those missions. Lunar architectures have been identified and addressed by the Lunar Surface Systems team to establish options for how to get to, and then inhabit and explore, the moon. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), Thermal Control (TCS), and Extravehicular Activity (EVA) Systems.

  10. Advanced EVA system design requirements study: EVAS/space station system interface requirements

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1985-01-01

    The definition of the Extravehicular Activity (EVA) systems interface requirements and accomodations for effective integration of a production EVA capability into the space station are contained. A description of the EVA systems for which the space station must provide the various interfaces and accomodations are provided. The discussion and analyses of the various space station areas in which the EVA interfaces are required and/or from which implications for EVA system design requirements are derived, are included. The rationale is provided for all EVAS mechanical, fluid, electrical, communications, and data system interfaces as well as exterior and interior requirements necessary to facilitate EVA operations. Results of the studies supporting these discussions are presented in the appendix.

  11. MOCR activity during STS-4 mission

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Marianne J. Dyson, flight activities officer on the entry team, views a monitor in the mission operations control room (MOCR) during day 4 of the STS-4 flight (33031); View of the spacecraft communicator (CAPCOM) and flight activities officer (FAO) consoles in the MOCR. Astronaut Brewster H. Shaw, Jr., right, Astronaut Roy D. Bridges, Jr., and Marianne J. Dyson are pictured during STS-4's day 4 activity. Shaw and Bridges are at spacecraft communicators and Dyson is a flight activities officer on the entry team (33032).

  12. STS-118 Astronauts Rick Mastracchio and Clay Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist Rick Mastracchio was anchored on the foot restraint of the Canadarm2 as he participated in the third session of Extra Vehicular Activity (EVA) for the mission. Assisting Mastracchio was Expedition 15 flight engineer Clay Anderson (out of frame). During the 5 hour, 28 minute space walk, the two relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) truss to the Port 1 (P1) truss, installed a new transponder on P1 and retrieved the P6 transponder.

  13. Astronaut David Wolf participates in training for contingency EVA in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged ito a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is displaying the flexibility of his training version of the Shuttle extravehicular mobility unit (EMU) by lifting his arms above his head (31701); Wolf waves to the camera before he is submerged in the WETF (31702).

  14. Activity in Mission Control Center during Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Overal view of activity in the Mission Operations Control Room in the Mission Control Center, bldg 30, during the Apollo 12 lunar landing mission. When this picture was made the first Apollo 12 extravehicular activity was being televised from the surface of the Moon.

  15. Design, development and evaluation of Stanford/Ames EVA prehensors

    NASA Technical Reports Server (NTRS)

    Leifer, Larry J.; Aldrich, J.; Leblanc, M.; Sabelman, E.; Schwandt, D.

    1988-01-01

    Space Station operations and maintenance are expected to make unprecedented demands on astronaut EVA. With Space Station expected to operate with an 8 to 10 psi atmosphere (4 psi for Shuttle operations), the effectivness of pressurized gloves is called into doubt at the same time that EVA activity levels are to be increased. To address the need for more frequent and complex EVA missions and also to extend the dexterity, duration, and safety of EVA astronauts, NASA Ames and Stanford University have an ongoing cooperative agreement to explore and compare alternatives. This is the final Stanford/Ames report on manually powered Prehensors, each of which consists of a shroud forming a pressure enclosure around the astronaut's hand, and a linkage system to transfer the motions and forces of the hand to mechanical digits attached to the shroud. All prehensors are intended for attachment to a standard wrist coupling, as found on the AX-5 hard suit prototype, so that realistic tests can be performed under normal and reduced gravity as simulated by water flotation.

  16. EVA 2010: Preparing for International Space Station EVA Operations Post-Space Shuttle Retirement

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; West, William W.

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the OneEVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than

  17. MOCR activity during STS-4 mission

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Wide angle view of flight controllers at work in the JSC mission control center during STS-4. M. P. Frank, chief of JSC's flight control division, is in the foreground. Others (from foreground to background) include Astronaut S. David Griggs, at CAPCOM, studying data on one of the monitors at his mission operations control room (MOCR) console; backup CAPCOM Astronaut Stewart, at center; Carolyn L. Conley, flight activities officer (FAO) at near left (32882). Eugene F. Kranz, Deputy Director of Flight Operations at JSC, punches a key on his console in the MOCR during ascent phase of STS-4. Watching other monitors are JSC Director Christopher C. Kraft, Jr. and Neil B. Hutchinson. Beyond the FOD console in the foreground is the public affairs office (PAO) area, where John E. McLeaish, chief of public information, calls out ascent information on columbia (32883).

  18. Task network models in the prediction of workload imposed by extravehicular activities during the Hubble Space Telescope servicing mission

    NASA Technical Reports Server (NTRS)

    Diaz, Manuel F.; Takamoto, Neal; Woolford, Barbara

    1994-01-01

    In a joint effort with Brooks AFB, Texas, the Flight Crew Support Division at JSC has begun a computer simulation and performance modeling program directed at establishing the predictive validity of software tools for modeling human performance during spaceflight. This paper addresses the utility of task network modeling for predicting the workload that astronauts are likely to encounter in extravehicular activities (EVA) during the Hubble Space Telescope (HST) repair mission. The intent of the study was to determine whether two EVA crewmembers and one intravehicular activity (IVA) crewmember could reasonably be expected to complete HST Wide Field/Planetary Camera (WFPC) replacement in the allotted time. Ultimately, examination of the points during HST servicing that may result in excessive workload will lead to recommendations to the HST Flight Systems and Servicing Project concerning (1) expectation of degraded performance, (2) the need to change task allocation across crewmembers, (3) the need to expand the timeline, and (4) the need to increase the number of EVA's.

  19. STS-37 MS Apt tests CETA cart during EVA in OV-104's payload bay (PLB)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-37 Mission Specialist (MS) Jerome Apt, suited in extravehicular mobility unit (EMU), tests Crew and Equipment Translation Aid (CETA) electrical hand pedal cart during extravehicular activity (EVA) in Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB). Apt works his way along the CETA deployable track mounted on OV-104's PLB port side. The ascent particle monitor (APM) is visible on the starboard side in the foreground. In the background are the aft PLB bulkhead and the vertical tail and orbital maneuvering system (OMS) pods. Crewmembers spent several hours evaluating means of performing future EVA chores, transporting tools and crewmembers, etc. on Space Station Freedom (SSF).

  20. Antarctica EVA

    NASA Technical Reports Server (NTRS)

    Love, Stan

    2013-01-01

    NASA astronaut Stan Love shared his experiences with the Antarctic Search for Meteorites (ANSMET), an annual expedition to the southern continent to collect valuable samples for research in planetary science. ANSMET teams operate from isolated, remote field camps on the polar plateau, where windchill factors often reach -40? F. Several astronaut participants have noted ANSMET's similarity to a space mission. Some of the operational concepts, tools, and equipment employed by ANSMET teams may offer valuable insights to designers of future planetary surface exploration hardware.

  1. Astronaut Sellers Performs STS-112 EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard Side Integrated Truss Structure (S1) and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. In this photograph, Astronaut Piers J. Sellers uses both a handrail on the Destiny Laboratory and a foot restraint on the Space Station Remote Manipulator System or Canadarm2 to remain stationary while performing work at the end of the STS-112 mission's second space walk. A cloud-covered Earth provides the backdrop for the scene.

  2. EVA Performance Prediction

    NASA Technical Reports Server (NTRS)

    Peacock, Brian; Maida, James; Rajulu, Sudhakar

    2004-01-01

    out for EVA activities are based more on extensive domain experience than any formal analytic structure. Conversely, physical task analysis for industrial and structured evidence from training and EV A contexts. Again on earth there is considerable evidence of human performance degradation due to encumbrance and fatigue. These industrial models generally take the form of a discounting equation. The development of performance estimates for space operations, such as timeline predictions for EVA is generally based on specific input from training activity, for example in the NBL or KC135. uniformed services tasks on earth are much more formalized. Human performance data in the space context has two sources: first there is the micro analysis of performance in structured tasks by the space physiology community and second there is the less structured evidence from training and EV A contexts.

  3. STS-38 Mission Specialist (MS) Robert C. Springer dons EMU in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Mission Specialist (MS) Robert C. Springer dons extravehicular mobility unit (EMU) upper torso with technicians' assistance in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Positioned on the WETF platform at pool side, Springer is preparing for an underwater extravehicular activity (EVA) simulation. During the training session, Springer will rehearse contingency EVA procedures for the STS-38 mission aboard Atlantis, Orbiter Vehicle (OV) 104.

  4. STS-38 Mission Specialist (MS) Robert C. Springer dons EMU in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Mission Specialist (MS) Robert C. Springer, wearing extravehicular mobility unit (EMU), fastens the strap on his communications carrier assembly (CCA) cap during suit donning in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Positioned on the WETF platform at pool side, Springer is preparing for an underwater extravehicular activity (EVA) simulation. During the training exercise, Springer will rehearse contingency EVA procedures for the STS-38 mission aboard Atlantis, Orbiter Vehicle (OV) 104.

  5. High-Pressure Oxygen Generation for Outpost EVA Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  6. Miniature EVA Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  7. STS-61 mission director's post-mission report

    NASA Technical Reports Server (NTRS)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  8. STS-55 MS3 Bernard A. Harris, Jr in EMU at JSC's WETF for EVA simulation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, fully suited in an extravehicular mobility unit (EMU), stands on platform awaiting an underwater extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Harris will be lowered into the WETF's 25 foot deep pool and once underwater will perform contingency EVA tasks. With the aid of weights (attached at his ankles and upper torso) he will achieve neutral buoyancy. There is no scheduled EVA for the 1993 flight but each space flight crew includes astronauts trained for a variety of contingency tasks that could require exiting the shirt-sleeve environment of a Shuttle's cabin.

  9. EVA/ORU model architecture using RAMCOST

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Wang, Y. M.; Bretoi, R.

    1990-01-01

    A parametrically driven simulation model is presented in order to provide a detailed insight into the effects of various input parameters in the life testing of a modular space suit. The RAMCOST model employed is a user-oriented simulation model for studying the life-cycle costs of designs under conditions of uncertainty. The results obtained from the EVA simulated model are used to assess various mission life testing parameters such as the number of joint motions per EVA cycle time, part availability, and number of inspection requirements. RAMCOST first simulates EVA completion for NASA application using a probabilistic like PERT network. With the mission time heuristically determined, RAMCOST then models different orbital replacement unit policies with special application to the astronaut's space suit functional designs.

  10. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie

    2016-01-01

    The EVA (Extravehicular Activity) Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, searchable repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, the one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision control system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, and also for hundreds of other NASA and contract employees. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  11. Science Activity Planner for the MER Mission

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Crockett, Thomas M.; Fox, Jason M.; Joswig, Joseph C.; Powell, Mark W.; Shams, Khawaja S.; Torres, Recaredo J.; Wallick, Michael N.; Mittman, David S.

    2008-01-01

    The Maestro Science Activity Planner is a computer program that assists human users in planning operations of the Mars Explorer Rover (MER) mission and visualizing scientific data returned from the MER rovers. Relative to its predecessors, this program is more powerful and easier to use. This program is built on the Java Eclipse open-source platform around a Web-browser-based user-interface paradigm to provide an intuitive user interface to Mars rovers and landers. This program affords a combination of advanced display and simulation capabilities. For example, a map view of terrain can be generated from images acquired by the High Resolution Imaging Science Explorer instrument aboard the Mars Reconnaissance Orbiter spacecraft and overlaid with images from a navigation camera (more precisely, a stereoscopic pair of cameras) aboard a rover, and an interactive, annotated rover traverse path can be incorporated into the overlay. It is also possible to construct an overhead perspective mosaic image of terrain from navigation-camera images. This program can be adapted to similar use on other outer-space missions and is potentially adaptable to numerous terrestrial applications involving analysis of data, operations of robots, and planning of such operations for acquisition of scientific data.

  12. Comparison Of Human Modelling Tools For Efficiency Of Prediction Of EVA Tasks

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Loughead, Tomas E.

    1998-01-01

    Construction of the International Space Station (ISS) will require extensive extravehicular activity (EVA, spacewalks), and estimates of the actual time needed continue to rise. As recently as September, 1996, the amount of time to be spent in EVA was believed to be about 400 hours, excluding spacewalks on the Russian segment. This estimate has recently risen to over 1100 hours, and it could go higher before assembly begins in the summer of 1998. These activities are extremely expensive and hazardous, so any design tools which help assure mission success and improve the efficiency of the astronaut in task completion can pay off in reduced design and EVA costs and increased astronaut safety. The tasks which astronauts can accomplish in EVA are limited by spacesuit mobility. They are therefore relatively simple, from an ergonomic standpoint, requiring gross movements rather than time motor skills. The actual tasks include driving bolts, mating and demating electric and fluid connectors, and actuating levers; the important characteristics to be considered in design improvement include the ability of the astronaut to see and reach the item to be manipulated and the clearance required to accomplish the manipulation. This makes the tasks amenable to simulation in a Computer-Assisted Design (CAD) environment. For EVA, the spacesuited astronaut must have his or her feet attached on a work platform called a foot restraint to obtain a purchase against which work forces may be actuated. An important component of the design is therefore the proper placement of foot restraints.

  13. Students Speak With EVA Operations Specialist Glenda Brown

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, EVA Operations Specialist Glenda Brown participates in a Digital Learning Network (DLN) event with students at Victory Lakes Interm...

  14. Apollo 16 astronauts in Apollo Command Module Mission Simulator

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).

  15. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Sipila, Stephanie A.; Scoville, Zebulon C.; Bowie, Jonathan T.; Buffington, Jesse A.

    2014-01-01

    One of the challenging primary objectives associated with NASA's Asteroid Redirect Crewed Mission (ARCM) is to demonstrate deep space Extravehicular Activity (EVA) and tools and to obtain asteroid samples to return to Earth for further study. Prior Shuttle and International Space Station (ISS) spacewalks have benefited from engineered EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as behavior of the asteroid capture mechanism will complicate EVA translation, tool restraint, and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the Modified Advanced Crew Escape Suit (MACES) suit. This paper will summarize the overall operational concepts for conducting EVAs for the ARCM mission including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, and the results of early development testing of potential EVA tasks.

  16. Preparing for space - EVA training at the European Astronaut Centre

    NASA Astrophysics Data System (ADS)

    Bolender, Hans; Stevenin, Hervé; Bessone, Loredana; Torres, Antonio

    2006-11-01

    The European Astronaut Centre has developed an Extra Vehicular Activity (EVA) training course for ESA astronauts to bridge the gap between their scuba diving certification and the spacesuit qualification provided by NASA. ESA astronauts André Kuipers and Frank De Winne have already completed this "EVA Pre-Familiarisation Training Programme" before their training at NASA. In June 2006, an international crew of experienced EVA astronauts approved the course as good preparation for suited EVA training; they recommended that portions of it be used to help maintain EVA proficiency for astronauts.

  17. EVA Physiology, Systems and Performance [EPSP] Project

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2010-01-01

    This viewgraph presentation gives a general overview of the biomedical and technological challenges of Extravehicular Activity (EVA). The topics covered include: 1) Prebreathe Protocols; 2) Lunar Suit Testing and Development; and 3) Lunar Electric Rover and Exploration Operations Concepts.

  18. Interviews with the Apollo lunar surface astronauts in support of planning for EVA systems design

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.; Eppler, Dean B.; Morrow, Daniel G.

    1994-01-01

    Focused interviews were conducted with the Apollo astronauts who landed on the moon. The purpose of these interviews was to help define extravehicular activity (EVA) system requirements for future lunar and planetary missions. Information from the interviews was examined with particular attention to identifying areas of consensus, since some commonality of experience is necessary to aid in the design of advanced systems. Results are presented under the following categories: mission approach; mission structure; suits; portable life support systems; dust control; gloves; automation; information, displays, and controls; rovers and remotes; tools; operations; training; and general comments. Research recommendations are offered, along with supporting information.

  19. Astronaut Thomas Mattingly performs EVA during Apollo 16 transearth coast

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, performs extravehicular activity (EVA) during the Apollo 16 transearth coast. mattingly is assisted by Astronaut Charles M. Duke Jr., lunar module pilot. Mattingly inspected the SIM bay of the Service Module, and retrieved film from the Mapping and Panoramic cameras. Mattingly is wearing the helmet of Astronaut John W. Young, commander. The helmet's lunar extravehicular visor assembly helped protect Mattingly's eyes frmo the bright sun. This view is a frame from motion picture film exposed by a 16mm Maurer camera.

  20. Application of EVA guidelines and design criteria. Volume 2: EVA workstation conceptual designs

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    Several EV workstation concepts were developed and are documented. The workstation concepts were developed following a comprehensive analysis of potential EV missions, functions, and tasks as interpreted from NASA and contractor space shuttle and space station studies, mission models, and related reports. The design of a versatile, portable EVA workstation is aimed at reducing the design and development costs for each mission and aiding in the development of on-orbit serviceable payloads.

  1. Software For Integration Of EVA And Telerobotics

    NASA Technical Reports Server (NTRS)

    Drews, Michael L.; Smith, Jeffrey H.; Estus, Jay M.; Heneghan, Cate; Zimmerman, Wayne; Fiorini, Paolo; Schenker, Paul S.; Mcaffee, Douglas A.

    1991-01-01

    Telerobotics/EVA Joint Analysis Systems (TEJAS) computer program is hypermedia information software system using object-oriented programming to bridge gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains 20 HyperCard stacks using visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about primitives, technologies, tasks, assumptions, and open issues involved in space-telerobot or crew-EVA tasks. Runs on any Apple MacIntosh personal computer.

  2. EVA Suit Microbial Leakage Investigation Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Baker, Christopher; Clayton, Ronald; Rucker, Michelle

    2016-01-01

    The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during simulated planetary exploration activities. Data will be released to the planetary protection and science communities, and advanced EVA system designers. In the best case scenario, we will discover that very little microbial contamination leaks from our current or prototype suit designs, in the worst case scenario, we will identify leak paths, learn more about what affects leakage--and we'll have a new, flight-certified swab tool for our EVA toolbox.

  3. EVA Physiology and Medical Considerations Working in the Suit

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  4. Mission activities planning for a Hermes mission by means of AI-technology

    NASA Technical Reports Server (NTRS)

    Pape, U.; Hajen, G.; Schielow, N.; Mitschdoerfer, P.; Allard, F.

    1993-01-01

    Mission Activities Planning is a complex task to be performed by mission control centers. AI technology can offer attractive solutions to the planning problem. This paper presents the use of a new AI-based Mission Planning System for crew activity planning. Based on a HERMES servicing mission to the COLUMBUS Man Tended Free Flyer (MTFF) with complex time and resource constraints, approximately 2000 activities with 50 different resources have been generated, processed, and planned with parametric variation of operationally sensitive parameters. The architecture, as well as the performance of the mission planning system, is discussed. An outlook to future planning scenarios, the requirements, and how a system like MARS can fulfill those requirements is given.

  5. An Integrated Extravehicular Activity Research Plan

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Book is already performed annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Research Plan are presented including description of ongoing and planned research activities in the areas of: Benchmarking; Anthropometry and Suit Fit; Sensors; Human

  6. Day 4 activities in the MOCR during STS-5 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Day 4 activities in the mission operations control room (MOCR) during STS-5 mission. Scott Thomas, a freshman at Utah State University, watches the television monitor in front of him in the mission operations control room (MOCR) at JSC's mission control center. Astronaut Joseph P. Allen, STS-5 mission specialist, conducts an experiment - a study of convection in zero gravity - onboard the Columbia. The experiment is part of the student experiments program and was conceived by Thomas. Also at the payloads console with Thomas is Robert M. Kelso, of the Flight Operations Directorate. The stuffed mascot for the payloads team, a kangaroo, sits atop the payloads team console.

  7. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  8. Walking to Olympus: An EVA Chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Trevino, Robert C.

    1997-01-01

    Spacewalkers enjoy a view of Earth once reserved for Apollo, Zeus, and other denizens of Mt. Olympus. During humanity's first extravehicular activity (EVA), Alexei Leonov floated above Gibraltar, the rock ancient seafarers saw as the gateway to the great unknown Atlantic. The symbolism was clear, Leonov stepped past a new Gibraltar when he stepped into space. More than 32 years and 154 EVAs later, Jerry Linenger conducted an EVA with Vladimir Tsibliyev as part of International Space Station Phase 1. They floated together above Gibraltar. Today the symbolism has new meaning: humanity is starting to think of stepping out of Earth orbit, space travel's new Gibraltar, and perhaps obtaining a new olympian view, a close-up look at Olympus Mons on Mars. Walking to Olympus: An EVA Chronology chronicles the 154 EVAs conducted from March 1965 to April 1997. It is intended to make clear the crucial role played by EVA in the history of spaceflight, as well as to chronicle the large body of EVA "lessons learned." Russia and the U.S. define EVA differently. Russian cosmonauts are said to perform EVA any time they are in vacuum in a space suit. A U.S. astronaut must have at least his head outside his spacecraft before he is said to perform an EVA. The difference is based in differing spacecraft design philoso- phies. Russian and Soviet spacecraft have always had a specialized airlock through which the EVA cosmonaut egressed, leaving the main habitable volume of the spacecraft pressurized. The U.S. Gemini and Apollo vehicles, on the other hand, depressurized their entire habitable volume for egress. In this document, we apply the Russian definition to Russian EVAS, and the U.S. definition to U.S. EVAS. Thus, for example, Gemini 4 Command Pilot James McDivitt does not share the honor of being first American spacewalker with Ed White, even though he was suited and in vacuum when White stepped out into space. Non-EVA spaceflights are listed in the chronology to provide context and to

  9. Active Refrigeration for Space Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Wade, L.

    1994-01-01

    The use of cryogen dewars limits mission lifetime, increases sensor mass, and increases program engineering and launch costs on spacebased low-background, precision-pointing instruments, telescopes and interferometers.

  10. Astronaut John Young reaches for tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, reaches for tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. This view is looking south from the base of Stone Mountain.

  11. Astronaut John Young replaces tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, replaces tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Smoky Mountain, with the large Ravine crater on its flank, is in the left background. This view is looking northeast.

  12. Refinement of Optimal Work Envelope for Extra-Vehicular Activity (EVA) Suit Operations

    NASA Technical Reports Server (NTRS)

    Jaramillo, Marcos A.; Angermiller, Bonnie L.; Morency, Richard M.; Rajululu, Sudhakar L.

    2008-01-01

    The purpose of the Extravehicular Mobility Unit (EMU) Work Envelope study is to determine and revise the work envelope defined in NSTS 07700 "System Description and Design Data - Extravehicular Activities" [1], arising from an action item as a result of the Shoulder Injury Tiger Team findings. The aim of this study is to determine a common work envelope that will encompass a majority of the crew population while minimizing the possibility of shoulder and upper arm injuries. There will be approximately two phases of testing: arm sweep analysis to be performed in the Anthropometry and Biomechanics Facility (ABF), and torso lean testing to be performed on the Precision Air Bearing Facility (PABF). NSTS 07700 defines the preferred work envelope arm reach in terms of maximum reach, and defines the preferred work envelope torso flexibility of a crewmember to be a net 45 degree backwards lean [1]. This test served two functions: to investigate the validity of the standard discussed in NSTS 07700, and to provide recommendations to update this standard if necessary.

  13. STS-57 astronauts Low and Wisoff perform DTO 1210 EVA in OV-105's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During STS-57 extravehicular activity (EVA), Mission Specialist (MS) and Payload Commander (PLC) G. David Low (foreground) and MS3 Peter J.K. Wisoff work along the port side sill longeron in the payload bay (PLB) of the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105. Low will secure a portable foot restraint (PFR) (manipulator foot restraint (MFR)) to the remote manipulator system (RMS) end effector (deployed behind the two astronauts) using a PFR attachment device (PAD). This EVA, designated Detailed Test Objective (DTO) 1210, included evaluation of procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. Visible in OV-105's PLB are (front to back) the SPACEHAB-01 module (Commercial Middeck Augmentation Module (CMAM)), the Superhelium Onorbit Transfer (SHOOT) liquid helium dewar assembly, and the European Retrievable Carrier (EURECA) spacecraft. The scene is backdropped against the Earth's surface.

  14. Some Activities of MISSE 6 Mission

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2009-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. In this paper, a few laser and optical elements from NASA Langley Research Center (LaRC) that have been flown on MISSE 6 mission will be discussed. These items were characterized and packed inside a ruggedized Passive Experiment Container (PEC) that resembles a suitcase. The PEC was tested for survivability due to launch conditions. Subsequently, the MISSE 6 PEC was transported by the STS-123 mission to International Space Station (ISS) on March 11, 2008. The astronauts successfully attached the PEC to external handrails and opened the PEC for long term exposure to the space environment. The plan is to retrieve the MISSE 6 PEC by STS-128 mission in August 2009.

  15. EVA Retriever Demonstration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The EVA retriever is demonstrated in the Manipulator Development Facility (MDF). The retriever moves on the air bearing table 'searching' for its target, in this case tools 'dropped' by astronauts on orbit.

  16. The Gaia mission a rich resource for outreach activities

    NASA Astrophysics Data System (ADS)

    O'Flaherty, K. S.; Douglas, J.; Prusti, T.

    2008-07-01

    Space science missions, and astronomy missions in particular, capture the public imagination at all levels. ESA's Gaia mission is no exception to this. In addition to its key scientific goal of providing new insight into the origin, formation, and evolution of the Milky Way, Gaia also touches on many other scientific topics of broad appeal, for example, solar system objects, stars (including rare and exotic ones), dark matter, gravitational light bending. The mission naturally provides a rich resource for outreach possibilities whether it be to the general public, or to specific interest groups, such as scientists from other fields or educators. We present some examples of possible outreach activities for Gaia.

  17. Expedition 16 Flight Engineer Tani Performs EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Astronaut Daniel Tani (top center), Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the 6-hour and 33-minute space walk, Tani and STS-120 mission specialist Scott Parazynski (out of frame), worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of 'shavings' he found under the joint's multilayer insulation covers. The space walkers also outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later. The moon is visible at lower center. The STS-120 mission launched from Kennedy Space Center's launch pad 39A at 11:38:19 a.m. (EDT) on October 23, 2007.

  18. Linking Mission to Learning Activities for Assurance of Learning

    ERIC Educational Resources Information Center

    Yeung, Shirley Mo-ching

    2011-01-01

    Can accreditation-related requirements and mission statements measure learning outcomes? This study focuses on triangulating accreditation-related requirements with mission statements and learning activities to learning outcomes. This topic has not been comprehensively explored in the past. After looking into the requirements of AACSB, ISO, and…

  19. Overview of the NASA soil moisture active/passive mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active Passive (SMAP) Mission is currently in design Phase C and scheduled for launch in October 2014. Its mission concept is based on combined L-band radar and radiometry measurements obtained from a shared, rotating 6-meter antennae. These measurements will be used to retrie...

  20. EVA Health and Human Performance Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Abercromby, A. F.; Norcross, J.; Jarvis, S. L.

    2016-01-01

    Multiple HRP Risks and Gaps require detailed characterization of human health and performance during exploration extravehicular activity (EVA) tasks; however, a rigorous and comprehensive methodology for characterizing and comparing the health and human performance implications of current and future EVA spacesuit designs does not exist. This study will identify and implement functional tasks and metrics, both objective and subjective, that are relevant to health and human performance, such as metabolic expenditure, suit fit, discomfort, suited postural stability, cognitive performance, and potentially biochemical responses for humans working inside different EVA suits doing functional tasks under the appropriate simulated reduced gravity environments. This study will provide health and human performance benchmark data for humans working in current EVA suits (EMU, Mark III, and Z2) as well as shirtsleeves using a standard set of tasks and metrics with quantified reliability. Results and methodologies developed during this test will provide benchmark data against which future EVA suits, and different suit configurations (eg, varied pressure, mass, CG) may be reliably compared in subsequent tests. Results will also inform fitness for duty standards as well as design requirements and operations concepts for future EVA suits and other exploration systems.

  1. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, participated in the EVA with Lousma. During the EVA the two crewmen deployed the twin pole solar shield to help shade the Orbital Workshop.

  2. Simulation of Martian EVA at the Mars Society Arctic Research Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  3. Viking mission support. [Deep Space Network activities

    NASA Technical Reports Server (NTRS)

    Johnston, D. W. H.

    1977-01-01

    Statistics listing the Deep Space Network tracking and command support and the discrepancy report status for 1 January through 28 February 1977 are presented in tables. The initial Viking extended mission period of normal DSN support, following the nonstandard operations during the solar conjunction period is included. Operational testing subsequent to the MK III data system installations at DSS 12, 44, and 62 during this period are also discussed.

  4. Hubble Space Telescope EVA Power Ratchet Tool redesign

    NASA Astrophysics Data System (ADS)

    Richards, Paul W.; Park, Chan; Brown, Lee

    The Power Ratchet Tool (PRT) is a self contained, power-driven, 3/8 inch drive ratchet wrench which will be used by astronauts during Extravehicular Activities (EVA). This battery-powered tool is controlled by a dedicated electonic controller. The PRT was flown during the Hubble Space Telescope (HST) Deployment Mission STS-31 to deploy the solar arrays if the automatic mechanisms failed. The PRT is currently intended for use during the first HST Servicing Mission STS-61 as a general purpose power tool. The PRT consists of three major components; the wrench, the controller, and the battery module. Fourteen discrete combinations of torque, turns, and speed may be programmed into the controller before the EVA. The crewmember selects the desired parameter profile by a switch mounted on the controller. The tool may also be used in the manual mode as a non-powered ratchet wrench. The power is provided by a silver-zinc battery module, which fits into the controller and is replaceable during an EVA. The original PRT did not meet the design specification of torque output and hours of operation. To increase efficiency and reliability the PRT underwent a redesign effort. The majority of this effort focused on the wrench. The original PRT drive train consisted of a low torque, high speed brushless DC motor, a face gear set, and a planocentric gear assembly. The total gear reduction was 300:1. The new PRT wrench consists of a low speed, high torque brushless DC motor, two planetary gear sets and a bevel gear set. The total gear reduction is now 75:1. A spline clutch has also been added to disengage the drive train in the manual mode. The design changes to the controller will consist of only those modifications necessary to accomodate the redesigned wrench.

  5. EVA tools and equipment reference book

    NASA Technical Reports Server (NTRS)

    Fullerton, R. K.

    1993-01-01

    This document contains a mixture of tools and equipment used throughout the space shuttle-based extravehicular activity (EVA) program. Promising items which have reached the prototype stage of development are also included, but should not be considered certified ready for flight. Each item is described with a photo, a written discussion, technical specifications, dimensional drawings, and points of contact for additional information. Numbers on the upper left-hand corner of each photo may be used to order specific pictures from NASA and contractor photo libraries. Points of contact were classified as either operational or technical. An operational contact is an engineer from JSC Mission Operations Directorate who is familiar with the basic function and on-orbit use of the tool. A technical contact would be the best source of detailed technical specifications and is typically the NASA subsystem manager. The technical information table for each item uses the following terms to describe the availability or status of each hardware item: Standard - Flown on every mission as standard manifest; Flight specific - Potentially available for flight, not flown every mission (flight certification cannot be guaranteed and recertification may be required); Reference only - Item no longer in active inventory or not recommended for future use, some items may be too application-specific for general use; and Developmental - In the prototype stage only and not yet available for flight. The current availability and certification of any flight-specific tool should be verified with the technical point of contact. Those tools built and fit checked for Hubble Space Telescope maintenance are program dedicated and are not available to other customers. Other customers may have identical tools built from the existing, already certified designs as an optional service.

  6. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  7. STS-33 EVA Prep and Post with Gregory, Blaha, Carter, Thorton, and Musgrave in FFT

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This video shows the crew in the airlock of the FFT, talking with technicians about the extravehicular activity (EVA) equipment. Thornton and Carter put on EVA suits and enter the airlock as the other crew members help with checklists.

  8. Understanding Skill in EVA Mass Handling. Volume 4; An Integrated Methodology for Evaluating Space Suit Mobility and Stability

    NASA Technical Reports Server (NTRS)

    McDonald, P. Vernon; Newman, Dava

    1999-01-01

    The empirical investigation of extravehicular activity (EVA) mass handling conducted on NASA's Precision Air-Bearing Floor led to a Phase I SBIR from JSC. The purpose of the SBIR was to design an innovative system for evaluating space suit mobility and stability in conditions that simulate EVA on the surface of the Moon or Mars. The approach we used to satisfy the Phase I objectives was based on a structured methodology for the development of human-systems technology. Accordingly the project was broken down into a number of tasks and subtasks. In sequence, the major tasks were: 1) Identify missions and tasks that will involve EVA and resulting mobility requirements in the near and long term; 2) Assess possible methods for evaluating mobility of space suits during field-based EVA tests; 3) Identify requirements for behavioral evaluation by interacting with NASA stakeholders;.4) Identify necessary and sufficient technology for implementation of a mobility evaluation system; and 5) Prioritize and select technology solutions. The work conducted in these tasks is described in this final volume of the series on EVA mass handling. While prior volumes in the series focus on novel data-analytic techniques, this volume addresses technology that is necessary for minimally intrusive data collection and near-real-time data analysis and display.

  9. Information Flow Model of Human Extravehicular Activity Operations

    NASA Technical Reports Server (NTRS)

    Miller, Matthew J.; McGuire, Kerry M.; Feigh, Karen M.

    2014-01-01

    Future human spaceflight missions will face the complex challenge of performing human extravehicular activity (EVA) beyond the low Earth orbit (LEO) environment. Astronauts will become increasingly isolated from Earth-based mission support and thus will rely heavily on their own decision-making capabilities and onboard tools to accomplish proposed EVA mission objectives. To better address time delay communication issues, EVA characters, e.g. flight controllers, astronauts, etc., and their respective work practices and roles need to be better characterized and understood. This paper presents the results of a study examining the EVA work domain and the personnel that operate within it. The goal is to characterize current and historical roles of ground support, intravehicular (IV) crew and EV crew, their communication patterns and information needs. This work provides a description of EVA operations and identifies issues to be used as a basis for future investigation.

  10. Injury Risk Assessment of Extravehicular Mobility Unit (EMU) Phase VI and Series 4000 Gloves During Extravehicular Activity (EVA) Hand Manipulation Tasks

    NASA Technical Reports Server (NTRS)

    Kilby, Melissa

    2015-01-01

    Functional Extravehicular Mobility Units (EMUs) with high precision gloves are essential for the success of Extravehicular Activity (EVA). Previous research done at NASA has shown that total strength capabilities and performance are reduced when wearing a pressurized EMU. The goal of this project was to characterize the human-space suit glove interaction and assess the risk of injury during common EVA hand manipulation tasks, including pushing, pinching and gripping objects. A custom third generation sensor garment was designed to incorporate a combination of sensors, including force sensitive resistors, strain gauge sensors, and shear force sensors. The combination of sensors was used to measure the forces acting on the finger nails, finger pads, finger tips, as well as the knuckle joints. In addition to measuring the forces, data was collected on the temperature, humidity, skin conductance, and blood perfusion of the hands. Testing compared both the Phase VI and Series 4000 glove against an ungloved condition. The ungloved test was performed wearing the sensor garment only. The project outcomes identified critical landmarks that experienced higher workloads and are more likely to suffer injuries. These critical landmarks varied as a function of space suit glove and task performed. The results showed that less forces were acting on the hands while wearing the Phase VI glove as compared to wearing the Series 4000 glove. Based on our findings, the engineering division can utilize these methods for optimizing the current space suit glove and designing next generation gloves to prevent injuries and optimize hand mobility and comfort.

