Science.gov

Sample records for activity eva tasks

  1. EVA Task Timing and Timeline Planning

    NASA Technical Reports Server (NTRS)

    Looper, Christopher A.; Ney, Zane A.

    2007-01-01

    EVA timeline development occurs using task execution data generated through underwater training and simulation. This project collected task time data during final training events for several Space Shuttle and International Space Station missions and compared like task time data collected during on-orbit execution. Analysis was performed to compare types of activities and times required for each looking specifically for how activities can be accurately trained from a timeline planning perspective. The data revealed two significant aspects of flight timeline planning; Zero-g task times will match training times for activities that can be accurately simulated with appropriate fidelity hardware; and not all activities can be simulated sufficiently to produce training task times that will reflect required zero-g times. An approach for timeline planning utilizing this knowledge is also presented.

  2. Extravehicular Activity (EVA) 101: Constellation EVA Systems

    NASA Technical Reports Server (NTRS)

    Jordan, Nicole C.

    2007-01-01

    A viewgraph presentation on Extravehicular Activity (EVA) Systems is shown. The topics include: 1) Why do we need space suits? 2) Protection From the Environment; 3) Primary Life Support System (PLSS); 4) Thermal Control; 5) Communications; 6) Helmet and Extravehicular Visor Assy; 7) Hard Upper Torso (HUT) and Arm Assy; 8) Display and Controls Module (DCM); 9) Gloves; 10) Lower Torso Assembly (LTA); 11) What Size Do You Need?; 12) Boot and Sizing Insert; 13) Boot Heel Clip and Foot Restraint; 14) Advanced and Crew Escape Suit; 15) Nominal & Off-Nominal Landing; 16) Gemini Program (mid-1960s); 17) Apollo EVA on Service Module; 18) A Bold Vision for Space Exploration, Authorized by Congress; 19) EVA System Missions; 20) Configurations; 21) Reduced Gravity Program; and 22) Other Opportunities.

  3. Application of Shuttle EVA Systems to Payloads. Volume 2: Payload EVA Task Completion Plans

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Candidate payload tasks for EVA application were identified and selected, based on an analysis of four representative space shuttle payloads, and typical EVA scenarios with supporting crew timelines and procedures were developed. The EVA preparations and post EVA operations, as well as the timelines emphasizing concurrent payload support functions, were also summarized.

  4. Study of space shuttle EVA/IVA support requirements. Volume 2: EVA/IVA tasks, guidelines, and constraints definition

    NASA Technical Reports Server (NTRS)

    Webbon, B. W.; Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    The guidelines for EVA and IVA tasks to be performed on the space shuttle are defined. In deriving tasks, guidelines, and constraints, payloads were first identified from the mission model. Payload requirements, together with man and manipulator capabilities, vehicle characteristics and operation, and safety considerations led to a definition of candidate tasks. Guidelines and constraints were also established from these considerations. Scenarios were established, and screening criteria, such as commonality of EVA and IVA activities, were applied to derive representative planned and unplanned tasks. The whole spectrum of credible contingency situations with a potential requirement for EVA/IVA was analyzed.

  5. Extravehicular Activity (EVA) Hardware & Operations Overview

    NASA Technical Reports Server (NTRS)

    Moore, Sandra; Marmolejo, Jose

    2014-01-01

    The objectives of this presentation are to: Define Extravehicular Activity (EVA), identify the reasons for conducting an EVA, and review the role that EVA has played in the space program; Identify the types of EVAs that may be performed; Describe some of the U.S. Space Station equipment and tools that are used during an EVA, such as the Extravehicular Mobility Unit (EMU), the Simplified Aid For EVA Rescue (SAFER), the International Space Station (ISS) Joint Airlock and Russian Docking Compartment 1 (DC-1), and EVA Tools & Equipment; Outline the methods and procedures of EVA Preparation, EVA, and Post-EVA operations; Describe the Russian spacesuit used to perform an EVA; Provide a comparison between U.S. and Russian spacesuit hardware and EVA support; and Define the roles that different training facilities play in EVA training.

  6. Effects of EVA spacesuit glove on grasping and pinching tasks

    NASA Astrophysics Data System (ADS)

    Appendino, Silvia; Battezzato, Alessandro; Chen Chen, Fai; Favetto, Alain; Mousavi, Mehdi; Pescarmona, Francesco

    2014-03-01

    The human hand has a wide range of degrees of freedom, allowing a great variety of movements, and is also one of the most sensitive parts of the human body. Due to these characteristics, it is the most important tool for astronauts to perform extravehicular activities (EVA). However, astronauts must wear mandatory EVA equipment to be protected from the harsh conditions in space and this strongly reduces hand performance, in particular as regards dexterity, tactile perception, mobility and fatigue. Several studies have been conducted to determine the influence of the EVA glove on manual capabilities, both in the past and more recently. This study presents experimental data regarding the performance decline occurring in terms of force and fatigue in the execution of grasping and pinching tasks when wearing an EVA glove, in pressurized and unpressurized conditions, compared with barehanded potential. Results show that wearing the unpressurized EVA glove hinders grip and lateral pinch performances, dropping exerted forces to about 50-70%, while it barely affects two- and three-finger pinch performances. On the other hand, wearing the pressurized glove worsens performances in all cases, reducing forces to about 10-30% of barehanded potential. The results are presented and compared with the previous literature.

  7. Injury Risk Assessment of Extravehicular Mobility Unit (EMU) Phase VI and Series 4000 Gloves During Extravehicular Activity (EVA) Hand Manipulation Tasks

    NASA Technical Reports Server (NTRS)

    Kilby, Melissa

    2015-01-01

    Functional Extravehicular Mobility Units (EMUs) with high precision gloves are essential for the success of Extravehicular Activity (EVA). Previous research done at NASA has shown that total strength capabilities and performance are reduced when wearing a pressurized EMU. The goal of this project was to characterize the human-space suit glove interaction and assess the risk of injury during common EVA hand manipulation tasks, including pushing, pinching and gripping objects. A custom third generation sensor garment was designed to incorporate a combination of sensors, including force sensitive resistors, strain gauge sensors, and shear force sensors. The combination of sensors was used to measure the forces acting on the finger nails, finger pads, finger tips, as well as the knuckle joints. In addition to measuring the forces, data was collected on the temperature, humidity, skin conductance, and blood perfusion of the hands. Testing compared both the Phase VI and Series 4000 glove against an ungloved condition. The ungloved test was performed wearing the sensor garment only. The project outcomes identified critical landmarks that experienced higher workloads and are more likely to suffer injuries. These critical landmarks varied as a function of space suit glove and task performed. The results showed that less forces were acting on the hands while wearing the Phase VI glove as compared to wearing the Series 4000 glove. Based on our findings, the engineering division can utilize these methods for optimizing the current space suit glove and designing next generation gloves to prevent injuries and optimize hand mobility and comfort.

  8. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  9. Climbing the Extravehicular Activity (EVA) Wall - Safely

    NASA Technical Reports Server (NTRS)

    Fuentes, Jose; Greene, Stacie

    2010-01-01

    The success of the EVA team, that includes the EVA project office, Crew Office, Mission Operations, Engineering and Safety, is assured by the full integration of all necessary disciplines. Safety participation in all activities from hardware development concepts, certification and crew training, provides for a strong partnership within the team. Early involvement of Safety on the EVA team has mitigated risk and produced a high degree of mission success.

  10. The role of EVA on Space Shuttle. [experimental support and maintenance activities

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1974-01-01

    The purpose of this paper is to present the history of Extravehicular Activity (EVA) through the Skylab Program and to outline the expected tasks and equipment capabilities projected for the Space Shuttle Program. Advantages offered by EVA as a tool to extend payload capabilities and effectiveness and economic advantages of using EVA will be explored. The presentation will conclude with some guidelines and recommendations for consideration by payload investigators in establishing concepts and designs utilizing EVA support.

  11. Comparison Of Human Modelling Tools For Efficiency Of Prediction Of EVA Tasks

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Loughead, Tomas E.

    1998-01-01

    Construction of the International Space Station (ISS) will require extensive extravehicular activity (EVA, spacewalks), and estimates of the actual time needed continue to rise. As recently as September, 1996, the amount of time to be spent in EVA was believed to be about 400 hours, excluding spacewalks on the Russian segment. This estimate has recently risen to over 1100 hours, and it could go higher before assembly begins in the summer of 1998. These activities are extremely expensive and hazardous, so any design tools which help assure mission success and improve the efficiency of the astronaut in task completion can pay off in reduced design and EVA costs and increased astronaut safety. The tasks which astronauts can accomplish in EVA are limited by spacesuit mobility. They are therefore relatively simple, from an ergonomic standpoint, requiring gross movements rather than time motor skills. The actual tasks include driving bolts, mating and demating electric and fluid connectors, and actuating levers; the important characteristics to be considered in design improvement include the ability of the astronaut to see and reach the item to be manipulated and the clearance required to accomplish the manipulation. This makes the tasks amenable to simulation in a Computer-Assisted Design (CAD) environment. For EVA, the spacesuited astronaut must have his or her feet attached on a work platform called a foot restraint to obtain a purchase against which work forces may be actuated. An important component of the design is therefore the proper placement of foot restraints.

  12. Human-Centric Teaming in a Multi-Agent EVA Assembly Task

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Currie, Nancy; Ambrose, Robert O.; Culbert, Christopher

    2004-01-01

    NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower.An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of human astronauts with the survivability and physical capabilities of highly dexterous space robots is proposed. A 1-g test featuring two NASA/DARPA Robonaut systems working side-by-side with a suited human subject is conducted to evaluate human-robot teaming strategies in the context of a simulated EVA assembly task based on the STS-61B ACCESS flight experiment.

  13. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  14. Extravehicular activities limitations study. Volume 2: Establishment of physiological and performance criteria for EVA gloves

    NASA Technical Reports Server (NTRS)

    Ohara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1988-01-01

    One of the major probelms faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human hand capabilities. This report describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based on an assessment of general human hand functioning and EVA task requirements several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure. A test program was conducted to evaluate the tests using a representative EVA glove. Eleven test subjects participated in a repeated-measures design. The report presents the results of the tests in each capability domain.

  15. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronauts Steven L. Smith (right) and Rex J. Walheim work in tandem on the third scheduled EVA session in which they released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm (out of frame). Part of the Destiny laboratory and a glimpse of the Earth's horizon are seen in the lower portion of this digital image. The STS-110 mission prepared the International Space Station (ISS) for future spacewalks by installing and outfitting the S0 (S-zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  16. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronaut Rex J. Walheim, accompanied by astronaut Steven L. Smith (out of frame) translates along the Destiny laboratory on the International Space Station (ISS) during the third scheduled EVA session. The duo released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm. The STS-110 mission prepared the ISS for future space walks by installing and outfitting the S0 (S-Zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  17. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission Specialists Jerry L. Ross and Lee M.E. Morin work in tandem on the fourth scheduled EVA session for the STS-110 mission aboard the Space Shuttle Orbiter Atlantis. Ross is anchored on the mobile foot restraint on the International Space Station's (ISS) Canadarm2, while Morin works inside the S0 (S-zero) truss. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting a 43-foot-long S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  18. Comparison of Human Modeling Tools for Efficiency of Prediction of EVA Tasks

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Loughead, Tomas E.

    1998-01-01

    Design of ExtraVehicular Activity (EVA) interfaces for International Space Station is important to successful assembly. This is highlighted by the recent rise in the estimate of time required for EVA during the assembly to 900 hours. The traditional method of evaluating EVA design is examination of mockups in neutral buoyancy testing. While effective, this is costly. Any tools for streamlining this process have positive cost and schedule implications for Station design. The human modelling software package Jack has been shown to be a useful tool in computer-aided design of space hardware requiring actuation in EVA. The package has been used to aid in the design of flight hardware for a Station Assembly Mission; evaluation was based on comparison of the computer simulations with neutral buoyancy simulations. When used to predict the feasibility of tasks, the software was found to be effective for reach and visibility evaluation. Some limitations have been encountered in prediction of work clearances. Another human simulator is currently being evaluated using the same hardware and comparisons to the same Neutral Buoyancy simulations. Preliminary results for ERGO, which is derived from robotics software, indicate similar strengths and weaknesses.

  19. Evaluation of an Anthropometric Human Body Model for Simulated EVA Task Assessment

    NASA Technical Reports Server (NTRS)

    Etter, Brad

    1996-01-01

    One of the more mission-critical tasks performed in space is extravehicular activity (EVA) which requires the astronaut to be external to the station or spacecraft, and subsequently at risk from the many threats posed by space. These threats include, but are not limited to: no significant atmosphere, harmful electromagnetic radiation, micrometeoroids, and space debris. To protect the astronaut from this environment, a special EVA suit is worn which is designed to maintain a sustainable atmosphere (at 1/3 atmosphere) and provide protection against the hazards of space. While the EVA suit serves these functions well, it does impose limitations on the astronaut as a consequence of the safety it provides. Since the astronaut is in a virtual vacuum, any atmospheric pressure inside the suit serves to pressurize the suit and restricts mobility of flexible joints (such as fabric). Although some of the EVA suit joints are fixed, rotary-style joints, most of the mobility is achieved by the simple flexibility of the fabric. There are multiple layers of fabric, each of which serves a special purpose in the safety of the astronaut. These multiple layers add to the restriction of motion the astronaut experiences in the space environment. Ground-based testing is implemented to evaluate the capability of EVA-suited astronauts to perform the various tasks in space. In addition to the restriction of motion imposed by the EVA suit, most EVA activity is performed in a micro-gravity (weight less) environment. To simulate weightlessness EVA-suited testing is performed in a neutral buoyancy simulator (NBS). The NBS is composed of a large container of water (pool) in which a weightless environment can be simulated. A subject is normally buoyant in the pressurized suit; however he/she can be made neutrally buoyant with the addition of weights. In addition, most objects the astronaut must interface with in the NBS sink in water and flotation must be added to render them "weightless". The

  20. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    NASA Technical Reports Server (NTRS)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  1. Active Solid State Dosimetry for Lunar EVA

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

    2006-01-01

    The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

  2. STS-64 Mission Photograph - Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Mark Lee floats freely as he tests the new backpack called the Simplified Aid for EVA Rescue (SAFER) system. SAFER is designed for use in the event a crew member becomes untethered while conducting an EVA. The STS-64 mission marked the first untethered U.S. EVA in 10 years, and was launched on September 9, 1994, aboard the Space Shuttle Orbiter Discovery.

  3. Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)

    NASA Technical Reports Server (NTRS)

    Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.

    2007-01-01

    An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.

  4. Extravehicular Activity (EVA) Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for

  5. Evaluation of an Anthropometric Human Body Model for Simulated EVA Task Assessment

    NASA Technical Reports Server (NTRS)

    Etter, Brad

    1996-01-01

    One of the more mission-critical tasks performed in space is extravehicular activity (EVA) which requires the astronaut to be external to the station or spacecraft, and subsequently at risk from the many threats posed by space. These threats include, but are not limited to: no significant atmosphere, harmful electromagnetic radiation, micrometeoroids, and space debris. To protect the astronaut from this environment, a special EVA suit is worn which is designed to maintain a sustainable atmosphere (at 1/3 atmosphere) and provide protection against the hazards of space. While the EVA suit serves these functions well, it does impose limitations on the astronaut as a consequence of the safety it provides. Since the astronaut is in a virtual vacuum, any atmospheric pressure inside the suit serves to pressurize the suit and restricts mobility of flexible joints (such as fabric). Although some of the EVA suit joints are fixed, rotary-style joints, most of the mobility is achieved by the simple flexibility of the fabric. There are multiple layers of fabric, each of which serves a special purpose in the safety of the astronaut. These multiple layers add to the restriction of motion the astronaut experiences in the space environment. Ground-based testing is implemented to evaluate the capability of EVA-suited astronauts to perform the various tasks in space. In addition to the restriction of motion imposed by the EVA suit, most EVA activity is performed in a micro-gravity (weight less) environment. To simulate weightlessness EVA-suited testing is performed in a neutral buoyancy simulator (NBS). The NBS is composed of a large container of water (pool) in which a weightless environment can be simulated. A subject is normally buoyant in the pressurized suit; however he/she can be made neutrally buoyant with the addition of weights. In addition, most objects the astronaut must interface with in the NBS sink in water and flotation must be added to render them "weightless". The

  6. 7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT IS $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  7. Generic extravehicular (EVA) and telerobot task primitives for analysis, design, and integration. Version 1.0: Reference compilation for the EVA and telerobotics communities

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Drews, Michael

    1990-01-01

    The results are described of an effort to establish commonality and standardization of generic crew extravehicular (crew-EVA) and telerobotic task analysis primitives used for the study of spaceborne operations. Although direct crew-EVA plans are the most visible output of spaceborne operations, significant ongoing efforts by a wide variety of projects and organizations also require tools for estimation of crew-EVA and telerobotic times. Task analysis tools provide estimates for input to technical and cost tradeoff studies. A workshop was convened to identify the issues and needs to establish a common language and syntax for task analysis primitives. In addition, the importance of such a syntax was shown to have precedence over the level to which such a syntax is applied. The syntax, lists of crew-EVA and telerobotic primitives, and the data base in diskette form are presented.

  8. STS-109 Extra Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut James H. Newman, mission specialist, floats about in the Space Shuttle Columbia's cargo bay while working in tandem with astronaut Michael J. Massimino (out of frame),mission specialist, during the STS-109 mission's second day of extravehicular activity (EVA). Inside Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the Remote Manipulator System (RMS) to assist the two in their work on the Hubble Space Telescope (HST). The RMS was used to capture the telescope and secure it into Columbia's cargo bay.Part of the giant telescope's base, latched down in the payload bay, can be seen behind Newman. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the HST. The Marshall Space Flight Center in Huntsville, Alabama had responsibility for the design, development, and contruction of the HST, which is the most powerful and sophisticated telescope ever built. STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  9. STS-109 Extra Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Inside the Space Shuttle Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the Remote Manipulator System (RMS) on the crew cabin's aft flight deck to assist fellow astronauts during the STS-109 mission Extra Vehicular Activities (EVA). The RMS was used to capture the telescope and secure it into Columbia's cargo bay. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the Hubble Space Telescope (HST). The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built. STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  10. Extravehicular Activity (EVA) Microbial Swab Tool

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2015-01-01

    When we send humans to search for life on Mars, we'll need to know what we brought with us versus what may already be there. To ensure our crewed spacecraft meet planetary protection requirements--and to protect our science from human contamination--we'll need to know whether micro-organisms are leaking/venting from our ships and spacesuits. This is easily done by swabbing external vents and surfaces for analysis, but there was no US EVA tool for that job. NASA engineers developed an EVA-compatible swab tool that can be used to collect data on current hardware, which will influence eventual Mars life support and EVA hardware designs.

  11. Human Research Program Human Health Countermeasures Element Extravehicular Activity (EVA) Risk Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Norfleet, William; Harris, Bernard

    2009-01-01

    The Extravehicular Activity (EVA) Risk Standing Review Panel (SRP) was favorably impressed by the operational risk management approach taken by the Human Research Program (HRP) Integrated Research Plan (IRP) to address the stated life sciences issues. The life sciences community at the Johnson Space Center (JSC) seems to be focused on operational risk management. This approach is more likely to provide risk managers with the information they need at the time they need it. Concerning the information provided to the SRP by the EVA Physiology, Systems, and Performance Project (EPSP), it is obvious that a great deal of productive activity is under way. Evaluation of this information was hampered by the fact that it often was not organized in a fashion that reflects the "Gaps and Tasks" approach of the overall Human Health Countermeasures (HHC) effort, and that a substantial proportion of the briefing concerned subjects that, while interesting, are not part of the HHC Element (e.g., the pressurized rover presentation). Additionally, no information was provided on several of the tasks or how they related to work underway or already accomplished. This situation left the SRP having to guess at the efforts and relationship to other elements, and made it hard to easily map the EVA Project efforts currently underway, and the data collected thus far, to the gaps and tasks in the IRP. It seems that integration of the EPSP project into the HHC Element could be improved. Along these lines, we were concerned that our SRP was split off from the other participating SRPs at an early stage in the overall agenda for the meeting. In reality, the concerns of EPSP and other projects share much common ground. For example, the commonality of the concerns of the EVA and exercise physiology groups is obvious, both in terms of what reduced exercise capacity can do to EVA capability, and how the exercise performed during an EVA could contribute to an overall exercise countermeasure prescription.

  12. STS-110 Astronaut Jerry Ross Performs Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. In this photograph, Astronaut Jerry L. Ross, mission specialist, anchored on the end of the Canadarm2, moves near the newly installed S0 truss. Astronaut Lee M. E. Morin, mission specialist, (out of frame), worked in tandem with Ross during this fourth and final scheduled session of EVA for the STS-110 mission. The final major task of the space walk was the installation of a beam, the Airlock Spur, between the Quest Airlock and the S0. The spur will be used by space walkers in the future as a path from the airlock to the truss.

  13. STS-64 Mission Onboard Photograph - Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Mark Lee (red stripe on extravehicular activity suit) tests the new backpack called Simplified Aid for EVA Rescue (SAFER), a system designed for use in the event a crew member becomes untethered while conducting an EVA. The Lidar-In-Space Technology Experiment (LITE) is shown in the foreground. The LITE payload employs lidar, which stands for light detection and ranging, a type of optical radar using laser pulses instead of radio waves to study Earth's atmosphere. Unprecedented views were obtained of cloud structures, storm systems, dust clouds, pollutants, forest burning, and surface reflectance. The STS-64 mission marked the first untethered U.S. EVA in 10 years, and was launched on September 9, 1994, aboard the Space Shuttle Orbiter Discovery.

  14. EVA-SCRAM operations

    NASA Technical Reports Server (NTRS)

    Flanigan, Lee A.; Tamir, David; Weeks, Jack L.; Mcclure, Sidney R.; Kimbrough, Andrew G.

    1994-01-01

    This paper wrestles with the on-orbit operational challenges introduced by the proposed Space Construction, Repair, and Maintenance (SCRAM) tool kit for Extra-Vehicular Activity (EVA). SCRAM undertakes a new challenging series of on-orbit tasks in support of the near-term Hubble Space Telescope, Extended Duration Orbiter, Long Duration Orbiter, Space Station Freedom, other orbital platforms, and even the future manned Lunar/Mars missions. These new EVA tasks involve welding, brazing, cutting, coating, heat-treating, and cleaning operations. Anticipated near-term EVA-SCRAM applications include construction of fluid lines and structural members, repair of punctures by orbital debris, refurbishment of surfaces eroded by atomic oxygen, and cleaning of optical, solar panel, and high emissivity radiator surfaces which have been degraded by contaminants. Future EVA-SCRAM applications are also examined, involving mass production tasks automated with robotics and artificial intelligence, for construction of large truss, aerobrake, and reactor shadow shield structures. Realistically achieving EVA-SCRAM is examined by addressing manual, teleoperated, semi-automated, and fully-automated operation modes. The operational challenges posed by EVA-SCRAM tasks are reviewed with respect to capabilities of existing and upcoming EVA systems, such as the Extravehicular Mobility Unit, the Shuttle Remote Manipulating System, the Dexterous End Effector, and the Servicing Aid Tool.

  15. 8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT OF SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  16. Shuttle EVA description and design criteria

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The STS extravehicular mobility unit, orbiter EVA provisions, EVA equipment, factors affecting employment of EVA, EVA mission integration, baselined extravehicular activity are discussed. Design requirements are also discussed.

  17. Astronaut Thuot during extravehicular activity (EVA) training in CCT

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In Space Vehicle Mockup Facility, astronaut Pierre J. Thuot retrieves gear to rehearse a suit donning exercise on the middeck. Thuot's realistic environs are provided by the shuttle crew compartment trainer (CCT). Thuot, mission specialist, and four other NASA astronauts will spend two weeks in space aboard the Space Shuttle Columbia in March of 1994. He and astronaut Andrew M. Allen have been rehearsing contingency space walks. There is no scheduled extravehicular activity (EVA) for the STS-62 flight.

  18. The Use of Human Modeling of EVA Tasks as a Systems Engineering Tool

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Schmidt, Henry J.; Kross, Dennis A. (Technical Monitor)

    2001-01-01

    Computer-generated human models have been used in aerospace design for a decade. They have come to be highly reliable for worksite analysis of certain types of EVA tasks. In many design environments, this analysis comes after the structural design is largely complete. However, the use of these models as a development tool is gaining acceptance within organizations that practice good systems engineering processes. The design of the United States Propulsion Module for the International Space Station provides an example of this application. The Propulsion Module will provide augmentation to the propulsion capability supplied by the Russian Service Module Zvezda. It is a late addition to the set of modules provided by the United States to the ISS Program, and as a result, faces design challenges that result from the level of immaturity of its integration into the Station. Among these are heat dissipation and physical envelopes. Since the rest of the Station was designed to maximize the use of the cooling system, little margin is available for the addition of another module. The Propulsion Module will attach at the forward end of the Station, and will be between the Orbiter and the rest of ISS. Since cargo must be removed from the Payload Bay and transferred to Station by the Canadarm, there is a potential for protrusions from the module, such as thruster booms, to interfere with robotic operations. These and similar engineering issues must be addressed as part of the development. In the implementation of good system design, all design solutions should be analyzed for compatibility with all affected subsystems. Human modeling has been used in this project to provide rapid input to system trades of design concepts. For example, the placement of radiators and avionics components for optimization of heat dissipation had to be examined for feasibility of EVA translation paths and worksite development. Likewise, the location of and mechanism for the retraction of thruster

  19. Risk Management in EVA

    NASA Technical Reports Server (NTRS)

    Hall, Jonathan; Lutomski, M.

    2006-01-01

    This viewgraph presentation reviews the use of risk management in Extravehicular Activities (EVA). The contents include: 1) EVA Office at NASA - JSC; 2) EVA Project Risk Management: Why and When; 3) EVA Office Risk Management: How; 4) Criteria for Closing a Risk; 5) Criteria for Accepting a Risk; 6) ISS IRMA Reference Card Data Entry Requirement s; 7) XA/ EVA Office Risk Activity Summary; 8) EVA Significant Change Summary; 9) Integrated Risk Management Application (XA) Matrix, March 31, 2004; 10) ISS Watch Item: 50XX Summary Report; and 11) EVA Project RM Usefulness

  20. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral

  1. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more

  2. STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  3. Testing and evaluation for astronaut extravehicular activity (EVA) operability.

    PubMed

    Shields, N; King, L C

    1998-09-01

    Because it is the human component that defines space mission success, careful planning is required to ensure that hardware can be operated and maintained by crews on-orbit. Several methods exist to allow researchers and designers to better predict how hardware designs will behave under the harsh environment of low Earth orbit, and whether designs incorporate the necessary features for Extra Vehicular Activity (EVA) operability. Testing under conditions of simulated microgravity can occur during the design concept phase when verifying design operability, during mission training, or concurrently with on-orbit mission operations. The bulk of testing is focused on normal operations, but also includes evaluation of credible mission contingencies or "what would happen if" planning. The astronauts and cosmonauts who fly these space missions are well prepared and trained to survive and be productive in Earth's orbit. The engineers, designers, and training crews involved in space missions subject themselves to Earth based simulation techniques that also expose them to extreme environments. Aircraft falling ten thousand feet, alternating g-loads, underwater testing at 45 foot depth, enclosure in a vacuum chamber and subject to thermal extremes, each carries with it inherent risks to the humans preparing for space missions. PMID:12190075

  4. The Effects of Extravehicular Activity (EVA) Glove Pressure on Tactility

    NASA Technical Reports Server (NTRS)

    Thompson, Shelby; Miranda, Mesloh; England, Scott; Benson, Elizabeth; Rajulu, Sudhakar

    2010-01-01

    The purpose of the current study was to quantify finger tactility, while wearing a Phase VI Extravehicular Activity (EVA) glove. Subjects were fully suited in an Extravehicular Mobility Unit (EMU) suit. Data was collected under three conditions: bare-handed, gloved at 0 psi, and gloved at 4.3 psi. In order to test tactility, a series of 30 tactile stimuli (bumps) were created that varied in both height and width. With the hand obscured, subjects applied pressure to each bump until detected tactilely. The amount of force needed to detect each bump was recorded using load cells located under a force-plate. The amount of force needed to detect a bump was positively related to width, but inversely related to height. In addition, as the psi of the glove increased, more force was needed to detect the bump. In terms of application, it was possible to determine the optimal width and height a bump needs to be for a specific amount of force applied for tactility.

  5. Force-endurance capabilities of extravehicular activity (EVA) gloves at different pressure levels

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.; Klute, Glenn K.

    1993-01-01

    The human hand is a very useful multipurpose tool in all environments. However, performance capabilities are compromised considerably when gloves are donned. This is especially true to extravehicular activity (EVA) gloves. The primary intent was to answer the question of how long a person can perform tasks requiring certain levels of exertion. The objective was to develop grip force-endurance relations. Six subjects participated in a factorial experiment involving three hand conditions, three pressure differentials, and four levels of force exertion. The results indicate that, while the force that could be exerted depended on the glove, pressure differential, and the level of exertion, the endurance time at any exertion level depended just on the level of exertion expressed as a percentage of maximum exertion possible at that condition. The impact of these findings for practitioners as well as theoreticians is discussed.

  6. Software For Integration Of EVA And Telerobotics

    NASA Technical Reports Server (NTRS)

    Drews, Michael L.; Smith, Jeffrey H.; Estus, Jay M.; Heneghan, Cate; Zimmerman, Wayne; Fiorini, Paolo; Schenker, Paul S.; Mcaffee, Douglas A.

    1991-01-01

    Telerobotics/EVA Joint Analysis Systems (TEJAS) computer program is hypermedia information software system using object-oriented programming to bridge gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains 20 HyperCard stacks using visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about primitives, technologies, tasks, assumptions, and open issues involved in space-telerobot or crew-EVA tasks. Runs on any Apple MacIntosh personal computer.

  7. Automatic antenna switching design for Extra Vehicular Activity (EVA) communication system

    NASA Technical Reports Server (NTRS)

    Randhawa, Manjit S.

    1987-01-01

    An Extra Vehicular Activity (EVA) crewmember had two-way communications with the space station in the Ku-band frequency (12 to 18 GHz). The maximum range of the EVA communications link with the space station is approximately one kilometer for nominal values for transmitter power, antenna gains, and receiver noise figure. The EVA Communications System, that will continue to function regardless of the astronaut's position and orientation, requires an antenna system that has full spherical coverage. Three or more antennas that can be flush mounted on the astronaut's space suit (EMU) and/or his propulsive backpack (MMU), will be needed to provide the desired coverage. As the astronaut moves in the space station, the signal received by a given EVA antenna changes. An automatic antenna switching system is needed that will switch the communication system to the antenna with the largest signal strength. A design for automatic antenna switching is presented and discussed.

  8. EVA 2010: Preparing for International Space Station EVA Operations Post-Space Shuttle Retirement

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; West, William W.

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the OneEVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than

  9. Simulation of extra-vehicular activity (EVA) self-rescue

    NASA Technical Reports Server (NTRS)

    Brody, Adam R.; Jacoby, Rick; Ellis, Stephen R.

    1991-01-01

    Self-rescue during EVA is examined in terms of the use of a hand-held thruster that is similar to the hand-held maneuvering units HHMU developed for earlier programs. The problem of assessing velocity-increment requirements is addressed by means of examples of simulation technologies for studying EVA. The technologies evaluated include virtual reality systems such as the Virtual Interactive Environment Workstation (VIEW) and the Space Operations Simulator, and standard approaches like the air-bearing floor and the space shuttle. The VIEW is employed for a study of five trained NASA subjects that conduct a simulated return to a spacecraft with an HMMU under variable conditions. The study demonstrates the efficacy of VIEW for obtaining fuel-consumption values, and separation velocity is identified as the most significant determinant of the fuel and time requirements for a self-rescue operation.

  10. A human factors analysis of EVA time requirements

    NASA Technical Reports Server (NTRS)

    Pate, D. W.

    1996-01-01

    Human Factors Engineering (HFE), also known as Ergonomics, is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. A human factors motion and time study was initiated with the goal of developing a database of EVA task times and a method of utilizing the database to predict how long an ExtraVehicular Activity (EVA) should take. Initial development relied on the EVA activities performed during the STS-61 mission (Hubble repair). The first step of the analysis was to become familiar with EVAs and with the previous studies and documents produced on EVAs. After reviewing these documents, an initial set of task primitives and task time modifiers was developed. Videotaped footage of STS-61 EVAs were analyzed using these primitives and task time modifiers. Data for two entire EVA missions and portions of several others, each with two EVA astronauts, was collected for analysis. Feedback from the analysis of the data will be used to further refine the primitives and task time modifiers used. Analysis of variance techniques for categorical data will be used to determine which factors may, individually or by interactions, effect the primitive times and how much of an effect they have.

  11. Studies Relating to EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.

  12. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1988-01-01

    The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.

  13. EVA Training and Development Facilities

    NASA Technical Reports Server (NTRS)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  14. Investigation of the effects of extravehicular activity (EVA) gloves on performance

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.; Klute, Glenn

    1993-01-01

    The objective was to assess the effects of extravehicular activity (EVA) gloves at different pressures on human hand capabilities. A factorial experiment was performed in which three types of EVA gloves were tested at five pressure differentials. The independent variables tested in this experiment were gender, glove type, pressure differential, and glove make. Six subjects participated in an experiment where a number of dexterity measures, namely time to tie a rope, and the time to assemble a nut and bolt were recorded. Tactility was measured through a two point discrimination test. The results indicate that with EVA gloves strength is reduced by nearly 50 percent, there is a considerable reduction in dexterity, performance decrements increase with increasing pressure differential, and some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand. The implications for the designer are discussed.

  15. EVA Health and Human Performance Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Abercromby, A. F.; Norcross, J.; Jarvis, S. L.

    2016-01-01

    Multiple HRP Risks and Gaps require detailed characterization of human health and performance during exploration extravehicular activity (EVA) tasks; however, a rigorous and comprehensive methodology for characterizing and comparing the health and human performance implications of current and future EVA spacesuit designs does not exist. This study will identify and implement functional tasks and metrics, both objective and subjective, that are relevant to health and human performance, such as metabolic expenditure, suit fit, discomfort, suited postural stability, cognitive performance, and potentially biochemical responses for humans working inside different EVA suits doing functional tasks under the appropriate simulated reduced gravity environments. This study will provide health and human performance benchmark data for humans working in current EVA suits (EMU, Mark III, and Z2) as well as shirtsleeves using a standard set of tasks and metrics with quantified reliability. Results and methodologies developed during this test will provide benchmark data against which future EVA suits, and different suit configurations (eg, varied pressure, mass, CG) may be reliably compared in subsequent tests. Results will also inform fitness for duty standards as well as design requirements and operations concepts for future EVA suits and other exploration systems.

  16. Space Station Human Factors Research Review. Volume 1: EVA Research and Development

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Vykukal, H. C. (Editor)

    1988-01-01

    An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.

  17. One hundred US EVAs: a perspective on spacewalks.

    PubMed

    Wilde, Richard C; McBarron, James W; Manatt, Scott A; McMann, Harold J; Fullerton, Richard K

    2002-01-01

    In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program. PMID:12583391

  18. EVA Performance Prediction

    NASA Technical Reports Server (NTRS)

    Peacock, Brian; Maida, James; Rajulu, Sudhakar

    2004-01-01

    out for EVA activities are based more on extensive domain experience than any formal analytic structure. Conversely, physical task analysis for industrial and structured evidence from training and EV A contexts. Again on earth there is considerable evidence of human performance degradation due to encumbrance and fatigue. These industrial models generally take the form of a discounting equation. The development of performance estimates for space operations, such as timeline predictions for EVA is generally based on specific input from training activity, for example in the NBL or KC135. uniformed services tasks on earth are much more formalized. Human performance data in the space context has two sources: first there is the micro analysis of performance in structured tasks by the space physiology community and second there is the less structured evidence from training and EV A contexts.

  19. Use MACES IVA Suit for EVA Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  20. Exploration EVA System

    NASA Technical Reports Server (NTRS)

    Kearney, Lara

    2004-01-01

    In January 2004, the President announced a new Vision for Space Exploration. NASA's Office of Exploration Systems has identified Extravehicular Activity (EVA) as a critical capability for supporting the Vision for Space Exploration. EVA is required for all phases of the Vision, both in-space and planetary. Supporting the human outside the protective environment of the vehicle or habitat and allow ing him/her to perform efficient and effective work requires an integrated EVA "System of systems." The EVA System includes EVA suits, airlocks, tools and mobility aids, and human rovers. At the core of the EVA System is the highly technical EVA suit, which is comprised mainly of a life support system and a pressure/environmental protection garment. The EVA suit, in essence, is a miniature spacecraft, which combines together many different sub-systems such as life support, power, communications, avionics, robotics, pressure systems and thermal systems, into a single autonomous unit. Development of a new EVA suit requires technology advancements similar to those required in the development of a new space vehicle. A majority of the technologies necessary to develop advanced EVA systems are currently at a low Technology Readiness Level of 1-3. This is particularly true for the long-pole technologies of the life support system.

  1. Eva Physiology, Systems, and Performance (EPSP) Project Overview

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2007-01-01

    Extravehicular activity (EVA) is any activity performed by astronauts outside their space vehicle or habitat. EVA may be performed on orbit, such as outside the Space Shuttle or the International Space Station, or on a planetary surface such as Mars or on the moon. Astronauts wear a pressurized suit that provides environmental protection, mobility, life support, and communications while they work in the harsh conditions of a microgravity environment. Exploration missions to the moon and Mars may last many days and will include many types of EVAs; exploration, science, construction and maintenance. The effectiveness and success of these EVA-filled missions is dependent on the ability to perform tasks efficiently. The EVA Physiology, Systems and Performance (EPSP) project will conduct a number of studies to understand human performance during EVA, from a molecular level to full-scale equipment and suit design aspects, with the aim of developing safe and efficient systems for Exploration missions and the Constellation Program. The EPSP project will 1) develop Exploration Mission EVA suit requirements for metabolic and thermal loading, optional center of gravity location, biomedical sensors, hydration, nutrition, and human biomedical interactions; 2) develop validated EVA prebreathe protocols that meet medical, vehicle, and habitat constraints while minimizing crew time and thus increasing EVA work efficiency; and 3) define exploration decompression sickness (DCS) risks, policy, and mission success statistics and develop a DCS risk definition report.

  2. Results from an Investigation into Extra-Vehicular Activity (EVA) Training Related Shoulder Injuries

    NASA Technical Reports Server (NTRS)

    Johnson, Brian J.; Williams, David R.

    2004-01-01

    The number and complexity of extravehicular activities (EVAs) required for the completion and maintenance of the International Space Station (ISS) is unprecedented. The training required to successfully complete this magnitude of space walks presents a real risk of overuse musculoskeletal injuries to the EVA crew population. There was mounting evidence raised by crewmembers, trainers, and physicians at the Johnson Space Center (JSC) between 1999 and 2002 that suggested a link between training in the Neutral - Buoyancy Lab (NBL) and the several reported cases of shoulder injuries. The short- and long-term health consequences of shoulder injury to astronauts in training as well as the potential mission impact associated with surgical intervention to assigned EVA crew point to this as a critical problem that must be mitigated. Thus, a multi-directorate tiger team was formed in December of 2002 led by the EVA Office and Astronaut Office at the JSC. The primary objectives of this Tiger Team were to evaluate the prevalence of these injuries and substantiate the relationship to training in the NBL with the crew person operating in the EVA Mobility Unit (EMU). Between December 2002 and June of 2003 the team collected data, surveyed crewmembers, consulted with a variety of physicians, and performed tests. The results of this effort were combined with the vast knowledge and experience of the Tiger Team members to formulate several findings and over fifty recommendations. This paper summarizes those findings and recommendations as well as the process by which these were determined. The Tiger Team concluded that training in the NBL was directly linked to several major and minor shoulder injuries that had occurred. With the assistance of JSC flight surgeons, outside consultants, and the lead crewmember/physician on the team, the mechanisms of injury were determined. These mechanisms were then linked to specific aspects of the hardware design, operational techniques, and the

  3. Interoperability Trends in Extravehicular Activity (EVA) Space Operations for the 21st Century

    NASA Technical Reports Server (NTRS)

    Miller, Gerald E.

    1999-01-01

    No other space operations in the 21 st century more comprehensively embody the challenges and dependencies of interoperability than EVA. This discipline is already functioning at an W1paralleled level of interagency, inter-organizational and international cooperation. This trend will only increase as space programs endeavor to expand in the face of shrinking budgets. Among the topics examined in this paper are hardware-oriented issues. Differences in design standards among various space participants dictate differences in the EVA tools that must be manufactured, flown and maintained on-orbit. Presently only two types of functional space suits exist in the world. However, three versions of functional airlocks are in operation. Of the three airlocks, only the International Space Station (ISS) Joint Airlock can accommodate both types of suits. Due to functional differences in the suits, completely different operating protocols are required for each. Should additional space suit or airlock designs become available, the complexity will increase. The lessons learned as a result of designing and operating within such a system are explored. This paper also examines the non-hardware challenges presented by interoperability for a discipline that is as uniquely dependent upon the individual as EVA. Operation of space suits (essentially single-person spacecrafts) by persons whose native language is not that of the suits' designers is explored. The intricacies of shared mission planning, shared control and shared execution of joint EVA's are explained. For example, once ISS is fully functional, the potential exists for two crewmembers of different nationality to be wearing suits manufactured and controlled by a third nation, while operating within an airlock manufactured and controlled by a fourth nation, in an effort to perform tasks upon hardware belonging to a fifth nation. Everything from training issues, to procedures development and writing, to real-time operations is

  4. Application of shuttle EVA systems to payloads. Volume 1: EVA systems and operational modes description

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Descriptions of the EVA system baselined for the space shuttle program were provided, as well as a compendium of data on available EVA operational modes for payload and orbiter servicing. Operational concepts and techniques to accomplish representative EVA payload tasks are proposed. Some of the subjects discussed include: extravehicular mobility unit, remote manipulator system, airlock, EVA translation aids, restraints, workstations, tools and support equipment.

  5. Creating a Lunar EVA Work Envelope

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  6. EVA manipulation and assembly of space structure columns

    NASA Technical Reports Server (NTRS)

    Loughead, T. E.; Pruett, E. C.

    1980-01-01

    Assembly techniques and hardware configurations used in assembly of the basic tetrahedral cell by A7LB pressure-suited subjects in a neutral bouyancy simulator were studied. Eleven subjects participated in assembly procedures which investigated two types of structural members and two configurations of attachment hardware. The assembly was accomplished through extra-vehicular activity (EVA) only, EVA with simulated manned maneuvering unit (MMU), and EVA with simulated MMU and simulated remote manipulator system (RMS). Assembly times as low as 10.20 minutes per tetrahedron were achieved. Task element data, as well as assembly procedures, are included.

  7. EVA safety: Space suit system interoperability

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.; McBarron, J. W.; Abramov, L. P.; Zvezda, A. O.

    1995-01-01

    The results and the recommendations of the International Academy of Astronautics extravehicular activities (IAA EVA) Committee work are presented. The IAA EVA protocols and operation were analyzed for harmonization procedures and for the standardization of safety critical and operationally important interfaces. The key role of EVA and how to improve the situation based on the identified EVA space suit system interoperability deficiencies were considered.

  8. COSM: A Space Station EVAS test challenge

    NASA Astrophysics Data System (ADS)

    Pullo, Frank A.; Beardsley, Anthony C.

    The authors present the requirements that must be addressed to develop equipment that will perform the checkout, servicing, and maintenance (COSM) of the extravehicular activity system (EVAS) for manned space on the proposed US Space Station. An overview is presented of COSM operational requirements, and their relationship to an automatic COSM system. The Space Station environment, routine EVA sorties, and singular mission objectives and tasks are examined with respect to system design. The COSM system architecture and the technical approach taken are also examined.

  9. Space shuttle EVA opportunities. [a technology assessment

    NASA Technical Reports Server (NTRS)

    Bland, D. A., Jr.

    1976-01-01

    A technology assessment is presented on space extravehicular activities (EVA) that will be possible when the space shuttle orbiter is completed and launched. The use of EVA in payload systems design is discussed. Also discussed is space crew training. The role of EVA in connection with the Large Space Telescope and Skylab are described. The value of EVA in constructing structures in space and orbital assembly is examined. Excellent color illustrations are provided which show the proposed EVA functions that were described.

  10. Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Kesterson, Matthew; Bue, Grant; Trevino, Luis

    2006-01-01

    In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series off tubes through which cooling water is circulated. To better predict the effectiveness of the LCG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained. Currently, increasing the fabric s thermal conductivity along with also examining an increase in the cooling tube conductivity to more efficiently remove the excess heat generated during EVA is being simulated. Initial trials varied cooling water temperature, water flow rate, garment conductivity, tube conductivity, and total number of cooling tubes in the LCVG. Results indicate that the total number of cooling tubes could be reduced to 22 and still achieve the desired heat removal rate of 361 W. Further improvements are being made to the garment network used in the model to account for temperature gradients associated with the spacing of the cooling tubes over the surface of the garment

  11. An Experimental Investigation of Dextrous Robots Using EVA Tools and Interfaces

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert; Culbert, Christopher; Rehnmark, Frederik

    2001-01-01

    This investigation of robot capabilities with extravehicular activity (EVA) equipment looks at how improvements in dexterity are enabling robots to perform tasks once thought to be beyond machines. The approach is qualitative, using the Robonaut system at the Johnson Space Center (JSC), performing task trials that offer a quick look at this system's high degree of dexterity and the demands of EVA. Specific EVA tools attempted include tether hooks, power torque tools, and rock scoops, as well as conventional tools like scissors, wire strippers, forceps, and wrenches. More complex EVA equipment was also studied, with more complete tasks that mix tools, EVA hand rails, tethers, tools boxes, PIP pins, and EVA electrical connectors. These task trials have been ongoing over an 18 month period, as the Robonaut system evolved to its current 43 degree of freedom (DOF) configuration, soon to expand to over 50. In each case, the number of teleoperators is reported, with rough numbers of attempts and their experience level, with a subjective difficulty rating assigned to each piece of EVA equipment and function. JSC' s Robonaut system was successful with all attempted EVA hardware, suggesting new options for human and robot teams working together in space.

  12. A Human Factors Analysis of EVA Time Requirements

    NASA Technical Reports Server (NTRS)

    Pate, Dennis W.

    1997-01-01

    Human Factors Engineering (HFE) is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. During the summer of 1995, a human factors motion and time study was initiated with the goals of developing a database of EVA task times and developing a method of utilizing the database to predict how long an EVA should take. Initial development relied on the EVA activities performed during the STS-61 (Hubble) mission. The first step of the study was to become familiar with EVA's, the previous task-time studies, and documents produced on EVA's. After reviewing these documents, an initial set of task primitives and task-time modifiers was developed. Data was collected from videotaped footage of two entire STS-61 EVA missions and portions of several others, each with two EVA astronauts. Feedback from the analysis of the data was used to further refine the primitives and modifiers used. The project was continued during the summer of 1996, during which data on human errors was also collected and analyzed. Additional data from the STS-71 mission was also collected. Analysis of variance techniques for categorical data was used to determine which factors may affect the primitive times and how much of an effect they have. Probability distributions for the various task were also generated. Further analysis of the modifiers and interactions is planned.

  13. Study of roles of remote manipulator systems and EVA for shuttle mission support, volume 1

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Micocci, A. J.

    1974-01-01

    Alternate extravehicular activity (EVA) and remote manipulator system (RMS) configurations were examined for their relative effectiveness in performing an array of representative shuttle and payload support tasks. Initially a comprehensive analysis was performed of payload and shuttle support missions required to be conducted exterior to a pressurized inclosure. A set of task selection criteria was established, and study tasks were identified. The EVA and RMS modes were evaluated according to their applicability for each task and task condition. The results are summarized in tabular form, showing the modes which are chosen as most effective or as feasible for each task/condition. Conclusions concerning the requirements and recommendations for each mode are presented.

  14. EVA Physiology

    NASA Video Gallery

    An introduction to the risk of decompression sickness (DCS) in astronauts during EVA. This will include an explanation of Prebreathe Protocols (PB), to affect nitrogen washout as a primary risk mit...

  15. Extravehicular activity at geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Shields, Nicholas, Jr.; Schulze, Arthur E.; Carr, Gerald P.; Pogue, William

    1988-01-01

    The basic contract to define the system requirements to support the Advanced Extravehicular Activity (EVA) has three phases: EVA in geosynchronous Earth orbit; EVA in lunar base operations; and EVA in manned Mars surface exploration. The three key areas to be addressed in each phase are: environmental/biomedical requirements; crew and mission requirements; and hardware requirements. The structure of the technical tasks closely follows the structure of the Advanced EVA studies for the Space Station completed in 1986.

  16. Space Shuttle/Orbiter EVA and EVA provisions

    NASA Technical Reports Server (NTRS)

    Goodman, J. R.

    1980-01-01

    EVA objectives, procedures, and equipment for the Shuttle are reviewed. The EVA will occur as a planned excursion, to complete a mission objective, or on a contingency basis as support for the mission or to effect repairs to the Orbiter or its payload. Configurations for the placement of the airlock for EVA with and without Spacelab payloads are discussed, along with the various EVA tasks which could be expected as necessary for mission completion. Handholds have been placed in strategic positions on the RMS and along the payload doors, and a safety tether has been incorporated with line extension out to 25 ft. Off-the-shelf tools such as needlenose pliers, forceps, diagonal cutters, etc. are carried as standard equipment for the repair of malfunctioning equipment and doorlatches. Finally, attention is given to EVA lighting, communication, life-support, and work station restraint systems.

  17. Thermoregulation and heat exchange in a nonuniform thermal environment during simulated extended EVA. Extravehicular activities

    NASA Technical Reports Server (NTRS)

    Koscheyev, V. S.; Leon, G. R.; Hubel, A.; Nelson, E. D.; Tranchida, D.