  11. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benson, E.; England, S.; Charvat, J.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2015-01-01

    Human hands play a significant role during Extravehicular Activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. Because of this high frequency usage, hand and arm related injuries are known to occur during EVA and EVA training in the NBL. The primary objectives of this investigation were to: 1) document all known EVA glove related injuries and circumstances of these incidents, 2) determine likely risk factors, and 3) recommend interventions where possible that could be implemented in the current and future glove designs. METHODS: The investigation focused on the discomforts and injuries of U.S. crewmembers who had worn the pressurized Extravehicular Mobility Unit (EMU) spacesuit and experienced 4000 Series or Phase VI glove related incidents during 1981 to 2010 for either EVA ground training or in-orbit flight. We conducted an observational retrospective case-control investigation using 1) a literature review of known injuries, 2) data mining of crew injury, glove sizing, and hand anthropometry databases, 3) descriptive statistical analyses, and finally 4) statistical risk correlation and predictor analyses to better understand injury prevalence and potential causation. Specific predictor statistical analyses included use of principal component analyses (PCA), multiple logistic regression, and survival analyses (Cox proportional hazards regression). Results of these analyses were computed risk variables in the forms of odds ratios (likelihood of an injury occurring given the magnitude of a risk variable) and hazard ratios (likelihood of time to injury occurrence). Due to the exploratory nature of this investigation, we selected predictor variables significant at p=0.15. RESULTS: Through 2010, there have been a total of 330 NASA crewmembers, from which 96 crewmembers performed 322 EVAs during 1981-2010, resulting in 50 crewmembers being injured inflight and 44

  12. Surface activities on the first piloted Mars mission

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.

    1987-01-01

    The objectives of the first piloted Mars mission, in addition to safe Mars landing and return to earth for the crew, would encompass a demonstration of human working capabilities in the Martian environment, the exploration of the landing site, and the establishment of that planet's potential for the support of permanent human habitation. An evaluation is presently made of constraints on Martian service activities, mission risk considerations, and the three mission profiles that can be envisioned for total durations of 14, 21, and 35 months.

  13. Power Subsystem for Extravehicular Activities for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle

    2005-01-01

    The NASA Glenn Research Center has the responsibility to develop the next generation space suit power subsystem to support the Vision for Space Exploration. Various technology challenges exist in achieving extended duration missions as envisioned for future lunar and Mars mission scenarios. This paper presents an overview of ongoing development efforts undertaken at the Glenn Research Center in support of power subsystem development for future extravehicular activity systems.

  14. Astronaut Dale Gardner holds up for sale sign after EVA

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  15. Exploration EVA Purge Flow Assessment

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Conger, Bruce; Campbell, Colin

    2011-01-01

    An advanced future spacesuit will require properly sized suit and helmet purge flow rates in order to sustain a crew member with a failed Portable Life Support System (PLSS) during an Extravehicular Activity (EVA). A computational fluid dynamics evaluation was performed to estimate the helmet purge flow rate required to washout carbon dioxide and to prevent the condensing ("fogging") of water vapor on the helmet visor. An additional investigation predicted the suit purge flow rate required to provide sufficient convective cooling to keep the crew member comfortable. This paper summarizes the results of these evaluations.

  16. Exploration EVA Purge Flow Assessment

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Conger, Bruce

    2010-01-01

    An advanced future spacesuit will require properly sized suit and helmet purge flow rates in order to sustain a crew member with a failed Portable Life Support System (PLSS) during an Extravehicular Activity (EVA). A computational fluid dynamics evaluation was performed to estimate the helmet purge flow rate required to washout carbon dioxide and to prevent the condensing ("fogging") of water vapor on the helmet visor. An additional investigation predicted the suit purge flow rate required to provide sufficient convective cooling to keep the crew member comfortable. This paper summarizes the results of these evaluations.

  17. Evaluation of a Human Modeling Software Tool in the Prediction of Extra Vehicular Activity Tasks for an International Space Station Assembly Mission

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles; Loughead, Tomas E.

    1997-01-01

    The difficulty of accomplishing work in extravehicular activity (EVA) is well documented. It arises as a result of motion constraints imposed by a pressurized spacesuit in a near-vacuum and of the frictionless environment induced in microgravity. The appropriate placement of foot restraints is crucial to ensuring that astronauts can remove and drive bolts, mate and demate connectors, and actuate levers. The location on structural members of the foot restraint sockets, to which the portable foot restraint is attached, must provide for an orientation of the restraint that affords the astronaut adequate visual and reach envelopes. Previously, the initial location of these sockets was dependent upon the experienced designer's ability to estimate placement. The design was tested in a simulated zero-gravity environment; spacesuited astronauts performed the tasks with mockups while submerged in water. Crew evaluation of the tasks based on these designs often indicated the bolt or other structure to which force needed to be applied was not within an acceptable work envelope, resulting in redesign. The development of improved methods for location of crew aids prior to testing would result in savings to the design effort for EVA hardware. Such an effort to streamline EVA design is especially relevant to International Space Station construction and maintenance. Assembly operations alone are expected to require in excess of four hundred hours of EVA. Thus, techniques which conserve design resources for assembly missions can have significant impact. We describe an effort to implement a human modelling application in the design effort for an International Space Station Assembly Mission. On Assembly Flight 6A, the Canadian-built Space Station Remote Manipulator System will be delivered to the U.S. Laboratory. It will be released from its launch restraints by astronauts in EVA. The design of the placement of foot restraint sockets was carried out using the human model Jack, and

  18. Emergency vehicle alert system (EVAS)

    NASA Technical Reports Server (NTRS)

    Reed, Bill; Crump, Roger; Harper, Warren; Myneni, Krishna

    1995-01-01

    The Emergency Vehicle Alert System (EVAS) program is sponsored by the NASA/MSFC Technology Utilization (TU) office. The program was conceived to support the needs of hearing impaired drivers. The objective of the program is to develop a low-cost, small device which can be located in a personal vehicle and warn the driver, via a visual means, of the approach of an emergency vehicle. Many different technologies might be developed for this purpose and each has its own advantages and drawbacks. The requirements for an acoustic detection system, appear to be pretty stringent and may not allow the development of a reliable, low-cost device in the near future. The problems include variations in the sirens between various types of emergency vehicles, distortions due to wind and surrounding objects, competing background noise, sophisticated signal processing requirements, and omni-directional coverage requirements. Another approach is to use a Radio Frequency (RF) signal between the Emergency Vehicle (EV) and the Personal Vehicle (PV). This approach requires a transmitter on each EV and a receiver in each PV, however it is virtually assured that a system can be developed which works. With this approach, the real technology issue is how to make a system work as inexpensively as possible. This report gives a brief summary of the EVAS program from its inception and concentrates on describing the activities that occurred during Phase 4. References 1-3 describe activities under Phases 1-3. In the fourth phase of the program, the major effort to be expended was in development of the microcontroller system for the PV, refinement of some system elements and packaging for demonstration purposes. An EVAS system was developed and demonstrated which used standard spread spectrum modems with minor modifications.

  19. STS-54 MS Susan J. Helms prepares for EVA simulation at JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-54 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist 3 (MS3) Susan J. Helms, wearing liquid cooling and ventilation garment (LCVG) and extravehicular mobility unit (EMU) lower torso, prepares to don EMU upper torso with some assistance from technicians. Once fully suited in the EMU, Helms will participate in an underwater extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Though not assigned to the scheduled EVA, Helms, for backup and contingency purposes, is trained in the WETF. Nearby, divers await her entry into the water via the platform (visible behind Helms). The EMU is weighted so as to allow Helms to achieve neutral buoyancy and simulate the various chores of the spacewalk.

  20. STS-55 MS3 Harris, wearing EMU and CCA, prepares for EVA simulation at JSC WETF

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, suited in the extravehicular mobility unit (EMU) upper torso and communications carrier assembly (CCA), smiles as he prepares for an underwater simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. This portrait-like view captures Harris as he checks out his communications equipment. Once fully suited, Harris will be lowered into the WETF's 25-foot deep pool for an underwater contingency extravehicular activity (EVA) simulation. There is no scheduled EVA for the 1993 flight but each spaceflight crew includes astronauts trained for a variety of contingency tasks that could require exiting the shirt-sleeve environment of a Shuttle's cabin.

  1. Active shielding for long duration interplanetary manned missions

    NASA Astrophysics Data System (ADS)

    Spillantini, Piero

    2010-04-01

    For long duration interplanetary manned missions the protection of astronauts from cosmic radiation is an unavoidable problem that has been considered by many space agencies. In Europe, during 2002-2004, the European Space Agency supported two research programs on this thematic: one was the constitution of a dedicated study group (on the thematic 'Shielding from cosmic radiation for interplanetary missions: active and passive methods') in the framework of the 'life and physical sciences' report, and the other an industrial study concerning the 'radiation exposure and mission strategies for interplanetary manned missions to Moon and Mars'. Both programs concluded that, outside the protection of the magnetosphere and in the presence of the most intense and energetic solar events, the protection cannot rely solely on the mechanical structures of the spacecraft, but a temporary shelter must be provided. Because of the limited mass budget, the shelter should be based on the use of superconducting magnetic systems. For long duration missions the astronauts must be protected from the much more energetic galactic cosmic rays during the whole mission period. This requires the protection of a large habitat where they could live and work, and not the temporary protection of a small volume shelter. With passive absorbers unable to play any significant role, the use of active shielding is mandatory. The possibilities offered by superconducting magnets are discussed, and recommendations are made about the needed R&D. The technical developments that have occurred in the meanwhile and the evolving panorama of possible near future interplanetary missions, require revising the pioneering studies of the last decades and the adoption of a strategy that considers long lasting human permanence in 'deep' space, moreover not only for a relatively small number of dedicated astronauts but also for citizens conducting there 'normal' activities.

  2. Crew activities, science, and hazards of manned missions to Mars

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.

    1988-01-01

    The crew scientific and nonscientific activities that will occur at each stage of a mission to Mars are examined. Crew activities during the interplanetary flight phase will include simulations, maintenance and monitoring, communications, upgrading procedures and operations, solar activity monitoring, cross-training and sharpening of skills, physical conditioning, and free-time activities. Scientific activities will address human physiology, human psychology, sociology, astronomy, space environment effects, manufacturing, and space agriculture. Crew activities on the Martian surface will include exploration, construction, manufacturing, food production, maintenance and training, and free time. Studies of Martian geology and atmosphere, of the life forms that may exist there, and of the Martian moons will occur on the planet's surface. Crew activities and scientific studies that will occur in Mars orbit, and the hazards relevant to each stage of the mission, are also addressed.

  3. First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit

    NASA Technical Reports Server (NTRS)

    Meade, Carl J.

    1995-01-01

    The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.

  4. MSLICE Science Activity Planner for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.; Shams, Khawaja S.; Wallick, Michael N.; Norris, Jeffrey S.; Joswig, Joseph C.; Crockett, Thomas M.; Fox, Jason M.; Torres, Recaredo J.; Kurien, James A.; McCurdy, Michael P.; Pyrzak, Guy; Aghevli, Arash; Bachmann, Andrew G.

    2009-01-01

    MSLICE (Mars Science Laboratory InterfaCE) is the tool used by scientists and engineers on the Mars Science Laboratory rover mission to visualize the data returned by the rover and collaboratively plan its activities. It enables users to efficiently and effectively search all mission data to find applicable products (e.g., images, targets, activity plans, sequences, etc.), view and plan the traverse of the rover in HiRISE (High Resolution Imaging Science Experiment) images, visualize data acquired by the rover, and develop, model, and validate the activities the rover will perform. MSLICE enables users to securely contribute to the mission s activity planning process from their home institutions using off-the-shelf laptop computers. This software has made use of several plug-ins (software components) developed for previous missions [e.g., Mars Exploration Rover (MER), Phoenix Mars Lander (PHX)] and other technology tasks. It has a simple, intuitive, and powerful search capability. For any given mission, there is a huge amount of data and associated metadata that is generated. To help users sort through this information, MSLICE s search interface is provided in a similar fashion as major Internet search engines. With regard to the HiRISE visualization of the rover s traverse, this view is a map of the mission that allows scientists to easily gauge where the rover has been and where it is likely to go. The map also provides the ability to correct or adjust the known position of the rover through the overlaying of images acquired from the rover on top of the HiRISE image. A user can then correct the rover s position by collocating the visible features in the overlays with the same features in the underlying HiRISE image. MSLICE users can also rapidly search all mission data for images that contain a point specified by the user in another image or panoramic mosaic. MSLICE allows the creation of targets, which provides a way for scientists to collaboratively name

  5. Evaluation of an Anthropometric Human Body Model for Simulated EVA Task Assessment

    NASA Technical Reports Server (NTRS)

    Etter, Brad

    1996-01-01

    One of the more mission-critical tasks performed in space is extravehicular activity (EVA) which requires the astronaut to be external to the station or spacecraft, and subsequently at risk from the many threats posed by space. These threats include, but are not limited to: no significant atmosphere, harmful electromagnetic radiation, micrometeoroids, and space debris. To protect the astronaut from this environment, a special EVA suit is worn which is designed to maintain a sustainable atmosphere (at 1/3 atmosphere) and provide protection against the hazards of space. While the EVA suit serves these functions well, it does impose limitations on the astronaut as a consequence of the safety it provides. Since the astronaut is in a virtual vacuum, any atmospheric pressure inside the suit serves to pressurize the suit and restricts mobility of flexible joints (such as fabric). Although some of the EVA suit joints are fixed, rotary-style joints, most of the mobility is achieved by the simple flexibility of the fabric. There are multiple layers of fabric, each of which serves a special purpose in the safety of the astronaut. These multiple layers add to the restriction of motion the astronaut experiences in the space environment. Ground-based testing is implemented to evaluate the capability of EVA-suited astronauts to perform the various tasks in space. In addition to the restriction of motion imposed by the EVA suit, most EVA activity is performed in a micro-gravity (weight less) environment. To simulate weightlessness EVA-suited testing is performed in a neutral buoyancy simulator (NBS). The NBS is composed of a large container of water (pool) in which a weightless environment can be simulated. A subject is normally buoyant in the pressurized suit; however he/she can be made neutrally buoyant with the addition of weights. In addition, most objects the astronaut must interface with in the NBS sink in water and flotation must be added to render them "weightless". The

  6. Development of an EVA systems cost model. Volume 3: EVA systems cost model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The EVA systems cost model presented is based on proposed EVA equipment for the space shuttle program. General information on EVA crewman requirements in a weightless environment and an EVA capabilities overview are provided.

  7. Effective Teamwork: The EVA NBL Experience

    NASA Technical Reports Server (NTRS)

    Crocker, Lori

    2007-01-01

    This viewgraph presentation reviews the experience of improving the operation of the ExtraVehiclar Activity (EVA) Neutral Buoyancy Laboratory as a team of NASA employees and contractors. It reviews specific recommendations to use in turning a struggling organization around as a NASA/contractor team

  8. Improved flexibility of an EVA glove

    NASA Technical Reports Server (NTRS)

    Eggeman, G. W.; Held, J. J.

    1986-01-01

    A student design contest was held between four universities. The project was to improve the flexibility of the NASA extra-vehicular activities (EVA) glove with the internal pressure increased from 4 psi to 8 psi. The Kansas State University team used an experimental design methodology and an industrial management scheme. This approach succeeded in making Kansas State University the winner of the competition.

  9. Creating a Lunar EVA Work Envelope

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  10. Application of EVA guidelines and design criteria. Volume 1: EVA selection/systems design considerations

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    Parameters that require consideration by the planners and designers when planning for man to perform functions outside the vehicle are presented in terms of the impact the extravehicular crewmen and major EV equipment items have on the mission, vehicle, and payload. Summary data on man's performance capabilities in the weightless space environment are also provided. The performance data are based on orbital and transearth EVA from previous space flight programs and earthbound simulations, such as water immersion and zero-g aircraft.

  11. ISRU Development Strategy and Recent Activities to Support Near and Far Term Missions

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald B.; Simon, Thomas M.

    2003-01-01

    The practical expansion of humans beyond low Earth orbit into near-Earth space and out into the solar system for exploration, commercialization, tourism, and colonization will require the effective utilization of whatever indigenous resources are available to make these endeavors economically feasible and capable of extended operations. This concept of ``living off the land'' is called In-Situ Resource Utilization (ISRU). The resources available for ISRU applications vary widely, depending upon the location. However, there are resources, technologies, and processes that are common to multiple destinations and ISRU-related applications. These resources range from carbon dioxide (CO2) and water vapor found in human habitats (surface & spacecraft) and in the Martian atmosphere, to water (ice and hydrated minerals) and various oxygen, carbon, and metal-bearing resources found on comets and asteroids, and in planetary surface materials at numerous destinations of interest (Moon, Mars, Titan, and Europa). Many parties are investigating the common technologies and processes to effectively extract and use these resources. This paper will discuss how ISRU is enabling for both near and far term human exploration missions, and present a summary of recent and on-going ISRU work sponsored by the NASA/Johnson Space Center. Technology development activities that will be described in detail include an advanced CO2 freezer acquisition system, a multi-fluid common bulkhead cryogenic storage tank, and a variety of microchannel chemical reactor concepts. Recent advanced Sabatier reactor concept development activities in preparation for later, end-to-end system testing will be described as well. This paper will also discuss an ISRU-based strategy to enable extensive robotic and human surface exploration operations and a related on-going demonstration program for a fuel cell based power plant for rover applications. Technology commonalities between ISRU, life support systems, and Extra

  12. STS-37 crewmembers work with CETA during EVA training in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-37 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Jerry L. Ross and MS Jerome Apt operate crew and equipment translation aid (CETA) electrical hand pedal cart during training session in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Wearing extravehicular mobility units (EMUs), Ross and Apt practice a extravehicular activity (EVA) spacewalk they will perform in OV-104's payload bay during STS-37. CETA is a type of railroad hand cart planned as a spacewalker's transportation system along the truss of Space Station Freedom (SSF). Apt is pulling Ross along to test the cart's ability to carry a person plus cargo. SCUBA divers monitor astronauts' underwater activity.

  13. The Soil Moisture Active and Passive (SMAP) Mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen f...

  14. The Soil Moisture Active/Passive Mission (SMAP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active/Passive (SMAP) mission will deliver global views of soil moisture content and its freeze/thaw state that are critical terrestrial water cycle state variables. Polarized measurements obtained with a shared antenna L-band radar and radiometer system will allow accurate estima...

  15. STS-111 Crew Interviews: Phillippe Perrin, Mission Specialist 1

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-111 Mission Specialist 1 Phillippe Perrin is seen during this preflight interview, where he gives a quick overview of his mission before answering questions about his inspiration to become an astronaut and his career path. Perrin outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes what the crew exchange will be like (transferring the Expedition 5 crew in place of the Expedition 4 crew on the International Space Station (ISS)) and the payloads (Mobile Base System (MBS) and the Leonardo Multi-Purpose Logistics Module). Perrin discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the ISS. He also provides his thoughts about the significance of the mission to France and the value of the ISS.

  16. The Evolution of Extravehicular Activity Operations to Lunar Exploration Based on Operational Lessons Learned During 2009 NASA Desert RATS Field Testing

    NASA Technical Reports Server (NTRS)

    Bell, Ernest R., Jr.; Welsh, Daren; Coan, Dave; Johnson, Kieth; Ney, Zane; McDaniel, Randall; Looper, Chris; Guirgis, Peggy

    2010-01-01

    This paper will present options to evolutionary changes in several philosophical areas of extravehicular activity (EVA) operations. These areas will include single person verses team EVAs; various loss of communications scenarios (with Mission Control, between suited crew, suited crew to rover crew, and rover crew A to rover crew B); EVA termination and abort time requirements; incapacitated crew ingress time requirements; autonomous crew operations during loss of signal periods including crew decisions on EVA execution (including decision for single verses team EVA). Additionally, suggestions as to the evolution of the make-up of the EVA flight control team from the current standard will be presented. With respect to the flight control team, the major areas of EVA flight control, EVA Systems and EVA Tasks, will be reviewed, and suggested evolutions of each will be presented. Currently both areas receive real-time information, and provide immediate feedback during EVAs as well as spacesuit (extravehicular mobility unit - EMU) maintenance and servicing periods. With respect to the tasks being performed, either EMU servicing and maintenance, or the specific EVA tasks, daily revising of plans will need to be able to be smoothly implemented to account for unforeseen situations and findings. Many of the presented ideas are a result of lessons learned by the NASA Johnson Space Center Mission Operations Directorate operations team support during the 2009 NASA Desert Research and Technology Studies (Desert RATS). It is important that the philosophy of both EVA crew operations and flight control be examined now, so that, where required, adjustments can be made to a next generation EMU and EVA equipment that will complement the anticipated needs of both the EVA flight control team and the crews.

  17. STS-109 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-05-01

    This video, Part 2 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 4 and 5. The activities from other flights days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139476), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). The primary activities during these days were EVAs (extravehicular activities) to replace two solar arrays on the HST (Hubble Space Telescope). Footage from flight day 4 records an EVA by Grunsfeld and Linnehan, including their exit from Columbia's payload bay airlock, their stowing of the old HST starboard rigid array on the rigid array carrier in Columbia's payload bay, their attachment of the new array on HST, the installation of a new starboard diode box, and the unfolding of the new array. The pistol grip space tool used to fasten the old array in its new location is shown in use. The video also includes several shots of the HST with Earth in the background. On flight day 5 Newman and Massimino conduct an EVA to change the port side array and diode box on HST. This EVA is very similar to the one on flight day 4, and is covered similarly in the video. A hand operated ratchet is shown in use. In addition to a repeat of the previous tasks, the astronauts change HST's reaction wheel assembly, and because they are ahead of schedule, install installation and lubricate an instrument door on the telescope. The Earth views include a view of Egypt and Israel, with the Nile River, Red Sea, and Mediterranean Sea.

  18. Minimizing EVA Airlock Time and Depress Gas Losses

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Lafuse, Sharon A.

    2008-01-01

    This paper describes the need and solution for minimizing EVA airlock time and depress gas losses using a new method that minimizes EVA out-the-door time for a suited astronaut and reclaims most of the airlock depress gas. This method consists of one or more related concepts that use an evacuated reservoir tank to store and reclaim the airlock depress gas. The evacuated tank can be an inflatable tank, a spent fuel tank from a lunar lander descent stage, or a backup airlock. During EVA airlock operations, the airlock and reservoir would be equalized at some low pressure, and through proper selection of reservoir size, most of the depress gas would be stored in the reservoir for later reclamation. The benefit of this method is directly applicable to long duration lunar and Mars missions that require multiple EVA missions (up to 100, two-person lunar EVAs) and conservation of consumables, including depress pump power and depress gas. The current ISS airlock gas reclamation method requires approximately 45 minutes of the astronaut s time in the airlock and 1 KW in electrical power. The proposed method would decrease the astronaut s time in the airlock because the depress gas is being temporarily stored in a reservoir tank for later recovery. Once the EVA crew is conducting the EVA, the volume in the reservoir would be pumped back to the cabin at a slow rate. Various trades were conducted to optimize this method, which include time to equalize the airlock with the evacuated reservoir versus reservoir size, pump power to reclaim depress gas versus time allotted, inflatable reservoir pros and cons (weight, volume, complexity), and feasibility of spent lunar nitrogen and oxygen tanks as reservoirs.

  19. Active Debris Removal mission design in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Martin, Th.; Pérot, E.; Desjean, M.-Ch.; Bitetti, L.

    2013-03-01

    Active Debris Removal (ADR) aims at removing large sized intact objects ― defunct satellites, rocket upper-stages ― from space crowded regions. Why? Because they constitute the main source of the long-term debris environment deterioration caused by possible future collisions with fragments and worse still with other intact but uncontrolled objects. In order to limit the growth of the orbital debris population in the future (referred to as the Kessler syndrome), it is now highly recommended to carry out such ADR missions, together with the mitigation measures already adopted by national agencies (such as postmission disposal). At the French Space Agency, CNES, and in the frame of advanced studies, the design of such an ADR mission in Low Earth Orbit (LEO) is under evaluation. A two-step preliminary approach has been envisaged. First, a reconnaissance mission based on a small demonstrator (˜500 kg) rendezvousing with several targets (observation and in-flight qualification testing). Secondly, an ADR mission based on a larger vehicle (inherited from the Orbital Transfer Vehicle (OTV) concept) being able to capture and deorbit several preselected targets by attaching a propulsive kit to these targets. This paper presents a flight dynamics level tradeoff analysis between different vehicle and mission concepts as well as target disposal options. The delta-velocity, times, and masses required to transfer, rendezvous with targets and deorbit are assessed for some propelled systems and propellant less options. Total mass budgets are then derived for two end-to-end study cases corresponding to the reconnaissance and ADR missions mentioned above.

  20. Astronaut Richard Gordon returns to hatch of spacecraft following EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., pilot for the Gemini 11 space flight, returns to the hatch of the spacecraft following extravehicular activity (EVA). This picture was taken over the Atlantic Ocean at approximately 160 nautical miles above the earth's surface.

  1. Recent Electric Propulsion Development Activities for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.

    2009-01-01

    (The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated

  2. Astronaut John Young looks over a boulder at Station no. 13 during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, looks over a large boulder at Station No. 13 during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This was the site of the permanently shadowed soil sample which was taken from a hole extending under overhanging rock. Astronaut Charles M. Duke Jr., lunar module pilot, took this photograph. Concerning Young's reaching under the big rock, Duke remarked: 'You do that in west Texas and you get a rattlesnake!'

  3. The NASA Soil Moisture Active Passive (SMAP) Mission: Overview

    NASA Technical Reports Server (NTRS)

    O'Neill, Peggy; Entekhabi, Dara; Njoku, Eni; Kellogg, Kent

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council?s Decadal Survey [1]. Its mission design consists of L-band radiometer and radar instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every 2-3 days. The combined active/passive microwave soil moisture product will have a spatial resolution of 10 km and a mean latency of 24 hours. In addition, the SMAP surface observations will be combined with advanced modeling and data assimilation to provide deeper root zone soil moisture and net ecosystem exchange of carbon. SMAP is expected to launch in the late 2014 - early 2015 time frame.

  4. Moon and Mars Analog Mission Activities for Mauna Kea 2012

    NASA Technical Reports Server (NTRS)

    Graham, Lee D.; Morris, Richard V.; Graff, Trevor G.; Yingst, R. Aileen; tenKate, I. L.; Glavin, Daniel P.; Hedlund, Magnus; Malespin, Charles A.; Mumm, Erik

    2012-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were recently completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Initial science operations were planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred as the analog mission progressed. We report here on the preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering and science trades discussions and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as "Apollo Valley".

  5. Moon and Mars Analog Mission Activities for Mauna Kea 2012

    NASA Astrophysics Data System (ADS)

    Graham, L. D.; Morris, R. V.; Graff, T. G.; Yingst, R. A.; ten Kate, I. L.; Glavin, D. P.; Hedlund, M.; Malespin, C. A.; Mumm, E.

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were recently completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Initial science operations were planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred as the analog mission progressed. We report here on the preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering and science trades and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as “ Apollo Valley.”

  6. EVA manipulation and assembly of space structure columns

    NASA Technical Reports Server (NTRS)

    Loughead, T. E.; Pruett, E. C.

    1980-01-01

    Assembly techniques and hardware configurations used in assembly of the basic tetrahedral cell by A7LB pressure-suited subjects in a neutral bouyancy simulator were studied. Eleven subjects participated in assembly procedures which investigated two types of structural members and two configurations of attachment hardware. The assembly was accomplished through extra-vehicular activity (EVA) only, EVA with simulated manned maneuvering unit (MMU), and EVA with simulated MMU and simulated remote manipulator system (RMS). Assembly times as low as 10.20 minutes per tetrahedron were achieved. Task element data, as well as assembly procedures, are included.

  7. Mission concept and autonomy considerations for active Debris removal

    NASA Astrophysics Data System (ADS)

    Peters, Susanne; Pirzkall, Christoph; Fiedler, Hauke; Förstner, Roger

    2016-12-01

    Over the last 60 years, Space Debris has become one of the main challenges for the safe operation of satellites in low Earth orbit. To address this threat, guidelines that include a limited debris release during normal operations, minimization of the potential for on-orbit break-ups and post mission disposal have begun to be implemented. However, for the long-term, the amount of debris will still increase due to fragments created by collisions of objects in space. The active removal of space debris of at least five large objects per years is therefore recommended, but not yet included in those guidelines. Even though various technical concepts have been developed over the last years, the question on how to make them reliable and safe or how to finance such mission has not been answered. This paper addresses the first two topics. With Space Debris representing an uncooperative and possibly tumbling target, close proximity becomes absolutely critical, especially when an uninterrupted connection to the ground station is not ensured. This paper therefore defines firstly a mission to remove at least five large objects and secondly introduces a preliminary autonomy concept fitted for this mission.

  8. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Scoville, Zebulon; Sipila, Stephanie; Bowie, Jonathan

    2014-01-01

    NASA's Asteroid Redirect Crewed Mission (ARCM) is challenged with primary mission objectives of demonstrating deep space Extravehicular Activity (EVA) and tools, and obtaining asteroid samples to return to Earth for further study. Although the Modified Advanced Crew Escape Suit (MACES) is used for the EVAs, it has limited mobility which increases fatigue and decreases the crews' capability to perform EVA tasks. Furthermore, previous Shuttle and International Space Station (ISS) spacewalks have benefited from EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, some vehicle interfaces and tools can leverage heritage designs and experience. However, when the crew ventures onto an asteroid capture bag to explore the asteroid and collect rock samples, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as bunching of the fabric bag will complicate EVA translation, tool restraint and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the MACES suit. The proposed concept utilizes expandable booms and integrated features of the asteroid capture bag to position and restrain the crew at the asteroid worksite. These methods enable the capability to perform both finesse, and high load tasks necessary to collect samples for scientific characterization of the asteroid. This paper will explore the design trade space and options that were examined for EVA, the

  9. CETA truck and EVA restraint system

    NASA Technical Reports Server (NTRS)

    Beals, David C.; Merson, Wayne R.

    1991-01-01

    The Crew Equipment Translation Aid (CETA) experiment is an extravehicular activity (EVA) Space Transportation System (STS) based flight experiment which will explore various modes of transporting astronauts and light equipment for Space Station Freedom (SSF). The basic elements of CETA are: (1) two 25 foot long sections of monorail, which will be EVA assembled in the STS cargo bay to become a single 50 ft. rail called the track; (2) a wheeled baseplate called the truck which rolls along the track and can accept three cart concepts; and (3) the three carts which are designated manual, electric, and mechanical. The three carts serve as the astronaut restraint and locomotive interfaces with the track. The manual cart is powered by the astronaut grasping the track's handrail and pulling himself along. The electric cart is operated by an astronaut turning a generator which powers the electric motor and drives the cart. The mechanical cart is driven by a Bendix type transmission and is similar in concept to a man-propelled railroad cart. During launch and landing, the truck is attached to the deployable track by means of EVA removable restraint bolts and held in position by a system of retractable shims. These shims are positioned on the exterior of the rail for launch and landing and rotate out of the way for the duration of the experiment. The shims are held in position by strips of Velcro nap, which rub against the sides of the shim and exert a tailored force. The amount of force required to rotate the shims was a major EVA concern, along with operational repeatability and extreme temperature effects. The restraint system was tested in a thermal-vac and vibration environment and was shown to meet all of the initial design requirements. Using design inputs from the astronauts who will perform the EVA, CETA evolved through an iterative design process and represented a cooperative effort.

  10. STS-111 Crew Interviews: Franklin Chang-Diaz, Mission Specialist 2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-111 Mission Specialist 2 Franklin Chang-Diaz is seen during this interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Chang-Diaz outlines his role in the mission in general, and specifically during the extravehicular activities (EVAs). He describes in great detail his duties in the three EVAs which involved preparing the Mobile Remote Servicer Base System (MBS) for installation onto the Space Station's Mobile Transporter, attaching the MBS onto the Space Station and replacing a wrist roll joint on the station's robot arm. Chang-Diaz also discusses the science experiments which are being brought on board the Space Station by the STS-111 mission. He also offers thoughts on how the International Space Station (ISS) fits into NASA's vision and how his previous space mission experience will benefit the STS-111 flight.

  11. STS-66 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.

  12. STS-66 mission highlights resource tape

    NASA Astrophysics Data System (ADS)

    1995-04-01

    This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.

  13. Experiments with an EVA Assistant Robot

    NASA Technical Reports Server (NTRS)

    Burridge, Robert R.; Graham, Jeffrey; Shillcutt, Kim; Hirsh, Robert; Kortenkamp, David

    2003-01-01

    Human missions to the Moon or Mars will likely be accompanied by many useful robots that will assist in all aspects of the mission, from construction to maintenance to surface exploration. Such robots might scout terrain, carry tools, take pictures, curate samples, or provide status information during a traverse. At NASA/JSC, the EVA Robotic Assistant (ERA) project has developed a robot testbed for exploring the issues of astronaut-robot interaction. Together with JSC's Advanced Spacesuit Lab, the ERA team has been developing robot capabilities and testing them with space-suited test subjects at planetary surface analog sites. In this paper, we describe the current state of the ERA testbed and two weeks of remote field tests in Arizona in September 2002. A number of teams with a broad range of interests participated in these experiments to explore different aspects of what must be done to develop a program for robotic assistance to surface EVA. Technologies explored in the field experiments included a fuel cell, new mobility platform and manipulator, novel software and communications infrastructure for multi-agent modeling and planning, a mobile science lab, an "InfoPak" for monitoring the spacesuit, and delayed satellite communication to a remote operations team. In this paper, we will describe this latest round of field tests in detail.

  14. The NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier projects recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission is in formulation phase and it is scheduled for launch in 2014. The SMAP mission is designed to produce high-resolution and accurate global mapping of soil moisture and its freeze/thaw state using an instrument architecture that incorporates an L-band (1.26 GHz) radar and an L-band (1.41 GHz) radiometer. The simultaneous radar and radiometer measurements will be combined to derive global soil moisture mapping at 9 [km] resolution with a 2 to 3 days revisit and 0.04 [cm3 cm-3] (1 sigma) soil water content accuracy. The radar measurements also allow the binary detection of surface freeze/thaw state. The project science goals address in water, energy and carbon cycle science as well as provide improved capabilities in natural hazards applications.

  15. ChEVAS: Combining Suprarenal EVAS with Chimney Technique

    SciTech Connect

    Torella, Francesco; Chan, Tze Y. Shaikh, Usman; England, Andrew; Fisher, Robert K.; McWilliams, Richard G.

    2015-10-15

    Endovascular sealing with the Nellix{sup ®} endoprosthesis (EVAS) is a new technique to treat infrarenal abdominal aortic aneurysms. We describe the use of endovascular sealing in conjunction with chimney stents for the renal arteries (chEVAS) in two patients, one with a refractory type Ia endoleak and an expanding aneurysm, and one with a large juxtarenal aneurysm unsuitable for fenestrated endovascular repair (EVAR). Both aneurysms were successfully excluded. Our report confirms the utility of chEVAS in challenging cases, where suprarenal seal is necessary. We suggest that, due to lack of knowledge on its durability, chEVAS should only been considered when more conventional treatment modalities (open repair and fenestrated EVAR) are deemed difficult or unfeasible.

  16. STS-55 MS3 Harris in EMU and CCA tests equipment prior to EVA simulation at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), listens to instructions during a communications check prior to an underwater simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. When checkout procedures are complete, Harris will don EMU helmet (held by technician in the foreground). Then, the platform he is standing on will be lowered into the WETF's 25-foot deep pool. Once underwater, Harris will perform contingency extravehicular activity (EVA) procedures. There is no scheduled EVA for the 1993 flight but each space flight crew includes astronauts trained for a variety of contingency tasks that could require exiting the shirt-sleeve environment of a Shuttle's cabin.