    2000-01-01

    BACKGROUND: Nonuniform heating and cooling of the body, a possibility during extended duration extravehicular activities (EVA), was studied by means of a specially designed water circulating garment that independently heated or cooled the right and left sides of the body. The purpose was to assess whether there was a generalized reaction on the finger in extreme contradictory temperatures on the body surface, as a potential heat status controller. METHOD: Eight subjects, six men and two women, were studied while wearing a sagittally divided experimental garment with hands exposed in the following conditions: Stage 1 baseline--total body garment inlet water temperature at 33 degrees C; Stage 2--left side inlet water temperature heated to 45 degrees C; right side cooled to 8 degrees C; Stage 3--left side inlet water temperature cooled to 8 degrees C, right side heated to 45 degrees C. RESULTS: Temperatures on each side of the body surface as well as ear canal temperature (Tec) showed statistically significant Stage x Side interactions, demonstrating responsiveness to the thermal manipulations. Right and left finger temperatures (Tfing) were not significantly different across stages; their dynamic across time was similar. Rectal temperature (Tre) was not reactive to prevailing cold on the body surface, and therefore not informative. Subjective perception of heat and cold on the left and right sides of the body was consistent with actual temperature manipulations. CONCLUSIONS: Tec and Tre estimates of internal temperature do not provide accurate data for evaluating overall thermal status in nonuniform thermal conditions on the body surface. The use of Tfing has significant potential in providing more accurate information on thermal status and as a feedback method for more precise thermal regulation of the astronaut within the EVA space suit.

  18. Overview of Umbilical Extravehicular Activity (EVA) Interfaces in Life Support Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie J.; Jordan, Nicole C.; Barido, Richard A.

    2007-01-01

    Extravehicular Activities (EVAs) for manned spacecraft vehicles have been performed for contingencies and nominal operations numerous times throughout history. This paper will investigate how previous U.S. manned spacecraft vehicles provided life support to crewmembers performing the EVA. Specifically defined are umbilical interfaces with respect to crewmember cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal. As historical data is available, the need for planned versus contingency EVAs in previous vehicles as well as details for a nominal EVA day versus a contingency EVA day will be discussed. The hardware used to provide the cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal, and the general functions of that hardware, will also be detailed, as information is available. The Crew Exploration Vehicle (CEV or Orion) EVA interfaces will be generically discussed to provide a glimpse of how similar they are to the EVA interfaces in previous vehicles. Conclusions on strategies that should be used for CEV based on previous spacecraft EVA interfaces will be made in the form of questions and recommendations.

  19. Investigation of the effects of Extra Vehicular Activity (EVA) and Launch and Entry (LES) gloves on performance

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.

    1992-01-01

    Human capabilities such as dexterity, manipulability, and tactile perception are unique and render the hand as a very versatile, effective and a multipurpose tool. This is especially true for unknown environments such as the EVA environment. In the microgravity environment interfaces, procedures, and activities are too complex, diverse, and defy advance definition. Under these conditions the hand becomes the primary means of locomotion, restraint, and material handling. Facilitation of these activities, with simultaneous protection from the cruel EVA environment are the two, often conflicting, objectives of glove design. The objectives of this study was (1) to assess the effects of EVA gloves at different pressures on human hand capabilities, (2) to devise a protocol for evaluating EVA gloves, (3) to develop force time relations for a number of EVA glove pressure combinations, and (4) to evaluate two types of launch and entry suit gloves. The objectives were achieved through three experiments. The experiments for achieving objectives 1, 2, and 3 were performed in the glove box in building 34. In experiment 1 three types of EVA gloves were tested at five pressure differentials. A number of performance measures were recorded. In experiment 2 the same gloves as in experiment 1 were evaluated in a reduced number of pressure conditions. The performance measure was endurance time. Six subjects participated in both the experiments. In experiment 3 two types of launch and entry suit gloves were evaluated using a paradigm similar to experiment 1. Currently the data is being analyzed. However for this report some summary analyses have been performed. The results indicate that a) With EVA gloves strength is reduced by nearly 50 percent, b) performance decrements increase with increasing pressure differential, c) TMG effects are not consistent across the three gloves tested, d) some interesting gender glove interactions were observed, some of which may have been due to the

  20. Astronauts Allen and Gemar during extravehicular activity (EVA) training in CCT

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronauts Charles D. (Sam) Gemar, and Andrew M. Allen participate in a training exercise at JSC's Crew Compartment Trainer (CCT), located in the Space Vehicle Mockup Facility. Gemar sits inside the airlock as Allen reviews procedures for EVA.

  1. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  2. Utilization of ISS to Develop and Test Operational Concepts and Hardware for Low-Gravity Terrestrial EVA

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    NASA has considerable experience in two areas of Extravehicular Activities (EVA). The first can be defined as microgravity, orbital EVAs. This consists of everything done in low Earth orbit (LEO), from the early, proof of concept EVAs conducted during the Gemini program of the 1960s, to the complex International Space Station (ISS) assembly tasks of the first decade of the 21st century. The second area of expertise is comprised of those EVAs conducted on the lunar surface, under a gravitational force one-sixth that of Earth. This EVA expertise encapsulates two extremes - microgravity and Earthlike gravitation - but is insufficient as humans expand their exploration purview, most notably with respect to spacewalks conducted on very low-gravity bodies, such as near- Earth objects (NEO) and the moons of Mars. The operational and technical challenges of this category of EVA have yet to be significantly examined, and as such, only a small number of operational concepts have been proposed thus far. To ensure mission success, however, EVA techniques must be developed and vetted to allow the selection of operational concepts that can be utilized across an assortment of destinations whose physical characteristics vary. This paper examines the utilization of ISS-based EVAs to test operational concepts and hardware in preparation for a low-gravity terrestrial EVA. While the ISS cannot mimic some of the fundamental challenges of a low-gravity terrestrial EVA - such as rotation rate and surface composition - it may be the most effective test bed available.

  3. Effective Presentation of Metabolic Rate Information for Lunar Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Mackin, Michael A.; Gonia, Philip; Lombay-Gonzalez, Jose

    2010-01-01

    During human exploration of the lunar surface, a suited crewmember needs effective and accurate information about consumable levels remaining in their life support system. The information must be presented in a manner that supports real-time consumable monitoring and route planning. Since consumable usage is closely tied to metabolic rate, the lunar suit must estimate metabolic rate from life support sensors, such as oxygen tank pressures, carbon dioxide partial pressure, and cooling water inlet and outlet temperatures. To provide adequate warnings that account for traverse time for a crewmember to return to a safe haven, accurate forecasts of consumable depletion rates are required. The forecasts must be presented to the crewmember in a straightforward, effective manner. In order to evaluate methods for displaying consumable forecasts, a desktop-based simulation of a lunar Extravehicular Activity (EVA) has been developed for the Constellation lunar suite s life-support system. The program was used to compare the effectiveness of several different data presentation methods.

  4. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2010-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new concept of operations will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), the Japan Aerospace Exploration Agency's (JAXA's) H-II Transfer Vehicle (HTV) and the Boeing Delta IV Heavy (DIV-H). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  5. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Blome, Elizabeth; Tetsuya, Sakashita

    2011-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new operations concept will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), and the Japan Aerospace Exploration Agency's (JAXA s) H-II Transfer Vehicle (HTV). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  6. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    NASA Technical Reports Server (NTRS)

    Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar

    2010-01-01

    The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.

  7. EVA and telerobot interaction

    NASA Technical Reports Server (NTRS)

    Willshire, Kelli F.

    1990-01-01

    We are about to enter into a new era - that of astronauts working hand in hand with telerobots in space. This has been done to some degree with astronauts and the Space Station Shuttle's Remote Manipulator Arm. However, for the Space Station Freedom, not only will astronauts be working with the RMS type system but also with smaller, more dexterous systems such as the Flight Telerobotic Servicer (FTS). Because EVA time is a premium resource, the most effective use of the astronauts and the telerobot will be required. There may be some tasks for which it is most efficient to have both the EVA astronaut and the telerobot working together. This type of close integration has not occurred before and brings up many issues. Most of these issues are related to technology: communication must be infallible, new control systems and devices may be required, enhanced telerobot safety systems may be necessary. IVA operations may also be affected by the combined EVA telerobot tasks. There is also the issue of how the EVA astronaut and the telerobot work on separate tasks but at the same time. For both situations, research and development of at least some new technology is required; enhanced communication both by voice and data, sophisticated collision detection systems, more responsive controls and displays. These new systems or system enhancements may require knowledge base systems for their operation. Some of the important issues, types of tasks, the FTS capabilities, the technology that is needed to address those issues, and the possible impact on Space Station Freedom are reviewed.

  8. Study to evaluate the effect of EVA on payload systems. Volume 1: Executive summary. [project planning of space missions employing extravehicular activity as a means of cost reduction

    NASA Technical Reports Server (NTRS)

    Patrick, J. W.; Kraly, E. F.

    1975-01-01

    Programmatic benefits to payloads are examined which can result from the routine use of extravehicular activity (EVA) during space missions. Design and operations costs were compared for 13 representative baseline payloads to the costs of those payloads adapted for EVA operations. The EVA-oriented concepts developed in the study were derived from these baseline concepts and maintained mission and program objectives as well as basic configurations. This permitted isolation of cost saving factors associated specifically with incorporation of EVA in a variety of payload designs and operations. The study results were extrapolated to a total of 74 payload programs. Using appropriate complexity and learning factors, net EVA savings were extrapolated to over $551M for NASA and U.S. civil payloads for routine operations. Adding DOD and ESRO payloads increases the net estimated savings of $776M. Planned maintenance by EVA indicated an estimated $168M savings due to elimination of automated service equipment. Contingency problems of payloads were also analyzed to establish expected failure rates for shuttle payloads. The failure information resulted in an estimated potential for EVA savings of $1.9 B.

  9. EVA Glove Research Team

    NASA Technical Reports Server (NTRS)

    Strauss, Alvin M.; Peterson, Steven W.; Main, John A.; Dickenson, Rueben D.; Shields, Bobby L.; Lorenz, Christine H.

    1992-01-01

    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area.

  10. A Human Machine Interface for EVA

    NASA Astrophysics Data System (ADS)

    Hartmann, L.

    , the overlaid graphical information can be registered with the external world. For example, information about an object can be positioned on or beside the object. This wearable HMI supports many applications during EVA including robot teleoperation, procedure checklist usage, operation of virtual control panels and general information or documentation retrieval and presentation. Whether the robot end effector is a mobile platform for the EVA astronaut or is an assistant to the astronaut in an assembly or repair task, the astronaut can control the robot via a direct manipulation interface. Embedded in the suit or the astronaut's clothing, Shapetape can measure the user's arm/hand position and orientation which can be directly mapped into the workspace coordinate system of the robot. Motion of the users hand can generate corresponding motion of the robot end effector in order to reposition the EVA platform or to manipulate objects in the robot's grasp. Speech input can be used to execute commands and mode changes without the astronaut having to withdraw from the teleoperation task. Speech output from the system can provide feedback without affecting the user's visual attention. The procedure checklist guiding the astronaut's detailed activities can be presented on the HUD and manipulated (e.g., move, scale, annotate, mark tasks as done, consult prerequisite tasks) by spoken command. Virtual control panels for suit equipment, equipment being repaired or arbitrary equipment on the space station can be displayed on the HUD and can be operated by speech commands or by hand gestures. For example, an antenna being repaired could be pointed under the control of the EVA astronaut. Additionally arbitrary computer activities such as information retrieval and presentation can be carried out using similar interface techniques. Considering the risks, expense and physical challenges of EVA work, it is appropriate that EVA astronauts have considerable support from station crew and

  11. Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system

    NASA Technical Reports Server (NTRS)

    Mclauchlan, Robert A.

    1987-01-01

    Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.

  12. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Mesloh, Miranda; Thompson, Shelby; England, Scott; Benson, Liz

    2009-01-01

    With the new vision of space travel aimed at traveling back to the Moon and eventually to Mars, NASA is designing a new spacesuit glove. The purpose of this study was to baseline hand strength while wearing the current Extravehicular Activity (EVA) glove, the Phase VI. By varying the pressure in the glove, hand strength could be characterized as a function of spacesuit pressure. This finding is of extreme importance when evaluating missions that require varying suit pressures associated with different operations within NASA's current human spaceflight program, Constellation. This characterization fed directly into the derivation of requirements for the next EVA glove. This study captured three types of maximum hand strength: grip, lateral pinch, and pulp-2 pinch. All three strengths were measured under varying pressures and compared to a bare-hand condition. The resulting standardized data was reported as a percentage of the bare-hand strength. The first wave of tests was performed while the subjects, four female and four male, were wearing an Extravehicular Mobility Unit (EMU) suit supported by a suit stand. This portion of the test collected data from the barehand, suited unpressurized, and suited pressurized (4.3 psi) conditions. In addition, the effects of the Thermal Micrometeoroid Garment (TMG) on hand strength were examined, with the suited unpressurized and pressurized cases tested with and without a TMG. It was found that, when pressurized and with the TMG, the Phase VI glove reduced applied grip strength to a little more than half of the subject s bare-hand strength. The lateral pinch strength remained relatively constant while the pulp-2 pinch strength actually increased with pressure. The TMG was found to decrease maximum applied grip strength by an additional 10% for both pressurized and unpressurized cases, while the pinch strengths saw little to no change. In developing requirements based on human subjects, it is important to attempt to derive

  13. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis

  14. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane M.; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis.

  15. EVA Skills Training

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    Dr. Parazynski and a colleague from Extravehicular Activity (EVA), Robotics, & Crew Systems Operations (DX) worked closely to build the EVA Skills Training Program, and for the first time, defined the gold standards of EVA performance, allowing crewmembers to increase their performance significantly. As part of the program, individuals had the opportunity to learn at their own rate, taking additional water time as required, to achieve that level of performance. This focus on training to one's strengths and weaknesses to bolster them enabled the Crew Office and DX to field a much larger group of spacewalkers for the daunting "wall of EVA" required for the building and maintenance of the ISS. Parazynski also stressed the need for designers to understand the capabilities and the limitations of a human in a spacesuit, as well as opportunities to improve future generations of space. He shared lessons learned (how the Crew Office engaged in these endeavors) and illustrated the need to work as a team to develop these complex systems.

  16. Development of an air-bearing fan for space extravehicular activity (EVA) suit ventilation

    NASA Technical Reports Server (NTRS)

    Fukumoto, Paul; Allen, Norman; Stonesifer, Greg

    1992-01-01

    A high-speed/variable flow fan has been developed for EVA suit ventilation which combines air bearings with a two-pole, toothless permanent-magnet motor. The fan has demonstrated quiet and vibration-free operation and a 2:1 range in flow rate variation. System weight is 0.9 kg, and input powers range from 12.4 to 42 W.

  17. Metabolic Assessment of Suited Mobility Using Functional Tasks

    NASA Technical Reports Server (NTRS)

    Norcross, J. R.; McFarland, S. M.; Ploutz-Snyder, Robert

    2016-01-01

    Existing methods for evaluating extravehicular activity (EVA) suit mobility have typically focused on isolated joint range of motion or torque, but these techniques have little to do with how well a crewmember functionally performs in an EVA suit. To evaluate suited mobility at the system level through measuring metabolic cost (MC) of functional tasks.

  18. Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2004-01-01

    This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

  19. What's NEXT for EVA

    NASA Astrophysics Data System (ADS)

    Fullerton, R. K.

    The NASA Exploration Team (NEXT) promotes a vision of new capabilities through an ongoing, integrated and prioritized investment in leap ahead concepts and technologies. The wise marriage of robotic and human work systems is a key element of this vision. To enable a wide array of future destinations and applications, it is important to develop and implement systems which are scalable, environmentally adaptable, reliable and efficiently productive. This paper highlights a few of the recently envisioned customers and applications for advanced extravehicular activity (EVA) systems. It also summarizes recent conceptual and practical studies to define the features and options of such a system. More importantly, it communicates the need and progress of knowledge capture, clearly defined performance targets, credible decision making tools, tangible benefits and creative leverage. With this integrated long range approach, space exploration and EVA can accelerate and enable the future for all generations.

  20. Advanced EVA system design requirements study: EVAS/space station system interface requirements

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1985-01-01

    The definition of the Extravehicular Activity (EVA) systems interface requirements and accomodations for effective integration of a production EVA capability into the space station are contained. A description of the EVA systems for which the space station must provide the various interfaces and accomodations are provided. The discussion and analyses of the various space station areas in which the EVA interfaces are required and/or from which implications for EVA system design requirements are derived, are included. The rationale is provided for all EVAS mechanical, fluid, electrical, communications, and data system interfaces as well as exterior and interior requirements necessary to facilitate EVA operations. Results of the studies supporting these discussions are presented in the appendix.

  1. STS-117 Astronauts Patrick Forrester and Steven Swanson During EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-117 astronauts and mission specialists Patrick Forrester and Steven Swanson (out of frame), participated in the second Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two removed all of the launch locks holding the 10 foot wide solar alpha rotary joint in place and began the solar array retraction. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4).

  2. TEJAS - TELEROBOTICS/EVA JOINT ANALYSIS SYSTEM VERSION 1.0

    NASA Technical Reports Server (NTRS)

    Drews, M. L.

    1994-01-01

    The primary objective of space telerobotics as a research discipline is the augmentation and/or support of extravehicular activity (EVA) with telerobotic activity; this allows increased emplacement of on-orbit assets while providing for their "in situ" management. Development of the requisite telerobot work system requires a well-understood correspondence between EVA and telerobotics that to date has been only partially established. The Telerobotics/EVA Joint Analysis Systems (TEJAS) hypermedia information system uses object-oriented programming to bridge the gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains twenty HyperCard stacks that use a visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about the primitives, technologies, tasks, assumptions, and open issues involved in space telerobot or crew EVA tasks. These stacks are meant to be interactive and can be used with any database system running on a Macintosh, including spreadsheets, relational databases, word-processed documents, and hypermedia utilities. The software provides a means for managing volumes of data and for communicating complex ideas, relationships, and processes inherent to task planning. The stack system contains 3MB of data and utilities to aid referencing, discussion, communication, and analysis within the EVA and telerobotics communities. The six baseline analysis stacks (EVATasks, EVAAssume, EVAIssues, TeleTasks, TeleAssume, and TeleIssues) work interactively to manage and relate basic information which you enter about the crew-EVA and telerobot tasks you wish to analyze in depth. Analysis stacks draw on information in the Reference stacks as part of a rapid point-and-click utility for building scripts of specific task primitives or for any EVA or telerobotics task. Any or all of these stacks can be completely incorporated within other hypermedia applications, or they can be

  3. Task network models in the prediction of workload imposed by extravehicular activities during the Hubble Space Telescope servicing mission

    NASA Technical Reports Server (NTRS)

    Diaz, Manuel F.; Takamoto, Neal; Woolford, Barbara

    1994-01-01

    In a joint effort with Brooks AFB, Texas, the Flight Crew Support Division at JSC has begun a computer simulation and performance modeling program directed at establishing the predictive validity of software tools for modeling human performance during spaceflight. This paper addresses the utility of task network modeling for predicting the workload that astronauts are likely to encounter in extravehicular activities (EVA) during the Hubble Space Telescope (HST) repair mission. The intent of the study was to determine whether two EVA crewmembers and one intravehicular activity (IVA) crewmember could reasonably be expected to complete HST Wide Field/Planetary Camera (WFPC) replacement in the allotted time. Ultimately, examination of the points during HST servicing that may result in excessive workload will lead to recommendations to the HST Flight Systems and Servicing Project concerning (1) expectation of degraded performance, (2) the need to change task allocation across crewmembers, (3) the need to expand the timeline, and (4) the need to increase the number of EVA's.

  4. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of

  5. STS-31 Crew Training: Firefighting, Food Tasting, EVA Prep and Post

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

  6. Space shuttle EVA/IVA support equipment requirements study. Volume 1: Final summary report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the support equipment requirements for space shuttle intravehicular and extravehicular activities. The subjects investigated are; (1) EVA/IVA task identification and analysis,. (2) primary life support system, (3) emergency life support system, (4) pressure suit assembly, (5) restraints, (6) work site provision, (7) emergency internal vehicular emergencies, and (8) vehicular interfaces.

  7. Advanced EVA system design requirements study, executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the space station advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related EVA support equipment were established. The EVA mission requirements, environments, and medical and physiological requirements, as well as operational, procedures and training issues were considered.

  8. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-01

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space. PMID:10631334

  9. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  10. Brain activations during bimodal dual tasks depend on the nature and combination of component tasks.

    PubMed

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2015-01-01

    We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley's model "modality atypical," that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks. PMID:25767443

  11. Brain activations during bimodal dual tasks depend on the nature and combination of component tasks

    PubMed Central

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2015-01-01

    We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or “simple” (speaker-gender or font-shade) discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley's model “modality atypical,” that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks. PMID:25767443

  12. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and crewmembers (CMs) ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVA, and provides a historical look at energy expenditure during EVA through the Apollo program.

  13. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2012-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and, as a result, crew members ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVAs, and provides a historical look at energy expenditure during EVAs through the Apollo Program.

  14. Miniature EVA Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  15. EVA results of Shuttle Mission STS-37

    NASA Astrophysics Data System (ADS)

    Whitsett, C. E.; Gall, Lisa A.; Trevino, Luis A.

    1992-07-01

    The paper summarizes EVA results of the STS-37 mission that flew in April 1991, with emphasis on the unscheduled EVA to free the Compton GRO antenna. The EVA Development Flight Experiment (EDFE) objectives and equipment description are also presented. The EDFE consisted of three experiments conducted during STS-37 to evaluate both designs of crew translation equipment and loads imparted by crew members while performing typical EVA work site tasks for Space Station Freedom. The experiments were used to evaluate static and dynamic loads and ease of operation of four separate translation systems operating on a fixed track. Various measures of performance of the crew equipment and translation aids are discussed. The rates and accelerations experienced during translation aided by the manipulator foot restraint and remote manipulator system were found to be comfortable.

  16. Preparation time modulates pro-active control and enhances task conflict in task switching.

    PubMed

    Kalanthroff, Eyal; Henik, Avishai

    2014-03-01

    Performance in the Stroop task reflects two conflicts--informational (between the incongruent word and ink color) and task (between relevant color naming and irrelevant word reading). Neuroimaging findings support the existence of task conflict in congruent trials. A behavioral indication for task conflict--Stroop reverse facilitation--was found in previous studies under low task-control conditions. Task switching also causes reduction in task control because the task set frequently changes. We hypothesized that it would be harder to efficiently manage task conflicts in switching situations and, specifically, as cue-target interval (CTI) decreases. This suggestion was examined in two experiments using a combined Stroop task-switching design. We found a large interference effect and reverse facilitation that decreased with elongation of CTI. Results imply that task switching reduces pro-active task control and thereby enhances the informational and the task conflicts. This calls for a revision of recent control models to include task conflict. PMID:23712333

  17. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie

    2016-01-01

    The EVA (Extravehicular Activity) Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, searchable repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, the one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision control system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, and also for hundreds of other NASA and contract employees. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  18. Networks of Task Co-Activations

    PubMed Central

    Laird, Angela R.; Eickhoff, Simon B.; Rottschy, Claudia; Bzdok, Danilo; Ray, Kimberly L.; Fox, Peter T.

    2013-01-01

    Recent progress in neuroimaging informatics and meta-analytic techniques has enabled a novel domain of human brain connectomics research that focuses on task-dependent co-activation patterns across behavioral tasks and cognitive domains. Here, we review studies utilizing the BrainMap database to investigate data trends in the activation literature using methods such as meta-analytic connectivity modeling (MACM), connectivity-based parcellation (CPB), and independent component analysis (ICA). We give examples of how these methods are being applied to learn more about the functional connectivity of areas such as the amygdala, the default mode network, and visual area V5. Methods for analyzing the behavioral metadata corresponding to regions of interest and to their intrinsically connected networks are described as a tool for local functional decoding. We finally discuss the relation of observed co-activation connectivity results to resting state connectivity patterns, and provide implications for future work in this domain. PMID:23631994

  19. Understanding Skill in EVA Mass Handling. Volume 4; An Integrated Methodology for Evaluating Space Suit Mobility and Stability

    NASA Technical Reports Server (NTRS)

    McDonald, P. Vernon; Newman, Dava

    1999-01-01

    The empirical investigation of extravehicular activity (EVA) mass handling conducted on NASA's Precision Air-Bearing Floor led to a Phase I SBIR from JSC. The purpose of the SBIR was to design an innovative system for evaluating space suit mobility and stability in conditions that simulate EVA on the surface of the Moon or Mars. The approach we used to satisfy the Phase I objectives was based on a structured methodology for the development of human-systems technology. Accordingly the project was broken down into a number of tasks and subtasks. In sequence, the major tasks were: 1) Identify missions and tasks that will involve EVA and resulting mobility requirements in the near and long term; 2) Assess possible methods for evaluating mobility of space suits during field-based EVA tests; 3) Identify requirements for behavioral evaluation by interacting with NASA stakeholders;.4) Identify necessary and sufficient technology for implementation of a mobility evaluation system; and 5) Prioritize and select technology solutions. The work conducted in these tasks is described in this final volume of the series on EVA mass handling. While prior volumes in the series focus on novel data-analytic techniques, this volume addresses technology that is necessary for minimally intrusive data collection and near-real-time data analysis and display.

  20. Preparing for space - EVA training at the European Astronaut Centre

    NASA Astrophysics Data System (ADS)

    Bolender, Hans; Stevenin, Hervé; Bessone, Loredana; Torres, Antonio

    2006-11-01

    The European Astronaut Centre has developed an Extra Vehicular Activity (EVA) training course for ESA astronauts to bridge the gap between their scuba diving certification and the spacesuit qualification provided by NASA. ESA astronauts André Kuipers and Frank De Winne have already completed this "EVA Pre-Familiarisation Training Programme" before their training at NASA. In June 2006, an international crew of experienced EVA astronauts approved the course as good preparation for suited EVA training; they recommended that portions of it be used to help maintain EVA proficiency for astronauts.

  1. Study of EVA operations associated with satellite services

    NASA Technical Reports Server (NTRS)

    Nash, J. O.; Wilde, R. D.

    1982-01-01

    Extravehicular mobility unit (EMU) factors associated with satellite servicing activities are identified and the EMU improvements necessary to enhance satellite servicing operations are outlined. Areas of EMU capabilities, equipment and structural interfaces, time lines, EMU modifications for satellite servicing, environmental hazards, and crew training are vital to manned Eva/satellite services and as such are detailed. Evaluation of EMU capabilities indicates that the EMU can be used in performing near term, basic satellite servicing tasks; however, satellite servicing is greatly enhanced by incorporating key modifications into the EMU. The servicing missions involved in contamination sensitive payload repair are illustrated. EVA procedures and equipment can be standardized, reducing both crew training time and in orbit operations time. By standardizing and coordinating procedures, mission cumulative time lines fall well within the EMU capability.

  2. Brain activities during synchronized tapping task.

    PubMed

    Hiroyasu, Tomoyuki; Murakami, Akiho; Mao Gto; Yokouchi, Hisatake

    2015-08-01

    This study aims to investigate how people process information about other people to determine a response during human-to-human cooperative work. As a preliminary study, the mechanism of cooperative work was examined using interaction between a machine and a human. This machine was designed to have an "other person" model that simulates an emotional model of another person. The task performed in the experiment was a synchronized tapping task. Two models were prepared for this experiment, a simple model that does not employ the other person model and a synchronized model that employs the other person model. Subjects performed cooperative work with these machines. During the experiment, brain activities were measured using functional near-infrared spectroscopy. It was observed that the left inferior frontal gyrus was activated more with the synchronized model than the simple model. PMID:26737670

  3. EVA Physiology, Systems and Performance [EPSP] Project

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2010-01-01

    This viewgraph presentation gives a general overview of the biomedical and technological challenges of Extravehicular Activity (EVA). The topics covered include: 1) Prebreathe Protocols; 2) Lunar Suit Testing and Development; and 3) Lunar Electric Rover and Exploration Operations Concepts.

  4. EVA Suit Microbial Leakage Investigation Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Baker, Christopher; Clayton, Ronald; Rucker, Michelle

    2016-01-01

    The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during simulated planetary exploration activities. Data will be released to the planetary protection and science communities, and advanced EVA system designers. In the best case scenario, we will discover that very little microbial contamination leaks from our current or prototype suit designs, in the worst case scenario, we will identify leak paths, learn more about what affects leakage--and we'll have a new, flight-certified swab tool for our EVA toolbox.

  5. EVA Physiology and Medical Considerations Working in the Suit

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  6. Human performance profiles for planetary analog extra-vehicular activities: 120 day and 30 day analog missions

    NASA Astrophysics Data System (ADS)

    Swarmer, Tiffany M.

    Understanding performance factors for future planetary missions is critical for ensuring safe and successful planetary extra-vehicular activities (EVAs). The goal of this study was to gain operational knowledge of analog EVAs and develop biometric profiles for specific EVA types. Data was collected for a 120 and 30 day analog planetary exploration simulation focusing on EVA type, pre and post EVA conditions, and performance ratings. From this five main types of EVAs were performed: maintenance, science, survey/exploratory, public relations, and emergency. Each EVA type has unique characteristics and performance ratings showing specific factors in chronological components, environmental conditions, and EVA systems that have an impact on performance. Pre and post biometrics were collected to heart rate, blood pressure, and SpO2. Additional data about issues and specific EVA difficulties provide some EVA trends illustrating how tasks and suit comfort can negatively affect performance ratings. Performance decreases were noted for 1st quarter and 3rd quarter EVAs, survey/exploratory type EVAs, and EVAs requiring increased fine and gross motor function. Stress during the simulation is typically higher before the EVA and decreases once the crew has returned to the habitat. Stress also decreases as the simulation nears the end with the 3rd and 4th quarters showing a decrease in stress levels. Operational components and studies have numerous variable and components that effect overall performance, by increasing the knowledge available we may be able to better prepare future crews for the extreme environments and exploration of another planet.

  7. Apollo 15 EVA panorama

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Mosaic photographs which compose a 360-degree panoramic view of the Apollo 15 Hadley-Apennine landing site, taken near the close of the third lunar surface extravehicular activity (EVA) by Astronauts David Scott and James Irwin. This group of photographs was designated the Rover 'RIP' Pan because the Lunar Roving Vehicle was parked in its final position prior to the two crewmen returning to the Lunar Module. The astronaut taking the pan was standing 325 feet east of the Lunar Module (LM). The Rover was parked about 300 feet east of the LM. This mosaic covers a field of view from about north-northeast to about south. Visible on the horizon from left to right are: Mount Hadley; high peaks of the Apennine Mountains which are farther in the distance than either Mount Hadley or Hadley Delta Mountain; Silver Spur on the Apennine Front; and the eastern portion of Hadley Delta. Note Rover tracks in the foreground.

  8. Walking to Olympus: An EVA Chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Trevino, Robert C.

    1997-01-01

    Spacewalkers enjoy a view of Earth once reserved for Apollo, Zeus, and other denizens of Mt. Olympus. During humanity's first extravehicular activity (EVA), Alexei Leonov floated above Gibraltar, the rock ancient seafarers saw as the gateway to the great unknown Atlantic. The symbolism was clear, Leonov stepped past a new Gibraltar when he stepped into space. More than 32 years and 154 EVAs later, Jerry Linenger conducted an EVA with Vladimir Tsibliyev as part of International Space Station Phase 1. They floated together above Gibraltar. Today the symbolism has new meaning: humanity is starting to think of stepping out of Earth orbit, space travel's new Gibraltar, and perhaps obtaining a new olympian view, a close-up look at Olympus Mons on Mars. Walking to Olympus: An EVA Chronology chronicles the 154 EVAs conducted from March 1965 to April 1997. It is intended to make clear the crucial role played by EVA in the history of spaceflight, as well as to chronicle the large body of EVA "lessons learned." Russia and the U.S. define EVA differently. Russian cosmonauts are said to perform EVA any time they are in vacuum in a space suit. A U.S. astronaut must have at least his head outside his spacecraft before he is said to perform an EVA. The difference is based in differing spacecraft design philoso- phies. Russian and Soviet spacecraft have always had a specialized airlock through which the EVA cosmonaut egressed, leaving the main habitable volume of the spacecraft pressurized. The U.S. Gemini and Apollo vehicles, on the other hand, depressurized their entire habitable volume for egress. In this document, we apply the Russian definition to Russian EVAS, and the U.S. definition to U.S. EVAS. Thus, for example, Gemini 4 Command Pilot James McDivitt does not share the honor of being first American spacewalker with Ed White, even though he was suited and in vacuum when White stepped out into space. Non-EVA spaceflights are listed in the chronology to provide context and to

  9. Overview of crew member energy expenditure during Shuttle Flight 61-8 EASE/ACCESS task performance

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.; Waligora, J. W.; Stanford, J.; Edwards, B. F.

    1987-01-01

    The energy expenditure of the Shuttle Flight 61-B crewmembers during the extravehicular performance of Experimental Assembly of Structures in EVA (EASE) and Assembly Concept of Construction of Space Structures (ACCESS) construction system tasks are reported. These data consist of metabolic rate time profiles correlated with specific EASE and ACCESS tasks and crew comments. Average extravehicular activity metabolic rates are computed and compared with those reported from previous Apollo, Shylab, and Shuttle flights. These data reflect total energy expenditure and not that of individual muscle groups such as hand and forearm. When correlated with specific EVA tasks and subtasks, the metabolic profile data is expected to be useful in planning future EVA protocols. For example, after experiencing high work rates and apparent overheating during some Gemini EVAs, it was found useful to carefully monitor work rates in subsequent flights to assess the adequacy of cooling garments and as an aid to preplanning EVA procedures. This presentation is represented by graphs and charts.

  10. EVA Radio DRATS 2011 Report

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Bakula, Casey J.

    2012-01-01

    In the Fall of 2011, National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) participated in the Desert Research and Technology Studies (DRATS) field experiments held near Flagstaff, Arizona. The objective of the DRATS outing is to provide analog mission testing of candidate technologies for space exploration, especially those technologies applicable to human exploration of extra- terrestrial rocky bodies. These activities are performed at locations with similarities to extra-terrestrial conditions. This report describes the Extravehicular Activity (EVA) Dual-Band Radio Communication System which was demonstrated during the 2011 outing. The EVA radio system is designed to transport both voice and telemetry data through a mobile ad hoc wireless network and employs a dual-band radio configuration. Some key characteristics of this system include: 1. Dual-band radio configuration. 2. Intelligent switching between two different capability wireless networks. 3. Self-healing network. 4. Simultaneous data and voice communication.

  11. Advanced EVA Suit Camera System Development Project

    NASA Technical Reports Server (NTRS)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  12. Refinement of Optimal Work Envelope for Extra-Vehicular Activity (EVA) Suit Operations

    NASA Technical Reports Server (NTRS)

    Jaramillo, Marcos A.; Angermiller, Bonnie L.; Morency, Richard M.; Rajululu, Sudhakar L.

    2008-01-01

    The purpose of the Extravehicular Mobility Unit (EMU) Work Envelope study is to determine and revise the work envelope defined in NSTS 07700 "System Description and Design Data - Extravehicular Activities" [1], arising from an action item as a result of the Shoulder Injury Tiger Team findings. The aim of this study is to determine a common work envelope that will encompass a majority of the crew population while minimizing the possibility of shoulder and upper arm injuries. There will be approximately two phases of testing: arm sweep analysis to be performed in the Anthropometry and Biomechanics Facility (ABF), and torso lean testing to be performed on the Precision Air Bearing Facility (PABF). NSTS 07700 defines the preferred work envelope arm reach in terms of maximum reach, and defines the preferred work envelope torso flexibility of a crewmember to be a net 45 degree backwards lean [1]. This test served two functions: to investigate the validity of the standard discussed in NSTS 07700, and to provide recommendations to update this standard if necessary.

  13. STS-117 Astronauts John Olivas and Jim Reilly During EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-117 astronauts and mission specialists Jim Reilly (center frame), and John 'Danny' Olivas (bottom center), participated in the first Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two connected power, data, and cooling cables between trusses 1 (S1) and 3 (S3), released the launch restraints from and deployed the four solar array blanket boxes on S4, and released the cinches and winches holding the photovoltaic radiator on S4. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4).

  14. Task-free MRI predicts individual differences in brain activity during task performance.

    PubMed

    Tavor, I; Parker Jones, O; Mars, R B; Smith, S M; Behrens, T E; Jbabdi, S

    2016-04-01

    When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects. PMID:27124457

  15. EVA Retriever Demonstration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The EVA retriever is demonstrated in the Manipulator Development Facility (MDF). The retriever moves on the air bearing table 'searching' for its target, in this case tools 'dropped' by astronauts on orbit.

  16. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, participated in the EVA with Lousma. During the EVA the two crewmen deployed the twin pole solar shield to help shade the Orbital Workshop.

  17. Amygdala task-evoked activity and task-free connectivity independently contribute to feelings of arousal.

    PubMed

    Touroutoglou, Alexandra; Bickart, Kevin C; Barrett, Lisa Feldman; Dickerson, Bradford C

    2014-10-01

    Individual differences in the intensity of feelings of arousal while viewing emotional pictures have been associated with the magnitude of task-evoked blood-oxygen dependent (BOLD) response in the amygdala. Recently, we reported that individual differences in feelings of arousal are associated with task-free (resting state) connectivity within the salience network. There has not yet been an investigation of whether these two types of functional magnetic resonance imaging (MRI) measures are redundant or independent in their relationships to behavior. Here we tested the hypothesis that a combination of task-evoked amygdala activation and task-free amygdala connectivity within the salience network relate to individual differences in feelings of arousal while viewing of negatively potent images. In 25 young adults, results revealed that greater task-evoked amygdala activation and stronger task-free amygdala connectivity within the salience network each contributed independently to feelings of arousal, predicting a total of 45% of its variance. Individuals who had both increased task-evoked amygdala activation and stronger task-free amygdala connectivity within the salience network had the most heightened levels of arousal. Task-evoked amygdala activation and task-free amygdala connectivity within the salience network were not related to each other, suggesting that resting-state and task-evoked dynamic brain imaging measures may provide independent and complementary information about affective experience, and likely other kinds of behaviors as well. PMID:24862171

  18. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  19. EVA - Don't Leave Earth Without It

    NASA Technical Reports Server (NTRS)

    Cupples, J. Scott; Smith, Stephen A.

    2011-01-01

    Modern manned space programs come in two categories: those that need Extravehicular Activity (EVA) and those that will need EVA. This paper discusses major milestones in the Shuttle Program where EVA was used to save payloads, enhance on-orbit capabilities, and build structures in order to ensure success of National Aeronautics and Space Administration (NASA) missions. In conjunction, the Extravehicular Mobility Unit s (EMU) design, and hence, its capabilities evolved as its mission evolved. It is the intent that lessons can be drawn from these case studies so that EVA compatibility is designed into future vehicles and payloads.

  20. STS-33 EVA Prep and Post with Gregory, Blaha, Carter, Thorton, and Musgrave in FFT

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This video shows the crew in the airlock of the FFT, talking with technicians about the extravehicular activity (EVA) equipment. Thornton and Carter put on EVA suits and enter the airlock as the other crew members help with checklists.

  1. Cortical Activation Changes During Simple Motor Task over Repeated Sessions

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Shuichi; Yamada, Taro; Wada, Yasuhiro

    Recent fMRI studies of human motor function and learning have reported that the magnitude of brain activity involves a decreasing trend over repeated tasks in the absence of improvements in task performance, probably suggesting the effect of habituation. Here we show that similar effect can be detected by NIRS. In experiments, oxygenated hemoglobin (HbO) changes were monitored during a finger tapping task over repeated sessions. Results showed that task-related brain activity exhibited a decreasing trend on motor-related areas over the sessions. These suggest that measurements of NIRS may exhibit the brain-induced trends over repetition of simple motor tasks.

  2. Power assist EVA glove development

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    The design of the EVA glove is examined, emphasizing the development of a more flexible metacarpophalangeal (MCP) joint for the EVA glove. The analysis of the EVA glove MCP joint is reviewed and the glove design process is recapitulated. Experimental tests of the glove are summarized.

  3. Astronaut Dale Gardner holds up for sale sign after EVA

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  4. Evaluation of a Human Modeling Software Tool in the Prediction of Extra Vehicular Activity Tasks for an International Space Station Assembly Mission

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles; Loughead, Tomas E.

    1997-01-01

    The difficulty of accomplishing work in extravehicular activity (EVA) is well documented. It arises as a result of motion constraints imposed by a pressurized spacesuit in a near-vacuum and of the frictionless environment induced in microgravity. The appropriate placement of foot restraints is crucial to ensuring that astronauts can remove and drive bolts, mate and demate connectors, and actuate levers. The location on structural members of the foot restraint sockets, to which the portable foot restraint is attached, must provide for an orientation of the restraint that affords the astronaut adequate visual and reach envelopes. Previously, the initial location of these sockets was dependent upon the experienced designer's ability to estimate placement. The design was tested in a simulated zero-gravity environment; spacesuited astronauts performed the tasks with mockups while submerged in water. Crew evaluation of the tasks based on these designs often indicated the bolt or other structure to which force needed to be applied was not within an acceptable work envelope, resulting in redesign. The development of improved methods for location of crew aids prior to testing would result in savings to the design effort for EVA hardware. Such an effort to streamline EVA design is especially relevant to International Space Station construction and maintenance. Assembly operations alone are expected to require in excess of four hundred hours of EVA. Thus, techniques which conserve design resources for assembly missions can have significant impact. We describe an effort to implement a human modelling application in the design effort for an International Space Station Assembly Mission. On Assembly Flight 6A, the Canadian-built Space Station Remote Manipulator System will be delivered to the U.S. Laboratory. It will be released from its launch restraints by astronauts in EVA. The design of the placement of foot restraint sockets was carried out using the human model Jack, and

  5. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benson, E.; England, S.; Charvat, J.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2015-01-01

    Human hands play a significant role during Extravehicular Activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. Because of this high frequency usage, hand and arm related injuries are known to occur during EVA and EVA training in the NBL. The primary objectives of this investigation were to: 1) document all known EVA glove related injuries and circumstances of these incidents, 2) determine likely risk factors, and 3) recommend interventions where possible that could be implemented in the current and future glove designs. METHODS: The investigation focused on the discomforts and injuries of U.S. crewmembers who had worn the pressurized Extravehicular Mobility Unit (EMU) spacesuit and experienced 4000 Series or Phase VI glove related incidents during 1981 to 2010 for either EVA ground training or in-orbit flight. We conducted an observational retrospective case-control investigation using 1) a literature review of known injuries, 2) data mining of crew injury, glove sizing, and hand anthropometry databases, 3) descriptive statistical analyses, and finally 4) statistical risk correlation and predictor analyses to better understand injury prevalence and potential causation. Specific predictor statistical analyses included use of principal component analyses (PCA), multiple logistic regression, and survival analyses (Cox proportional hazards regression). Results of these analyses were computed risk variables in the forms of odds ratios (likelihood of an injury occurring given the magnitude of a risk variable) and hazard ratios (likelihood of time to injury occurrence). Due to the exploratory nature of this investigation, we selected predictor variables significant at p=0.15. RESULTS: Through 2010, there have been a total of 330 NASA crewmembers, from which 96 crewmembers performed 322 EVAs during 1981-2010, resulting in 50 crewmembers being injured inflight and 44

  6. Exploration EVA Purge Flow Assessment

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Conger, Bruce

    2010-01-01

    An advanced future spacesuit will require properly sized suit and helmet purge flow rates in order to sustain a crew member with a failed Portable Life Support System (PLSS) during an Extravehicular Activity (EVA). A computational fluid dynamics evaluation was performed to estimate the helmet purge flow rate required to washout carbon dioxide and to prevent the condensing ("fogging") of water vapor on the helmet visor. An additional investigation predicted the suit purge flow rate required to provide sufficient convective cooling to keep the crew member comfortable. This paper summarizes the results of these evaluations.

  7. Exploration EVA Purge Flow Assessment

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Conger, Bruce; Campbell, Colin

    2011-01-01

    An advanced future spacesuit will require properly sized suit and helmet purge flow rates in order to sustain a crew member with a failed Portable Life Support System (PLSS) during an Extravehicular Activity (EVA). A computational fluid dynamics evaluation was performed to estimate the helmet purge flow rate required to washout carbon dioxide and to prevent the condensing ("fogging") of water vapor on the helmet visor. An additional investigation predicted the suit purge flow rate required to provide sufficient convective cooling to keep the crew member comfortable. This paper summarizes the results of these evaluations.

  8. EASE (Experimental Assembly of Structures in EVA) overview of selected results

    NASA Technical Reports Server (NTRS)

    Akin, David L.

    1987-01-01

    Experimental Assembly of Structures in EVA (EASE) objectives, experimental protocol, neutral buoyancy simulation, task time distribution, assembly task performance, metabolic rate/biomedical readouts are summarized. This presentation is shown in charts, figures, and graphs.

  9. Emergency vehicle alert system (EVAS)

    NASA Technical Reports Server (NTRS)

    Reed, Bill; Crump, Roger; Harper, Warren; Myneni, Krishna

    1995-01-01

    The Emergency Vehicle Alert System (EVAS) program is sponsored by the NASA/MSFC Technology Utilization (TU) office. The program was conceived to support the needs of hearing impaired drivers. The objective of the program is to develop a low-cost, small device which can be located in a personal vehicle and warn the driver, via a visual means, of the approach of an emergency vehicle. Many different technologies might be developed for this purpose and each has its own advantages and drawbacks. The requirements for an acoustic detection system, appear to be pretty stringent and may not allow the development of a reliable, low-cost device in the near future. The problems include variations in the sirens between various types of emergency vehicles, distortions due to wind and surrounding objects, competing background noise, sophisticated signal processing requirements, and omni-directional coverage requirements. Another approach is to use a Radio Frequency (RF) signal between the Emergency Vehicle (EV) and the Personal Vehicle (PV). This approach requires a transmitter on each EV and a receiver in each PV, however it is virtually assured that a system can be developed which works. With this approach, the real technology issue is how to make a system work as inexpensively as possible. This report gives a brief summary of the EVAS program from its inception and concentrates on describing the activities that occurred during Phase 4. References 1-3 describe activities under Phases 1-3. In the fourth phase of the program, the major effort to be expended was in development of the microcontroller system for the PV, refinement of some system elements and packaging for demonstration purposes. An EVAS system was developed and demonstrated which used standard spread spectrum modems with minor modifications.

  10. Moments applied in the manual assembly of space structures - Ease biomechanics results from STS-61B. [Experimental Assembly of Structures in EVA

    NASA Technical Reports Server (NTRS)

    Cousins, D.; Akin, D. L.

    1989-01-01

    Measurements of the level and pattern of moments applied in the manual assembly of a space structure were made in extravehicular activity (EVA) and neutral buoyancy simulation (NBS). The Experimental Assembly of Structures in EVA program included the repeated assembly of a 3.6 m tetrahedral truss structure in EVA on STS-61B after extensive neutral buoyancy crew training. The flight and training structures were of equivalent mass and geometry to allow a direct correlation between EVA and NBS performance. A stereo photographic motion camera system was used to reconstruct in three dimensions rotational movements of structural beams during assembly. Moments applied in these manual handling tasks were calculated on the basis of the reconstructed movements taking into account effects of inertia, drag and virtual mass. Applied moments of 2.0 Nm were typical for beam rotations in EVA. Corresponding applied moments in NBS were typically up to five times greater. Moments were applied as impulses separated by several seconds of coasting in both EVA and NBS. Decelerating impulses were only infrequently observed in NBS.

  11. Development of an EVA systems cost model. Volume 3: EVA systems cost model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The EVA systems cost model presented is based on proposed EVA equipment for the space shuttle program. General information on EVA crewman requirements in a weightless environment and an EVA capabilities overview are provided.

  12. Effective Teamwork: The EVA NBL Experience

    NASA Technical Reports Server (NTRS)

    Crocker, Lori

    2007-01-01

    This viewgraph presentation reviews the experience of improving the operation of the ExtraVehiclar Activity (EVA) Neutral Buoyancy Laboratory as a team of NASA employees and contractors. It reviews specific recommendations to use in turning a struggling organization around as a NASA/contractor team

  13. The Evolution of Extravehicular Activity Operations to Lunar Exploration Based on Operational Lessons Learned During 2009 NASA Desert RATS Field Testing

    NASA Technical Reports Server (NTRS)

    Bell, Ernest R., Jr.; Welsh, Daren; Coan, Dave; Johnson, Kieth; Ney, Zane; McDaniel, Randall; Looper, Chris; Guirgis, Peggy

    2010-01-01

    This paper will present options to evolutionary changes in several philosophical areas of extravehicular activity (EVA) operations. These areas will include single person verses team EVAs; various loss of communications scenarios (with Mission Control, between suited crew, suited crew to rover crew, and rover crew A to rover crew B); EVA termination and abort time requirements; incapacitated crew ingress time requirements; autonomous crew operations during loss of signal periods including crew decisions on EVA execution (including decision for single verses team EVA). Additionally, suggestions as to the evolution of the make-up of the EVA flight control team from the current standard will be presented. With respect to the flight control team, the major areas of EVA flight control, EVA Systems and EVA Tasks, will be reviewed, and suggested evolutions of each will be presented. Currently both areas receive real-time information, and provide immediate feedback during EVAs as well as spacesuit (extravehicular mobility unit - EMU) maintenance and servicing periods. With respect to the tasks being performed, either EMU servicing and maintenance, or the specific EVA tasks, daily revising of plans will need to be able to be smoothly implemented to account for unforeseen situations and findings. Many of the presented ideas are a result of lessons learned by the NASA Johnson Space Center Mission Operations Directorate operations team support during the 2009 NASA Desert Research and Technology Studies (Desert RATS). It is important that the philosophy of both EVA crew operations and flight control be examined now, so that, where required, adjustments can be made to a next generation EMU and EVA equipment that will complement the anticipated needs of both the EVA flight control team and the crews.

  14. Modified Advanced Crew Escape Suit Intravehicular Activity Suit for Extravehicular Activity Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration

  15. Modulation of human motoneuron activity by a mental arithmetic task.

    PubMed

    Bensoussan, Laurent; Duclos, Yann; Rossi-Durand, Christiane

    2012-10-01

    This study aimed to determine whether the performance of a mental task affects motoneuron activity. To this end, the tonic discharge pattern of wrist extensor motor units was analyzed in healthy subjects while they were required to maintain a steady wrist extension force and to concurrently perform a mental arithmetic (MA) task. A shortening of the mean inter-spike interval (ISI) and a decrease in ISI variability occurred when MA task was superimposed to the motor task. Aloud and silent MA affected equally the rate and variability of motoneuron discharge. Increases in surface EMG activity and force level were consistent with the modulation of the motor unit discharge rate. Trial-by-trial analysis of the characteristics of motor unit firing revealed that performing MA increases activation of wrist extensor SMU. It is suggested that increase in muscle spindle afferent activity, resulting from fusimotor drive activation by MA, may have contributed to the increase in synaptic inputs to motoneurons during the mental task performance, likely together with enhancement in the descending drive. The finding that a mental task affects motoneuron activity could have consequences in assessment of motor disabilities and in rehabilitation in motor pathologies. PMID:23159444

  16. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Sipila, Stephanie A.; Scoville, Zebulon C.; Bowie, Jonathan T.; Buffington, Jesse A.

    2014-01-01

    One of the challenging primary objectives associated with NASA's Asteroid Redirect Crewed Mission (ARCM) is to demonstrate deep space Extravehicular Activity (EVA) and tools and to obtain asteroid samples to return to Earth for further study. Prior Shuttle and International Space Station (ISS) spacewalks have benefited from engineered EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as behavior of the asteroid capture mechanism will complicate EVA translation, tool restraint, and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the Modified Advanced Crew Escape Suit (MACES) suit. This paper will summarize the overall operational concepts for conducting EVAs for the ARCM mission including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, and the results of early development testing of potential EVA tasks.

  17. Astronaut Richard Gordon returns to hatch of spacecraft following EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., pilot for the Gemini 11 space flight, returns to the hatch of the spacecraft following extravehicular activity (EVA). This picture was taken over the Atlantic Ocean at approximately 160 nautical miles above the earth's surface.

  18. Application of EVA guidelines and design criteria. Volume 2: EVA workstation conceptual designs

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    Several EV workstation concepts were developed and are documented. The workstation concepts were developed following a comprehensive analysis of potential EV missions, functions, and tasks as interpreted from NASA and contractor space shuttle and space station studies, mission models, and related reports. The design of a versatile, portable EVA workstation is aimed at reducing the design and development costs for each mission and aiding in the development of on-orbit serviceable payloads.

  19. Astronaut Ronald Evans photographed during transearth coast EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Ronald E. Evans is photographed performing extravehicular activity (EVA) during the Apollo 17 spacecraft's transearth coast. During his EVA Command Module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The cylindrical object at Evans left side is the mapping camera cassette. The total time for the transearth EVA was one hour seven minutes 19 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) amd ending at ground elapsed time of 258:42 (3:35 p.m.) on Sunday, December 17, 1972.

  20. Astronaut Ronald Evans photographed during transearth coast EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Ronald E. Evans is photographed performing extravehicular activity (EVA) during the Apollo 17 spacecraft's transearth coast. During his EVA Command Module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The total time for the transearth EVA was one hour seven minutes 19 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) amd ending at ground elapsed time of 258:42 (3:35 p.m.) on Sunday, December 17, 1972.

  1. EVA Design, Verification, and On-Orbit Operations Support Using Worksite Analysis

    NASA Technical Reports Server (NTRS)

    Hagale, Thomas J.; Price, Larry R.

    2000-01-01

    The International Space Station (ISS) design is a very large and complex orbiting structure with thousands of Extravehicular Activity (EVA) worksites. These worksites are used to assemble and maintain the ISS. The challenge facing EVA designers was how to design, verify, and operationally support such a large number of worksites within cost and schedule. This has been solved through the practical use of computer aided design (CAD) graphical techniques that have been developed and used with a high degree of success over the past decade. The EVA design process allows analysts to work concurrently with hardware designers so that EVA equipment can be incorporated and structures configured to allow for EVA access and manipulation. Compliance with EVA requirements is strictly enforced during the design process. These techniques and procedures, coupled with neutral buoyancy underwater testing, have proven most valuable in the development, verification, and on-orbit support of planned or contingency EVA worksites.

  2. Active controllers and the time duration to learn a task

    NASA Technical Reports Server (NTRS)

    Repperger, D. W.; Goodyear, C.

    1986-01-01

    An active controller was used to help train naive subjects involved in a compensatory tracking task. The controller is called active in this context because it moves the subject's hand in a direction to improve tracking. It is of interest here to question whether the active controller helps the subject to learn a task more rapidly than the passive controller. Six subjects, inexperienced to compensatory tracking, were run to asymptote root mean square error tracking levels with an active controller or a passive controller. The time required to learn the task was defined several different ways. The results of the different measures of learning were examined across pools of subjects and across controllers using statistical tests. The comparison between the active controller and the passive controller as to their ability to accelerate the learning process as well as reduce levels of asymptotic tracking error is reported here.

  3. STS-117 Astronauts John Olivas and Jim Reilly During EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-117 astronauts and mission specialists Jim Reilly (out of frame), and John 'Danny' Olivas (partially obscured, center), participated in the first Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two connected power, data, and cooling cables between trusses 1 (S1) and 3 (S3), released the launch restraints from and deployed the four solar array blanket boxes on S4, and released the cinches and winches holding the photovoltaic radiator on S4. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4). The horizon of Earth and a crescent moon are visible on the right.

  4. CETA truck and EVA restraint system

    NASA Technical Reports Server (NTRS)

    Beals, David C.; Merson, Wayne R.

    1991-01-01

    The Crew Equipment Translation Aid (CETA) experiment is an extravehicular activity (EVA) Space Transportation System (STS) based flight experiment which will explore various modes of transporting astronauts and light equipment for Space Station Freedom (SSF). The basic elements of CETA are: (1) two 25 foot long sections of monorail, which will be EVA assembled in the STS cargo bay to become a single 50 ft. rail called the track; (2) a wheeled baseplate called the truck which rolls along the track and can accept three cart concepts; and (3) the three carts which are designated manual, electric, and mechanical. The three carts serve as the astronaut restraint and locomotive interfaces with the track. The manual cart is powered by the astronaut grasping the track's handrail and pulling himself along. The electric cart is operated by an astronaut turning a generator which powers the electric motor and drives the cart. The mechanical cart is driven by a Bendix type transmission and is similar in concept to a man-propelled railroad cart. During launch and landing, the truck is attached to the deployable track by means of EVA removable restraint bolts and held in position by a system of retractable shims. These shims are positioned on the exterior of the rail for launch and landing and rotate out of the way for the duration of the experiment. The shims are held in position by strips of Velcro nap, which rub against the sides of the shim and exert a tailored force. The amount of force required to rotate the shims was a major EVA concern, along with operational repeatability and extreme temperature effects. The restraint system was tested in a thermal-vac and vibration environment and was shown to meet all of the initial design requirements. Using design inputs from the astronauts who will perform the EVA, CETA evolved through an iterative design process and represented a cooperative effort.

  5. Task Analysis of Shuttle Entry and Landing Activities

    NASA Technical Reports Server (NTRS)

    Holland, Albert W.; Vanderark, Stephen T.

    1993-01-01

    The Task Analysis of Shuttle Entry and Landing (E/L) Activities documents all tasks required to land the Orbiter following an STS mission. In addition to analysis of tasks performed, task conditions are described, including estimated time for completion, altitude, relative velocity, normal and lateral acceleration, location of controls operated or monitored, and level of g's experienced. This analysis precedes further investigations into potential effects of zero g on piloting capabilities for landing the Orbiter following long-duration missions. This includes, but is not limited to, researching the effects of extended duration missions on piloting capabilities. Four primary constraints of the analysis must be clarified: (1) the analysis depicts E/L in a static manner--the actual process is dynamic; (2) the task analysis was limited to a paper analysis, since it was not feasible to conduct research in the actual setting (i.e., observing or filming duration an actual E/L); (3) the tasks included are those required for E/L during nominal, daylight conditions; and (4) certain E/L tasks will vary according to the flying style of each commander.

  6. Astronaut Alan Shepard walks toward MET during first EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut Alan B. Shepard Jr., foreground, Apollo 14 commander, walks toward the Modularized Equipment Transporter (MET), out of view at right, during the first Apollo 14 extravehicular activity (EVA-1). An EVA checklist is attached to Shepard's left wrist. Astronaut Edgar D. Mitchell, lunar module pilot, is in the background working at a subpackage of the Apollo Lunar Surface Experiments Package (ALSEP). The cylindrical keg-like object directly under Mitchell's extended left hand is the Passive Seismic Experiment (PSE).

  7. Integrated Extravehicular Activity Human Research Plan: 2016

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott; Rajulu, Sudhakar; Norcross, Jason R.; Chappell, Steven P.

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Human Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Human Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Report is will also continue at a frequency determined by HRP management. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Human Research Plan are presented including description of ongoing and planned research activities in the areas of

  8. An Effective Division of Labor Between Human and Robotic Agents Performing a Cooperative Assembly Task

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Bluethmann, William; Rochlis, Jennifer; Huber, Eric; Ambrose, Robert

    2003-01-01

    NASA's Human Space Flight program depends heavily on spacewalks performed by human astronauts. These so-called extra-vehicular activities (EVAs) are risky, expensive and complex. Work is underway to develop a robotic astronaut's assistant that can help reduce human EVA time and workload by delivering human-like dexterous manipulation capabilities to any EVA worksite. An experiment is conducted to evaluate human-robot teaming strategies in the context of a simplified EVA assembly task in which Robonaut, a collaborative effort with the Defense Advanced Research Projects Agency (DARPA), an anthropomorphic robot works side-by-side with a human subject. Team performance is studied in an effort to identify the strengths and weaknesses of each teaming configuration and to recommend an appropriate division of labor. A shared control approach is developed to take advantage of the complementary strengths of the human teleoperator and robot, even in the presence of significant time delay.

  9. ChEVAS: Combining Suprarenal EVAS with Chimney Technique

    SciTech Connect

    Torella, Francesco; Chan, Tze Y. Shaikh, Usman; England, Andrew; Fisher, Robert K.; McWilliams, Richard G.

    2015-10-15

    Endovascular sealing with the Nellix{sup ®} endoprosthesis (EVAS) is a new technique to treat infrarenal abdominal aortic aneurysms. We describe the use of endovascular sealing in conjunction with chimney stents for the renal arteries (chEVAS) in two patients, one with a refractory type Ia endoleak and an expanding aneurysm, and one with a large juxtarenal aneurysm unsuitable for fenestrated endovascular repair (EVAR). Both aneurysms were successfully excluded. Our report confirms the utility of chEVAS in challenging cases, where suprarenal seal is necessary. We suggest that, due to lack of knowledge on its durability, chEVAS should only been considered when more conventional treatment modalities (open repair and fenestrated EVAR) are deemed difficult or unfeasible.

  10. ChEVAS: Combining Suprarenal EVAS with Chimney Technique.

    PubMed

    Torella, Francesco; Chan, Tze Y; Shaikh, Usman; England, Andrew; Fisher, Robert K; McWilliams, Richard G

    2015-10-01

    Endovascular sealing with the Nellix(®) endoprosthesis (EVAS) is a new technique to treat infrarenal abdominal aortic aneurysms. We describe the use of endovascular sealing in conjunction with chimney stents for the renal arteries (chEVAS) in two patients, one with a refractory type Ia endoleak and an expanding aneurysm, and one with a large juxtarenal aneurysm unsuitable for fenestrated endovascular repair (EVAR). Both aneurysms were successfully excluded. Our report confirms the utility of chEVAS in challenging cases, where suprarenal seal is necessary. We suggest that, due to lack of knowledge on its durability, chEVAS should only been considered when more conventional treatment modalities (open repair and fenestrated EVAR) are deemed difficult or unfeasible. PMID:26202393

  11. STS-65 Mission Specialist Chiao in EMU prepares for WETF contingency EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist Leroy Chiao, fully suited in an extravehicular mobility unit (EMU) and helmet, prepares to be lowered into a 25-feet deep pool at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Chiao will practice door and latch contingency extravehicular activity (EVA) procedures once underwater. Mission Specialist Donald A. Thomas will join Chiao in the simulation. The two crewmates will be submerged and made to be neutrally buoyant in order to rehearse the contingency tasks that would require a spacewalk. No spacewalks are scheduled for the STS-65 International Microgravity Laboratory 2 (IML-2) mission.

  12. STS-65 Mission Specialist Chiao in EMU prepares for WETF contingency EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist Leroy Chiao, fully suited in an extravehicular mobility unit (EMU) and helmet, stands on a platform and prepares to be lowered into a 25-feet deep pool at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Chiao will practice door and latch contingency extravehicular activity (EVA) procedures once underwater. Mission Specialist Donald A. Thomas will join Chiao in the simulation. The two crewmates will be submerged and made to be neutrally buoyant in order to rehearse the contingency tasks that would require a spacewalk. No spacewalks are scheduled for the STS-65 International Microgravity Laboratory 2 (IML-2) mission.

  13. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benosn, E.; England, S.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2014-01-01

    Human hands play a significant role during extravehicular activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. It is because of this high frequency usage that hand- and arm-related injuries and discomfort are known to occur during training in the NBL and while conducting EVAs. Hand-related injuries and discomforts have been occurring to crewmembers since the days of Apollo. While there have been numerous engineering changes to the glove design, hand-related issues still persist. The primary objectives of this study are therefore to: 1) document all known EVA glove-related injuries and the circumstances of these incidents, 2) determine likely risk factors, and 3) recommend ergonomic mitigations or design strategies that can be implemented in the current and future glove designs. METHODS: The investigator team conducted an initial set of literature reviews, data mining of Lifetime Surveillance of Astronaut Health (LSAH) databases, and data distribution analyses to understand the ergonomic issues related to glove-related injuries and discomforts. The investigation focused on the injuries and discomforts of U.S. crewmembers who had worn pressurized suits and experienced glove-related incidents during the 1980 to 2010 time frame, either during training or on-orbit EVA. In addition to data mining of the LSAH database, the other objective of the study was to find complimentary sources of information such as training experience, EVA experience, suit-related sizing data, and hand-arm anthropometric data to be tied to the injury data from LSAH. RESULTS: Past studies indicated that the hand was the most frequently injured part of the body during both EVA and NBL training. This study effort thus focused primarily on crew training data in the NBL between 2002 and 2010. Of the 87 recorded training incidents, 19 occurred to women and 68 to men. While crew ages ranged from

  14. Physical Activity Perceptions of Task- and Ego-Oriented Children

    ERIC Educational Resources Information Center

    Cruickshanks, Carla M.

    2010-01-01

    Children begin to show sedentary behaviors around the age of 12 and increased mortality is associated with sedentary behaviors in children and adults. This case study examined physical activity (PA) perceptions of task oriented and ego oriented children. Research has addressed perceptions based on goal orientations and how perception of PA changes…

  15. EVA-Compatible Microbial Swab Tool

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    When we send humans to search for life on Mars, we'll need to know what we brought with us versus what may already be there. To ensure our crewed spacecraft meet planetary protection requirements—and to protect our science from human contamination—we'll need to know whether micro-organisms are leaking/venting from our ships and spacesuits. This is easily done by swabbing external vents and suit surfaces for analysis, but requires a specialized tool for the job. Engineers at the National Aeronautics and Space Administration (NASA) recently developed an Extravehicular Activity (EVA)-compatible swab tool that can be used to sample current space suits and life support systems. Data collected now will influence Mars life support and EVA hardware early in the planning process, before design changes become difficult and expensive.NASA’s EVA swab tool pairs a Space Shuttle-era tool handle with a commercially available swab tip mounted into a custom-designed end effector. A glove-compatible release mechanism allows the handle to quickly switch between swab tips, much like a shaving razor handle can snap onto a disposable blade cartridge. Swab tips are stowed inside individual sterile containers, each fitted with a microbial filter that allows the container to equalize atmospheric pressure, but prevents cabin contaminants from rushing into the container when passing from the EVA environment into a pressurized cabin. A bank of containers arrayed inside a tool caddy allows up to six individual samples to be collected during a given spacewalk.NASA plans to use the tool in 2016 to collect samples from various spacesuits during ground testing to determine what (if any) human-borne microbial contamination leaks from the suit under simulated thermal vacuum conditions. Next, the tool will be used on board the International Space Station to assess the types of microbial contaminants found on external environmental control and life support system vents. Data will support

  16. EVA assembly of large space structure element

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bush, H. G.; Heard, W. L., Jr.; Stokes, J. W., Jr.

    1981-01-01

    The results of a test program to assess the potential of manned extravehicular activity (EVA) assembly of erectable space trusses are described. Seventeen tests were conducted in which six "space-weight" columns were assembled into a regular tetrahedral cell by a team of two "space"-suited test subjects. This cell represents the fundamental "element" of a tetrahedral truss structure. The tests were conducted under simulated zero-gravity conditions. Both manual and simulated remote manipulator system modes were evaluated. Articulation limits of the pressure suit and zero gravity could be accommodated by work stations with foot restraints. The results of this study have confirmed that astronaut EVA assembly of large, erectable space structures is well within man's capabilities.

  17. Prefrontal Activity Predicts Monkeys' Decisions During an Auditory Category Task

    PubMed Central

    Lee, Jung H.; Russ, Brian E.; Orr, Lauren E.; Cohen, Yale E.

    2009-01-01

    The neural correlates that relate auditory categorization to aspects of goal-directed behavior, such as decision-making, are not well understood. Since the prefrontal cortex (PFC) plays an important role in executive function and the categorization of auditory objects, we hypothesized that neural activity in the PFC should predict an animal's behavioral reports (decisions) during a category task. To test this hypothesis, we tested PFC activity that was recorded while monkeys categorized human spoken words (Russ et al., 2008b). We found that activity in the ventrolateral PFC, on average, correlated best with the monkeys' choices than with the auditory stimuli. This finding demonstrates a direct link between PFC activity and behavioral choices during a non-spatial auditory task. PMID:19587846

  18. Evolution of EVA capabilities for space station construction and maintenance: Soviet and American experience

    NASA Technical Reports Server (NTRS)

    Kramer, Cathy D.

    1989-01-01

    The evolution of both Soviet and American Extravehicular Activity (EVA) is discussed. A qualitative review evaluates each EVA with respect to risk, criticality, complexity, and duration. Graphics summarizing increase and rate of increase in productivity emphasize related advancements in the space suits, EVA tools, and equipment technology. Specifics that demonstrated ingenuity in accomplishing unplanned activities which required man's direct manipulation of large payloads and structures are presented. Accumulated EVA successes allow an effective, flexible, recommended approach for construction and maintenance of Space Station to be given in conclusion.

  19. Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.; Fong, T. W.; Bualat, M. G.; Lee, S. Y.; Dorsey, J. T.; Doggett, W. R.

    2007-01-01

    Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.

  20. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murray, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered a hazardous duty for NASA astronauts. This places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies. The purpose of this paper is to document the comprehensive EVA training data set that was compiled from multiple sources by the Lifetime Surveillance of Astronaut Health (LSAH) epidemiologists to investigate musculoskeletal injuries. The EVA training dataset does not contain any medical data, rather it only documents when EVA training was performed, by whom and other details about the session. The first activities practicing EVA maneuvers in water were performed at the Neutral Buoyancy Simulator (NBS) at the Marshall Spaceflight Center in Huntsville, Alabama. This facility opened in 1967 and was used for EVA training until the early Space Shuttle program days. Although several photographs show astronauts performing EVA training in the NBS, records detailing who performed the training and the frequency of training are unavailable. Paper training records were stored within the NBS after it was designated as a National Historic Landmark in 1985 and closed in 1997, but significant resources would be needed to identify and secure these records, and at this time LSAH has not pursued acquisition of these early training records. Training in the NBS decreased when the Johnson Space Center in Houston, Texas, opened the Weightless Environment Training Facility (WETF) in 1980. Early training records from the WETF consist of 11 hand-written dive logbooks compiled by individual workers that were digitized at the request of LSAH. The WETF was integral in the training for Space Shuttle EVAs until its closure in 1998. The Neutral Buoyancy Laboratory (NBL) at the Sonny Carter Training Facility near JSC

  1. Power assist EVA glove development

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    Structural modeling of the EVA glove indicates that flexibility in the metacarpophalangeal (MCP) joint can be improved by selectively lowering the elasticity of the glove fabric. Two strategies are used to accomplish this. One method uses coil springs on the back of the glove to carry the tension in the glove skin due to pressurization. These springs carry the loads normally borne by the glove fabric, but are more easily deformed. An active system was also designed for the same purpose and uses gas filled bladders attached to the back of the EVA glove that change the dimensions of the back of the glove and allow the glove to bend at the MCP joint, thus providing greater flexibility at this joint. A threshold control scheme was devised to control the action of the joint actuators. Input to the controller was provided by thin resistive pressure sensors placed between the hand and the pressurized glove. The pressure sensors consist of a layer of polyester film that has a thin layer of ink screened on the surface. The resistivity of the ink is pressure dependent, so an extremely thin pressure sensor can be fabricated by covering the ink patch with another layer of polyester film and measuring the changing resistance of the ink with a bridge circuit. In order to sense the force between the hand and the glove at the MCP joint, a sensor was placed on the palmar face of the middle finger. The resultant signal was used by the controller to decide whether to fill or exhaust the bladder actuators on the back of the glove. The information from the sensor can also be used to evaluate the effectiveness of a given control scheme or glove design since the magnitude of the measured pressures gives some idea of the torque required to bend a glove finger at the MCP joint. Tests of this actuator, sensor, and control system were conducted in an 57.2 kPa glove box by performing a series of 90 degree finger bends with a glove without an MCP joint assembly, a glove with the coil spring

  2. Energy Expenditure During Extravehicular Activity: Apollo Skylab Through STS-135

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    The importance of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to conduct an EVA over-tasked the crewmember and exceeded the capabilities of vehicle and space suit life support systems. Energy expenditure was closely evaluated through the Apollo lunar surface EVAs, resulting in modifications to space suit design and EVA operations. After the Apollo lunar surface missions were completed, the United States shifted its focus to long duration human space flight, to study the human response to living and working in a microgravity environment. This paper summarizes the energy expenditure during EVA from Apollo Skylab through STS-135.

  3. Response Activation in Overlapping Tasks and the Response-Selection Bottleneck

    ERIC Educational Resources Information Center

    Schubert, Torsten; Fischer, Rico; Stelzel, Christine

    2008-01-01

    The authors investigated the impact of response activation on dual-task performance by presenting a subliminal prime before the stimulus in Task 2 (S2) of a psychological refractory period (PRP) task. Congruence between prime and S2 modulated the reaction times in Task 2 at short stimulus onset asynchrony despite a PRP effect. This Task 2…

  4. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, Bill; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The EVA hardware used to assemble and maintain the ISS was designed with the assumption that it would be returned to Earth on the Space Shuttle for ground processing, refurbishment, or failure investigation (if necessary). With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (EMU, Airlock Systems, EVA tools, and associated support equipment and consumables) to perform ISS EVAs until 2016 and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, NASA and the One EVA contractor team jointly initiated the EVA 2010 Project. Challenges were addressed to extend the operating life and certification of EVA hardware, secure the capability to launch EVA hardware safely on alternate launch vehicles, and protect EMU hardware operability on orbit for long durations.

  5. The development of a test methodology for the evaluation of EVA gloves

    NASA Technical Reports Server (NTRS)

    O'Hara, John M.; Cleland, John; Winfield, Dan

    1988-01-01

    This paper describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: range of motion, strength, tactile perception, dexterity, fatigue, and comfort. Based upon an assessment of general human-hand functioning and EVA task requirements, several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure.

  6. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  7. FY13 High Performance EVA Glove (HPEG) Collaboration: Glove Injury Data Mining Effort - Training Data Overview

    NASA Technical Reports Server (NTRS)

    Reid, Christopher; Benson, Elizabeth; England, Scott; Charvat, Jacqueline; Norcross, Jason; McFarland, Shane; Rajulu, Sudhakar

    2014-01-01

    From the time hand-intensive tasks were first created for EVAs, discomforts and injuries have been noted.. There have been numerous versions of EVA gloves for US crew over the past 50 years, yet pain and injuries persist. The investigation team was tasked with assisting in a glove injury assessment for the High Performance EVA Glove (HPEG) project.center dot To aid in this assessment, the team was asked to complete the following objectives: - First, to develop the best current understanding of what glove-related injuries have occurred to date, and when possible, identify the specific mechanisms that caused those injuries - Second, to create a standardized method for comparison of glove injury potential from one glove to another. center dot The overall goal of the gloved hand injury assessment is to utilize ergonomics in understanding how these glove injuries are occurring, and to propose mitigations to current designs or design changes in the next generation of EVA gloves.

  8. NEEMO 14: Evaluation of Human Performance for Rover, Cargo Lander, Crew Lander, and Exploration Tasks in Simulated Partial Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2011-01-01

    The ultimate success of future human space exploration missions is dependent on the ability to perform extravehicular activity (EVA) tasks effectively, efficiently, and safely, whether those tasks represent a nominal mode of operation or a contingency capability. To optimize EVA systems for the best human performance, it is critical to study the effects of varying key factors such as suit center of gravity (CG), suit mass, and gravity level. During the 2-week NASA Extreme Environment Mission Operations (NEEMO) 14 mission, four crewmembers performed a series of EVA tasks under different simulated EVA suit configurations and used full-scale mockups of a Space Exploration Vehicle (SEV) rover and lander. NEEMO is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Quantitative and qualitative data collected during NEEMO 14, as well as from spacesuit tests in parabolic flight and with overhead suspension, are being used to directly inform ongoing hardware and operations concept development of the SEV, exploration EVA systems, and future EVA suits. OBJECTIVE: To compare human performance across different weight and CG configurations. METHODS: Four subjects were weighed out to simulate reduced gravity and wore either a specially designed rig to allow adjustment of CG or a PLSS mockup. Subjects completed tasks including level ambulation, incline/decline ambulation, standing from the kneeling and prone position, picking up objects, shoveling, ladder climbing, incapacitated crewmember handling, and small and large payload transfer. Subjective compensation, exertion, task acceptability, and duration data as well as photo and video were collected. RESULTS: There appear to be interactions between CG, weight, and task. CGs nearest the subject s natural CG are the most predictable in terms of acceptable performance across tasks. Future research should focus on

  9. Brain Activation of Identity Switching in Multiple Identity Tracking Task

    PubMed Central

    Lyu, Chuang; Hu, Siyuan; Wei, Liuqing; Zhang, Xuemin; Talhelm, Thomas

    2015-01-01

    When different objects switch identities in the multiple identity tracking (MIT) task, viewers need to rebind objects’ identity and location, which requires attention. This rebinding helps people identify the regions targets are in (where they need to focus their attention) and inhibit unimportant regions (where distractors are). This study investigated the processing of attentional tracking after identity switching in an adapted MIT task. This experiment used three identity-switching conditions: a target-switching condition (where the target objects switched identities), a distractor-switching condition (where the distractor objects switched identities), and a no-switching condition. Compared to the distractor-switching condition, the target-switching condition elicited greater activation in the frontal eye fields (FEF), intraparietal sulcus (IPS), and visual cortex. Compared to the no-switching condition, the target-switching condition elicited greater activation in the FEF, inferior frontal gyrus (pars orbitalis) (IFG-Orb), IPS, visual cortex, middle temporal lobule, and anterior cingulate cortex. Finally, the distractor-switching condition showed greater activation in the IFG-Orb compared to the no-switching condition. These results suggest that, in the target-switching condition, the FEF and IPS (the dorsal attention network) might be involved in goal-driven attention to targets during attentional tracking. In addition, in the distractor-switching condition, the activation of the IFG-Orb may indicate salient change that pulls attention away automatically. PMID:26699865

  10. Underwater EVA training in the WETF with astronaut Robert L. Stewart

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Underwater extravehicular activity (EVA) training in the weightless environment training facility (WETF) with astronaut Robert L. Stewart. Stewart is simulating a planned EVA using the mobile foot restraint device and a one-G version of the Canadian-built remote manipulator system.

  11. Mission Specialist (MS) Musgrave works at PLB forward bulkhead during EVA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Closeup documents extravehicular mobility unit (EMU) suited Mission Specialist (MS) Musgrave, designated EV1, working with payload bay (PLB) forward bulkhead safety tether system during extravehicular activity (EVA). Foot restraint boom attached to handrail appears above his helmet. Peterson, also participating in the EVA, exposed this frame with a 35mm camera while other crewmembers remained in the cabin.

  12. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Scoville, Zebulon; Sipila, Stephanie; Bowie, Jonathan

    2014-01-01

    NASA's Asteroid Redirect Crewed Mission (ARCM) is challenged with primary mission objectives of demonstrating deep space Extravehicular Activity (EVA) and tools, and obtaining asteroid samples to return to Earth for further study. Although the Modified Advanced Crew Escape Suit (MACES) is used for the EVAs, it has limited mobility which increases fatigue and decreases the crews' capability to perform EVA tasks. Furthermore, previous Shuttle and International Space Station (ISS) spacewalks have benefited from EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, some vehicle interfaces and tools can leverage heritage designs and experience. However, when the crew ventures onto an asteroid capture bag to explore the asteroid and collect rock samples, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as bunching of the fabric bag will complicate EVA translation, tool restraint and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the MACES suit. The proposed concept utilizes expandable booms and integrated features of the asteroid capture bag to position and restrain the crew at the asteroid worksite. These methods enable the capability to perform both finesse, and high load tasks necessary to collect samples for scientific characterization of the asteroid. This paper will explore the design trade space and options that were examined for EVA, the

  13. EVA crew workstation provisions for Skylab and Space Shuttle missions

    NASA Technical Reports Server (NTRS)

    Brown, N. E.; Saenger, E. L.

    1973-01-01

    A synopsis of scheduled extravehicular activities (EVA) for a nominal Skylab mission is presented with an overview of EV workstation equipment developed for the program. Also included are the unprogrammed extravehicular activities and supporting equipment that was quickly developed and retrofitted in a series of successful operations to salvage the crippled Skylab Cluster during the Skylab 1 Mission. Because EVA appears to be a requirement for the Space Shuttle Program, candidate EV workstations are discussed in terms of effective and economical Shuttle payload servicing and maintenance. Several such concepts, which could provide a versatile, portable EV support system, are presented.

  14. The Education of Eva Hoffman.

    ERIC Educational Resources Information Center

    Proefriedt, William

    1991-01-01

    Reviews the autobiography of Eva Hoffman, "Lost in Translation: A Life in a New Language" (Dutton, 1989). Hoffman, whose family left Poland in the 1950s, offers a consciously bicultural view of the immigrant experience, in contrast to many autobiographies of those who forsake the old world for the new. (DM)

  15. International Reference Ionosphere (IRI): Task Force Activity 2000

    NASA Technical Reports Server (NTRS)

    Bilitza, D.

    2000-01-01

    The annual IRI Task Force Activity was held at the Abdus Salam International Center for Theoretical Physics in Trieste, Italy from July 10 to July 14. The participants included J. Adeniyi (University of Ilorin, Nigeria), D. Bilitza (NSSDC/RITSS, USA), D. Buresova (Institute of Atmospheric Physics, Czech Republic), B. Forte (ICTP, Italy), R. Leitinger (University of Graz, Austria), B. Nava (ICTP, Italy), M. Mosert (University National Tucuman, Argentina), S. Pulinets (IZMIRAN, Russia), S. Radicella (ICTP, Italy), and B. Reinisch (University of Mass. Lowell, USA). The main topic of this Task Force Activity was the modeling of the topside ionosphere and the development of strategies for modeling of ionospheric variability. Each day during the workshop week the team debated a specific modeling problem in the morning during informal presentations and round table discussions of all participants. Ways of resolving the specific modeling problem were devised and tested in the afternoon in front of the computers of the ICTP Aeronomy and Radiopropagation Laboratory using ICTP s computer networks and internet access.

  16. Shoulder Injuries in US Astronauts Related to EVA Suit Design

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; McCulloch, P.; Van Baalen, Mary; Minard, Charles; Watson, Richard; Blatt, T.

    2011-01-01

    Introduction: For every one hour spent performing extravehicular activity (EVA) in space, astronauts in the US space program spend approximately six to ten hours training in the EVA spacesuit at NASA-Johnson Space Center's Neutral Buoyancy Lab (NBL). In 1997, NASA introduced the planar hard upper torso (HUT) EVA spacesuit which subsequently replaced the existing pivoted HUT. An extra joint in the pivoted shoulder allows increased mobility but also increased complexity. Over the next decade a number of astronauts developed shoulder problems requiring surgical intervention, many of whom performed EVA training in the NBL. This study investigated whether changing HUT designs led to shoulder injuries requiring surgical repair. Methods: US astronaut EVA training data and spacesuit design employed were analyzed from the NBL data. Shoulder surgery data was acquired from the medical record database, and causal mechanisms were obtained from personal interviews Analysis of the individual HUT designs was performed as it related to normal shoulder biomechanics. Results: To date, 23 US astronauts have required 25 shoulder surgeries. Approximately 48% (11/23) directly attributed their injury to training in the planar HUT, whereas none attributed their injury to training in the pivoted HUT. The planar HUT design limits shoulder abduction to 90 degrees compared to approximately 120 degrees in the pivoted HUT. The planar HUT also forces the shoulder into a forward flexed position requiring active retraction and extension to increase abduction beyond 90 degrees. Discussion: Multiple factors are associated with mechanisms leading to shoulder injury requiring surgical repair. Limitations to normal shoulder mechanics, suit fit, donning/doffing, body position, pre-existing injury, tool weight and configuration, age, in-suit activity, and HUT design have all been identified as potential sources of injury. Conclusion: Crewmembers with pre-existing or current shoulder injuries or certain

  17. Meditation leads to reduced default mode network activity beyond an active task.

    PubMed

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  18. Meditation leads to reduced default mode network activity beyond an active task

    PubMed Central

    Garrison, Kathleen A.; Zeffiro, Thomas A.; Scheinost, Dustin; Constable, R. Todd; Brewer, Judson A.

    2015-01-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest despite other studies reporting differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, this study compared meditation to another active cognitive task, both to replicate findings that meditation is associated with relatively reduced default mode network activity, and to extend these findings by testing whether default mode activity was reduced during meditation beyond the typical reductions observed during effortful tasks. In addition, prior studies have used small groups, whereas the current study tested these hypotheses in a larger group. Results indicate that meditation is associated with reduced activations in the default mode network relative to an active task in meditators compared to controls. Regions of the default mode showing a group by task interaction include the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that suppression of default mode processing may represent a central neural process in long-term meditation, and suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  19. Medical, Psychophysiological, and Human Performance Problems During Extended EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP1, the discussion focuses on the following topics: New Developments in the Assessment of the Risk of Decompression Sickness in Null Gravity During Extravehicular Activity; The Dynamic of Physiological Reactions of Cosmonauts Under the Influence of Repeated EVA Workouts, The Russian Experience; Medical Emergencies in Space; The Evolution from 'Physiological Adequacy' to 'Physiological Tuning'; Five Zones of Symmetrical and Asymmetrical Conflicting Temperatures on the Human Body, Physiological Consequences; Human Performance and Subjective Perception in Nonuniform Thermal Conditions; The Hand as a Control System, Implications for Hand-Finger Dexterity During Extended EVA; and Understanding the Skill of Extravehicular Mass Handling.

  20. EVA Roadmap: New Space Suit for the 21st Century

    NASA Technical Reports Server (NTRS)

    Yowell, Robert

    1998-01-01

    New spacesuit design considerations for the extra vehicular activity (EVA) of a manned Martian exploration mission are discussed. Considerations of the design includes:(1) regenerable CO2 removal, (2) a portable life support system (PLSS) which would include cryogenic oxygen produced from in-situ manufacture, (3) a power supply for the EVA, (4) the thermal control systems, (5) systems engineering, (5) space suit systems (materials, and mobility), (6) human considerations, such as improved biomedical sensors and astronaut comfort, (7) displays and controls, and robotic interfaces, such as rovers, and telerobotic commands.

  1. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Lousma is at the Apollo Telescope Mount EVA work station assembling one of the two 55-foot long sectionalized poles for the twin pole solar shield which was deployed to help cool the Orbital Workshop. Part of the Airlock Module's thermal/meteoroid curtain is in the left foreground.

  2. Electrostatic Discharge Issues in International Space Station Program EVAs

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    EVA activity in the ISS program encounters several dangerous ESD conditions. The ISS program has been aggressive for many years to find ways to mitigate or to eliminate the associated risks. Investments have included: (1) Major mods to EVA tools, suit connectors & analytical tools (2) Floating Potential Measurement Unit (3) Plasma Contactor Units (4) Certification of new ISS flight attitudes (5) Teraflops of computation (6) Thousands of hours of work by scores of specialists (7) Monthly management attention at the highest program levels. The risks are now mitigated to a level that is orders of magnitude safer than prior operations

  3. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  4. The use of an extended ventilation tube as a countermeasure for EVA-associated upper extremity medical issues

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Hoffman, R. B.; Buckland, D. A.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Strauss, S.; Novak, J.; Gernhardt, M. L.

    Introduction: Onycholysis due to repetitive activity in the space suit glove during Neutral Buoyancy Laboratory (NBL) training and during spaceflight extravehicular activity (EVA) is a common observation. Moisture accumulates in gloves during EVA task performance and may contribute to the development of pain and damage to the fingernails experienced by many astronauts. The study evaluated the use of a long ventilation tube to determine if improved gas circulation into the hand area could reduce hand moisture and thereby decrease the associated symptoms. Methods: The current Extravehicular Mobility Unit (EMU) was configured with a ventilation tube that extended down a single arm of the crew member (E) and compared with the unventilated arm (C). Skin surface moisture was measured on both hands immediately after glove removal and a questionnaire administered to determine subjective measures. Astronauts ( n=6) were examined pre- and post-run. Results: There were consistent trends in the reduction of relative hydration ratios at dorsum ( C=3.34, E=2.11) and first ring finger joint ( C=2.46, E=1.96) when the ventilation tube was employed. Ventilation appeared more effective on the left versus the right hand, implying an interaction with hand anthropometry and glove fit. Symptom score was lower on the hand that had the long ventilation tube relative to the control hand in 2/6 EVA crew members. Conclusions: Increased ventilation to the hand was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in one-third of the subjects. Improved design in the ventilation capability of EVA spacesuits is expected to improve efficiency of air flow distribution.

  5. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  6. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  7. Astronaut Richard Gordon practices attaching camera to film EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., prime crew pilot for the Gemini 11 space flight, practices attaching to a Gemini boilerplate a camera which will film his extravehicular activity (EVA) outside the spacecraft. The training exercise is being conducted in the Astronaut Training Building, Kennedy Space Center, Florida.

  8. Astronaut Alan Bean with subpackages of the ALSEP during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, traverses with the two subpackages of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA). Bean deployed the ALSEP components 300 feet from the Lunar Module (LM). The LM and deployed erectable S-band antenna can be seen in the background.

  9. Television transmission of Astronaut Harrison Schmitt falling during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt loses his balance and heads for a fall during the second Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site, in this black and white reproduction taken from a color television transmission made by the RCA color TV camera mounted on the Lunar Roving Vehicle. Schmitt is the lunar module pilot.

  10. Astronauts Readdy, Walz, and Newman in airlock after EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In Discovery's airlock, astronaut William F. Readdy, pilot, holds up a STS-51 slogan -- 'Ace HST Tool Testers' -- for still and video cameras to record. Readdy is flanked by astronauts Carl E. Walz (left) and James H. Newman, who had just shared a lengthy period of extravehicular activity (EVA) in and around Discovery's cargo bay.

  11. Interfacing with an EVA Suit

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2011-01-01

    A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.

  12. Characterizing “fibrofog”: Subjective appraisal, objective performance, and task-related brain activity during a working memory task

    PubMed Central

    Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L.; Rayhan, Rakib; VanMeter, John W.; Gracely, Richard H.

    2016-01-01

    The subjective experience of cognitive dysfunction (“fibrofog”) is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, “fibrofog” appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks. PMID:26955513

  13. A new method of measuring the stiffness of astronauts' EVA gloves

    NASA Astrophysics Data System (ADS)

    Mousavi, Mehdi; Appendino, Silvia; Battezzato, Alessandro; Bonanno, Alberto; Chen Chen, Fai; Crepaldi, Marco; Demarchi, Danilo; Favetto, Alain; Pescarmona, Francesco

    2014-04-01

    Hand fatigue is one of the most important problems of astronauts during their missions to space. This fatigue is due to the stiffness of the astronauts' gloves known as Extravehicular Activity (EVA) gloves. The EVA glove has a multilayered, bulky structure and is pressurized against the vacuum of space. In order to evaluate the stiffness of EVA gloves, different methods have been proposed in the past. In particular, the effects of wearing an EVA glove on the performance of the hands have been published by many researchers to represent the stiffness of the EVA glove. In this paper, a new method for measuring the stiffness of EVA gloves is proposed. A tendon-actuated finger probe is designed and used as an alternative to the human index finger in order to be placed inside an EVA glove and measure its stiffness. The finger probe is equipped with accelerometers, which work as tilt sensors, to measure the angles of its phalanges. The phalanges are actuated by applying different amount of torque using the tendons of the finger probe. Moreover, a hypobaric glove box is designed and realized to simulate the actual operating pressure of the EVA glove and to measure its stiffness in both pressurized and non-pressurized conditions. In order to prove the right performance of the proposed finger probe, an Orlam-DM EVA glove is used to perform a number of tests. The equation of stiffness for the PIP joint of this glove is extracted from the results acquired from the tests. This equation presents the torque required to flex the middle phalanx of the glove. Then, the effect of pressurization on the stiffness is highlighted in the last section. This setup can be used to measure the stiffness of different kinds of EVA gloves and allows direct, numerical comparison of their stiffness.

  14. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper; Durkin, Robert

    2012-01-01

    As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC’s Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

  15. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper; Durkin, Robert

    2012-01-01

    As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC's Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

  16. EVA Systems Flight Controller Talks With Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, EVA Systems Flight Controller Sandy Fletcher participates in a Digital Learning Network (DLN) event with students from Northtowne Ele...

  17. Evaluation of a Hybrid Elastic EVA Glove

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Akin, David

    2002-01-01

    The hybrid elastic design is based upon an American Society for Engineering Education (ASEE) glove designed by at the Space Systems Laboratory (SSL) in 1985. This design uses an elastic restraint layer instead of convolute joints to achieve greater dexterity and mobility during EVA (extravehicular activity). Two pilot studies and a main study were conducted using the hybrid elastic glove and 4000-series EMU (extravehicular activity unit) glove. Data on dexterity performance, joint range of motion, grip strength and perceived exertion was assessed for the EMU and hybrid elastic gloves with correlations to a barehanded condition. During this study, 30 test subjects performed multiple test sessions using a hybrid elastic glove and a 4000- series shuttle glove in a 4.3psid pressure environment. Test results to date indicate that the hybrid elastic glove performance is approximately similar to the performance of the 4000-series glove.

  18. The main results of EVA medical support on the Mir Space Station

    NASA Astrophysics Data System (ADS)

    Katuntsev, V. P.; Osipov, Yu. Yu.; Barer, A. S.; Gnoevaya, N. K.; Tarasenkov, G. G.

    2004-04-01

    The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9- 13 kcal/ min and 150- 174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.

  19. Astronaut George Nelson uses one-G version of MMU to prepare for EVA

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut George D. Nelson, 41-C mission specialist, uses a one-G version of manned maneuvering unit (MMU) to prepare for his upcoming extravehicular activity (EVA). The simulator is located in JSC's avionics systems laboratory.

  20. Reduction of Dual-task Costs by Noninvasive Modulation of Prefrontal Activity in Healthy Elders

    PubMed Central

    Manor, Brad; Zhou, Junhong; Jor'dan, Azizah; Zhang, Jue; Fang, Jing; Pascual-Leone, Alvaro

    2016-01-01

    Dual tasking (e.g., walking or standing while performing a cognitive task) disrupts performance in one or both tasks, and such dual-task costs increase with aging into senescence. Dual tasking activates a network of brain regions including pFC. We therefore hypothesized that facilitation of prefrontal cortical activity via transcranial direct current stimulation (tDCS) would reduce dual-task costs in older adults. Thirty-seven healthy older adults completed two visits during which dual tasking was assessed before and after 20 min of real or sham tDCS targeting the left pFC. Trials of single-task standing, walking, and verbalized serial subtractions were completed, along with dual-task trials of standing or walking while performing serial subtractions. Dual-task costs were calculated as the percent change in markers of gait and postural control and serial subtraction performance, from single to dual tasking. Significant dual-task costs to standing, walking, and serial subtraction performance were observed before tDCS (p < .01). These dual-task costs were less after real tDCS as compared with sham tDCS as well as compared with either pre-tDCS condition (p < .03). Further analyses indicated that tDCS did not alter single task performance but instead improved performance solely within dual-task conditions (p < .02). These results demonstrate that dual tasking can be improved by modulating prefrontal activity, thus indicating that dual-task decrements are modifiable and may not necessarily reflect an obligatory consequence of aging. Moreover, tDCS may ultimately serve as a novel approach to preserving dual-task capacity into senescence. PMID:26488591

  1. Polarization Processes of Nanocomposite Silicate-EVA and PP Materials

    NASA Astrophysics Data System (ADS)

    Montanari, Gian Carlo; Palmieri, Fabrizio; Testa, Luigi; Motori, Antonio; Saccani, Andrea; Patuelli, Francesca

    Recent works indicate that polypropylene (PP) and ethylene-vinylacetate (EVA) filled by nanosilicates may present low content of space charge and high electric strength. Investigations are being made to explain nanocomposite behaviour and characterize their electrical, thermal and mechanical properties. In this paper, the results of broad-band dielectric spectroscopy performed on EVA and PP filled by layered nanosized silicates are reported. Isochronal and isothermal curves of complex permittivity, as well as activation energies of the relaxation processes, are presented and discussed. Nanostructuration gives rise to substantial changes in the polarisation and dielectric loss behaviour. While the relaxation process of EVA, associated with glass transition of the material amorphous phase, results unchanged from base to nanostructured material, nanocomposites EVA and PP have shown the rise of a new process at higher temperatures respect to the typical host material processes, as well as a different distribution of relaxation processes. Changes in space charge accumulation in relation to the effectiveness of the purification process performed upon nanostructured materials are also reported: while the dispersion of the clean clays leads to a reduction of the space charge, especially at high fields, an unclean filler gives rise to significant homo-charge accumulation and interfacial polarisation phenomena.

  2. Design, development and evaluation of Stanford/Ames EVA prehensors

    NASA Technical Reports Server (NTRS)

    Leifer, Larry J.; Aldrich, J.; Leblanc, M.; Sabelman, E.; Schwandt, D.

    1988-01-01

    Space Station operations and maintenance are expected to make unprecedented demands on astronaut EVA. With Space Station expected to operate with an 8 to 10 psi atmosphere (4 psi for Shuttle operations), the effectivness of pressurized gloves is called into doubt at the same time that EVA activity levels are to be increased. To address the need for more frequent and complex EVA missions and also to extend the dexterity, duration, and safety of EVA astronauts, NASA Ames and Stanford University have an ongoing cooperative agreement to explore and compare alternatives. This is the final Stanford/Ames report on manually powered Prehensors, each of which consists of a shroud forming a pressure enclosure around the astronaut's hand, and a linkage system to transfer the motions and forces of the hand to mechanical digits attached to the shroud. All prehensors are intended for attachment to a standard wrist coupling, as found on the AX-5 hard suit prototype, so that realistic tests can be performed under normal and reduced gravity as simulated by water flotation.

  3. Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

  4. Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels

    NASA Astrophysics Data System (ADS)

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari

    2010-10-01

    A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.

  5. Task-discriminative space-by-time factorization of muscle activity

    PubMed Central

    Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien

    2015-01-01

    Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment. PMID:26217213

  6. Exploration Architecture Options - ECLSS, TCS, EVA Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don

    2011-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. The Augustine Commission evaluated human space flight for the Obama administration then the Human Exploration Framework Teams (HEFT and HEFT2) evaluated potential exploration missions and the infrastructure and technology needs for those missions. Lunar architectures have been identified and addressed by the Lunar Surface Systems team to establish options for how to get to, and then inhabit and explore, the moon. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), Thermal Control (TCS), and Extravehicular Activity (EVA) Systems.

  7. Dust Tolerant EVA-Compatible Connectors

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Townsend, Ivan I., III

    2010-01-01

    The objectives of this project are to develop connectors (quick disconnects and umbilical systems) that can be repetitively and reliably mated and de-mated during Lunar surface extra-vehicular activities. These standardized interfaces will be required for structural integrity and commodities transfer between linked surface elements. QD's fittings are needed for EVA spacesuit Primary Life Support Systems as well as liquid cooled garment circulation and suit heat rejection. Umbilical electro-mechanical systems (connectors) are needed between discrete surface systems for transfer of air, power, fluid (water), and data must be capable of being operated by extra vehicular astronaut crew members and/or robotic assistants. There exists an urgent need to prevent electro-statically charged dust and debris from clogging and degrading the interface seals and causing leakage and spills of hazardous commodities, contaminating the flowstream, and degrading the mechanisms needed for umbilical connection. Other challenges include modularity, standardization, autonomous operation, and lifetime sealing issues.

  8. Exploration Architecture Options - ECLSS, EVA, TCS Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don; Lawrence, Carl

    2010-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. Lunar architectures have been identified and addressed in the Lunar Surface Systems team to establish options for how to get to and then inhabit and explore the moon. The Augustine Commission evaluated human space flight for the Obama administration and identified many options for how to conduct human spaceflight in the future. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), ExtraVehicular Activity (EVA) and Thermal Control System (TCS) Systems. The advantages and disadvantages of each architecture and options are presented.

  9. STS-65 Mission Specialist Chiao in EMU prepares for WETF contingency EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist Leroy Chiao, fully suited in an extravehicular mobility unit (EMU) and helmet, stands on a platform suspended via an overhead crane as he is lowered into a 25-feet deep pool at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Chiao prepares to be immersed in the pool to practice door and latch contingency extravehicular activity (EVA) procedures. Although no spacewalk is planned for the STS-65 International Microgravity Laboratory 2 (IML-2) mission, NASA always trains some of each mission's crewmembers to perform in-space tasks that would be required in the event of remote system failure. For 14 years, the WETF pool has been used to train astronauts for spacewalks and to evaluate certain hardware and procedures. Chiao's EMU is weighted to enable the astronaut to achieve neutral buoyancy once in the tank. SCUBA-equipped divers already in the pool guide the platform into the water.