  17. Modified Advanced Crew Escape Suit Intravehicular Activity Suit for Extravehicular Activity Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration

  18. EVA-Compatible Microbial Swab Tool

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    When we send humans to search for life on Mars, we'll need to know what we brought with us versus what may already be there. To ensure our crewed spacecraft meet planetary protection requirements—and to protect our science from human contamination—we'll need to know whether micro-organisms are leaking/venting from our ships and spacesuits. This is easily done by swabbing external vents and suit surfaces for analysis, but requires a specialized tool for the job. Engineers at the National Aeronautics and Space Administration (NASA) recently developed an Extravehicular Activity (EVA)-compatible swab tool that can be used to sample current space suits and life support systems. Data collected now will influence Mars life support and EVA hardware early in the planning process, before design changes become difficult and expensive.NASA’s EVA swab tool pairs a Space Shuttle-era tool handle with a commercially available swab tip mounted into a custom-designed end effector. A glove-compatible release mechanism allows the handle to quickly switch between swab tips, much like a shaving razor handle can snap onto a disposable blade cartridge. Swab tips are stowed inside individual sterile containers, each fitted with a microbial filter that allows the container to equalize atmospheric pressure, but prevents cabin contaminants from rushing into the container when passing from the EVA environment into a pressurized cabin. A bank of containers arrayed inside a tool caddy allows up to six individual samples to be collected during a given spacewalk.NASA plans to use the tool in 2016 to collect samples from various spacesuits during ground testing to determine what (if any) human-borne microbial contamination leaks from the suit under simulated thermal vacuum conditions. Next, the tool will be used on board the International Space Station to assess the types of microbial contaminants found on external environmental control and life support system vents. Data will support

  19. EVA assembly of large space structure element

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bush, H. G.; Heard, W. L., Jr.; Stokes, J. W., Jr.

    1981-01-01

    The results of a test program to assess the potential of manned extravehicular activity (EVA) assembly of erectable space trusses are described. Seventeen tests were conducted in which six "space-weight" columns were assembled into a regular tetrahedral cell by a team of two "space"-suited test subjects. This cell represents the fundamental "element" of a tetrahedral truss structure. The tests were conducted under simulated zero-gravity conditions. Both manual and simulated remote manipulator system modes were evaluated. Articulation limits of the pressure suit and zero gravity could be accommodated by work stations with foot restraints. The results of this study have confirmed that astronaut EVA assembly of large, erectable space structures is well within man's capabilities.

  20. Astronaut Frank Culbertson takes notes about mission activity on flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On Discovery's aft flight deck, Astronaut Frank L. Culbertson Jr., mission commander, takes notes about mission activity. Culbertson is wearing sun glasses to block sun glare from the overhead window.

  1. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benosn, E.; England, S.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2014-01-01

    Human hands play a significant role during extravehicular activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. It is because of this high frequency usage that hand- and arm-related injuries and discomfort are known to occur during training in the NBL and while conducting EVAs. Hand-related injuries and discomforts have been occurring to crewmembers since the days of Apollo. While there have been numerous engineering changes to the glove design, hand-related issues still persist. The primary objectives of this study are therefore to: 1) document all known EVA glove-related injuries and the circumstances of these incidents, 2) determine likely risk factors, and 3) recommend ergonomic mitigations or design strategies that can be implemented in the current and future glove designs. METHODS: The investigator team conducted an initial set of literature reviews, data mining of Lifetime Surveillance of Astronaut Health (LSAH) databases, and data distribution analyses to understand the ergonomic issues related to glove-related injuries and discomforts. The investigation focused on the injuries and discomforts of U.S. crewmembers who had worn pressurized suits and experienced glove-related incidents during the 1980 to 2010 time frame, either during training or on-orbit EVA. In addition to data mining of the LSAH database, the other objective of the study was to find complimentary sources of information such as training experience, EVA experience, suit-related sizing data, and hand-arm anthropometric data to be tied to the injury data from LSAH. RESULTS: Past studies indicated that the hand was the most frequently injured part of the body during both EVA and NBL training. This study effort thus focused primarily on crew training data in the NBL between 2002 and 2010. Of the 87 recorded training incidents, 19 occurred to women and 68 to men. While crew ages ranged from

  2. Active Magnetic Shielding for Long Duration Manned Space Missions

    NASA Astrophysics Data System (ADS)

    Battiston, R.; Burger, W. J.; Cavelli, V.; Musenich, R.; Datskov, V. I.; Della Torre, A.; Venditti, F.; Hovland, S.; Meinke, R. B.; Van Sciver, S.; Westover, S. C.; Spillantini, P.

    2013-09-01

    The radiation risk due to ionizing particles is a critical issue for long duration manned space missions. The ionization losses in the materials of the spacecraft provide passive shielding effectively stopping low energy particles. However, the estimates of the material required to obtain an acceptable level of radiation result in a prohibitive mass. Active electromagnetic shields, which deflect the charged particles, have been considered as an alternative solution. A study of active magnetic shielding based on high-temperature superconductors (HTS) was initiated in an ESA study, and continued in the context of the NASA Innovative Advanced Concepts (NIAC) program. The aim of the effort was to provide a realistic evaluation of the possibilities based on the current technological level. The different configurations considered were assessed in terms of their technical feasibility and shielding efficiency.

  3. Apollo Medical Operations Project: Recommendations for EVA and Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; Davis, J. R.; Duncan, J. M.; Polk, J. D.; Jones, J. A.; Gillis, D. B.; Novak, J.

    2013-01-01

    The potential risk of injury to crewmembers is inherent in aggressive surface activities, whether they be Moon-, Mars-, or asteroid-based. In December 2005, the Space Medicine Division at JSC requested a study to identify Apollo mission issues that had an impact to crew health or performance or both. This talk focused on the Apollo EVA suit and lunar surface operations concerning crew health and performance. There were roughly 20 recommendations from this study of Apollo for improving these two areas for future exploration missions, a few of which were incorporated into the Human Systems Integration Requirements (HSIR). Dr. Richard Scheuring covered these topics along with some of the analog work that has been done regarding surface operations and medical contingencies.

  4. NASA's Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Kellogg, Kent; Njoku, Eni; Thurman, Sam; Edelstein, Wendy; Jai, Ben; Spencer, Mike; Chen, Gun-Shing; Entekhabi, Dara; O'Neill, Peggy; Piepmeier, Jeffrey; Brown, Molly; Savinell, Chris; Entin, Jared; Ianson, Eric

    2010-01-01

    The Soil Moisture Active-Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Decadal Survey. SMAP will make global measurements of soil moisture at the Earth's land surface and its freeze-thaw state. These measurements will allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP observations of soil moisture and freeze/thaw timing over the boreal latitudes will also reduce a major uncertainty in quantifying the global carbon balance and help to resolve an apparent missing carbon sink over land. The SMAP mission concept will utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna flying in a 680 km polar orbit with an 8-day exact ground track repeat aboard a 3-axis stabilized spacecraft to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. In addition, the SMAP project will use these surface observations with advanced modeling and data assimilation to provide estimates of deeper root-zone soil moisture and net ecosystem exchange of carbon. SMAP recently completed its Phase A Mission Concept Study Phase for NASA and transitioned into Phase B (Formulation and Detailed Design). A number of significant accomplishments occurred during this initial phase of mission development. The SMAP project held several open meetings to solicit community feedback on possible science algorithms, prepared preliminary draft Algorithm Theoretical Basis Documents (ATBDs) for each mission science product, and established a prototype algorithm testbed to enable testing and evaluation of the

  5. Considering the collision probability of Active Debris Removal missions

    NASA Astrophysics Data System (ADS)

    Lidtke, Aleksander A.; Lewis, Hugh G.; Armellin, Roberto; Urrutxua, Hodei

    2017-02-01

    Active Debris Removal (ADR) methods are being developed due to a growing concern about the congestion on-orbit and sustainability of spaceflight. This study examined the probability of an on-orbit collision between an ADR target, whilst being de-orbited, and all the objects in the public catalogue published by the US Strategic Command. Such a collision could have significant effects because the target is likely to be located in a densely populated orbital regime and thus follow-on collisions could take place. Six impulsive and three low-thrust example ADR mission trajectories were screened for conjunctions. Extremely close conjunctions were found to result in as much as 99% of the total accumulated collision probability. The need to avoid those conjunctions is highlighted, which raises concerns about ADR methods that do not support collision avoidance. Shortening the removal missions, at an expense of more ΔV and so cost, will also lower their collision probability by reducing the number of conjunctions that they will experience.

  6. The Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Nijoku, Eni G.; ONeill, Peggy E.; Kellogg, Kent H.; Crow, Wade T.; Edelstein, Wendy N.; Entin, Jared K.; Goodman, Shawn D.; Jackson, Thomas J.; Johnson, Joel; Kimball, John; Piepmeier, Jeffrey R.; Koster, Randal D.; McDonald, Kyle C.; Moghaddam, Mahta; Moran, Susan; Reichle, Rolf; Shi, J. C.; Spencer, Michael W.; Thurman, Samuel W.; Tsang, Leung; VanZyl, Jakob

    2009-01-01

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy and carbon transfers between land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP soil moisture and freeze/thaw timing observations will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept would utilize an L-band radar and radiometer. These instruments will share a rotating 6-meter mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. The SMAP instruments provide direct measurements of surface conditions. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and estimates of land surface-atmosphere exchanges of water, energy and carbon. SMAP is scheduled for a 2014 launch date

  7. STS-109 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-05-01

    This video, Part 3 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 6 and 7. The activities from other flight days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). Flight day 6 features a very complicated EVA (extravehicular activity) to service the HST (Hubble Space Telescope). Astronauts Grunsfeld and Linnehan replace the HST's power control unit, disconnecting and reconnecting 36 tiny connectors. The procedure includes the HST's first ever power down. The cleanup of spilled water from the coollant system in Grunsfeld's suit is shown. The pistol grip tool, and two other space tools are also shown. On flight day 7, Newman and Massimino conduct an EVA. They replace the HST's FOC (Faint Object Camera) with the ACS (Advanced Camera for Surveys). The video ends with crew members playing in the shuttle's cabin with a model of the HST.

  8. A Human Machine Interface for EVA

    NASA Astrophysics Data System (ADS)

    Hartmann, L.

    , the overlaid graphical information can be registered with the external world. For example, information about an object can be positioned on or beside the object. This wearable HMI supports many applications during EVA including robot teleoperation, procedure checklist usage, operation of virtual control panels and general information or documentation retrieval and presentation. Whether the robot end effector is a mobile platform for the EVA astronaut or is an assistant to the astronaut in an assembly or repair task, the astronaut can control the robot via a direct manipulation interface. Embedded in the suit or the astronaut's clothing, Shapetape can measure the user's arm/hand position and orientation which can be directly mapped into the workspace coordinate system of the robot. Motion of the users hand can generate corresponding motion of the robot end effector in order to reposition the EVA platform or to manipulate objects in the robot's grasp. Speech input can be used to execute commands and mode changes without the astronaut having to withdraw from the teleoperation task. Speech output from the system can provide feedback without affecting the user's visual attention. The procedure checklist guiding the astronaut's detailed activities can be presented on the HUD and manipulated (e.g., move, scale, annotate, mark tasks as done, consult prerequisite tasks) by spoken command. Virtual control panels for suit equipment, equipment being repaired or arbitrary equipment on the space station can be displayed on the HUD and can be operated by speech commands or by hand gestures. For example, an antenna being repaired could be pointed under the control of the EVA astronaut. Additionally arbitrary computer activities such as information retrieval and presentation can be carried out using similar interface techniques. Considering the risks, expense and physical challenges of EVA work, it is appropriate that EVA astronauts have considerable support from station crew and

  9. Power assist EVA glove development

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    Structural modeling of the EVA glove indicates that flexibility in the metacarpophalangeal (MCP) joint can be improved by selectively lowering the elasticity of the glove fabric. Two strategies are used to accomplish this. One method uses coil springs on the back of the glove to carry the tension in the glove skin due to pressurization. These springs carry the loads normally borne by the glove fabric, but are more easily deformed. An active system was also designed for the same purpose and uses gas filled bladders attached to the back of the EVA glove that change the dimensions of the back of the glove and allow the glove to bend at the MCP joint, thus providing greater flexibility at this joint. A threshold control scheme was devised to control the action of the joint actuators. Input to the controller was provided by thin resistive pressure sensors placed between the hand and the pressurized glove. The pressure sensors consist of a layer of polyester film that has a thin layer of ink screened on the surface. The resistivity of the ink is pressure dependent, so an extremely thin pressure sensor can be fabricated by covering the ink patch with another layer of polyester film and measuring the changing resistance of the ink with a bridge circuit. In order to sense the force between the hand and the glove at the MCP joint, a sensor was placed on the palmar face of the middle finger. The resultant signal was used by the controller to decide whether to fill or exhaust the bladder actuators on the back of the glove. The information from the sensor can also be used to evaluate the effectiveness of a given control scheme or glove design since the magnitude of the measured pressures gives some idea of the torque required to bend a glove finger at the MCP joint. Tests of this actuator, sensor, and control system were conducted in an 57.2 kPa glove box by performing a series of 90 degree finger bends with a glove without an MCP joint assembly, a glove with the coil spring

  10. Fostering Application Opportunites for the NASA Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Moran, M. Susan; O'Neill, Peggy E.; Entekhabi, Dara; Njoku, Eni G.; Kellogg, Kent H.

    2010-01-01

    The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement requirements and how the SMAP mission plans to foster applications and applied science.

  11. Full Mission Astronaut Radiation Exposure Assessments for Long Duration Lunar Surface Missions

    NASA Technical Reports Server (NTRS)

    Adamczyk, Anne; Clowdsley, Martha; Qualls, Garry; Blattnig, Steve; Lee, Kerry; Fry, Dan; Stoffle, Nicholas; Simonsen, Lisa; Slaba, Tony; Walker, Steven; Zapp, Edward

    2011-01-01

    Risk to astronauts due to ionizing radiation exposure is a primary concern for missions beyond Low Earth Orbit (LEO) and will drive mission architecture requirements, mission timelines, and operational practices. For short missions, radiation risk is dominated by the possibility of a large Solar Particle Event (SPE). Longer duration missions have both SPE and Galactic Cosmic Ray (GCR) risks. SPE exposure can contribute significantly toward cancer induction in combination with GCR. As mission duration increases, mitigation strategies must address the combined risks from SPE and GCR exposure. In this paper, full mission exposure assessments were performed for the proposed long duration lunar surface mission scenarios. In order to accomplish these assessments, previously developed radiation shielding models for a proposed lunar habitat and rover were utilized. End-to-End mission exposure assessments were performed by first calculating exposure rates for locations in the habitat, rover, and during Extra-Vehicular Activities (EVA). Subsequently, total mission exposures were evaluated for the proposed timelines. Mission exposure results, assessed in terms of effective dose, are presented for the proposed timelines and recommendations are made for improved astronaut shielding and safer operational practices.

  12. Simulation and preparation of surface EVA in reduced gravity at the Marseilles Bay subsea analogue sites

    NASA Astrophysics Data System (ADS)

    Weiss, P.; Gardette, B.; Chirié, B.; Collina-Girard, J.; Delauze, H. G.

    2012-12-01

    Extravehicular activity (EVA) of astronauts during space missions is simulated nowadays underwater in neutral buoyancy facilities. Certain aspects of weightlessness can be reproduced underwater by adding buoyancy to a diver-astronaut, therefore exposing the subject to the difficulties of working without gravity. Such tests were done at the COMEX' test pool in Marseilles in the 1980s to train for a French-Russian mission to the MIR station, for the development of the European HERMES shuttle and the COLUMBUS laboratory. However, space agencies are currently studying missions to other destinations than the International Space Station in orbit, such as the return to the Moon, NEO (near-Earth objects) or Mars. All these objects expose different gravities: Moon has one sixth of Earth's gravity, Mars has a third of Earth's gravity and asteroids have virtually no surface gravity; the astronaut "floats" above the ground. The preparation of such missions calls for a new concept in neutral buoyancy training, not on man-made structures, but on natural terrain, underwater, to simulate EVA operations such as sampling, locomotion or even anchoring in low gravity. Underwater sites can be used not only to simulate the reduced gravity that astronauts will experience during their field trips, also human factors like stress are more realistically reproduced in such environment. The Bay of Marseille hosts several underwater sites that can be used to simulate various geologic morphologies, such as sink-holes which can be used to simulate astronaut descends into craters, caves where explorations of lava tubes can be trained or monolithic rock structures that can be used to test anchoring devices (e.g., near Earth objects). Marseilles with its aerospace and maritime/offshore heritage hosts the necessary logistics and expertise that is needed to perform such simulations underwater in a safe manner (training of astronaut-divers in local test pools, research vessels, subsea robots and

  13. Human factors in space station architecture 2. EVA access facility: A comparative analysis of 4 concepts for on-orbit space suit servicing

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M.; Bussolari, Steven

    1987-01-01

    Four concepts for on-orbit spacesuit donning, doffing, servicing, check-out, egress and ingress are presented. These are: the Space Transportation System (STS) Type (shuttle system enlarged), the Transit Airlock (Shuttle Airlock with suit servicing removed from the pump-down chamber), the Suitport (a rear-entry suit mates to a port in the airlock wall), and the Crewlock (a small, individual, conformal airlock). Each of these four concepts is compared through a series of seven steps representing a typical Extra Vehicular Activity (EVA) mission: (1) Predonning suit preparation; (2) Portable Life Support System (PLSS) preparation; (3) Suit Donning and Final Check; (4) Egress/Ingress; (5) Mid-EVA rest period; (6) Post-EVA Securing; (7) Non-Routine Maintenance. The different characteristics of each concept are articulated through this step-by-step approach. Recommendations concerning an approach for further evaluations of airlock geometry, anthropometrics, ergonomics, and functional efficiency are made. The key recommendation is that before any particular airlock can be designed, the full range of spacesuit servicing functions must be considered, including timelines that are most supportive of EVA human productivity.

  14. MOCR activity during Day 4 of STS-3 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Major General J.A. Abrahamson, right, talks to JSC Director Christopher C. Kraft, Jr., (seated left) and Space Shuttle Program Manager Glynn S. Lunney on the back row of consoles in the mission operations control room (MOCR) in the Johnson Space Center mission control center. The reflection behind the men is a window for the MOCR viewing room (28772,28775); Abrahamson, second right, talks to JSC's Aaron Cohen, right, as Kraft (seated left) and Lunney listen in mission control (28773); Flight controller J.E. Connor monitors a television transmission from the Space Shuttle Columbia during day 4 of the STS-3 mission. Conner is seated at his INCO console (28774).

  15. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, Bill; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The EVA hardware used to assemble and maintain the ISS was designed with the assumption that it would be returned to Earth on the Space Shuttle for ground processing, refurbishment, or failure investigation (if necessary). With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (EMU, Airlock Systems, EVA tools, and associated support equipment and consumables) to perform ISS EVAs until 2016 and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, NASA and the One EVA contractor team jointly initiated the EVA 2010 Project. Challenges were addressed to extend the operating life and certification of EVA hardware, secure the capability to launch EVA hardware safely on alternate launch vehicles, and protect EMU hardware operability on orbit for long durations.

  16. Application of shuttle EVA systems to payloads. Volume 1: EVA systems and operational modes description

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Descriptions of the EVA system baselined for the space shuttle program were provided, as well as a compendium of data on available EVA operational modes for payload and orbiter servicing. Operational concepts and techniques to accomplish representative EVA payload tasks are proposed. Some of the subjects discussed include: extravehicular mobility unit, remote manipulator system, airlock, EVA translation aids, restraints, workstations, tools and support equipment.

  17. Application of Shuttle EVA Systems to Payloads. Volume 2: Payload EVA Task Completion Plans

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Candidate payload tasks for EVA application were identified and selected, based on an analysis of four representative space shuttle payloads, and typical EVA scenarios with supporting crew timelines and procedures were developed. The EVA preparations and post EVA operations, as well as the timelines emphasizing concurrent payload support functions, were also summarized.

  18. STS-113 Crew Interviews: Michael Lopez-Alegria, Mission Specialist 1

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-113 Mission Specialist 1 Michael Lopez-Alegria is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Lopez-Alegria outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (P1 truss) and the crew transfer activities (the crew of Expedition Six is replacing the crew of Expedition Five on the International Space Station (ISS)). Lopez-Alegria discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew. He ends with his thoughts on the importance of the ISS as the second anniversary of human occupation of the Space Station approaches.

  19. Reconfiguration of EVA Modular Truss Assemblies using an Anthropomorphic Robot

    NASA Astrophysics Data System (ADS)

    Diftler, Myron A.; Doggett, William R.; Mehling, Joshua S.; King, Bruce D.

    2006-01-01

    NASA relies heavily on astronauts to perform Extra-Vehicular Activities (EVA) as part of space construction and maintenance operations. Astronauts provide an unmatched capability and flexibility. In the future, this capability will be in even greater demand as space platforms become more modular making on-orbit servicing, repair and reconfiguration routine. To assist crew, NASA is developing Robonaut, an anthropomorphic robot with human sized arms and hands that can work with many of the same interfaces designed for the space suited astronaut. Recently Robonaut has been used to investigate techniques for automated assembly, disassembly, and repair of space platforms. The current work focuses on techniques to reconfigure a modular truss system representative of the tasks necessary to convert a space solar power tug to a lunar orbiting solar power station in support of lunar exploration missions. An overview of these activities is given, detailing the assembly sequence and the infrastructure used by Robonaut to perform the reconfiguration operations. Advances in Robonaut's capabilities are described and include: a grip surface augmentation to Robonaut's gloves that provides a close approximation to the latest astronaut gloves, ensuring a secure grasp during truss coupler manipulation, and a shared control strategy that divides the Cartesian control of Robonaut's hands between the teleoperator and the robot's on-board controller to minimize human workload during constrained tasks. To support truss reconfiguration experiments, infrastructure is required to stabilize and register the structure during reconfiguration. Details on the design and operation of the infrastructure, a small fixture, are given.

  20. Underwater EVA training in the WETF with astronaut Robert L. Stewart

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Underwater extravehicular activity (EVA) training in the weightless environment training facility (WETF) with astronaut Robert L. Stewart. Stewart is simulating a planned EVA using the mobile foot restraint device and a one-G version of the Canadian-built remote manipulator system.

  1. European EVA decompression sickness risks

    NASA Astrophysics Data System (ADS)

    Vogt, Lorenz; Wenzel, Jürgen; Skoog, A. I.; Luck, S.; Svensson, Bengt

    For the first manned flight of Hermes there will be a capability of performing EVA. The European EVA Space Suit will be an anthropomorphic system with an internal pressure of 500 hPa of pure oxygen. The pressure reduction from the Hermes cabin pressure of 1013 hPa will induce a risk for Decompression Sickness (DCS) for the EVA crewmember if no adequate protective procedures are implemented. Specific decompression procedures have to be developed. From a critical review of the literature and by using knowledge gained from research conducted in the past in the fields of diving and aerospace medicine safe protective procedures are proposed for the European EVA scenario. An R factor of 1.2 and a tissue half-time ( t1/2) of 360 minutes in a single-tissue model have been identified as appropriate operational values. On the basis of an acceptable risk level of approximately 1%, oxygen prebreathing times are proposed for (a) direct pressure reduction from 1013 hPa to a suit pressure of 500 hPa, and (b) staged decompression using a 700 hPa intermediate stage in the spacecraft cabin. In addition, factors which influence individual susceptibility to DCS are identified. Recommendations are also given in the areas of crew selection and medical monitoring requirements together with therapeutic measures that can be implemented in the Hermes scenario. A method for demonstration of the validity of proposed risks and procedures is proposed.

  2. Effects of EVA spacesuit glove on grasping and pinching tasks

    NASA Astrophysics Data System (ADS)

    Appendino, Silvia; Battezzato, Alessandro; Chen Chen, Fai; Favetto, Alain; Mousavi, Mehdi; Pescarmona, Francesco

    2014-03-01

    The human hand has a wide range of degrees of freedom, allowing a great variety of movements, and is also one of the most sensitive parts of the human body. Due to these characteristics, it is the most important tool for astronauts to perform extravehicular activities (EVA). However, astronauts must wear mandatory EVA equipment to be protected from the harsh conditions in space and this strongly reduces hand performance, in particular as regards dexterity, tactile perception, mobility and fatigue. Several studies have been conducted to determine the influence of the EVA glove on manual capabilities, both in the past and more recently. This study presents experimental data regarding the performance decline occurring in terms of force and fatigue in the execution of grasping and pinching tasks when wearing an EVA glove, in pressurized and unpressurized conditions, compared with barehanded potential. Results show that wearing the unpressurized EVA glove hinders grip and lateral pinch performances, dropping exerted forces to about 50-70%, while it barely affects two- and three-finger pinch performances. On the other hand, wearing the pressurized glove worsens performances in all cases, reducing forces to about 10-30% of barehanded potential. The results are presented and compared with the previous literature.

  3. ASPEN: EO-1 Mission Activity Planning Made Easy

    NASA Technical Reports Server (NTRS)

    Sherwood, Rob; Govindjee, Anita; Yan, David; Rabideau, Gregg; Chien, Steve; Fukunaga, Alex

    1997-01-01

    This paper describes the application of an automated planning and scheduling system to the NASA Earth Orbitin 1 (EO-1) missions. The planning system, ASPEN, is used to autonomously schedule the daily activites of the satellite.

  4. Advances in Distributed Operations and Mission Activity Planning for Mars Surface Exploration

    NASA Technical Reports Server (NTRS)

    Fox, Jason M.; Norris, Jeffrey S.; Powell, Mark W.; Rabe, Kenneth J.; Shams, Khawaja

    2006-01-01

    A centralized mission activity planning system for any long-term mission, such as the Mars Exploration Rover Mission (MER), is completely infeasible due to budget and geographic constraints. A distributed operations system is key to addressing these constraints; therefore, future system and software engineers must focus on the problem of how to provide a secure, reliable, and distributed mission activity planning system. We will explain how Maestro, the next generation mission activity planning system, with its heavy emphasis on portability and distributed operations has been able to meet these design challenges. MER has been an excellent proving ground for Maestro's new approach to distributed operations. The backend that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  5. STS-26 Mission Control Center (MCC) activity at JSC

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Flight controllers in JSC's Mission Control Center (MCC) Bldg 30 flight control room (FCR) listen to a presentation by STS-26 crewmembers on the fourth day of Discovery's, Orbiter Vehicle (OV) 103's, orbital mission. Flight Directors Charles W. Shaw and James M. (Milt) Heflin (in the foreground) and other controllers view a television image of Earth on a screen in the front of the FCR while listening to crewmembers.

  6. STS-26 Mission Control Center (MCC) activity at JSC

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Flight controllers in JSC's Mission Control Center (MCC) Bldg 30 flight control room (FCR) listen to a presentation by STS-26 crewmembers on the fourth day of Discovery's, Orbiter Vehicle (OV) 103's, orbital mission. Instrumentation and Communications Officers (INCOs) Harold Black (left foreground) and John F. Muratore and other controllers view a television (TV) transmission of the crew on a screen in front of the FCR as each member relates some inner feelings while paying tribute to the 51L Challenger crew.

  7. Shoulder Injuries in US Astronauts Related to EVA Suit Design

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; McCulloch, P.; Van Baalen, Mary; Minard, Charles; Watson, Richard; Blatt, T.

    2011-01-01

    Introduction: For every one hour spent performing extravehicular activity (EVA) in space, astronauts in the US space program spend approximately six to ten hours training in the EVA spacesuit at NASA-Johnson Space Center's Neutral Buoyancy Lab (NBL). In 1997, NASA introduced the planar hard upper torso (HUT) EVA spacesuit which subsequently replaced the existing pivoted HUT. An extra joint in the pivoted shoulder allows increased mobility but also increased complexity. Over the next decade a number of astronauts developed shoulder problems requiring surgical intervention, many of whom performed EVA training in the NBL. This study investigated whether changing HUT designs led to shoulder injuries requiring surgical repair. Methods: US astronaut EVA training data and spacesuit design employed were analyzed from the NBL data. Shoulder surgery data was acquired from the medical record database, and causal mechanisms were obtained from personal interviews Analysis of the individual HUT designs was performed as it related to normal shoulder biomechanics. Results: To date, 23 US astronauts have required 25 shoulder surgeries. Approximately 48% (11/23) directly attributed their injury to training in the planar HUT, whereas none attributed their injury to training in the pivoted HUT. The planar HUT design limits shoulder abduction to 90 degrees compared to approximately 120 degrees in the pivoted HUT. The planar HUT also forces the shoulder into a forward flexed position requiring active retraction and extension to increase abduction beyond 90 degrees. Discussion: Multiple factors are associated with mechanisms leading to shoulder injury requiring surgical repair. Limitations to normal shoulder mechanics, suit fit, donning/doffing, body position, pre-existing injury, tool weight and configuration, age, in-suit activity, and HUT design have all been identified as potential sources of injury. Conclusion: Crewmembers with pre-existing or current shoulder injuries or certain

  8. Activities in the MOCR last day after the landing of the STS-5 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Activities in the mission operations control room (MOCR) during the last day after the landing of the STS-5 mission. The former and present director of JSC share congratulations at the successful landing of the STS-5 mission. The two men are former Director Christopher C. Kraft, Jr., left, and Gerald D. Griffin, present director. Most of the men to serve the STS-5 mission as flight directors are in the background (39787); Director Griffin applauds the successful completion of the STS-5 mission near the Flight Director's console in the mission operations control room (MOCR) at JSC's mission control center. Personnel from the spacecraft communicators console, flight operations directorate and other stations in the MOCR are seen celebrating in the background (39788); Spacecraft communicators (CAPCOM) in the MOCR view landing of the Columbia on a large screen. Seated at the CAPCOM console is Astronaut Robert L. Stewart. Astronaut Roy D. Bridges is standing (39789).

  9. Electrostatic Discharge Issues in International Space Station Program EVAs

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    EVA activity in the ISS program encounters several dangerous ESD conditions. The ISS program has been aggressive for many years to find ways to mitigate or to eliminate the associated risks. Investments have included: (1) Major mods to EVA tools, suit connectors & analytical tools (2) Floating Potential Measurement Unit (3) Plasma Contactor Units (4) Certification of new ISS flight attitudes (5) Teraflops of computation (6) Thousands of hours of work by scores of specialists (7) Monthly management attention at the highest program levels. The risks are now mitigated to a level that is orders of magnitude safer than prior operations

  10. Medical, Psychophysiological, and Human Performance Problems During Extended EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP1, the discussion focuses on the following topics: New Developments in the Assessment of the Risk of Decompression Sickness in Null Gravity During Extravehicular Activity; The Dynamic of Physiological Reactions of Cosmonauts Under the Influence of Repeated EVA Workouts, The Russian Experience; Medical Emergencies in Space; The Evolution from 'Physiological Adequacy' to 'Physiological Tuning'; Five Zones of Symmetrical and Asymmetrical Conflicting Temperatures on the Human Body, Physiological Consequences; Human Performance and Subjective Perception in Nonuniform Thermal Conditions; The Hand as a Control System, Implications for Hand-Finger Dexterity During Extended EVA; and Understanding the Skill of Extravehicular Mass Handling.

  11. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Lousma is at the Apollo Telescope Mount EVA work station assembling one of the two 55-foot long sectionalized poles for the twin pole solar shield which was deployed to help cool the Orbital Workshop. Part of the Airlock Module's thermal/meteoroid curtain is in the left foreground.

  12. EVA 2000: A European/Russian space suit concept

    NASA Astrophysics Data System (ADS)

    Skoog, A. I.; Abramov, I. P.

    1995-07-01

    For the European manned space activities an EVA space suit system was being developed in the frame of the Hermes Space Vehicle Programme of the European Space Agency (ESA). The space suit was to serve the needs for all relevant extravehicular activities for the Hermes/Columbus operations planned to begin in 2004. For the present Russian manned space programme the relevant EVAs are performed by the Orlan-DMA semi-rigid space suit. The origin of its development reaches back to the 1970s and has since been adapted to cover the needs for extravehicular activities on Salyut and MIR until today. The latest modification of the space suit, which guaranteed its completely self-contained operation, was made in 1988. However, Russian specialists considered it necessary to start developing an EVA space suit of a new generation, which would have improved performance and would cover the needs by the turn of the century and into the beginning of the next century. Potentially these two suit developments could have a lot in common based on similarities in present concepts. As future manned space activities become more and more an international effort, a safe and reliable interoperability of the different space suit systems is required. Based on the results of the Munich Minister Conference in 1991, the European Space Agency and the Russian Space Agency agreed to initiate a requirements analysis and conceptual design study to determine the feasibility of a joint space suit development, EVA 2000. The design philosophy for the EVA 2000 study was oriented on a space suit system design of: —space suit commonality and interoperability —increased crew productivity and safety —increase in useful life and reduced maintainability —reduced development and production cost. The EVA 2000 feasibility study was performed in 1992, and with the positive conclusions for EVA 2000, this approach became the new joint European/Russian EVA Suit 2000 Development Programme. This paper gives an

  13. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  14. STS-67 mission highlights resource tape

    NASA Astrophysics Data System (ADS)

    Welch, Chuck

    1995-05-01

    The Space Shuttle Mission, STS-67, is highlighted in this video. Flight crew (Stephen S. Oswald (Commander), William G. Gregory (Pilot), Tamara E. Jernigan, Wendy B. Lawrence, John M. Grunfeld (Mission Specialists), Samuel T. Durrance, and Ronald A. Parise (Payload Specialists)) prelaunch and launch activities, EVA activities with payload deployment and retrieval (ASTRO-2 and WUPPE (Wisconsin Ultraviolet Photo Polarimeter Experiment)), spaceborne experiments (astronomical observation and data collection, protein crystal growth, and human physiological processes), and pre-reentry activities are shown. There are astronomical telescopic observation from the two telescopes in the payload, the Hopkins Ultraviolet Telescope and the Ultraviolet Imaging Telescope, of Io and of globular clusters, and their emission spectra is collected via a spectrometer. Earth view film and photography is shown, which includes lightning on terrestrial surfaces, cyclone activity, and cloud cover.

  15. NASA Extreme Environment Mission Operations: Science Operations Development for Human Exploration

    NASA Technical Reports Server (NTRS)

    Bell, Mary S.

    2014-01-01

    The purpose of NASA Extreme Environment Mission Operations (NEEMO) mission 16 in 2012 was to evaluate and compare the performance of a defined series of representative near-Earth asteroid (NEA) extravehicular activity (EVA) tasks under different conditions and combinations of work systems, constraints, and assumptions considered for future human NEA exploration missions. NEEMO 16 followed NASA's 2011 Desert Research and Technology Studies (D-RATS), the primary focus of which was understanding the implications of communication latency, crew size, and work system combinations with respect to scientific data quality, data management, crew workload, and crew/mission control interactions. The 1-g environment precluded meaningful evaluation of NEA EVA translation, worksite stabilization, sampling, or instrument deployment techniques. Thus, NEEMO missions were designed to provide an opportunity to perform a preliminary evaluation of these important factors for each of the conditions being considered. NEEMO 15 also took place in 2011 and provided a first look at many of the factors, but the mission was cut short due to a hurricane threat before all objectives were completed. ARES Directorate (KX) personnel consulted with JSC engineers to ensure that high-fidelity planetary science protocols were incorporated into NEEMO mission architectures. ARES has been collaborating with NEEMO mission planners since NEEMO 9 in 2006, successively building upon previous developments to refine science operations concepts within engineering constraints; it is expected to continue the collaboration as NASA's human exploration mission plans evolve.