  10. Next Generation Life Support: High Performance EVA Glove

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah K.

    2015-01-01

    The objectives of the High Performance EVA Glove task are to develop advanced EVA gloves for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. New technologies and manufacturing techniques will be incorporated into the new gloves to address finger and hand mobility, injury reduction and durability in nonpristine environments. Three prototypes will be developed, each focusing on different technological advances. A robotic assist glove will integrate a powered grasping system into the current EVA glove design to reduce astronaut hand fatigue and hand injuries. A mechanical counter pressure (MCP) glove will be developed to further explore the potential of MCP technology and assess its capability for countering the effects of vacuum or low pressure environments on the body by using compression fabrics or materials to apply the necessary pressure. A gas pressurized glove, incorporating new technologies, will be the most flight-like of the three prototypes. Advancements include the development and integration of aerogel insulation, damage sensing components, dust-repellant coatings, and dust tolerant bearings.

  11. Augmented robotic device for EVA hand manoeuvres

    NASA Astrophysics Data System (ADS)

    Matheson, Eloise; Brooker, Graham

    2012-12-01

    During extravehicular activities (EVAs), pressurised space suits can lead to difficulties in performing hand manoeuvres and fatigue. This is often the cause of EVAs being terminated early, or taking longer to complete. Assistive robotic gloves can be used to augment the natural motion of a human hand, meaning work can be carried out more efficiently with less stress to the astronaut. Lightweight and low profile solutions must be found in order for the assistive robotic glove to be easily integrated with a space suit pressure garment. Pneumatic muscle actuators combined with force sensors are one such solution. These actuators are extremely light, yet can output high forces using pressurised gases as the actuation drive. Their movement is omnidirectional, so when combined with a flexible exoskeleton that itself provides a degree of freedom of movement, individual fingers can be controlled during flexion and extension. This setup allows actuators and other hardware to be stored remotely on the user's body, resulting in the least possible mass being supported by the hand. Two prototype gloves have been developed at the University of Sydney; prototype I using a fibreglass exoskeleton to provide flexion force, and prototype II using torsion springs to achieve the same result. The gloves have been designed to increase the ease of human movements, rather than to add unnatural ability to the hand. A state space control algorithm has been developed to ensure that human initiated movements are recognised, and calibration methods have been implemented to accommodate the different characteristics of each wearer's hands. For this calibration technique, it was necessary to take into account the natural tremors of the human hand which may have otherwise initiated unexpected control signals. Prototype I was able to actuate the user's hand in 1 degree of freedom (DOF) from full flexion to partial extension, and prototype II actuated a user's finger in 2 DOF with forces achieved

  12. CLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation

    PubMed Central

    Ramena, Grace; Yin, Yufang; Yu, Yang; Walia, Vijay; Elble, Randolph C.

    2016-01-01

    CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1) and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC) caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS). The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines. PMID:26930581

  13. Suppression of irrelevant activation in the horizontal and vertical Simon task differs quantitatively not qualitatively.

    PubMed

    Töbel, Lisa; Hübner, Ronald; Stürmer, Birgit

    2014-10-01

    The Simon effect is usually explained by the assumption that the irrelevant stimulus location automatically activates the corresponding response. In the case of incongruent stimulus-response assignments automatically activated responses therefore have to be suppressed to ensure correct responses. This account, however, has been called into question for other than horizontally arranged visual Simon tasks. We investigated whether there is a qualitative or quantitative difference in suppression of irrelevant activation between horizontally and vertically arranged Simon tasks, using delta-function analyses. Sequential analyses revealed suppression after incongruent trials in both tasks, supporting the idea of a quantitative rather than a qualitative difference between the tasks. We conclude that automatic response activation is weaker in vertical tasks resulting in lower inhibitory demands as compared to horizontal tasks. PMID:25113126

  14. Comparison of trunk muscle activities in lifting and lowering tasks at various heights

    PubMed Central

    Lee, Hyun; Hong, Ji Heon

    2016-01-01

    [Purpose] Biomechanical data for manual material handling are important for appropriate engineering design. The goal of this study was to investigate differences in trunk muscle activity in lifting and lowering tasks at various heights. [Subjects and Methods] Thirty healthy, young adult subjects performed 6 asymmetrical lifting and lowering tasks at various heights. Trunk muscle activity of the abdominal external oblique muscle (EO), rectus abdominis muscle (RA), and lumbar erector spinae muscles (ES) were recorded using surface electromyography (EMG). [Results] The EMG activities of the bilateral ES differed significantly among heights. The left EO activity in the ankle to knee lifting task was significantly increased compared with that of the knee to ankle lowering task. However, there were no significant differences in the right EO, bilateral ES, or RA between lifting and lowering tasks. [Conclusion] The results show that the optimal range for manual material handling was at trunk height, not only for lifting but also for lowering tasks. PMID:27065548

  15. A Cabin Air Separator for EVA Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  16. Cognitive tasks in information analysis: Use of event dwell time to characterize component activities

    SciTech Connect

    Sanquist, Thomas F.; Greitzer, Frank L.; Slavich, Antoinette L.; Littlefield, Rik J.; Littlefield, Janis S.; Cowley, Paula J.

    2004-09-28

    Technology-based enhancement of information analysis requires a detailed understanding of the cognitive tasks involved in the process. The information search and report production tasks of the information analysis process were investigated through evaluation of time-stamped workstation data gathered with custom software. Model tasks simulated the search and production activities, and a sample of actual analyst data were also evaluated. Task event durations were calculated on the basis of millisecond-level time stamps, and distributions were plotted for analysis. The data indicate that task event time shows a cyclic pattern of variation, with shorter event durations (< 2 sec) reflecting information search and filtering, and longer event durations (> 10 sec) reflecting information evaluation. Application of cognitive principles to the interpretation of task event time data provides a basis for developing “cognitive signatures” of complex activities, and can facilitate the development of technology aids for information intensive tasks.

  17. Astronaut Joseph Kerwin during EVA at Skylab 1 and 2 space station cluster

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Joseph P. Kerwin, Skylab 2 science pilot, performs extravehicular activity (EVA) at the Skylab 1 and 2 space station cluster in Earth orbit, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the station. Kerwin is just outside the Airlock Module. Kerwin assisted Astronaut Charles Conrad Jr., Skylab 2 commander, during the successful EVA attempt to free the stuck solar array system wing on the Orbital Workshop.

  18. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie S.; Alpert, Brian K.; Montalvo, Edwin James; Welsh, Lawrence Daren; Wray, Scott; Mavridis, Costa

    2016-01-01

    The EVA Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, easy to search repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision controlled system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, as well as hundreds of others that support the EVA. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  19. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie S.; Alpert, Brian K.; Montalvo, Edwin James; Welsh, Lawrence Daren; Wray, Scott; Mavridis, Costa

    2016-01-01

    The EVA Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, easy to search repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision controlled system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, as well as hundreds of others that support EVA. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  20. Understanding Student Coregulation in Task Interpretation during Electronics Laboratory Activities

    ERIC Educational Resources Information Center

    Rivera-Reyes, Presentacion; Lawanto, Oenardi; Pate, Michale L.

    2016-01-01

    Coregulation (CRL) is a transitional process in which students share problem-solving techniques and utilize self-regulated learning (SRL) when interacting with peers. Coregulation may help students to define and modify inconsistencies in their SRL strategy. Task interpretation is described as the critical first step in the SRL process, and it is a…

  1. JV Task 119 - Effects of Aging on Treated Activated Carbons

    SciTech Connect

    Edwin Olson; Lucinda Hamre; John Pavlish; Blaise Mibeck

    2009-03-25

    For both the United States and Canada, testing has been under way for electric utilities to find viable and economical mercury control strategies to meet pending future mercury emission limits. The technology that holds the most promise for mercury control in low-chlorine lignite to meet the needs of the Clean Air Act in the United States and the Canada-Wide Standards in Canada is injection of treated activated carbon (AC) into the flue gas stream. Most of the treated carbons are reported to be halogenated, often with bromine. Under a previous multiyear project headed by the Energy & Environmental Research Center (EERC), testing was performed on a slipstream unit using actual lignite-derived flue gas to evaluate various sorbent technologies for their effectiveness, performance, and cost. Testing under this project showed that halogenated ACs performed very well, with mercury capture rates often {ge} 90%. However, differences were noted between treated ACs with respect to reactivity and capacity, possibly as a result of storage conditions. Under certain conditions (primarily storage in ambient air), notable performance degradation had occurred in mercury capture efficiency. Therefore, a small exploratory task within this project evaluated possible differences resulting from storage conditions and subsequent effects of aging that might somehow alter their chemical or physical properties. In order to further investigate this potential degradation of treated (halogenated) ACs, the EERC, together with DOE's National Energy Technology Laboratory, the North Dakota Industrial Commission (NDIC), the Electric Power Research Institute (EPRI), SaskPower, and Otter Tail Power Company, assessed the aging effects of brominated ACs for the effect that different storage durations, temperatures, and humidity conditions have on the mercury sorption capacity of treated ACs. No aging effects on initial capture activity were observed for any carbons or conditions in the investigation

  2. Atypical Activation during the Embedded Figures Task as a Functional Magnetic Resonance Imaging Endophenotype of Autism

    ERIC Educational Resources Information Center

    Spencer, Michael D.; Holt, Rosemary J.; Chura, Lindsay R.; Calder, Andrew J.; Suckling, John; Bullmore, Edward T.; Baron-Cohen, Simon

    2012-01-01

    Atypical activation during the Embedded Figures Task has been demonstrated in autism, but has not been investigated in siblings or related to measures of clinical severity. We identified atypical activation during the Embedded Figures Task in participants with autism and unaffected siblings compared with control subjects in a number of temporal…

  3. Tools for Activating Materials and Tasks in the English Language Classroom

    ERIC Educational Resources Information Center

    Rosenberg, Rick

    2009-01-01

    Most teachers have seen the reactions students can have to tasks and activities that they do not find engaging: the glassy or rolling eyes, the unfocused behavior, and the cries of "Not again!" This article provides practical techniques that the author's students have helped him learn over the years to better "activate" materials and tasks in the…

  4. School-Based Collaborative Teams: An Exploratory Study of Tasks and Activities

    ERIC Educational Resources Information Center

    Phillippo, Kate; Stone, Susan

    2006-01-01

    This study reports findings from a content analysis of the activities and tasks of a school-based problem-solving team. Analyses of observational data collected over the course of five months found that team tasks and activities fell into the following five clusters: (1) needs identification, program development, and planning; (2) intrateam…

  5. Goal-directed behavior under emotional distraction is preserved by enhanced task-specific activation.

    PubMed

    Wessa, Michèle; Heissler, Janine; Schönfelder, Sandra; Kanske, Philipp

    2013-03-01

    Despite the distracting effects of emotional stimuli on concurrent task performance, humans are able to uphold goal-directed behavior. Here, we investigated the hypothesis that this effect is due to the enhanced recruitment of task-specific neural resources. In a two-step functional magnetic resonance imaging study, we first localized those areas involved in mental arithmetics by contrasting arithmetic problems with a number detection task. The resulting activation maps were then used as masks in a second experiment that compared the effects of neutral and emotional distracter images on mental arithmetics. We found increased response times in the emotional distracter condition, accompanied by enhanced activation in task-specific areas, including superior parietal cortex, dorsolateral and dorsomedial prefrontal cortex. This activation increase correlated with larger behavioral impairment through emotional distraction. Similar error rates in both conditions indicate that cognitive task performance is preserved through enhanced recruitment of task-specific neural resources when emotional distracter stimuli are present. PMID:22302842

  6. The slit receptor EVA-1 coactivates a SAX-3/Robo mediated guidance signal in C. elegans.

    PubMed

    Fujisawa, Kazuko; Wrana, Jeffrey L; Culotti, Joseph G

    2007-09-28

    The SAX-3/roundabout (Robo) receptor has SLT-1/Slit-dependent and -independent functions in guiding cell and axon migrations. We identified enhancer of ventral-axon guidance defects of unc-40 mutants (EVA-1) as a Caenorhabditis elegans transmembrane receptor for SLT-1. EVA-1 has two predicted galactose-binding ectodomains, acts cell-autonomously for SLT-1/Slit-dependent axon migration functions of SAX-3/Robo, binds to SLT-1 and SAX-3, colocalizes with SAX-3 on cells, and provides cell specificity to the activation of SAX-3 signaling by SLT-1. Double mutants of eva-1 or slt-1 with sax-3 mutations suggest that SAX-3 can (when slt-1 or eva-1 function is reduced) inhibit a parallel-acting guidance mechanism, which involves UNC-40/deleted in colorectal cancer. PMID:17901337

  7. The micro conical system: Lessons learned from a successful EVA/robot-compatible mechanism

    NASA Technical Reports Server (NTRS)

    Gittleman, Mark; Johnston, Alistair

    1996-01-01

    The Micro Conical System (MCS) is a three-part, multi-purpose mechanical interface system used for acquiring and manipulating masses on-orbit by either extravehicular activity (EVA) or telerobotic means. The three components of the system are the micro conical fitting (MCF), the EVA micro tool (EMCT), and the Robot Micro Conical Tool (RMCT). The MCS was developed and refined over a four-year period. This period culminated with the delivery of 358 Class 1 and Class 2 micro conical fittings for the International Space Station and with its first use in space to handle a 1272 kg (2800 lbm) Spartan satellite (11000 times greater than the MCF mass) during an EVA aboard STS-63 in February, 1995. The micro conical system is the first successful EVA/robot-compatible mechanism to be demonstrated in the external environment aboard the U.S. Space Shuttle.

  8. Human Space Exploration and Radiation Exposure from EVA: 1981-2011

    NASA Astrophysics Data System (ADS)

    Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.

    2011-12-01

    There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.

  9. Muscle activity and hand motion in veterinarians performing laparoscopic training tasks with a box trainer.

    PubMed

    Tapia-Araya, Angelo E; Usón-Gargallo, Jesús; Sánchez-Margallo, Juan A; Pérez-Duarte, Francisco J; Martin-Portugués, Idoia Díaz-Güemes; Sánchez-Margallo, Francisco M

    2016-02-01

    OBJECTIVE To evaluate muscle activity and hand motion in veterinarians performing a standard set of laparoscopic training tasks. SAMPLE 12 veterinarians with experience performing laparoscopic procedures. PROCEDURES Participants were asked to perform peg transfer, coordination, precision cutting, and suturing tasks in a laparoscopic box trainer. Activity of the right biceps brachii, triceps brachii, forearm flexor, forearm extensor, and trapezius muscles was analyzed by means of surface electromyography. Right hand movements and wrist angle data were registered through the use of a data glove, and risk levels for the wrist joint were determined by use of a modified rapid upper limb assessment (RULA) method. One-way repeated-measures ANOVA with a Bonferroni post hoc test was performed to compare values between tasks. RESULTS Activity in the biceps muscle did not differ significantly among the 4 tasks. Activity in the triceps, forearm flexor, and forearm extensor muscles was significantly higher during precision cutting than during the coordination task. Activity in the trapezius muscle was highest during the suturing task and did not differ significantly among the other 3 tasks. The RULA score was unacceptable (score, 3) for the coordination, peg transfer, and precision cutting tasks but was acceptable (score, 2) for the suturing task. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that the ergonomics of laparoscopic training depended on the tasks performed and the design of the instruments used. Precision cutting and suturing tasks were associated with the highest muscle activity. Acceptable wrist position, as determined with the RULA method, was found with the suturing task, which was performed with an axial-handled instrument. (Am J Vet Res 2016;77:186-193). PMID:27027713

  10. Selecting Tasks for Evaluating Human Performance as a Function of Gravity

    NASA Technical Reports Server (NTRS)

    Norcross, Jason R.; Gernhardt, Michael L.

    2011-01-01

    A challenge in understanding human performance as a function of gravity is determining which tasks to research. Initial studies began with treadmill walking, which was easy to quantify and control. However, with the development of pressurized rovers, it is less important to optimize human performance for ambulation as pressurized rovers will likely perform gross translation for them. Future crews are likely to spend much of their extravehicular activity (EVA) performing geology, construction,a nd maintenance type tasks. With these types of tasks, people have different performance strategies, and it is often difficult to quantify the task and measure steady-state metabolic rates or perform biomechanical analysis. For many of these types of tasks, subjective feedback may be the only data that can be collected. However, subjective data may not fully support a rigorous scientific comparison of human performance across different gravity levels and suit factors. NASA would benefit from having a wide variety of quantifiable tasks that allow human performance comparison across different conditions. In order to determine which tasks will effectively support scientific studies, many different tasks and data analysis techniques will need to be employed. Many of these tasks and techniques will not be effective, but some will produce quantifiable results that are sensitive enough to show performance differences. One of the primary concerns related to EVA performance is metabolic rate. The higher the metabolic rate, the faster the astronaut will exhaust consumables. The focus of this poster will be on how different tasks affect metabolic rate across different gravity levels.

  11. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the

  12. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy

    PubMed Central

    Li, Mengtao; Lu, Guang; Hu, Jia; Shen, Xue; Ju, Jiabao; Gao, Yuanxu; Qu, Liujing; Xia, Yan; Chen, Yingyu; Bai, Yun

    2016-01-01

    Summary Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation. PMID:26905199

  13. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy.

    PubMed

    Li, Mengtao; Lu, Guang; Hu, Jia; Shen, Xue; Ju, Jiabao; Gao, Yuanxu; Qu, Liujing; Xia, Yan; Chen, Yingyu; Bai, Yun

    2016-03-01

    Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation. PMID:26905199

  14. Increased Brain Activation for Dual Tasking with 70-Days Head-Down Bed Rest.

    PubMed

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia A; De Dios, Yiri E; Gadd, Nichole E; Wood, Scott J; Riascos, Roy; Kofman, Igor S; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2016-01-01

    Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the underlying brain activation changed as a function of HDBR. Eighteen healthy men participated in this study. They remained continuously in the 6° head-down tilt position for 70 days. Functional MRI for bimanual finger tapping was acquired during both single task and dual task conditions, and repeated at 7 time points pre-, during- and post-HDBR. Another 12 healthy males participated as controls who did not undergo HDBR. A widely distributed network involving the frontal, parietal, cingulate, temporal, and occipital cortices exhibited increased activation for dual tasking and increased activation differences between dual and single task conditions during HDBR relative to pre- or post-HDBR. This HDBR-related brain activation increase for dual tasking implies that more neurocognitive control is needed for dual task execution during HDBR compared to pre- and post-HDBR. We observed a positive correlation between pre-to-post HDBR changes in dual-task cost of reaction time and pre-to-post HDBR change in dual-task cost of brain activation in several cerebral and cerebellar regions. These findings could be predictive of changes in dual task processing during spaceflight. PMID:27601982

  15. Increased Brain Activation for Dual Tasking with 70-Days Head-Down Bed Rest

    PubMed Central

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia A.; De Dios, Yiri E.; Gadd, Nichole E.; Wood, Scott J.; Riascos, Roy; Kofman, Igor S.; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2016-01-01

    Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the underlying brain activation changed as a function of HDBR. Eighteen healthy men participated in this study. They remained continuously in the 6° head-down tilt position for 70 days. Functional MRI for bimanual finger tapping was acquired during both single task and dual task conditions, and repeated at 7 time points pre-, during- and post-HDBR. Another 12 healthy males participated as controls who did not undergo HDBR. A widely distributed network involving the frontal, parietal, cingulate, temporal, and occipital cortices exhibited increased activation for dual tasking and increased activation differences between dual and single task conditions during HDBR relative to pre- or post-HDBR. This HDBR-related brain activation increase for dual tasking implies that more neurocognitive control is needed for dual task execution during HDBR compared to pre- and post-HDBR. We observed a positive correlation between pre-to-post HDBR changes in dual-task cost of reaction time and pre-to-post HDBR change in dual-task cost of brain activation in several cerebral and cerebellar regions. These findings could be predictive of changes in dual task processing during spaceflight. PMID:27601982

  16. Fuel Oxidizer Reaction Products (FORP) Contamination of Service Module (SM) and Release of N-nitrosodimethylamine(NDMA)in a Humid Environment from Crew EVA Suits Contaminated with FORP

    NASA Technical Reports Server (NTRS)

    Schmidl, William; Mikatarian, Ron; Lam, Chiu-Wing; West, Bil; Buchanan, Vanessa; Dee, Louis; Baker, David; Koontz, Steve

    2004-01-01

    The Service Module (SM) is an element of the Russian Segment of the International Space Station (ISS). One of the functions of the SM is to provide attitude control for the ISS using thrusters when the U.S. Control Moment Gyros (CMG's) must be desaturated. Prior to an Extravehicular Activity (EVA) on the Russian Segment, the Docking Compartment (DC1) is depressurized, as it is used as an airlock. When the DC1 is depressurized, the CMG's margin of momentum is insufficient and the SM attitude control thrusters need to fire to desaturate the CMG's. SM roll thruster firings induce contamination onto adjacent surfaces with Fuel Oxidizer Reaction Products (FORP). FORP is composed of both volatile and non-volatile components. One of the components of FORP is the potent carcinogen N-nitrosdimethylamine (NDMA). Since the EVA crewmembers often enter the area surrounding the thrusters for tasks on the aft end of the SM and when translating to other areas of the Russian Segment, the presence of FORP is a concern. This paper will discuss FORP contamination of the SM surfaces, the release of NDMA in a humid environment from crew EVA suits, if they happen to be contaminated with FORP, and the toxicological risk associated with the NDMA release.

  17. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    PubMed

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. PMID:23261663

  18. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    NASA Astrophysics Data System (ADS)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  19. Astronauts Meade tests SAFER system during EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Carl J. Meade tests the new Simplified Aid for EVA Rescue (SAFER) system some 130 nautical miles above Earth. The end of the Remote Manipulator System's (RMS) robot arm, with an unoccupied foot restraint attached, is at frame's edge.

  20. Cardiac autonomic activity predicts dominance in verbal over spatial reasoning tasks: results from a preliminary study.

    PubMed

    Solernó, Juan I; Chada, Daniela Pérez; Guinjoan, Salvador M; Lloret, Santiago Pérez; Hedderwick, Alejandro; Vidal, María Florencia; Cardinali, Daniel P; Vigo, Daniel E

    2012-04-01

    The present study sought to determine whether autonomic activity is associated with dominance in verbal over spatial reasoning tasks. A group of 19 healthy adults who performed a verbal and spatial aptitude test was evaluated. Autonomic function was assessed by means of heart rate variability analysis, before and during the tasks. The results showed that a better relative performance in verbal over spatial reasoning tasks was associated with vagal prevalence in normal subjects. PMID:22118959

  1. Maturing Pump Technology for EVA Applications in a Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Dionne, Steven; Gervais, Edward; Anchondo, Ian

    2012-01-01

    The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.

  2. Study of space shuttle EVA/IVA support requirements. Volume 1: Technical summary report

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    Results are summarized which were obtained for equipment requirements for the space shuttle EVA/IVA pressure suit, life support system, mobility aids, vehicle support provisions, and energy 4 support. An initial study of tasks, guidelines, and constraints and a special task on the impact of a 10 psia orbiter cabin atmosphere are included. Supporting studies not related exclusively to any one group of equipment requirements are also summarized. Representative EVA/IVA task scenarios were defined based on an evaluation of missions and payloads. Analysis of the scenarios resulted in a total of 788 EVA/IVA's in the 1979-1990 time frame, for an average of 1.3 per shuttle flight. Duration was estimated to be under 4 hours on 98% of the EVA/IVA's, and distance from the airlock was determined to be 70 feet or less 96% of the time. Payload water vapor sensitivity was estimated to be significant on 9%-17% of the flights. Further analysis of the scenarios was carried out to determine specific equipment characteristics, such as suit cycle and mobility requirements.

  3. Overview of EVA PRA for TPS Repair for Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Duncan, Gary; Roeschel, Eduardo; Canga, Michael

    2010-01-01

    Following the Columbia accident in 2003, NASA developed techniques to repair the Thermal Protection System (TPS) in the event of damage to the TPS as one of several actions to reduce the risk to future flights from ascent debris, micro-meteoroid and/or orbital debris (MMOD). Other actions to help reduce the risk include improved inspection techniques, reduced shedding of debris from the External Tank and ability to rescue the crew with a launch on need vehicle. For the Hubble Space Telescope (HST) Servicing Mission the crew rescue capability was limited by the inability to safe haven on the International Space Station (ISS), resulting in a greater reliance on the repair capability. Therefore it was desirable to have an idea of the risk associated with conducting a repair, where the repair would have to be conducted using an Extra-Vehicular Activity (EVA). Previously, focused analyses had been conducted to quantify the risk associated with certain aspects of an EVA, for example the EVA Mobility Unit (EMU) or Space Suit; however, the analyses were somewhat limited in scope. A complete integrated model of an EVA which could quantify the risk associated with all of the major components of an EVA had never been done before. It was desired to have a complete integrated model to be able to assess the risks associated with an EVA to support the Space Shuttle Program (SSP) in making risk informed decisions. In the case of the HST Servicing Mission, this model was developed to assess specifically the risks associated with performing a TPS repair EVA. This paper provides an overview of the model that was developed to support the HST mission in the event of TPS damage. The HST Servicing Mission was successfully completed on May 24th 2009 with no critical TPS damage; therefore the model was not required for real-time mission support. However, it laid the foundation upon which future EVA quantitative risk assessments could be based.

  4. Robonaut 2 - IVA Experiments On-Board ISS and Development Towards EVA Capability

    NASA Technical Reports Server (NTRS)

    Diftler, Myron; Hulse, Aaron; Badger, Julia; Thackston, Allison; Rogers, Jonathan

    2014-01-01

    Robonaut 2 (R2) has completed its fixed base activities on-board the ISS and is scheduled to receive its climbing legs in early 2014. In its continuing line of firsts, the R2 torso finished up its on-orbit activities on its stanchion with the manipulation of space blanket materials and performed multiple tasks under teleoperation control by IVA astronauts. The successful completion of these two IVA experiments is a key step in Robonaut's progression towards an EVA capability. Integration with the legs and climbing inside the ISS will provide another important part of the experience that R2 will need prior to performing tasks on the outside of ISS. In support of these on-orbit activities, R2 has been traversing across handrails in simulated zero-g environments and working with EVA tools and equipment on the ground to determine manipulation strategies for an EVA Robonaut. R2 made significant advances in robotic manipulation of deformable materials in space while working with its softgoods task panel. This panel features quarter turn latches that secure a space blanket to the task panel structure. The space blanket covers two cloth cubes that are attached with Velcro to the structure. R2 was able to open and close the latches, pull back the blanket, and remove the cube underneath. R2 simulated cleaning up an EVA worksite as well, by replacing the cube and reattaching the blanket. In order to interact with the softgoods panel, R2 has both autonomously and with a human in the loop identified and localized these deformable objects. Using stereo color cameras, R2 identified characteristic elements on the softgoods panel then extracted the location and orientation of the object in its field of view using stereo disparity and kinematic transforms. R2 used both vision processing and supervisory control to successfully accomplish this important task. Teleoperation is a key capability for Robonaut's effectiveness as an EVA system. To build proficiency, crewmembers have

  5. A Cross-Cultural Investigation into How Tasks Influence Seatwork Activities in Mathematics Lessons

    ERIC Educational Resources Information Center

    Serrano, Ana M.

    2012-01-01

    This study examined how types of tasks influenced student activities/thinking and defined the role of Seatwork in mathematics lessons. It used 60 lessons from the TIMSS videotaped Study. These data indicated that practice was the most prevalent form of tasks in the U.S. In Germany, students completed mathematical calculations after a complex…

  6. A Goal Activation Approach to the Study of Executive Function: An Application to Antisaccade Tasks

    ERIC Educational Resources Information Center

    Nieuwenhuis, Sander; Broerse, Annelies; Nielen, Marjan M. A.; de Jong, Ritske

    2004-01-01

    We argue that a general control process, responsible for the activation and maintenance of task goals, is central to the concept of executive function. Failures of this process can become manifest as "goal neglect": disregard of a task requirement even though it has been understood (Duncan, 1995). We discuss the results of several published and…

  7. Advanced Marketing 8130. Instructional Areas. Duties and Tasks. Learning Activities. Referenced Resources.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Education, Richmond.

    This resource handbook, which is designed for use by instructors of courses in advanced marketing, consists of a duty/task list with referenced resources, a duty/task list with learning activities, and a list of resources. Included in each list are materials dealing with the following topics: communication in marketing, economics in marketing,…

  8. Cognitive Activities in Solving Mathematical Tasks: The Role of a Cognitive Obstacle

    ERIC Educational Resources Information Center

    Antonijevic, Radovan

    2016-01-01

    In the process of learning mathematics, students practice various forms of thinking activities aimed to substantially contribute to the development of their different cognitive structures. In this paper, the subject matter is a "cognitive obstacle", a phenomenon that occurs in the procedures of solving mathematical tasks. Each task in…

  9. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks

    PubMed Central

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention. PMID:25745395

  10. Primary motor cortex neurons classified in a postural task predict muscle activation patterns in a reaching task.

    PubMed

    Heming, Ethan A; Lillicrap, Timothy P; Omrani, Mohsen; Herter, Troy M; Pruszynski, J Andrew; Scott, Stephen H

    2016-04-01

    Primary motor cortex (M1) activity correlates with many motor variables, making it difficult to demonstrate how it participates in motor control. We developed a two-stage process to separate the process of classifying the motor field of M1 neurons from the process of predicting the spatiotemporal patterns of its motor field during reaching. We tested our approach with a neural network model that controlled a two-joint arm to show the statistical relationship between network connectivity and neural activity across different motor tasks. In rhesus monkeys, M1 neurons classified by this method showed preferred reaching directions similar to their associated muscle groups. Importantly, the neural population signals predicted the spatiotemporal dynamics of their associated muscle groups, although a subgroup of atypical neurons reversed their directional preference, suggesting a selective role in antagonist control. These results highlight that M1 provides important details on the spatiotemporal patterns of muscle activity during motor skills such as reaching. PMID:26843605

  11. Enhanced Controlled Transdermal Delivery of Ambroxol from the EVA Matrix.

    PubMed

    Cho, C W; Kim, D B; Cho, H W; Shin, S C

    2012-03-01

    To avoid the systemic adverse effects that might occur after oral administration, transdermal delivery of ambroxol was studied as a method for maintaining proper blood levels for an extended period. Release of ambroxol according to concentration and temperature was determined, and permeation of drug through rat skin was studied using two chamber-diffusion cells. The solubility according to PEG 400 volume fraction was highest at 40% PEG 400. The rate of drug release from the EVA matrix increased with increased temperature and drug loading doses. A linear relationship existed between the release rate and the square root of loading rate. The activation energy (Ea) was measured from the slope of the plot of log P versus 1000/T and was found to be 10.71, 10.39, 10.33 and 9.87 kcal/mol for 2, 3, 4 and 5% loading dose from the EVA matrix, respectively. To increase the permeation rate of ambroxol across rat skin from the EVA matrix, various penetration enhancers such as fatty acids (saturated, unsaturated), propylene glycols, glycerides, pyrrolidones, and non-ionic surfactants were used. The enhancing effects of the incorporated enhancers on the skin permeation of ambroxol were evaluated using Franz diffusion cells fitted with intact excised rat skin at 37° using 40% PEG 400 solution as a receptor medium. Among the enhancers used, polyoxyethylene-2-oleyl ether increased the permeation rate by 4.25-fold. In conclusion, EVA matrix containing plasticizer and permeation enhancer could be developed for enhanced transdermal delivery of ambroxol. PMID:23325993

  12. Enhanced Controlled Transdermal Delivery of Ambroxol from the EVA Matrix

    PubMed Central

    Cho, C. W.; Kim, D. B.; Cho, H. W.; Shin, S. C.

    2012-01-01

    To avoid the systemic adverse effects that might occur after oral administration, transdermal delivery of ambroxol was studied as a method for maintaining proper blood levels for an extended period. Release of ambroxol according to concentration and temperature was determined, and permeation of drug through rat skin was studied using two chamber-diffusion cells. The solubility according to PEG 400 volume fraction was highest at 40% PEG 400. The rate of drug release from the EVA matrix increased with increased temperature and drug loading doses. A linear relationship existed between the release rate and the square root of loading rate. The activation energy (Ea) was measured from the slope of the plot of log P versus 1000/T and was found to be 10.71, 10.39, 10.33 and 9.87 kcal/mol for 2, 3, 4 and 5% loading dose from the EVA matrix, respectively. To increase the permeation rate of ambroxol across rat skin from the EVA matrix, various penetration enhancers such as fatty acids (saturated, unsaturated), propylene glycols, glycerides, pyrrolidones, and non-ionic surfactants were used. The enhancing effects of the incorporated enhancers on the skin permeation of ambroxol were evaluated using Franz diffusion cells fitted with intact excised rat skin at 37° using 40% PEG 400 solution as a receptor medium. Among the enhancers used, polyoxyethylene-2-oleyl ether increased the permeation rate by 4.25-fold. In conclusion, EVA matrix containing plasticizer and permeation enhancer could be developed for enhanced transdermal delivery of ambroxol. PMID:23325993

  13. TMEM166/EVA1A interacts with ATG16L1 and induces autophagosome formation and cell death.

    PubMed

    Hu, Jia; Li, Ge; Qu, Liujing; Li, Ning; Liu, Wei; Xia, Dan; Hongdu, Beiqi; Lin, Xin; Xu, Chentong; Lou, Yaxin; He, Qihua; Ma, Dalong; Chen, Yingyu

    2016-01-01

    The formation of the autophagosome is controlled by an orderly action of ATG proteins. However, how these proteins are recruited to autophagic membranes remain poorly clarified. In this study, we have provided a line of evidence confirming that EVA1A (eva-1 homolog A)/TMEM166 (transmembrane protein 166) is associated with autophagosomal membrane development. This notion is based on dotted EVA1A structures that colocalize with ZFYVE1, ATG9, LC3B, ATG16L1, ATG5, STX17, RAB7 and LAMP1, which represent different stages of the autophagic process. It is required for autophagosome formation as this phenotype was significantly decreased in EVA1A-silenced cells and Eva1a KO MEFs. EVA1A-induced autophagy is independent of the BECN1-PIK3C3 (phosphatidylinositol 3-kinase, catalytic subunit type 3) complex but requires ATG7 activity and the ATG12-ATG5/ATG16L1 complex. Here, we present a molecular mechanism by which EVA1A interacts with the WD repeats of ATG16L1 through its C-terminal and promotes ATG12-ATG5/ATG16L1 complex recruitment to the autophagic membrane and enhances the formation of the autophagosome. We also found that both autophagic and apoptotic mechanisms contributed to EVA1A-induced cell death while inhibition of autophagy and apoptosis attenuated EVA1A-induced cell death. Overall, these findings provide a comprehensive view to our understanding of the pathways involved in the role of EVA1A in autophagy and programmed cell death. PMID:27490928

  14. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  15. Astronaut Sellers Performs STS-112 EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard Side Integrated Truss Structure (S1) and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. In this photograph, Astronaut Piers J. Sellers uses both a handrail on the Destiny Laboratory and a foot restraint on the Space Station Remote Manipulator System or Canadarm2 to remain stationary while performing work at the end of the STS-112 mission's second space walk. A cloud-covered Earth provides the backdrop for the scene.

  16. Applications of EVA guidelines and design criteria. Volume 3: EVA systems cost model formating

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    The development of a model for estimating the impact of manned EVA costs on future payloads is discussed. Basic information on the EV crewman requirements, equipment, physical and operational characteristics, and vehicle interfaces is provided. The cost model is being designed to allow system designers to quantify the impact of EVA on vehicle and payload systems.

  17. Brain Activity in Cigarette Smokers Performing a Working Memory Task: Effect of Smoking Abstinence

    PubMed Central

    Xu, Jiansong; Mendrek, Adrianna; Cohen, Mark S.; Monterosso, John; Rodriguez, Paul; Simon, Sara L.; Brody, Arthur; Jarvik, Murray; Domier, Catherine P.; Olmstead, Richard; Ernst, Monique; London, Edythe D.

    2009-01-01

    Background When nicotine-dependent human subjects abstain from cigarette smoking, they exhibit deficits in working memory. An understanding of the neural substrates of such impairments may help to understand how nicotine affects cognition. Our aim, therefore, was to identify abnormalities in the circuitry that mediates working memory in nicotine-dependent subjects after they initiate abstinence from smoking. Methods We used blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to study eight smokers while they performed a letter version of the N-Back working memory task under satiety (≤1.5 hours abstinence) and abstinence (≥14 hours abstinence) conditions. Results Task-related activity in the left dorsal lateral prefrontal cortex (DLPFC) showed a significant interaction between test session (satiety, abstinence) and task load (1-back, 2-back, and 3-back). This interaction reflected the fact that task-related activity in the satiety condition was relatively low during performance of the 1-back task but greater at the more difficult task levels, whereas task-related activity in the abstinence condition was relatively high at the 1-back level and did not increase at the more difficult task levels. Conclusions We conclude that neural processing related to working memory in the left DLPFC is less efficient during acute abstinence from smoking than at smoking satiety. PMID:16038685

  18. EVA Glove Sensor Feasbility II Abstract

    NASA Technical Reports Server (NTRS)

    Melone, Kate

    2014-01-01

    The main objectives for the glove project include taking various measurements from human subjects during and after they perform different tasks in the glove box, acquiring data from these tests and determining the accuracy of these results, interpreting and analyzing this data, and using the data to better understand how hand injuries are caused during EVAs.1 Some of these measurements include force readings, temperature readings, and micro-circulatory blood flow.1 The three glove conditions tested were ungloved (a comfort glove was worn to house the sensors), Series 4000, and Phase VI. The general approach/procedure for the glove sensor feasibility project is as follows: 1. Prepare test subject for testing. This includes attaching numerous sensors (approximately 50) to the test subject, wiring, and weaving the sensors and wires in the glove which helps to keep everything together. This also includes recording baseline moisture data using the Vapometer and MoistSense. 2. Pressurizing the glove box. Once the glove box is pressurized to the desired pressure (4.3 psid), testing can begin. 3. Testing. The test subject will perform a series of tests, some of which include pinching a load cell, making a fist, pushing down on a force plate, and picking up metal pegs, rotating them 90 degrees, and placing them back in the peg board. 4. Post glove box testing data collection. After the data is collected from inside the glove box, the Vapometer and MoistSense device will be used to collect moisture data from the subject's hand. 5. Survey. At the conclusion of testing, he/she will complete a survey that asks questions pertaining to comfort/discomfort levels of the glove, glove sizing, as well as offering any additional feedback.

  19. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number

  20. SHINE Tritium Nozzle Design: Activity 6, Task 1 Report

    SciTech Connect

    Okhuysen, Brett S.; Pulliam, Elias Noel

    2015-11-05

    In FY14, we studied the qualitative and quantitative behavior of a SHINE/PNL tritium nozzle under varying operating conditions. The result is an understanding of the nozzle’s performance in terms of important flow features that manifest themselves under different parametric profiles. In FY15, we will consider nozzle design with a focus on nozzle geometry and integration. From FY14 work, we will understand how the SHINE/PNL nozzle behaves under different operating scenarios. The first task for FY15 is to evaluate the FY14 model as a predictor of the actual flow. Considering different geometries is more time-intensive than parameter studies, therefore we recommend considering any relevant flow features that were not included in the FY14 model. In the absence of experimental data, it is particularly important to consider any sources of heat in the domain or boundary conditions that may affect the flow and incorporate these into the simulation if they are significant. Additionally, any geometric features of the beamline segment should be added to the model such as the orifice plate. The FY14 model works with hydrogen. An improvement that can be made for FY15 is to develop CFD properties for tritium and incorporate those properties into the new models.

  1. FEF-microstimulation causes task-dependent modulation of occipital fMRI activity.

    PubMed

    Premereur, Elsie; Janssen, Peter; Vanduffel, Wim

    2013-02-15

    Electrical microstimulation of FEF (FEF-EM) modulates neuronal activity in area V4 (Moore and Armstrong, 2003) and elicits functional magnetic resonance imaging (fMRI) activations in visual cortex in a bottom-up dependent manner (Ekstrom et al., 2008). Here we test the hypothesis that FEF-EM-induced modulations of fMRI activity are also function of task demands, which would suggest top-down dependent gating of FEF signals in early visual cortex. We scanned two monkeys performing a visually guided saccade task; a passive fixation task with a very similar visual display; and a passive fixation task without peripheral dots. We found increased effects of FEF-EM on fMRI-activity in visual cortex during saccades compared to fixation, indicating that the FEF-EM induced modulation is task-dependent. Finally, the effect of FEF-EM is mainly present in voxels which were less activated by visual stimuli in the absence of electrical stimulation. Our results show that the FEF-EM-induced pattern of activation in early visual cortex is topographically specific and more pronounced during increased task demands. These results fit with models suggesting that FEF is an important source modulating activity in early sensory cortex and that these influences can be enhanced by coincident bottom-up or top-down signals. PMID:23186918

  2. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  3. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    PubMed Central

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  4. EVA Robotic Assistant Project: Platform Attitude Prediction

    NASA Technical Reports Server (NTRS)

    Nickels, Kevin M.

    2003-01-01

    The Robotic Systems Technology Branch is currently working on the development of an EVA Robotic Assistant under the sponsorship of the Surface Systems Thrust of the NASA Cross Enterprise Technology Development Program (CETDP). This will be a mobile robot that can follow a field geologist during planetary surface exploration, carry his tools and the samples that he collects, and provide video coverage of his activity. Prior experiments have shown that for such a robot to be useful it must be able to follow the geologist at walking speed over any terrain of interest. Geologically interesting terrain tends to be rough rather than smooth. The commercial mobile robot that was recently purchased as an initial testbed for the EVA Robotic Assistant Project, an ATRV Jr., is capable of faster than walking speed outside but it has no suspension. Its wheels with inflated rubber tires are attached to axles that are connected directly to the robot body. Any angular motion of the robot produced by driving over rough terrain will directly affect the pointing of the on-board stereo cameras. The resulting image motion is expected to make tracking of the geologist more difficult. This will either require the tracker to search a larger part of the image to find the target from frame to frame or to search mechanically in pan and tilt whenever the image motion is large enough to put the target outside the image in the next frame. This project consists of the design and implementation of a Kalman filter that combines the output of the angular rate sensors and linear accelerometers on the robot to estimate the motion of the robot base. The motion of the stereo camera pair mounted on the robot that results from this motion as the robot drives over rough terrain is then straightforward to compute. The estimates may then be used, for example, to command the robot s on-board pan-tilt unit to compensate for the camera motion induced by the base movement. This has been accomplished in two ways

  5. Development of statistical models for predicting muscle and mental activities during repetitive precision tasks.

    PubMed

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md; Taha, Zahari

    2016-09-01

    This study was conducted to develop muscle and mental activities on repetitive precision tasks. A laboratory experiment was used to address the objectives. Surface electromyography was used to measure muscle activities from eight upper limb muscles, while electroencephalography recorded mental activities from six channels. Fourteen university students participated in the study. The results show that muscle and mental activities increase for all tasks, indicating the occurrence of muscle and mental fatigue. A linear relationship between muscle activity, mental activity and time was found while subjects were performing the task. Thus, models were developed using those variables. The models were found valid after validation using other students' and workers' data. Findings from this study can contribute as a reference for future studies investigating muscle and mental activity and can be applied in industry as guidelines to manage muscle and mental fatigue, especially to manage job schedules and rotation. PMID:27053140

  6. Expedition 16 Flight Engineer Tani Performs EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Astronaut Daniel Tani (top center), Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the 6-hour and 33-minute space walk, Tani and STS-120 mission specialist Scott Parazynski (out of frame), worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of 'shavings' he found under the joint's multilayer insulation covers. The space walkers also outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later. The moon is visible at lower center. The STS-120 mission launched from Kennedy Space Center's launch pad 39A at 11:38:19 a.m. (EDT) on October 23, 2007.

  7. Using Antecedent Physical Activity to Increase On-Task Behavior in Young Children

    ERIC Educational Resources Information Center

    Luke, Sara; Vail, Cynthia O.; Ayres, Kevin M.

    2014-01-01

    A withdrawal design was used to investigate how physical activity affects on-task behavior of young children with significant developmental delays in a special education preschool classroom. Five preschool age children with significant developmental delays engaged in either physical activity or seated center activities for 20 min prior to a 15-min…

  8. Effects of overhead work configuration on muscle activity during a simulated drilling task.

    PubMed

    Maciukiewicz, Jacquelyn M; Cudlip, Alan C; Chopp-Hurley, Jaclyn N; Dickerson, Clark R

    2016-03-01

    Overhead work is a known catalyst for occupational shoulder injury. Industrial workers must often adopt awkward overhead postures and loading profiles to complete required tasks, potentially elevating injury risk. This research examined the combined influence of multiple overhead working parameters on upper extremity muscular demands for an industrial drilling application. Twenty-two right-handed males completed 24 unilateral and bilateral overhead work exertions stratified by direction (upward, forward), point of force application (15, 30 and 45 cm in front of the body), and whole-body posture (seated, standing). The dependency of electromyographic (EMG) activity on several factors was established. Significant two-way interactions existed between point of force application and direction (p < 0.0001) and direction and whole body posture (p < 0.0001). An average increase in muscular activity of 6.5% maximal voluntary contraction (MVC) occurred for the contralateral limb when the bilateral task was completed, compared to unilateral tasks, with less than a 1% MVC increase for the active limb. These findings assist evidence-based approaches to overhead tasks, specifically in the construction industry. A bilateral task configuration is recommended to reduce glenohumeral stability demands. As well, particularly for tasks with a far reach distance, design tasks to promote a forward directed exertion. The considerable inter-subject variability suggests that fixed heights are not ideal, and should be avoided, and where this is not possible reaches should be reduced. PMID:26674399

  9. Age-Related Changes in Brain Activation Underlying Single- and Dual-Task Performance: Visuomanual Drawing and Mental Arithmetic

    ERIC Educational Resources Information Center

    Van Impe, A.; Coxon, J. P.; Goble, D. J.; Wenderoth, N.; Swinnen, S. P.

    2011-01-01

    Depending on task combination, dual-tasking can either be performed successfully or can lead to performance decrements in one or both tasks. Interference is believed to be caused by limitations in central processing, i.e. structural interference between the neural activation patterns associated with each task. In the present study, single- and…

  10. Biosensors for EVA: Muscle Oxygen and pH During Walking, Running and Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Ellerby, G.; Scott, P.; Stroud, L.; Norcross, J.; Pesholov, B.; Zou, F.; Gernhardt, M.; Soller, B.

    2009-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO2 on the leg during cycling. Our NSBRI-funded project is looking to extend this methodology to examine activities which more appropriately represent EVA activities, such as walking and running and to better understand factors that determine the metabolic cost of exercise in both normal and lunar gravity. Our 4 year project specifically addresses risk: ExMC 4.18: Lack of adequate biomedical monitoring capability for Constellation EVA Suits and EPSP risk: Risk of compromised EVA performance and crew health due to inadequate EVA suit systems.

  11. Job level risk assessment using task level ACGIH hand activity level TLV scores: a pilot study.

    PubMed

    Drinkaus, Phillip; Sesek, Richard; Bloswick, Donald S; Mann, Clay; Bernard, Thomas

    2005-01-01

    Existing upper extremity musculoskeletal disorder analytical tools are primarily intended for single or mono-task jobs. However, many jobs contain more than 1 task and some include job rotation. This case/control study investigates methods of modifying an existing tool, the American Conference of Governmental Industrial Hygienists (ACGIH) Hand Activity Level (HAL) Threshold Limit Value (TLV), to assess the upper extremity risk of multi-task jobs. Various methods of combining the task differences and ratios into a job level assessment were explored. Two methods returned significant odds ratios, (p < .05) of 18.0 (95% CI 1.8-172) and 12.0 (95% CI 1.2-120). These results indicate that a modified ACGIH HAL TLV may provide insight into the work-related risk of multi-task jobs. Further research is needed to optimize this process. PMID:16219155

  12. Central as well as Peripheral Attentional Bottlenecks in Dual-Task Performance Activate Lateral Prefrontal Cortices

    PubMed Central

    Szameitat, André J.; Vanloo, Azonya; Müller, Hermann J.

    2016-01-01

    Human information processing suffers from severe limitations in parallel processing. In particular, when required to respond to two stimuli in rapid succession, processing bottlenecks may appear at central and peripheral stages of task processing. Importantly, it has been suggested that executive functions are needed to resolve the interference arising at such bottlenecks. The aims of the present study were to test whether central attentional limitations (i.e., bottleneck at the decisional response selection stage) as well as peripheral limitations (i.e., bottleneck at response initiation) both demand executive functions located in the lateral prefrontal cortex. For this, we re-analyzed two previous studies, in which a total of 33 participants performed a dual-task according to the paradigm of the psychological refractory period (PRP) during functional magnetic resonance imaging (fMRI). In one study (N = 17), the PRP task consisted of two two-choice response tasks known to suffer from a central bottleneck (CB group). In the other study (N = 16), the PRP task consisted of two simple-response tasks known to suffer from a peripheral bottleneck (PB group). Both groups showed considerable dual-task costs in form of slowing of the second response in the dual-task (PRP effect). Imaging results are based on the subtraction of both single-tasks from the dual-task within each group. In the CB group, the bilateral middle frontal gyri and inferior frontal gyri were activated. Higher activation in these areas was associated with lower dual-task costs. In the PB group, the right middle frontal and inferior frontal gyrus (IFG) were activated. Here, higher activation was associated with higher dual-task costs. In conclusion we suggest that central and peripheral bottlenecks both demand executive functions located in lateral prefrontal cortices (LPFC). Differences between the CB and PB groups with respect to the exact prefrontal areas activated and the correlational patterns

  13. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    NASA Astrophysics Data System (ADS)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  14. A human factors evaluation of Extravehicular Activity gloves

    NASA Technical Reports Server (NTRS)

    O'Hara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1989-01-01

    One of the major problems faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human-hand capabilities. NASA has sponsored a program to develop a standardized set of tests designed to assess EVA-gloved hand capabilities in six performance domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based upon an assessment of general human-hand functioning and EVA task requirements, several tests within each performance domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand, an EVA glove without pressure, an EVA glove at operation pressure. Thus, the differential effect on performance of the glove with and without pressure was tested. Bare hand performance was used to 'calibrate' the effects. Ten subjects participated in the test setup as a repeated-measures experimental design. The paper will report the results of the test program.