  16. FY15 Gravitational-Wave Mission Activities Project

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2014-01-01

    The Gravitational-Wave (GW) team at Goddard provides leadership to both the US and international research communities through science and conceptual design competencies. To sustain the US effort to either participate in the GW mission that ESA selected for the L3 opportunity or to initiate a NASA-led mission, the Goddard team will engage in the advancement of the science and the conceptual design of a future GW mission. We propose two tasks: (1) deliver new theoretical tools to help the external research community understand how GW observations can contribute to their science and (2) explore new implementations for laser metrology systems based on techniques from time-domain reflectometry and laser communications.

  17. An Experimental Investigation of Dextrous Robots Using EVA Tools and Interfaces

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert; Culbert, Christopher; Rehnmark, Frederik

    2001-01-01

    This investigation of robot capabilities with extravehicular activity (EVA) equipment looks at how improvements in dexterity are enabling robots to perform tasks once thought to be beyond machines. The approach is qualitative, using the Robonaut system at the Johnson Space Center (JSC), performing task trials that offer a quick look at this system's high degree of dexterity and the demands of EVA. Specific EVA tools attempted include tether hooks, power torque tools, and rock scoops, as well as conventional tools like scissors, wire strippers, forceps, and wrenches. More complex EVA equipment was also studied, with more complete tasks that mix tools, EVA hand rails, tethers, tools boxes, PIP pins, and EVA electrical connectors. These task trials have been ongoing over an 18 month period, as the Robonaut system evolved to its current 43 degree of freedom (DOF) configuration, soon to expand to over 50. In each case, the number of teleoperators is reported, with rough numbers of attempts and their experience level, with a subjective difficulty rating assigned to each piece of EVA equipment and function. JSC' s Robonaut system was successful with all attempted EVA hardware, suggesting new options for human and robot teams working together in space.

  18. STS-26 Mission Control Center (MCC) activity at JSC

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A wide angle view shows flight controllers in JSC's Mission Control Center (MCC) Bldg 30 flight control room (FCR) as they listen to a presentation by STS-26 crewmembers on the fourth day of Discovery's, Orbiter Vehicle (OV) 103's, orbital mission. Flight Director James M. (Milt) Heflin (standing at center) and astronaut and spacecraft communicator (CAPCOM) G. David Low (standing at right) briefly look away from a television image of the crew on a screen in the front of the FCR. Heflin, Low, and other flight controllers listen as each member relates some inner feelings while paying tribute to the 51L Challenger crew.

  19. MOCR activity during Day 1 of STS-3 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    JSC Director Christopher C. Kraft, Jr., and Eugene F. Kranz Deputy Director of Flight Operations, look at a flight plan at the flight operations director (FOD) console in the mission operations control room (MOCR) of JSC's mission control center. Thomas L. Moser of the Structures and Mechanics Division looks on at left (28713); Flight director Tommy W. Holloway looks at a monitor at a console in the MOCR. Space Shuttle orbiter Columbia's spotter symbol can be seen in the background, indicating her location in space over the northern part of Africa (28714).

  20. Astronaut Richard Gordon practices attaching camera to film EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., prime crew pilot for the Gemini 11 space flight, practices attaching to a Gemini boilerplate a camera which will film his extravehicular activity (EVA) outside the spacecraft. The training exercise is being conducted in the Astronaut Training Building, Kennedy Space Center, Florida.

  1. Astronaut Alan Bean with subpackages of the ALSEP during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, traverses with the two subpackages of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA). Bean deployed the ALSEP components 300 feet from the Lunar Module (LM). The LM and deployed erectable S-band antenna can be seen in the background.

  2. Astronaut Harrison Schmitt standing next to boulder during third EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed standing next to a huge, split boulder during the third Apollo 17 extravehicular activity (EVA-3) at the Taurus-Littrow landing site on the Moon. Schmitt is the Apollo 17 lunar module pilot. This picture was taken by Astronaut Eugene A. Cernan, commander.

  3. Television transmission of Astronaut Harrison Schmitt falling during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt loses his balance and heads for a fall during the second Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site, in this black and white reproduction taken from a color television transmission made by the RCA color TV camera mounted on the Lunar Roving Vehicle. Schmitt is the lunar module pilot.

  4. Astronaut James Irwin uses scoop during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, uses a scoop in making a trench in the lunar soil during Apollo 15 extravehicular activity (EVA). Mount Hadley rises approximately 14,765 feet (about 4,500 meters) above the plain in the background.

  5. Interfacing with an EVA Suit

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2011-01-01

    A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.

  6. Third Mission Activities: University Managers' Perceptions on Existing Barriers

    ERIC Educational Resources Information Center

    Koryakina, Tatyana; Sarrico, Cláudia S.; Teixeira, Pedro N.

    2015-01-01

    In the context of increased international competition and financial austerity, an economic development mission has become an important strategic and policy issue for European higher education. This paper aims to contribute to knowledge regarding universities' engagement with the external environment and its impact on internal governance and…

  7. The EVA space suit development in Europe

    NASA Astrophysics Data System (ADS)

    Skoog, A. Ingemar

    The progress of the European EVA space suit predevelopment activities has resulted in an improved technical reference concept, which will form the basis for a start of the Phase C/D development work in 1992. Technology development work over the last 2 years has resulted in a considerable amount of test data and a better understanding of the characteristics and behaviour of individual parts of the space suit system, in particular in the areas of suits' mobility and life support functions. This information has enabled a consolidation of certain design features on the one hand, but also led to the challenging of some of the design solutions on the other hand. While working towards an improved situation with respect to the main design drivers mass and cost, the technical concept has been improved with respect to functional safety and ease of handling, taking the evolving Hermes spaceplane requirements into consideration. Necessary hardware and functional redundancies have been implemented taking the operational scenario with Hermes and Columbus servicing into consideration. This paper presents the latest design status of the European EVA space suit concept, with particular emphasis on crew safety, comfort and productivity, in the frame of the predevelopment work for the European Space Agency.

  8. Crew Systems for Asteroid Exploration: Concepts for Lightweight & Low Volume EVA Systems

    NASA Technical Reports Server (NTRS)

    Mueller, Rob; Calle, Carlos; Mantovani, James

    2013-01-01

    This RFI response is targeting Area 5. Crew Systems for Asteroid Exploration: concepts for lightweight and low volume robotic and extra-vehicular activity (EVA) systems, such as space suits, tools, translation aids, stowage containers, and other equipment. The NASA KSC Surface Systems Office, Granular Mechanics and Regolith Operations (GMRO) Lab and the Electrostatics & Surface Physics Lab (ESPL) are dedicated to developing technologies for operating in regolith environments on target body surfaces. We have identified two technologies in our current portfolio that are highly relevant and useful for crews that will visit a re-directed asteroid in Cis-Lunar Space. Both technologies are at a high TRL of 5/6 and could be rapidly implemented in time for an ARM mission in this decade.

  9. Astronaut John Young stands at ALSEP deployment site during first EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, stands at the Apollo Lunar Surface Experiments Package (ALSEP) deployment site during the first Apollo 16 extravehicular activity (EVA-1) at the Descartes landing site. The components of the ALSEP are in the background. The lunar surface drill is just behind and to the right of Young. The drill's rack and bore stems are to the left. The three sensor Lunar Surface Magnetometer is beyond the rack. The dark object in the right background is the Radioisotope Thermoelectric Generator (RTG). Between the RTG and the drill is the Heat Flow Experiment. A part of the Central Station is at the right center edge of the picture. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot.

  10. Measuring Staff Perceptions of University Identity and Activities: The Mission and Values Inventory

    ERIC Educational Resources Information Center

    Ferrari, Joseph R.; Velcoff, Jessica

    2006-01-01

    Higher education institutions need to ascertain whether their stakeholders understand the school's mission, vision, and values. In the present study, the psychometric properties of a mission identity and activity measure were investigated with two staff samples. Using a principal component factor analysis (varimax rotation), respondents in Sample…

  11. View of activity in Mission Control Center during Apollo 15 lunar landing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An overall, wide-angle lens view of activity in the Mission Operations Control Room in the Mission Control Center during the landing of the Apollo 15 Lunar Module (LM) on the Moon. The LM 'Falcon' touched down on the lunar surface at ground elapsed time of 104 hours 42 minutes 29 seconds.

  12. NASA’s Soil Moisture Active Passive (SMAP) mission and opportunities for applications users

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission is one of four first-tier missions recommended by the National Research Council's Committee on Earth Science and Applications from Space. Set to launch in 2014, SMAP soil moisture and freeze/thaw measurements will have an accuracy, resolution, and glob...

  13. STS-57 astronauts Low and Wisoff, in EMUs, perform DTO 1210 EVA in OV-105's PLB

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Backdropped against the blue and white Earth, Mission Specialist (MS) and Payload Commander (PLC) G. David Low and MS3 Peter J.K. Wisoff, wearing extravehicular mobility units (EMUs), simulate handling of large components in space. Above Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB), Low, anchored by a portable foot restraint (PFR) (manipulator foot restraint (MFR)) on the remote manipulator system (RMS) end effector, maneuvers Wisoff, representing the mass of a large space component. This particular task was rehearsed with eyes toward the servicing of the Hubble Space Telescope (HST) or the assembly and maintenance of Space Station. This extravehicular activity (EVA), Detailed Test Objective (DTO) 1210, was conducted both with and without intentional disturbances from OV-105's thrusters and movements of the RMS. This phase of DTO 1210 will enable helpful evaluation for the HST wide field planetary camera (WFPC) during the STS-61 HST-servicing mission. The SPACEHAB-01 (Com

  14. Outline of the Active Magnetospheric Particle Tracer Explorers (AMPTE) mission

    NASA Technical Reports Server (NTRS)

    Bryant, D. A.; Krimigis, S. M.; Haerendel, G.

    1985-01-01

    This paper is intended as an introduction to a series of papers describing the three satellites of the AMPTE mission and their instrumentation. The aims and scientific context of the program are given together with a comparison of the general characteristics of the three spacecraft and their orbits. There is a brief resume of the studies performed so far, and a statement of future plans, together with a calendar of completed and planned experiments and measurements.

  15. Global Precipitation Measurement (GPM) Mission Applications: Activities, Challenges, and Vision

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Hou, Arthur

    2012-01-01

    Global Precipitation Measurement (GPM) is an international satellite mission to provide nextgeneration observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Building upon the successful legacy of the Tropical Rainfall Measuring Mission (TRMM), GPM's next-generation global precipitation data will lead to scientific advances and societal benefits within a range of hydrologic fields including natural hazards, ecology, public health and water resources. This talk will highlight some examples from TRMM's IS-year history within these applications areas as well as discuss some existing challenges and present a look forward for GPM's contribution to applications in hydrology.

  16. Architectural development of an advanced EVA Electronic System

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph

    1992-01-01

    An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.

  17. Advanced EVA Suit Camera System Development Project

    NASA Technical Reports Server (NTRS)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  18. Evaluation of a Hybrid Elastic EVA Glove

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Akin, David

    2002-01-01

    The hybrid elastic design is based upon an American Society for Engineering Education (ASEE) glove designed by at the Space Systems Laboratory (SSL) in 1985. This design uses an elastic restraint layer instead of convolute joints to achieve greater dexterity and mobility during EVA (extravehicular activity). Two pilot studies and a main study were conducted using the hybrid elastic glove and 4000-series EMU (extravehicular activity unit) glove. Data on dexterity performance, joint range of motion, grip strength and perceived exertion was assessed for the EMU and hybrid elastic gloves with correlations to a barehanded condition. During this study, 30 test subjects performed multiple test sessions using a hybrid elastic glove and a 4000- series shuttle glove in a 4.3psid pressure environment. Test results to date indicate that the hybrid elastic glove performance is approximately similar to the performance of the 4000-series glove.

  19. Next Generation Life Support: High Performance EVA Glove

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah K.

    2015-01-01

    The objectives of the High Performance EVA Glove task are to develop advanced EVA gloves for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. New technologies and manufacturing techniques will be incorporated into the new gloves to address finger and hand mobility, injury reduction and durability in nonpristine environments. Three prototypes will be developed, each focusing on different technological advances. A robotic assist glove will integrate a powered grasping system into the current EVA glove design to reduce astronaut hand fatigue and hand injuries. A mechanical counter pressure (MCP) glove will be developed to further explore the potential of MCP technology and assess its capability for countering the effects of vacuum or low pressure environments on the body by using compression fabrics or materials to apply the necessary pressure. A gas pressurized glove, incorporating new technologies, will be the most flight-like of the three prototypes. Advancements include the development and integration of aerogel insulation, damage sensing components, dust-repellant coatings, and dust tolerant bearings.

  20. Scientific coordination of activities for university participation in mission to planet Earth

    NASA Technical Reports Server (NTRS)

    Kalb, Michael W.

    1994-01-01

    This report describes Universities Space Research Association (USRA) activities in support of the University Participation in Mission to Planet Earth. Specifically it addresses the following areas: personnel assigned to the effort, travel, consultant participants, technical progress, and contract spending.

  1. STS-109 Mission Highlights Resource Tape. Part 2 of 4; Flight Days 4 & 5

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video, Part 2 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 4 and 5. The activities from other flights days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139476), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). The primary activities during these days were EVAs (extravehicular activities) to replace two solar arrays on the HST (Hubble Space Telescope). Footage from flight day 4 records an EVA by Grunsfeld and Linnehan, including their exit from Columbia's payload bay airlock, their stowing of the old HST starboard rigid array on the rigid array carrier in Columbia's payload bay, their attachment of the new array on HST, the installation of a new starboard diode box, and the unfolding of the new array. The pistol grip space tool used to fasten the old array in its new location is shown in use. The video also includes several shots of the HST with Earth in the background. On flight day 5 Newman and Massimino conduct an EVA to change the port side array and diode box on HST. This EVA is very similar to the one on flight day 4, and is covered similarly in the video. A hand operated ratchet is shown in use. In addition to a repeat of the previous tasks, the astronauts change HST's reaction wheel assembly, and because they are ahead of schedule, install installation and lubricate an instrument door on the telescope. The Earth views include a view of Egypt and Israel, with the Nile River, Red Sea, and Mediterranean Sea.

  2. Distributed Operations for the Mars Exploration Rover Mission with the Science Activity Planner

    NASA Technical Reports Server (NTRS)

    Wick, Justin V.; Callas, John L.; Norris, Jeffrey S.; Powell, Mark W.; Vona, Marsette A., III

    2005-01-01

    Due to the length of the Mars Exploration Rover Mission, most scientists were unable to stay at the central operations facility at the Jet Propulsion Laboratory. This created a need for distributed operations software, in the form of the Distributed Science Activity Planner. The distributed architecture saved a considerable amount of money and increased the number of individuals who could be actively involved in the mission, contributing to its success.

  3. Boudreaux the Robot (a.k.a. EVA Robotic Assistant)

    NASA Technical Reports Server (NTRS)

    Shillcutt, Kimberly; Burridge, Robert; Graham, Jeffrey

    2002-01-01

    The EVA Robotic Assistant is a prototype for an autonomous rover designed to assist human astronauts. The primary focus of the research is to explore the interaction between humans and robots, particularly in extreme environments, and to develop a software infrastructure that could be applied to any type of assistant robot, whether for planetary exploration or orbital missions. This paper describes the background and current status of the project, the types of scenarios addressed in field demonstrations, the hardware and software that comprise the current prototype, and future research plans.

  4. Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

  5. Polarization Processes of Nanocomposite Silicate-EVA and PP Materials

    NASA Astrophysics Data System (ADS)

    Montanari, Gian Carlo; Palmieri, Fabrizio; Testa, Luigi; Motori, Antonio; Saccani, Andrea; Patuelli, Francesca

    Recent works indicate that polypropylene (PP) and ethylene-vinylacetate (EVA) filled by nanosilicates may present low content of space charge and high electric strength. Investigations are being made to explain nanocomposite behaviour and characterize their electrical, thermal and mechanical properties. In this paper, the results of broad-band dielectric spectroscopy performed on EVA and PP filled by layered nanosized silicates are reported. Isochronal and isothermal curves of complex permittivity, as well as activation energies of the relaxation processes, are presented and discussed. Nanostructuration gives rise to substantial changes in the polarisation and dielectric loss behaviour. While the relaxation process of EVA, associated with glass transition of the material amorphous phase, results unchanged from base to nanostructured material, nanocomposites EVA and PP have shown the rise of a new process at higher temperatures respect to the typical host material processes, as well as a different distribution of relaxation processes. Changes in space charge accumulation in relation to the effectiveness of the purification process performed upon nanostructured materials are also reported: while the dispersion of the clean clays leads to a reduction of the space charge, especially at high fields, an unclean filler gives rise to significant homo-charge accumulation and interfacial polarisation phenomena.

  6. Determining Desirable Cursor Control Device Characteristics for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Holden, Kritina L.

    2007-01-01

    A test battery was developed for cursor control device evaluation: four tasks were taken from ISO 9241-9, and three from previous studies conducted at NASA. The tasks focused on basic movements such as pointing, clicking, and dragging. Four cursor control devices were evaluated with and without Extravehicular Activity (EVA) gloves to identify desirable cursor control device characteristics for NASA missions: 1) the Kensington Expert Mouse, 2) the Hulapoint mouse, 3) the Logitech Marble Mouse, and 4) the Honeywell trackball. Results showed that: 1) the test battery is an efficient tool for differentiating among input devices, 2) gloved operations were about 1 second slower and had at least 15% more errors; 3) devices used with gloves have to be larger, and should allow good hand positioning to counteract the lack of tactile feedback, 4) none of the devices, as designed, were ideal for operation with EVA gloves.

  7. STS-88 Mission Specialist Ross receives M-113 training during TCDT activities

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialist Jerry L. Ross prepares to operate an M- 113, an armored personnel carrier, as part of emergency egress training under the watchful eye of instructor George Hoggard (left) during Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also provides the crew with simulated countdown exercises and opportunities to inspect their mission payloads in the orbiter's payload bay. Mission STS-88 is targeted for launch on Dec. 3, 1998. It is the first U.S. flight for the assembly of the International Space Station and will carry the Unity connecting module. Others in the STS-88 crew are Mission Commander Robert D. Cabana; Pilot Frederick W. 'Rick' Sturckow; and Mission Specialists Nancy J. Currie, James H. Newman, and Sergei Konstantinovich Krikalev, a Russian cosmonaut.

  8. Monte Carlo Analysis of the Commissioning Phase Maneuvers of the Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Williams, Jessica L.; Bhat, Ramachandra S.; You, Tung-Han

    2012-01-01

    The Soil Moisture Active Passive (SMAP) mission will perform soil moisture content and freeze/thaw state observations from a low-Earth orbit. The observatory is scheduled to launch in October 2014 and will perform observations from a near-polar, frozen, and sun-synchronous Science Orbit for a 3-year data collection mission. At launch, the observatory is delivered to an Injection Orbit that is biased below the Science Orbit; the spacecraft will maneuver to the Science Orbit during the mission Commissioning Phase. The delta V needed to maneuver from the Injection Orbit to the Science Orbit is computed statistically via a Monte Carlo simulation; the 99th percentile delta V (delta V99) is carried as a line item in the mission delta V budget. This paper details the simulation and analysis performed to compute this figure and the delta V99 computed per current mission parameters.

  9. Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system

    NASA Technical Reports Server (NTRS)

    Mclauchlan, Robert A.

    1987-01-01

    Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.

  10. Advanced extravehicular activity systems requirements definition study

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A study to define the requirements for advanced extravehicular activities (AEVA) was conducted. The purpose of the study was to develop an understanding of the EVA technology requirements and to map a pathway from existing or developing technologies to an AEVA system capable of supporting long-duration missions on the lunar surface. The parameters of an AEVA system which must sustain the crewmembers and permit productive work for long periods in the lunar environment were examined. A design reference mission (DRM) was formulated and used as a tool to develop and analyze the EVA systems technology aspects. Many operational and infrastructure design issues which have a significant influence on the EVA system are identified.

  11. Probabilistic Assessment of Cancer Risk for Astronauts on Lunar Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2009-01-01

    During future lunar missions, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon transit. NASA s new lunar program anticipates that up to 15% of crew time may be on EVA, with minimal radiation shielding. For the operational challenge to respond to events of unknown size and duration, a probabilistic risk assessment approach is essential for mission planning and design. Using the historical database of proton measurements during the past 5 solar cycles, a typical hazard function for SPE occurrence was defined using a non-homogeneous Poisson model as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions ranging from the 5th to 95th percentile of particle fluences for a specified mission period were simulated. Organ doses corresponding to particle fluences at the median and at the 95th percentile for a specified mission period were assessed using NASA s baryon transport model, BRYNTRN. The cancer fatality risk for astronauts as functions of age, gender, and solar cycle activity were then analyzed. The probability of exceeding the NASA 30- day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated. Future work will involve using this probabilistic risk assessment approach to SPE forecasting, combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.

  12. Probabilistic Assessment of Radiation Risk for Astronauts in Space Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; DeAngelis, Giovanni; Cucinotta, Francis A.

    2009-01-01

    Accurate predictions of the health risks to astronauts from space radiation exposure are necessary for enabling future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons, (less than 100 MeV); and galactic cosmic rays (GCR), which include protons and heavy ions of higher energies. While the expected frequency of SPEs is strongly influenced by the solar activity cycle, SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, phi. The risk of radiation exposure from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection, including determining the shielding and operational requirements for astronauts and hardware. To support the probabilistic risk assessment for EVAs, which would be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of time within a solar cycle using a nonhomogeneous Poisson model to fit the historical database of measurements of protons with energy > 30 MeV, (phi)30. The resultant organ doses and dose equivalents, as well as effective whole body doses for acute and cancer risk estimations are analyzed for a conceptual habitat module and a lunar rover during defined space mission periods. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning to manage radiation risks for space exploration.

  13. Dust Tolerant EVA-Compatible Connectors

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Townsend, Ivan I., III

    2010-01-01

    The objectives of this project are to develop connectors (quick disconnects and umbilical systems) that can be repetitively and reliably mated and de-mated during Lunar surface extra-vehicular activities. These standardized interfaces will be required for structural integrity and commodities transfer between linked surface elements. QD's fittings are needed for EVA spacesuit Primary Life Support Systems as well as liquid cooled garment circulation and suit heat rejection. Umbilical electro-mechanical systems (connectors) are needed between discrete surface systems for transfer of air, power, fluid (water), and data must be capable of being operated by extra vehicular astronaut crew members and/or robotic assistants. There exists an urgent need to prevent electro-statically charged dust and debris from clogging and degrading the interface seals and causing leakage and spills of hazardous commodities, contaminating the flowstream, and degrading the mechanisms needed for umbilical connection. Other challenges include modularity, standardization, autonomous operation, and lifetime sealing issues.

  14. Exploration Architecture Options - ECLSS, EVA, TCS Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don; Lawrence, Carl

    2010-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. Lunar architectures have been identified and addressed in the Lunar Surface Systems team to establish options for how to get to and then inhabit and explore the moon. The Augustine Commission evaluated human space flight for the Obama administration and identified many options for how to conduct human spaceflight in the future. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), ExtraVehicular Activity (EVA) and Thermal Control System (TCS) Systems. The advantages and disadvantages of each architecture and options are presented.

  15. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murray, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered a hazardous duty for NASA astronauts. This places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies. The purpose of this paper is to document the comprehensive EVA training data set that was compiled from multiple sources by the Lifetime Surveillance of Astronaut Health (LSAH) epidemiologists to investigate musculoskeletal injuries. The EVA training dataset does not contain any medical data, rather it only documents when EVA training was performed, by whom and other details about the session. The first activities practicing EVA maneuvers in water were performed at the Neutral Buoyancy Simulator (NBS) at the Marshall Spaceflight Center in Huntsville, Alabama. This facility opened in 1967 and was used for EVA training until the early Space Shuttle program days. Although several photographs show astronauts performing EVA training in the NBS, records detailing who performed the training and the frequency of training are unavailable. Paper training records were stored within the NBS after it was designated as a National Historic Landmark in 1985 and closed in 1997, but significant resources would be needed to identify and secure these records, and at this time LSAH has not pursued acquisition of these early training records. Training in the NBS decreased when the Johnson Space Center in Houston, Texas, opened the Weightless Environment Training Facility (WETF) in 1980. Early training records from the WETF consist of 11 hand-written dive logbooks compiled by individual workers that were digitized at the request of LSAH. The WETF was integral in the training for Space Shuttle EVAs until its closure in 1998. The Neutral Buoyancy Laboratory (NBL) at the Sonny Carter Training Facility near JSC

  16. Planetary protection and humans missions to Mars: summary results from two workshops sponsored by NASA and NASA/ESA

    NASA Astrophysics Data System (ADS)

    Race, M. S.; Kminek, G.; Rummel, J. D.; Nasa; Nasa/Esa Workshop Participants

    Planetary Protection PP requirements will strongly influence mission and spacecraft designs for future human missions to Mars particularly those related to the operation of advanced life support systems ALS extravehicular activities EVA laboratory and in situ sampling operations and systems for environmental monitoring and control EMC In order to initiate communication understanding and working relations between the ALS EVA EMC and PP communities in both NASA and ESA two separate workshops were held to focus on mission-specific PP issues during future human missions to Mars The NASA Life Support and Habitation and Planetary Protection Workshop was held in Houston TX Center for Advanced Space Studies April 2005 and The Mars PP and Human Systems Research and Technology Joint NASA ESA Workshop was held at ESA ESTEC Noordwijk Netherlands May 2005 This poster presentation summarizes the findings of both workshops and their associated recommendations which are summarized as follows The NASA workshop developed a tentative conceptual approach consistent with current PP requirements to provide preliminary guidance in the assessment of EVA ALS EMC and other aspects of human missions The workshop report identified the need for development of a comprehensive classification and zoning system for Mars to minimize contamination and guide operations particularly in relation to COSPAR Special Region and protection of science and environmental conditions Critical research and technology

  17. Soil Moisture Active Passive Mission: Fault Management Design Analyses

    NASA Technical Reports Server (NTRS)

    Meakin, Peter; Weitl, Raquel

    2013-01-01

    As a general trend, the complexities of modern spacecraft are increasing to include more ambitious mission goals with tighter timing requirements and on-board autonomy. As a byproduct, the protective features that monitor the performance of these systems have also increased in scope and complexity. Given cost and schedule pressures, there is an increasing emphasis on understanding the behavior of the system at design time. Formal test-driven verification and validation (V&V) is rarely able to test the significant combinatorics of states, and often finds problems late in the development cycle forcing design changes that can be costly. This paper describes the approach the SMAP Fault Protection team has taken to address some of the above-mentioned issues.

  18. Augmented robotic device for EVA hand manoeuvres

    NASA Astrophysics Data System (ADS)

    Matheson, Eloise; Brooker, Graham

    2012-12-01

    During extravehicular activities (EVAs), pressurised space suits can lead to difficulties in performing hand manoeuvres and fatigue. This is often the cause of EVAs being terminated early, or taking longer to complete. Assistive robotic gloves can be used to augment the natural motion of a human hand, meaning work can be carried out more efficiently with less stress to the astronaut. Lightweight and low profile solutions must be found in order for the assistive robotic glove to be easily integrated with a space suit pressure garment. Pneumatic muscle actuators combined with force sensors are one such solution. These actuators are extremely light, yet can output high forces using pressurised gases as the actuation drive. Their movement is omnidirectional, so when combined with a flexible exoskeleton that itself provides a degree of freedom of movement, individual fingers can be controlled during flexion and extension. This setup allows actuators and other hardware to be stored remotely on the user's body, resulting in the least possible mass being supported by the hand. Two prototype gloves have been developed at the University of Sydney; prototype I using a fibreglass exoskeleton to provide flexion force, and prototype II using torsion springs to achieve the same result. The gloves have been designed to increase the ease of human movements, rather than to add unnatural ability to the hand. A state space control algorithm has been developed to ensure that human initiated movements are recognised, and calibration methods have been implemented to accommodate the different characteristics of each wearer's hands. For this calibration technique, it was necessary to take into account the natural tremors of the human hand which may have otherwise initiated unexpected control signals. Prototype I was able to actuate the user's hand in 1 degree of freedom (DOF) from full flexion to partial extension, and prototype II actuated a user's finger in 2 DOF with forces achieved

  19. Planetary Protection Considerations in EVA System Design

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.; Kosmo, Joseph J.

    2011-01-01

    very little expression of these anomalies. hardware from the human-occupied area may limit (although not likely eliminate) external materials in the human habitat. Definition of design-to requirements is critical to understanding technical feasibility and costs. The definition of Planetary Protection needs in relation to EVA mission and system element development cost impacts should be considered and interpreted in terms of Plausible Protection criteria. Since EVA operations will have the most direct physical interaction with the Martian surface, PP needs should be considered in the terms of mitigating hardware and operations impacts and costs.

  20. CLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation

    PubMed Central

    Ramena, Grace; Yin, Yufang; Yu, Yang; Walia, Vijay; Elble, Randolph C.

    2016-01-01

    CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1) and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC) caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS). The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines. PMID:26930581

  1. The First Results of the Russian EVA Space Suits Operation in the International Space Station

    NASA Astrophysics Data System (ADS)

    Abramov, I. P.; Albats, E. A.; Glazov, G. M.

    The year of 2001 saw the first EVAs of the International Space Station (ISS) crews using the Russian "Orlan-M" space suits. This marked the beginning of a new stage of activities on putting into operation of the next ISS modules. The paper reviews the results of the Russian space suits' operation in the course of extravehicular activity (EVA) by the crews of the first ISS expeditions. The paper also reviews differences in operation of the "Orlan-M" in the ISS and "Mir" orbiting station resulting from space suit (SS) systems design, peculiarities of the station airlocks and EVA performance methods. The paper presents data on EVA results and comments on space suit systems' operation. The paper gives diagrams for main parameters of the space suits' life support systems (LSS) and comments about them. In conclusion the paper reviews the "Orlan-M" improvements being performed and prospects of "Orlan-M" usage in the ISS.

  2. Activities conducted during the definition phase of the outer planets missions program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The activities are described of the Meteoroid Science Team for the definition phase of the outer planet missions. Studies reported include: (1) combined zodiacal experiment for the Grand Tour Missions of the outer planets, (2) optical transmission of a honeycomb panel and its effectiveness as a particle impact surface, (3) element identification data from the combined zodiacal OPGT experiment and (4) development of lightweight thermally stable mirrors.

  3. View of activity in Mission Control Center during Lunar Module liftoff

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A partial view of activity in the Mission Operations Control Room in the Mission Control Center during the liftoff of the Apollo 15 Lunar Module 'Falcon' ascent stage from the lunar surface. An RCA color television camera mounted on the Lunar Roving Vehicle made it possible for people on Earth to watch the Lunar Module (LM) launch from the Moon. Seated in the right foreground is Astronaut Edgar D. Mitchell, a spacecraft communicator. Note liftoff on the television monitor in the center background.

  4. Mission Impossible? Physical Activity Programming for Individuals Experiencing Homelessness

    ERIC Educational Resources Information Center

    Gregg, Melanie J.; Bedard, Andrea

    2016-01-01

    Purpose: A pilot study was conducted to describe the physical activity experiences and perceived benefits of and barriers to physical activity participation for patrons of a homeless shelter. The resulting pilot data may be used to inform the creation of and support for physical activity and sport programs for those experiencing homelessness.…

  5. A Cabin Air Separator for EVA Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  6. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie S.; Alpert, Brian K.; Montalvo, Edwin James; Welsh, Lawrence Daren; Wray, Scott; Mavridis, Costa

    2016-01-01

    The EVA Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, easy to search repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision controlled system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, as well as hundreds of others that support EVA. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  7. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie S.; Alpert, Brian K.; Montalvo, Edwin James; Welsh, Lawrence Daren; Wray, Scott; Mavridis, Costa

    2016-01-01

    The EVA Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, easy to search repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision controlled system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, as well as hundreds of others that support the EVA. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  8. STS-108 Mission Highlights Resource Tape. Part 2 of 3

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video is a continuation of 'STS-108 Mission Highlights Resource Tape: Part 1 of 3' (Internal ID 2002049331). Flight day four footage continues with a video tour of the International Space Station (ISS). During flight day five, an exterior view of the Multipurpose Logistics Module (MPLM) is seen, followed by the crew unloading the supplies and equipment from the MPLM. Commander Dominic Gorie and Mission Specialist Linda Godwin are seen making preparations for the Extravehicular Activity (EVA) scheduled for the following day. Footage of an exterior view of the ISS is also shown. Flight day six footage includes Godwin and Mission Specialist Daniel Tani suiting up for their EVA and the installation of thermal blankets around the solar array wings of the ISS. Expedition 3 Commander Frank Culbertson is seen working in the ISS laboratory during flight day seven. Views are shown of Saudi Arabia and the Red Sea, the western coast of Australia, Cuba and Florida, and Switzerland and Northern Italy. During flight day eight, the crew is seen stowing objects in the MPLM for return to earth. The video concludes with footage of the treadmill used by the astronauts for physical exercise. Flight days nine through twelve are included in 'STS-108 Mission Highlights Resource Tape: Part 3 of 3' (Internal ID 2002049329).

  9. The Soil Moisture Active/Passive (SMAP) Mission Radar: A Novel Conically Scanning SAR

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Chan, Samuel; Veilleux, Louise; Wheeler, Kevin

    2009-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC "decadal survey" to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive chan-nels, an instrument architecture that uses a large rotating reflector is employed. The active radar will further utilize SAR processing in order to obtain the sub-footprint resolution necessary for the geophysical retrievals. The SMAP radar has a unique geometry where the antenna footprint is continuously rotated about nadir in a conical fashion, as opposed to the more common side-looking SAR design. In additional to the unconventional scan geometry, the SMAP radar must address the effects of Faraday rotation and radio frequency interference (RFI), both consequences of the L-Band frequency of operation.

  10. The Planned Soil Moisture Active Passive (SMAP) Mission L-Band Radar/Radiometer Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Wheeler, Kevin; Chan, Samuel; Piepmeier, Jeffrey; Hudson, Derek; Medeiros, James

    2011-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC 'decadal survey' to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. The instrument system has completed the preliminary design review (PDR) stage, and detailed instrument design has begun. In addition to providing an overview of the instrument design, two recent design modifications are discussed: 1) The addition of active thermal control to the instrument spun side to provide a more stable, settable thermal environment for the radiometer electronics, and 2) A 'sequential transmit' strategy for the two radar polarization channels which allows a single high-power amplifier to be used.

  11. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    NASA Astrophysics Data System (ADS)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  12. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane M.; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis.

  13. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis

  14. The micro conical system: Lessons learned from a successful EVA/robot-compatible mechanism

    NASA Technical Reports Server (NTRS)

    Gittleman, Mark; Johnston, Alistair

    1996-01-01

    The Micro Conical System (MCS) is a three-part, multi-purpose mechanical interface system used for acquiring and manipulating masses on-orbit by either extravehicular activity (EVA) or telerobotic means. The three components of the system are the micro conical fitting (MCF), the EVA micro tool (EMCT), and the Robot Micro Conical Tool (RMCT). The MCS was developed and refined over a four-year period. This period culminated with the delivery of 358 Class 1 and Class 2 micro conical fittings for the International Space Station and with its first use in space to handle a 1272 kg (2800 lbm) Spartan satellite (11000 times greater than the MCF mass) during an EVA aboard STS-63 in February, 1995. The micro conical system is the first successful EVA/robot-compatible mechanism to be demonstrated in the external environment aboard the U.S. Space Shuttle.

  15. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    The exploration activities associated with NASA?s goals to return to the Moon, travel to Mars, or explore Near Earth Objects (NEOs) will involve the need for human-supported space and surface extravehicular activities (EVAs). The technology development and human element associated with these exploration missions provide fantastic content to promote science, technology, engineering, and math (STEM). As NASA Administrator Charles F. Bolden remarked on December 9, 2009, "We....need to provide the educational and experiential stepping-stones to inspire the next generation of scientists, engineers, and leaders in STEM fields." The EVA Systems Project actively supports this initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for these missions. This paper summarizes these education and public efforts.

  16. Astronaut Harrison Schmitt standing next to boulder during third EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed standing next to a huge, split boulder at Station 6 (base of North Massif) during the third Apollo 17 extravehicular activity (EVA-3) at the Taurus-Littrow landing site on the Moon. Notice the Lunar Roving Vehicle (LRV) in the left foreground. Schmitt is the Apollo 17 lunar module pilot. This picture was taken by Astronaut Eugene A. Cernan, commander.

  17. Apollo 16 lunar module 'Orion' photographed from distance during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 Lunar Module 'Orion' is photographed from a distance by Astronaut Chares M. Duke Jr., lunar module pilot, aboard the moving Lunar Roving Vehicle. Astronauts Duke and John W. Young, commander, were returing from the third Apollo 16 extravehicular activity (EVA-2). The RCA color television camera mounted on the LRV is in the foreground. A portion of the LRV's high-gain antenna is at top left.

  18. MAPGEN Planner: Mixed-Initiative Activity Planning for the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Ai-Chang, Mitch; Bresina, John; Charest, Leonard; Hsu, Jennifer; Jonsson, Ari K.; Kanefsky, Bob; Maldague, Pierre; Morris, Paul; Rajan, Kanna; Yglesias, Jeffrey

    2003-01-01

    This document describes the Mixed-initiative Activity Plan Generation system MAPGEN. The system is be- ing developed as one of the tools to be used during surface operations of NASA's Mars Exploration Rover mission (MER). However, the core technology is general and can be adapted to different missions and applications. The motivation for the system is to better support users that need to rapidly build activity plans that have to satisfy complex rules and fit within resource limits. The system therefore combines an existing tool for activity plan editing and resource modeling, with an advanced constraint-based reasoning and planning framework. The demonstration will show the key capabilities of the automated reasoning and planning component of the system, with emphasis on how these capabilities will be used during surface operations of the MER mission.

  19. JSC Mission Control Center (MCC) personnel watch STS-26 landing in FCR

    NASA Technical Reports Server (NTRS)

    1988-01-01

    During STS-26 Discovery, Orbiter Vehicle (OV) 103, landing, personnel in JSC's Mission Control Center (MCC) Bldg 30 flight control room (FCR) monitor heading alignment cone (HAC) diagram and OV-103 runway touch down displayed on front screens. In the foreground is the Specialists Console (BOOSTER, EVA, PDRS, RMS, PAM, IUS) with Mission Operations Directorate (MOD) console next to it. At the MOD console are Flight Crew Operations Directorate (FCOD) Deputy Chief Henry Hartsfield, JSC Director Aaron Cohen, and MOD Director Eugene F. Kranz. In the background, Public Affairs Office (PAO) photographer Andrew R. 'Pat' Patnesky takes a photograph of the FCR activity.

  20. Techniques for Improving the Performance of Future EVA Maneuvering Systems

    NASA Technical Reports Server (NTRS)

    Williams, Trevor W.

    1995-01-01

    The Simplified Aid for EVA Rescue (SAFER) is a small propulsive backpack that was developed as an in-house effort at Johnson Space Center; it is a lightweight system which attaches to the underside of the Primary Life Support Subsystem (PLSS) backpack of the Extravehicular Mobility Unit (EMU). SAFER provides full six-axis control, as well as Automatic Attitude Hold (AAH), by means of a set of cold-gas nitrogen thrusters and a rate sensor-based control system. For compactness, a single hand controller is used, together with mode switching, to command all six axes. SAFER was successfully test-flown on the STS-64 mission in September 1994 as a Development Test Objective (DTO); development of an operational version is now proceeding. This version will be available for EVA self-rescue on the International Space Station and Mir, starting with the STS-86/Mir-7 mission in September 1997. The DTO SAFER was heavily instrumented, and produced in-flight data that was stored in a 12 MB computer memory on-board. This has allowed post-flight analysis to yield good estimates for the actual mass properties (moments and products of inertia and center of mass location) encountered on-orbit. By contrast, Manned Maneuvering Unit (MMU) post-flight results were generated mainly from analysis of video images, and so were not very accurate. The main goal of the research reported here was to use the detailed SAFER on-orbit mass properties data to optimize the design of future EVA maneuvering systems, with the aim being to improve flying qualities and/or reduce propellant consumption. The Automation, Robotics and Simulation Division Virtual Reality (VR) Laboratory proved to be a valuable research tool for such studies. A second objective of the grant was to generate an accurate dynamics model in support of the reflight of the DTO SAFER on STS-76/Mir-3. One complicating factor was the fact that a hand controller stowage box was added to the underside of SAFER on this flight; the position of

  1. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy

    PubMed Central

    Li, Mengtao; Lu, Guang; Hu, Jia; Shen, Xue; Ju, Jiabao; Gao, Yuanxu; Qu, Liujing; Xia, Yan; Chen, Yingyu; Bai, Yun

    2016-01-01

    Summary Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation. PMID:26905199

  2. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy.

    PubMed

    Li, Mengtao; Lu, Guang; Hu, Jia; Shen, Xue; Ju, Jiabao; Gao, Yuanxu; Qu, Liujing; Xia, Yan; Chen, Yingyu; Bai, Yun

    2016-03-08

    Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation.

  3. The soil moisture active passive (SMAP) mission and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. This satellite is the culmination of basic research and applications development over the past thirty years. During most of this period, research and development o...

  4. [Research activities of cosmonauts in long-duration orbital missions].

    PubMed

    2012-01-01

    The paper presents the view of space medicine and human factor experts on the problems of cosmonaut's research activities. Readiness of ISS crewmembers for conducting experiments and research equipment handling depends on the pre-flight training quality and course of adaptation to the flight conditions, the latter of particular criticality for participation in human use tests as an object.

  5. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Christensen-Dalsgaard, Jørgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita; Si Team

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a "Landmark/Discovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  6. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Technical Reports Server (NTRS)

    Christensen-Dalsgaard, Jorgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2012-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled processes in the Universe. SI is a "LandmarklDiscovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission

  7. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  8. STS-120 Mission Specialist Scott Parazynski Repairs ISS Solar Array

    NASA Technical Reports Server (NTRS)

    2007-01-01

    While anchored to a foot restraint on the end of the Orbiter Boom Sensor System (OBSS), astronaut Scott Parazynski, STS-120 mission specialist, participated in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station (ISS). During the 7-hour and 19-minute space walk, Parazynski cut a snagged wire and installed homemade stabilizers designed to strengthen the structure and stability of the damaged P6 4B solar array wing. Astronaut Doug Wheelock (out of frame), mission specialist, assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.

  9. STS-120 Mission Specialist Scott Parazynski Repairs ISS Solar Array

    NASA Technical Reports Server (NTRS)

    2006-01-01

    While anchored to a foot restraint on the end of the Orbiter Boom Sensor System (OBSS), astronaut Scott Parazynski, STS-120 mission specialist, participated in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station (ISS). During the 7-hour and 19-minute space walk, Parazynski cut a snagged wire and installed homemade stabilizers designed to strengthen the structure and stability of the damaged P6 4B solar array wing. Astronaut Doug Wheelock (out of frame), mission specialist, assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.

  10. Maturing Pump Technology for EVA Applications in a Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Dionne, Steven; Gervais, Edward; Anchondo, Ian

    2012-01-01

    The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.

  11. NASA Soil Moisture Active Passive Mission Status and Science Performance

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni; Entin, Jared K.

    2016-01-01

    The Soil Moisture Active Passive (SMAP) observatory was launched January 31, 2015, and its L-band radiometer and radar instruments became operational since mid-April 2015. The SMAP radiometer has been operating flawlessly, but the radar transmitter ceased operation on July 7. This paper provides a status summary of the calibration and validation of the SMAP instruments and the quality assessment of its soil moisture and freeze/thaw products. Since the loss of the radar in July, the SMAP project has been conducting two parallel activities to enhance the resolution of soil moisture products. One of them explores the Backus Gilbert optimum interpolation and de-convolution techniques based on the oversampling characteristics of the SMAP radiometer. The other investigates the disaggregation of the SMAP radiometer data using the European Space Agency's Sentinel-1 C-band synthetic radar data to obtain soil moisture products at about 1 to 3 kilometers resolution. In addition, SMAP's L-band data have found many new applications, including vegetation opacity, ocean surface salinity and hurricane ocean surface wind mapping. Highlights of these new applications will be provided.

  12. Cyber Electromagnetic Activities within the Mission Command Warfighting Function: Why is it Important and What is the Capability?

    DTIC Science & Technology

    2013-12-13

    33 CEMA and the Mission Command Warfighting Function...Army Doctrine Publication ADRP Army Doctrine Reference Publication CEMA Cyber-Electromagnetic Activities DOD Department of Defense EMSO Electronic

  13. Mobile Agents: A Distributed Voice-Commanded Sensory and Robotic System for Surface EVA Assistance

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten; Alena, Rick; Crawford, Sekou; Dowding, John; Graham, Jeff; Kaskiris, Charis; Tyree, Kim S.; vanHoof, Ronnie

    2003-01-01

    A model-based, distributed architecture integrates diverse components in a system designed for lunar and planetary surface operations: spacesuit biosensors, cameras, GPS, and a robotic assistant. The system transmits data and assists communication between the extra-vehicular activity (EVA) astronauts, the crew in a local habitat, and a remote mission support team. Software processes ("agents"), implemented in a system called Brahms, run on multiple, mobile platforms, including the spacesuit backpacks, all-terrain vehicles, and robot. These "mobile agents" interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. Different types of agents relate platforms to each other ("proxy agents"), devices to software ("comm agents"), and people to the system ("personal agents"). A state-of-the-art spoken dialogue interface enables people to communicate with their personal agents, supporting a speech-driven navigation and scheduling tool, field observation record, and rover command system. An important aspect of the engineering methodology involves first simulating the entire hardware and software system in Brahms, and then configuring the agents into a runtime system. Design of mobile agent functionality has been based on ethnographic observation of scientists working in Mars analog settings in the High Canadian Arctic on Devon Island and the southeast Utah desert. The Mobile Agents system is developed iteratively in the context of use, with people doing authentic work. This paper provides a brief introduction to the architecture and emphasizes the method of empirical requirements analysis, through which observation, modeling, design, and testing are integrated in simulated EVA operations.

  14. STS-57 astronauts Low and Wisoff, in EMUs, perform DTO 1210 EVA in OV-105's PLB

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Backdropped against the blackness of space and upside down in relation to Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) and Payload Commander (PLC) G. David Low and MS3 Peter J.K. Wisoff, wearing extravehicular mobility units (EMUs), simulate handling of large components in space. Above OV-105's payload bay (PLB), Low, anchored by a portable foot restraint (PFR) (manipulator foot restraint (MFR)) on the remote manipulator system (RMS) end effector, holds Wisoff and maneuvers him as if he were a large space component. This particular task was rehearsed with eyes toward the servicing of the Hubble Space Telescope (HST) or the assembly and maintenance of Space Station. This extravehicular activity (EVA), Detailed Test Objective (DTO) 1210, was conducted both with and without intentional disturbances from OV-105's thrusters and movements of the RMS. This phase of DTO 1210 will enable helpful evaluation for the HST wide field planetary camera (WFPC) during the STS-61 HST-serv

  15. Validation of the Soil Moisture Active Passive mission using USDA-ARS experimental watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The calibration and validation program of the Soil Moisture Active Passive mission (SMAP) relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The USDA Agricultural Research Service operates several experimental watersheds wh...

  16. Initial validation of the Soil Moisture Active Passive mission using USDA-ARS watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) Mission was launched in January 2015 to measure global surface soil moisture. The calibration and validation program of SMAP relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The U...

  17. Revisiting the Third Mission of Universities: Toward a Renewed Categorization of University Activities?

    ERIC Educational Resources Information Center

    Laredo, Philippe

    2007-01-01

    The aim of this article is to reflect upon the emergence of the "third mission" of universities as a critical (but not new) dimension of university activities. It recalls the role of our changing understanding of knowledge diffusion and circulation in its growth. It then focuses on the four main lessons derived from the analysis of the different…

  18. The soil moisture active passive experiments (SMAPEx): Towards soil moisture retrieval from the SMAP mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s Soil Moisture Active Passive (SMAP) mission, scheduled for launch in 2014, will carry the first combined L-band radar and radiometer system with the objective of mapping near surface soil moisture and freeze/thaw state globally at near-daily time step (2-3 days). SMAP will provide three soil ...

  19. FOSTERING APPLICATIONS OPPORTUNITIES FOR THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s (NRC’s) Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. SMAP will ma...

  20. Applications of EVA guidelines and design criteria. Volume 3: EVA systems cost model formating

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    The development of a model for estimating the impact of manned EVA costs on future payloads is discussed. Basic information on the EV crewman requirements, equipment, physical and operational characteristics, and vehicle interfaces is provided. The cost model is being designed to allow system designers to quantify the impact of EVA on vehicle and payload systems.

  1. Enhanced Controlled Transdermal Delivery of Ambroxol from the EVA Matrix

    PubMed Central

    Cho, C. W.; Kim, D. B.; Cho, H. W.; Shin, S. C.

    2012-01-01

    To avoid the systemic adverse effects that might occur after oral administration, transdermal delivery of ambroxol was studied as a method for maintaining proper blood levels for an extended period. Release of ambroxol according to concentration and temperature was determined, and permeation of drug through rat skin was studied using two chamber-diffusion cells. The solubility according to PEG 400 volume fraction was highest at 40% PEG 400. The rate of drug release from the EVA matrix increased with increased temperature and drug loading doses. A linear relationship existed between the release rate and the square root of loading rate. The activation energy (Ea) was measured from the slope of the plot of log P versus 1000/T and was found to be 10.71, 10.39, 10.33 and 9.87 kcal/mol for 2, 3, 4 and 5% loading dose from the EVA matrix, respectively. To increase the permeation rate of ambroxol across rat skin from the EVA matrix, various penetration enhancers such as fatty acids (saturated, unsaturated), propylene glycols, glycerides, pyrrolidones, and non-ionic surfactants were used. The enhancing effects of the incorporated enhancers on the skin permeation of ambroxol were evaluated using Franz diffusion cells fitted with intact excised rat skin at 37° using 40% PEG 400 solution as a receptor medium. Among the enhancers used, polyoxyethylene-2-oleyl ether increased the permeation rate by 4.25-fold. In conclusion, EVA matrix containing plasticizer and permeation enhancer could be developed for enhanced transdermal delivery of ambroxol. PMID:23325993

  2. Apollo 15 Mission Report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  3. TMEM166/EVA1A interacts with ATG16L1 and induces autophagosome formation and cell death

    PubMed Central

    Hu, Jia; Li, Ge; Qu, Liujing; Li, Ning; Liu, Wei; xia, Dan; Hongdu, Beiqi; Lin, Xin; Xu, Chentong; Lou, Yaxin; He, Qihua; Ma, Dalong; Chen, Yingyu

    2016-01-01

    The formation of the autophagosome is controlled by an orderly action of ATG proteins. However, how these proteins are recruited to autophagic membranes remain poorly clarified. In this study, we have provided a line of evidence confirming that EVA1A (eva-1 homolog A)/TMEM166 (transmembrane protein 166) is associated with autophagosomal membrane development. This notion is based on dotted EVA1A structures that colocalize with ZFYVE1, ATG9, LC3B, ATG16L1, ATG5, STX17, RAB7 and LAMP1, which represent different stages of the autophagic process. It is required for autophagosome formation as this phenotype was significantly decreased in EVA1A-silenced cells and Eva1a KO MEFs. EVA1A-induced autophagy is independent of the BECN1-PIK3C3 (phosphatidylinositol 3-kinase, catalytic subunit type 3) complex but requires ATG7 activity and the ATG12–ATG5/ATG16L1 complex. Here, we present a molecular mechanism by which EVA1A interacts with the WD repeats of ATG16L1 through its C-terminal and promotes ATG12–ATG5/ATG16L1 complex recruitment to the autophagic membrane and enhances the formation of the autophagosome. We also found that both autophagic and apoptotic mechanisms contributed to EVA1A-induced cell death while inhibition of autophagy and apoptosis attenuated EVA1A-induced cell death. Overall, these findings provide a comprehensive view to our understanding of the pathways involved in the role of EVA1A in autophagy and programmed cell death. PMID:27490928

  4. TMEM166/EVA1A interacts with ATG16L1 and induces autophagosome formation and cell death.

    PubMed

    Hu, Jia; Li, Ge; Qu, Liujing; Li, Ning; Liu, Wei; Xia, Dan; Hongdu, Beiqi; Lin, Xin; Xu, Chentong; Lou, Yaxin; He, Qihua; Ma, Dalong; Chen, Yingyu

    2016-08-04

    The formation of the autophagosome is controlled by an orderly action of ATG proteins. However, how these proteins are recruited to autophagic membranes remain poorly clarified. In this study, we have provided a line of evidence confirming that EVA1A (eva-1 homolog A)/TMEM166 (transmembrane protein 166) is associated with autophagosomal membrane development. This notion is based on dotted EVA1A structures that colocalize with ZFYVE1, ATG9, LC3B, ATG16L1, ATG5, STX17, RAB7 and LAMP1, which represent different stages of the autophagic process. It is required for autophagosome formation as this phenotype was significantly decreased in EVA1A-silenced cells and Eva1a KO MEFs. EVA1A-induced autophagy is independent of the BECN1-PIK3C3 (phosphatidylinositol 3-kinase, catalytic subunit type 3) complex but requires ATG7 activity and the ATG12-ATG5/ATG16L1 complex. Here, we present a molecular mechanism by which EVA1A interacts with the WD repeats of ATG16L1 through its C-terminal and promotes ATG12-ATG5/ATG16L1 complex recruitment to the autophagic membrane and enhances the formation of the autophagosome. We also found that both autophagic and apoptotic mechanisms contributed to EVA1A-induced cell death while inhibition of autophagy and apoptosis attenuated EVA1A-induced cell death. Overall, these findings provide a comprehensive view to our understanding of the pathways involved in the role of EVA1A in autophagy and programmed cell death.

  5. STS-91 Mission Specialist Chang-Diaz participates in TCDT activities

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-91 Mission Specialist Franklin Chang-Diaz, Ph.D., participates in Terminal Countdown Demonstration Test (TCDT) activities. The TCDT is a dress rehearsal for launch. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.- Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew also includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir.

  6. Activities in the Payload Operation Control Center at MSFC During the IML-1 Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This photograph shows activities during the International Microgravity Laboratory-1 (IML-1) mission (STS-42) in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center. The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research. The mission was to explore, in depth, the complex effects of weightlessness on living organisms and materials processing. The crew conducted experiments on the human nervous system's adaptation to low gravity and the effects on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Low gravity materials processing experiments included crystal growth from a variety of substances such as enzymes, mercury, iodine, and virus. The International space science research organizations that participated in this mission were: The U.S. National Aeronautics and Space Administration, the European Space Agency, the Canadian Space Agency, the French National Center for Space Studies, the German Space Agency, and the National Space Development Agency of Japan. The POCC was the air/ground communication charnel used between the astronauts aboard the Spacelab and scientists, researchers, and ground control teams during the Spacelab missions. The facility made instantaneous video and audio communications possible for scientists on the ground to follow the progress and to send direct commands of their research almost as if they were in space with the crew.

  7. Activities in the Payload Operations Control Center at MSFC During the IML-1 Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This photograph shows activities during the International Microgravity Laboratory-1 (IML-1) mission (STS-42) in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center. Members of the Fluid Experiment System (FES) group monitor the progress of their experiment through video at the POCC. The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research. The mission was to explore, in depth, the complex effects of weightlessness on living organisms and materials processing. The crew conducted experiments on the human nervous system's adaptation to low gravity and the effects on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Low gravity materials processing experiments included crystal growth from a variety of substances such as enzymes, mercury, iodine, and virus. The International space science research organizations that participated in this mission were: The U.S. National Aeronautics and Space Administion, the European Space Agency, the Canadian Space Agency, the French National Center for Space Studies, the German Space Agency, and the National Space Development Agency of Japan. The POCC was the air/ground communication charnel used between astronauts aboard the Spacelab and scientists, researchers, and ground control teams during the Spacelab missions. The facility made instantaneous video and audio communications possible for scientists on the ground to follow the progress and to send direct commands of their research almost as if they were in space with the crew.

  8. MOCR activity during Day One of the STS-2 mission scrub

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission Operations Control Room (MOCR) activity during Day One of the STS-2 mission scrub. Photos include Astronaut Robert L. Crippen, STS-1 pilot, talking with Edgar L. harkelroad of NASA headquarters launch and landing systems group at the NASA-Headquarters console in Mission Control Center while awaiting final word on launch reschedule (39400); Johnson Space Center Director Dr. Christopher C. Kraft, Jr., far left, discusses launch delay with flight controllers on the first row of consoles in mission operations control room for STS-2 (39401); Dr. Hans Mark, Deputy Adminstrator for the NASA, listens to audio feed from the Kennedy Space Center for the latest information on the status of STS-2. Also pictured are John B. MacLeod of the Operational Planning Office in the Space Shuttle Program Office and Arnold D. Aldrich, Manager of the Orbiter Avionics Systems Office for JSC (39402); Flight Director Neil D. Hutchinson is pictured at his console in Mission Control just prior to an Officia

  9. EVA Robotic Assistant Project: Platform Attitude Prediction

    NASA Technical Reports Server (NTRS)

    Nickels, Kevin M.

    2003-01-01

    The Robotic Systems Technology Branch is currently working on the development of an EVA Robotic Assistant under the sponsorship of the Surface Systems Thrust of the NASA Cross Enterprise Technology Development Program (CETDP). This will be a mobile robot that can follow a field geologist during planetary surface exploration, carry his tools and the samples that he collects, and provide video coverage of his activity. Prior experiments have shown that for such a robot to be useful it must be able to follow the geologist at walking speed over any terrain of interest. Geologically interesting terrain tends to be rough rather than smooth. The commercial mobile robot that was recently purchased as an initial testbed for the EVA Robotic Assistant Project, an ATRV Jr., is capable of faster than walking speed outside but it has no suspension. Its wheels with inflated rubber tires are attached to axles that are connected directly to the robot body. Any angular motion of the robot produced by driving over rough terrain will directly affect the pointing of the on-board stereo cameras. The resulting image motion is expected to make tracking of the geologist more difficult. This will either require the tracker to search a larger part of the image to find the target from frame to frame or to search mechanically in pan and tilt whenever the image motion is large enough to put the target outside the image in the next frame. This project consists of the design and implementation of a Kalman filter that combines the output of the angular rate sensors and linear accelerometers on the robot to estimate the motion of the robot base. The motion of the stereo camera pair mounted on the robot that results from this motion as the robot drives over rough terrain is then straightforward to compute. The estimates may then be used, for example, to command the robot s on-board pan-tilt unit to compensate for the camera motion induced by the base movement. This has been accomplished in two ways

  10. Advanced Lithium-Ion Cell Development for NASA's Constellation Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.; Mercer, Carolyn R.

    2008-01-01

    The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.

  11. MERLIN : a Franco-German active space mission dedicated to atmospheric methane

    NASA Astrophysics Data System (ADS)

    Bousquet, Philippe; Gibert, Fabien; Marshall, Julia; Pierangelo, Clémence; Ehret, Gerhard; Bacour, Cédric; Chevallier, Frédéric; Crevoisier, Cyril; Edouart, Dimitri; Esteve, Frédéric; Chinaud, Jordi; Armante, Raymond; Kiemle, Christoph; Alpers, Matthias; Tinto, Fransesc; Millet, Bruno

    2016-04-01

    The Methane Remote Sensing Lidar Mission (MERLIN), currently in phase B, is a joint cooperation between France and Germany on the development, launch and operation of a space LIDAR dedicated to the retrieval of total methane (CH4) atmospheric columns. Atmospheric methane is the second most anthropogenic gas, contributing 20% to climate radiative forcing but also plying an important role in atmospheric chemistry as a precursor of tropospheric ozone and low-stratosphere water vapour. For the first time, measurements of atmospheric composition will be performed from space thanks to an IPDA (Integrated Path Differential Absorption) LIDAR (Light Detecting And Ranging), with a precision (target 20 ppb for a 50km aggregation along the trace) and accuracy (target 3 ppb) sufficient to improve the constraints on methane fluxes compared to current observation networks. The very low systematic error target is ambitious compared to current methane space mission, but achievable because of the differential active measurements of MERLIN, which guarantees almost no contamination by aerosols or water vapour cross-sensitivity. As an active mission, MERLIN will deliver data for all seasons and all altitudes, day and night. Here, we present the MERLIN mission and its objectives in terms of reduction of uncertainties on methane surface emissions. To do so, we propose an OSSE analysis (observing system simulation experiment) to estimate the uncertainty reduction brought by MERLIN. An analysis of causes of errors has been done for the MERLIN mission and is presented. The originality of our system is to transfer both random and systematic errors from the observation space to the flux space, thus providing more realistic error reductions than currently provided in OSSE only using the random part of errors. Error reductions are presented using two different atmospheric transport models, TM3 and LMDZ, and compared with error reductions achieved with the GOSAT passive mission.

  12. A Photo Album of Earth Scheduling Landsat 7 Mission Daily Activities

    NASA Technical Reports Server (NTRS)

    Potter, William; Gasch, John; Bauer, Cynthia

    1998-01-01

    Landsat7 is a member of a new generation of Earth observation satellites. Landsat7 will carry on the mission of the aging Landsat 5 spacecraft by acquiring high resolution, multi-spectral images of the Earth surface for strategic, environmental, commercial, agricultural and civil analysis and research. One of the primary mission goals of Landsat7 is to accumulate and seasonally refresh an archive of global images with full coverage of Earth's landmass, less the central portion of Antarctica. This archive will enable further research into seasonal, annual and long-range trending analysis in such diverse research areas as crop yields, deforestation, population growth, and pollution control, to name just a few. A secondary goal of Landsat7 is to fulfill imaging requests from our international partners in the mission. Landsat7 will transmit raw image data from the spacecraft to 25 ground stations in 20 subscribing countries. Whereas earlier Landsat missions were scheduled manually (as are the majority of current low-orbit satellite missions), the task of manually planning and scheduling Landsat7 mission activities would be overwhelmingly complex when considering the large volume of image requests, the limited resources available, spacecraft instrument limitations, and the limited ground image processing capacity, not to mention avoidance of foul weather systems. The Landsat7 Mission Operation Center (MOC) includes an image scheduler subsystem that is designed to automate the majority of mission planning and scheduling, including selection of the images to be acquired, managing the recording and playback of the images by the spacecraft, scheduling ground station contacts for downlink of images, and generating the spacecraft commands for controlling the imager, recorder, transmitters and antennas. The image scheduler subsystem autonomously generates 90% of the spacecraft commanding with minimal manual intervention. The image scheduler produces a conflict-free schedule

  13. Active moon: evidences from Chandrayaan-1 and the proposed Indian missions

    NASA Astrophysics Data System (ADS)

    Bhandari, Narendra; Srivastava, Neeraj

    2014-12-01

    Chandrayaan-1, the polar Lunar orbiter mission of Indian Space Research Organization, successfully carried out study of Moon's environment and surface processes for a period of about nine months during 2008-2009. The results obtained by the mission established (i) A tenuous but active hydrosphere (ii) Volcanically active and geologically dynamic Moon and (iii) Global melting of Moon's surface regions and formation of magma ocean early in the history of Moon. Chandrayaan-1 was equipped with a dozen instruments, including an impact probe, which housed three additional instruments. The results obtained by four instruments viz. Chandra's Altitudinal Composition Explorer, Moon Mineral Mapper (M3), Solar Wind Monitor and Synthetic Aperture Radar gave an insight into an active hydrosphere, with several complex processes operating between lunar surface and its environment. These inferences are based on identification of H, OH, H2O, CO2, Ar etc. in the lunar atmosphere. There are indications that several young (~2 to100 Ma) volcanic regions are present on the Moon as shown by integrated studies using Terrain Mapping Camera and M3 of Chandrayaan-1 and data from other contemporary missions i.e. Kaguya and Lunar Reconnaissance Orbiter. These data establish that Moon has a dynamic and probably still active interior, in contrast to the generally accepted concept of dormant and quiet Moon. Discovery of Mg spinel anorthosites and finding of kilometer sized crystalline anorthosite exposures by M3 support the formation of global magma ocean on Moon and differentiation early in its evolutionary history. Furthermore, X-ray Spectrometer data showed anorthositic terrain with composition, high in Al, poor in Ca and low in Mg, Fe and Ti in a nearside southern highland region. This mission provided excellent opportunity for multilateral international cooperation and collaboration in instrumentation and observation in which a dozen countries participated and contributed to the success of

  14. Alterations in the heart rate and activity rhythms of three orbital astronauts on a space mission

    NASA Astrophysics Data System (ADS)

    Liu, Zhizhen; Wan, Yufeng; Zhang, Lin; Tian, Yu; Lv, Ke; Li, Yinghui; Wang, Chunhui; Chen, Xiaoping; Chen, Shanguang; Guo, Jinhu

    2015-01-01

    Environmental factors in space are dramatically different from those on Earth. The spaceflight environment has been known to influence human physiology and behavior on orbital missions. In this study, we investigated alterations in the diurnal rhythms of activity and heart rate of three Chinese astronauts on a space mission. An analysis of the heart rate data showed a significant decrease in heart rate amplitudes during flight in all three subjects. The heart rate amplitudes of all the three astronauts were significantly dampened during flight, and the minimum as well as the maximum value of heart rate increased after flight. A phase shift in heart rate was observed in one of the three astronauts after flight. These results demonstrate the influence of spaceflight on heart physiology and function. In addition, a significant decrease in body trunk activity and rhythmicity occurred during flight, demonstrating that the spaceflight environment disturbs motion adaptation and diurnal activity rhythms.

  15. Alterations in the heart rate and activity rhythms of three orbital astronauts on a space mission.

    PubMed

    Liu, Zhizhen; Wan, Yufeng; Zhang, Lin; Tian, Yu; Lv, Ke; Li, Yinghui; Wang, Chunhui; Chen, Xiaoping; Chen, Shanguang; Guo, Jinhu

    2015-01-01

    Environmental factors in space are dramatically different from those on Earth. The spaceflight environment has been known to influence human physiology and behavior on orbital missions. In this study, we investigated alterations in the diurnal rhythms of activity and heart rate of three Chinese astronauts on a space mission. An analysis of the heart rate data showed a significant decrease in heart rate amplitudes during flight in all three subjects. The heart rate amplitudes of all the three astronauts were significantly dampened during flight, and the minimum as well as the maximum value of heart rate increased after flight. A phase shift in heart rate was observed in one of the three astronauts after flight. These results demonstrate the influence of spaceflight on heart physiology and function. In addition, a significant decrease in body trunk activity and rhythmicity occurred during flight, demonstrating that the spaceflight environment disturbs motion adaptation and diurnal activity rhythms.

  16. RemoveDEBRIS: An in-orbit active debris removal demonstration mission

    NASA Astrophysics Data System (ADS)

    Forshaw, Jason L.; Aglietti, Guglielmo S.; Navarathinam, Nimal; Kadhem, Haval; Salmon, Thierry; Pisseloup, Aurélien; Joffre, Eric; Chabot, Thomas; Retat, Ingo; Axthelm, Robert; Barraclough, Simon; Ratcliffe, Andrew; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.

    2016-10-01

    Since the beginning of the space era, a significant amount of debris has progressively been generated. Most of the objects launched into space are still orbiting the Earth and today these objects represent a threat as the presence of space debris incurs risk of collision and damage to operational satellites. A credible solution has emerged over the recent years: actively removing debris objects by capturing them and disposing of them. This paper provides an update to the mission baseline and concept of operations of the EC FP7 RemoveDEBRIS mission drawing on the expertise of some of Europe's most prominent space institutions in order to demonstrate key active debris remove (ADR) technologies in a low-cost ambitious manner. The mission will consist of a microsatellite platform (chaser) that ejects 2 CubeSats (targets). These targets will assist with a range of strategically important ADR technology demonstrations including net capture, harpoon capture and vision-based navigation using a standard camera and LiDAR. The chaser will also host a drag sail for orbital lifetime reduction. The mission baseline has been revised to take into account feedback from international and national space policy providers in terms of risk and compliance and a suitable launch option is selected. A launch in 2017 is targeted. The RemoveDEBRIS mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.

  17. Astronaut Russell Schweickart photographed during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot, is photographed from the Command Module 'Gumdrop' during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. The Command and Service Modules are docked with the Lunar Module.

  18. Astronaut Russell Schweickart photographed during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot, stands in 'golden slippers' on the Lunar Module 3 porch during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. This photograph was taken from inside the Lunar Module 'Spider'. The Command/Service Module and Lunar Module were docked. Schweickart is wearing an Extravehicular Mobility Unit (EMU).

  19. Biosensors for EVA: Muscle Oxygen and pH During Walking, Running and Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Ellerby, G.; Scott, P.; Stroud, L.; Norcross, J.; Pesholov, B.; Zou, F.; Gernhardt, M.; Soller, B.

    2009-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO2 on the leg during cycling. Our NSBRI-funded project is looking to extend this methodology to examine activities which more appropriately represent EVA activities, such as walking and running and to better understand factors that determine the metabolic cost of exercise in both normal and lunar gravity. Our 4 year project specifically addresses risk: ExMC 4.18: Lack of adequate biomedical monitoring capability for Constellation EVA Suits and EPSP risk: Risk of compromised EVA performance and crew health due to inadequate EVA suit systems.

  20. Benefits of advanced space suits for supporting routine extravehicular activity

    NASA Technical Reports Server (NTRS)

    Alton, L. R.; Bauer, E. H.; Patrick, J. W.

    1975-01-01

    Technology is available to produce space suits providing a quick-reaction, safe, much more mobile extravehicular activity (EVA) capability than before. Such a capability may be needed during the shuttle era because the great variety of missions and payloads complicates the development of totally automated methods of conducting operations and maintenance and resolving contingencies. Routine EVA now promises to become a cost-effective tool as less complex, serviceable, lower-cost payload designs utilizing this capability become feasible. Adoption of certain advanced space suit technologies is encouraged for reasons of economics as well as performance.

  1. STS-110 Astronaut Morin Totes S0 Keel Pins During EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hovering in space some 240 miles above the blue and white Earth, STS-110 astronaut M.E. Morin participates in his first ever and second of four scheduled space walks for the STS-110 mission. He is seen toting one of the S0 (S-Zero) keel pins which were removed from their functional position on the truss and attached on the truss' exterior for long term stowage. The 43-foot-long, 27,000 pound S0 truss was the first of 9 segments that will make up the International Space Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. The mission completed the installations and preparations of the S0 truss and the Mobile Transporter within four space walks. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission was launched April 8, 2002 and returned to Earth April 19, 2002.

  2. MERLIN : a Franco-German active space mission dedicated to atmospheric methane

    NASA Astrophysics Data System (ADS)

    Bousquet, P.; Marshall, J.; Pierangelo, C.; Ehret, G.; Bacour, C.; Chevallier, F.; Gibert, F.; Crevoisier, C. D.; Edouart, D.; Esteve, F.; Chinaud, J.; Armante, R.; Berthier, S.; Alpers, M.; Millet, B.