  15. STS-57 astronauts Low and Wisoff, in EMUs, perform DTO 1210 EVA in OV-105's PLB

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Backdropped against the blackness of space and upside down in relation to Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) and Payload Commander (PLC) G. David Low and MS3 Peter J.K. Wisoff, wearing extravehicular mobility units (EMUs), simulate handling of large components in space. Above OV-105's payload bay (PLB), Low, anchored by a portable foot restraint (PFR) (manipulator foot restraint (MFR)) on the remote manipulator system (RMS) end effector, holds Wisoff and maneuvers him as if he were a large space component. This particular task was rehearsed with eyes toward the servicing of the Hubble Space Telescope (HST) or the assembly and maintenance of Space Station. This extravehicular activity (EVA), Detailed Test Objective (DTO) 1210, was conducted both with and without intentional disturbances from OV-105's thrusters and movements of the RMS. This phase of DTO 1210 will enable helpful evaluation for the HST wide field planetary camera (WFPC) during the STS-61 HST-serv

  16. STS-57 astronauts Low and Wisoff, in EMUs, perform DTO 1210 EVA in OV-105's PLB

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Backdropped against the blue and white Earth, Mission Specialist (MS) and Payload Commander (PLC) G. David Low and MS3 Peter J.K. Wisoff, wearing extravehicular mobility units (EMUs), simulate handling of large components in space. Above Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB), Low, anchored by a portable foot restraint (PFR) (manipulator foot restraint (MFR)) on the remote manipulator system (RMS) end effector, maneuvers Wisoff, representing the mass of a large space component. This particular task was rehearsed with eyes toward the servicing of the Hubble Space Telescope (HST) or the assembly and maintenance of Space Station. This extravehicular activity (EVA), Detailed Test Objective (DTO) 1210, was conducted both with and without intentional disturbances from OV-105's thrusters and movements of the RMS. This phase of DTO 1210 will enable helpful evaluation for the HST wide field planetary camera (WFPC) during the STS-61 HST-servicing mission. The SPACEHAB-01 (Com

  17. Feasibility Assessment of an EVA Glove Sensing Platform to Evaluate Potential Hand Injury Risk Factors

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane M.

    2015-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals that 58% of total astronaut hand and arm injuries from NBL training between 1993 and 2010 occurred either to the fingernail, MCP, or fingertip. The purpose of this study was to assess the potential of using small sensors to measure force acting on the fingers and hand within pressurized gloves and other variables such as blood perfusion, skin temperature, humidity, fingernail strain, skin moisture, among others. Tasks were performed gloved and ungloved in a pressurizable glove box. The test demonstrated that fingernails saw greater transverse strain levels for tension or compression than for longitudinal strain, even during axial fingertip loading. Blood perfusion peaked and dropped as the finger deformed during finger presses, indicating an initial dispersion and decrease of blood perfusion levels. Force sensitive resistors to force plate comparisons showed similar force curve patterns as fingers were depressed, indicating suitable functionality for future testing. Strategies for proper placement and protection of these sensors for ideal data collection and longevity through the test session were developed and will be implemented going forward for future testing.

  18. Active inference, evidence accumulation and the urn task

    PubMed Central

    FitzGerald, Thomas HB; Schwartenbeck, Philipp; Moutoussis, Michael; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Deciding how much evidence to accumulate before making a decision is a problem we and other animals often face, but one which is not completely understood. This issue is particularly important because a tendency to sample less information (often known as reflection impulsivity) is a feature in several psychopathologies, such as psychosis. A formal understanding information sampling may therefore clarify the computational anatomy of psychopathology. In this theoretical paper, we consider evidence accumulation in terms of active (Bayesian) inference using a generic model of Markov decision processes. Here, agents are equipped with beliefs about their own behaviour – in this case, that they will make informed decisions. Normative decision-making is then modelled using variational Bayes to minimise surprise about choice outcomes. Under this scheme, different facets of belief updating map naturally onto the functional anatomy of the brain (at least at a heuristic level). Of particular interest is the key role played by the expected precision of beliefs about control, which we have previously suggested may be encoded by dopaminergic neurons in the midbrain. We show that manipulating expected precision strongly affects how much information an agent characteristically samples, and thus provides a possible link between impulsivity and dopaminergic dysfunction. Our study therefore represents a step towards understanding evidence accumulation in terms of neurobiologically plausible Bayesian inference, and may cast light on why this process is disordered in psychopathology. PMID:25514108

  19. Advanced extravehicular activity systems requirements definition study. Phase 2: Extravehicular activity at a lunar base

    NASA Technical Reports Server (NTRS)

    Neal, Valerie; Shields, Nicholas, Jr.; Carr, Gerald P.; Pogue, William; Schmitt, Harrison H.; Schulze, Arthur E.

    1988-01-01

    The focus is on Extravehicular Activity (EVA) systems requirements definition for an advanced space mission: remote-from-main base EVA on the Moon. The lunar environment, biomedical considerations, appropriate hardware design criteria, hardware and interface requirements, and key technical issues for advanced lunar EVA were examined. Six remote EVA scenarios (three nominal operations and three contingency situations) were developed in considerable detail.

  20. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients.

    PubMed

    Kim, Da-Hye; Kim, Leahyun; Park, Wanjoo; Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional

  1. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional

  2. Do surface electrode recordings validly represent latissimus dorsi activation patterns during shoulder tasks?

    PubMed

    Ginn, Karen A; Halaki, Mark

    2015-02-01

    Because of its superficial location surface electrodes are commonly used to record latissimus dorsi (LD) activity. Despite the fact that the recommended electrode placement is over the belly where LD is quite thin no studies have investigated the possibility of signal contamination from muscles lying deep to LD. Therefore, the aim of this study was to determine the validity of using surface electrodes to record activity from LD. Eight asymptomatic subjects performed ramped isometric (0-100% maximum load) and dynamic (70% maximum load) shoulder tasks. Intramuscular electrodes were inserted into LD and the adjacent erector spinae. Surface electrodes were placed over LD around the intramuscular electrodes. Results indicated that while there was no difference in activity level or activation pattern (ICC>0.94) recorded by the two electrode types during shoulder tasks in which LD would be expected to be active (extension and adduction), significantly lower (p<0.05) LD activity was recorded via intramuscular electrodes during the shoulder flexion and abduction tasks. Therefore, recordings of LD activity by surface electrodes overestimate LD activity during shoulder tasks when this muscle would be expected to be activated at minimum levels. Erector spinae immediately deep to LD was confirmed as a source of crosstalk contamination. PMID:25467544

  3. Next-Generation Maneuvering System with Control-Moment Gyroscopes for Extravehicular Activities Near Low-Gravity Objects

    NASA Technical Reports Server (NTRS)

    Carpenter, Michele; Jackson, Kimberly; Cohanim, Babak; Duda, Kevin R.; Rize, Jared; Dopart, Celena; Hoffman, Jeffrey; Curiel, Pedro; Studak, Joseph; Ponica, Dina; RochlisZumbado, Jennifer

    2013-01-01

    Looking ahead to the human exploration of Mars, NASA is planning for exploration of near-Earth asteroids and the Martian moons. Performing tasks near the surface of such low-gravity objects will likely require the use of an updated version of the Manned Maneuvering Unit (MMU) since the surface gravity is not high enough to allow astronauts to walk, or have sufficient resistance to counter reaction forces and torques during movements. The extravehicular activity (EVA) Jetpack device currently under development is based on the Simplified Aid for EVA Rescue (SAFER) unit and has maneuvering capabilities to assist EVA astronauts with their tasks. This maneuvering unit has gas thrusters for attitude control and translation. When EVA astronauts are performing tasks that require ne motor control such as sample collection and equipment placement, the current control system will re thrusters to compensate for the resulting changes in center-of-mass location and moments of inertia, adversely affecting task performance. The proposed design of a next-generation maneuvering and stability system incorporates control concepts optimized to support astronaut tasks and adds control-moment gyroscopes (CMGs) to the current Jetpack system. This design aims to reduce fuel consumption, as well as improve task performance for astronauts by providing a sti er work platform. The high-level control architecture for an EVA maneuvering system using both thrusters and CMGs considers an initial assessment of tasks to be performed by an astronaut and an evaluation of the corresponding human-system dynamics. For a scenario in which the astronaut orbits an asteroid, simulation results from the current EVA maneuvering system are compared to those from a simulation of the same system augmented with CMGs, demonstrating that the forces and torques on an astronaut can be significantly reduced with the new control system actuation while conserving onboard fuel.

  4. EVA tools and equipment reference book

    NASA Technical Reports Server (NTRS)

    Fullerton, R. K.

    1993-01-01

    This document contains a mixture of tools and equipment used throughout the space shuttle-based extravehicular activity (EVA) program. Promising items which have reached the prototype stage of development are also included, but should not be considered certified ready for flight. Each item is described with a photo, a written discussion, technical specifications, dimensional drawings, and points of contact for additional information. Numbers on the upper left-hand corner of each photo may be used to order specific pictures from NASA and contractor photo libraries. Points of contact were classified as either operational or technical. An operational contact is an engineer from JSC Mission Operations Directorate who is familiar with the basic function and on-orbit use of the tool. A technical contact would be the best source of detailed technical specifications and is typically the NASA subsystem manager. The technical information table for each item uses the following terms to describe the availability or status of each hardware item: Standard - Flown on every mission as standard manifest; Flight specific - Potentially available for flight, not flown every mission (flight certification cannot be guaranteed and recertification may be required); Reference only - Item no longer in active inventory or not recommended for future use, some items may be too application-specific for general use; and Developmental - In the prototype stage only and not yet available for flight. The current availability and certification of any flight-specific tool should be verified with the technical point of contact. Those tools built and fit checked for Hubble Space Telescope maintenance are program dedicated and are not available to other customers. Other customers may have identical tools built from the existing, already certified designs as an optional service.

  5. Performance-Related Activity in Medial Rostral Prefrontal Cortex (Area 10) during Low-Demand Tasks

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Simons, Jon S.; Frith, Christopher D.; Burgess, Paul W.

    2006-01-01

    Neuroimaging studies have frequently observed relatively high activity in medial rostral prefrontal cortex (PFC) during rest or baseline conditions. Some accounts have attributed this high activity to the occurrence of unconstrained stimulus-independent and task-unrelated thought processes during baseline conditions. Here, the authors investigated…

  6. Analysis of the Structure of Surgical Activity for a Suturing and Knot-Tying Task

    PubMed Central

    Vedula, S. Swaroop; Malpani, Anand O.; Tao, Lingling; Chen, George; Gao, Yixin; Poddar, Piyush; Ahmidi, Narges; Paxton, Christopher; Vidal, Rene; Khudanpur, Sanjeev; Hager, Gregory D.; Chen, Chi Chiung Grace

    2016-01-01

    Background Surgical tasks are performed in a sequence of steps, and technical skill evaluation includes assessing task flow efficiency. Our objective was to describe differences in task flow for expert and novice surgeons for a basic surgical task. Methods We used a hierarchical semantic vocabulary to decompose and annotate maneuvers and gestures for 135 instances of a surgeon’s knot performed by 18 surgeons. We compared counts of maneuvers and gestures, and analyzed task flow by skill level. Results Experts used fewer gestures to perform the task (26.29; 95% CI = 25.21 to 27.38 for experts vs. 31.30; 95% CI = 29.05 to 33.55 for novices) and made fewer errors in gestures than novices (1.00; 95% CI = 0.61 to 1.39 vs. 2.84; 95% CI = 2.3 to 3.37). Transitions among maneuvers, and among gestures within each maneuver for expert trials were more predictable than novice trials. Conclusions Activity segments and state flow transitions within a basic surgical task differ by surgical skill level, and can be used to provide targeted feedback to surgical trainees. PMID:26950551

  7. Brain activity during observation and motor imagery of different balance tasks: an fMRI study.

    PubMed

    Taube, Wolfgang; Mouthon, Michael; Leukel, Christian; Hoogewoud, Henri-Marcel; Annoni, Jean-Marie; Keller, Martin

    2015-03-01

    After immobilization, patients show impaired postural control and increased risk of falling. Therefore, loss of balance control should already be counteracted during immobilization. Previously, studies have demonstrated that both motor imagery (MI) and action observation (AO) can improve motor performance. The current study elaborated how the brain is activated during imagination and observation of different postural tasks to provide recommendations about the conception of non-physical balance training. For this purpose, participants were tested in a within-subject design in an fMRI-scanner in three different conditions: (a) AO + MI, (b) AO, and (c) MI. In (a) participants were instructed to imagine themselves as the person pictured in the video whereas in (b) they were instructed simply to watch the video. In (c) subjects closed their eyes and kinesthetically imagined the task displayed in the video. Two tasks were evaluated in each condition: (i) static standing balance and (ii) dynamic standing balance (medio-lateral perturbation). In all conditions the start of a new trial was indicated every 2 sec by a sound. During AO + MI of the dynamic task, participants activated motor centers including the putamen, cerebellum, supplementary motor area, premotor cortices (PMv/d) and primary motor cortex (M1). MI showed a similar pattern but no activity in M1 and PMv/d. In the SMA and cerebellum, activity was generally higher in the dynamic than in the static condition. AO did not significantly activate any of these brain areas. Our results showed that (I) mainly AO + MI, but also MI, activate brain regions important for balance control; (II) participants display higher levels of brain activation in the more demanding balance task; (III) there is a significant difference between AO + MI and AO. Consequently, best training effects should be expected when participants apply MI during AO (AO + MI) of challenging postural tasks. PMID:25461711

  8. STS-118 Astronauts Rick Mastracchio and Clay Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist Rick Mastracchio was anchored on the foot restraint of the Canadarm2 as he participated in the third session of Extra Vehicular Activity (EVA) for the mission. Assisting Mastracchio was Expedition 15 flight engineer Clay Anderson (out of frame). During the 5 hour, 28 minute space walk, the two relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) truss to the Port 1 (P1) truss, installed a new transponder on P1 and retrieved the P6 transponder.

  9. Astronaut Thomas Mattingly performs EVA during Apollo 16 transearth coast

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, performs extravehicular activity (EVA) during the Apollo 16 transearth coast. mattingly is assisted by Astronaut Charles M. Duke Jr., lunar module pilot. Mattingly inspected the SIM bay of the Service Module, and retrieved film from the Mapping and Panoramic cameras. Mattingly is wearing the helmet of Astronaut John W. Young, commander. The helmet's lunar extravehicular visor assembly helped protect Mattingly's eyes frmo the bright sun. This view is a frame from motion picture film exposed by a 16mm Maurer camera.

  10. Apollo 16 lunar module 'Orion' photographed from distance during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 Lunar Module 'Orion' is photographed from a distance by Astronaut Chares M. Duke Jr., lunar module pilot, aboard the moving Lunar Roving Vehicle. Astronauts Duke and John W. Young, commander, were returning from the excursion to Stone Mountain during the second Apollo 16 extravehicular activity (EVA-2). The RCA color television camera mounted on the LRV is in the foreground. A portion of the LRV's high-gain antenna is at top left. Smoky Mountain rises behind the LM in this north-looking view at the Descartes landing site.

  11. Spatio-temporal analysis reveals active control of both task-relevant and task-irrelevant variables

    PubMed Central

    Rácz, Kornelius; Valero-Cuevas, Francisco J.

    2013-01-01

    The Uncontrolled Manifold (UCM) hypothesis and Minimal Intervention principle propose that the observed differential variability across task relevant (i.e., task goals) vs. irrelevant (i.e., in the null space of those goals) variables is evidence of a separation of task variables for efficient neural control, ranked by their respective variabilities (sometimes referred to as hierarchy of control). Support for this comes from spatial domain analyses (i.e., structure of) of kinematic, kinetic, and EMG variability. While proponents admit the possibility of preferential as opposed to strictly uncontrolled variables, such distinctions have only begun to be quantified or considered in the temporal domain when inferring control action. Here we extend the study of task variability during tripod static grasp to the temporal domain by applying diffusion analysis. We show that both task-relevant and task-irrelevant parameters show corrective action at some time scales; and conversely, that task-relevant parameters do not show corrective action at other time scales. That is, the spatial fluctuations of fingertip forces show, as expected, greater ranges of variability in task-irrelevant variables (>98% associated with changes in total grasp force; vs. only <2% in task-relevant changes associated with acceleration of the object). But at some time scales, however, temporal fluctuations of task-irrelevant variables exhibit negative correlations clearly indicative of corrective action (scaling exponents <0.5); and temporal fluctuations of task-relevant variables exhibit neutral and positive correlations clearly indicative of absence of corrective action (scaling exponents ≥0.5). In agreement with recent work in other behavioral contexts, these results propose we revise our understanding of variability vis-á-vis task relevance by considering both spatial and temporal features of all task variables when inferring control action and understanding how the CNS confronts task

  12. Age-related shifts in brain activity dynamics during task switching.

    PubMed

    Jimura, Koji; Braver, Todd S

    2010-06-01

    Cognitive aging studies have suggested that older adults show declines in both sustained and transient cognitive control processes. However, previous neuroimaging studies have primarily focused on age-related change in the magnitude, but not temporal dynamics, of brain activity. The present study compared brain activity dynamics in healthy old and young adults during task switching. A mixed blocked/event-related functional magnetic resonance imaging design enabled separation of transient and sustained neural activity associated with cognitive control. Relative to young adults, older adults exhibited not only decreased sustained activity in the anterior prefrontal cortex (aPFC) during task-switching blocks but also increased transient activity on task-switch trials. Another pattern of age-related shift in dynamics was present in the lateral PFC (lPFC) and posterior parietal cortex (PPC), with younger adults showing a cue-related response during task-switch trials in lPFC and PPC, whereas older adults exhibited switch-related activation during the cue period in PPC only. In all 3 regions, these qualitatively distinct patterns of brain activity predicted qualitatively distinct patterns of behavioral performance across the 2 age groups. Together, these results suggest that older adults may shift from a proactive to reactive cognitive control strategy as a means of retaining relatively preserved behavioral performance in the face of age-related neurocognitive changes. PMID:19805420

  13. Age-Related Shifts in Brain Activity Dynamics during Task Switching

    PubMed Central

    Braver, Todd S.

    2010-01-01

    Cognitive aging studies have suggested that older adults show declines in both sustained and transient cognitive control processes. However, previous neuroimaging studies have primarily focused on age-related change in the magnitude, but not temporal dynamics, of brain activity. The present study compared brain activity dynamics in healthy old and young adults during task switching. A mixed blocked/event-related functional magnetic resonance imaging design enabled separation of transient and sustained neural activity associated with cognitive control. Relative to young adults, older adults exhibited not only decreased sustained activity in the anterior prefrontal cortex (aPFC) during task-switching blocks but also increased transient activity on task-switch trials. Another pattern of age-related shift in dynamics was present in the lateral PFC (lPFC) and posterior parietal cortex (PPC), with younger adults showing a cue-related response during task-switch trials in lPFC and PPC, whereas older adults exhibited switch-related activation during the cue period in PPC only. In all 3 regions, these qualitatively distinct patterns of brain activity predicted qualitatively distinct patterns of behavioral performance across the 2 age groups. Together, these results suggest that older adults may shift from a proactive to reactive cognitive control strategy as a means of retaining relatively preserved behavioral performance in the face of age-related neurocognitive changes. PMID:19805420

  14. Subjective Significance Shapes Arousal Effects on Modified Stroop Task Performance: A Duality of Activation Mechanisms Account.

    PubMed

    Imbir, Kamil K

    2016-01-01

    Activation mechanisms such as arousal are known to be responsible for slowdown observed in the Emotional Stroop and modified Stroop tasks. Using the duality of mind perspective, we may conclude that both ways of processing information (automatic or controlled) should have their own mechanisms of activation, namely, arousal for an experiential mind, and subjective significance for a rational mind. To investigate the consequences of both, factorial manipulation was prepared. Other factors that influence Stroop task processing such as valence, concreteness, frequency, and word length were controlled. Subjective significance was expected to influence arousal effects. In the first study, the task was to name the color of font for activation charged words. In the second study, activation charged words were, at the same time, combined with an incongruent condition of the classical Stroop task around a fixation point. The task was to indicate the font color for color-meaning words. In both studies, subjective significance was found to shape the arousal impact on performance in terms of the slowdown reduction for words charged with subjective significance. PMID:26869974

  15. Subjective Significance Shapes Arousal Effects on Modified Stroop Task Performance: A Duality of Activation Mechanisms Account

    PubMed Central

    Imbir, Kamil K.

    2016-01-01

    Activation mechanisms such as arousal are known to be responsible for slowdown observed in the Emotional Stroop and modified Stroop tasks. Using the duality of mind perspective, we may conclude that both ways of processing information (automatic or controlled) should have their own mechanisms of activation, namely, arousal for an experiential mind, and subjective significance for a rational mind. To investigate the consequences of both, factorial manipulation was prepared. Other factors that influence Stroop task processing such as valence, concreteness, frequency, and word length were controlled. Subjective significance was expected to influence arousal effects. In the first study, the task was to name the color of font for activation charged words. In the second study, activation charged words were, at the same time, combined with an incongruent condition of the classical Stroop task around a fixation point. The task was to indicate the font color for color-meaning words. In both studies, subjective significance was found to shape the arousal impact on performance in terms of the slowdown reduction for words charged with subjective significance. PMID:26869974

  16. Frontal brain activation during a working memory task: a time-domain fNIRS study

    NASA Astrophysics Data System (ADS)

    Molteni, E.; Baselli, G.; Bianchi, A. M.; Caffini, M.; Contini, D.; Spinelli, L.; Torricelli, A.; Cerutti, S.; Cubeddu, R.

    2009-02-01

    We evaluated frontal brain activation during a working memory task with graded levels of difficulty in a group of 19 healthy subjects, by means of time-resolved fNIRS technique. Brain activation was computed, and was then separated into a "block-related" and a "tonic" components. Load-related increases of blood oxygenation were studied for the four different levels of task difficulty. Generalized Linear Models were applied to the data in order to explore the metabolic processes occurring during the mental effort and, possibly, their involvement in short term memorization. Results attest the presence of a persistent attentional-related metabolic activity, superimposed to a task-related mnemonic contribution. Moreover, a systemic component probably deriving from the extra-cerebral capillary bed was detected.

  17. Investigating the correlation between the neural activity and task performance in a psychomotor vigilance test.

    PubMed

    Hu, Zhongze; Sun, Yu; Lim, Julian; Thakor, Nitish; Bezerianos, Anastasios

    2015-01-01

    Neural activity is known to correlate with decrements in task performance as individuals enter the state of mental fatigue which might lead to lowered productivity and increased safety risks. Incorporating a passive brain computer interface (BCI) technique that detects changes in subject's neural activity and predicts the behavioral performance when the subject is underperforming might be a promising approach to reduce human error in real-world situations. Here, we developed a reliable model using EEG power spectrum to estimate time-on-task performance in a psychomotor vigilance test (PVT) which can fit across individuals. High correlation between the estimated and actual reaction time was achieved. Hence, our results illustrate the feasibility for modeling time-on-task decrements in performance among different individuals from their brainwave activity, with potential applications in several domains, including traffic and industrial safety. PMID:26737349

  18. Evaluation of 16 measures of mental workload using a simulated flight task emphasizing mediational activity

    NASA Technical Reports Server (NTRS)

    Wierwille, W. W.; Rahimi, M.; Casali, J. G.

    1985-01-01

    As aircraft and other systems become more automated, a shift is occurring in human operator participation in these systems. This shift is away from manual control and toward activities that tap the higher mental functioning of human operators. Therefore, an experiment was performed in a moving-base flight simulator to assess mediational (cognitive) workload measurement. Specifically, 16 workload estimation techniques were evaluated as to their sensitivity and intrusion in a flight task emphasizing mediational behavior. Task loading, using navigation problems presented on a display, was treated as an independent variable, and workload-measure values were treated as dependent variables. Results indicate that two mediational task measures, two rating scale measures, time estimation, and two eye behavior measures were reliably sensitive to mediational loading. The time estimation measure did, however, intrude on mediational task performance. Several of the remaining measures were completely insensitive to mediational load.

  19. EVA - A Textual Data Processing Tool.

    ERIC Educational Resources Information Center

    Jakopin, Primoz

    EVA, a text processing tool designed to be self-contained and useful for a variety of languages, is described briefly, and its extensive coded character set is illustrated. Features, specifications, and database functions are noted. Its application in development of a Slovenian literary dictionary is also described. (MSE)

  20. Astronaut EVA exposure estimates from CAD model spacesuit geometry.

    PubMed

    De Angelis, Giovanni; Anderson, Brooke M; Atwell, William; Nealy, John E; Qualls, Garry D; Wilson, John W

    2004-03-01

    Ongoing assembly and maintenance activities at the International Space Station (ISS) require much more extravehicular activity (EVA) than did the earlier U.S. Space Shuttle missions. It is thus desirable to determine and analyze, and possibly foresee, as accurately as possible what radiation exposures crew members involved in EVAs will experience in order to minimize risks and to establish exposure limits that must not to be exceeded. A detailed CAD model of the U.S. Space Shuttle EVA Spacesuit, developed at NASA Langley Research Center (LaRC), is used to represent the directional shielding of an astronaut; it has detailed helmet and backpack structures, hard upper torso, and multilayer space suit fabric material. The NASA Computerized Anatomical Male and Female (CAM and CAF) models are used in conjunction with the space suit CAD model for dose evaluation within the human body. The particle environments are taken from the orbit-averaged NASA AP8 and AE8 models at solar cycle maxima and minima. The transport of energetic particles through space suit materials and body tissue is calculated by using the NASA LaRC HZETRN code for hadrons and a recently developed deterministic transport code, ELTRN, for electrons. The doses within the CAM and CAF models are determined from energy deposition at given target points along 968 directional rays convergent on the points and are evaluated for several points on the skin and within the body. Dosimetric quantities include contributions from primary protons, light ions, and electrons, as well as from secondary brehmsstrahlung and target fragments. Directional dose patterns are displayed as rays and on spherical surfaces by the use of a color relative intensity representation. PMID:15133283

  1. Associations between prefrontal cortex activation and H-reflex modulation during dual task gait

    PubMed Central

    Meester, Daan; Al-Yahya, Emad; Dawes, Helen; Martin-Fagg, Penny; Piñon, Carmen

    2014-01-01

    Walking, although a largely automatic process, is controlled by the cortex and the spinal cord with corrective reflexes modulated through integration of neural signals from central and peripheral inputs at supraspinal level throughout the gait cycle. In this study we used an additional cognitive task to interfere with the automatic processing during walking in order to explore the neural mechanisms involved in healthy young adults. Participants were asked to walk on a treadmill at two speeds, both with and without additional cognitive load. We evaluated the impact of speed and cognitive load by analyzing activity of the prefrontal cortex (PFC) using functional Near-Infrared Spectroscopy (fNIRS) alongside spinal cord reflex activity measured by soleus H-reflex amplitude and gait changes obtained by using an inertial measuring unit. Repeated measures ANOVA revealed that fNIRS Oxy-Hb concentrations significantly increased in the PFC with dual task (walking while performing a cognitive task) compared to a single task (walking only; p < 0.05). PFC activity was unaffected by increases of walking speed. H-reflex amplitude and gait variables did not change in response to either dual task or increases in walking speed. When walking under additional cognitive load participants adapted by using greater activity in the PFC, but this adaptation did not detrimentally affect H-reflex amplitude or gait variables. Our findings suggest that in a healthy young population central mechanisms (PFC) are activated in response to cognitive loads but that H-reflex activity and gait performance can successfully be maintained. This study provides insights into the mechanisms behind healthy individuals safely performing dual task walking. PMID:24600375

  2. Water Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  3. Effects of feedback on activation of the quadriceps during weight-bearing tasks of the Wii

    PubMed Central

    Fernandes da Silva, Fabiano; Aparecido de Souza, Renato; Dias, Eric Fernandes; Silveira, Landulfo; Villaverde, Antonio Balbin

    2015-01-01

    [Purpose] This investigation evaluated the effect of real-time feedback on electrical activation of the quadriceps during 3 weight-bearing tasks of the Wii Fit Plus®. [Subjects] Thirty male healthy volunteers were recruited. [Methods] Activation of the vastus medialis, vastus lateralis, and rectus femoris muscles was recorded during virtual lunge, single leg extension, and single leg reach exercises. Each exercise was performed twice in 3 randomized experimental conditions (with visual feedback, with auditory feedback, and with no feedback). The normalized electromyographic data (using maximum voluntary isometric contraction) were analyzed using repeated measures analysis of variance and Tukey’s test. [Results] No significant difference was found in the muscles among the feedback conditions during the 3 exercises. However, the variation in the muscle activity of the vastus medialis and vastus lateralis (18.23–29.20% of maximum voluntary isometric contraction) was higher (47–62%) than that in the rectus femoris (7.35–12.98% of maximum voluntary isometric contraction). [Conclusion] Real-time feedback did not alter quadriceps activation during the Wii tasks. Additionally, these games showed electromyographic activation levels similar to those for the same tasks outside the virtual environment. The Wii weight-bearing tasks could therefore constitute a physical activity program but without the additional benefit of feedback. PMID:26180301

  4. Effects of feedback on activation of the quadriceps during weight-bearing tasks of the Wii.

    PubMed

    Fernandes da Silva, Fabiano; Aparecido de Souza, Renato; Dias, Eric Fernandes; Silveira, Landulfo; Villaverde, Antonio Balbin

    2015-06-01

    [Purpose] This investigation evaluated the effect of real-time feedback on electrical activation of the quadriceps during 3 weight-bearing tasks of the Wii Fit Plus(®). [Subjects] Thirty male healthy volunteers were recruited. [Methods] Activation of the vastus medialis, vastus lateralis, and rectus femoris muscles was recorded during virtual lunge, single leg extension, and single leg reach exercises. Each exercise was performed twice in 3 randomized experimental conditions (with visual feedback, with auditory feedback, and with no feedback). The normalized electromyographic data (using maximum voluntary isometric contraction) were analyzed using repeated measures analysis of variance and Tukey's test. [Results] No significant difference was found in the muscles among the feedback conditions during the 3 exercises. However, the variation in the muscle activity of the vastus medialis and vastus lateralis (18.23-29.20% of maximum voluntary isometric contraction) was higher (47-62%) than that in the rectus femoris (7.35-12.98% of maximum voluntary isometric contraction). [Conclusion] Real-time feedback did not alter quadriceps activation during the Wii tasks. Additionally, these games showed electromyographic activation levels similar to those for the same tasks outside the virtual environment. The Wii weight-bearing tasks could therefore constitute a physical activity program but without the additional benefit of feedback. PMID:26180301

  5. Noise power associated with decreased task-induced variability of brain electrical activity in schizophrenia.

    PubMed

    Molina, Vicente; Bachiller, Alejandro; Suazo, Vanessa; Lubeiro, Alba; Poza, Jesús; Hornero, Roberto

    2016-02-01

    In schizophrenia, both increased baseline metabolic and electroencephalographic (EEG) activities as well as decreased task-related modulation of neural dynamics have been reported. Noise power (NP) can measure the background EEG activity during task performance, and Shannon entropy (SE) is useful for quantifying the global modulation of EEG activity with a high temporal resolution. In this study, we have assessed the possible relationship between increased NP in theta and gamma bands and decreased SE modulation in 24 patients with schizophrenia and 26 controls over the parietal and central regions during a P300 task. SE modulation was calculated as the change from baseline to the active epoch (i.e., 150-550 ms following the target stimulus onset). Patients with schizophrenia displayed statistically significant higher NP values and lower SE modulation than healthy controls. We found a significant association between gamma NP and SE in all of the participants. Specifically, a NP increase in the gamma band was followed by a decrease in SE change. These results support the notion that an excess of gamma activity, unlocked to the task being performed, is accompanied by a decreased modulation of EEG activity in schizophrenia. PMID:25547316

  6. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation (Presentation)

    SciTech Connect

    Miller, D.; Wohlgemuth, J.; Gu, X.; Haldeman, S.; Hidalgo, M.; Malguth, E.; Reid, C.; Shioda, T.; Schulze, S.; Wang, Z.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  7. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation: Preprint

    SciTech Connect

    Miller, D. C.; Gu, X.; Haldenman, S.; Hidalgo, M.; Malguth, E.; Reid, C. G.; Shioda, T.; Schulze, S. H.; Wang, Z. Y.; Wohlgemuth, J. H.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  8. Modified EVA Encapsulant Formulations for Low Temperature Processing: Preprint

    SciTech Connect

    Mei, Z.; Pern, F. J.; Glick, S. H.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: We have developed several new ethylene-vinyl acetate (EVA) formulations modified on the basis of NREL patented EVA formulations [1]. The new formulations can be cured to a desired gel content of {approx}80% in the ambient at temperatures 20-30 C lower than the typical conditions in vacuum (i.e. {approx}150 C). Glass/glass laminates showed transmittance spectra that are essentially the same as that of EVA 15295P in the visible and NIR regions but higher in the UV region. Results of fluorescence analysis of the ambient-processed new EVA formulations showed the concentrations of the curing-generated {alpha},{beta}-unsaturated carbonyl chromophores, which are responsible for the UV induced EVA discoloration and photodegradation, were considerably lower than that of EVA 15295P, therefore suggesting a better photochemical stability of new EVA formulations.

  9. Silica exposure during construction activities: statistical modeling of task-based measurements from the literature.

    PubMed

    Sauvé, Jean-François; Beaudry, Charles; Bégin, Denis; Dion, Chantal; Gérin, Michel; Lavoué, Jérôme

    2013-05-01

    Many construction activities can put workers at risk of breathing silica containing dusts, and there is an important body of literature documenting exposure levels using a task-based strategy. In this study, statistical modeling was used to analyze a data set containing 1466 task-based, personal respirable crystalline silica (RCS) measurements gathered from 46 sources to estimate exposure levels during construction tasks and the effects of determinants of exposure. Monte-Carlo simulation was used to recreate individual exposures from summary parameters, and the statistical modeling involved multimodel inference with Tobit models containing combinations of the following exposure variables: sampling year, sampling duration, construction sector, project type, workspace, ventilation, and controls. Exposure levels by task were predicted based on the median reported duration by activity, the year 1998, absence of source control methods, and an equal distribution of the other determinants of exposure. The model containing all the variables explained 60% of the variability and was identified as the best approximating model. Of the 27 tasks contained in the data set, abrasive blasting, masonry chipping, scabbling concrete, tuck pointing, and tunnel boring had estimated geometric means above 0.1mg m(-3) based on the exposure scenario developed. Water-fed tools and local exhaust ventilation were associated with a reduction of 71 and 69% in exposure levels compared with no controls, respectively. The predictive model developed can be used to estimate RCS concentrations for many construction activities in a wide range of circumstances. PMID:23223272

  10. Dizocilpine (MK-801) impairs learning in the active place avoidance task but has no effect on the performance during task/context alternation.

    PubMed

    Vojtechova, Iveta; Petrasek, Tomas; Hatalova, Hana; Pistikova, Adela; Vales, Karel; Stuchlik, Ales

    2016-05-15

    The prevention of engram interference, pattern separation, flexibility, cognitive coordination and spatial navigation are usually studied separately at the behavioral level. Impairment in executive functions is often observed in patients suffering from schizophrenia. We have designed a protocol for assessing these functions all together as behavioral separation. This protocol is based on alternated or sequential training in two tasks testing different hippocampal functions (the Morris water maze and active place avoidance), and alternated or sequential training in two similar environments of the active place avoidance task. In Experiment 1, we tested, in adult rats, whether the performance in two different spatial tasks was affected by their order in sequential learning, or by their day-to-day alternation. In Experiment 2, rats learned to solve the active place avoidance task in two environments either alternately or sequentially. We found that rats are able to acquire both tasks and to discriminate both similar contexts without obvious problems regardless of the order or the alternation. We used two groups of rats, controls and a rat model of psychosis induced by a subchronic intraperitoneal application of 0.08mg/kg of dizocilpine (MK-801), a non-competitive antagonist of NMDA receptors. Dizocilpine had no selective effect on parallel/sequential learning of tasks/contexts. However, it caused hyperlocomotion and a significant deficit in learning in the active place avoidance task regardless of the task alternation. Cognitive coordination tested by this task is probably more sensitive to dizocilpine than spatial orientation because no hyperactivity or learning impairment was observed in the Morris water maze. PMID:26970577

  11. Effect of Mild Thyrotoxicosis on Performance and Brain Activations in a Working Memory Task

    PubMed Central

    Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F.

    2016-01-01

    Aims Disturbed levels of thyroid hormones are associated with neuropsychiatric disorders, including memory impairments. The aim of this study was to evaluate effects of mild induced thyrotoxicosis on working memory and its neural correlates. Methods Twenty-nine healthy, male subjects with normal thyroid state participated in the study. Functional MRI was acquired during a working memory task (n-back task) before and after ingesting 250 μg L-thyroxin per day for a period of eight weeks. In addition, neuropsychological tests were performed. Results In the hyperthyroid condition the subjects showed slower reaction times, but a higher accuracy in the 0-back version of the memory tasks. Fewer differences between euthyroid and hyperthyroid state were seen for the more difficult conditions of the n-back task. FMRI revealed effects of difficulty in the parahippocampal gyrus, supplementary motor area, prefrontal cortex, anterior cingulate cortex, posterior cerebellum, rolandic operculum and insula (p<0.05, FWE corrected). When comparing euthyroid and hyperthyroid condition in relation to task-induced activation, differences of activation were found in the right prefrontal cortex as well as in the right parahippocampal area. In the psychological assessment, the alerting effect in the Attention Network Task (ANT) and four out of five parameters of the auditory verbal learning test (AVLT) showed an increase from euthyroid to hyperthyroid state. Conclusions It can be concluded that even a short-term intake of thyroid hormones leads to an activation of brain areas associated with working memory and to an improvement of accuracy of working memory tasks. PMID:27536945

  12. Prefrontal Cortex Activation While Walking Under Dual-Task Conditions in Stroke: A Multimodal Imaging Study.

    PubMed

    Al-Yahya, Emad; Johansen-Berg, Heidi; Kischka, Udo; Zarei, Mojtaba; Cockburn, Janet; Dawes, Helen

    2016-07-01

    Background Walking while performing another task (eg, talking) is challenging for many stroke survivors, yet its neural basis are not fully understood. Objective To investigate prefrontal cortex activation and its relationship to gait measures while walking under single-task (ST) and dual-task (DT) conditions (ie, walking while simultaneously performing a cognitive task) in stroke survivors. Methods We acquired near-infrared spectroscopy (NIRS) data from the prefrontal cortex during treadmill walking in ST and DT conditions in chronic stroke survivors and healthy controls. We also acquired functional magnetic resonance imaging (fMRI) and NIRS during simulated walking under these conditions. Results NIRS revealed increased oxygenated hemoglobin concentration in DT-walking compared with ST-walking for both groups. For simulated walking, NIRS showed a significant effect of group and group × task, being greater on both occasions, in stroke survivors. A greater increase in brain activation observed from ST to DT walking/ simulated walking was related to a greater change in motor performance in stroke survivors. fMRI revealed increased activity during DT relative to ST conditions in stroke patients in areas including the inferior temporal gyri, superior frontal gyri and cingulate gyri bilaterally, and the right precentral gyrus. The DT-related increase in fMRI activity correlated with DT-related change in behavior in stroke participants in the bilateral inferior temporal gyrus, left cingulate gyrus, and left frontal pole. Conclusion Our results provide novel evidence that enhanced brain activity changes relate to dual task motor decrements. PMID:26493732

  13. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1993-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the space shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A space shuttle repair mission in late 1993 will install small corrective mirrors that will restore the full intended optical capability of the HST. The first servicing mission (FSM) will involve considerable extravehicular activity (EVA). It is proposed to design special EVA tools for the FSM. This report includes details of the data acquisition system being developed to test the performance of the various EVA tools in ambient as well as simulated space environment.

  14. Development of Damp-Heat Resistant Self-Primed EVA and Non-EVA Encapsulant Formulations at NREL

    SciTech Connect

    Pern, F. J.; Jorgensen, G. J.

    2005-11-01

    Self-primed ethylene-vinyl acetate (EVA) and non-EVA (PMG) encapsulant formulations were developed that have greater resistance to damp heat exposure at 85 deg C and 85% relative humidity (RH) (in terms of adhesion strength to glass substrates) than a commonly used commercial EVA product. The self-primed EVA formulations were developed on the basis of high-performing glass priming formulations that have previously proven to significantly enhance the adhesion strength of unprimed and primed EVA films on glass substrates during damp heat exposure. The PMG encapsulant formulations were based on an ethylene-methylacrylate copolymer containing glycidyl methacrylate.

  15. STS-37 MS Apt tests CETA cart during EVA in OV-104's payload bay (PLB)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-37 Mission Specialist (MS) Jerome Apt, suited in extravehicular mobility unit (EMU), tests Crew and Equipment Translation Aid (CETA) electrical hand pedal cart during extravehicular activity (EVA) in Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB). Apt works his way along the CETA deployable track mounted on OV-104's PLB port side. The ascent particle monitor (APM) is visible on the starboard side in the foreground. In the background are the aft PLB bulkhead and the vertical tail and orbital maneuvering system (OMS) pods. Crewmembers spent several hours evaluating means of performing future EVA chores, transporting tools and crewmembers, etc. on Space Station Freedom (SSF).

  16. Astronaut James Irwin gives salute beside U.S. flag during EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, gives a military salute while standing beside the deployed U.S. flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module 'Falcon' is partially visible on the right. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about 3 statute miles) away. This photograph was taken by Astronaut David R. Scott, Apollo 15 commander.

  17. Astronaut David Scott gives salute beside U.S. flag during EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, commander, gives a military salute while standing beside the deployed U.S. flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module 'Falcon' is partially visible on the right. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about 3 statute miles) away. This photograph was taken by Astronaut James B. Irwin, Lunar Module pilot.

  18. Apollo 13 astronauts participate in walk-through of EVA timeline at KSC

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Astronaut James A. Lovell Jr., commander of the Apollo 13 lunar landing mission, participates in a walk-through of the extravehicular activity (EVA) timeline at Kennedy Space Center (KSC). Here, Lovell, using mock-ups, traverses with the two subpackages of the Apollo Lunar Surface Experiments Package (ALSEP). Astronaut Fred W. Haise Jr., lunar Module Pilot, is standing in the left background (29672); Haise participates in a walk-through of the EVA timeline at KSC. Here, Haise uses an Apollo Lunar Surface Drill to dig a three-meter heat flow probe hole (29673).

  19. An innovative exercise method to simulate orbital EVA work - Applications to PLSS automatic controls

    NASA Technical Reports Server (NTRS)

    Lantz, Renee; Vykukal, H.; Webbon, Bruce

    1987-01-01

    An exercise method has been proposed which may satisfy the current need for a laboratory simulation representative of muscular, cardiovascular, respiratory, and thermoregulatory responses to work during orbital extravehicular activity (EVA). The simulation incorporates arm crank ergometry with a unique body support mechanism that allows all body position stabilization forces to be reacted at the feet. By instituting this exercise method in laboratory experimentation, an advanced portable life support system (PLSS) thermoregulatory control system can be designed to more accurately reflect the specific work requirements of orbital EVA.

  20. STS-57 astronauts Low and Wisoff perform DTO 1210 EVA in OV-105's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During STS-57 extravehicular activity (EVA), Mission Specialist (MS) and Payload Commander (PLC) G. David Low (foreground) secures portable foot restraint (PFR) (manipulator foot restraint (MFR)) to the remote manipulator system (RMS) end effector using a PFR attachment device (PAD). MS3 Peter J.K. Wisoff performs operations next to Low at the stowed European Retrievable Carrier (EURECA). This EVA, designated Detailed Test Objective (DTO) 1210, included evaluation of procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. The scene is backdropped against the blackness of space with Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB) and payloads appearing in the foreground.

  1. Neutral buoyancy evaluation of technologies for space station external operations. [EVA weightlessness simulation

    NASA Technical Reports Server (NTRS)

    Akin, D. L.; Bowden, M. L.; Spofford, J. R.

    1984-01-01

    In order to perform a complete systems analysis for almost any large space program, it is vital to have a thorough understanding of human capabilities in extravehicular activity (EVA). The present investigation is concerned with the most significant results from the MIT Space Systems Lab's neutral buoyancy tests. An evaluation of neutral buoyancy is considered along with the tested structures, aspects of learning, productivity, time and motion analysis, and assembly loads. Attention is given to EVA assembly with a manned maneuvering unit, teleoperated structural assembly, an integrated control station, a beam assembly teleoperator, and space station proximity operations.

  2. The Association Between Eye Movements and Cerebellar Activation in a Verbal Working Memory Task.

    PubMed

    Peterburs, Jutta; Cheng, Dominic T; Desmond, John E

    2016-09-01

    It has been argued that cerebellar activations during cognitive tasks may masquerade as cognition, while actually reflecting processes related to movement planning or motor learning. The present study investigated whether the cerebellar load effect for verbal working memory, that is, increased activations in lobule VI/Crus I and lobule VIIB/VIIIA, is related to eye movements and oculomotor processing. Fifteen participants performed an fMRI-based Sternberg verbal working memory task. Oculomotor and cognitive task demands were manipulated by using closely and widely spaced stimuli, and high and low cognitive load. Trial-based quantitative eye movement parameters were obtained from concurrent eye tracking. Conventional MRI analysis replicated the cerebellar load effect in lobules VI and VIIB/VIIIa. With quantitative eye movement parameters as regressors, analysis yielded very similar activation patterns. While load effect and eye regressor generally recruited spatially distinct neocortical and cerebellar regions, conjunction analysis showed that a small subset of prefrontal areas implicated in the load effect also responded to the eye regressor. The present results indicate that cognitive load-dependent activations in lateral superior and posteroinferior cerebellar regions in the Sternberg task are independent of eye movements occurring during stimulus encoding. This is inconsistent with the notion that cognitive load-dependent cerebellar activations merely reflect oculomotor processing. PMID:26286918

  3. Automated Visual Cognitive Tasks for Recording Neural Activity Using a Floor Projection Maze

    PubMed Central

    Kent, Brendon W.; Yang, Fang-Chi; Burwell, Rebecca D.

    2014-01-01

    Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze1,2 that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze1,2. Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes. PMID:24638057

  4. Balancing emotional processing with ongoing cognitive activity: the effects of task modality on intrusions and rumination

    PubMed Central

    Curci, Antonietta; Soleti, Emanuela; Lanciano, Tiziana; Doria, Valentina; Rimé, Bernard

    2015-01-01

    In the present paper we aimed to show that competition for resources between post-emotional processes and the execution of a cognitive task will result in two possible effects: (1) an impairment of the cognitive task in the short run and (2) an elongation of intrusions and rumination in the long run. The outcome of this competition is influenced by the interaction of the modality (verbal vs. visuospatial) of cognitive tasks run in the aftermath of an emotional experience and the nature (verbal vs. visuospatial) of the same experience. Non-clinical participants were given a working memory task (OSPAN vs. an analog Visual task) before and after the presentation of negative vs. neutral material (a novel excerpt in Experiment 1 and a video clip in Experiment 2). Intrusions and rumination were measured after a 24-h delay. Rumination was also assessed immediately after the experimental induction. Results showed that exposure to verbal negative material impaired verbal performance (Experiment 1); by contrast, exposure to visual negative material impaired both verbal and visuospatial performance (Experiment 2). Intrusions were only affected by the emotional valence of the original experience, while performing a visuospatial task resulted in enhanced rumination only after exposure to verbal emotional material. The findings of both experiments suggest that emotional processing spreads over time in balance with ongoing cognitive activities, and, in such a balance, the visuospatial processing mode tends to prevail over verbal engagements. PMID:26379598

  5. Frontal EEG activation asymmetry reflects cognitive biases in anxiety: evidence from an emotional face Stroop task.

    PubMed

    Avram, Julia; Balteş, Felicia Rodica; Miclea, Mircea; Miu, Andrei C

    2010-12-01

    Electroencephalography (EEG) has been extensively used in studies of the frontal asymmetry of emotion and motivation. This study investigated the midfrontal EEG activation, heart rate and skin conductance during an emotional face analog of the Stroop task, in anxious and non-anxious participants. In this task, the participants were asked to identify the expression of calm, fearful and happy faces that had either a congruent or incongruent emotion name written across them. Anxious participants displayed a cognitive bias characterized by facilitated attentional engagement with fearful faces. Fearful face trials induced greater relative right frontal activation, whereas happy face trials induced greater relative left frontal activation. Moreover, anxiety specifically modulated the magnitude of the right frontal activation to fearful faces, which also correlated with the cognitive bias. Therefore, these results show that frontal EEG activation asymmetry reflects the bias toward facilitated processing of fearful faces in anxiety. PMID:20607389

  6. Hubble Space Telescope EVA Power Ratchet Tool redesign

    NASA Astrophysics Data System (ADS)

    Richards, Paul W.; Park, Chan; Brown, Lee

    The Power Ratchet Tool (PRT) is a self contained, power-driven, 3/8 inch drive ratchet wrench which will be used by astronauts during Extravehicular Activities (EVA). This battery-powered tool is controlled by a dedicated electonic controller. The PRT was flown during the Hubble Space Telescope (HST) Deployment Mission STS-31 to deploy the solar arrays if the automatic mechanisms failed. The PRT is currently intended for use during the first HST Servicing Mission STS-61 as a general purpose power tool. The PRT consists of three major components; the wrench, the controller, and the battery module. Fourteen discrete combinations of torque, turns, and speed may be programmed into the controller before the EVA. The crewmember selects the desired parameter profile by a switch mounted on the controller. The tool may also be used in the manual mode as a non-powered ratchet wrench. The power is provided by a silver-zinc battery module, which fits into the controller and is replaceable during an EVA. The original PRT did not meet the design specification of torque output and hours of operation. To increase efficiency and reliability the PRT underwent a redesign effort. The majority of this effort focused on the wrench. The original PRT drive train consisted of a low torque, high speed brushless DC motor, a face gear set, and a planocentric gear assembly. The total gear reduction was 300:1. The new PRT wrench consists of a low speed, high torque brushless DC motor, two planetary gear sets and a bevel gear set. The total gear reduction is now 75:1. A spline clutch has also been added to disengage the drive train in the manual mode. The design changes to the controller will consist of only those modifications necessary to accomodate the redesigned wrench.

  7. Hubble Space Telescope EVA Power Ratchet Tool redesign. [Abstract only

    NASA Technical Reports Server (NTRS)

    Richards, Paul W.; Park, Chan; Brown, Lee

    1993-01-01

    The Power Ratchet Tool (PRT) is a self contained, power-driven, 3/8 inch drive ratchet wrench which will be used by astronauts during Extravehicular Activities (EVA). This battery-powered tool is controlled by a dedicated electonic controller. The PRT was flown during the Hubble Space Telescope (HST) Deployment Mission STS-31 to deploy the solar arrays if the automatic mechanisms failed. The PRT is currently intended for use during the first HST Servicing Mission STS-61 as a general purpose power tool. The PRT consists of three major components; the wrench, the controller, and the battery module. Fourteen discrete combinations of torque, turns, and speed may be programmed into the controller before the EVA. The crewmember selects the desired parameter profile by a switch mounted on the controller. The tool may also be used in the manual mode as a non-powered ratchet wrench. The power is provided by a silver-zinc battery module, which fits into the controller and is replaceable during an EVA. The original PRT did not meet the design specification of torque output and hours of operation. To increase efficiency and reliability the PRT underwent a redesign effort. The majority of this effort focused on the wrench. The original PRT drive train consisted of a low torque, high speed brushless DC motor, a face gear set, and a planocentric gear assembly. The total gear reduction was 300:1. The new PRT wrench consists of a low speed, high torque brushless DC motor, two planetary gear sets and a bevel gear set. The total gear reduction is now 75:1. A spline clutch has also been added to disengage the drive train in the manual mode. The design changes to the controller will consist of only those modifications necessary to accomodate the redesigned wrench. The battery design will be unaffected.

  8. Impact of changed positive and negative task-related brain activity on word-retrieval in aging

    PubMed Central

    Meinzer, M.; Seeds, L.; Flaisch, T.; Harnish, S.; Cohen, M.L.; McGregor, K.; Conway, T.; Benjamin, M.; Crosson, B.

    2010-01-01

    Previous functional imaging studies that compared activity patterns in older and younger adults during non-linguistic tasks found evidence for two phenomena: older participants usually show more pronounced task-related positive activity in the brain hemisphere that is not dominant for the task and less pronounced negative task-related activity in temporo-parietal and midline brain regions. The combined effects of these phenomena and the impact on word-retrieval, however, have not yet been assessed. We used functional magnetic resonance imaging to explore task-related positive (active task > baseline) and negative activity (baseline > active task) during semantic and phonemic verbal fluency tasks. Increased right-frontal positive activity during the semantic task and reduced negative activity in the right hemisphere during both tasks was associated with reduced performance in older subjects. No substantial relationship between changes in positive and negative activity was observed in the older participants, pointing towards two partially independent but potentially co-occurring processes. Underlying causes of the observed functional network inefficiency during word-retrieval in older adults need to be determined in the future. PMID:20696496

  9. Trait Anxiety Modulates Brain Activity during Performance of Verbal Fluency Tasks

    PubMed Central

    Gawda, Barbara; Szepietowska, Ewa

    2016-01-01

    Trait anxiety is thought to be associated with pathological anxiety, and a risk factor for psychiatric disorders. The present study examines the brain mechanisms associated with trait anxiety during the performing of verbal fluency tasks. The aim is to show how trait anxiety modulates executive functions as measured by verbal fluency, and to explore the link between verbal fluency and anxiety due to the putative negative biases in high-anxious individuals. Seven tasks of verbal fluency were used: letter “k,” “f,” verbs, “animals,” “vehicles,” “joy,” and “fear.” The results of 35 subjects (whole sample), and 17 subjects (nine men, eight women) selected from the whole sample for the low/high-anxious groups on the basis of Trait Anxiety scores were analyzed. The subjects were healthy, Polish speaking, right-handed and aged from 20 to 35 years old. fMRI (whole-brain analysis with FWE corrections) was used to show the neural signals under active participation in verbal fluency tasks. The results confirm that trait anxiety slightly modulates neural activation during the performance of verbal fluency tasks, especially in the more difficult tasks. Significant differences were found in brain activation during the performance of more complex tasks between individuals with low anxiety and those with high anxiety. Greater activation in the right hemisphere, frontal gyri, and cerebellum was found in people with low anxiety. The results reflect better integration of cognitive and affective capacities in individuals with low anxiety. PMID:26903827

  10. The Relationship between Cortisol Activity during Cognitive Task and Posttraumatic Stress Symptom Clusters

    PubMed Central

    Duan, Hongxia; Wang, Li; Zhang, Liang; Liu, Jing; Zhang, Kan; Wu, Jianhui

    2015-01-01

    Background The latest development in the dimensional structure of posttraumatic stress disorder (PTSD) is a novel 6-factor model, which builds on the newly released DSM-5. One notable gap in the literature is that little is known about how distinct symptom clusters of PTSD are related to hypothalamic–pituitary–adrenal (HPA) axis activity when people perform a relatively less stressful cognitive task. The purpose of this study was to investigate the relationship between cortisol activity when individuals perform cognitive tasks in the laboratory and a contemporary phenotypic model of posttraumatic stress symptomatology in earthquake survivors. Methods Salivary cortisol while performing cognitive tasks was collected and analyzed in 89 adult earthquake survivors. The PTSD Checklist for the DSM-5 (PCL-5) was used to assess the severity of total PTSD as well as six distinct symptom clusters. Regression analyses were conducted to examine the associations between the six distinct PTSD symptom clusters and cortisol profiles. Results The results showed that the score of the negative affect symptom cluster, but not anhedonia or other clusters, was positively associated with cortisol levels before and during the cognitive tasks. Conclusion The results showed that higher cortisol levels before and during cognitive tasks might be specifically linked to a distinct symptom cluster of PTSD—negative affect symptomatology. This suggests that a distinction should be made between negative affect and anhedonia symptom clusters, as the 6-factor model proposed. PMID:26630485

  11. Reading-Related Literacy Activities of American Adults: Time Spent, Task Types, and Cognitive Skills Used

    ERIC Educational Resources Information Center

    White, Sheida; Chen, Jing; Forsyth, Barbara

    2010-01-01

    This article presents data on the types and duration of reading-related activities reported by a volunteer sample of 400 adults (demographically similar to the U.S. adult population age 20 and older in terms of race, ethnicity, education, and working status) in the 2005 Real-World Tasks Study. This diary study revealed that adults spent, on…

  12. Evaluating Integrated Task Based Activities and Computer Assisted Language Learning (CALL)

    ERIC Educational Resources Information Center

    Anwar, Khoirul; Husniah, Rohmy

    2016-01-01

    This study is to evaluate the implementation of Task Activities based on CALL which consist of observing, questioning, exploring, and communicating. The developed materials are nine chapters that had been implemented in two different classes of SMPN 1 Gresik and SMPM 4 Gresik in Indonesia. Of quesionnaires and interviews, the results indicate that…

  13. Left inferior-parietal lobe activity in perspective tasks: identity statements

    PubMed Central

    Arora, Aditi; Weiss, Benjamin; Schurz, Matthias; Aichhorn, Markus; Wieshofer, Rebecca C.; Perner, Josef

    2015-01-01

    We investigate the theory that the left inferior parietal lobe (IPL) is closely associated with tracking potential differences of perspective. Developmental studies find that perspective tasks are mastered at around 4 years of age. Our first study, meta-analyses of brain imaging studies shows that perspective tasks specifically activate a region in the left IPL and precuneus. These tasks include processing of false belief, visual perspective, and episodic memory. We test the location specificity theory in our second study with an unusual and novel kind of perspective task: identity statements. According to Frege's classical logical analysis, identity statements require appreciation of modes of presentation (perspectives). We show that identity statements, e.g., “the tour guide is also the driver” activate the left IPL in contrast to a control statements, “the tour guide has an apprentice.” This activation overlaps with the activations found in the meta-analysis. This finding is confirmed in a third study with different types of statements and different comparisons. All studies support the theory that the left IPL has as one of its overarching functions the tracking of perspective differences. We discuss how this function relates to the bottom-up attention function proposed for the bilateral IPL. PMID:26175677

  14. Cognitive Conflict in a Syllable Identification Task Causes Transient Activation of Speech Perception Area

    ERIC Educational Resources Information Center

    Saetrevik, Bjorn; Specht, Karsten

    2012-01-01

    It has previously been shown that task performance and frontal cortical activation increase after cognitive conflict. This has been argued to support a model of attention where the level of conflict automatically adjusts the amount of cognitive control applied. Conceivably, conflict could also modulate lower-level processing pathways, which would…

  15. Task-Dependent Modulations of Prefrontal and Hippocampal Activity during Intrinsic Word Production

    ERIC Educational Resources Information Center

    Whitney, Carin; Weis, Susanne; Krings, Timo; Huber, Walter; Grossman, Murray; Kircher, Tilo

    2009-01-01

    Functional imaging studies of single word production have consistently reported activation of the lateral prefrontal and cingulate cortex. Its contribution has been shown to be sensitive to task demands, which can be manipulated by the degree of response specification. Compared with classical verbal fluency, free word association relies less on…

  16. Beyond Rhyme or Reason: ERPs Reveal Task-Specific Activation of Orthography on Spoken Language

    ERIC Educational Resources Information Center

    Pattamadilok, Chotiga; Perre, Laetitia; Ziegler, Johannes C.

    2011-01-01

    Metaphonological tasks, such as rhyme judgment, have been the primary tool for the investigation of the effects of orthographic knowledge on spoken language. However, it has been recently argued that the orthography effect in rhyme judgment does not reflect the automatic activation of orthographic codes but rather stems from sophisticated response…

  17. Pedagogical Values of Mobile-Assisted Task-Based Activities to Enhance Speaking Skill

    ERIC Educational Resources Information Center

    Mohammadi, Mojtaba; Safdari, Nastaran

    2015-01-01

    The purpose of the present study was to examine the impact of online mobile-assisted task-based activities on improving Iranian intermediate English as a Foreign Language (EFL) learners' speaking skills. To achieve the purpose of the study, 90 intermediate language learners were selected ranging between 13 to 16 years old and divided into three…

  18. Planning and Managing Learning Tasks and Activities. Advances in Research on Teaching. Volume 3.

    ERIC Educational Resources Information Center

    Brophy, Jere, Ed.

    This publication is the third volume in the "Advanced in Research on Teaching" series, which has been established to provide state-of-the-art conceptualization and analysis of the processes involved in functioning as a classroom teacher. This volume focuses on the planning and managing of learning tasks and activities, in particular, what is…

  19. Task Rotation: Strategies for Differentiating Activities and Assessments by Learning Style. A Strategic Teacher PLC Guide

    ERIC Educational Resources Information Center

    Silver, Harvey; Moirao, Daniel; Jackson, Joyce

    2011-01-01

    One of the hardest jobs in teaching is to differentiate learning activities and assessments to your students' learning styles. But you and your colleagues can learn how to do this together when each of you has this guide to the Task Rotation strategy from our ultimate guide to teaching strategies, "The Strategic Teacher". Use the guide in your…

  20. Influence of monkey dorsolateral prefrontal and posterior parietal activity on behavioral choice during attention tasks.

    PubMed

    Katsuki, Fumi; Saito, Mizuki; Constantinidis, Christos

    2014-09-01

    The dorsolateral prefrontal and the posterior parietal cortex have both been implicated in the guidance of visual attention. Traditionally, posterior parietal cortex has been thought to guide visual bottom-up attention and prefrontal cortex to bias attention through top-down information. More recent studies suggest a parallel time course of activation of the two areas in bottom-up attention tasks, suggesting a common involvement, though these results do not necessarily imply identical roles. To address the specific roles of the two areas, we examined the influence of neuronal activity recorded from the prefrontal and parietal cortex of monkeys as they performed attention tasks based on choice probability and on correlation between reaction time and neuronal activity. The results revealed that posterior parietal but not dorsolateral prefrontal activity correlated with behavioral choice during the fixation period, prior to the appearance of the stimulus, resembling a bias factor. This preferential influence of posterior parietal activity on behavior was transient, so that dorsolateral prefrontal activity predicted choice after the appearance of the stimulus. Additionally, reaction time was better predicted by posterior parietal activity. These findings confirm the involvement of both dorsolateral prefrontal and posterior parietal cortex in the bottom-up guidance of visual attention, but indicate different roles of the two areas in the guidance of attention and a dynamic time course of their effects, influencing behavior at different stages of the task. PMID:24964224

  1. Working together may be better: activation of reward centers during a cooperative maze task.

    PubMed

    Krill, Austen L; Platek, Steven M

    2012-01-01

    Humans use theory of mind when predicting the thoughts and feelings and actions of others. There is accumulating evidence that cooperation with a computerized game correlates with a unique pattern of brain activation. To investigate the neural correlates of cooperation in real-time we conducted an fMRI hyperscanning study. We hypothesized that real-time cooperation to complete a maze task, using a blind-driving paradigm, would activate substrates implicated in theory of mind. We also hypothesized that cooperation would activate neural reward centers more than when participants completed the maze themselves. Of interest and in support of our hypothesis we found left caudate and putamen activation when participants worked together to complete the maze. This suggests that cooperation during task completion is inherently rewarding. This finding represents one of the first discoveries of a proximate neural mechanism for group based interactions in real-time, which indirectly supports the social brain hypothesis. PMID:22355319

  2. Working Together May Be Better: Activation of Reward Centers during a Cooperative Maze Task

    PubMed Central

    Krill, Austen L.; Platek, Steven M.

    2012-01-01

    Humans use theory of mind when predicting the thoughts and feelings and actions of others. There is accumulating evidence that cooperation with a computerized game correlates with a unique pattern of brain activation. To investigate the neural correlates of cooperation in real-time we conducted an fMRI hyperscanning study. We hypothesized that real-time cooperation to complete a maze task, using a blind-driving paradigm, would activate substrates implicated in theory of mind. We also hypothesized that cooperation would activate neural reward centers more than when participants completed the maze themselves. Of interest and in support of our hypothesis we found left caudate and putamen activation when participants worked together to complete the maze. This suggests that cooperation during task completion is inherently rewarding. This finding represents one of the first discoveries of a proximate neural mechanism for group based interactions in real-time, which indirectly supports the social brain hypothesis. PMID:22355319

  3. Neonatal infection modulates behavioral flexibility and hippocampal activation on a Morris Water Maze task

    PubMed Central

    Williamson, Lauren L.; Bilbo, Staci D.

    2014-01-01

    Neonatal infection has enduring effects on the brain, both at the cellular and behavioral levels. We determined the effects of peripheral infection with Escherichia coli at postnatal day (P) 4 in rats on a water maze task in adulthood, and assessed neuronal activation in the dentate gyrus (DG) following the memory test. Rats were trained and tested on one of 3 distinct water maze task paradigms: 1) minimal training (18 trials/ 3 days), 2) extended training (50 trials/ 10 days) or 3) reversal training (extended training followed by 30 trials/ 3 days with a new platform location). Following a 48HR memory test, brains were harvested to assess neuronal activation using activity-regulated cytoskeleton-associated (Arc) protein in the DG. Following minimal training, rats treated neonatally with E. coli had improved performance and paradoxically reduced Arc expression during the memory test compared to control rats treated with PBS early in life. However, neonatally-infected rats did not differ from control rats in behavior or neuronal activation during the memory test following extended training. Furthermore, rats treated neonatally with E. coli were significantly impaired during the 48HR memory test for a reversal platform location, unlike controls. Specifically, whereas neonatally-infected rats were able to acquire the new location at the same rate as controls, they spent significantly less time in the target quadrant for the reversal platform during a memory test. However, neonatally-infected and control rats had similar levels of Arc expression following the 48HR memory test for reversal. Together, these data indicate that neonatal infection may improve the rate of acquisition on hippocampal-dependent tasks while impairing flexibility on the same tasks; in addition, network activation in the DG during learning may be predictive of future cognitive flexibility on a hippocampal-dependent task. PMID:24576680

  4. Flight tests for the assessment of task performance and control activity

    NASA Technical Reports Server (NTRS)

    Pausder, H. J.; Hummes, D.

    1982-01-01

    The tests were performed with the helicopters BO 105 and UH-1D. Closely connected with tactical demands the six test pilots' task was to minimize the time and the altitude over the obstacles. The data reduction yields statistical evaluation parameters describing the control activity of the pilots and the achieved task performance. The results are shown in form of evaluation diagrams. Additionally dolphin tests with varied control strategy were performed to get more insight into the influence of control techniques. From these test results recommendations can be derived to emphasize the direct force control and to reduce the collective to pitch crosscoupling for the dolphin.

  5. Astronaut David Wolf participates in training for contingency EVA in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is aided by technicians in donning the gloves for his extravehicular mobility unit (EMU).

  6. Underwater views of STS-11 crewman Robert L. Stewart during EVA training

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Underwater views of STS-11 crewman Robert L. Stewart during extravehicular activity (EVA) training in the cargo bay in the weightless environment training facility (WETF) in bldg 27. Stewart busies himself with donning and doffing of the manned maneuvering unit (MMU) in a mockup of the Shuttle's cargo bay.

  7. Astronaut Alan Bean deploys ALSEP during first Apollo 12 EVA on moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, Apollo 12 lunar module pilot, deploys components of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA) on the moon. The photo was made by Astronaut Charles Conrad Jr., Apollo 12 commander, using a 70mm handheld Haselblad camera modified for lunar surface usage.

  8. View of the Lunar Portable Magnetometer on the LRV photographed during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    View of the Lunar Portable Magnetometer mounted on the Lunar Roving Vehicle (LRV) which was parked at Station 2 on the Descartes lunar landing site. It was photographed by the Apollo 16 crew during their second extravehicular activity (EVA-2). Note the shadow of the astronaut taking the photograph in the left foreground.

  9. Astronaut Jack Lousma participates in EVA to deploy twin pole solar shield

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, participates in the August 6, 1973 extravehicular activity (EVA) during which he and Astronaut Owen K. Garriott, science pilot, deployed the twin pole solar shield to help shade the Orbital Workshop (OWS). Note the striking reflection of the Earth in Lousma's helmet visor.

  10. Astronaut Jack Lousma participates in EVA to deploy twin pole solar shield

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, participates in the August 6, 1973 extravehicular activity (EVA) during which he and Astronauts Owen K. Garriott, science pilot, deployed the twin pole solar shield to help shade the Orbital Workshop (OWS). Note the reflection of the Apollo Telescope Mount and the Earth in Lousma's helmet visor.

  11. Astronaut Owen Garriott participates in EVA to deploy twin pole solar shield

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, participates in the August 6, 1973 extravehicular activity (EVA) during which he and Astronaut Jack Lousma, Skylab pilot, deployed the twin pole solar shield to help shade the Orbital Workshop (OWS). Note the reflection of the solar shield in Garriett's helmet visor.

  12. Astronaut William S. McArthur in training for contingency EVA in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut William S. McArthur, mission specialist, participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. He is wearing the extravehicular mobility unit (EMU) minus his helmet. For simulation purposes, McArthur was about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF).

  13. Astronaut Shannon Lucid in training for contingency EVA for STS-58 in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Shannon W. Lucid participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. For simulation purposes, the mission specialist is about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF).

  14. The maturation of task-set related activation supports late developmental improvements in inhibitory control

    PubMed Central

    Velanova, Katerina; Wheeler, Mark E.; Luna, Beatriz

    2009-01-01

    The ability to voluntarily inhibit a single response is evident early in development, even as the ability to maintain an inhibitory “task set” continues to improve. To date, functional neuroimaging studies have detailed developmental changes in systems supporting inhibitory control exerted at the single-trial level, but changes underlying the ability to maintain an inhibitory task set remain little understood. Here we present findings from a functional magnetic resonance imaging (fMRI) study that characterizes the development of systems supporting both transient (trial-related) and sustained (task-set-related) activation during performance of the antisaccade (AS) task—an oculomotor test of inhibitory control (Hallett, 1978). Transient activation decreased from childhood to adolescence in regions known to support inhibitory processes and oculomotor control, likely reflecting less effortful response production. In contrast, sustained activation increased to adulthood in regions implicated in control. Our results suggest that development of the ability to maintain a task set is primary to the maturation of inhibitory control, and further, that this ability is still immature in adolescence. PMID:19812330

  15. Brain Activations Related to Saccadic Response Conflict are not Sensitive to Time on Task

    PubMed Central

    Beldzik, Ewa; Domagalik, Aleksandra; Oginska, Halszka; Marek, Tadeusz; Fafrowicz, Magdalena

    2015-01-01

    Establishing a role of the dorsal medial frontal cortex in the performance monitoring and cognitive control has been a challenge to neuroscientists for the past decade. In light of recent findings, the conflict monitoring hypothesis has been elaborated to an action-outcome predictor theory. One of the findings that led to this re-evaluation was the fMRI study in which conflict-related brain activity was investigated in terms of the so-called time on task effect, i.e., a linear increase of the BOLD signal with longer response times. The aim of this study was to investigate brain regions involved in the processing of saccadic response conflict and to account for the time on task effect. A modified spatial cueing task was implemented in the event-related fMRI study with oculomotor responses. The results revealed several brain regions which show higher activity for incongruent trials in comparison to the congruent ones, including pre-supplementary motor area together with the frontal and parietal regions. Further analysis accounting for the effect of response time provided evidence that these brain activations were not sensitive to time on task but reflected purely the congruency effect. PMID:26696871

  16. Walking while Performing Working Memory Tasks Changes the Prefrontal Cortex Hemodynamic Activations and Gait Kinematics

    PubMed Central

    Lin, Ming-I B.; Lin, Kuan-Hung

    2016-01-01

    Background: Increasing evidence suggests that walking while performing a concurrent task negatively influences gait performance. However, it remains unclear how higher-level cognitive processes and coordination of limb movements are altered in challenging walking environments. This study investigated the influence of cognitive task complexity and walking road condition on the neutral correlates of executive function and postural control in dual-task walking. Methods: Twenty-four healthy young adults completed a series of overground walks with three walking road conditions (wide, narrow, with obstacles) with and without the concurrent n-back working memory tasks of two complexity levels (1-back and 3-back). Prefrontal brain activation was assessed by functional near-infrared spectroscopy. A three-dimensional motion analysis system was used simultaneously to measure gait performance and lower-extremity kinematics. Repeated measures analysis of variance were performed to examine the differences between the conditions. Results: In comparison with standing still, participants showed lower n-back task accuracy while walking, with the worst performance from the road with obstacles. Spatiotemporal gait parameters, lower-extremity joint movements, and the relative changes in oxygenated hemoglobin (HbO) concentration levels were all significantly different across the task complexity and walking path conditions. While dual-tasking participants were found to flex their hips and knees less, leading to a slower gait speed, longer stride time, shorter step length, and greater gait variability than during normal walking. For narrow-road walking, smaller ankle dorsiflexion and larger hip flexion were observed, along with a reduced gait speed. Obstacle negotiation was mainly characterized by increased gait variability than other conditions. HbO levels appeared to be lower during dual-task walking than normal walking. Compared to wide and obstacle conditions, walking on the narrow

  17. A modelization of the task allocation problem for prescribing activity in an ICU.

    PubMed Central

    Renard, J. M.; Bricon-Souf, N.; Guigue, L.; Beuscart, R.

    2000-01-01

    The improvement of coordination between Health Care Professionals belonging different specialities and who are extremely mobile, is a crucial problem in Medicine. A workflow System is one example of the new informatics tools which facilitate the transfer of information and responsibility between health care providers. Medical informatics systems in particular should be reactive enough to cope with the flexibility of real work situations: in this paper, we present the task allocation problem. We distinguish between the workflow control process and the notifying process, which concerns the sharing out of the tasks between the actors concerned. We focus on the impact of strategies of notification on the progress of coordinated work. We propose a simulator to model and study the different ways of sharing tasks between actors in an Intensive Care Unit's activity of prescription. PMID:11079971

  18. Eva Szabo, MD | Division of Cancer Prevention

    Cancer.gov

    Dr. Eva Szabo is Chief of the Lung and Upper Aerodigestive Cancer Research Group at the NCI Division of Cancer Prevention. She graduated from Yale University with a BS in Molecular Biophysics and Biochemistry, received her MD from Duke University, and completed her internal medicine residency at Bellevue-NYU Medical Center. After completing her medical oncology fellowship at the National Cancer Institute, Dr. Szabo led a laboratory effort studying lung cancer biology. |

  19. Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Riazansky, S. N.; Goulet, C.; Badakva, A. M.; Kozlovskaya, I. B.; Recktenwald, M. R.; McCall, G.; Roy, R. R.; Fanton, J. W.; Edgerton, V. R.

    2000-01-01

    Rhesus monkeys (Macaca mulatta) were trained to perform a foot lever pressing task for a food reward. EMG activity was recorded from selected lower limb muscles of 2 animals before, during, and after a 14-day spaceflight and from 3 animals during a ground-based simulation of the flight. Integrated EMG activity was calculated for each muscle during the 20-min test. Comparisons were made between data recorded before any experimental manipulations and during flight or flight simulation. Spaceflight reduced soleus (Sol) activity to 25% of preflight levels, whereas it was reduced to 50% of control in the flight simulation. During flight, medial gastrocnemius (MG) activity was reduced to 25% of preflight activity, whereas the simulation group showed normal activity levels throughout all tests. The change in MG activity was apparent in the first inflight recording, suggesting that some effect of microgravity on MG activity was immediate.

  20. Task Performance and Meta-Cognitive Outcomes When Using Activity Workstations and Traditional Desks

    PubMed Central

    Pilcher, June J.; Baker, Victoria C.

    2016-01-01

    The purpose of the current study is to compare the effects of light physical activity to sedentary behavior on cognitive task performance and meta-cognitive responses. Thirty-eight undergraduate students participated in the study. The participants used a stationary bicycle with a desk top and a traditional desk while completing two complex cognitive tasks and measures of affect, motivation, morale, and engagement. The participants pedaled the stationary bicycle at a slow pace (similar in exertion to a normal walking pace) while working. The results indicated that cognitive task performance did not change between the two workstations. However, positive affect, motivation, and morale improved when using the stationary bicycle. These results suggest that activity workstations could be implemented in the work place and in educational settings to help decrease sedentary behavior without negatively affecting performance. Furthermore, individuals could experience a positive emotional response when working on activity workstations which in turn could help encourage individuals to choose to be more physical active during daily activities. PMID:27445921

  1. Task Performance and Meta-Cognitive Outcomes When Using Activity Workstations and Traditional Desks.

    PubMed

    Pilcher, June J; Baker, Victoria C

    2016-01-01

    The purpose of the current study is to compare the effects of light physical activity to sedentary behavior on cognitive task performance and meta-cognitive responses. Thirty-eight undergraduate students participated in the study. The participants used a stationary bicycle with a desk top and a traditional desk while completing two complex cognitive tasks and measures of affect, motivation, morale, and engagement. The participants pedaled the stationary bicycle at a slow pace (similar in exertion to a normal walking pace) while working. The results indicated that cognitive task performance did not change between the two workstations. However, positive affect, motivation, and morale improved when using the stationary bicycle. These results suggest that activity workstations could be implemented in the work place and in educational settings to help decrease sedentary behavior without negatively affecting performance. Furthermore, individuals could experience a positive emotional response when working on activity workstations which in turn could help encourage individuals to choose to be more physical active during daily activities. PMID:27445921

  2. Understanding hippocampal activity by using purposeful behavior: Place navigation induces place cell discharge in both task-relevant and task-irrelevant spatial reference frames

    PubMed Central

    Zinyuk, L.; Kubik, S.; Kaminsky, Yu.; Fenton, A. A.; Bures, J.

    2000-01-01

    Continuous rotation of an arena in a cue-rich room dissociates the stationary room-bound information from the rotating arena-bound information. This disrupted spatial discharge in the majority of place cells from rats trained to collect randomly scattered food. In contrast, most place cell firing patterns recorded from rats trained to solve a navigation task on the rotating arena were preserved during the rotation. Spatial discharge was preserved in both the task-relevant stationary and the task-irrelevant rotating reference frames, but firing was more organized in the task-relevant frame. It is concluded that, (i) the effects of environmental manipulations can be understood with confidence only when the rat's purposeful behavior is used to formulate interpretations of the data, and (ii) hippocampal place cell activity is organized in multiple overlapping spatial reference frames. PMID:10716713

  3. Initial Work Toward a Robotically Assisted EVA Glove

    NASA Technical Reports Server (NTRS)

    Rogers, J.; Peters, B.; McBryan, E.; Laske, E.

    2016-01-01

    The Space Suit RoboGlove is a device designed to provide additional grasp strength or endurance for an EVA crew member since gloved hand performance is a fraction of what the unencumbered human hand can achieve. There have been past efforts to approach this problem by employing novel materials and construction techniques to the glove design, as well as integrating powered assistance devices. This application of the NASA/GM RoboGlove technology uses a unique approach to integrate the robotic actuators and sensors into a Phase VI EVA glove. This design provides grasp augmentation to the glove user while active, but can also function as a normal glove when disabled. Care was taken to avoid adding excessive bulk to the glove or affecting tactility by choosing low-profile sensors and extrinsically locating the actuators. Conduits are used to guide robotic tendons from linear actuators, across the wrist, and to the fingers. The second generation of the SSRG includes updated electronics, sensors, and actuators to improve performance. The following discusses the electromechanical design, softgoods integration, and control system of the SSRG. It also presents test results from the first integration of a powered mobility element onto a space suit, the NASA Mark III. Early results show that sensor integration did not impact tactile feedback in the glove and the actuators show potential for reduction in grasp fatigue over time.

  4. Hormonal contraceptives masculinize brain activation patterns in the absence of behavioral changes in two numerical tasks.

    PubMed

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert

    2014-01-16

    The aim of the present study was to identify, whether and how oral hormonal contraceptives (OCs) alter women's number processing. Behavioral performance and brain activation patterns (BOLD-response) of 14 OC-users were evaluated during two distinct numerical tasks (number comparison, number bisection) and compared to 16 men (high testosterone), and 16 naturally cycling women, once during their follicular (low hormone levels) and once during their luteal cycle phase (high progesterone). For both tasks, reliable sex differences and menstrual cycle dependent modulation have previously been described. If progestogenic effects of the synthetic progestins contained in OC play a predominant role, OC-users should be comparable to luteal women. If androgenic effects of the synthetic steroids exert the progestogenic actions, OC-users should be comparable to men. Likewise, if neither of the above are the case, the reduction of endogenous steroids by OCs should make OC-users comparable to follicular women. Our findings suggest that OC-users resemble follicular women in their behavioral performance, but show male-like brain activation patterns during both tasks. Analysis of brain-behavior relationships suggests that OC-users differ from naturally cycling women in the way they recruit their neural resources to deal with challenges of the tasks. We conclude that OCs, which are used by 100 million women worldwide, may have profound effects on cognition that have not been recognized so far. PMID:24231554

  5. Dynamic trajectory of multiple single-unit activity during working memory task in rats

    PubMed Central

    Zhang, Xiaofan; Yi, Hu; Bai, Wenwen; Tian, Xin

    2015-01-01

    Working memory plays an important role in complex cognitive tasks. A popular theoretical view is that transient properties of neuronal dynamics underlie cognitive processing. The question raised here as to how the transient dynamics evolve in working memory. To address this issue, we investigated the multiple single-unit activity dynamics in rat medial prefrontal cortex (mPFC) during a Y-maze working memory task. The approach worked by reconstructing state space from delays of the original single-unit firing rate variables, which were further analyzed using kernel principal component analysis (KPCA). Then the neural trajectories were obtained to visualize the multiple single-unit activity. Furthermore, the maximal Lyapunov exponent (MLE) was calculated to quantitatively evaluate the neural trajectories during the working memory task. The results showed that the neuronal activity produced stable and reproducible neural trajectories in the correct trials while showed irregular trajectories in the incorrect trials, which may establish a link between the neurocognitive process and behavioral performance in working memory. The MLEs significantly increased during working memory in the correctly performed trials, indicating an increased divergence of the neural trajectories. In the incorrect trials, the MLEs were nearly zero and remained unchanged during the task. Taken together, the trial-specific neural trajectory provides an effective way to track the instantaneous state of the neuronal population during the working memory task and offers valuable insights into working memory function. The MLE describes the changes of neural dynamics in working memory and may reflect different neuronal population states in working memory. PMID:26441626

  6. Payload crew activity planning integration. Task 2: Inflight operations and training for payloads

    NASA Technical Reports Server (NTRS)

    Hitz, F. R.

    1976-01-01

    The primary objectives of the Payload Crew Activity Planning Integration task were to: (1) Determine feasible, cost-effective payload crew activity planning integration methods. (2) Develop an implementation plan and guidelines for payload crew activity plan (CAP) integration between the JSC Orbiter planners and the Payload Centers. Subtask objectives and study activities were defined as: (1) Determine Crew Activity Planning Interfaces. (2) Determine Crew Activity Plan Type and Content. (3) Evaluate Automated Scheduling Tools. (4) Develop a draft Implementation Plan for Crew Activity Planning Integration. The basic guidelines were to develop a plan applicable to the Shuttle operations timeframe, utilize existing center resources and expertise as much as possible, and minimize unnecessary data exchange not directly productive in the development of the end-product timelines.

  7. Brain Activity During a Motor Learning Task: An fMRI and Skin Conductance Study

    PubMed Central

    MacIntosh, Bradley J.; Mraz, Richard; McIlroy, William E.; Graham, Simon J.

    2016-01-01

    Measuring electrodermal activity (EDA) during fMRI is an effective means of studying the influence of task-related arousal, inferred from autonomic nervous system activity, on brain activation patterns. The goals of this study were: (1) to measure reliable EDA from healthy individuals during fMRI involving an effortful unilateral motor task, (2) to explore how EDA recordings can be used to augment fMRI data analysis. In addition to conventional hemodynamic modeling, skin conductance time series data were used as model waveforms to generate activation images from fMRI data. Activations from the EDA model produced significantly different brain regions from those obtained with a standard hemodynamic model, primarily in the insula and cingulate cortices. Onsets of the EDA changes were synchronous with the hemodynamic model, but EDA data showed additional transient features, such as a decrease in amplitude with time, and helped to provide behavioral evidence suggesting task difficulty decreased with movement repetition. Univariate statistics also confirmed that several brain regions showed early versus late session effects. Partial least squares (PLS) multivariate analysis of EDA and fMRI data provided complimentary, additional insight on how the motor network varied over the course of a single fMRI session. Brain regions identified in this manner included the insula, cingulate gyrus, pre- and postcentral gyri, putamen and parietal cortices. These results suggest that recording EDA during motor fMRI experiments provides complementary information that can be used to improve the fMRI analysis, particularly when behavioral or task effects are difficult to model a priori. PMID:17318835

  8. Assessment of students' behavioral interactions during on-task classroom activities.

    PubMed

    Morgan, H

    1990-04-01

    This study was designed to characterize the quality and quantity of interactions between students and significant others in the processing of new information during classroom activities. I wanted to test the hypothesis that black children, from moderate to low income urban environments, tend to have a more socially active cognitive style than their white peers in the performance of classroom tasks. Five different English classes, all 8th graders in a single junior high school (total of 114 black and white boys and girls), were observed in the same environment at different intervals to identify differences in the number of interactions between boys and girls, by racial groups. Classroom lessons and related activities were videotaped. The recorded activity was tabulated and rated by 3 trained observers. Black children more than white, and boys more than girls, initiated interactions with peers in the classroom in performing assigned tasks. This social interaction also showed that (1) 76% of the observed classroom time, subjects as a group were observed on-task and (2) pupils' interactions with their selected targets (classmates and their teacher) were 87% positive, and (3) relatively few interactions could be classified as disruptive. PMID:2342857

  9. Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks

    PubMed Central

    Pinti, Paola; Aichelburg, Clarisse; Lind, Frida; Power, Sarah; Swingler, Elizabeth; Merla, Arcangelo; Hamilton, Antonia; Gilbert, Sam; Burgess, Paul; Tachtsidis, Ilias

    2015-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is a neuroimaging technique that uses near-infrared light to monitor brain activity. Based on neurovascular coupling, fNIRS is able to measure the haemoglobin concentration changes secondary to neuronal activity. Compared to other neuroimaging techniques, fNIRS represents a good compromise in terms of spatial and temporal resolution. Moreover, it is portable, lightweight, less sensitive to motion artifacts and does not impose significant physical restraints. It is therefore appropriate to monitor a wide range of cognitive tasks (e.g., auditory, gait analysis, social interaction) and different age populations (e.g., new-borns, adults, elderly people). The recent development of fiberless fNIRS devices has opened the way to new applications in neuroscience research. This represents a unique opportunity to study functional activity during real-world tests, which can be more sensitive and accurate in assessing cognitive function and dysfunction than lab-based tests. This study explored the use of fiberless fNIRS to monitor brain activity during a real-world prospective memory task. This protocol is performed outside the lab and brain haemoglobin concentration changes are continuously measured over the prefrontal cortex while the subject walks around in order to accomplish several different tasks. PMID:26651025

  10. Muscle activity, time to fatigue, and maximum task duration at different levels of production standard time

    PubMed Central

    Nur, Nurhayati Mohd; Dawal, Siti Zawiah Md; Dahari, Mahidzal; Sanusi, Junedah

    2015-01-01

    [Purpose] This study investigated the variations in muscle fatigue, time to fatigue, and maximum task duration at different levels of production standard time. [Methods] Twenty subjects performed repetitive tasks at three different levels of production standard time corresponding to “normal”, “hard” and “very hard”. Surface electromyography was used to measure the muscle activity. [Results] The results showed that muscle activity was significantly affected by the production standard time level. Muscle activity increased twice in percentage as the production standard time shifted from hard to very hard (6.9% vs. 12.9%). The muscle activity increased over time, indicating muscle fatigue. The muscle fatigue rate increased for the harder production standard time (Hard: 0.105; Very hard: 0.115), which indicated the associated higher risk of work-related musculoskeletal disorders. Muscle fatigue was also found to occur earlier for hard and very hard production standard times. [Conclusion] It is recommended that the maximum task duration should not exceed 5.6, 2.9, and 2.2 hours for normal, hard, and very hard production standard times, respectively, in order to maintain work performance and minimize the risk of work-related musculoskeletal disorders. PMID:26311974

  11. Maintaining Gait Performance by Cortical Activation during Dual-Task Interference: A Functional Near-Infrared Spectroscopy Study

    PubMed Central

    Yang, Yea-Ru; Wu, Yu-Te; Wang, Ray-Yau

    2015-01-01

    In daily life, mobility requires walking while performing a cognitive or upper-extremity motor task. Although previous studies have evaluated the effects of dual tasks on gait performance, few studies have evaluated cortical activation and its association with gait disturbance during dual tasks. In this study, we simultaneously assessed gait performance and cerebral oxygenation in the bilateral prefrontal cortices (PFC), premotor cortices (PMC), and supplemental motor areas (SMA), using functional near-infrared spectroscopy, in 17 young adults performing dual tasks. Each participant was evaluated while performing normal-pace walking (NW), walking while performing a cognitive task (WCT), and walking while performing a motor task (WMT). Our results indicated that the left PFC exhibited the strongest and most sustained activation during WCT, and that NW and WMT were associated with minor increases in oxygenation levels during their initial phases. We observed increased activation in channels in the SMA and PMC during WCT and WMT. Gait data indicated that WCT and WMT both caused reductions in walking speed, but these reductions resulted from differing alterations in gait properties. WCT was associated with significant changes in cadence, stride time, and stride length, whereas WMT was associated with reductions in stride length only. During dual-task activities, increased activation of the PMC and SMA correlated with declines in gait performance, indicating a control mechanism for maintaining gait performance during dual tasks. Thus, the regulatory effects of cortical activation on gait behavior enable a second task to be performed while walking. PMID:26079605

  12. Using MVA and EVA to measure financial performance.

    PubMed

    Gapenski, L C

    1996-03-01

    Two measures of financial performance that are being applied increasingly in investor-owned and not-for-profit healthcare organizations are market value added (MVA) and economic value added (EVA). Unlike traditional profitability measures, both MVA and EVA measures take into account the cost of equity capital. MVA is most appropriate for investor-owned healthcare organizations and EVA is the best measure for not-for-profit organizations. As healthcare financial managers become more familiar with MVA and EVA and understand their potential, these two measures may become more widely accepted accounting tools for assessing the financial performance of investor-owned and not-for-profit healthcare organizations. PMID:10156588

  13. Gaining Proficiency through Task-Based Activities in the Portuguese Classroom (Beginning and Intermediate Year Case Studies)

    ERIC Educational Resources Information Center

    Jones-Kellogg, Rebecca

    2015-01-01

    This paper describes a task-based activity used at the United States Military Academy, in their first- through third-semester Portuguese language sequence "Proficiencies" (Proficiências). The stand-alone task-based activity can be an effective tool in gaining foreign-language proficiency at even the lowest levels of classroom instruction…

  14. EVA Communications Avionics and Informatics

    NASA Technical Reports Server (NTRS)

    Carek, David Andrew

    2005-01-01

    The Glenn Research Center is investigating and developing technologies for communications, avionics, and information systems that will significantly enhance extra vehicular activity capabilities to support the Vision for Space Exploration. Several of the ongoing research and development efforts are described within this presentation including system requirements formulation, technology development efforts, trade studies, and operational concept demonstrations.

  15. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia

    PubMed Central

    Vatthauer, Karlyn E; Craggs, Jason G; Robinson, Michael E; Staud, Roland; Berry, Richard B; Perlstein, William M; McCrae, Christina S

    2015-01-01

    Patients with chronic pain exhibit altered default mode network (DMN) activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations. Thirteen women with fibromyalgia (FM) only and 26 women with fibromyalgia with comorbid chronic insomnia (FMI) underwent a single night of ambulatory polysomnography and completed a sleep diary each morning for 14 days prior to performing a neuroimaging protocol. Novel imaging analyses were utilized to identify regions associated with significantly disordered sleep that were more active in task-negative periods than task-oriented periods in participants with FMI, when compared to participants with FM. It was hypothesized that core DMN areas (ie, cingulate cortex, inferior parietal lobule, medial prefrontal cortex, medial temporal cortex, precuneus) would exhibit increased activity during task-negative periods. Analyses revealed that significantly disordered sleep significantly contributed to group differences in the right cingulate gyrus, left lentiform nucleus, left anterior cingulate, left superior gyrus, medial frontal gyrus, right caudate, and the left inferior parietal lobules. Results suggest that FMI may alter some brain areas of the DMN, above and beyond FM. However, future work will need to investigate these results further by controlling for chronic insomnia only before conclusions can be made regarding the effect of FMI comorbidity on the DMN. PMID:26648751

  16. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia.

    PubMed

    Vatthauer, Karlyn E; Craggs, Jason G; Robinson, Michael E; Staud, Roland; Berry, Richard B; Perlstein, William M; McCrae, Christina S

    2015-01-01

    Patients with chronic pain exhibit altered default mode network (DMN) activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations. Thirteen women with fibromyalgia (FM) only and 26 women with fibromyalgia with comorbid chronic insomnia (FMI) underwent a single night of ambulatory polysomnography and completed a sleep diary each morning for 14 days prior to performing a neuroimaging protocol. Novel imaging analyses were utilized to identify regions associated with significantly disordered sleep that were more active in task-negative periods than task-oriented periods in participants with FMI, when compared to participants with FM. It was hypothesized that core DMN areas (ie, cingulate cortex, inferior parietal lobule, medial prefrontal cortex, medial temporal cortex, precuneus) would exhibit increased activity during task-negative periods. Analyses revealed that significantly disordered sleep significantly contributed to group differences in the right cingulate gyrus, left lentiform nucleus, left anterior cingulate, left superior gyrus, medial frontal gyrus, right caudate, and the left inferior parietal lobules. Results suggest that FMI may alter some brain areas of the DMN, above and beyond FM. However, future work will need to investigate these results further by controlling for chronic insomnia only before conclusions can be made regarding the effect of FMI comorbidity on the DMN. PMID:26648751

  17. Energy utilization rates during shuttle extravehicular activities.

    PubMed

    Waligora, J M; Kumar, K V

    1995-01-01

    The work rates or energy utilization rates during EVA are major factors in sizing of life support systems. These rates also provide a measure of ease of EVA and its cost in crew fatigue. From the first Shuttle EVA on the STS-6 mission in 1983, we have conducted 59 man-EVA and 341 man-hours of EVA. Energy utilization rates have been measured on each of these EVA. Metabolic rate was measured during each EVA using oxygen utilization corrected for suit leakage. From 1981-1987, these data were available for average data over the EVA or over large segments of the EVA. Since 1987, EVA oxygen utilization data were available at 2-minute intervals. The average metabolic rate on Shuttle EVA (194 kcal/hr.) has been significantly lower than metabolic rates during Apollo and Skylab missions. Peak rates have been below design levels, infrequent, and of short duration. The data suggest that the energy cost of tasks may be inversely related to the degree of training for the task. The data provide insight on the safety margins provided by life support designs and on the energy cost of Station construction EVA. PMID:11540993

  18. Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation.