    2015-12-01

    The Methane Remote Sensing Lidar Mission (MERLIN), currently in phase B, is a joint cooperation between France and Germany on the development, launch and operation of a space LIDAR dedicated to the retrieval of total methane (CH4) atmospheric columns. Atmospheric methane is the second most anthropogenic gas, contributing 20% to climate radiative forcing but also plying an important role in atmospheric chemistry as a precursor of tropospheric ozone and low-stratosphere water vapour. For the first time, measurements of atmospheric composition will be performed from space thanks to an IPDA (Integrated Path Differential Absorption) LIDAR (Light Detecting And Ranging), with a precision (target 20 ppb for a 50km aggregation along the trace) and accuracy (target 3 ppb) sufficient to improve the constraints on methane fluxes compared to current observation networks. The very low systematic error target is ambitious compared to current methane space mission, but achievable because of the differential active measurements of MERLIN, which guarantees almost no contamination by aerosols or water vapour cross-sensitivity. As an active mission, MERLIN will deliver data for all seasons and all altitudes, day and night. Here, we present the MERLIN mission and its objectives in terms of reduction of uncertainties on methane surface emissions. To do so, we propose an OSSE analysis (observing system simulation experiment) to estimate the uncertainty reduction brought by MERLIN. The originality of our system is to transfer both random and systematic errors from the observation space to the flux space, thus providing more realistic error reductions than currently provided in OSSE only using the random part of errors. To do so, a precise analysis of causes of errors has been done for the MERLIN mission and is also presented.

  3. RS-34 Phoenix In-Space Propulsion System Applied to Active Debris Removal Mission

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Burnside, Christopher G.

    2014-01-01

    In-space propulsion is a high percentage of the cost when considering Active Debris Removal mission. For this reason it is desired to research if existing designs with slight modification would meet mission requirements to aid in reducing cost of the overall mission. Such a system capable of rendezvous, close proximity operations, and de-orbit of Envisat class resident space objects has been identified in the existing RS-34 Phoenix. RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper program; specifically the pressure-fed storable bi-propellant Stage IV Post Boost Propulsion System. The National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC has obtained permission from the USAF to obtain all the remaining RS-34 stages for re-use opportunities. The MSFC Advanced Concepts Office (ACO) was commissioned to lead a study for evaluation of the Rocketdyne produced RS-34 propulsion system as it applies to an active debris removal design reference mission for resident space object targets including Envisat. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy payloads at multiple orbital locations. The RS-34 Concept Study lead by sought to further understand application for a similar orbital debris design reference mission to provide propulsive capability for rendezvous, close proximity operations to support the capture phase of the mission, and deorbit of single or multiple large class resident space objects. Multiple configurations varying the degree of modification were identified to trade for dry mass optimization and

  4. 2012 Moon Mars Analog Mission Activities on Mauna Kea, Hawai'i

    NASA Astrophysics Data System (ADS)

    Graham, Lee; Graff, Trevor G.; Aileen Yingst, R.; ten Kate, Inge L.; Russell, Patrick

    2015-05-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Four separate science investigations were integrated in a Martian analog environment with initial science operations planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred during the initial planning sessions and as the analog mission progressed. We review here the overall program of the investigation into the origin of the valley including preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering, and science trades and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as “Apollo Valley”.

  5. Study of space shuttle EVA/IVA support requirements. Volume 1: Technical summary report

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    Results are summarized which were obtained for equipment requirements for the space shuttle EVA/IVA pressure suit, life support system, mobility aids, vehicle support provisions, and energy 4 support. An initial study of tasks, guidelines, and constraints and a special task on the impact of a 10 psia orbiter cabin atmosphere are included. Supporting studies not related exclusively to any one group of equipment requirements are also summarized. Representative EVA/IVA task scenarios were defined based on an evaluation of missions and payloads. Analysis of the scenarios resulted in a total of 788 EVA/IVA's in the 1979-1990 time frame, for an average of 1.3 per shuttle flight. Duration was estimated to be under 4 hours on 98% of the EVA/IVA's, and distance from the airlock was determined to be 70 feet or less 96% of the time. Payload water vapor sensitivity was estimated to be significant on 9%-17% of the flights. Further analysis of the scenarios was carried out to determine specific equipment characteristics, such as suit cycle and mobility requirements.

  6. The NASA Soil Moisture Active Passive (SMAP) Mission - Algorithm and Cal/Val Activities and Synergies with SMOS and Other L-Band Missions

    NASA Technical Reports Server (NTRS)

    Njoku, Eni; Entekhabi, Dara; O'Neill, Peggy; Jackson, Tom; Kellogg, Kent; Entin, Jared

    2011-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has as its key measurement objective the frequent, global mapping of near-surface soil moisture and its freeze-thaw state. SMAP soil moisture and freeze/thaw measurements at 10 km and 3 km resolutions respectively, would enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections Soil moisture measurements are also of great importance in assessing floods and for monitoring drought. In addition, observations of soil moisture and freeze/thaw timing over the boreal latitudes can help reduce uncertainties in quantifying the global carbon balance. The SMAP measurement concept utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The SMAP radiometer and radar flight hardware and ground processing designs are incorporating approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). The radar and radiometer instruments are planned to operate in a 680 km polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments would yield global maps of soil moisture and freeze/thaw state to be provided at 10 km and 3 km resolutions respectively, every two to three days. Plans are to provide also a radiometer-only soil moisture product at 40-km spatial resolution. This product and the underlying brightness temperatures have characteristics similar to those provided by the Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are unique opportunities for common data product development and continuity between the two missions. SMAP also has commonalities with other satellite missions having L-band radiometer and/or radar sensors

  7. Views of the extravehicular activity of Astronaut Stewart during STS 41-B

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Close up frontal view of Astronaut Robert L. Stewart, mission specialist, as he participates in a extravehicular activity (EVA), a few meters away from the cabin of the shuttle Challenger. The open payload bay is reflected in his helmet visor as he faces the camera. Stewart is wearing the extravehicular mobility unit (EMU) and one of the manned maneuvering units (MMU) developed for this mission.

  8. STS-109 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-05-01

    This video, Part 4 of 4, shows footage of crew activities from flight days 8 through 12 of STS-109. The crew included: Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, Richard Linnehan, James Newman, Michael Massimino, Mission Speicalists. The activities from other flights days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139476). The primary activity on flight day 8 was an EVA (extravehicular activity) by Grunsfeld and Linnehan to install a cryocooler and radiator for the NICMOS (Near Infrared Camera and Multi-Object Spectrometer) on the HST (Hubble Space Telescope). Before returning to Columbia's airlock, the astronauts, with a cloudy background, hold onto the orbiter and offer their thoughts on the significance of their mission, the HST, and spaceflight. Footage from flight day 9 includes the grappling, unbearthing, and deployment of the HST from Columbia, and the crew coordinating and videotaping Columbia's departure. Flight day 10 was a relatively inactive day, and flight day 11 includes a checkout of Columbia's aerodynamic surfaces. Columbia landed on flight day 12, which is covered by footage of the crew members speaking during reentry, and their night landing, primarily shown through the orbiter's head-up display. The video includes numerous views of the HST, as well as views of the the Galapagos Islands, Madagascar, and Southern Africa with parts of the Atlantic, Indian, and Pacific Oceans, and part of the coast of Chile. The pistol grip space tool is shown in use, and the crew answers two messages from the public, including a message to Massimino from the Fire Department of New York.

  9. Astronaut Harrison Schmitt collects lunar rake samples during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt collects lunar rake samples at Station 1 during the first Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site. This picture was taken by Astronatu Eugene Cernan, Apollo 17 commander. Schmitt is the lunar module pilot. The lunar rake, An Apollo lunar geology hand tool, is used to collect discrete samples of rocks and rock chips ranging in size from one-half inch (1.3 cm) to one inch (2.5 cm).

  10. Astronaut Harrison Schmitt collects lunar rake samples during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt collects lunar rake samples at Station 1 during the first Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site. This picture was taken by Astronaut Eugene Cernan, Apollo 17 commander. Schmitt is the lunar module pilot. The lunar rake, an Apollo lunar geology hand tool, is used to collect discrete samples of rocks and rock chips ranging in size from one-half inch (1.3 cm) to one inch (2.5 cm).

  11. Apollo 16 lunar module 'Orion' photographed from distance during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 Lunar Module 'Orion' is photographed from a distance by Astronaut Chares M. Duke Jr., lunar module pilot, aboard the moving Lunar Roving Vehicle. Astronauts Duke and John W. Young, commander, were returning from the excursion to Stone Mountain during the second Apollo 16 extravehicular activity (EVA-2). The RCA color television camera mounted on the LRV is in the foreground. A portion of the LRV's high-gain antenna is at top left. Smoky Mountain rises behind the LM in this north-looking view at the Descartes landing site.

  12. Chemical and Biological Substances Decontamination Study for Mars Missions and Terrestrial Applications

    NASA Astrophysics Data System (ADS)

    Pottage, Thomas; Walker, James; Bennett, Allan; Vrublevskis, John; Hovland, Scott

    This study, funded by the European Space Agency (ESA) and undertaken by the Health Protec-tion Agency, UK supported by Systems Engineering and Assessment Ltd., was devised to select suitable current decontamination technologies for development for future manned missions to the Moon and Mars. There is a requirement to decontaminate the habitat module due to the concerns about astronaut ill health, microbial deterioration of materials and potential forward contamination in the case of Mars. In the case of the MIR space station, biodeterioration of components and materials occurred, and dangerous levels of airborne microorganisms were detected during air sampling procedures which lead to the introduction of microbial exposure limits (as MORD SSP 50260) to ensure the health of the crew. COSPAR planetary protection guidelines highlight the need to reduce any potential forward or backwards contamination issues that may occur through the use of Extra Vehicular Activity (EVA) suits whilst on Mars. Decontamination of the suit exterior must be completed before any EVA activity on Mars, whilst a further decontamination cycle must be completed after entry to the airlock following EVA. Technologies and techniques have also been investigated for the microbial reduction of the interior surfaces of the EVA suit to stop biodeterioration of the materials and protect the user from pathogenic microbe accumulation. The first work package reviewed the systems description and requirements as detailed in the statement of work. The requirements were broken down into 12 further requirement sections, where they were updated and expanded, resulted in Technical Note (TN) 1 which was then used as the base document for WP2 and WP3. WP2 investigated the current technologies available for the decontamination of the habitat module interior on missions of up to 6 months and missions that have durations of greater than 6 months. A comprehensive review was carried out for the different methods that

  13. Enabling the human mission

    NASA Astrophysics Data System (ADS)

    Bosley, John

    The duplication of earth conditions aboard a spacecraft or planetary surface habitat requires 60 lb/day/person of food, potable and hygiene water, and oxygen. A 1000-day mission to Mars would therefore require 30 tons of such supplies per crew member in the absence of a closed-cycle, or regenerative, life-support system. An account is given of the development status of regenerative life-support systems, as well as of the requisite radiation protection and EVA systems, the health-maintenance and medical care facilities, zero-gravity deconditioning measures, and planetary surface conditions protection.

  14. Progress Report on PICA Activities in Support of New Frontiers Missions

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret; Venkatapathy, Ethiraj; Violette, Steve

    2017-01-01

    Phenolic Impregnated Carbon Ablator (PICA) is a TPS material that has been used in a number of previous flight missions (Stardust, MSL) and is planned for a number of future missions (OSIRIS-Rex and Mars 2020) so it has substantial flight heritage, is applicable to a wide range of missions, and is often baselined as the TPS in future NASA proposal activities. As is common with a number of TPS materials, PICA faces a supply chain issue with the rayon precursor from which the carbon fibers used in the PICA preform are derived. PICA uses a non-woven form of the rayon, which once carbonized, is used in the low-density carbon FiberForm (carbon tile) preform utilized in PICA. Current PICA uses a NASA-qualified non-domestic rayon supplier (Sniace), however the qualified supplier is no longer manufacturing the rayon materials. This activity will address PICA sustainability, by initially carbonizing the remaining stockpile of Sniace rayon precursor. A additional FiberForm manufacturing task from alternate rayon sources is also in progress.

  15. STS-91 Mission Specialist Chang-Diaz pauses at the pad following TCDT activities

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-91 Mission Specialist Franklin Chang-Diaz, Ph.D., pauses on the 217-foot level of Launch Complex 39A after the completion of Terminal Countdown Demonstration Test (TCDT) activities. Behind him, the Space Shuttle Discovery is being prepared for flight. The TCDT is held at KSC prior to each Space Shuttle flight to provide crews with an opportunity to participate in simulated countdown activities. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew also includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir.

  16. A Chang'e-4 mission concept and vision of future Chinese lunar exploration activities

    NASA Astrophysics Data System (ADS)

    Wang, Qiong; Liu, Jizhong

    2016-10-01

    A novel concept for Chinese Chang'e-4 lunar exploration mission is presented in this paper at first. After the success of Chang'e-3, its backup probe, Chang'e-4 lander/rover combination, would be upgraded and land on the unexplored lunar farside by the aid of a relay satellite near the second Earth-Moon Lagrange point. Mineralogical and geochemical surveys on the farside to study the formation and evolution of lunar crust and observations at low radio frequencies to track the signals of the Universe's Dark Ages are priorities. Follow-up Chinese lunar exploration activities before 2030 are envisioned as building a robotic lunar science station by three to five missions. Finally several methods of international cooperation are proposed.

  17. STS-113 Crew Interviews: John Herrington, Mission Specialist 2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-113 Mission Specialist 2 John Herrington is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path, as well as his thoughts on becoming the first Native American in space. He gives details on the mission's goals and significance, which include the transfer of the International Space Station's (ISS) Expedition 6 crew for the Expedition 5 crew, as well as the installation of the ISS's P-1 integrated truss structure. Herrington, who will participate in three EVAs (extravehicular activity), provides details on the installation of the truss structure. He also describes the process of crew transfer, which also involves the transfer of soft goods and scientific experiments, such as the MEMS (microelectromechanical systems)-based Picosatellite Inspector (MEPSI) which will be ejected from the shuttle shortly after it undocks from the ISS.

  18. STS-49 Astronaut By Mission Peculiar Equipment Support Structure (MPESS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. In this onboard photo, astronaut Thomas Akers is positioned near the Mission Peculiar Equipment Support Structure (MPESS) in the cargo bay. The MPESS, developed by Marshall Space Flight Center, was used to support experiments.

  19. Water Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  20. Extensibility of Human Asteroid Mission to Mars and Other Destinations

    NASA Technical Reports Server (NTRS)

    McDonald, Mark A.; Caram, Jose M.; Lopez, Pedro; Hinkel, Heather D.; Bowie, Jonathan T.; Abell, Paul A.; Drake, Bret G.; Martinez, Roland M.; Chodas, Paul W.; Hack, Kurt; Mazanek, Daniel D.

    2014-01-01

    This paper will describe the benefits of execution of the Asteroid Redirect Mission as an early mission in deep space, demonstrating solar electric propulsion, deep space robotics, ground and on-board navigation, docking, and EVA. The paper will also discuss how staging in trans-lunar space and the elements associated with this mission are excellent building blocks for subsequent deep space missions to Mars or other destinations.

  1. Sentinel-3 Mission Performance Centre: a Summary of First Months of Activities

    NASA Astrophysics Data System (ADS)

    Bruniquel, Jerome; S3MPC Partners

    2016-08-01

    The Sentinel-3 Mission Performance Centre (S-3 MPC) is one of the facility part of the Payload Data Ground Segment (PDGS). It and aims at controlling the quality of all generated products, from L0 to L2. The S-3 MPC is composed of a Coordinating Centre (CC), where the core infrastructure is hosted, which is in charge of the main routine activities (especially the quality control of data) and the overall service management. Expert Support Laboratories (ESLs) are involved in calibration and validation activities and provide specific assessment of the products (e.g., analysis of trends, ad hoc analysis of anomalies, etc.). The S-3 MPC interacts with the Processing Archiving Centers (PACs) and the Marine Centre at EUMETSAT.The S3MPC covers both optical and topography missions, each of them composed of several instruments.Since S3-A launch on the 16th of February 2016, the S3- MPC has started its activities, mainly focused on: Calibration activities, done in close relationship with the satellite commissioning team at ESTEC; Processor verification and update of specifications; Validation of L1 products and assessment of instrument performances; Cross-checking of L1 products processed in various processing centres; Progressive implementation of Quality Control activities done at the S3-MPC; Validation of L2 products, in synergy with the Marine Centre for L2 marine products

  2. STS-112 Mission Highlights Resource, Part 3 of 3

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The STS-112 Mission begins with a view of the center radiator on the S(1) Truss. A good view of the International Space Station's (ISS) Destiny Laboratory, Soyuz Crew Return Vehicle and Quest Airlock are shown from a video camera located at the end of the S(1) Truss Segment. The ISS Canadarm 2 is shown getting in position for spacewalk three. Highlights of flight day eight begin with Pilot Pam Melroy and Mission Specialist Fyodur Yurchikhin shown inside of the Quest Airlock closing the hatch as spacewalkers David Wolf and Piers Sellers move in the outer compartment of the Airlock to begin Extravehicular Activity 3 (EVA 3). During EVA 3, Dave Wolf and Piers Sellers are installing spool positioning devices on ammonia lines located on the ISS. Robot Arm Operators Peggy Whitson and Sandy Magnus are shown reviewing procedures for operating the robot arm. A view of Piers Seller climbing back into the Quest Airlock is presented. During flight day nine, robot arm operators Pam Melroy, Jeff Ashby and Peggy Whitson are in the process of removing spacesuits worn by David Wolf and Piers Sellers. A final farewell of the nine crewmembers shown inside of the Destiny Laboratory is presented during flight day ten. The undocking of Space Shuttle Atlantis from the International Space Station is shown on flight day eleven. This presentation ends on flight day 12 with a view of head up displays and the actual landing of the Space Shuttle Atlantis.

  3. Human-Centric Teaming in a Multi-Agent EVA Assembly Task

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Currie, Nancy; Ambrose, Robert O.; Culbert, Christopher

    2004-01-01

    NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower.An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of human astronauts with the survivability and physical capabilities of highly dexterous space robots is proposed. A 1-g test featuring two NASA/DARPA Robonaut systems working side-by-side with a suited human subject is conducted to evaluate human-robot teaming strategies in the context of a simulated EVA assembly task based on the STS-61B ACCESS flight experiment.

  4. Recent Status of SIM Lite Astrometric Observatory Mission: Flight Engineering Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Dekens, Frank; Nemati, Bijan; An, Xin; Carson, Johnathan

    2010-01-01

    The SIM Lite Astrometric Observatory is a mission concept for a space-borne instrument to perform micro-arc-second narrow-angle astrometry to search 60 to 100 nearby stars for Earth-like planets, and to perform global astrometry for a broad astrophysics program. The instrument consists of two Michelson stellar interferometers and a telescope. The first interferometer chops between the target star and a set of reference stars. The second interferometer monitors the attitude of the instrument in the direction of the target star. The telescope monitors the attitude of the instrument in the other two directions. The main enabling technology development for the mission was completed during phases A & B. The project is currently implementing the developed technology onto flight-ready engineering models. These key engineering tasks will significantly reduce the implementation risks during the flight phases C & D of the mission. The main optical interferometer components, including the astrometric beam combiner, the fine steering optical mechanism, the path-length-control and modulation optical mechanisms, focal-plane camera electronics and cooling heat pipe, are currently under development. Main assemblies are built to meet flight requirements and will be subjected to flight qualification level environmental testing (random vibration and thermal cycling) and performance testing. This paper summarizes recent progress in engineering risk reduction activities.

  5. Global Change Data Center: Mission, Organization, Major Activities, and 2001 Highlights

    NASA Technical Reports Server (NTRS)

    Wharton, Stephen W. (Technical Monitor)

    2002-01-01

    Rapid efficient access to Earth sciences data is fundamental to the Nation's efforts to understand the effects of global environmental changes and their implications for public policy. It becomes a bigger challenge in the future when data volumes increase further and missions with constellations of satellites start to appear. Demands on data storage, data access, network throughput, processing power, and database and information management are increased by orders of magnitude, while budgets remain constant and even shrink. The Global Change Data Center's (GCDC) mission is to provide systems, data products, and information management services to maximize the availability and utility of NASA's Earth science data. The specific objectives are (1) support Earth science missions be developing and operating systems to generate, archive, and distribute data products and information; (2) develop innovative information systems for processing, archiving, accessing, visualizing, and communicating Earth science data; and (3) develop value-added products and services to promote broader utilization of NASA Earth Sciences Enterprise (ESE) data and information. The ultimate product of GCDC activities is access to data and information to support research, education, and public policy.

  6. An innovative exercise method to simulate orbital EVA work - Applications to PLSS automatic controls

    NASA Technical Reports Server (NTRS)

    Lantz, Renee; Vykukal, H.; Webbon, Bruce

    1987-01-01

    An exercise method has been proposed which may satisfy the current need for a laboratory simulation representative of muscular, cardiovascular, respiratory, and thermoregulatory responses to work during orbital extravehicular activity (EVA). The simulation incorporates arm crank ergometry with a unique body support mechanism that allows all body position stabilization forces to be reacted at the feet. By instituting this exercise method in laboratory experimentation, an advanced portable life support system (PLSS) thermoregulatory control system can be designed to more accurately reflect the specific work requirements of orbital EVA.

  7. Astronaut David Scott gives salute beside U.S. flag during EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, commander, gives a military salute while standing beside the deployed U.S. flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module 'Falcon' is partially visible on the right. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about 3 statute miles) away. This photograph was taken by Astronaut James B. Irwin, Lunar Module pilot.

  8. Astronaut James Irwin gives salute beside U.S. flag during EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, gives a military salute while standing beside the deployed U.S. flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module 'Falcon' is partially visible on the right. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about 3 statute miles) away. This photograph was taken by Astronaut David R. Scott, Apollo 15 commander.

  9. The ICESat-2 Mission: Concept, Pre-Launch Activities, and Opportunities

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Neumann, Tom; Csatho, Beata M.

    2011-01-01

    Ice sheet and sea level changes have been explicitly identified as a priority in the President's Climate Change Science Program, the Arctic Climate Impact Assessment, the 4th Assessment Report of the IPee and other national and international policy documents. Following recommendations from the National Research Council for an ICESat follow-on mission, the ICESat-2 mission is now under development for launch in early 2016. The primary aims of the ICESat-2 mission are to continue measurements of sea-ice thickness change, and ice sheet elevation changes at scales from outlet glaciers to the entire ice sheet as established by ICES at. In contrast to ICES at, ICESat-2 will employ a 6-beam micro-pulse laser photon-counting approach. The current concept uses a high repetition rate (10 kHz; equivalent to 70 cm on the ground) low-power laser in conjunction with single-photon sensitive detectors to measure range using approximately 532nm (green) light. The concept will enable the generation of seasonal maps of ice sheet elevation of Greenland and Antarctica, monthly maps of sea ice thickness of the polar ocean, a dense map of land elevation (2 km track spacing at the equator after two years) enabling the determination of canopy height, as well as ocean heights. While the mission has been optimized for cryospheric science and vast amount of high precision elevation measurements taken over land and over the ocean as well as of the atmosphere will provide scientists with a wealth of opportunities to explore the utility of ICESat-2. Those will range from the retrieval of cloud properties, to river stages, to snow cover, to land use changes and more. The presentation will review the measurement concept and physical principles of ICESat-2, current and planned activities to assess instrument performance and develop geophysical algorithms, as well as potential opportunities outside the main objectives of ICESat-2.

  10. The ICESat-2 Mission: Concept, pre-launch activities, and opportunities

    NASA Astrophysics Data System (ADS)

    Markus, T.; Neumann, T.; Csatho, B. M.

    2011-12-01

    Ice sheet and sea level changes have been explicitly identified as a priority in the President's Climate Change Science Program, the Arctic Climate Impact Assessment, the 4th Assessment Report of the IPCC and other national and international policy documents. Following recommendations from the National Research Council for an ICESat follow-on mission, the ICESat-2 mission is now under development for launch in early 2016. The primary aims of the ICESat-2 mission are to continue measurements of sea-ice thickness change, and ice sheet elevation changes at scales from outlet glaciers to the entire ice sheet as established by ICESat. In contrast to ICESat, ICESat-2 will employ a 6-beam micro-pulse laser photon-counting approach. The current concept uses a high repetition rate (10 kHz; equivalent to 70 cm on the ground) low-power laser in conjunction with single-photon sensitive detectors to measure range using ~532nm (green) light. The concept will enable the generation of seasonal maps of ice sheet elevation of Greenland and Antarctica, monthly maps of sea ice thickness of the polar ocean, a dense map of land elevation (2 km track spacing at the equator after two years) enabling the determination of canopy height, as well as ocean heights. While the mission has been optimized for cryospheric science and vast amount of high precision elevation measurements taken over land and over the ocean as well as of the atmosphere will provide scientists with a wealth of opportunities to explore the utility of ICESat-2. Those will range from the retrieval of cloud properties, to river stages, to snow cover, to land use changes and more. The presentation will review the measurement concept and physical principles of ICESat-2, current and planned activities to assess instrument performance and develop geophysical algorithms, as well as potential opportunities outside the main objectives of ICESat-2.

  11. Design, development, and fabrication of extravehicular activity tools for support of the transfer orbit stage

    NASA Technical Reports Server (NTRS)

    Albritton, L. M.; Redmon, J. W.; Tyler, T. R.

    1993-01-01

    Seven extravehicular activity (EVA) tools and a tool carrier have been designed and developed by MSFC in order to provide a two fault tolerant system for the transfer orbit stage (TOS) shuttle mission. The TOS is an upper stage booster for delivering payloads to orbits higher than the shuttle can achieve. Payloads are required not to endanger the shuttle even after two failures have occurred. The Airborne Support Equipment (ASE), used in restraining and deploying TOS, does not meet this criteria. The seven EVA tools designed will provide the required redundancy with no impact to the TOS hardware.

  12. TEJAS - TELEROBOTICS/EVA JOINT ANALYSIS SYSTEM VERSION 1.0

    NASA Technical Reports Server (NTRS)

    Drews, M. L.

    1994-01-01

    The primary objective of space telerobotics as a research discipline is the augmentation and/or support of extravehicular activity (EVA) with telerobotic activity; this allows increased emplacement of on-orbit assets while providing for their "in situ" management. Development of the requisite telerobot work system requires a well-understood correspondence between EVA and telerobotics that to date has been only partially established. The Telerobotics/EVA Joint Analysis Systems (TEJAS) hypermedia information system uses object-oriented programming to bridge the gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains twenty HyperCard stacks that use a visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about the primitives, technologies, tasks, assumptions, and open issues involved in space telerobot or crew EVA tasks. These stacks are meant to be interactive and can be used with any database system running on a Macintosh, including spreadsheets, relational databases, word-processed documents, and hypermedia utilities. The software provides a means for managing volumes of data and for communicating complex ideas, relationships, and processes inherent to task planning. The stack system contains 3MB of data and utilities to aid referencing, discussion, communication, and analysis within the EVA and telerobotics communities. The six baseline analysis stacks (EVATasks, EVAAssume, EVAIssues, TeleTasks, TeleAssume, and TeleIssues) work interactively to manage and relate basic information which you enter about the crew-EVA and telerobot tasks you wish to analyze in depth. Analysis stacks draw on information in the Reference stacks as part of a rapid point-and-click utility for building scripts of specific task primitives or for any EVA or telerobotics task. Any or all of these stacks can be completely incorporated within other hypermedia applications, or they can be

  13. STS-80 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The flight crew of STS-80, Cmdr. Kenneth D. Cockrell, Pilot Kent V. Rominger, Mission Specialists, Tamara E. Jernigan, Thomas D. Jones, and F. Story Musgrave are seen performing pre-launch activities such as eating the traditional breakfast, being suited-up, and riding out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including the countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters (SRB) from the shuttle. The crew completes the first major objective of the mission with the deployment of the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) on the reusable Shuttle Pallet Satellite. The crew than begins final preparations for the release of Wake Shield. Jones powers up the shuttle's Canadian-built robot arm and grapples the satellite, while Jernigan powers up the Orbiter Space Vision System, which will be used to track precisely the Wake Shield's location. Cockrell places Columbia in a gravity gradient attitude to minimize disturbances during the release. Jones uses the robot arm to hold Wake Shield in position for a two-and-a-half hour cleansing by atomic oxygen molecules before moving the arm to the deploy position. The failure of the hatch to properly open causes the cancellation of all EVA's planned for this mission by Jernigan and Jones. The mission ends with the shuttle landing at the Kennedy Space Center.

  14. Full Mission Astronaut Radiation Exposure Assessments for Long Duration Lunar Surface Missions

    NASA Technical Reports Server (NTRS)

    Adamczyk, Anne M.; Clowdsley, Martha S.; Qualls, Garry D.; Blattnig, Steve B.; Lee, Kerry T.; Fry, Dan J.; Stoffle, Nicholas N.; Simonsen, Lisa C.; Slaba, Tony C.; Walker, Steven A.; Zapp, Edward N.

    2010-01-01

    Risk to astronauts due to ionizing radiation exposure is a primary concern for missions beyond Low Earth Orbit (LEO) and will drive mission architecture requirements, mission timelines, and operational practices. Both galactic cosmic ray (GCR) and solar particle event (SPE) environments pose a risk to astronauts for missions beyond LEO. The GCR environment, which is made up of protons and heavier ions covering a broad energy spectrum, is ever present but varies in intensity with the solar cycle, while SPEs are sporadic events, consisting primarily of protons moving outward through the solar system from the sun. The GCR environment is more penetrating and is more difficult to shield than SPE environments, but lacks the intensity to induce acute effects. Large SPEs are rare, but they could result in a lethal dose, if adequate shielding is not provided. For short missions, radiation risk is dominated by the possibility of a large SPE. Longer missions also require planning for large SPEs; adequate shielding must be provided and operational constraints must allow astronauts to move quickly to shielded locations. The dominant risk for longer missions, however, is GCR exposure, which accumulates over time and can lead to late effects such as cancer. SPE exposure, even low level SPE exposure received in heavily shielded locations, will increase this risk. In addition to GCR and SPE environments, the lunar neutron albedo resulting mainly from the interaction of GCRs with regolith will also contribute to astronaut risk. Full mission exposure assessments were performed for proposed long duration lunar surface mission scenarios. In order to accomplish these assessments, radiation shielding models were developed for a proposed lunar habitat and rover. End-to-End mission exposure assessments were performed by first calculating exposure rates for locations in the habitat, rover, and during extra-vehicular activities (EVA). Subsequently, total mission exposures were evaluated for

  15. Probabilistic Risk Model for Organ Doses and Acute Health Effects of Astronauts on Lunar Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.

    2009-01-01

    Exposure to large solar particle events (SPEs) is a major concern during EVAs on the lunar surface and in Earth-to-Lunar transit. 15% of crew times may be on EVA with minimal radiation shielding. Therefore, an accurate assessment of SPE occurrence probability is required for the mission planning by NASA. We apply probabilistic risk assessment (PRA) for radiation protection of crews and optimization of lunar mission planning.

  16. Bi-objective optimization of a multiple-target active debris removal mission

    NASA Astrophysics Data System (ADS)

    Bérend, Nicolas; Olive, Xavier

    2016-05-01

    The increasing number of space debris in Low-Earth Orbit (LEO) raises the question of future Active Debris Removal (ADR) operations. Typical ADR scenarios rely on an Orbital Transfer Vehicle (OTV) using one of the two following disposal strategies: the first one consists in attaching a deorbiting kit, such as a solid rocket booster, to the debris after rendezvous; with the second one, the OTV captures the debris and moves it to a low-perigee disposal orbit. For multiple-target ADR scenarios, the design of such a mission is very complex, as it involves two optimization levels: one for the space debris sequence, and a second one for the "elementary" orbit transfer strategy from a released debris to the next one in the sequence. This problem can be seen as a Time-Dependant Traveling Salesman Problem (TDTSP) with two objective functions to minimize: the total mission duration and the total propellant consumption. In order to efficiently solve this problem, ONERA has designed, under CNES contract, TOPAS (Tool for Optimal Planning of ADR Sequence), a tool that implements a Branch & Bound method developed in previous work together with a dedicated algorithm for optimizing the "elementary" orbit transfer. A single run of this tool yields an estimation of the Pareto front of the problem, which exhibits the trade-off between mission duration and propellant consumption. We first detail our solution to cope with the combinatorial explosion of complex ADR scenarios with 10 debris. The key point of this approach is to define the orbit transfer strategy through a small set of parameters, allowing an acceptable compromise between the quality of the optimum solution and the calculation cost. Then we present optimization results obtained for various 10 debris removal scenarios involving a 15-ton OTV, using either the deorbiting kit or the disposal orbit strategy. We show that the advantage of one strategy upon the other depends on the propellant margin, the maximum duration allowed

  17. Astronaut Alan Bean deploys ALSEP during first Apollo 12 EVA on moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, Apollo 12 lunar module pilot, deploys components of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA) on the moon. The photo was made by Astronaut Charles Conrad Jr., Apollo 12 commander, using a 70mm handheld Haselblad camera modified for lunar surface usage.

  18. Astronaut Harrison Schmitt seated in Lunar Roving Vehicle during EVA-3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed seated in the Lunar Roving Vehicle (LRV) at Station 9 (Van Serg Crater) during the third Apollo 17 extrvehicular activity (EVA-3) at the Taurus-Littrow landing site. This photograph was taken by Astronaut Eugene A. Cernan, crew commander.

  19. STS-31 Crew Training: Firefighting, Food Tasting, EVA Prep and Post

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

  20. View of the Lunar Module 'Orion' and Lunar Roving Vehicle during first EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A view of the Lunar Module (LM) 'Orion' and Lunar Roving Vehicle (LRV), as photographed by Astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA-1) at the Descates landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain.

  1. Underwater views of STS-11 crewman Robert L. Stewart during EVA training

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Underwater views of STS-11 crewman Robert L. Stewart during extravehicular activity (EVA) training in the cargo bay in the weightless environment training facility (WETF) in bldg 27. Stewart busies himself with donning and doffing of the manned maneuvering unit (MMU) in a mockup of the Shuttle's cargo bay.

  2. Astronaut Jack Lousma participates in EVA to deploy twin pole solar shield

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, participates in the August 6, 1973 extravehicular activity (EVA) during which he and Astronauts Owen K. Garriott, science pilot, deployed the twin pole solar shield to help shade the Orbital Workshop (OWS). Note the reflection of the Apollo Telescope Mount and the Earth in Lousma's helmet visor.

  3. Astronaut Jack Lousma participates in EVA to deploy twin pole solar shield

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, participates in the August 6, 1973 extravehicular activity (EVA) during which he and Astronaut Owen K. Garriott, science pilot, deployed the twin pole solar shield to help shade the Orbital Workshop (OWS). Note the striking reflection of the Earth in Lousma's helmet visor.

  4. Space shuttle EVA/IVA support equipment requirements study. Volume 1: Final summary report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the support equipment requirements for space shuttle intravehicular and extravehicular activities. The subjects investigated are; (1) EVA/IVA task identification and analysis,. (2) primary life support system, (3) emergency life support system, (4) pressure suit assembly, (5) restraints, (6) work site provision, (7) emergency internal vehicular emergencies, and (8) vehicular interfaces.

  5. Astronaut James Irwin works at Lunar Roving Vehicle during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, works at the Lunar Roving Vehicle during the first Apollo 15 lunar surface extravehicular activity (EVA-1) at the Hadley-Apennine landing site. The shadow of the Lunar Module 'Falcon' is in the foreground. This view is looking northeast, with Mount Hadley in the background. This photograph was taken by Astronaut David R. Scott, commander.

  6. Overview on calibration and validation activities for ESA's Soil Moisture and Ocean Salinity mission

    NASA Astrophysics Data System (ADS)

    Mecklenburg, S.; Bouzinac, C.; Delwart, S.

    2009-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission is the European Space Agency's (ESA) second Earth Explorer Opportunity mission. The scientific objectives of the SMOS mission directly respond to the current lack of global observations of soil moisture and ocean salinity, two key variables used in predictive hydrological, oceanographic and atmospheric models. SMOS observations will also provide information on the characterisation of ice and snow covered surfaces and the sea ice effect on ocean-atmosphere heat fluxes and dynamics, which affects large-scale processes of the Earth's climate system. The SMOS launch is foreseen for summer 2009. A major undertaking in any environmental science related satellite mission are the calibration and validation activities. Calibration is an important prerequisite to the performance verification, which demonstrates that the instrument meets its requirements. It is also important for the validation of geophysical parameters, such as soil moisture and sea surface salinity. The validation of the data will be handled through a combination of ESA led activities and national efforts. The SMOS Validation and Retrieval Team (SVRT) comprises the scientific contributions that will be made by the projects selected in response to the SMOS calibration and validation Announcement of Opportunity in 2005 as well as the two level 2 Expert Support Laboratories being involved in the development of the soil moisture and sea surface salinity data products. For the validation of the soil moisture data products ESA's activities will focus on two main sites, the Valencia Anchor Station, located in the East of Spain, and the Upper Danube Catchment, located in the South of Germany. In preparation to the SMOS commissioning phase, airborne rehearsal campaigns were conducted in spring 2008 over both aforementioned key sites. These will be coupled with a SMOS matchup generation exercise to verify that the methodology proposed actually meets the foreseen

  7. Eva Szabo, MD | Division of Cancer Prevention

    Cancer.gov

    Dr. Eva Szabo is Chief of the Lung and Upper Aerodigestive Cancer Research Group at the NCI Division of Cancer Prevention. She graduated from Yale University with a BS in Molecular Biophysics and Biochemistry, received her MD from Duke University, and completed her internal medicine residency at Bellevue-NYU Medical Center. After completing her medical oncology fellowship at the National Cancer Institute, Dr. |

  8. STS-34 Mission Specialist (MS) Chang-Diaz tests CCA prior to WETF exercises

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-34 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Franklin R. Chang-Diaz, wearing extravehicular mobility unit (EMU), tests his communications carrier assembly (CCA) with the help of Rockwell Space Operations (RSO) technician Pam S. Peters (right) prior to donning his EMU helmet. These procedures are necessary for an extravehicular activity (EVA) contingency exercise (underwater simulation) in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Chang-Diaz stands on a platform that will lower him into the WETF's 25 ft deep pool.

  9. A Launch Requirements Trade Study for Active Space Radiation Shielding for Long Duration Human Missions

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Bollweg, Ken; Martin, Trent; Westover, Shayne; Battiston, Roberto; Burger, William J.; Meinke, Rainer

    2015-01-01

    A trade study for an active shielding concept based on magnetic fields in a solenoid configuration versus mass based shielding was developed. Monte Carlo simulations were used to estimate the radiation exposure for two values of the magnetic field strength and the mass of the magnetic shield configuration. For each field strength, results were reported for the magnetic region shielding (end caps ignored) and total region shielding (end caps included but no magnetic field protection) configurations. A value of 15 cSv was chosen to be the maximum exposure for an astronaut. The radiation dose estimate over the total shield region configuration cannot be used at this time without a better understanding of the material and mass present in the end cap regions through a detailed vehicle design. The magnetic shield region configuration, assuming the end cap regions contribute zero exposure, can be launched on a single Space Launch System rocket and up to a two year mission can be supported. The magnetic shield region configuration results in two versus nine launches for a comparable mass based shielding configuration. The active shielding approach is clearly more mass efficient because of the reduced number of launches than the mass based shielding for long duration missions.

  10. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    NASA Astrophysics Data System (ADS)

    Strugarek, Antoine; Janitzek, Nils; Lee, Arrow; Löschl, Philipp; Seifert, Bernhard; Hoilijoki, Sanni; Kraaikamp, Emil; Isha Mrigakshi, Alankrita; Philippe, Thomas; Spina, Sheila; Bröse, Malte; Massahi, Sonny; O'Halloran, Liam; Pereira Blanco, Victor; Stausland, Christoffer; Escoubet, Philippe; Kargl, Günter

    2015-02-01

    Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D structure of coronal loops and to study the trigger mechanisms of CMEs in solar Active Regions (ARs) as well as their evolution and propagation processes in the inner heliosphere. It also aims to provide monitoring and forecasting of geo-effective CMEs and CIRs. OSCAR would contribute to significant advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1 AU from the Sun. The spacecraft will be separated by an angle of 68° to provide optimum stereoscopic view of the solar corona. We study the feasibility of such a mission and propose a preliminary design for OSCAR.

  11. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Carpenter, K. G.; Schrijver, C. J.; Karovska, M.; Si Vision Mission Team

    2009-09-01

    The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a ``Flagship and Landmark Discovery Mission'' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a ``Pathways to Life Observatory'' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) and its ability to image the Biggest, Baddest, Coolest Stars.

  12. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth; Schrijver, Carolus J.; Karovska, Margarita

    2007-01-01

    The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a 'Flagship and Landmark Discovery Mission' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a 'Pathways to Life Observatory' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) its ability to image the 'Biggest, Baddest, Coolest Stars'.

  13. Initial Work Toward a Robotically Assisted EVA Glove

    NASA Technical Reports Server (NTRS)

    Rogers, J.; Peters, B.; McBryan, E.; Laske, E.

    2016-01-01

    The Space Suit RoboGlove is a device designed to provide additional grasp strength or endurance for an EVA crew member since gloved hand performance is a fraction of what the unencumbered human hand can achieve. There have been past efforts to approach this problem by employing novel materials and construction techniques to the glove design, as well as integrating powered assistance devices. This application of the NASA/GM RoboGlove technology uses a unique approach to integrate the robotic actuators and sensors into a Phase VI EVA glove. This design provides grasp augmentation to the glove user while active, but can also function as a normal glove when disabled. Care was taken to avoid adding excessive bulk to the glove or affecting tactility by choosing low-profile sensors and extrinsically locating the actuators. Conduits are used to guide robotic tendons from linear actuators, across the wrist, and to the fingers. The second generation of the SSRG includes updated electronics, sensors, and actuators to improve performance. The following discusses the electromechanical design, softgoods integration, and control system of the SSRG. It also presents test results from the first integration of a powered mobility element onto a space suit, the NASA Mark III. Early results show that sensor integration did not impact tactile feedback in the glove and the actuators show potential for reduction in grasp fatigue over time.

  14. Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    NASA s plans for the manned exploration of the moon and Mars will rely heavily on the development of a reliable communications infrastructure on the surface and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. Trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., surface relays, satellites, landers) will necessitate wide-area coverage, high gain, low mass, deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the past year, NASA Glenn Research Center has been heavily involved in the development of candidate antenna technologies with the potential for meeting these strict requirements. This technology ranges from electrically small antennas to phased array and large inflatable structures. A summary of this overall effort is provided, with particular attention being paid to small antenna designs and applications. A discussion of the Agency-wide activities of the Exploration Systems Mission Directorate (ESMD) in forthcoming NASA missions, as they pertain to the communications architecture for the lunar and Martian networks is performed, with an emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable

  15. Overview on calibration and validation activities for ESA's Soil Moisture and Ocean Salinity Mission

    NASA Astrophysics Data System (ADS)

    Mecklenburg, Susanne; Bouzinac, Catherine; Delwart, Steven

    2010-05-01

    The Soil Moisture and Ocean Salinity (SMOS) mission, launched on 2 November 2009, is the European Space Agency's (ESA) second Earth Explorer Opportunity mission. The scientific objectives of the SMOS mission directly respond to the current lack of global observations of soil moisture and ocean salinity, two key variables used in predictive hydrological, oceanographic and atmospheric models. SMOS observations will also provide information on the characterisation of ice and snow covered surfaces and the sea ice effect on ocean-atmosphere heat fluxes and dynamics, which affects large-scale processes of the Earth's climate system. A major undertaking in any environmental science related satellite mission are the calibration and validation activities. Calibration is an important prerequisite to the performance verification, which demonstrates that the instrument meets its requirements. It is also important for the validation of geophysical parameters, such as soil moisture and sea surface salinity. The validation of the data will be handled through a combination of ESA led activities and national efforts. The SMOS Validation and Retrieval Team (SVRT) comprises the scientific contributions that will be made by the projects selected in response to the SMOS calibration and validation Announcement of Opportunity in 2005 as well as the two level 2 Expert Support Laboratories being involved in the development of the soil moisture and sea surface salinity data products. For the validation of the soil moisture data products ESA's activities will focus on two main sites, the Valencia Anchor Station, located in the East of Spain, and the Upper Danube Catchment, located in the South of Germany. In preparation to the SMOS commissioning phase, airborne rehearsal campaigns were conducted in spring 2008 over both aforementioned key sites and will be repeated, in collaboration with the French Space Agency CNES, in spring 2010. These will be coupled with a SMOS matchup generation

  16. Astronaut Russell Schweickart photographed during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot, operates a 70mm Hasselblad camera during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. The Command/Service Module and the Lunar Module 3 'Spider' are docked. This view was taken form the Command Module 'Gumdrop'. Schweickart, wearing an Extravehicular Mobility Unit (EMU), is standing in 'golden slippers' on the Lunar Module porch. On his back, partially visible, are a Portable Life Support System (PLSS) and an Oxygen Purge System (OPS).

  17. MAPGEN: Mixed-Initiative Activity Planning for the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Ai-Chang, Mitchell; Bresina, John; Hsu, Jennifer; Jonsson, Ari; Kanefsky, Bob; McCurdy, Michael; Morris, Paul; Rajan, Kanna; Vera, Alonso; Yglesias, Jeffrey

    2004-01-01

    This document describes the Mixed initiative Activity Plan Generation system MAPGEN. This system is one of the critical tools in the Mars Exploration Rover mission surface operations, where it is used to build activity plans for each of the rovers, each Martian day. The MAPGEN system combines an existing tool for activity plan editing and resource modeling, with an advanced constraint-based reasoning and planning framework. The constraint-based planning component provides active constraint and rule enforcement, automated planning capabilities, and a variety of tools and functions that are useful for building activity plans in an interactive fashion. In this demonstration, we will show the capabilities of the system and demonstrate how the system has been used in actual Mars rover operations. In contrast to the demonstration given at ICAPS 03, significant improvement have been made to the system. These include various additional capabilities that are based on automated reasoning and planning techniques, as well as a new Constraint Editor support tool. The Constraint Editor (CE) as part of the process for generating these command loads, the MAPGEN tool provides engineers and scientists an intelligent activity planning tool that allows them to more effectively generate complex plans that maximize the science return each day. The key to the effectiveness of the MAPGEN tool is an underlying constraint-based planning and reasoning engine.

  18. EVA suit 2000: A joint European/Russian space suit design

    NASA Astrophysics Data System (ADS)

    Möller, P.; Loewens, R.; Abramov, I. P.; Albats, E. A.

    1995-07-01

    A feasibility study in 1992 showed the benefits of a common European/Russian space suit development, EVA Suit 2000, replacing the Russian space suit Orlan-DMA and the planned European Hermes EVA space suit at the turn of the century. This EVA Suit 2000 is a joint development initiated by the European Space Agency (ESA) and the Russian Space Agency (RKA). The main objectives of this development program are: • first utilization aboard the Russian Space Station MIR-2 • performance improvement with respect to current operational suits • development cost reduction. Russian experience gained with the present extravehicular activity (EVA) suit on the MIR Space Station and extensive application of European Technologies will be needed to achieve these ambitious goals. This paper presents the current status of the development activities, the space suit system design and concentrates in more detail on life support aspects. Specific subjects addressed will include the overall life support conceptual architecture, design features, crew comfort and operational considerations.

  19. Towards improved quantification of vegetation photosynthetic activity at global scale: the FLuorescence EXplorer (FLEX) mission

    NASA Astrophysics Data System (ADS)

    Moreno, Jose

    2014-05-01

    The fluorescence signal, originated from the core complexes of the photosynthetic machinery, is a sensitive indicator of the actual photosynthesis in both healthy and physiologically stressed vegetation, which can be used as a powerful non-invasive marker to track the status, resilience, and recovery of photochemical processes. This is of particular interest for the improvements in the predictive capability of global carbon cycle models through new parameterizations for canopy photosynthesis and the corresponding exchange processes of energy, water and carbon between the surface and the atmosphere. The shape of the fluorescence emission spectrum consists of two peaks having broad bands with maxima around 685 nm and 740 nm. The variations in amplitude and shape of the emission reflect the efficiency of photosynthetic electron transport. The integral of the overall fluorescence emission provides information about actual photosynthetic light conversion. The shape of the emission spectrum provides additional information about the vegetation health status. While most of the information that has been acquired by remote sensing of the Earth's surface about vegetation conditions and photosynthetic activity has come from "reflected" light in the solar domain, the ESA's Earth Explorer candidate FLEX (Fluorescence EXplorer) mission is the first space mission focused on the estimation of fluorescence emission by terrestrial vegetation on a global scale with high spatial resolution and resolving the spectral shape of fluorescence emission. The FLEX mission also includes explicit measurement of photochemical changes in reflectance (i.e., PRI), canopy temperature measurements and all the relevant variables (chlorophyll content, Leaf Area Index, etc.) needed to asses the actual physiological status of vegetation and to provide quantitative estimates of photosynthetic rates and gross primary production. FLEX is one of two candidate Earth Explorer-8 missions currently under Phase A

  20. Recent Development Activities and Future Mission Applications of NASA's Evolutionary Xenon Thruster (NEXT)

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Pencil, Eric J.

    2014-01-01

    NASAs Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. This presentation is a follow-up to the NEXT project overviews presented in 2009-2010. It reviews the status of the NEXT project, presents the current system performance characteristics, and describes planned activities in continuing the transition of NEXT technology to a first flight. In 2013 a voluntary decision was made to terminate the long duration test of the NEXT thruster, given the thruster design has exceeded all expectations by accumulating over 50,000 hours of operation to demonstrate around 900 kg of xenon throughput. Besides its promise for upcoming NASA science missions, NEXT has excellent potential for future commercial and international spacecraft applications.

  1. Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad

    2015-01-01

    This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.

  2. Future lunar mission Active X-ray Spectrometer development: Surface roughness and geometry studies

    NASA Astrophysics Data System (ADS)

    Naito, M.; Hasebe, N.; Kusano, H.; Nagaoka, H.; Kuwako, M.; Oyama, Y.; Shibamura, E.; Amano, Y.; Ohta, T.; Kim, K. J.; Lopes, J. A. M.

    2015-07-01

    The Active X-ray Spectrometer (AXS) is considered as one of the scientific payload candidates for a future Japanese mission, SELENE-2. The AXS consists of pyroelectric X-ray generators and a Silicon Drift Detector to conduct X-Ray Fluorescence spectroscopy (XRF) on the Moon to measure major elements: Mg, Al, Si, Ca, Ti, and Fe; minor elements: Na, K, P, S, Cr and Mn; and the trace element Ni depending on their concentration. Some factors such as roughness, grain size and porosity of sample, and the geometry of X-ray incidence, emission and energy will affect the XRF measurements precision. Basic studies on the XRF are required to develop the AXS. In this study, fused samples were used to make homogeneous samples free from the effect of grain size and porosity. Experimental and numerical studies on the XRF were conducted to evaluate the effects from incidence and emission angles and surface roughness. Angle geometry and surface roughness will be optimized for the design of the AXS on future missions from the results of the experiment and the numerical simulation.

  3. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives in Fiscal Year 2011

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Jennings, Mallory A.; Lamberth, Erika Guillory

    2012-01-01

    NASA's goals to send humans beyond low Earth orbit will involve the need for a strong engineering workforce. Research indicates that student interest in science, technology, engineering, and math (STEM) areas is on the decline. According to the Department of Education, the United States President has mandated that 100,000 educators be trained in STEM over the next decade to reduce this trend. NASA has aligned its Education and Public Outreach (EPO) initiatives to include emphasis in promoting STEM. The Extravehicular Activity (EVA) Systems Project Office at the NASA Johnson Space Center actively supports this NASA initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for exploration missions. This paper summarizes the EVA Systems EPO efforts and metrics from fiscal year 2011.

  4. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives in Fiscal Year 2011

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Lamberth, Erika Guillory

    2011-01-01

    NASA's goals to send humans beyond low Earth orbit will involve the need for a strong engineering workforce. Research indicates that student interest in science, technology, engineering, and math (STEM) areas is on the decline. According to the Department of Education, the United States President has mandated that 100,000 educators be trained in STEM over the next decade to reduce this trend. NASA has aligned its Education and Public Outreach (EPO) initiatives to include emphasis in promoting STEM. The Extravehicular Activity (EVA) Systems Project Office at the NASA Johnson Space Center actively supports this NASA initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for exploration missions. This paper summarizes the EVA Systems EPO efforts and metrics from fiscal year 2011.

  5. Active debris multi-removal mission concept based on hybrid propulsion

    NASA Astrophysics Data System (ADS)

    Tadini, P.; Tancredi, U.; Grassi, M.; Anselmo, L.; Pardini, C.; Francesconi, A.; Branz, F.; Maggi, F.; Lavagna, M.; DeLuca, L. T.; Viola, N.; Chiesa, S.; Trushlyakov, V.; Shimada, T.

    2014-10-01

    During the last 40 years, the mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to about 7000 metric tons. Most of the cross-sectional area and mass (97% in low Earth orbit) is concentrated in about 4500 intact abandoned objects plus a further 1000 operational spacecraft. Analyses have shown that the most effective mitigation strategy should focus on the disposal of objects with larger cross-sectional area and mass from densely populated orbits. Recent NASA results have shown that the worldwide adoption of mitigation measures in conjunction with active yearly removal of approximately 0.2-0.5% of the abandoned objects would stabilize the debris population. Targets would have typical masses between 500 and 1000 kg in the case of spacecraft, and of more than 1000 kg for rocket upper stages. In the case of Cosmos-3M second stages, more than one object is located nearly in the same orbital plane. This provides the opportunity of multi-removal missions, more suitable for yearly removal rate and cost reduction needs. This paper deals with the feasibility study of a mission for the active removal of large abandoned objects in low Earth orbit. In particular, a mission is studied in which the removal of two Cosmos-3M second stages, that are numerous in low Earth orbit, is considered. The removal system relies on a Chaser spacecraft which performs rendezvous maneuvers with the two targets. The first Cosmos-3M stage is captured and an autonomous de-orbiting kit, carried by the Chaser, is attached to it. The de-orbiting kit includes a Hybrid Propulsion Module, which is remotely ignited to perform stage disposal and controlled reentry after Chaser separation. Then, the second Cosmos-3M stage is captured and, in this case, the primary propulsion system of the Chaser is used for the disposal of the mated configuration. Critical mission aspects and related technologies are investigated at a preliminary level. In

  6. Global Change Data Center: Mission, Organization, Major Activities, and 2003 Highlights

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Rapid, efficient access to Earth sciences data from satellites and ground validation stations is fundamental to the nation's efforts to understand the effects of global environmental changes and their implications for public policy. It becomes a bigger challenge in the future when data volumes increase from current levels to terabytes per day. Demands on data storage, data access, network throughput, processing power, and database and information management are increased by orders of magnitude, while budgets remain constant and even shrink.The Global Change Data Center's (GCDC) mission is to develop and operate data systems, generate science products, and provide archival and distribution services for Earth science data in support of the U.S. Global Change Program and NASA's Earth Sciences Enterprise. The ultimate product of the GCDC activities is access to data to support research, education, and public policy.

  7. Biomedical Support of U.S. Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Dervay, J. P.; Gillis, D.; McMann, H. J.; Thomas, K. S.

    2007-01-01

    The world's first extravehicular activity (EVA) was performed by A. A. Leonov on March 18, 1965 during the Russian Voskhod-2 mission. The first US EVA was executed by Gemini IV astronaut Ed White on June 3, 1965, with an umbilical tether that included communications and an oxygen supply. A hand-held maneuvering unit (HHMU) also was used to test maneuverability during the brief EVA; however the somewhat stiff umbilical limited controlled movement. That constraint, plus difficulty returning through the vehicle hatch, highlighted the need for increased thermal control and improved EVA ergonomics. Clearly, requirements for a useful EVA were interrelated with the vehicle design. The early Gemini EVAs generated requirements for suits providing micro-meteor protection, adequate visual field and eye protection from solar visual and infrared radiation, gloves optimized for dexterity while pressurized, and thermal systems capable of protecting the astronaut while rejecting metabolic heat during high workloads. Subsequent Gemini EVAs built upon this early experience and included development of a portable environmental control and life support systems (ECLSS) and an astronaut maneuvering unit. The ECLSS provided a pressure vessel and controller with functional control over suit pressure, oxygen flow, carbon dioxide removal, humidity, and temperature control. Gemini EVA experience also identified the usefulness of underwater neutral buoyancy and altitude chamber task training, and the importance of developing reliable task timelines. Improved thermal management and carbon dioxide control also were required for high workload tasks. With the Apollo project, EVA activity was primarily on the lunar surface; and suit durability, integrated liquid cooling garments, and low suit operating pressures (3.75 pounds per square inch absolute [psia] or 25.8 kilopascal [kPa],) were required to facilitate longer EVAs with ambulation and significant physical workloads with average metabolic

  8. The odontological identification of Eva Braun Hitler.

    PubMed

    Keiser-Nielsen, S; Strøm, F

    1983-01-01

    On May 7th-9th, 1945, a team of Russian pathologists autopsied several bodies found in and near the Fuehrer Bunker in Berlin; among them, a female body (No. 13) was later identified as that of Eva Braun Hitler (EBH), mainly by means of a gold bridge from the lower right jaw. A postmortem photograph of this bridge also shows a separate gold filling. Data now available on the dental treatment of EBH have permitted the present authors to substantiate that this gold filling also came from the mouth of EBH. Further speculation about the fate of EBH would henceforth seem professionally unfounded.

  9. ACTIVITIES CONDUCTED AT IPSL AND ESA TO SUPPORT A CO2 DIAL SPACE MISSION FOR CLIMATE CHANGE ISSUE

    NASA Astrophysics Data System (ADS)

    Flamant, P. H.; Gibert, F.; Édouart, D.; Cuesta, J.; Bruneau, D.

    2009-12-01

    Since 2002, the Institut-Pierre-Simon-Laplace (IPSL) is involved in several projects addressing CO2 monitoring by Dial lidar for environmental science and space borne applications. The activity started with the development of a 2-µm CO2 heterodyne DiAL project. The first instrumental activity gave rise to two new programs to develop a transportable CO2 DiAL in a container using fiber technologies and then an airborne system. In 2006, “A-SCOPE” a proposal aiming at a space borne Integrated Path CO2 DiAL mission has been submitted to the European Space Agency (ESA) in response to a Call for Ideas in the framework of the Earth Explorer Mission program. The IPDA technique makes use of signal returns from the surface. Accordingly canopy height and surface information will be provided as spin-off products in addition to dry CO2 mixing ratio as the main products. A-SCOPE has been selected with 5 other missions for phase “0” study and preliminary feasibility assessments by 2 European industrial consortia. A Mission Assessment Group has been formed by ESA to support the mission definition and write a Report for Assessment (ESA SP-1313/1). A-SCOPE and the 5 other potential missions have been presented and discussed during the Users Consultation Meeting (UMC) in Lisbon, Portugal, 20-21 January 2009. The A-SCOPE Report for Assessment, the discussion during UMC and on-going activities will be presented at the conference to support a future mission like “A-SCOPE”.

  10. Astronaut David Scott practicing for Gemini 8 EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut David R. Scott practicing for Gemini 8 extravehicular acitivity (EVA) in bldg 4 of the Manned Spacecraft Center on the air bearing floor. He is wearing the the Hand-Held Maneuvering Unit which he will use during the EVA.

  11. An air bearing fan for EVA suit ventilation

    NASA Technical Reports Server (NTRS)

    Murry, Roger P.

    1990-01-01

    The portable life-support system (PLSS) ventilation requirements are outlined, along with the application of a high-speed axial fan technology for extravehicular-activity (EVA) space-suit ventilation. Focus is placed on a mechanical design employing high-speed gas bearings, permanent magnet rotor, and current-fed chopper/inverter electronics. The operational characteristics of the fan unit and its applicability for use in a pure-oxygen environment are discussed. It delivers a nominal 0.17 cu m/min at 1.24 kPa pressure rise using 13.8 w of input power. It is shown that the overall selection of materials for all major component meets the NASA requirements.

  12. Retrieval of Sea Surface Salinity and Wind from The NASA Soil Moisture Active Passive Mission Data

    NASA Astrophysics Data System (ADS)

    Yueh, S. H.; Fore, A.; Tang, W.; Hayashi, A.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission, the first Earth Science Decadal Survey mission, was launched January 31, 2015 to provide high-resolution, frequent-revisit global mapping of soil moisture. SMAP has two instruments, a polarimetric radiometer and a multi-polarization synthetic aperture radar. Both instruments operate at L-band frequencies (~ 1GHz) and share a single 6-m rotating mesh antenna, producing a fixed incidence angle conical scan at 40⁰ across a 1000-km swath and a 2-3 day global revisit. The SMAP SSS and ocean surface wind retrieval algorithm developed at the Jet Propulsion Laboratory leverages the QuikSCAT and Aquarius algorithms to account for the two-look geometry (fore and aft looks from the conical scan) and dual-polarization observations for simultaneous retrieval of SSS and wind speed. The retrieval algorithm has been applied to more than three months of SMAP radiometer data. Comparison with the European Center for Medium-Range Weather Forecasting (ECMWF) wind speed suggests that the SMAP wind speed reaches an accuracy of about 0.7 ms-1. The preliminary assessment of the SMAP SSS products gridded at 50 km spatial resolution and weekly intervals is promising. The spatial patterns of the SSS agree well with climatological distributions, but exhibit several unique spatial and temporal features. The temporal evolutions of freshwater plumes from several major rivers, such as the Amazon, Niger, Congo, Ganges, and Mississippi, are all consistent with the timing of rainy and dry seasons, indicated in the SMAP's soil moisture products. Rigorous accuracy assessment will be performed by comparison with in situ SSS data from buoys and ARGO floats. The SMAP evaluation products will be released to the public prior to November 2015.

  13. EVA Hazards due to TPS Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Stewart, Christine E.

    2007-01-01

    Tile inspection and repair activities have implicit hazards associated with them. When an Extra Vehicular Activities (EVA) crewmember and associated hardware are added into the equation, additional hazards are introduced. Potential hazards to the Extravehicular Mobility Unit (EMU), the Orbiter or the crew member themselves are created. In order to accurately assess the risk of performing a TPS inspection or repair, an accurate evaluation of potential hazards and how adequately these hazards are controlled is essential. The EMU could become damaged due to sharp edges, protrusions, thermal extremes, molten metal or impact with the Orbiter. Tools, tethers and the presence of a crew member in the vicinity of the Orbiter Thermal Protection System (TPS) pose hazards to the Orbiter. Hazards such as additional tile or Reinforced Carbon-Carbon (RCC) damage from a loose tool, safety tethers, crewmember or arm impact are introduced. Additionally, there are hazards to the crew which should be addressed. Crew hazards include laser injury, electrical shock, inability to return to the airlock for EMU failures or Orbiter rapid safing scenarios, as well as the potential inadvertent release of a crew member from the arm/boom. The aforementioned hazards are controlled in various ways. Generally, these controls are addressed operationally versus by design, as the majority of the interfaces are to the Orbiter and the Orbiter design did not originally account for tile repair. The Shuttle Remote Manipulator System (SRMS), for instance, was originally designed to deploy experiments, and therefore has insufficient design controls for retention of the Orbiter Boom Sensor System (OBSS). Although multiple methods to repair the Orbiter TPS exist, the majority of the hazards are applicable no matter which specific repair method is being performed. TPS Inspection performed via EVA also presents some of the same hazards. Therefore, the hazards common to all TPS inspection or repair methods will

  14. Heat shrinkage of electron beam modified EVA

    NASA Astrophysics Data System (ADS)

    Datta, Sujit K.; Chaki, T. K.; Tikku, V. K.; Pradhan, N. K.; Bhowmick, A. K.

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%.

  15. NASA's asteroid redirect mission: Robotic boulder capture option

    NASA Astrophysics Data System (ADS)

    Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-07-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (˜4--10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (˜1--5 m) via robotic manipulators from the surface of a larger (˜100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU_3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense.

  16. Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups

    NASA Technical Reports Server (NTRS)

    Rabel, Emily; Aitchison, Lindsay

    2015-01-01

    During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

  17. Cost-Effective Telemetry and Command Ground Systems Automation Strategy for the Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Choi, Joshua S.; Sanders, Antonio L.

    2012-01-01

    Soil Moisture Active Passive (SMAP) is an Earth-orbiting, remote-sensing NASA mission slated for launch in 2014.[double dagger] The ground data system (GDS) being developed for SMAP is composed of many heterogeneous subsystems, ranging from those that support planning and sequencing to those used for real-time operations, and even further to those that enable science data exchange. A full end-to-end automation of the GDS may result in cost savings during mission operations, but it would require a significant upfront investment to develop such comprehensive automation. As demonstrated by the Jason-1 and Wide-field Infrared Survey Explorer (WISE) missions, a measure of "lights-out" automation for routine, orbital pass ground operations can still reduce mission cost through smaller staffing of operators and limited work hours. The challenge, then, for the SMAP GDS engineering team is to formulate an automated operations strategy--and corresponding system architecture--to minimize operator intervention during operations, while balancing the development cost associated with the scope and complexity of automation. This paper discusses the automated operations approach being developed for the SMAP GDS. The focus is on automating the activities involved in routine passes, which limits the scope to real-time operations. A key subsystem of the SMAP GDS--NASA's AMMOS Mission Data Processing and Control System (AMPCS)--provides a set of capabilities that enable such automation. Also discussed are the lights-out pass automations of the Jason-1 and WISE missions and how they informed the automation strategy for SMAP. The paper aims to provide insights into what is necessary in automating the GDS operations for Earth satellite missions.

  18. Cost-Effective Telemetry and Command Ground Systems Automation Strategy for the Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Choi, Josh; Sanders, Antonio

    2012-01-01

    Soil Moisture Active Passive (SMAP) is an Earth-orbiting, remote-sensing NASA mission slated for launch in 2014. The ground data system (GDS) being developed for SMAP is composed of many heterogeneous subsystems, ranging from those that support planning and sequencing to those used for real-time operations, and even further to those that enable science data exchange. A full end-to-end automation of the GDS may result in cost savings during mission operations, but it would require a significant upfront investment to develop such a comprehensive automation. As demonstrated by the Jason-1 and Wide-field Infrared Survey Explorer (WISE) missions, a measure of "lights-out" automation for routine, orbital pass, ground operations can still reduce mission costs through smaller staffing of operators and limiting their working hours. The challenge, then, for the SMAP GDS engineering team, is to formulate an automated operations strategy--and corresponding system architecture -- to minimize operator intervention during routine operations, while balancing the development costs associated with the scope and complexity of automation. This paper discusses the automated operations approach being developed for the SMAP GDS. The focus is on automating the activities involved in routine passes, which limits the scope to real-time operations. A key subsystem of the SMAP GDS -- NASA's AMMOS Mission Data Processing and Control System (AMPCS) -- provides a set of capabilities that enable such automation. Also discussed are the lights-out pass automations of the Jason-1 and WISE missions and how they informed the automation strategy for SMAP. The paper aims to provide insights into what is necessary in automating the GDS operations for Earth satellite missions.

  19. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  20. The Soil Moisture Active and Passive Mission (SMAP): Science and Applications

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni

    2009-01-01

    The Soil Moisture Active and Passive mission (SMAP) will provide global maps of soil moisture content and surface freeze/thaw state. Global measurements of these variables are critical for terrestrial water and carbon cycle applications. The SMAP observatory consists of two multipolarization L-band sensors, a radar and radiometer, that share a deployable-mesh reflector antenna. The combined observations from the two sensors will allow accurate estimation of soil moisture at hydrometeorological (10 km) and hydroclimatological (40 km) spatial scales. The rotating antenna configuration provides conical scans of the Earth surface at a constant look angle. The wide-swath (1000 km) measurements will allow global mapping of soil moisture and its freeze/thaw state with 2-3 days revisit. Freeze/thaw in boreal latitudes will be mapped using the radar at 3 km resolution with 1-2 days revisit. The synergy of active and passive observations enables measurements of soil moisture and freeze/thaw state with unprecedented resolution, sensitivity, area coverage and revisit.

  1. Autonomous Volcanic Activity Detection with ASE on EO-1 Hyperion: Applications for Planetary Missions

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Baker, V.; Castano, R.; Chien, S.; Cichy, B.; Doggett, T.; Dohm, J.; Greeley, R.; Rabideau, G.; Sherwood, R.; Williams, K.; ASE Project Team

    2003-05-01

    The New Millennium Program (NMP) Space Technology 6 (ST-6) Autonomous Sciencecraft Experiment (ASE) will fly two scene classifiers on the Earth Orbiting 1 (EO-1) spacecraft in the fall of 2003, and will demonstrate autonomous, onboard processing of Hyperion imager 0.4-2.4 micron hyperspectral data, and autonomous, science-driven planning and acquisition of subsequent observations. ASE is an experiment to meet NASA's call for systems with reduced downlink and onboard data processing to enable autonomous missions. ASE software is divided into three classes: (1) spacecraft command and control; (2) an onboard planner (CASPER); and (3) modular science algorithms, which are used to process raw data to search out specific features and spectral signatures. The ASE Science Team has developed scene classifiers to detect thermal emission in both day and nighttime Hyperion data, and are continuing to develop other scene classifiers for ice, snow, water and land for future release and flight on EO-1. Once uploaded, the thermal scene classifier effectively turns the EO-1 spacecraft into an autonomously operating and reacting volcanic activity detector. It is possible to envision such a capability on spacecraft observing volcanism on Io and Triton, autonomously identifying and classifying activity, identifying sites deserving of closer scrutiny, and retasking the spacecraft to observe them, thus fulfilling NASA's goal of fully-autonomous, science-driven spacecraft. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.

  2. Lasercom for interplanetary missions: recent European activities, future possibilities, and synergy aspects

    NASA Astrophysics Data System (ADS)

    Dreischer, T.; Arnold, F.; Kudielka, K.; Tissot, Y.; Weigel, T.

    2010-02-01

    Science return and high bandwidth communications are key issues to support the foreseen endeavors on spaceflights to the Moon and beyond. For a given mass, power consumption and volume, laser communications can offer an increase in telemetry bandwidth over classical RF technology allowing for a variety of new options, like more raw scientific data being sent back to Earth where data processing can be performed on ground. Recent European activities in the field of laser communications investigated mission scenarios for deep space and within the Earth's sphere of influence. Various link topologies have been investigated, involving Lissajous orbits at Libration points of the Earth-Sun and the Moon- Earth system, and also Martian orbiters. Different types of lasercom terminal concepts have been investigated, either operating fully autonomously or being attached to dedicated telecom orbiter spacecraft. Enhanced pulse position modulation formats were tested together with tailored FEC and interleaver technology in inter-island test campaigns using ESA's optical ground station on Tenerife. The paper summarizes the findings from all activities, highlights the potential and describes synergy aspects of involved technologies, all in view using lasercom as part of an integrated RF-optical TT&C subsystem to support enhanced science return.