    PubMed

    Meinzer, Marcus; Antonenko, Daria; Lindenberg, Robert; Hetzer, Stefan; Ulm, Lena; Avirame, Keren; Flaisch, Tobias; Flöel, Agnes

    2012-02-01

    Excitatory anodal transcranial direct current stimulation (atDCS) can improve human cognitive functions, but neural underpinnings of its mode of action remain elusive. In a cross-over placebo ("sham") controlled study we used functional magnetic resonance imaging (fMRI) to investigate neurofunctional correlates of improved language functions induced by atDCS over a core language area, the left inferior frontal gyrus (IFG). Intrascanner transcranial direct current stimulation-induced changes in overt semantic word generation assessed behavioral modulation; task-related and task-independent (resting-state) fMRI characterized language network changes. Improved word-retrieval during atDCS was paralleled by selectively reduced task-related activation in the left ventral IFG, an area specifically implicated in semantic retrieval processes. Under atDCS, resting-state fMRI revealed increased connectivity of the left IFG and additional major hubs overlapping with the language network. In conclusion, atDCS modulates endogenous low-frequency oscillations in a distributed set of functionally connected brain areas, possibly inducing more efficient processing in critical task-relevant areas and improved behavioral performance. PMID:22302824

  19. Evaluating Reverse Speech as a Control Task with Language-Related Gamma Activity on Electrocorticography

    PubMed Central

    Brown, Erik C; Muzik, Otto; Rothermel, Robert; Matsuzaki, Naoyuki; Juhász, Csaba; Shah, Aashit K; Atkinson, Marie D; Fuerst, Darren; Mittal, Sandeep; Sood, Sandeep; Diwadkar, Vaibhav A; Asano, Eishi

    2012-01-01

    Reverse speech has often been used as a control task in brain-mapping studies of language utilizing various non-invasive modalities. The rationale is that reverse speech is comparable to forward speech in terms of auditory characteristics, while omitting the linguistic components. Thus, it may control for non-language auditory functions. This finds some support in fMRI studies indicating that reverse speech resulted in less blood-oxygen-level-dependent (BOLD) signal intensity in perisylvian regions than forward speech. We attempted to externally validate a reverse speech control task using intracranial electrocorticography (ECoG) in eight patients with intractable focal epilepsy. We studied adolescent and adult patients who underwent extraoperative ECoG prior to resective epilepsy surgery. All patients received an auditory language task during ECoG recording. Patients were presented 115 audible question stimuli, including 30 reverse speech trials. Reverse speech trials more strongly engaged bilateral superior temporal sites than did the corresponding forward speech trials. Forward speech trials elicited larger gamma-augmentation at frontal lobe sites not attributable to sensorimotor function. Other temporal and frontal sites of significant augmentation showed no significant difference between reverse and forward speech. Thus, we failed to validate reported evidence of weaker activation of temporal neocortices during reverse compared to forward speech. Superior temporal lobe engagement may indicate increased attention to reverse speech. Reverse speech does not appear to be a suitable task for the control of non-language auditory functions on ECoG. PMID:22387167

  20. Feature diagnosticity and task context shape activity in human scene-selective cortex.

    PubMed

    Lowe, Matthew X; Gallivan, Jason P; Ferber, Susanne; Cant, Jonathan S

    2016-01-15

    Scenes are constructed from multiple visual features, yet previous research investigating scene processing has often focused on the contributions of single features in isolation. In the real world, features rarely exist independently of one another and likely converge to inform scene identity in unique ways. Here, we utilize fMRI and pattern classification techniques to examine the interactions between task context (i.e., attend to diagnostic global scene features; texture or layout) and high-level scene attributes (content and spatial boundary) to test the novel hypothesis that scene-selective cortex represents multiple visual features, the importance of which varies according to their diagnostic relevance across scene categories and task demands. Our results show for the first time that scene representations are driven by interactions between multiple visual features and high-level scene attributes. Specifically, univariate analysis of scene-selective cortex revealed that task context and feature diagnosticity shape activity differentially across scene categories. Examination using multivariate decoding methods revealed results consistent with univariate findings, but also evidence for an interaction between high-level scene attributes and diagnostic visual features within scene categories. Critically, these findings suggest visual feature representations are not distributed uniformly across scene categories but are shaped by task context and feature diagnosticity. Thus, we propose that scene-selective cortex constructs a flexible representation of the environment by integrating multiple diagnostically relevant visual features, the nature of which varies according to the particular scene being perceived and the goals of the observer. PMID:26541082

  1. Prestimulus default mode activity influences depth of processing and recognition in an emotional memory task.

    PubMed

    Soravia, Leila M; Witmer, Joëlle S; Schwab, Simon; Nakataki, Masahito; Dierks, Thomas; Wiest, Roland; Henke, Katharina; Federspiel, Andrea; Jann, Kay

    2016-03-01

    Low self-referential thoughts are associated with better concentration, which leads to deeper encoding and increases learning and subsequent retrieval. There is evidence that being engaged in externally rather than internally focused tasks is related to low neural activity in the default mode network (DMN) promoting open mind and the deep elaboration of new information. Thus, reduced DMN activity should lead to enhanced concentration, comprehensive stimulus evaluation including emotional categorization, deeper stimulus processing, and better long-term retention over one whole week. In this fMRI study, we investigated brain activation preceding and during incidental encoding of emotional pictures and on subsequent recognition performance. During fMRI, 24 subjects were exposed to 80 pictures of different emotional valence and subsequently asked to complete an online recognition task one week later. Results indicate that neural activity within the medial temporal lobes during encoding predicts subsequent memory performance. Moreover, a low activity of the default mode network preceding incidental encoding leads to slightly better recognition performance independent of the emotional perception of a picture. The findings indicate that the suppression of internally-oriented thoughts leads to a more comprehensive and thorough evaluation of a stimulus and its emotional valence. Reduced activation of the DMN prior to stimulus onset is associated with deeper encoding and enhanced consolidation and retrieval performance even one week later. Even small prestimulus lapses of attention influence consolidation and subsequent recognition performance. PMID:26663662

  2. Modulation of brain activity during a Stroop inhibitory task by the kind of cognitive control required.

    PubMed

    Grandjean, Julien; D'Ostilio, Kevin; Phillips, Christophe; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Maquet, Pierre; Salmon, Eric; Collette, Fabienne

    2012-01-01

    This study used a proportion congruency manipulation in the Stroop task in order to investigate, at the behavioral and brain substrate levels, the predictions derived from the Dual Mechanisms of Control (DMC) account of two distinct modes of cognitive control depending on the task context. Three experimental conditions were created that varied the proportion congruency: mostly incongruent (MI), mostly congruent (MC), and mostly neutral (MN) contexts. A reactive control strategy, which corresponds to transient interference resolution processes after conflict detection, was expected for the rare conflicting stimuli in the MC context, and a proactive strategy, characterized by a sustained task-relevant focus prior to the occurrence of conflict, was expected in the MI context. Results at the behavioral level supported the proactive/reactive distinction, with the replication of the classic proportion congruent effect (i.e., less interference and facilitation effects in the MI context). fMRI data only partially supported our predictions. Whereas reactive control for incongruent trials in the MC context engaged the expected fronto-parietal network including dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex, proactive control in the MI context was not associated with any sustained lateral prefrontal cortex activations, contrary to our hypothesis. Surprisingly, incongruent trials in the MI context elicited transient activation in common with incongruent trials in the MC context, especially in DLPFC, superior parietal lobe, and insula. This lack of sustained activity in MI is discussed in reference to the possible involvement of item-specific rather than list-wide mechanisms of control in the implementation of a high task-relevant focus. PMID:22911806

  3. Simultaneous EEG-fMRI Reveals a Temporal Cascade of Task-Related and Default-Mode Activations During a Simple Target Detection Task

    PubMed Central

    Walz, Jennifer M.; Goldman, Robin I.; Carapezza, Michael; Muraskin, Jordan; Brown, Truman R.; Sajda, Paul

    2013-01-01

    Focused attention continuously and inevitably fluctuates, and to completely understand the mechanisms responsible for these modulations it is necessary to localize the brain regions involved. During a simple visual oddball task, neural responses measured by electroencephalography (EEG) modulate primarily with attention, but source localization of the correlates is a challenge. In this study we use single-trial analysis of simultaneously-acquired scalp EEG and functional magnetic resonance image (fMRI) data to investigate the blood oxygen level dependent (BOLD) correlates of modulations in task-related attention, and we unravel the temporal cascade of these transient activations. We hypothesize that activity in brain regions associated with various task-related cognitive processes modulates with attention, and that their involvements occur transiently in a specific order. We analyze the fMRI BOLD signal by first regressing out the variance linked to observed stimulus and behavioral events. We then correlate the residual variance with the trial-to-trial variation of EEG discriminating components for identical stimuli, estimated at a sequence of times during a trial. Post-stimulus and early in the trial, we find activations in right-lateralized frontal regions and lateral occipital cortex, areas that are often linked to task-dependent processes, such as attentional orienting, and decision certainty. After the behavioral response we see correlates in areas often associated with the default-mode network and introspective processing, including precuneus, angular gyri, and posterior cingulate cortex. Our results demonstrate that during simple tasks both task-dependent and default-mode networks are transiently engaged, with a distinct temporal ordering and millisecond timescale. PMID:23962956

  4. Reduced posterior parietal cortex activation after training on a visual search task.

    PubMed

    Bueichekú, Elisenda; Miró-Padilla, Anna; Palomar-García, María-Ángeles; Ventura-Campos, Noelia; Parcet, María-Antonia; Barrós-Loscertales, Alfonso; Ávila, César

    2016-07-15

    Gaining experience on a cognitive task improves behavioral performance and is thought to enhance brain efficiency. Despite the body of literature already published on the effects of training on brain activation, less research has been carried out on visual search attention processes under well controlled conditions. Thirty-six healthy adults divided into trained and control groups completed a pre-post letter-based visual search task fMRI study in one day. Twelve letters were used as targets and ten as distractors. The trained group completed a training session (840 trials) with half the targets between scans. The effects of training were studied at the behavioral and brain levels by controlling for repetition effects using both between-subjects (trained vs. control groups) and within-subject (trained vs. untrained targets) controls. The trained participants reduced their response speed by 31% as a result of training, maintaining their accuracy scores, whereas the control group hardly changed. Neural results revealed that brain changes associated with visual search training were circumscribed to reduced activation in the posterior parietal cortex (PPC) when controlling for group, and they included inferior occipital areas when controlling for targets. The observed behavioral and brain changes are discussed in relation to automatic behavior development. The observed training-related decreases could be associated with increased neural efficiency in specific key regions for task performance. PMID:27132048

  5. Dexamphetamine normalises electrophysiological activity in attention deficit-hyperactivity disorder during the Stroop task.

    PubMed

    Horrobin, S L; McNair, N A; Kirk, I J; Waldie, K E

    2007-10-01

    A case study was conducted to investigate whether dexamphetamine enhances interference control in an adult with attention deficit/hyperactivity disorder. Continuous electroencephalography was recorded both on and off dexamphetamine during performance on a Stroop task. An age-, gender- and IQ-matched control also completed the same task. Event related potentials for the control participant revealed a positive potential to incongruent stimuli between 270 and 440 ms, whereas for the participant with attention deficit/hyperactivity disorder off medication, the reverse polarity was observed in a later time window. Following administration of dexamphetamine, however, the event-related potentials for the incongruent condition closely resembled those in the control, suggesting that dexamphetamine successfully normalises electroencephalographic activity. PMID:18781428

  6. Defining feasible bounds on muscle activation in a redundant biomechanical task; practical implications of redundancy

    PubMed Central

    Sohn, M. Hongchul; McKay, J. Lucas; Ting, Lena H.

    2013-01-01

    Measured muscle activation patterns often vary significantly from musculoskeletal model predictions that use optimization to resolve redundancy. Although experimental muscle activity exhibits both inter- and intra-subject variability we lack adequate tools to quantify the biomechanical latitude that the nervous system has when selecting muscle activation patterns. Here, we identified feasible ranges of individual muscle activity during force production in a musculoskeletal model to quantify the degree to which biomechanical redundancy allows for variability in muscle activation patterns. In a detailed cat hindlimb model matched to the posture of three cats, we identified the lower and upper bounds on muscle activity in each of 31 muscles during static endpoint force production across different force directions and magnitudes. Feasible ranges of muscle activation were relatively unconstrained across force magnitudes such that only a few (0∼13%) muscles were found to be truly “necessary” (e.g. exhibited non-zero lower bounds) at physiological force ranges. Most muscles were “optional” having zero lower bounds, and frequently had “maximal” upper bounds as well. Moreover, “optional” muscles were never selected by optimization methods that either minimized muscle stress, or that scaled the pattern required for maximum force generation. Therefore, biomechanical constraints were generally insufficient to restrict or specify muscle activation levels for producing a force in a given direction, and many muscle patterns exist that could deviate substantially from one another but still achieve the task. Our approach could be extended to identify the feasible limits of variability in muscle activation patterns in dynamic tasks such as walking. PMID:23489436

  7. Activity recognition of assembly tasks using body-worn microphones and accelerometers.

    PubMed

    Ward, Jamie A; Lukowicz, Paul; Tröster, Gerhard; Starner, Thad E

    2006-10-01

    In order to provide relevant information to mobile users, such as workers engaging in the manual tasks of maintenance and assembly, a wearable computer requires information about the user's specific activities. This work focuses on the recognition of activities that are characterized by a hand motion and an accompanying sound. Suitable activities can be found in assembly and maintenance work. Here, we provide an initial exploration into the problem domain of continuous activity recognition using on-body sensing. We use a mock "wood workshop" assembly task to ground our investigation. We describe a method for the continuous recognition of activities (sawing, hammering, filing, drilling, grinding, sanding, opening a drawer, tightening a vise, and turning a screwdriver) using microphones and three-axis accelerometers mounted at two positions on the user's arms. Potentially "interesting" activities are segmented from continuous streams of data using an analysis of the sound intensity detected at the two different locations. Activity classification is then performed on these detected segments using linear discriminant analysis (LDA) on the sound channel and hidden Markov models (HMMs) on the acceleration data. Four different methods at classifier fusion are compared for improving these classifications. Using user-dependent training, we obtain continuous average recall and precision rates (for positive activities) of 78 percent and 74 percent, respectively. Using user-independent training (leave-one-out across five users), we obtain recall rates of 66 percent and precision rates of 63 percent. In isolation, these activities were recognized with accuracies of 98 percent, 87 percent, and 95 percent for the user-dependent, user-independent, and user-adapted cases, respectively. PMID:16986539

  8. A methodology for assessing the effect of correlations among muscle synergy activations on task-discriminating information

    PubMed Central

    Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano

    2013-01-01

    Muscle synergies have been hypothesized to be the building blocks used by the central nervous system to generate movement. According to this hypothesis, the accomplishment of various motor tasks relies on the ability of the motor system to recruit a small set of synergies on a single-trial basis and combine them in a task-dependent manner. It is conceivable that this requires a fine tuning of the trial-to-trial relationships between the synergy activations. Here we develop an analytical methodology to address the nature and functional role of trial-to-trial correlations between synergy activations, which is designed to help to better understand how these correlations may contribute to generating appropriate motor behavior. The algorithm we propose first divides correlations between muscle synergies into types (noise correlations, quantifying the trial-to-trial covariations of synergy activations at fixed task, and signal correlations, quantifying the similarity of task tuning of the trial-averaged activation coefficients of different synergies), and then uses single-trial methods (task-decoding and information theory) to quantify their overall effect on the task-discriminating information carried by muscle synergy activations. We apply the method to both synchronous and time-varying synergies and exemplify it on electromyographic data recorded during performance of reaching movements in different directions. Our method reveals the robust presence of information-enhancing patterns of signal and noise correlations among pairs of synchronous synergies, and shows that they enhance by 9–15% (depending on the set of tasks) the task-discriminating information provided by the synergy decompositions. We suggest that the proposed methodology could be useful for assessing whether single-trial activations of one synergy depend on activations of other synergies and quantifying the effect of such dependences on the task-to-task differences in muscle activation patterns. PMID

  9. An air bearing fan for EVA suit ventilation

    NASA Technical Reports Server (NTRS)

    Murry, Roger P.

    1990-01-01

    The portable life-support system (PLSS) ventilation requirements are outlined, along with the application of a high-speed axial fan technology for extravehicular-activity (EVA) space-suit ventilation. Focus is placed on a mechanical design employing high-speed gas bearings, permanent magnet rotor, and current-fed chopper/inverter electronics. The operational characteristics of the fan unit and its applicability for use in a pure-oxygen environment are discussed. It delivers a nominal 0.17 cu m/min at 1.24 kPa pressure rise using 13.8 w of input power. It is shown that the overall selection of materials for all major component meets the NASA requirements.

  10. The effect of task-oriented training on the muscle activation of the upper extremity in chronic stroke patients.

    PubMed

    Park, JuHyung

    2016-04-01

    [Purpose] The aim of this study was to determine the effects of task-oriented training on upper extremity muscle activation in daily activities performed by chronic stoke patients. [Subjects and Methods] In this research, task-oriented training was conducted by 2 chronic hemiplegic stroke patients. Task-oriented training was conducted 5 times a week, 30 minutes per day, for 2 weeks. Evaluation was conducted 3 times before and after the intervention. The Change of muscle activation in the upper extremity was measured using a BTS FreeEMG 300. [Results] The subjects' root mean square values for agonistic muscles for the reaching activity increased after the intervention. All subjects' co-coordination ratios decreased after the intervention in all movements of reaching activity. [Conclusion] Through this research, task-oriented training was proven to be effective in improving the muscle activation of the upper extremity in chronic hemiplegic stroke patients. PMID:27190488

  11. The effect of task-oriented training on the muscle activation of the upper extremity in chronic stroke patients

    PubMed Central

    Park, JuHyung

    2016-01-01

    [Purpose] The aim of this study was to determine the effects of task-oriented training on upper extremity muscle activation in daily activities performed by chronic stoke patients. [Subjects and Methods] In this research, task-oriented training was conducted by 2 chronic hemiplegic stroke patients. Task-oriented training was conducted 5 times a week, 30 minutes per day, for 2 weeks. Evaluation was conducted 3 times before and after the intervention. The Change of muscle activation in the upper extremity was measured using a BTS FreeEMG 300. [Results] The subjects’ root mean square values for agonistic muscles for the reaching activity increased after the intervention. All subjects’ co-coordination ratios decreased after the intervention in all movements of reaching activity. [Conclusion] Through this research, task-oriented training was proven to be effective in improving the muscle activation of the upper extremity in chronic hemiplegic stroke patients. PMID:27190488

  12. Ventrolateral prefrontal activation during a N-back task assessed with multichannel functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Zhu, Ye; Jiang, Tianzi

    2007-05-01

    Functional near-infrared spectroscopy (fNIRS) has been used to investigate the changes in the concentration of oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin in brain issue during several cognitive tasks. In the present study, by means of multichannel dual wavelength light-emitting diode continuous-wave (CW) NIRS, we investigated the blood oxygenation changes of prefrontal cortex in 18 healthy subjects while performing a verbal n-back task (0-back and 2-back), which has been rarely investigated by fNIRS. Compared to the 0-back task (control task), we found a significant increase of O2Hb and total amount of hemoglobin (THb) in left and right ventrolateral prefrontal cortex (VLPFC) during the execution of the 2-back task compared to the 0-back task (p<0.05, FDR corrected). This result is consistent with the previous functional neuroimaging studies that have found the VLPFC activation related to verbal working memory. However, we found no significant hemisphere dominance. In addition, the effects of gender and its interaction with task performance on O2Hb concentration change were suggested in the present study. Our findings not only confirm that multichannel fNIRS is suitable to detect spatially specific activation during the performance of cognitive tasks; but also suggest that it should be cautious of gender-dependent difference in cerebral activation when interpreting the fNIRS data during cognitive tasks.

  13. Patterns of Brain Activation in Foster Children and Nonmaltreated Children During an Inhibitory Control Task

    PubMed Central

    Bruce, Jacqueline; Fisher, Philip A.; Graham, Alice M.; Moore, William E.; Peake, Shannon J.; Mannering, Anne M.

    2012-01-01

    Children in foster care have often encountered a range of adverse experiences, including neglectful and/or abusive care and multiple caregiver transitions. Prior research findings suggest that such experiences negatively affect inhibitory control and the underlying neural circuitry. In the current study, event-related functional magnetic resonance imaging (fMRI) was employed during a go/no go task that assesses inhibitory control to compare the behavioral performance and brain activation of foster children and nonmaltreated children. The sample included two groups of 9- to 12-year-old children: 11 maltreated foster children and 11 nonmaltreated children living with their biological parents. There were no significant group differences on behavioral performance on the task. In contrast, patterns of brain activation differed by group. The nonmaltreated children demonstrated stronger activation than the foster children across several regions including the right anterior cingulate cortex, middle frontal gyrus, and right lingual gyrus during correct no go trials, whereas the foster children displayed stronger activation than the nonmaltreated children in the left inferior parietal lobule and right superior occipital cortex including the lingual gyrus and cuneus during incorrect no go trials. These results provide preliminary evidence that the early adversity experienced by foster children impacts the neural substrates of inhibitory control. PMID:24229540

  14. Type 1 Diabetes Modifies Brain Activation in Young Patients While Performing Visuospatial Working Memory Tasks

    PubMed Central

    Gallardo-Moreno, Geisa B.; González-Garrido, Andrés A.; Gudayol-Ferré, Esteban; Guàrdia-Olmos, Joan

    2015-01-01

    In recent years, increasing attention has been paid to the effects of Type 1 Diabetes (T1D) on cognitive functions. T1D onset usually occurs during childhood, so it is possible that the brain could be affected during neurodevelopment. We selected young patients of normal intelligence with T1D onset during neurodevelopment, no complications from diabetes, and adequate glycemic control. The purpose of this study was to compare the neural BOLD activation pattern in a group of patients with T1D versus healthy control subjects while performing a visuospatial working memory task. Sixteen patients and 16 matched healthy control subjects participated. There was no significant statistical difference in behavioral performance between the groups, but, in accordance with our hypothesis, results showed distinct brain activation patterns. Control subjects presented the expected activations related to the task, whereas the patients had greater activation in the prefrontal inferior cortex, basal ganglia, posterior cerebellum, and substantia nigra. These different patterns could be due to compensation mechanisms that allow them to maintain a behavioral performance similar to that of control subjects. PMID:26266268

  15. Patterns of brain activation in foster children and nonmaltreated children during an inhibitory control task.

    PubMed

    Bruce, Jacqueline; Fisher, Philip A; Graham, Alice M; Moore, William E; Peake, Shannon J; Mannering, Anne M

    2013-11-01

    Children in foster care have often encountered a range of adverse experiences, including neglectful and/or abusive care and multiple caregiver transitions. Prior research findings suggest that such experiences negatively affect inhibitory control and the underlying neural circuitry. In the current study, event-related functional magnetic resonance imaging was employed during a go/no go task that assesses inhibitory control to compare the behavioral performance and brain activation of foster children and nonmaltreated children. The sample included two groups of 9- to 12-year-old children: 11 maltreated foster children and 11 nonmaltreated children living with their biological parents. There were no significant group differences on behavioral performance on the task. In contrast, patterns of brain activation differed by group. The nonmaltreated children demonstrated stronger activation than did the foster children across several regions, including the right anterior cingulate cortex, the middle frontal gyrus, and the right lingual gyrus, during correct no go trials, whereas the foster children displayed stronger activation than the nonmaltreated children in the left inferior parietal lobule and the right superior occipital cortex, including the lingual gyrus and cuneus, during incorrect no go trials. These results provide preliminary evidence that the early adversity experienced by foster children impacts the neural substrates of inhibitory control. PMID:24229540

  16. Brain activity during a visuospatial working memory task predicts arithmetical performance 2 years later.

    PubMed

    Dumontheil, Iroise; Klingberg, Torkel

    2012-05-01

    Visuospatial working memory (WM) capacity is highly correlated with mathematical reasoning abilities and can predict future development of arithmetical performance. Activity in the intraparietal sulcus (IPS) during visuospatial WM tasks correlates with interindividual differences in WM capacity. This region has also been implicated in numerical representation, and its structure and activity reflect arithmetical performance impairments (e.g., dyscalculia). We collected behavioral (N = 246) and neuroimaging data (N = 46) in a longitudinal sample to test whether IPS activity during a visuospatial WM task could provide more information than psychological testing alone and predict arithmetical performance 2 years later in healthy participants aged 6-16 years. Nonverbal reasoning and verbal and visuospatial WM measures were found to be independent predictors of arithmetical outcome. In addition, WM activation in the left IPS predicted arithmetical outcome independently of behavioral measures. A logistic model including both behavioral and imaging data showed improved sensitivity by correctly classifying more than twice as many children as poor arithmetical performers after 2 years than a model with behavioral measures only. These results demonstrate that neuroimaging data can provide useful information in addition to behavioral assessments and be used to improve the identification of individuals at risk of future low academic performance. PMID:21768226

  17. Differential effects of bupropion on acquisition and performance of an active avoidance task in male mice.

    PubMed

    Gómez, M C; Redolat, R; Carrasco, M C

    2016-03-01

    Bupropion is an antidepressant drug that is known to aid smoking cessation, although little experimental evidence exists about its actions on active avoidance learning tasks. Our aim was to evaluate the effects of this drug on two-way active avoidance conditioning. In this study, NMRI mice received bupropion (10, 20 and 40mg/kg) or saline before a daily training session (learning phase, days 1-4) in the active avoidance task. Performance was evaluated on the fifth day (retention phase): in each bupropion-treated group half of the mice continued with the same dose of bupropion, and the other half received saline. Among the vehicle-treated mice, different sub-groups were challenged with different doses of bupropion. Results indicated that mice treated with 10 and 20mg/kg bupropion exhibited more number of avoidances during acquisition. The response latency confirmed this learning improvement, since this parameter decreased after bupropion administration. No differences between groups were observed in the retention phase. In conclusion, our data show that bupropion influences the learning process during active avoidance conditioning, suggesting that this drug can improve the control of emotional responses. PMID:26688488

  18. Measurement of Brain Activation During an Upright Stepping Reaction Task Using Functional Near-Infrared Spectroscopy

    PubMed Central

    Huppert, Theodore; Schmidt, Benjamin; Beluk, Nancy; Furman, Joseph; Sparto, Patrick

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging technology that uses light to measure changes in cortical hemoglobin concentrations. FNIRS measurements are recorded through fiber optic cables, which allow the participant to wear the fNIRS sensors while standing upright. Thus, fNIRS technology is well suited to study cortical brain activity during upright balance, stepping, and gait tasks. In this study, fNIRS was used to measure changes in brain activation from the frontal, motor, and premotor brain regions during an upright step task that required subjects to step laterally in response to visual cues that required executive function control. We hypothesized that cognitive processing during complex stepping cues would elicit brain activation of the frontal cortex in areas involved in cognition. Our results show increased prefrontal activation associated with the processing of the stepping cues. Moreover, these results demonstrate the potential to use fNIRS to investigate cognitive processing during cognitively demanding balance and gait studies. Hum Brain Mapp 34:2817–2828, 2013. VC 2012 Wiley Periodicals, Inc. PMID:23161494

  19. EVA Hazards due to TPS Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Stewart, Christine E.

    2007-01-01

    Tile inspection and repair activities have implicit hazards associated with them. When an Extra Vehicular Activities (EVA) crewmember and associated hardware are added into the equation, additional hazards are introduced. Potential hazards to the Extravehicular Mobility Unit (EMU), the Orbiter or the crew member themselves are created. In order to accurately assess the risk of performing a TPS inspection or repair, an accurate evaluation of potential hazards and how adequately these hazards are controlled is essential. The EMU could become damaged due to sharp edges, protrusions, thermal extremes, molten metal or impact with the Orbiter. Tools, tethers and the presence of a crew member in the vicinity of the Orbiter Thermal Protection System (TPS) pose hazards to the Orbiter. Hazards such as additional tile or Reinforced Carbon-Carbon (RCC) damage from a loose tool, safety tethers, crewmember or arm impact are introduced. Additionally, there are hazards to the crew which should be addressed. Crew hazards include laser injury, electrical shock, inability to return to the airlock for EMU failures or Orbiter rapid safing scenarios, as well as the potential inadvertent release of a crew member from the arm/boom. The aforementioned hazards are controlled in various ways. Generally, these controls are addressed operationally versus by design, as the majority of the interfaces are to the Orbiter and the Orbiter design did not originally account for tile repair. The Shuttle Remote Manipulator System (SRMS), for instance, was originally designed to deploy experiments, and therefore has insufficient design controls for retention of the Orbiter Boom Sensor System (OBSS). Although multiple methods to repair the Orbiter TPS exist, the majority of the hazards are applicable no matter which specific repair method is being performed. TPS Inspection performed via EVA also presents some of the same hazards. Therefore, the hazards common to all TPS inspection or repair methods will

  20. Effect of STS space suit on astronaut dominant upper limb EVA work performance

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.

    1987-01-01

    The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.

  1. Next Generation Life Support (NGLS): High Performance EVA Glove (HPEG) Technology Development Element

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah; Barta, Daniel; Stephan, Ryan; Gaddis, Stephen

    2015-01-01

    The overall objective is to develop advanced gloves for extra vehicular activity (EVA) for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. The glove prototypes that result from the successful completion of this technology development activity will be delivered to NASA's Human Exploration Operations Mission Directorate (HEOMD) and ultimately to be included in an integrated test with the next generation spacesuit currently under development.

  2. First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit

    NASA Technical Reports Server (NTRS)

    Meade, Carl J.

    1995-01-01

    The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.

  3. Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups

    NASA Technical Reports Server (NTRS)

    Rabel, Emily; Aitchison, Lindsay

    2015-01-01

    During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

  4. Upper extremity coordination strategies depending on task demand during a basic daily activity.

    PubMed

    Ricci, Flávia Pessoni F M; Santiago, Paulo Roberto Pereira; Zampar, Ana Carolina; Pinola, Lívia Nahas; Fonseca, Marisa de Cássia Registro

    2015-10-01

    Injury conditions affecting the upper extremity may lead to severe functional impairment and an accurate evaluation is needed in order to select the most effective treatment in a rehabilitation program. This study focused on simultaneous electromyographic and kinematic analysis to assess movement patterns of upper extremity during a basic daily activity, considering different demands existing within the task. Twenty-five healthy subjects, average age 19.8 ys SD 1.7 ys, with no upper extremity impairment, were assessed by means of electromyography (EMG) and a 3D motion capture system while performing a task that required reach, transport and release. Integrated EMG (iEMG), timing of muscle onset and active range of motion (AROM) were calculated for each subject. Data were compared within each phase and between the three phases and a repeated measure ANOVA was used for statistical analysis. We found early activation of upper trapezius associated with high activity of serratus anterior for proximal stability while anterior deltoid and triceps brachii performed shoulder flexion and elbow extension, in Reach phase. In Transport phase there was early and higher activation of upper trapezius, higher muscle activity of almost all muscles and increased AROM of all joints. No change in flexion/extension wrist posture with increased forearm muscles activity were identified as the main control strategy to keep optimal grasping. Triceps brachii was found to act as an important synergist in shoulder abduction and extension in free load conditions. Such information can lead clinicians to more specific assessment and subsequent better intervention in upper extremity rehabilitation. PMID:26282047

  5. Experiments with an EVA Assistant Robot

    NASA Technical Reports Server (NTRS)

    Burridge, Robert R.; Graham, Jeffrey; Shillcutt, Kim; Hirsh, Robert; Kortenkamp, David

    2003-01-01

    Human missions to the Moon or Mars will likely be accompanied by many useful robots that will assist in all aspects of the mission, from construction to maintenance to surface exploration. Such robots might scout terrain, carry tools, take pictures, curate samples, or provide status information during a traverse. At NASA/JSC, the EVA Robotic Assistant (ERA) project has developed a robot testbed for exploring the issues of astronaut-robot interaction. Together with JSC's Advanced Spacesuit Lab, the ERA team has been developing robot capabilities and testing them with space-suited test subjects at planetary surface analog sites. In this paper, we describe the current state of the ERA testbed and two weeks of remote field tests in Arizona in September 2002. A number of teams with a broad range of interests participated in these experiments to explore different aspects of what must be done to develop a program for robotic assistance to surface EVA. Technologies explored in the field experiments included a fuel cell, new mobility platform and manipulator, novel software and communications infrastructure for multi-agent modeling and planning, a mobile science lab, an "InfoPak" for monitoring the spacesuit, and delayed satellite communication to a remote operations team. In this paper, we will describe this latest round of field tests in detail.

  6. Heat shrinkage of electron beam modified EVA

    NASA Astrophysics Data System (ADS)

    Datta, Sujit K.; Chaki, T. K.; Tikku, V. K.; Pradhan, N. K.; Bhowmick, A. K.

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%.

  7. EVA mouthguards: how thick should they be?

    PubMed

    Westerman, Bill; Stringfellow, Peter M; Eccleston, John A

    2002-02-01

    A major consideration in the performance of mouthguards is their ability to absorb energy and reduce transmitted forces when impacted. This is especially important to participants in contact sports such as hockey or football. The thickness of mouthguard materials is directly related to energy absorption and inversely related to transmitted forces when impacted. However, wearer comfort is also an important factor in their use. Thicker mouthguards are not user-friendly. While thickness of material over incisal edges and cusps of teeth is critical, just how thick should a mouthguard be and especially in these two areas? Transmitted forces through different thicknesses of the most commonly used mouthguard material, ethylene vinyl acetate (EVA) (Shore A Hardness of 80) were compared when impacted with identical forces which were capable of damaging the oro-facial complex. The constant impact force used in the tests was produced by a pendulum and had an energy of 4.4 joules and a velocity of 3 meters per second. Improvements in energy absorption and reductions in transmitted forces were observed with increasing thickness. However, these improvements lessened when the mouthguard material thickness was greater than 4 mm. The results show that the optimal thickness for EVA mouthguard material with a Shore A Hardness of 80 is around 4 mm. Increased thickness, while improving performance marginally, results in less wearer comfort and acceptance. PMID:11841462

  8. Reduced prefrontal activation during performance of the Iowa Gambling Task in patients with bipolar disorder.

    PubMed

    Ono, Yasuki; Kikuchi, Mitsuru; Hirosawa, Tetsu; Hino, Shoryoku; Nagasawa, Tatsuya; Hashimoto, Takanori; Munesue, Toshio; Minabe, Yoshio

    2015-07-30

    The Iowa Gambling Task (IGT) is a complex decision-making task in which monetary wins and losses guide the development of strategies. The objective of this study was to evaluate hemodynamic responses of patients with bipolar disorder (BD) during performance of the IGT using near-infrared spectroscopy (NIRS). Participants comprised 13 patients and 15 healthy control subjects who were matched for age, sex, handedness, and intelligence quotient. Relative changes in oxygenated and deoxygenated hemoglobin (oxy-Hb and deoxy-Hb) levels in the frontal region were measured using a 46-channel NIRS system. All subjects were evaluated using NIRS during a verbal fluency task (VFT) and the IGT. During performance of the IGT, BD patients showed significantly decreased oxy-Hb levels in the bilateral orbitofrontal cortex (OFC) and left prefrontal cortex (PFC) compared with normal control subjects. However, during the VFT, patients with BD showed no significant changes in oxy-Hb levels compared with control subjects. Changes in oxy-Hb levels in the bilateral OFC and the PFC during the IGT were negatively correlated with total scores on the Hamilton Rating Scale for Depression (HAM-D). Although the IGT was useful for differentiating patients with BP from control subjects, no significant differences in autonomic activity were observed. PMID:25978934

  9. Adhesion Strength Study of EVA Encapsulants on Glass Substrates

    SciTech Connect

    Pern, F. J.; Glick, S. H.

    2003-05-01

    An extensive peel-test study was conducted to investigate the various factors that may affect the adhesion strength of photovoltaic module encapsulants, primarily ethylene-vinyl acetate (EVA), on glass substrates of various laminates based on a common configuration of glass/encapsulant/backfoil. The results show that"pure" or"absolute" adhesion strength of EVA-to-glass was very difficult to obtain because of tensile deformation of the soft, semi-elastic EVA layer upon pulling. A mechanically"strong enough" backing foil on the EVA was critical to achieving the"apparent" adhesion strength. Peel test method with a 90-degree-pull yielded similar results to a 180-degree-pull. The 90-degree-pull method better revealed the four stages of delamination failure of the EVA/backfoil layers. The adhesion strength is affected by a number of factors, which include EVA type, formulation, backfoil type and manufacturing source, glass type, and surface priming treatment on the glass surface or on the backfoil. Effects of the glass-cleaning method and surface texture are not obvious. Direct priming treatments used in the work did not improve, or even worsened, the adhesion. Aging of EVA by storage over~5 years reduced notably the adhesion strength. Lower adhesion strengths were observed for the blank (unformulated) EVA and non-EVA copolymers, such as poly(ethylene-co-methacrylate) (PEMA) or poly(ethylene-co-butylacrylate) (PEBA). Their adhesion strengths increased if the copolymers were cross-linked. Transparent fluoropolymer superstrates such as TefzelTM and DureflexTM films used for thin-film PV modules showed low adhesion strengths to the EVA at a level of~2 N/mm.

  10. In Vivo Noninvasive Analysis of Human Forearm Muscle Function and Fatigue: Applications to EVA Operations and Training Maneuvers

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Marshburn, T.; Quast, M. J.; Feeback, D. L.

    1999-01-01

    Forearm muscle fatigue is one of the major limiting factors affecting endurance during performance of deep-space extravehicular activity (EVA) by crew members. Magnetic resonance (MR) provides in vivo noninvasive analysis of tissue level metabolism and fluid exchange dynamics in exercised forearm muscles through the monitoring of proton magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (P-31-MRS) parameter variations. Using a space glove box and EVA simulation protocols, we conducted a preliminary MRS/MRI study in a small group of human test subjects during submaximal exercise and recovery and following exhaustive exercise. In assessing simulated EVA-related muscle fatigue and function, this pilot study revealed substantial changes in the MR image longitudinal relaxation times (T2) as an indicator of specific muscle activation and proton flux as well as changes in spectral phosphocreatine-to-phosphate (PCr/Pi) levels as a function of tissue bioenergetic potential.

  11. Temporal evolution of oscillatory activity predicts performance in a choice-reaction time reaching task.

    PubMed

    Perfetti, Bernardo; Moisello, Clara; Landsness, Eric C; Kvint, Svetlana; Pruski, April; Onofrj, Marco; Tononi, Giulio; Ghilardi, M Felice

    2011-01-01

    In this study, we characterized the patterns and timing of cortical activation of visually guided movements in a task with critical temporal demands. In particular, we investigated the neural correlates of motor planning and on-line adjustments of reaching movements in a choice-reaction time task. High-density electroencephalography (EEG, 256 electrodes) was recorded in 13 subjects performing reaching movements. The topography of the movement-related spectral perturbation was established across five 250-ms temporal windows (from prestimulus to postmovement) and five frequency bands (from theta to beta). Nine regions of interest were then identified on the scalp, and their activity was correlated with specific behavioral outcomes reflecting motor planning and on-line adjustments. Phase coherence analysis was performed between selected sites. We found that motor planning and on-line adjustments share similar topography in a fronto-parietal network, involving mostly low frequency bands. In addition, activities in the high and low frequency ranges have differential function in the modulation of attention with the former reflecting the prestimulus, top-down processes needed to promote timely responses, and the latter the planning and control of sensory-motor processes. PMID:21047934

  12. Neural activity in monkey amygdala during performance of a multisensory operant task.

    PubMed

    Montes-Lourido, Pilar; Vicente, Ana F; Bermudez, Maria A; Gonzalez, Francisco

    2015-09-01

    In this paper, we study the potential involvement of monkey amygdala in the evaluation of value encoding of visual and auditive stimuli associated with reward or no reward. We recorded the activity of 93 extracellular neurons from the monkey right amygdala, while performing a multisensory operant task. The activity of 78 task-related neurons was studied. Of these, 13 neurons (16%) responded to the value of visual stimuli, 22 neurons (28%) responded after the presentation of visual stimuli, 22 neurons (28%) showed an inhibition around the lever-pressing and were classified as action related neurons and 22 neurons (28%) responded after reward delivery. These findings suggest that neurons in the amygdala play a role in encoding value and processing visual information, participate in motor regulation and are sensitive to reward. The activity of these neurons did not change in the evaluation of auditive stimuli. These data support the hypothesis that amygdala neurons are specific to each sensory modality and that different groups of amygdala neurons process visual and auditive information. PMID:26246438

  13. Intrinsic and Task-Dependent Coupling of Neuronal Population Activity in Human Parietal Cortex

    PubMed Central

    Foster, Brett L.; Rangarajan, Vinitha; Shirer, William R.; Parvizi, Josef

    2015-01-01

    Summary Human neuroimaging studies have suggested that subregions of the medial and lateral parietal cortex form key nodes of a larger brain network supporting episodic memory retrieval. To explore the electrophysiological correlates of functional connectivity between these subregions, we recorded simultaneously from medial and lateral parietal cortex using intracranial electrodes in three human subjects. We observed electrophysiological co-activation of retrosplenial/posterior cingulate cortex (RSC/PCC) and angular gyrus (AG) in the high frequency broadband (HFB, or high-gamma) range, for conditions that required episodic retrieval. During resting and sleeping states, slow fluctuations (< 1 Hz) of HFB activity were highly correlated between these task-co-activated neuronal populations. Furthermore, intrinsic electrophysiological connectivity patterns matched those obtained with resting state functional magnetic resonance imaging (fMRI) from the same subjects. Our findings quantify the spatiotemporal dynamics of parietal cortex during episodic memory retrieval and provide clear neurophysiological correlates of intrinsic and task-dependent functional connectivity in the human brain. PMID:25863718

  14. Disentangling stereotype activation and stereotype application in the stereotype misperception task.

    PubMed

    Krieglmeyer, Regina; Sherman, Jeffrey W

    2012-08-01

    When forming impressions about other people, stereotypes about the individual's social group often influence the resulting impression. At least 2 distinguishable processes underlie stereotypic impression formation: stereotype activation and stereotype application. Most previous research has used implicit measures to assess stereotype activation and explicit measures to assess stereotype application, which has several disadvantages. The authors propose a measure of stereotypic impression formation, the stereotype misperception task (SMT), together with a multinomial model that quantitatively disentangles the contributions of stereotype activation and application to responses in the SMT. The validity of the SMT and of the multinomial model was confirmed in 5 studies. The authors hope to advance research on stereotyping by providing a measurement tool that separates multiple processes underlying impression formation. PMID:22663350

  15. Goal striving strategies and effort mobilization: When implementation intentions reduce effort-related cardiac activity during task performance.

    PubMed

    Freydefont, Laure; Gollwitzer, Peter M; Oettingen, Gabriele

    2016-09-01

    Two experiments investigate the influence of goal and implementation intentions on effort mobilization during task performance. Although numerous studies have demonstrated the beneficial effects of setting goals and making plans on performance, the effects of goals and plans on effort-related cardiac activity and especially the cardiac preejection period (PEP) during goal striving have not yet been addressed. According to the Motivational Intensity Theory, participants should increase effort mobilization proportionally to task difficulty as long as success is possible and justified. Forming goals and making plans should allow for reduced effort mobilization when participants perform an easy task. However, when the task is difficult, goals and plans should differ in their effect on effort mobilization. Participants who set goals should disengage, whereas participants who made if-then plans should stay in the field showing high effort mobilization during task performance. As expected, using an easy task in Experiment 1, we observed a lower cardiac PEP in both the implementation intention and the goal intention condition than in the control condition. In Experiment 2, we varied task difficulty and demonstrated that while participants with a mere goal intention disengaged from difficult tasks, participants with an implementation intention increased effort mobilization proportionally with task difficulty. These findings demonstrate the influence of goal striving strategies (i.e., mere goals vs. if-then plans) on effort mobilization during task performance. PMID:27374255

  16. Effects of task complexity on activation of language areas in a semantic decision fMRI protocol.

    PubMed

    Lopes, Tátila Martins; Yasuda, Clarissa Lin; Campos, Brunno Machado de; Balthazar, Marcio L F; Binder, Jeffrey R; Cendes, Fernando

    2016-01-29

    Language tasks used for clinical fMRI studies may be too complex for some patients with cognitive impairments, and "easier" versions are sometimes substituted, though the effects on brain activity of such changes in task complexity are largely unknown. To investigate these differences, we compared two versions of an fMRI language comprehension protocol, with different levels of difficulty, in 24 healthy right-handed adults. The protocol contrasted an auditory word comprehension task (semantic decision) with a nonspeech control task using tone sequences (tone decision). In the "complex" version (CV), the semantic decision task required two complex semantic decisions for each word, and the tone decision task required the participant to count the number of target tones in each sequence. In the "easy" version (EV), the semantic task required only a single easier decision, and the tone task required only detection of the presence or absence of a target tone in each sequence. The protocols were adapted for a Brazilian population. Typical left hemisphere language lateralization was observed in 92% of participants for both CV and EV using the whole-brain lateralization index, and typical language lateralization was also observed for others regions of interest. Task performance was superior on the EV compared to the CV (p=0.014). There were many common areas of activation across the two version; however, the CV produced greater activation in the left superior and middle frontal giri, angular gyrus, and left posterior cingulate gyrus compared to the EV, the majority of which are areas previously identified with language and semantic processing. The EV produced stronger activation only in a small area in the posterior middle temporal gyrus. These results reveal differences between two versions of the protocol and provide evidence that both are useful for language lateralization and worked well for Brazilian population. The complex version produces stronger activation in

  17. Biomedical Support of U.S. Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Dervay, J. P.; Gillis, D.; McMann, H. J.; Thomas, K. S.

    2007-01-01

    The world's first extravehicular activity (EVA) was performed by A. A. Leonov on March 18, 1965 during the Russian Voskhod-2 mission. The first US EVA was executed by Gemini IV astronaut Ed White on June 3, 1965, with an umbilical tether that included communications and an oxygen supply. A hand-held maneuvering unit (HHMU) also was used to test maneuverability during the brief EVA; however the somewhat stiff umbilical limited controlled movement. That constraint, plus difficulty returning through the vehicle hatch, highlighted the need for increased thermal control and improved EVA ergonomics. Clearly, requirements for a useful EVA were interrelated with the vehicle design. The early Gemini EVAs generated requirements for suits providing micro-meteor protection, adequate visual field and eye protection from solar visual and infrared radiation, gloves optimized for dexterity while pressurized, and thermal systems capable of protecting the astronaut while rejecting metabolic heat during high workloads. Subsequent Gemini EVAs built upon this early experience and included development of a portable environmental control and life support systems (ECLSS) and an astronaut maneuvering unit. The ECLSS provided a pressure vessel and controller with functional control over suit pressure, oxygen flow, carbon dioxide removal, humidity, and temperature control. Gemini EVA experience also identified the usefulness of underwater neutral buoyancy and altitude chamber task training, and the importance of developing reliable task timelines. Improved thermal management and carbon dioxide control also were required for high workload tasks. With the Apollo project, EVA activity was primarily on the lunar surface; and suit durability, integrated liquid cooling garments, and low suit operating pressures (3.75 pounds per square inch absolute [psia] or 25.8 kilopascal [kPa],) were required to facilitate longer EVAs with ambulation and significant physical workloads with average metabolic

  18. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    NASA Astrophysics Data System (ADS)

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo

    2015-12-01

    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals.

  19. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    PubMed Central

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo

    2015-01-01

    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals. PMID:26632763

  20. Classification of autistic individuals and controls using cross-task characterization of fMRI activity.

    PubMed

    Chanel, Guillaume; Pichon, Swann; Conty, Laurence; Berthoz, Sylvie; Chevallier, Coralie; Grèzes, Julie

    2016-01-01

    Multivariate pattern analysis (MVPA) has been applied successfully to task-based and resting-based fMRI recordings to investigate which neural markers distinguish individuals with autistic spectrum disorders (ASD) from controls. While most studies have focused on brain connectivity during resting state episodes and regions of interest approaches (ROI), a wealth of task-based fMRI datasets have been acquired in these populations in the last decade. This calls for techniques that can leverage information not only from a single dataset, but from several existing datasets that might share some common features and biomarkers. We propose a fully data-driven (voxel-based) approach that we apply to two different fMRI experiments with social stimuli (faces and bodies). The method, based on Support Vector Machines (SVMs) and Recursive Feature Elimination (RFE), is first trained for each experiment independently and each output is then combined to obtain a final classification output. Second, this RFE output is used to determine which voxels are most often selected for classification to generate maps of significant discriminative activity. Finally, to further explore the clinical validity of the approach, we correlate phenotypic information with obtained classifier scores. The results reveal good classification accuracy (range between 69% and 92.3%). Moreover, we were able to identify discriminative activity patterns pertaining to the social brain without relying on a priori ROI definitions. Finally, social motivation was the only dimension which correlated with classifier scores, suggesting that it is the main dimension captured by the classifiers. Altogether, we believe that the present RFE method proves to be efficient and may help identifying relevant biomarkers by taking advantage of acquired task-based fMRI datasets in psychiatric populations. PMID:26793434

  1. Classification of autistic individuals and controls using cross-task characterization of fMRI activity

    PubMed Central

    Chanel, Guillaume; Pichon, Swann; Conty, Laurence; Berthoz, Sylvie; Chevallier, Coralie; Grèzes, Julie

    2015-01-01

    Multivariate pattern analysis (MVPA) has been applied successfully to task-based and resting-based fMRI recordings to investigate which neural markers distinguish individuals with autistic spectrum disorders (ASD) from controls. While most studies have focused on brain connectivity during resting state episodes and regions of interest approaches (ROI), a wealth of task-based fMRI datasets have been acquired in these populations in the last decade. This calls for techniques that can leverage information not only from a single dataset, but from several existing datasets that might share some common features and biomarkers. We propose a fully data-driven (voxel-based) approach that we apply to two different fMRI experiments with social stimuli (faces and bodies). The method, based on Support Vector Machines (SVMs) and Recursive Feature Elimination (RFE), is first trained for each experiment independently and each output is then combined to obtain a final classification output. Second, this RFE output is used to determine which voxels are most often selected for classification to generate maps of significant discriminative activity. Finally, to further explore the clinical validity of the approach, we correlate phenotypic information with obtained classifier scores. The results reveal good classification accuracy (range between 69% and 92.3%). Moreover, we were able to identify discriminative activity patterns pertaining to the social brain without relying on a priori ROI definitions. Finally, social motivation was the only dimension which correlated with classifier scores, suggesting that it is the main dimension captured by the classifiers. Altogether, we believe that the present RFE method proves to be efficient and may help identifying relevant biomarkers by taking advantage of acquired task-based fMRI datasets in psychiatric populations. PMID:26793434

  2. Locomotion and task demands differentially modulate thalamic audiovisual processing during active search

    PubMed Central

    Williamson, Ross S.; Hancock, Kenneth E.; Shinn-Cunningham, Barbara G.; Polley, Daniel B.

    2015-01-01

    SUMMARY Active search is a ubiquitous goal-driven behavior wherein organisms purposefully investigate the sensory environment to locate a target object. During active search, brain circuits analyze a stream of sensory information from the external environment, adjusting for internal signals related to self-generated movement or “top-down” weighting of anticipated target and distractor properties. Sensory responses in the cortex can be modulated by internal state [1–9], though the extent and form of modulation arising in the cortex de novo versus an inheritance from subcortical stations is not clear [4, 8–12]. We addressed this question by simultaneously recording from auditory and visual regions of the thalamus (MG and LG, respectively) while mice used dynamic auditory or visual feedback to search for a hidden target within an annular track. Locomotion was associated with strongly suppressed responses and reduced decoding accuracy in MG but a subtle increase in LG spiking. Because stimuli in one modality provided critical information about target location while the other served as a distractor, we could also estimate the importance of task relevance in both thalamic subdivisions. In contrast to the effects of locomotion, we found that LG responses were reduced overall yet decoded stimuli more accurately when vision was behaviorally relevant, whereas task relevance had little effect on MG responses. This double dissociation between the influences of task relevance and movement in MG and LG highlights a role for extrasensory modulation in the thalamus but also suggests key differences in the organization of modulatory circuitry between the auditory and visual pathways. PMID:26119749

  3. Uncertainty-dependent activity within the ventral striatum predicts task-related changes in response strategy.

    PubMed

    Buzzell, George A; Roberts, Daniel M; Fedota, John R; Thompson, James C; Parasuraman, Raja; McDonald, Craig G

    2016-04-01

    Recent neuroimaging work has demonstrated that the ventral striatum (VS) encodes confidence in perceptual decisions. However, it remains unclear whether perceptual uncertainty can signal the need to adapt behavior (such as by responding more cautiously) and whether such behavioral changes are related to uncertainty-dependent activity within the VS. Changes in response strategy have previously been observed following errors and are associated with both medial frontal cortex (MFC) and VS, two components of the performance-monitoring network. If uncertainty can elicit changes in response strategy (slowing), then one might hypothesize that these changes rely on the performance-monitoring network. In the present study, we investigated the link between perceptual uncertainty and task-related behavioral adaptations (response slowing and accuracy increases), as well as how such behavioral changes relate to uncertainty-dependent activity within MFC and VS. Our participants performed a two-choice perceptual decision-making task in which perceptual uncertainty was reported on each trial while behavioral and event-related functional magnetic resonance imaging data were collected. Analysis of the behavioral data revealed that uncertain (but correct) responses led to slowing on subsequent trials, a phenomenon that was positively correlated with increased accuracy. Critically, post-uncertainty slowing was negatively correlated with the VS activity elicited by uncertain responses. In agreement with previous reports, increases in MFC activation were observed for uncertain responses, although MFC activity was not correlated with post-uncertainty slowing. These results suggest that perceptual uncertainty can serve as a signal to adapt one's response strategy and that such behavioral changes are closely tied to the VS, a key node in the performance-monitoring network. PMID:26453582

  4. Working memory activation of neural networks in the elderly as a function of information processing phase and task complexity.

    PubMed

    Charroud, Céline; Steffener, Jason; Le Bars, Emmanuelle; Deverdun, Jérémy; Bonafe, Alain; Abdennour, Meriem; Portet, Florence; Molino, François; Stern, Yaakov; Ritchie, Karen; Menjot de Champfleur, Nicolas; Akbaraly, Tasnime N

    2015-11-01

    Changes in working memory are sensitive indicators of both normal and pathological brain aging and associated disability. The present study aims to further understanding of working memory in normal aging using a large cohort of healthy elderly in order to examine three separate phases of information processing in relation to changes in task load activation. Using covariance analysis, increasing and decreasing neural activation was observed on fMRI in response to a delayed item recognition task in 337 cognitively healthy elderly persons as part of the CRESCENDO (Cognitive REServe and Clinical ENDOphenotypes) study. During three phases of the task (stimulation, retention, probe), increased activation was observed with increasing task load in bilateral regions of the prefrontal cortex, parietal lobule, cingulate gyrus, insula and in deep gray matter nuclei, suggesting an involvement of central executive and salience networks. Decreased activation associated with increasing task load was observed during the stimulation phase, in bilateral temporal cortex, parietal lobule, cingulate gyrus and prefrontal cortex. This spatial distribution of decreased activation is suggestive of the default mode network. These findings support the hypothesis of an increased activation in salience and central executive networks and a decreased activation in default mode network concomitant to increasing task load. PMID:26456114

  5. Summary report for ITER Task -- D4: Activation calculations for the stainless steel ITER design

    SciTech Connect

    Attaya, H.

    1995-02-01

    Detailed activation analysis for ITER has been performed as a part of ITER Task D4. The calculations have been performed for the shielding blanket (SS/water) and for the breeding blanket (LiN) options. The activation code RACC-P, which has been modified under IFER Task-D-10 for pulsed operation, has been used in this analysis. The spatial distributions of the radioactive inventory, decay heat, biological hazard potential, and the contact dose were calculated for the two designs for different operation modes and targeted fluences. A one-dimensional toroidal geometrical model has been utilized to determine the neutron fluxes in the two designs. The results are normalized for an inboard and outboard neutron wall loadings of 0.91 and 1.2 MW/M{sup 2}, respectively. The point-wise distributions of the decay gamma sources have been calculated everywhere in the reactor at several times after the shutdown of the two designs and are then used in the transport code ONEDANT to calculate the biological dose everywhere in the reactor. The point-wise distributions of all the responses have also been calculated. These calculations have been performed for neutron fluences of 3.0 MWa/M{sup 2}, which corresponds to the target fluence of ITER, and 0.1 MWa/M{sup 2}, which is anticipated to correspond to the beginning of an extended maintenance period.

  6. Improvement of the performances of modified bituminous concrete with EVA and EVA-waste

    NASA Astrophysics Data System (ADS)

    Saoula, S.; Ait Mokhtar, K.; Haddadi, S.; Ghorbel, E.

    2009-11-01

    The improvement of the characteristics of the road flexible pavements is essential in regard to the growth of the traffics and the increasingly large performances of the vehicles. This improvement was made possible by the introduction of new methods and processes of modification of the products. The modification of the bituminous mix can be made in two manners: the first one is the modification of the bitumen binder (process A), the other one consists of the direct addition of a modifier during mixing operation (process B). It should be noted that one of the difficulties in Algeria is the absence of manufacturing units of the modified binders. For this reason, it is recommended to use the process B. In this article, the results of the influence of the modification of a bituminous concrete on its mechanical behaviour have been presented, using laboratory tests by the addition of EVA (Acetate of vinyl and ethylene) and of EVA-waste (waste of sole of shoes).

  7. Bilateral motor tasks involve more brain regions and higher neural activation than unilateral tasks: an fMRI study

    PubMed Central

    Noble, Jeremy W.; Eng, Janice J.; Boyd, Lara A.

    2015-01-01

    Movements that involve simultaneous coordination of muscles of the right and left lower limbs form a large part of our daily activities (e.g., standing, rising from a chair). This study used functional magnetic resonance imaging (fMRI) to determine which brain areas are used to control coordinated lower limb movements, specifically comparing regions that are activated during bilateral exertions to those performed unilaterally. Plantarflexor exertions were produced at a target force level of 15% of the participants’ maximum voluntary contraction, in three conditions, with their right (dominant) foot, with their left foot and with both feet simultaneously. A voxel-wise analysis determined which regions were active in the bilateral, but not in the unilateral conditions. In addition, a regions of interest (ROI) approach was used to determine differences in the percent signal change (PSC) between the conditions within motor areas. The voxel-wise analysis showed a large number of regions (cortical, subcortical and cerebellar) that were active during the bilateral condition, but not during either unilateral condition. The ROI analysis showed several motor regions with higher activation in the bilateral condition than unilateral conditions; further, the magnitude of bilateral PSC was more than the sum of the two unilateral conditions in several of these regions. We postulate that the greater levels of activation during bilateral exertions may arise from interhemispheric inhibition, as well as from the greater need for motor coordination (e.g., synchronizing the two limbs to activate together) and visual processing (e.g., monitoring of two visual stimuli). PMID:24770862

  8. Loads produced by a suited subject performing tool tasks without the use of foot restraints

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar L.; Poliner, Jeffrey; Klute, Glenn K.

    1993-01-01

    With an increase in the frequency of extravehicular activities (EVA's) aboard the Space Shuttle, NASA is interested in determining the capabilities of suited astronauts while performing manual tasks during an EVA, in particular the situations in which portable foot restraints are not used to stabilize the astronauts. Efforts were made to document the forces that are transmitted to spacecraft while pushing and pulling an object as well as while operating a standard wrench and an automatic power tool. The six subjects studied aboard the KC-135 reduced gravity aircraft were asked to exert a maximum torque and to maintain a constant level of torque with a wrench, to push and pull an EVA handrail, and to operate a Hubble Space Telescope (HST) power tool. The results give an estimate of the forces and moments that an operator will transmit to the handrail as well as to the supporting structure. In general, it was more effective to use the tool inwardly toward the body rather than away from the body. There were no differences in terms of strength capabilities between right and left hands. The power tool was difficult to use. It is suggested that ergonomic redesigning of the power tool may increase the efficiency of power tool use.

  9. Watching TV news as a memory task -- brain activation and age effects

    PubMed Central

    2010-01-01

    Background Neuroimaging studies which investigate brain activity underlying declarative memory processes typically use artificial, unimodal laboratory stimuli. In contrast, we developed a paradigm which much more closely approximates real-life situations of information encoding. Methods In this study, we tested whether ecologically valid stimuli - clips of a TV news show - are apt to assess memory-related fMRI activation in healthy participants across a wide age range (22-70 years). We contrasted brain responses during natural stimulation (TV news video clips) with a control condition (scrambled versions of the same clips with reversed audio tracks). After scanning, free recall performance was assessed. Results The memory task evoked robust activation of a left-lateralized network, including primarily lateral temporal cortex, frontal cortex, as well as the left hippocampus. Further analyses revealed that - when controlling for performance effects - older age was associated with greater activation of left temporal and right frontal cortex. Conclusion We demonstrate the feasibility of assessing brain activity underlying declarative memory using a natural stimulation paradigm with high ecological validity. The preliminary result of greater brain activation with increasing age might reflect an attempt to compensate for decreasing episodic memory capacity associated with aging. PMID:20738888

  10. Application of EVA guidelines and design criteria. Volume 1: EVA selection/systems design considerations

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    Parameters that require consideration by the planners and designers when planning for man to perform functions outside the vehicle are presented in terms of the impact the extravehicular crewmen and major EV equipment items have on the mission, vehicle, and payload. Summary data on man's performance capabilities in the weightless space environment are also provided. The performance data are based on orbital and transearth EVA from previous space flight programs and earthbound simulations, such as water immersion and zero-g aircraft.

  11. Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping Neuronal Activity.

    PubMed

    van der Meij, Roemer; van Ede, Freek; Maris, Eric

    2016-01-01

    Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials). Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG) recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance. PMID:27336159

  12. Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping Neuronal Activity

    PubMed Central

    van Ede, Freek; Maris, Eric

    2016-01-01

    Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials). Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG) recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance. PMID:27336159

  13. Use of the Remote Access Virtual Environment Network (RAVEN) for coordinated IVA-EVA astronaut training and evaluation.

    PubMed

    Cater, J P; Huffman, S D

    1995-01-01

    This paper presents a unique virtual reality training and assessment tool developed under a NASA grant, "Research in Human Factors Aspects of Enhanced Virtual Environments for Extravehicular Activity (EVA) Training and Simulation." The Remote Access Virtual Environment Network (RAVEN) was created to train and evaluate the verbal, mental and physical coordination required between the intravehicular (IVA) astronaut operating the Remote Manipulator System (RMS) arm and the EVA astronaut standing in foot restraints on the end of the RMS. The RAVEN system currently allows the EVA astronaut to approach the Hubble Space Telescope (HST) under control of the IVA astronaut and grasp, remove, and replace the Wide Field Planetary Camera drawer from its location in the HST. Two viewpoints, one stereoscopic and one monoscopic, were created all linked by Ethernet, that provided the two trainees with the appropriate training environments. PMID:11539288

  14. Conversion of IVA Human Computer Model to EVA Use and Evaluation and Comparison of the Result to Existing EVA Models

    NASA Technical Reports Server (NTRS)

    Hamilton, George S.; Williams, Jermaine C.

    1998-01-01

    This paper describes the methods, rationale, and comparative results of the conversion of an intravehicular (IVA) 3D human computer model (HCM) to extravehicular (EVA) use and compares the converted model to an existing model on another computer platform. The task of accurately modeling a spacesuited human figure in software is daunting: the suit restricts the human's joint range of motion (ROM) and does not have joints collocated with human joints. The modeling of the variety of materials needed to construct a space suit (e. g. metal bearings, rigid fiberglass torso, flexible cloth limbs and rubber coated gloves) attached to a human figure is currently out of reach of desktop computer hardware and software. Therefore a simplified approach was taken. The HCM's body parts were enlarged and the joint ROM was restricted to match the existing spacesuit model. This basic approach could be used to model other restrictive environments in industry such as chemical or fire protective clothing. In summary, the approach provides a moderate fidelity, usable tool which will run on current notebook computers.

  15. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    PubMed Central

    Yang, Yan-li; Deng, Hong-xia; Xing, Gui-yang; Xia, Xiao-luan; Li, Hai-fang

    2015-01-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception. PMID:25883631

  16. On-orbit assembly/servicing task definition study

    NASA Technical Reports Server (NTRS)

    Vargo, Rick

    1990-01-01

    The OEXP vehicles being envisioned to carry out the Presidential space goals of a lunar outpost and human exploration of Mars will require on-orbit assembly, refurbishment, checkout, and launch. The On-orbit Assembly/Servicing Task Definition Study applies the space vehicle processing experience and procedures archives resident at NASA's Kennedy Space Center (KSC) to determine the task flows, and resources/facilities necessary to process the OEXP vehicles at Space Station Freedom (SSF). This data base is examined to find the closest analogies to OEXP vehicle components and assembly/refurbishment tasks. Transition tables are generated to provide traceability from KSC hardware processing experience to analogous on-orbit processing of the OEXP vehicles. Iterations in which the task flows are broken down into realistic extravehicular activity (EVA) primitive subtasks and times, and to apply automation and robotic technology to reduce crew risks and minimize EVA time, will enhance the value and accuracy of the predicted flows. These processing scenarios and the resulting resource/facility requirements are used to determine impacts of SSF, resulting in change requests to SSF requirements for provision of 'hooks and scars' to evolve the assembly complete Space Station into a transportation node. Study results to date include assembly analysis of the Martin Marietta Phobos Gateway Vehicle, refurbishment analysis of the Martin Marietta Lunar Evolution Piloted and Cargo Vehicles, and assembly analysis of the Boeing Mars Evolution Vehicle. The results of this study will be accumulated into the vehicle processing operations data base for subsequent modeling, life cycle cost, vehicle growth, and SSF impact analysis.

  17. Astronaut David Wolf participates in training for contingency EVA in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged ito a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is displaying the flexibility of his training version of the Shuttle extravehicular mobility unit (EMU) by lifting his arms above his head (31701); Wolf waves to the camera before he is submerged in the WETF (31702).

  18. Astronaut John Young reaches for tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, reaches for tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. This view is looking south from the base of Stone Mountain.

  19. Astronaut John Young replaces tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, replaces tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Smoky Mountain, with the large Ravine crater on its flank, is in the left background. This view is looking northeast.

  20. View of rim of South Ray crater on traverse up Stone Mountain during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A view of the rim of South Ray crater photographed with a 500mm lens from Station no.4 -- the highest point on the traverse up Stone Mountain -- during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. South Ray crater was a 'fresh' source of angular ejecta in the Lunar Module-Apollo Lunar Surface Experiments Package area and for samples at Station No.8.

  1. Astronaut Jack Lousma hooks up cable for rate gyro six pack during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, hooks up a 23 ft. 2 in. connecting cable for the rate gyro six pack during extravehicular activity (EVA) on August 24, 1973, as senn in this photographic reproduction taken from a color television tranmsission made by a TV camera aboard the Skylab space station in Earth orbit. The rate gyros were mounted inside the Multiple Docking Adapter opposite the Apollo Telescope Mount control and display console.

  2. STS-57 MS2 Sherlock in EMU is lowered into JSC's WETF pool for EVA simulation

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-57 Mission Specialist 2 (MS2) Nancy J. Sherlock, fully suited in an extravehicular mobility unit (EMU) and helmet and standing on a platform, is lowered into the 25 foot deep pool of JSC's Weightless Environment Training Facility (WETF) Bldg 29. Once underwater, Sherlock will participate in an underwater extravehicular activity (EVA) simulation. SCUBA-equipped divers already in the pool guide the platform into the water.

  3. STS-57 MS3 Wisoff in EMU is lowered into JSC's WETF pool for EVA simulation

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-57 Mission Specialist 3 (MS3) Peter J.K. Wisoff, fully suited in an extravehicular mobility unit (EMU) and helmet and standing on a platform, is lowered into the 25 foot deep pool of JSC's Weightless Environment Training Facility (WETF) Bldg 29. Once underwater, Wisoff will participate in an underwater extravehicular activity (EVA) simulation. A SCUBA-equipped diver already in the pool guides the platform into the water.

  4. Dissociating activity in the lateral intraparietal area from value using a visual foraging task

    PubMed Central

    Mirpour, Koorosh; Bisley, James W.

    2012-01-01

    We make decisions about where to look approximately three times per second in normal viewing. It has been suggested that eye movements may be guided by activity in the lateral intraparietal area (LIP), which is thought to represent the relative value of objects in space. However, it is not clear how values for saccade goal selection are prioritized while free-viewing in a cluttered visual environment. To address this question, we compared the neural responses of LIP neurons in two subjects with their saccadic behavior and three estimates of stimulus value. These measures were extracted from the subjects’ performance in a visual foraging task, in which we parametrically controlled the number of objects on the screen. We found that the firing rates of LIP neurons did not correlate well with the animals’ behavior or any of our estimated measures of value. However, if the LIP activity was further normalized, it became highly correlated with the animals’ decisions. These data suggest that LIP activity does not represent value in complex environments, but that the value can easily be extracted with one further step of processing. We propose that activity in LIP represents attentional priority and that the downstream normalization of this activity is an essential process in guiding action. PMID:22670055

  5. Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity

    PubMed Central

    Tompuri, Tuomo T.

    2015-01-01

    Physical activity refers any bodily movements produced by skeletal muscles that expends energy. Hence the amount and the intensity of physical activity can be assessed by energy expenditure. Metabolic equivalents of task (MET) are multiplies of the resting metabolism reflecting metabolic rate during exercise. The standard MET is defined as 3.5 ml/min/kg. However, the expression of energy expenditure by body weight to normalize the size differences between subjects causes analytical hazards: scaling by body weight does not have a physiological, mathematical, or physical rationale. This review demonstrates by examples that false methodology may cause paradoxical observations if physical activity would be assessed by body weight scaled values such as standard METs. While standard METs are confounded by adiposity, lean mass proportional measures of energy expenditure would enable a more truthful choice to assess physical activity. While physical activity as a behavior and cardiorespiratory fitness or adiposity as a state represents major determinants of public health, specific measurements of health determinants must be understood to enable a truthful evaluation of the interactions and their independent role as a health predictor. PMID:26321958

  6. Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: a near-infrared spectroscopy study.

    PubMed

    Mandrick, Kevin; Derosiere, Gérard; Dray, Gérard; Coulon, Denis; Micallef, Jean-Paul; Perrey, Stéphane

    2013-07-01

    Functional near-infrared spectroscopy (fNIRS) is suitable for investigating cerebral oxygenation changes during motor and/or mental tasks. In the present study, we investigated how an additional mental load during a motor task at two submaximal loadings affects the fNIRS-measured brain activation over the right prefrontal cortex (PFC). Fifteen healthy males performed isometric grasping contractions at 15% and 30% of the maximal voluntary contraction (MVC) with or without an additional mental (i.e., arithmetic) task. Mental performance, force variability, fNIRS and subjective perception responses were measured in each condition. The performance of the mental task decreased significantly while the force variability increased significantly at 30% MVC as compared to 15% MVC, suggesting that performance of dual-task required more attentional resources. PFC activity increased significantly as the effort increased from 15% to 30% MVC (p<.001). Although a larger change in the deoxyhemoglobin was observed in dual-task conditions (p=.051), PFC activity did not change significantly as compared to the motor tasks alone. In summary, participants were unable to invest more attention and effort in performing the more difficult levels in order to maintain adequate mental performance. PMID:23665138

  7. The effects of sleep, wake activity and time-on-task on offline motor sequence learning.

    PubMed

    Landry, Shane; Anderson, Clare; Conduit, Russell

    2016-01-01

    While intervening sleep promotes the consolidation of memory, it is well established that cognitive interference from competing stimuli can impede memory retention. The current study examined changes in motor skill learning across periods of wakefulness with and without competing stimuli, and periods of sleep with and without disruption from external stimuli. A napping study design was adopted where participants (N=44) either had (1) a 30min nap composed of Non-Rapid Eye Movement (NREM) sleep, (2) 30min NREM nap fragmented by audio tone induced arousals, (3) 45min of quiet wakefulness, or (4) 45min of active wakefulness. Measures of subjective sleepiness (KSS), alertness (PVT) and motor skill learning (Sequential Finger Tapping Task, SFTT) were completed in the morning and evening to assess performance pre- and post-nap or wakefulness. Following a practice session, change in motor skill performance was measured over a 10min post training rest interval, as well as following a 7h morning to evening interval comprising one of the four study conditions. A significant offline enhancement in motor task performance (13-23%) was observed following 10min of rest in all conditions. Following the long delay with the intervening nap/wake condition, there were no further offline gains or losses in performance in any sleep (uninterrupted/fragmented) or wake (quiet/active) condition. The current findings suggest that after controlling for offline gains in performance that occur after a brief rest and likely to due to the dissipation of fatigue, the subsequent effect of an intervening sleep or wake period on motor skill consolidation is not significant. Consistent with this null result, the impact of disrupting the sleep episode or manipulating activity during intervening wake also appears to be negligible. PMID:26655281

  8. EVA operational guidelines and considerations for use during the Space Station Freedom design review process

    NASA Technical Reports Server (NTRS)

    Trevino, Robert

    1992-01-01

    The EVA hardware interfaces, standards, and considerations are examined, as are guidelines that EVA operations engineer will use when reviewing the design packages from the EVA operational point of view. By utilizing both the EVA and robotics interfaces standards, design requirements, and the EVA operational guidelines and considerations, the Space Station Freedom program design can be more cost effective in the long term and also more compatible and friendly for on-orbit assembly and on-orbit maintenance and repair.

  9. Observations of Children’s Interactions with Teachers, Peers, and Tasks across Preschool Classroom Activity Settings

    PubMed Central

    Booren, Leslie M.; Downer, Jason T.; Vitiello, Virginia E.

    2014-01-01

    This descriptive study examined classroom activity settings in relation to children’s observed behavior during classroom interactions, child gender, and basic teacher behavior within the preschool classroom. 145 children were observed for an average of 80 minutes during 8 occasions across 2 days using the inCLASS, an observational measure that conceptualizes behavior into teacher, peer, task, and conflict interactions. Findings indicated that on average children’s interactions with teachers were higher in teacher-structured settings, such as large group. On average, children’s interactions with peers and tasks were more positive in child-directed settings, such as free choice. Children experienced more conflict during recess and routines/transitions. Finally, gender differences were observed within small group and meals. The implications of these findings might encourage teachers to be thoughtful and intentional about what types of support and resources are provided so children can successfully navigate the demands of particular settings. These findings are not meant to discourage certain teacher behaviors or imply value of certain classroom settings; instead, by providing an evidenced-based picture of the conditions under which children display the most positive interactions, teachers can be more aware of choices within these settings and have a powerful way to assist in professional development and interventions. PMID:25717282

  10. Structure of EvaA: a paradigm for sugar 2,3-dehydratases.

    PubMed

    Kubiak, Rachel L; Thoden, James B; Holden, Hazel M

    2013-03-26

    Unusual deoxysugars found appended to natural products often provide or enhance the pharmacokinetic activities of the parent compound. The preferred carbohydrate donors for the biosynthesis of such glycosylated natural products are the dTDP-linked sugars. Many of the biologically relevant dTDP-deoxysugars are constructed around the 2,6-dideoxyhexoses or the 2,3(4),6-trideoxyhexoses. A key step in the biosynthesis of these sugars is the removal of the hexose C-2' hydroxyl group and the oxidation of the C-3' hydroxyl group to a carbonyl moiety. Enzymes that catalyze these reactions are referred to as 2,3-dehydratases and have been, for the most part, largely uncharacterized. Here we report the first structural analysis of a sugar 2,3-dehydratase. For this investigation, the enzyme, EvaA, was cloned from Amycolatopsis orientalis, and the structure was solved and refined to a nominal resolution of 1.7 Å. On the basis of the resulting model, it is clear that EvaA belongs to the large Nudix hydrolase superfamily and is most similar to GDP-mannose hydrolase. Each subunit of the EvaA dimer folds into two domains that clearly arose via gene duplication. Two dTDP-sugar binding pockets, A and B, are present in each EvaA subunit. On the basis of site-directed mutagenesis experiments and activity assays, it appears that pocket A functions as the active site and pocket B is simply a remnant left behind from the gene duplication event. As 2,3-dehydration is crucial for the biosynthesis of many unusual deoxysugars, this investigation provides key structural insight into this widely conserved reaction. PMID:23473392

  11. Altered patterns of cortical activation in ALS patients during attention and cognitive response inhibition tasks.

    PubMed

    Goldstein, L H; Newsom-Davis, I C; Bryant, V; Brammer, M; Leigh, P N; Simmons, A

    2011-12-01

    Since amyotrophic lateral sclerosis (ALS) can be accompanied by executive dysfunction, it is hypothesised that ALS patients will have impaired performance on tests of cognitive inhibition. We predicted that ALS patients would show patterns of abnormal activation in extramotor regions when performing tests requiring the inhibition of prepotent responses (the Stroop effect) and the inhibition of prior negatively primed responses (the negative priming effect) when compared to healthy controls. Functional magnetic resonance imaging was used to measure activation during a sparse sequence block design paradigm investigating the Stroop and negative priming effects in 14 ALS patients and 8 healthy age- and IQ-matched controls. Behavioural measures of performance were collected. Both groups' reaction times (RTs) reflected the Stroop effect during scanning. The ALS and control groups did not differ significantly for any of the behavioural measures but did show significant differences in cerebral activation during both tasks. The ALS group showed increased activation predominantly in the left middle temporal gyrus (BA 20/21), left superior temporal gyrus (BA 22) and left anterior cingulate gyrus (BA 32). Neither group's RT data showed clear evidence of a negative priming effect. However the ALS group showed decreased activation, relative to controls, particularly in the left cingulate gyrus (BA 23/24), left precentral gyrus (BA 4/6) and left medial frontal gyrus (BA 6). Greater cerebral activation in the ALS group accompanying the performance of the Stroop effect and areas of decreased activation during the negative priming comparison suggest altered inhibitory processing in ALS, consistent with other evidence of executive dysfunction in ALS. The current findings require further exploration in a larger study. PMID:21556876

  12. Promoting Physical Activity in Hong Kong Chinese Young People: Factors Influencing Their Subjective Task Values and Expectancy Beliefs in Physical Activity

    ERIC Educational Resources Information Center

    Pang, Bonnie

    2014-01-01

    According to Eccles et al.'s (1983) Expectancy Value Model, the two major constructs that influence young people's activity choice are subjective task value and expectancy beliefs (Eccles et al., 1983). Eccles et al. (1983) conceptually distinguished four dimensions of subjective task value: attainment value, intrinsic value, utility…

  13. Influence of Task Difficulty and Background Music on Working Memory Activity: Developmental Considerations.

    ERIC Educational Resources Information Center

    Kaniel, Shlomo; Aram, Dorit

    1998-01-01

    A study of 300 children in kindergarten, grade 2, and grade 6 found that background music improved visual discrimination task performance at the youngest and middle ages and had no effect on the oldest participants. On a square identification task, background music had no influence on easy and difficult tasks but lowered performance on…

  14. Development of an EVA systems cost model. Volume 2: Shuttle orbiter crew and equipment translation concepts and EVA workstation concept development and integration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    EVA crewman/equipment translational concepts are developed for a shuttle orbiter payload application. Also considered are EVA workstation systems to meet orbiter and payload requirements for integration of workstations into candidate orbiter payload worksites.

  15. Performance of a 6-Degree-of-Freedom Active Microsurgical Manipulator in Handheld Tasks

    PubMed Central

    Yang, Sungwook; Wells, Trent S.; MacLachlan, Robert A.; Riviere, Cameron N.

    2013-01-01

    This paper presents the first experimental results from human users of a new 6-degree-of-freedom handheld micromanipulator. This is the latest prototype of a fully-handheld system, known as “Micron,” which performs active compensation of hand tremor for microsurgery. The manipulator is a miniature Gough-Stewart platform incorporating linear ultrasonic motors that provide a cylindrical workspace 4 mm long and 4 mm wide. In addition, the platform allows the possibility of imposing a remote center of motion for controlling motion not only at the tip but also at the entry point in the sclera of the eye. We demonstrate hand tremor reduction in both static and dynamic micromanipulation tasks on a rubber pad. The handheld performance is also evaluated in an artificial eye model while imposing a remote center of motion. In all cases, hand tremor is significantly reduced. PMID:24111024

  16. STS-49 crew captures INTELSAT VI above OV-105's payload bay (PLB) during EVA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 crewmembers complete successful capture of the International Telecommunications Organization Satellite (INTELSAT) VI during their third extravehicular activity (EVA) into Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB). Left to right Mission Specialist (MS) Richard J. Hieb, MS Thomas D. Akers, and MS Pierre J. Thuot, positioned on the remote manipulator system (RMS), have handholds on the satellite and prepare to attach capture bar (tethered to Hieb). Mexico is seen on the Earth below including an area from Hermosillo, Sonara to Los Mochis in the state of Sinaloa. In the foreground is the Assembly of Station by EVA Methods (ASEM) multipurpose experiment support structure (MPESS). Behind the three astronauts is the vertical perigee stage which will be attached to the INTELSAT VI prior to its release from the PLB.

  17. STS-49 crew captures INTELSAT VI above OV-105's payload bay (PLB) during EVA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 crewmembers hold onto the 4.5 ton International Telecommunications Organization Satellite (INTELSAT) VI after a six-handed 'capture' was made minutes earlier during the mission's third extravehicular activity (EVA) into Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB). Left to right are Mission Specialist (MS) Richard J. Hieb, MS Thomas D. Akers, and MS Pierre J. Thuot. The three prepare to attach the capture bar which is tethered to Hieb. Thuot is positioned on the remote manipulator system (RMS) arm, from which he had made two earlier unsuccessful grapple attempts on two-person EVA sessions. Ground controllers and crewmembers agreed that a third attempt, using three mission specialists in the PLB, was the effort needed to accomplish the capture feat. Behind the three astronauts is the vertical perigee stage which will be attached to the INTELSAT VI prior to its release from the PLB.

  18. Underwater views of STS-5 crewmen Lenoir and Allen during EVA training

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Underwater views of STS-5 crewmen Lenoir and Allen during EVA training. Mission Specialist/Astronaut Joseph P. Allen, wearing an extravehicular mobility unit (EMU) and weighted down to achieve neutral buoyancy, uses a communication system to talk with fellow Mission Specialist/Astronaut William B. Lenoir (out of frame) during underwater simulation of STS-5 extravehicular activity (EVA) (35899); Both mission specialists coordinate their efforts on a chore near the airlock hatch during training. Lenoir is facing the camera. Their background is a full-scale mock-up of the shuttle payload bay (35900); Lenoir works underwater with a portable foot restraint during training underwater. Allen's backpack or mockup for a portable life support system (PLSS) is seen in one corner of the frame (35901).

  19. STS-57 astronauts Low and Wisoff perform DTO 1210 EVA in OV-105's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During STS-57 extravehicular activity (EVA), Mission Specialist (MS) and Payload Commander (PLC) G. David Low (foreground) and MS3 Peter J.K. Wisoff work along the port side sill longeron in the payload bay (PLB) of the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105. Low will secure a portable foot restraint (PFR) (manipulator foot restraint (MFR)) to the remote manipulator system (RMS) end effector (deployed behind the two astronauts) using a PFR attachment device (PAD). This EVA, designated Detailed Test Objective (DTO) 1210, included evaluation of procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. Visible in OV-105's PLB are (front to back) the SPACEHAB-01 module (Commercial Middeck Augmentation Module (CMAM)), the Superhelium Onorbit Transfer (SHOOT) liquid helium dewar assembly, and the European Retrievable Carrier (EURECA) spacecraft. The scene is backdropped against the Earth's surface.

  20. Do Cardiovascular Responses to Active and Passive Coping Tasks predict Future Blood Pressure over a 10-Month Later?

    PubMed

    Yuenyongchaiwat, Kornanong; Baker, Ian; Maratos, Frankie; Sheffield, David

    2016-01-01

    The study examined whether cardiovascular responses to active or passive coping tasks and single or multiple tasks predicted changes in resting blood pressure (BP) over a ten-month period. Heart rate (HR), BP, cardiac output (CO), and total peripheral resistance (TPR) were measured at rest, and during mental stress tests (mental arithmetic, speech, and cold pressor tasks). A total of 104 eligible participants participated in the initial study, and 77 (74.04%) normotensive adult participants' resting BP were re-evaluated at ten-month follow-up. Regression analyses indicated that after adjustment for baseline BP, initial age, gender, body mass index, family history of cardiovascular disease, and current cigarette smoking, heighted systolic blood pressure (SBP) and HR responses to an active coping task (mental arithmetic) were associated with increased future SBP (ΔR2 = .060, ΔR2 = .045, respectively). Further, aggregated SBP responsivity (over the three tasks) to the predictor models resulted in significant, but smaller increases in ΔR2 accounting for .040 of the variance of follow-up SBP. These findings suggest that cardiovascular responses to active coping tasks predict future SBP. Further, compared with single tasks, the findings revealed that SBP responses to three tasks were less predictive compared to an individual task (i.e., mental arithmetic). Of importance, hemodynamic reactivity (namely CO and TPR) did not predict future BP suggesting that more general psychophysiological processes (e.g., inflammation, platelet aggregation) may be implicated, or that BP, but not hemodynamic reactivity may be a marker of hypertension. PMID:26972632

  1. Students Speak With EVA Operations Specialist Glenda Brown

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, EVA Operations Specialist Glenda Brown participates in a Digital Learning Network (DLN) event with students at Victory Lakes Interm...

  2. Differences in time course activation of dorsolateral prefrontal cortex associated with low or high risk choices in a gambling task

    PubMed Central

    Bembich, Stefano; Clarici, Andrea; Vecchiet, Cristina; Baldassi, Giulio; Cont, Gabriele; Demarini, Sergio

    2014-01-01

    Prefrontal cortex plays an important role in decision making (DM), supporting choices in the ordinary uncertainty of everyday life. To assess DM in an unpredictable situation, a playing card task, such as the Iowa Gambling Task (IGT), has been proposed. This task is supposed to specifically test emotion-based learning, linked to the integrity of the ventromedial prefrontal cortex (VMPFC). However, the dorsolateral prefrontal cortex (DLPFC) has demonstrated a role in IGT performance too. Our aim was to study, by multichannel near-infrared spectroscopy, the contribution of DLPFC to the IGT execution over time. We tested the hypothesis that low and high risk choices would differentially activate DLPFC, as IGT execution progressed. We enrolled 11 healthy adults. To identify DLPFC activation associated with IGT choices, we compared regional differences in oxy-hemoglobin variation, from baseline to the event. The time course of task execution was divided in four periods, each one consisting of 25 choices, and DLPFC activation was distinctly analyzed for low and high risk choices in each period. We found different time courses in DLPFC activation, associated with low or high risk choices. During the first period, a significant DLPFC activation emerged with low risk choices, whereas, during the second period, we found a cortical activation with high risk choices. Then, DLPFC activation decreased to non-significant levels during the third and fourth period. This study shows that DLPFC involvement in IGT execution is differentiated over time and according to choice risk level. DLPFC is activated only in the first half of the task, earlier by low risk and later by high risk choices. We speculate that DLPFC may sustain initial and more cognitive functions, such as attention shifting and response inhibition. The lack of DLPFC activation, as the task progresses, may be due to VMPFC activation, not detectable by fNIRS, which takes over the IGT execution in its second half. PMID

  3. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  4. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  5. Correlation between LIFG and autonomic activation during stressful tasks: a functional near-infrared spectroscopy (fNIRS) study.

    PubMed

    Shi, Jie; Sakatani, Kaoru; Okamoto, Masako; Yamaguchi, Yui; Zuo, Huan-Cong

    2014-10-01

    It remains unclear whether language tasks in one's first (L1) or second (L2) language can cause stress responses and whether frontal, autonomic and behavioral responses to stressful tasks are correlated. In this study, we studied 22 Chinese subjects whose L2 was English and measured the cerebral blood oxygenation in their frontal lobe by using functional near-infrared spectroscopy (fNIRS) as participants engaged in a mental arithmetic task (MAT) and verbal fluency tasks (VFTs) in L1 (Chinese) and L2 (English). To examine the activated cortical areas, we estimated the channel location based on Montreal Neurological Institute (MNI) standard brain space by using a probabilistic estimation method. We evaluated heart rate (HR) changes to analyze autonomic nervous system (ANS) functioning. We found that the MAT and VFTs induced greater increases in HR than did the control (Ctrl) task. Furthermore, subjects developed greater increases in HR in the MAT and VFTL2 than they did in the VFTL1. Compared with the Ctrl task, the MAT and both VFTL1 and VFTL2 produced robust and widespread bilateral activation of the frontal cortex. Interestingly, partial correlation analysis indicated that the activity in the left inferior frontal gyrus (LIFG) [Brodmann's area (BA) 47] was consistently correlated with the increases in HR across the three tasks (MAT, VFTL2, and VFTL1), after controlling for the performance data. The present results suggested that a VFT in L2 may be more stressful than in L1. The LIFG may affect the activation of the sympathetic system induced by stressful tasks, including MATs and VFTs. PMID:25318875

  6. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks?

    PubMed Central

    Martin, Claire; Ravel, Nadine

    2014-01-01

    Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to “bind” distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15–40 Hz) and gamma (60–100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory. PMID:25002840

  7. Individual differences in oscillatory brain activity in response to varying attentional demands during a word recall and oculomotor dual task

    PubMed Central

    Kwon, Gusang; Lim, Sanghyun; Kim, Min-Young; Kwon, Hyukchan; Lee, Yong-Ho; Kim, Kiwoong; Lee, Eun-Ju; Suh, Minah

    2015-01-01

    Every day, we face situations that involve multi-tasking. How our brain utilizes cortical resources during multi-tasking is one of many interesting research topics. In this study, we tested whether a dual-task can be differentiated in the neural and behavioral responses of healthy subjects with varying degree of working memory capacity (WMC). We combined word recall and oculomotor tasks because they incorporate common neural networks including the fronto-parietal (FP) network. Three different types of oculomotor tasks (eye fixation, Fix-EM; predictive and random smooth pursuit eye movement, P-SPEM and R-SPEM) were combined with two memory load levels (low-load: five words, high-load: 10 words) for a word recall task. Each of those dual-task combinations was supposed to create varying cognitive loads on the FP network. We hypothesize that each dual-task requires different cognitive strategies for allocating the brain’s limited cortical resources and affects brain oscillation of the FP network. In addition, we hypothesized that groups with different WMC will show differential neural and behavioral responses. We measured oscillatory brain activity with simultaneous MEG and EEG recordings and behavioral performance by word recall. Prominent frontal midline (FM) theta (4–6 Hz) synchronization emerged in the EEG of the high-WMC group experiencing R-SPEM with high-load conditions during the early phase of the word maintenance period. Conversely, significant parietal upper alpha (10–12 Hz) desynchronization was observed in the EEG and MEG of the low-WMC group experiencing P-SPEM under high-load conditions during the same period. Different brain oscillatory patterns seem to depend on each individual’s WMC and varying attentional demands from different dual-task combinations. These findings suggest that specific brain oscillations may reflect different strategies for allocating cortical resources during combined word recall and oculomotor dual-tasks. PMID:26175681

  8. Task-specific stability in muscle activation space during unintentional movements.

    PubMed

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L

    2014-11-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multidimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back toward the initial position. Intertrial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two subspaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former subspace in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy. PMID:25092272

  9. Planetary Protection Considerations in EVA System Design

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.; Kosmo, Joseph J.

    2011-01-01

    very little expression of these anomalies. hardware from the human-occupied area may limit (although not likely eliminate) external materials in the human habitat. Definition of design-to requirements is critical to understanding technical feasibility and costs. The definition of Planetary Protection needs in relation to EVA mission and system element development cost impacts should be considered and interpreted in terms of Plausible Protection criteria. Since EVA operations will have the most direct physical interaction with the Martian surface, PP needs should be considered in the terms of mitigating hardware and operations impacts and costs.

  10. Functional Activation during the Rapid Visual Information Processing Task in a Middle Aged Cohort: An fMRI Study

    PubMed Central

    Neale, Chris; Johnston, Patrick; Hughes, Matthew; Scholey, Andrew

    2015-01-01

    The Rapid Visual Information Processing (RVIP) task, a serial discrimination task where task performance believed to reflect sustained attention capabilities, is widely used in behavioural research and increasingly in neuroimaging studies. To date, functional neuroimaging research into the RVIP has been undertaken using block analyses, reflecting the sustained processing involved in the task, but not necessarily the transient processes associated with individual trial performance. Furthermore, this research has been limited to young cohorts. This study assessed the behavioural and functional magnetic resonance imaging (fMRI) outcomes of the RVIP task using both block and event-related analyses in a healthy middle aged cohort (mean age = 53.56 years, n = 16). The results show that the version of the RVIP used here is sensitive to changes in attentional demand processes with participants achieving a 43% accuracy hit rate in the experimental task compared with 96% accuracy in the control task. As shown by previous research, the block analysis revealed an increase in activation in a network of frontal, parietal, occipital and cerebellar regions. The event related analysis showed a similar network of activation, seemingly omitting regions involved in the processing of the task (as shown in the block analysis), such as occipital areas and the thalamus, providing an indication of a network of regions involved in correct trial performance. Frontal (superior and inferior frontal gryi), parietal (precuenus, inferior parietal lobe) and cerebellar regions were shown to be active in both the block and event-related analyses, suggesting their importance in sustained attention/vigilance. These networks and the differences between them are discussed in detail, as well as implications for future research in middle aged cohorts. PMID:26488289

  11. Error-related brain activation during a Go/NoGo response inhibition task.

    PubMed

    Menon, V; Adleman, N E; White, C D; Glover, G H; Reiss, A L

    2001-03-01

    Inhibitory control and performance monitoring are critical executive functions of the human brain. Lesion and imaging studies have shown that the inferior frontal cortex plays an important role in inhibition of inappropriate response. In contrast, specific brain areas involved in error processing and their relation to those implicated in inhibitory control processes are unknown. In this study, we used a random effects model to investigate error-related brain activity associated with failure to inhibit response during a Go/NoGo task. Error-related brain activation was observed in the rostral aspect of the right anterior cingulate (BA 24/32) and adjoining medial prefrontal cortex, the left and right insular cortex and adjoining frontal operculum (BA 47) and left precuneus/posterior cingulate (BA 7/31/29). Brain activation related to response inhibition and competition was observed bilaterally in the dorsolateral prefrontal cortex (BA 9/46), pars triangularis region of the inferior frontal cortex (BA 45/47), premotor cortex (BA 6), inferior parietal lobule (BA 39), lingual gyrus and the caudate, as well as in the right dorsal anterior cingulate cortex (BA 24). These findings provide evidence for a distributed error processing system in the human brain that overlaps partially, but not completely, with brain regions involved in response inhibition and competition. In particular, the rostal anterior cingulate and posterior cingulate/precuneus as well as the left and right anterior insular cortex were activated only during error processing, but not during response competition, inhibition, selection, or execution. Our results also suggest that the brain regions involved in the error processing system overlap with brain areas implicated in the formulation and execution of articulatory plans. PMID:11170305

  12. Activation of the dentate nucleus in a verb generation task: A 7T MRI study.

    PubMed

    Thürling, M; Küper, M; Stefanescu, R; Maderwald, S; Gizewski, E R; Ladd, M E; Timmann, D

    2011-08-01

    There is increasing evidence of a topographic organization within the human cerebellar cortex for motor and non-motor functions. Likewise, a subdivision of the dentate nucleus in a more dorsal and rostral motor domain and a more ventral and caudal non-motor domain has been proposed by Dum and Strick (2003) based on anatomical studies in monkey. In humans, however, very little is known about topographic organization within the dentate nucleus. Activation of the dentate nucleus in a verb generation task was examined in young and healthy subjects using ultra-highfield 7T functional magnetic resonance imaging (fMRI) with its increase in signal-to-noise ratio. Data of 17 subjects were included in statistical analysis. Subjects were asked to (i) read words (nouns) aloud presented on a screen, (ii) silently read the same nouns, (iii) silently generate the appropriate verbs to the same nouns and (iv) to silently repeat the names of the months. A block design was used. For image processing, a recently developed region of interest (ROI) driven normalization method of the dentate nuclei was applied. Activation related to motor speech (contrast aloud reading minus silent reading) was strongest in the rostral parts of the dentate nucleus. Dorsorostral activations were present bilaterally. Activation related to verb generation (contrast verb generation minus silent reading) was found in the ventrocaudal parts of the dentate nucleus on the right. The present findings are in good accordance with the anatomical data in monkeys and suggest that the human dentate nucleus can be subdivided into a rostral and more dorsal motor domain and a ventrocaudal non-motor domain. PMID:21640191

  13. An electromyographic study of strength and upper extremity muscle activity in simulated meat cutting tasks.

    PubMed

    Grant, K A; Habes, D J

    1997-04-01

    Meat cutting has long been associated with a high incidence rate of upper extremity musculoskeletal disorders. This study examined upper extremity muscle activities and force exertion capabilities to identify postures which have potential for causing overexertion injuries. Fifteen subjects exerted force against a handle in postures similar to those observed in the meatpacking industry. Exertion level, direction of exertion, handle height, reach distance and grip type were varied. Activity in the posterior deltoid, biceps brachii, triceps brachii, extensor digitorum and flexor digitorum superficialis was monitored via surface electromyography (EMG). The ratio of normalized EMG activity to force produced during the exertion was computed for each muscle under each condition. The results showed that handle position had a significant effect on force exertion capability and the EMG/force ratio in all muscles. Force exertion capability was maximized, and the EMG/force ratio was generally minimized when participants pulled downward on a handle positioned at full arm's reach above the shoulder. For vertical cuts, force decreased and muscle activity generally increased as the handle height was lowered. For horizontal cuts, the full reach distance tended to allow greater force exertion with lower EMG/force ratios. The stab grip also tended to be associated with higher forces and lower EMG/force ratios than the slice grip. This study supports the premise that musculoskeletal stresses in meatpacking tasks can be altered through tool and workstation redesign. The data provided herein may be useful in selecting design modifications that reduce biomechanical stress on the upper extremities. PMID:9414348

  14. Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task

    PubMed Central

    Villa, Alessandro E. P.; Tetko, Igor V.; Hyland, Brian; Najem, Abdellatif

    1999-01-01

    Precise and repeated spike-train timings within and across neurons define spatiotemporal patterns of activity. Although the existence of these patterns in the brain is well established in several species, there has been no direct evidence of their influence on behavioral output. To address this question, up to 15 neurons were recorded simultaneously in the auditory cortex of freely moving rats while animals waited for acoustic cues in a Go/NoGo task. A total of 235 significant patterns were detected during this interval from an analysis of 13 hr of recording involving over 1 million spikes. Of particular interest were 129 (55%) patterns that were significantly associated with the type of response the animal made later, independent of whether the response was that prompted by the cue because the response occurred later and the cue was chosen randomly. Of these behavior-predicting patterns, half (59/129) were associated with an enhanced tendency to go in response to the stimulus, and for 11 patterns of this subset, trials including the pattern were followed by significantly faster reaction time than those lacking the pattern. The remaining behavior-predicting patterns were associated with an enhanced NoGo tendency. Overall mean discharge rates did not vary across trials. Hence, these data demonstrate that particular spatiotemporal patterns predict future behavioral responses. Such presignal activity could form templates for extracting specific sensory information, motor programs prespecifying preference for a particular act, and/or some intermediate, associative brain process. PMID:9927701

  15. Activation and tremor of the shoulder muscles to the demands of an archery task.

    PubMed

    Lin, Jiu-Jenq; Hung, Cheng-Ju; Yang, Ching-Ching; Chen, Hsing-Yu; Chou, Feng-Ching; Lu, Tung-Wu

    2010-02-01

    Physiological tremor and strength during the maintenance of shoulder position occur during a precision aiming task, such as archery. It is unclear how positions for precision demands affect physiological tremor and associated muscular activities. The purpose of this study was to assess the tremor amplitude and muscular activities of the shoulder between the various positions for precision demands. Ten males (age 21.9 +/- 2.0 years) participated in the study. Electromyography (EMG) was quantified on eight humeral/scapular muscles. The tremor was measured by the acceleration component of a motion tracking sensor in the 3-7 Hz and 8-12 Hz frequency bands. Participants simulated six preparatory archery shooting positions (3 arm angles x 2 arm draw positions) and performed isometric contractions. The relative root mean square (RMS) amplitudes of the shoulder muscles were significantly greater for the full drawing position compared with the partial position (humeral muscles: P = 0.011; scapular muscles: P = 0.026). In the full drawing position, increased humeral/scapular muscle EMG amplitude was moderately associated with an increased power spectrum of 8-12/3-7 Hz tremor in humerus/scapula motion (R = 0.43-0.57). To minimize fluctuations in high strength muscle performance, 90 degrees of elevation in the full drawing position may be a suitable position for demands in archery. In addition, scapular muscle amplitude is important for stability to reduce humerus tremor during archery performance. PMID:20432134

  16. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  17. Main problems of the Russian Orlan-M space suit utilization for EVAs on the ISS

    NASA Astrophysics Data System (ADS)

    Abramov, I. P.; Pozdnyakov, S. S.; Severin, G. I.; Stoklitsky, A. Yu.

    2001-03-01

    In the recent years the Russian Orlan-M space suits have been improved as applied to their operational requirements for the ISS. A special attention is paid to enhancement of EVA crew efficiency and safety. The paper considers the main problems regarding specific features of the Russian space suit operation in the ISS, and analyses measures on their solution. In particular, the problems associated with the following are considered: enhancement of the anthropometric range for the EVA crewmembers; use of some US EMU elements and unified NASA equipment elements; Orlan-M operation support in the wide range of the ISS thermal conditions; use of Simplified Aid For Extravehicular activity Rescue (SAFER) designed as a self-rescue device, which will be used for an EVA crewmember return in the event that he (she) breaks away inadvertently from the ISS surface. The paper states the main space suit differences with reference to solution of the above problems. The paper presents briefly the design of space suit arms developed for crewmembers with small anthropometric parameters, as well as peculiarities and test results for the gloves with enhanced thermal protection. Measures on further space suit development with the purpose to improve its performances are considered.

  18. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1994-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. The First Servicing Mission (FSM) involved considerable Extra Vehicular Activity (EVA). Special EVA tools for the FSM were designed and developed for this specific purpose. In an earlier report, the details of the Data Acquisition System developed to test the performance of the various EVA tools in ambient as well as simulated space environment were presented. The general schematic of the test setup is reproduced in this report for continuity. Although the data acquisition system was used extensively to test a number of fasteners, only the results of one test each carried on various fasteners and the Power Ratchet Tool are included in this report.

  19. Lateralization of cervical spinal cord activity during an isometric upper extremity motor task with functional magnetic resonance imaging.

    PubMed

    Weber, Kenneth A; Chen, Yufen; Wang, Xue; Kahnt, Thorsten; Parrish, Todd B

    2016-01-15

    The purpose of this study was to use an isometric upper extremity motor task to detect activity induced blood oxygen level dependent signal changes in the cervical spinal cord with functional magnetic resonance imaging. Eleven healthy volunteers performed six 5minute runs of an alternating left- and right-sided isometric wrist flexion task, during which images of the cervical spinal cord were acquired with a reduced field-of-view T2*-weighted gradient-echo echo-planar-imaging sequence. Spatial normalization to a standard spinal cord template was performed, and group average activation maps were generated in a mixed-effects analysis. The task activity significantly exceeded that of the control analyses. The activity was lateralized to the hemicord ipsilateral to the task and reliable across the runs at the group and subject level. Finally, a multi-voxel pattern analysis was able to successfully decode the left and right tasks at the C6 and C7 vertebral levels. PMID:26488256

  20. A preliminary fMRI study of a novel self-paced written fluency task: observation of left-hemispheric activation, and increased frontal activation in late vs. early task phases

    PubMed Central

    Golestanirad, Laleh; Das, Sunit; Schweizer, Tom A.; Graham, Simon J.

    2015-01-01

    Neuropsychological tests of verbal fluency are very widely used to characterize impaired cognitive function. For clinical neuroscience studies and potential medical applications, measuring the brain activity that underlies such tests with functional magnetic resonance imaging (fMRI) is of significant interest—but a challenging proposition because overt speech can cause signal artifacts, which tend to worsen as the duration of speech tasks becomes longer. In a novel approach, we present the group brain activity of 12 subjects who performed a self-paced written version of phonemic fluency using fMRI-compatible tablet technology that recorded responses and provided task-related feedback on a projection screen display, over long-duration task blocks (60 s). As predicted, we observed robust activation in the left anterior inferior and medial frontal gyri, consistent with previously reported results of verbal fluency tasks which established the role of these areas in strategic word retrieval. In addition, the number of words produced in the late phase (last 30 s) of written phonemic fluency was significantly less (p < 0.05) than the number produced in the early phase (first 30 s). Activation during the late phase vs. the early phase was also assessed from the first 20 s and last 20 s of task performance, which eliminated the possibility that the sluggish hemodynamic response from the early phase would affect the activation estimates of the late phase. The last 20 s produced greater activation maps covering extended areas in bilateral precuneus, cuneus, middle temporal gyrus, insula, middle frontal gyrus and cingulate gyrus. Among these areas, greater activation was observed in the bilateral middle frontal gyrus (Brodmann area BA 9) and cingulate gyrus (BA 24, 32) likely as part of the initiation, maintenance, and shifting of attentional resources. Consistent with previous pertinent fMRI literature involving overt and covert verbal responses, these findings highlight