  3. Designing remote operations strategies to optimize science mission goals: Lessons learned from the Moon Mars Analog Mission Activities Mauna Kea 2012 field test

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Russell, P.; ten Kate, I. L.; Noble, S.; Graff, T.; Graham, L. D.; Eppler, D.

    2015-08-01

    The Moon Mars Analog Mission Activities Mauna Kea 2012 (MMAMA 2012) field campaign aimed to assess how effectively an integrated science and engineering rover team operating on a 24-h planning cycle facilitates high-fidelity science products. The science driver of this field campaign was to determine the origin of a glacially-derived deposit: was the deposit the result of (1) glacial outwash from meltwater; or (2) the result of an ice dam breach at the head of the valley? Lessons learned from MMAMA 2012 science operations include: (1) current rover science operations scenarios tested in this environment provide adequate data to yield accurate derivative products such as geologic maps; (2) instrumentation should be selected based on both engineering and science goals; and chosen during, rather than after, mission definition; and (3) paralleling the tactical and strategic science processes provides significant efficiencies that impact science return. The MER-model concept of operations utilized, in which rover operators were sufficiently facile with science intent to alter traverse and sampling plans during plan execution, increased science efficiency, gave the Science Backroom time to develop mature hypotheses and science rationales, and partially alleviated the problem of data flow being greater than the processing speed of the scientists.

  4. View of activity in Mission Control Center during Lunar Module liftoff

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The liftoff from the Moon of the Apollo 15 Lunar Module 'Falcon' ascent stage is viewed on the television monitor in the Mission Operations Control Room in the Mission Control Center by Granvil A. Pennington, an Instruments and Communications Systems Officer.

  5. Maximizing Mission Science Return Through Use of Spacecraft Autonomy: Active Volcanism and the Autonomous Sciencecraft Experiment

    NASA Technical Reports Server (NTRS)

    Davies, A. G.; Chien, S.; Baker, V.; Castano, R.; Cichy, B.; Doggett, T.; Dohm, J. M.; Greeley, R.; Ip, F.; Rabideau, G.

    2005-01-01

    ASE has successfully demonstrated that a spacecraft can be driven by science analysis and autonomously controlled. ASE is available for flight on other missions. Mission hardware design should consider ASE requirements for available onboard data storage, onboard memory size and processor speed.

  6. In Vivo Noninvasive Analysis of Human Forearm Muscle Function and Fatigue: Applications to EVA Operations and Training Maneuvers

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Marshburn, T.; Quast, M. J.; Feeback, D. L.

    1999-01-01

    Forearm muscle fatigue is one of the major limiting factors affecting endurance during performance of deep-space extravehicular activity (EVA) by crew members. Magnetic resonance (MR) provides in vivo noninvasive analysis of tissue level metabolism and fluid exchange dynamics in exercised forearm muscles through the monitoring of proton magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (P-31-MRS) parameter variations. Using a space glove box and EVA simulation protocols, we conducted a preliminary MRS/MRI study in a small group of human test subjects during submaximal exercise and recovery and following exhaustive exercise. In assessing simulated EVA-related muscle fatigue and function, this pilot study revealed substantial changes in the MR image longitudinal relaxation times (T2) as an indicator of specific muscle activation and proton flux as well as changes in spectral phosphocreatine-to-phosphate (PCr/Pi) levels as a function of tissue bioenergetic potential.

  7. Past, present, and future: the U.S. EVA program.

    PubMed

    McBarron JW 2nd

    1994-01-01

    This paper provides an overview and summary of U.S. extravehicular activity accomplishments of the last 26 years, Space Shuttle missions having scheduled extravehicular activities to be performed over the next several years, extravehicular activities expected to be necessary to support Space Station Freedom assembly tasks and operations, and potential extravehicular activity roles of the NASA Space Exploration Initiative Program.

  8. The National Center on Secondary Education and Transition: Its Mission, Structure, and Activities. Transcript of NCSET Conference Call Presentation

    ERIC Educational Resources Information Center

    Johnson, David R.; Jones, Bonnie

    2001-01-01

    This paper presents a transcript of a National Center on Secondary Education and Transition (NCSET) teleconference call held on February 27, 2001. David R. Johnson and Bonnie Jones talked about the mission, structure, and activities of NCSET. The presenters also provided an overview of OSEP (Office of Special Education Programs) perspective about…

  9. Lunar and Mars missions - Challenges for advanced life support

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.

    1988-01-01

    The development of a suite of scenarios is a prerequisite to the studies that will enable an informed decision by the United States on a program to meet the recently announced space policy goal to expand human presence beyond earth orbit. NASA's Office of Exploration is currently studying a range of initiative options that would extend the sphere of human activity in space to Mars and include permanent bases or outposts on the moon and on Mars. This paper describes the evolutionary lunar base and the Mars expedition scenarios in some detail so that an evaluation can be made from the point of view of human support and opportunities. Alternative approaches in the development of lunar outposts are outlined along with Mars expeditionary scenarios. Human environmental issues are discussed, including: closed loop life support systems; EVA systems; mobility systems; and medical support, physiological deconditioning, and psychological effects associated with long-duration missions.

  10. NASA's Asteroid Redirect Mission: Overview and Status

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Brophy, John; Mazanek, Dan; Muirhead, Brian

    A major element of the National Aeronautics and Space Administration’s (NASA) new Asteroid Initiative is the Asteroid Redirect Mission (ARM). This concept was first proposed in 2011 during a feasibility study at the Keck Institute for Space Studies (KISS)[1] and is under consideration for implementation by NASA. The ARM involves sending a high-efficiency (ISP 3000 s), high-power (40 kW) solar electric propulsion (SEP) robotic vehicle that leverages technology developed by NASA’s Space Technology Mission Directorate (STMD) to rendezvous with a near-Earth asteroid (NEA) and return asteroidal material to a stable lunar distant retrograde orbit (LDRO)[2]. There are two mission concepts currently under study, one that captures an entire 7 - 10 meter mean diameter NEA[3], and another that retrieves a 1 - 10 meter mean diameter boulder from a 100+ meter class NEA[4]. Once the retrieved asteroidal material is placed into the LDRO, a two person crew would launch aboard an Orion capsule to rendezvous and dock with the robotic SEP vehicle. After docking, the crew would conduct two extra-vehicular activities (EVA) to collect asteroid samples and deploy instruments prior to Earth return. The crewed portion of the mission is expected to last approximately 25 days and would represent the first human exploration mission beyond low-Earth orbit (LEO) since the Apollo program. The ARM concept leverages NASA’s activities in Human Exploration, Space Technology, and Planetary Defense to accomplish three primary objectives and several secondary objectives. The primary objective relevant to Human Exploration is to gain operational experience with vehicles, systems, and components that will be utilized for future deep space exploration. In regard to Space Technology, the ARM utilizes advanced SEP technology that has high power and long duration capabilities that enable future missions to deep space destinations, such as the Martian system. With respect to Planetary Defense, the ARM

  11. [Status of the osteoclast-activating system in cosmonauts after long-duration missions to the International Space Station].

    PubMed

    Morukov, I B; Rykova, M P; Antropova, E N; Berendeeva, T A; Ponomarev, S A; Morukov, B V

    2014-01-01

    The results of studying the system of osteoprotegerin/ receptor activator of nuclear factor kappa-B ligand (OPG/RANKL) in 22 cosmonauts after long-duration (124 to 199 days) ISS missions are presented. Immediately on return to 1 g, changes were observed in OPG and RANKL serum levels and the ability to produce unstimulated and stimulated PGA of peripheral blood mononuclear cells in vitro. Individual variability of these changes was noticed. Our findings suggest that the cytokine OPG/RANKL-system is involved in bone remodeling in members of long-duration space missions.

  12. The x-ray/EUV telescope for the Solar-C mission: science and development activities

    NASA Astrophysics Data System (ADS)

    Sakao, Taro; Narukage, Noriyuki; Imada, Shinsuke; Suematsu, Yoshinori; Shimojo, Masumi; Tsuneta, Saku; DeLuca, Edward E.; Watanabe, Kyoko; Ishikawa, Shin-nosuke

    2012-09-01

    We report science and development activities of the X-ray/EUV telescope for the Japanese Solar-C mission whose projected launch around 2019. The telescope consists of a package of (a) a normal-incidence (NI) EUV telescope and (b) a grazing-incidence (GI) soft X-ray telescope. The NI telescope chiefly provides images of low corona (whose temperature 1 MK or even lower) with ultra-high angular resolution (0.2-0.3"/pixel) in 3 wavelength bands (304, 171, and 94 angstroms). On the other hand, the GI telescope provides images of the corona with a wide temperature coverage (1 MK to beyond 10 MK) with the highest-ever angular resolution (~0.5"/pixel) as a soft X-ray coronal imager. The set of NI and GI telescopes should provide crucial information for establishing magnetic and gas-dynamic connection between the corona and the lower atmosphere of the Sun which is essential for understanding heating of, and plasma activities in, the corona. Moreover, we attempt to implement photon-counting capability for the GI telescope with which imaging-spectroscopy of the X-ray corona will be performed for the first time, in the energy range from ~0.5 keV up to 10 keV. The imaging-spectroscopic observations will provide totally-new information on mechanism(s) for the generation of hot coronal plasmas (heated beyond a few MK), those for magnetic reconnection, and even generation of supra-thermal electrons associated with flares. An overview of instrument outline and science for the X-ray photoncounting telescope are presented, together with ongoing development activities in Japan towards soft X-ray photoncounting observations, focusing on high-speed X-ray CMOS detector and sub-arcsecond-resolution GI mirror.

  13. Genomic characterization of two new enterovirus types, EV-A114 and EV-A121.

    PubMed

    Deshpande, Jagadish M; Sharma, Deepa K; Saxena, Vinay K; Shetty, Sushmitha A; Qureshi, Tarique Husain I H; Nalavade, Uma P

    2016-12-01

    Enteroviruses cause a variety of illnesses of the gastrointestinal tract, central nervous system and cardiovascular system. Phylogenetic analysis of VP1 sequences has identified 106 different human enteroviruses classified into four enterovirus species within the genus Enterovirus of the family Picornaviridae. It is likely that not all enterovirus types have been discovered. Between September 2013 and October 2014, stool samples of 6274 apparently healthy children of up to 5 years of age residing in Gorakhpur district, Uttar Pradesh, India were screened for enteroviruses. Virus isolates obtained in RD and Hep-2c cells were identified by complete VP1 sequencing. Enteroviruses were isolated from 3042 samples. A total of 87 different enterovirus types were identified. Two isolates with 71 and 74 % nucleotide sequence similarity to all other known enteroviruses were recognized as novel types. In this paper we report identification and complete genome sequence analysis of these two isolates classified as EV-A114 and EV-A121.

  14. Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda

    2012-01-01

    NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1

  15. Coronal abundances in solar active regions measured by the Solar Maximum Mission flat crystal spectrometer

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.; Strong, Keith T.

    1992-01-01

    High resolution soft X-ray spectra acquired by the Flat Crystal Spectrometer (FCS) on solar Maximum Mission provide an excellent data base to study the relative abundances of O, Ne, Mg, and Fe in solar active regions. The FCS data show significant variability for all combinations of these elements. The largest variation occurs for Fe:Ne, which shows region to region changes of up to a factor of 7, and frequent factor of 2 variations in day to day samples of a given region. The atomic data and the ionization balance calculations used to interpret the line ratios affect the actual abundance values obtained, but have little effect on the magnitude of the total range of variation inferred. Resonance scattering of Fe XVII could cause a systematic offset in the abundances determined, but cannot be responsbile for the bulk of the observed variability. While abundance variability complicates the derivation of plasma parameters from spectroscopic measurements, it should offer exciting new clues to the processes which form and heat the corona.

  16. Validation of the Soil Moisture Active Passive mission using USDA-ARS experimental watersheds

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Jackson, T. J.; Bindlish, R.; Colliander, A.; Kim, S.; Das, N. N.; Yueh, S. H.; Bosch, D. D.; Goodrich, D. C.; Prueger, J. H.; Starks, P. J.; Livingston, S.; Seyfried, M. S.; Coopersmith, E. J.

    2015-12-01

    The calibration and validation program of the Soil Moisture Active Passive mission (SMAP) relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The USDA Agricultural Research Service operates several experimental watersheds which contribute to the validation of SMAP soil moisture products. These watersheds consist of a network of in situ sensors that measure soil moisture at a variety of depths including the 5 cm depth, which is critical for satellite validation. Comparisons of the in situ network estimates to the satellite products are ongoing, but initial results have shown strong correlation between satellite estimates and in situ soil moisture measurements once scaling functions were applied. The scaling methodologies for the in situ networks are being reviewed and evaluated. Results from the Little Washita, Fort Cobb, St. Joseph's and Little River Experimental Watersheds show good agreement between the satellite products and in situ measurements. Walnut Gulch results show high accuracy, although with the caveat that these domains are semi-arid with a substantially lower dynamic range. The South Fork Watershed is examined more closely for its detailed scaling function development as well as an apparent bias between satellite and in situ values.

  17. CH4 Flux Inversion Studies for Future Active Space CH4 Missions like MERLIN

    NASA Astrophysics Data System (ADS)

    Heimann, M.; Marshall, J.

    2011-12-01

    Space based active sensors such as the planned German-French CH4 DIAL MERLIN mission have a very small footprint and therefore see through moderately small cloud holes. This fact, in addition to being independent of reflected sunlight is expected to provide global coverage with a higher number of observations than heretofore possible with passive sensors. How will this impact our ability to infer the different types of CH4 surface sources? Using a global atmospheric inversion system we quantify the resulting error reduction of inferred CH4 source estimates as a function of spatial and temporal resolution given instrument accuracy and other parameters of potential satellite orbits. The methodology is based on the classical Green's function approach on a monthly global 8°x10° resolution (Houweling et al., 2004) extended by using a nested two-step procedure for the investigation of higher temporal and spatial source resolutions (Rödenbeck et al., 2009). We furthermore employ a nested Lagrangian system at very high resolution (down to 1/8° x 1/12°) to quantify the impact on the detection and quantification of point sources such as power plants, landfills, natural gas pipelines, forest fires, geological seeps, and volcanoes. We demonstrate that the current specification of the MERLIN DIAL mission with a nominal breakthrough instrument precision of 18 ppb and bias of 3 ppb over 50km would lead to a substantial improvement of CH4 source quantification in many regions of the world as compared to what is possible with the currently existing observations from the surface network or passive satellite sensors. Houweling, S, FM Breon, I Aben, C Roedenbeck, M Gloor, M Heimann, and P Ciais. 2004. "Inverse modeling of CO2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time." Atmospheric Chemistry And Physics 4: 523-538. Roedenbeck, C, C Gerbig, K Trusilova, and M Heimann. 2009. "A

  18. The NASA Soil Moisture Active Passive (SMAP) Mission - Science and Data Product Development Status

    NASA Technical Reports Server (NTRS)

    Nloku, E.; Entekhabi, D.; O'Neill, P.

    2012-01-01

    The Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has the objective of frequent, global mapping of near-surface soil moisture and its freeze-thaw state. The SMAP measurement system utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The instruments will operate on a spacecraft in a 685 km polar orbit with 6am/6pm nodal crossings, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments will yield global maps of soil moisture and freeze/thaw state at 10 km and 3 km resolutions, respectively, every two to three days. The 10-km soil moisture product will be generated using a combined radar and radiometer retrieval algorithm. SMAP will also provide a radiometer-only soil moisture product at 40-km spatial resolution and a radar-only soil moisture product at 3-km resolution. The relative accuracies of these products will vary regionally and will depend on surface characteristics such as vegetation water content, vegetation type, surface roughness, and landscape heterogeneity. The SMAP soil moisture and freeze/thaw measurements will enable significantly improved estimates of the fluxes of water, energy and carbon between the land and atmosphere. Soil moisture and freeze/thaw controls of these fluxes are key factors in the performance of models used for weather and climate predictions and for quantifYing the global carbon balance. Soil moisture measurements are also of importance in modeling and predicting extreme events such as floods and droughts. The algorithms and data products for SMAP are being developed in the SMAP Science Data System (SDS) Testbed. In the Testbed algorithms are developed and evaluated using simulated SMAP observations as well as observational data from current airborne and spaceborne L-band sensors including data from the SMOS and Aquarius missions. We report here on the development status

  19. Lunar base surface mission operations. Lunar Base Systems Study (LBSS) task 4.1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose was to perform an analysis of the surface operations associated with a human-tended lunar base. Specifically, the study defined surface elements and developed mission manifests for a selected base scenario, determined the nature of surface operations associated with this scenario, generated a preliminary crew extravehicular and intravehicular activity (EVA/IVA) time resource schedule for conducting the missions, and proposed concepts for utilizing remotely operated equipment to perform repetitious or hazardous surface tasks. The operations analysis was performed on a 6 year period of human-tended lunar base operation prior to permanent occupancy. The baseline scenario was derived from a modified version of the civil needs database (CNDB) scenario. This scenario emphasizes achievement of a limited set of science and exploration objectives while emplacing the minimum habitability elements required for a permanent base.

  20. Tracking system analytic calibration activities for the Mariner Mars 1971 mission

    NASA Technical Reports Server (NTRS)

    Madrid, G. A.; Chao, C. C.; Fliegel, H. F.; Leavitt, R. K.; Mottinger, N. A.; Winn, F. B.; Wimberly, R. N.; Yip, K. B.; Zielenbach, J. W.

    1974-01-01

    Data covering various planning aspects of Mariner Mars 1971 mission are summarized. Data cover calibrating procedures for tracking stations, radio signal propagation in the troposphere, effects of charged particles on radio transmission, orbit calculation, and data smoothing.

  1. Astronaut Jack Lousma hooks up cable for rate gyro six pack during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, hooks up a 23 ft. 2 in. connecting cable for the rate gyro six pack during extravehicular activity (EVA) on August 24, 1973, as senn in this photographic reproduction taken from a color television tranmsission made by a TV camera aboard the Skylab space station in Earth orbit. The rate gyros were mounted inside the Multiple Docking Adapter opposite the Apollo Telescope Mount control and display console.

  2. Astronaut John Young at LRV prior to deployment of ALSEP during first EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of Apollo 16, is at the Lunar Roving Vehicle (LRV), just prior to deployment of the Apollo Lunar Surface Experiment Package (ALSEP) during the first extravehicular activity (EVA-1), on April 21, 1972. Note Ultraviolet Camera/Spectrometer at right of Lunar Module (LM) ladder. Also note pile of protective/thermal foil under the U.S. flag on the LM which the astronauts pulled away to get to the Modular Equipment Stowage Assembly (MESA) bay.

  3. View of the Discovery's payload bay during EVA taken from inside shuttle

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This unusual scene of STS-51 extravehicular activity (EVA) was captured on 35mm film by one of the supportive in-cabin crew members shooting through the aft flight deck window. Astronaut James H. Newman, working on Discovery's starboard side, is nearer the camera, with astronaut Carl E. Walz traversing near the aft firewall and the airborne support equipment (ASE). A view of a section of the Earth can be seen through the upper aft window.

  4. Mission Peculiar Equipment Support Structure: A platform for space construction

    NASA Technical Reports Server (NTRS)

    Hill, Robert

    1987-01-01

    The Space Shuttle requires carriers to support payloads in the cargo bay. As a result, the Mission Peculiar Equipment Support Structure (MPESS) was designed to carry partial payloads aboard the shuttle. The efforts to customize the MPESS for the Experimental Assembly of Structure in EVA (EASE) and Assembly Concept for Construction of Erectable Space Structure (ACCESS) experiments are summarized.

  5. Human-in-the-Loop Operations over Time Delay: NASA Analog Missions Lessons Learned

    NASA Technical Reports Server (NTRS)

    Rader, Steven N.; Reagan, Marcum L.; Janoiko, Barbara; Johnson, James E.

    2013-01-01

    Teams at NASA have conducted studies of time-delayed communications as it effects human exploration. In October 2012, the Advanced Exploration Systems (AES) Analog Missions project conducted a Technical Interchange Meeting (TIM) with the primary stakeholders to share information and experiences of studying time delay, to build a coherent picture of how studies are covering the problem domain, and to determine possible forward plans (including how to best communicate study results and lessons learned, how to inform future studies and mission plans, and how to drive potential development efforts). This initial meeting s participants included personnel from multiple NASA centers (HQ, JSC, KSC, ARC, and JPL), academia, and ESA. It included all of the known studies, analog missions, and tests of time delayed communications dating back to the Apollo missions including NASA Extreme Environment Mission Operations (NEEMO), Desert Research and Technology Studies (DRATS/RATS), International Space Station Test-bed for Analog Research (ISTAR), Pavilion Lake Research Project (PLRP), Mars 520, JPL Mars Orbiters/Rovers, Advanced Mission Operations (AMO), Devon Island analog missions, and Apollo experiences. Additionally, the meeting attempted to capture all of the various functional perspectives via presentations by disciplines including mission operations (flight director and mission planning), communications, crew, Capcom, Extra-Vehicular Activity (EVA), Behavioral Health and Performance (BHP), Medical/Surgeon, Science, Education and Public Outreach (EPO), and data management. The paper summarizes the descriptions and results from each of the activities discussed at the TIM and includes several recommendations captured in the meeting for dealing with time delay in human exploration along with recommendations for future development and studies to address this issue.

  6. The terrestrial radiation environment and EVA's: Prediction requirements, model improvements, and warning systems. [radiation hazards to orbital workers and spacecrews

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1979-01-01

    The total medical-biological impact of the Earth's space radiation environment on humans is a function of combined EVA and non-EVA exposure. In either case, the correct assessment of the eventual health risk to crew members is crucial to the success and viability of a project or mission. Aside from the medical-biological aspect itself, the validity of any assessment depends entirely on the existence of good and reliable models providing the high quality data that is needed for such evaluations, which should contain time histories of storm and substorm events, their intensities, their frequency of occurence, and their duration. Prediction requirements, advantageous and desirable model developments and improvements, and systems that need to be designed and tested, which would alert space crews and maintenance personnel about impending radiation danger are outlined.

  7. Active-Duty Physicians' Perceptions and Satisfaction with Humanitarian Assistance and Disaster Relief Missions: Implications for the Field

    PubMed Central

    Oravec, Geoffrey J.; Artino, Anthony R.; Hickey, Patrick W.

    2013-01-01

    Background The United States Department of Defense participates in more than 500 missions every year, including humanitarian assistance and disaster relief, as part of medical stability operations. This study assessed perceptions of active-duty physicians regarding these activities and related these findings to the retention and overall satisfaction of healthcare professionals. Methods and Findings An Internet-based survey was developed and validated. Of the 667 physicians who responded to the survey, 47% had participated in at least one mission. On a 7-point, Likert-type response scale, physicians reported favorable overall satisfaction with their participation in these missions (mean  = 5.74). Perceived benefit was greatest for the United States (mean  = 5.56) and self (mean  = 5.39) compared to the target population (mean  = 4.82). These perceptions were related to participants' intentions to extend their military medical service (total model R2  = .37), with the strongest predictors being perceived benefit to self (β = .21, p<.01), the U.S. (β = .19, p<.01), and satisfaction (β = .18, p<.05). In addition, Air Force physicians reported higher levels of satisfaction (mean  = 6.10) than either Army (mean  = 5.27, Cohen's d = 0.75, p<.001) or Navy (mean  = 5.60, Cohen's d  = 0.46, p<.01) physicians. Conclusions Military physicians are largely satisfied with humanitarian missions, reporting the greatest benefit of such activities for themselves and the United States. Elucidation of factors that may increase the perceived benefit to the target populations is warranted. Satisfaction and perceived benefits of humanitarian missions were positively correlated with intentions to extend time in service. These findings could inform the larger humanitarian community as well as military medical practices for both recruiting and retaining medical professionals. PMID:23555564

  8. The Exercise and Environmental Physiology of Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Cowell, S. A.; Stocks, J. M.; Evans, D. G.; Simonson, S. R.; Greenleaf, J. E.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    Over the history of human expansion into space, extravehicular activity (EVA) has become indispensable for both daily living in weightlessness and for further space exploration. The physiological factors involved in the performance of extensive EVA, necessary for construction and maintenance of the International Space Station and during future human interplanetary missions, require further examination. An understanding of the physiological aspects of exercise and thermoregulation in the EVA environment will help to insure the health, safety, and efficiency of working astronauts. To that end, this review will focus on the interaction of the exercise and environmental aspects of EVA, as well as exercise during spaceflight and ground-based simulations such as bed-rest deconditioning. It will examine inflight exercise thermoregulation, and exercise, muscular strength, supine vs. seated exercise, exercise thermoregulation, and exercise in a hypobaric environment. Due to the paucity of data from controlled human research in this area, it is clear that more scientific studies are needed to insure safe and efficient extravehicular activity.

  9. Development of an EVA systems cost model. Volume 2: Shuttle orbiter crew and equipment translation concepts and EVA workstation concept development and integration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    EVA crewman/equipment translational concepts are developed for a shuttle orbiter payload application. Also considered are EVA workstation systems to meet orbiter and payload requirements for integration of workstations into candidate orbiter payload worksites.

  10. NEEMO - NASA's Extreme Environment Mission Operations: On to a NEO

    NASA Technical Reports Server (NTRS)

    Bell, M. S.; Baskin, P. J.; Todd, W. L.

    2011-01-01

    During NEEMO missions, a crew of six Aquanauts lives aboard the National Oceanic and Atmospheric Administration (NOAA) Aquarius Underwater Laboratory the world's only undersea laboratory located 5.6 km off shore from Key Largo, Florida. The Aquarius habitat is anchored 62 feet deep on Conch Reef which is a research only zone for coral reef monitoring in the Florida Keys National Marine Sanctuary. The crew lives in saturation for a week to ten days and conducts a variety of undersea EVAs (Extra Vehicular Activities) to test a suite of long-duration spaceflight Engineering, Biomedical, and Geoscience objectives. The crew also tests concepts for future lunar exploration using advanced navigation and communication equipment in support of the Constellation Program planetary exploration analog studies. The Astromaterials Research and Exploration Science (ARES) Directorate and Behavioral Health and Performance (BHP) at NASA/Johnson Space Center (JSC), Houston, Texas support this effort to produce a high-fidelity test-bed for studies of human planetary exploration in extreme environments as well as to develop and test the synergy between human and robotic curation protocols including sample collection, documentation, and sample handling. The geoscience objectives for NEEMO missions reflect the requirements for Lunar Surface Science outlined by the LEAG (Lunar Exploration Analysis Group) and CAPTEM (Curation and Analysis Planning Team for Extraterrestrial Materials) white paper [1]. The BHP objectives are to investigate best meas-ures and tools for assessing decrements in cogni-tive function due to fatigue, test the feasibility study examined how teams perform and interact across two levels, use NEEMO as a testbed for the development, deployment, and evaluation of a scheduling and planning tool. A suite of Space Life Sciences studies are accomplished as well, ranging from behavioral health and performance to immunology, nutrition, and EVA suit design results of which will

  11. Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) Mission Studies

    NASA Astrophysics Data System (ADS)

    Jones, C.; Hyon, J.; Anderson, K.; Rodriguez-Alvaraz, O.; DiJoseph, M.; Dempsey, J.; Andrew, G.

    2012-12-01

    ASCENDS is one of the National Research Council's Decadal Survey Tier II missions. It will provide improved ability to predict/model long-term changes in the climate cycle based on the understanding of the natural processes driving the variability of natural carbon sources and sink, and the transport of carbon through the atmosphere. NASA's GSFC, LaRC and JPL are conducting mission studies to determine spacecraft and launch vehicle accommodations. These mission studies will determine the feasibility of flying the ASCENDS instrument on a commercially available spacecraft bus and launch vehicle. Conceptual instrument parameters include a mass of 500 kilograms, power of 1100 Watts and volume of 2.5 meters by 2 meters by 2 meters. Preliminary results have shown that the Falcon 9 and the Atlas V are compatible launch vehicles. Multiple commercially available spacecraft buses on the Rapid Spacecraft Development Office's (RSDO) catalogue also appear to be compatible with the instruments parameters. In this paper, we present the details of the ASCENDS instrument and mission constraints and the results of our mission studies.

  12. The effects of high energy particles on planetary missions

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A., Jr.

    1988-01-01

    Researchers review the background and motivation for the detailed study of the variability and uncertainty of the particle environment from a space systems planning perspective. The engineering concern raised by each environment is emphasized rather than the underlying physics of the magnetosphere or the sun. Missions now being planned span the short term range of one to three years to periods over ten years. Thus the engineering interest is beginning to stretch over periods of several solar cycles. Coincidentally, detailed measurements of the environment are now becoming available over that period of time. Both short term and long term environmental predictions are needed for proper mission planning. Short term predictions, perhaps based on solar indices, real time observations, or short term systematics, are very useful in near term planning -- launches, EVAs (extravehicular activities), coordinated observations, and experiments which require the magnetosphere to be in a certain state. Long term predictions of both average and extreme conditions are essential to mission design. Engineering considerations are many times driven by the worst case environment. Knowledge of the average conditions and their variability allows trade-off studies to be made, implementation of designs which degrade gracefully under multi-stress environments.

  13. PDS MSL Analyst's Notebook: Supporting Active Rover Missions and Adding Value to Planetary Data Archives

    NASA Astrophysics Data System (ADS)

    Stein, Thomas

    Planetary data archives of surface missions contain data from numerous hosted instruments. Because of the nondeterministic nature of surface missions, it is not possible to assess the data without understanding the context in which they were collected. The PDS Analyst’s Notebook (http://an.rsl.wustl.edu) provides access to Mars Science Laboratory (MSL) data archives by integrating sequence information, engineering and science data, observation planning and targeting, and documentation into web-accessible pages to facilitate “mission replay.” In addition, Mars Exploration Rover (MER), Mars Phoenix Lander, Lunar Apollo surface mission, and LCROSS mission data are available in the Analyst’s Notebook concept, and a Notebook is planned for the Insight mission. The MSL Analyst’s Notebook contains data, documentation, and support files for the Curiosity rovers. The inputs are incorporated on a daily basis into a science team version of the Notebook. The public version of the Analyst’s Notebook is comprised of peer-reviewed, released data and is updated coincident with PDS data releases as defined in mission archive plans. The data are provided by the instrument teams and are supported by documentation describing data format, content, and calibration. Both operations and science data products are included. The operations versions are generated to support mission planning and operations on a daily basis. They are geared toward researchers working on machine vision and engineering operations. Science versions of observations from some instruments are provided for those interested in radiometric and photometric analyses. Both data set documentation and sol (i.e., Mars day) documents are included in the Notebook. The sol documents are the mission manager and documentarian reports that provide a view into science operations—insight into why and how particular observations were made. Data set documents contain detailed information regarding the mission, spacecraft

  14. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  15. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The 515-41B National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the sixth operational Shuttle flight and fourth flight of the OV-099 vehicle, Challenger. Since this flight was the first to land at Kennedy Space Center, the vehicle was towed directly to the OPF (Orbiter Processing Facility) where preparations for flight STS-41C, scheduled for early April 1984, began immediately. The significant problems that occurred during STS-41B are summarized and a problem tracking list that is a complete list of all problems that occurred during the flight is given. None of the problems will affect the STS 41C flight. The major objectives of flight STS-41B were to successfully deploy the Westar satellite and the Indonesian Communications Satellite-B2 (PALAPA-B2); to evaluate the MMU (Manned Maneuvering Unit) support for EVA (Extravehicular Activities); to exercise the MFR (Manipulator Foot Restraint); to demonstrate a closed loop rendezvous; and to operate the M.R (Monodisperse Latex Reactor), the ACES (Acoustic Containerless Experiment System) and the IEF (Isoelectric Focusing) in cabin experiments; and to obtain photographs with the Cinema 360 Cameras.

  16. STS-114: Discovery Mission Status Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Phil Engelauf, STS-114 Mission Operations Representative reports: the orbital rendezvous was successful, and today's activities includes initial preparations of the next day's extravehicular activities (EVA); he specifically mentioned tile repair, wiring on the outside of the vehicle to try to recover CMG2 (Control Moment Gyro), and preparation for the external stowage platform. John Shannon, Manager of the Space Shuttle Operations and Integration reports from Engineering standpoint that the composites of the underside of the tile surface seen from pictures taken during the pitch maneuver were extremely clean; the Engineering staff continues to look at the focus inspection data from the orbital boom sensor system (OBSS) and other data to assess the condition of the vehicle. Solid rocket boosters were retrieved and are towed back to the Air Force hangar in Cape Carneval. Six target inspection (nose gear doors, gap fillers, chine area, external tank doors, trailing edge, and ice), and arm operations, foam, conservation measures, shuttle air lock, aerodynamics assessment and re-entry were topics covered with the News media.

  17. Moments applied in the manual assembly of space structures - Ease biomechanics results from STS-61B. [Experimental Assembly of Structures in EVA

    NASA Technical Reports Server (NTRS)

    Cousins, D.; Akin, D. L.

    1989-01-01

    Measurements of the level and pattern of moments applied in the manual assembly of a space structure were made in extravehicular activity (EVA) and neutral buoyancy simulation (NBS). The Experimental Assembly of Structures in EVA program included the repeated assembly of a 3.6 m tetrahedral truss structure in EVA on STS-61B after extensive neutral buoyancy crew training. The flight and training structures were of equivalent mass and geometry to allow a direct correlation between EVA and NBS performance. A stereo photographic motion camera system was used to reconstruct in three dimensions rotational movements of structural beams during assembly. Moments applied in these manual handling tasks were calculated on the basis of the reconstructed movements taking into account effects of inertia, drag and virtual mass. Applied moments of 2.0 Nm were typical for beam rotations in EVA. Corresponding applied moments in NBS were typically up to five times greater. Moments were applied as impulses separated by several seconds of coasting in both EVA and NBS. Decelerating impulses were only infrequently observed in NBS.

  18. Astronaut Russell Schweickart inside simulator for EVA training

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut Russell L. Schweickart, lunar module pilot of the Apollo 9 (Spacecraft 104/Lunar Module 3/Saturn 504) space mission, is seen inside Chamber 'A', Space Environment Simulation Laboratory, bldg 32, participating in dry run activity in preparpation for extravehicular activity.

  19. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience

    NASA Astrophysics Data System (ADS)

    Rembala, Richard; Ower, Cameron

    2009-10-01

    MDA has provided 25 years of real-time engineering support to Shuttle (Canadarm) and ISS (Canadarm2) robotic operations beginning with the second shuttle flight STS-2 in 1981. In this capacity, our engineering support teams have become familiar with the evolution of mission planning and flight support practices for robotic assembly and support operations at mission control. This paper presents observations on existing practices and ideas to achieve reduced operational overhead to present programs. It also identifies areas where robotic assembly and maintenance of future space stations and space-based facilities could be accomplished more effectively and efficiently. Specifically, our experience shows that past and current space Shuttle and ISS assembly and maintenance operations have used the approach of extensive preflight mission planning and training to prepare the flight crews for the entire mission. This has been driven by the overall communication latency between the earth and remote location of the space station/vehicle as well as the lack of consistent robotic and interface standards. While the early Shuttle and ISS architectures included robotics, their eventual benefits on the overall assembly and maintenance operations could have been greater through incorporating them as a major design driver from the beginning of the system design. Lessons learned from the ISS highlight the potential benefits of real-time health monitoring systems, consistent standards for robotic interfaces and procedures and automated script-driven ground control in future space station assembly and logistics architectures. In addition, advances in computer vision systems and remote operation, supervised autonomous command and control systems offer the potential to adjust the balance between assembly and maintenance tasks performed using extra vehicular activity (EVA), extra vehicular robotics (EVR) and EVR controlled from the ground, offloading the EVA astronaut and even the robotic

  20. Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station)

    NASA Astrophysics Data System (ADS)

    Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis

    The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme