Science.gov

Sample records for activity eva tasks

  1. Extravehicular Activity (EVA) 101: Constellation EVA Systems

    NASA Technical Reports Server (NTRS)

    Jordan, Nicole C.

    2007-01-01

    A viewgraph presentation on Extravehicular Activity (EVA) Systems is shown. The topics include: 1) Why do we need space suits? 2) Protection From the Environment; 3) Primary Life Support System (PLSS); 4) Thermal Control; 5) Communications; 6) Helmet and Extravehicular Visor Assy; 7) Hard Upper Torso (HUT) and Arm Assy; 8) Display and Controls Module (DCM); 9) Gloves; 10) Lower Torso Assembly (LTA); 11) What Size Do You Need?; 12) Boot and Sizing Insert; 13) Boot Heel Clip and Foot Restraint; 14) Advanced and Crew Escape Suit; 15) Nominal & Off-Nominal Landing; 16) Gemini Program (mid-1960s); 17) Apollo EVA on Service Module; 18) A Bold Vision for Space Exploration, Authorized by Congress; 19) EVA System Missions; 20) Configurations; 21) Reduced Gravity Program; and 22) Other Opportunities.

  2. Application of Shuttle EVA Systems to Payloads. Volume 2: Payload EVA Task Completion Plans

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Candidate payload tasks for EVA application were identified and selected, based on an analysis of four representative space shuttle payloads, and typical EVA scenarios with supporting crew timelines and procedures were developed. The EVA preparations and post EVA operations, as well as the timelines emphasizing concurrent payload support functions, were also summarized.

  3. Study of space shuttle EVA/IVA support requirements. Volume 2: EVA/IVA tasks, guidelines, and constraints definition

    NASA Technical Reports Server (NTRS)

    Webbon, B. W.; Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    The guidelines for EVA and IVA tasks to be performed on the space shuttle are defined. In deriving tasks, guidelines, and constraints, payloads were first identified from the mission model. Payload requirements, together with man and manipulator capabilities, vehicle characteristics and operation, and safety considerations led to a definition of candidate tasks. Guidelines and constraints were also established from these considerations. Scenarios were established, and screening criteria, such as commonality of EVA and IVA activities, were applied to derive representative planned and unplanned tasks. The whole spectrum of credible contingency situations with a potential requirement for EVA/IVA was analyzed.

  4. Extravehicular Activity (EVA) Hardware & Operations Overview

    NASA Technical Reports Server (NTRS)

    Moore, Sandra; Marmolejo, Jose

    2014-01-01

    The objectives of this presentation are to: Define Extravehicular Activity (EVA), identify the reasons for conducting an EVA, and review the role that EVA has played in the space program; Identify the types of EVAs that may be performed; Describe some of the U.S. Space Station equipment and tools that are used during an EVA, such as the Extravehicular Mobility Unit (EMU), the Simplified Aid For EVA Rescue (SAFER), the International Space Station (ISS) Joint Airlock and Russian Docking Compartment 1 (DC-1), and EVA Tools & Equipment; Outline the methods and procedures of EVA Preparation, EVA, and Post-EVA operations; Describe the Russian spacesuit used to perform an EVA; Provide a comparison between U.S. and Russian spacesuit hardware and EVA support; and Define the roles that different training facilities play in EVA training.

  5. Effects of EVA spacesuit glove on grasping and pinching tasks

    NASA Astrophysics Data System (ADS)

    Appendino, Silvia; Battezzato, Alessandro; Chen Chen, Fai; Favetto, Alain; Mousavi, Mehdi; Pescarmona, Francesco

    2014-03-01

    The human hand has a wide range of degrees of freedom, allowing a great variety of movements, and is also one of the most sensitive parts of the human body. Due to these characteristics, it is the most important tool for astronauts to perform extravehicular activities (EVA). However, astronauts must wear mandatory EVA equipment to be protected from the harsh conditions in space and this strongly reduces hand performance, in particular as regards dexterity, tactile perception, mobility and fatigue. Several studies have been conducted to determine the influence of the EVA glove on manual capabilities, both in the past and more recently. This study presents experimental data regarding the performance decline occurring in terms of force and fatigue in the execution of grasping and pinching tasks when wearing an EVA glove, in pressurized and unpressurized conditions, compared with barehanded potential. Results show that wearing the unpressurized EVA glove hinders grip and lateral pinch performances, dropping exerted forces to about 50-70%, while it barely affects two- and three-finger pinch performances. On the other hand, wearing the pressurized glove worsens performances in all cases, reducing forces to about 10-30% of barehanded potential. The results are presented and compared with the previous literature.

  6. Injury Risk Assessment of Extravehicular Mobility Unit (EMU) Phase VI and Series 4000 Gloves During Extravehicular Activity (EVA) Hand Manipulation Tasks

    NASA Technical Reports Server (NTRS)

    Kilby, Melissa

    2015-01-01

    Functional Extravehicular Mobility Units (EMUs) with high precision gloves are essential for the success of Extravehicular Activity (EVA). Previous research done at NASA has shown that total strength capabilities and performance are reduced when wearing a pressurized EMU. The goal of this project was to characterize the human-space suit glove interaction and assess the risk of injury during common EVA hand manipulation tasks, including pushing, pinching and gripping objects. A custom third generation sensor garment was designed to incorporate a combination of sensors, including force sensitive resistors, strain gauge sensors, and shear force sensors. The combination of sensors was used to measure the forces acting on the finger nails, finger pads, finger tips, as well as the knuckle joints. In addition to measuring the forces, data was collected on the temperature, humidity, skin conductance, and blood perfusion of the hands. Testing compared both the Phase VI and Series 4000 glove against an ungloved condition. The ungloved test was performed wearing the sensor garment only. The project outcomes identified critical landmarks that experienced higher workloads and are more likely to suffer injuries. These critical landmarks varied as a function of space suit glove and task performed. The results showed that less forces were acting on the hands while wearing the Phase VI glove as compared to wearing the Series 4000 glove. Based on our findings, the engineering division can utilize these methods for optimizing the current space suit glove and designing next generation gloves to prevent injuries and optimize hand mobility and comfort.

  7. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  8. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report

    NASA Astrophysics Data System (ADS)

    Tomaro, D. J.

    1982-02-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  9. Climbing the Extravehicular Activity (EVA) Wall - Safely

    NASA Technical Reports Server (NTRS)

    Fuentes, Jose; Greene, Stacie

    2010-01-01

    The success of the EVA team, that includes the EVA project office, Crew Office, Mission Operations, Engineering and Safety, is assured by the full integration of all necessary disciplines. Safety participation in all activities from hardware development concepts, certification and crew training, provides for a strong partnership within the team. Early involvement of Safety on the EVA team has mitigated risk and produced a high degree of mission success.

  10. The role of EVA on Space Shuttle. [experimental support and maintenance activities

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1974-01-01

    The purpose of this paper is to present the history of Extravehicular Activity (EVA) through the Skylab Program and to outline the expected tasks and equipment capabilities projected for the Space Shuttle Program. Advantages offered by EVA as a tool to extend payload capabilities and effectiveness and economic advantages of using EVA will be explored. The presentation will conclude with some guidelines and recommendations for consideration by payload investigators in establishing concepts and designs utilizing EVA support.

  11. Mission control activity during STS-61 EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Flight controller Susan P. Rainwater observes as two astronauts work through a lengthy period of extravehicular activity (EVA) in the cargo bay of the Earth-looking Space Shuttle Endeavour. Rainwater's EVA console was one of Mission Control's busiest during this eleven-day Hubble Space Telescope (HST) servicing mission in Earth orbit.

  12. Comparison Of Human Modelling Tools For Efficiency Of Prediction Of EVA Tasks

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Loughead, Tomas E.

    1998-01-01

    Construction of the International Space Station (ISS) will require extensive extravehicular activity (EVA, spacewalks), and estimates of the actual time needed continue to rise. As recently as September, 1996, the amount of time to be spent in EVA was believed to be about 400 hours, excluding spacewalks on the Russian segment. This estimate has recently risen to over 1100 hours, and it could go higher before assembly begins in the summer of 1998. These activities are extremely expensive and hazardous, so any design tools which help assure mission success and improve the efficiency of the astronaut in task completion can pay off in reduced design and EVA costs and increased astronaut safety. The tasks which astronauts can accomplish in EVA are limited by spacesuit mobility. They are therefore relatively simple, from an ergonomic standpoint, requiring gross movements rather than time motor skills. The actual tasks include driving bolts, mating and demating electric and fluid connectors, and actuating levers; the important characteristics to be considered in design improvement include the ability of the astronaut to see and reach the item to be manipulated and the clearance required to accomplish the manipulation. This makes the tasks amenable to simulation in a Computer-Assisted Design (CAD) environment. For EVA, the spacesuited astronaut must have his or her feet attached on a work platform called a foot restraint to obtain a purchase against which work forces may be actuated. An important component of the design is therefore the proper placement of foot restraints.

  13. Human-Centric Teaming in a Multi-Agent EVA Assembly Task

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Currie, Nancy; Ambrose, Robert O.; Culbert, Christopher

    2004-01-01

    NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower.An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of human astronauts with the survivability and physical capabilities of highly dexterous space robots is proposed. A 1-g test featuring two NASA/DARPA Robonaut systems working side-by-side with a suited human subject is conducted to evaluate human-robot teaming strategies in the context of a simulated EVA assembly task based on the STS-61B ACCESS flight experiment.

  14. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  15. Extravehicular activities limitations study. Volume 2: Establishment of physiological and performance criteria for EVA gloves

    NASA Technical Reports Server (NTRS)

    Ohara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1988-01-01

    One of the major probelms faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human hand capabilities. This report describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based on an assessment of general human hand functioning and EVA task requirements several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure. A test program was conducted to evaluate the tests using a representative EVA glove. Eleven test subjects participated in a repeated-measures design. The report presents the results of the tests in each capability domain.

  16. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronaut Rex J. Walheim, accompanied by astronaut Steven L. Smith (out of frame) translates along the Destiny laboratory on the International Space Station (ISS) during the third scheduled EVA session. The duo released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm. The STS-110 mission prepared the ISS for future space walks by installing and outfitting the S0 (S-Zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  17. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission Specialists Jerry L. Ross and Lee M.E. Morin work in tandem on the fourth scheduled EVA session for the STS-110 mission aboard the Space Shuttle Orbiter Atlantis. Ross is anchored on the mobile foot restraint on the International Space Station's (ISS) Canadarm2, while Morin works inside the S0 (S-zero) truss. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting a 43-foot-long S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  18. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronauts Steven L. Smith (right) and Rex J. Walheim work in tandem on the third scheduled EVA session in which they released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm (out of frame). Part of the Destiny laboratory and a glimpse of the Earth's horizon are seen in the lower portion of this digital image. The STS-110 mission prepared the International Space Station (ISS) for future spacewalks by installing and outfitting the S0 (S-zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  19. Evaluation of an Anthropometric Human Body Model for Simulated EVA Task Assessment

    NASA Technical Reports Server (NTRS)

    Etter, Brad

    1996-01-01

    One of the more mission-critical tasks performed in space is extravehicular activity (EVA) which requires the astronaut to be external to the station or spacecraft, and subsequently at risk from the many threats posed by space. These threats include, but are not limited to: no significant atmosphere, harmful electromagnetic radiation, micrometeoroids, and space debris. To protect the astronaut from this environment, a special EVA suit is worn which is designed to maintain a sustainable atmosphere (at 1/3 atmosphere) and provide protection against the hazards of space. While the EVA suit serves these functions well, it does impose limitations on the astronaut as a consequence of the safety it provides. Since the astronaut is in a virtual vacuum, any atmospheric pressure inside the suit serves to pressurize the suit and restricts mobility of flexible joints (such as fabric). Although some of the EVA suit joints are fixed, rotary-style joints, most of the mobility is achieved by the simple flexibility of the fabric. There are multiple layers of fabric, each of which serves a special purpose in the safety of the astronaut. These multiple layers add to the restriction of motion the astronaut experiences in the space environment. Ground-based testing is implemented to evaluate the capability of EVA-suited astronauts to perform the various tasks in space. In addition to the restriction of motion imposed by the EVA suit, most EVA activity is performed in a micro-gravity (weight less) environment. To simulate weightlessness EVA-suited testing is performed in a neutral buoyancy simulator (NBS). The NBS is composed of a large container of water (pool) in which a weightless environment can be simulated. A subject is normally buoyant in the pressurized suit; however he/she can be made neutrally buoyant with the addition of weights. In addition, most objects the astronaut must interface with in the NBS sink in water and flotation must be added to render them "weightless". The

  20. STS-111 Exrtravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-111 Mission Specialists Franklin R. Chang-Diaz (left) and representing the French Space Agency (CNES), Philippe Perrin (right) work on the Mobile Remote Servicer Base System (MBS) on the International Space Station (ISS). The boxes in front of the spacewalkers are the Remote Power Control Modules (RPCM) and partially visible in the background is the S0 (S-zero) truss, to which the MBS was installed. Delivered in June 2002 by the STS-111 mission aboard the Space Shuttle Endeavour, the MBS is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station which is neccessary for future construction tasks. In addition, STS-111 delivered a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the MBS to the Mobile Transporter on the S0 (S-zero) truss, the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  1. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    NASA Technical Reports Server (NTRS)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  2. Active Solid State Dosimetry for Lunar EVA

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

    2006-01-01

    The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

  3. Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)

    NASA Technical Reports Server (NTRS)

    Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.

    2007-01-01

    An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.

  4. Extravehicular Activity (EVA) Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for

  5. 7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT IS $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  6. Generic extravehicular (EVA) and telerobot task primitives for analysis, design, and integration. Version 1.0: Reference compilation for the EVA and telerobotics communities

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Drews, Michael

    1990-01-01

    The results are described of an effort to establish commonality and standardization of generic crew extravehicular (crew-EVA) and telerobotic task analysis primitives used for the study of spaceborne operations. Although direct crew-EVA plans are the most visible output of spaceborne operations, significant ongoing efforts by a wide variety of projects and organizations also require tools for estimation of crew-EVA and telerobotic times. Task analysis tools provide estimates for input to technical and cost tradeoff studies. A workshop was convened to identify the issues and needs to establish a common language and syntax for task analysis primitives. In addition, the importance of such a syntax was shown to have precedence over the level to which such a syntax is applied. The syntax, lists of crew-EVA and telerobotic primitives, and the data base in diskette form are presented.

  7. Extravehicular Activity (EVA) Microbial Swab Tool

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2015-01-01

    When we send humans to search for life on Mars, we'll need to know what we brought with us versus what may already be there. To ensure our crewed spacecraft meet planetary protection requirements--and to protect our science from human contamination--we'll need to know whether micro-organisms are leaking/venting from our ships and spacesuits. This is easily done by swabbing external vents and surfaces for analysis, but there was no US EVA tool for that job. NASA engineers developed an EVA-compatible swab tool that can be used to collect data on current hardware, which will influence eventual Mars life support and EVA hardware designs.

  8. Human Research Program Human Health Countermeasures Element Extravehicular Activity (EVA) Risk Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Norfleet, William; Harris, Bernard

    2009-01-01

    The Extravehicular Activity (EVA) Risk Standing Review Panel (SRP) was favorably impressed by the operational risk management approach taken by the Human Research Program (HRP) Integrated Research Plan (IRP) to address the stated life sciences issues. The life sciences community at the Johnson Space Center (JSC) seems to be focused on operational risk management. This approach is more likely to provide risk managers with the information they need at the time they need it. Concerning the information provided to the SRP by the EVA Physiology, Systems, and Performance Project (EPSP), it is obvious that a great deal of productive activity is under way. Evaluation of this information was hampered by the fact that it often was not organized in a fashion that reflects the "Gaps and Tasks" approach of the overall Human Health Countermeasures (HHC) effort, and that a substantial proportion of the briefing concerned subjects that, while interesting, are not part of the HHC Element (e.g., the pressurized rover presentation). Additionally, no information was provided on several of the tasks or how they related to work underway or already accomplished. This situation left the SRP having to guess at the efforts and relationship to other elements, and made it hard to easily map the EVA Project efforts currently underway, and the data collected thus far, to the gaps and tasks in the IRP. It seems that integration of the EPSP project into the HHC Element could be improved. Along these lines, we were concerned that our SRP was split off from the other participating SRPs at an early stage in the overall agenda for the meeting. In reality, the concerns of EPSP and other projects share much common ground. For example, the commonality of the concerns of the EVA and exercise physiology groups is obvious, both in terms of what reduced exercise capacity can do to EVA capability, and how the exercise performed during an EVA could contribute to an overall exercise countermeasure prescription.

  9. EVA console personnel during STS-61 simulations

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Susan P. Rainwater monitors an extravehicular activity (EVA) simulation from the EVA console at JSC's Mission Control Center (MCC) during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  10. STS-110 Astronaut Jerry Ross Performs Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. In this photograph, Astronaut Jerry L. Ross, mission specialist, anchored on the end of the Canadarm2, moves near the newly installed S0 truss. Astronaut Lee M. E. Morin, mission specialist, (out of frame), worked in tandem with Ross during this fourth and final scheduled session of EVA for the STS-110 mission. The final major task of the space walk was the installation of a beam, the Airlock Spur, between the Quest Airlock and the S0. The spur will be used by space walkers in the future as a path from the airlock to the truss.

  11. EVA-SCRAM operations

    NASA Technical Reports Server (NTRS)

    Flanigan, Lee A.; Tamir, David; Weeks, Jack L.; Mcclure, Sidney R.; Kimbrough, Andrew G.

    1994-01-01

    This paper wrestles with the on-orbit operational challenges introduced by the proposed Space Construction, Repair, and Maintenance (SCRAM) tool kit for Extra-Vehicular Activity (EVA). SCRAM undertakes a new challenging series of on-orbit tasks in support of the near-term Hubble Space Telescope, Extended Duration Orbiter, Long Duration Orbiter, Space Station Freedom, other orbital platforms, and even the future manned Lunar/Mars missions. These new EVA tasks involve welding, brazing, cutting, coating, heat-treating, and cleaning operations. Anticipated near-term EVA-SCRAM applications include construction of fluid lines and structural members, repair of punctures by orbital debris, refurbishment of surfaces eroded by atomic oxygen, and cleaning of optical, solar panel, and high emissivity radiator surfaces which have been degraded by contaminants. Future EVA-SCRAM applications are also examined, involving mass production tasks automated with robotics and artificial intelligence, for construction of large truss, aerobrake, and reactor shadow shield structures. Realistically achieving EVA-SCRAM is examined by addressing manual, teleoperated, semi-automated, and fully-automated operation modes. The operational challenges posed by EVA-SCRAM tasks are reviewed with respect to capabilities of existing and upcoming EVA systems, such as the Extravehicular Mobility Unit, the Shuttle Remote Manipulating System, the Dexterous End Effector, and the Servicing Aid Tool.

  12. 8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT OF SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  13. Shuttle EVA description and design criteria

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The STS extravehicular mobility unit, orbiter EVA provisions, EVA equipment, factors affecting employment of EVA, EVA mission integration, baselined extravehicular activity are discussed. Design requirements are also discussed.

  14. The Use of Human Modeling of EVA Tasks as a Systems Engineering Tool

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Schmidt, Henry J.; Kross, Dennis A. (Technical Monitor)

    2001-01-01

    Computer-generated human models have been used in aerospace design for a decade. They have come to be highly reliable for worksite analysis of certain types of EVA tasks. In many design environments, this analysis comes after the structural design is largely complete. However, the use of these models as a development tool is gaining acceptance within organizations that practice good systems engineering processes. The design of the United States Propulsion Module for the International Space Station provides an example of this application. The Propulsion Module will provide augmentation to the propulsion capability supplied by the Russian Service Module Zvezda. It is a late addition to the set of modules provided by the United States to the ISS Program, and as a result, faces design challenges that result from the level of immaturity of its integration into the Station. Among these are heat dissipation and physical envelopes. Since the rest of the Station was designed to maximize the use of the cooling system, little margin is available for the addition of another module. The Propulsion Module will attach at the forward end of the Station, and will be between the Orbiter and the rest of ISS. Since cargo must be removed from the Payload Bay and transferred to Station by the Canadarm, there is a potential for protrusions from the module, such as thruster booms, to interfere with robotic operations. These and similar engineering issues must be addressed as part of the development. In the implementation of good system design, all design solutions should be analyzed for compatibility with all affected subsystems. Human modeling has been used in this project to provide rapid input to system trades of design concepts. For example, the placement of radiators and avionics components for optimization of heat dissipation had to be examined for feasibility of EVA translation paths and worksite development. Likewise, the location of and mechanism for the retraction of thruster

  15. A new preoxygenation procedure for extravehicular activity (EVA)

    NASA Technical Reports Server (NTRS)

    Webb, J. T.; Pilmanis, A. A.

    1998-01-01

    A 10.2 psi staged-decompression schedule or a 4-hour preoxygenation at 14.7 psi is required prior to extravehicular activity (EVA) to reduce decompression sickness (DCS) risk. Results of recent research at the Air Force Research Laboratory (AFRL) showed that a 1-hour resting preoxygenation followed by a 4-hour, 4.3 psi exposure resulted in 77% DCS risk (N=26), while the same profile beginning with 10 min of exercise at 75% of VO2peak during preoxygenation reduced the DCS risk to 42% (P<.03; N=26). A 4-hour preoxygenation without exercise followed by the 4.3 psi exposure resulted in 47% DCS risk (N=30). The 1-hour preoxygenation with exercise and the 4-hour preoxygenation without exercise results were not significantly different. Elimination of either 3 hours of preoxygenation or 12 hours of staged-decompression are compelling reasons to consider incorporation of exercise-enhanced preoxygenation.

  16. A new preoxygenation procedure for extravehicular activity (EVA).

    PubMed

    Webb, J T; Pilmanis, A A

    1998-01-01

    A 10.2 psi staged-decompression schedule or a 4-hour preoxygenation at 14.7 psi is required prior to extravehicular activity (EVA) to reduce decompression sickness (DCS) risk. Results of recent research at the Air Force Research Laboratory (AFRL) showed that a 1-hour resting preoxygenation followed by a 4-hour, 4.3 psi exposure resulted in 77% DCS risk (N=26), while the same profile beginning with 10 min of exercise at 75% of VO2peak during preoxygenation reduced the DCS risk to 42% (P<.03; N=26). A 4-hour preoxygenation without exercise followed by the 4.3 psi exposure resulted in 47% DCS risk (N=30). The 1-hour preoxygenation with exercise and the 4-hour preoxygenation without exercise results were not significantly different. Elimination of either 3 hours of preoxygenation or 12 hours of staged-decompression are compelling reasons to consider incorporation of exercise-enhanced preoxygenation.

  17. Risk Management in EVA

    NASA Technical Reports Server (NTRS)

    Hall, Jonathan; Lutomski, M.

    2006-01-01

    This viewgraph presentation reviews the use of risk management in Extravehicular Activities (EVA). The contents include: 1) EVA Office at NASA - JSC; 2) EVA Project Risk Management: Why and When; 3) EVA Office Risk Management: How; 4) Criteria for Closing a Risk; 5) Criteria for Accepting a Risk; 6) ISS IRMA Reference Card Data Entry Requirement s; 7) XA/ EVA Office Risk Activity Summary; 8) EVA Significant Change Summary; 9) Integrated Risk Management Application (XA) Matrix, March 31, 2004; 10) ISS Watch Item: 50XX Summary Report; and 11) EVA Project RM Usefulness

  18. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral

  19. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more

  20. The Effects of Extravehicular Activity (EVA) Glove Pressure on Tactility

    NASA Technical Reports Server (NTRS)

    Thompson, Shelby; Miranda, Mesloh; England, Scott; Benson, Elizabeth; Rajulu, Sudhakar

    2010-01-01

    The purpose of the current study was to quantify finger tactility, while wearing a Phase VI Extravehicular Activity (EVA) glove. Subjects were fully suited in an Extravehicular Mobility Unit (EMU) suit. Data was collected under three conditions: bare-handed, gloved at 0 psi, and gloved at 4.3 psi. In order to test tactility, a series of 30 tactile stimuli (bumps) were created that varied in both height and width. With the hand obscured, subjects applied pressure to each bump until detected tactilely. The amount of force needed to detect each bump was recorded using load cells located under a force-plate. The amount of force needed to detect a bump was positively related to width, but inversely related to height. In addition, as the psi of the glove increased, more force was needed to detect the bump. In terms of application, it was possible to determine the optimal width and height a bump needs to be for a specific amount of force applied for tactility.

  1. Testing and evaluation for astronaut extravehicular activity (EVA) operability.

    PubMed

    Shields, N; King, L C

    1998-09-01

    Because it is the human component that defines space mission success, careful planning is required to ensure that hardware can be operated and maintained by crews on-orbit. Several methods exist to allow researchers and designers to better predict how hardware designs will behave under the harsh environment of low Earth orbit, and whether designs incorporate the necessary features for Extra Vehicular Activity (EVA) operability. Testing under conditions of simulated microgravity can occur during the design concept phase when verifying design operability, during mission training, or concurrently with on-orbit mission operations. The bulk of testing is focused on normal operations, but also includes evaluation of credible mission contingencies or "what would happen if" planning. The astronauts and cosmonauts who fly these space missions are well prepared and trained to survive and be productive in Earth's orbit. The engineers, designers, and training crews involved in space missions subject themselves to Earth based simulation techniques that also expose them to extreme environments. Aircraft falling ten thousand feet, alternating g-loads, underwater testing at 45 foot depth, enclosure in a vacuum chamber and subject to thermal extremes, each carries with it inherent risks to the humans preparing for space missions.

  2. Force-endurance capabilities of extravehicular activity (EVA) gloves at different pressure levels

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.; Klute, Glenn K.

    1993-01-01

    The human hand is a very useful multipurpose tool in all environments. However, performance capabilities are compromised considerably when gloves are donned. This is especially true to extravehicular activity (EVA) gloves. The primary intent was to answer the question of how long a person can perform tasks requiring certain levels of exertion. The objective was to develop grip force-endurance relations. Six subjects participated in a factorial experiment involving three hand conditions, three pressure differentials, and four levels of force exertion. The results indicate that, while the force that could be exerted depended on the glove, pressure differential, and the level of exertion, the endurance time at any exertion level depended just on the level of exertion expressed as a percentage of maximum exertion possible at that condition. The impact of these findings for practitioners as well as theoreticians is discussed.

  3. EVA 2010: Preparing for International Space Station EVA Operations Post-Space Shuttle Retirement

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; West, William W.

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the OneEVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than

  4. A human factors analysis of EVA time requirements

    NASA Technical Reports Server (NTRS)

    Pate, D. W.

    1996-01-01

    Human Factors Engineering (HFE), also known as Ergonomics, is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. A human factors motion and time study was initiated with the goal of developing a database of EVA task times and a method of utilizing the database to predict how long an ExtraVehicular Activity (EVA) should take. Initial development relied on the EVA activities performed during the STS-61 mission (Hubble repair). The first step of the analysis was to become familiar with EVAs and with the previous studies and documents produced on EVAs. After reviewing these documents, an initial set of task primitives and task time modifiers was developed. Videotaped footage of STS-61 EVAs were analyzed using these primitives and task time modifiers. Data for two entire EVA missions and portions of several others, each with two EVA astronauts, was collected for analysis. Feedback from the analysis of the data will be used to further refine the primitives and task time modifiers used. Analysis of variance techniques for categorical data will be used to determine which factors may, individually or by interactions, effect the primitive times and how much of an effect they have.

  5. Studies Relating to EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.

  6. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1988-01-01

    The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.

  7. EVA Training and Development Facilities

    NASA Technical Reports Server (NTRS)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  8. Investigation of the effects of extravehicular activity (EVA) gloves on performance

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.; Klute, Glenn

    1993-01-01

    The objective was to assess the effects of extravehicular activity (EVA) gloves at different pressures on human hand capabilities. A factorial experiment was performed in which three types of EVA gloves were tested at five pressure differentials. The independent variables tested in this experiment were gender, glove type, pressure differential, and glove make. Six subjects participated in an experiment where a number of dexterity measures, namely time to tie a rope, and the time to assemble a nut and bolt were recorded. Tactility was measured through a two point discrimination test. The results indicate that with EVA gloves strength is reduced by nearly 50 percent, there is a considerable reduction in dexterity, performance decrements increase with increasing pressure differential, and some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand. The implications for the designer are discussed.

  9. EVA Health and Human Performance Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Abercromby, A. F.; Norcross, J.; Jarvis, S. L.

    2016-01-01

    Multiple HRP Risks and Gaps require detailed characterization of human health and performance during exploration extravehicular activity (EVA) tasks; however, a rigorous and comprehensive methodology for characterizing and comparing the health and human performance implications of current and future EVA spacesuit designs does not exist. This study will identify and implement functional tasks and metrics, both objective and subjective, that are relevant to health and human performance, such as metabolic expenditure, suit fit, discomfort, suited postural stability, cognitive performance, and potentially biochemical responses for humans working inside different EVA suits doing functional tasks under the appropriate simulated reduced gravity environments. This study will provide health and human performance benchmark data for humans working in current EVA suits (EMU, Mark III, and Z2) as well as shirtsleeves using a standard set of tasks and metrics with quantified reliability. Results and methodologies developed during this test will provide benchmark data against which future EVA suits, and different suit configurations (eg, varied pressure, mass, CG) may be reliably compared in subsequent tests. Results will also inform fitness for duty standards as well as design requirements and operations concepts for future EVA suits and other exploration systems.

  10. Space Station Human Factors Research Review. Volume 1: EVA Research and Development

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Vykukal, H. C. (Editor)

    1988-01-01

    An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.

  11. One hundred US EVAs: a perspective on spacewalks.

    PubMed

    Wilde, Richard C; McBarron, James W; Manatt, Scott A; McMann, Harold J; Fullerton, Richard K

    2002-01-01

    In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.

  12. One hundred US EVAs: a perspective on spacewalks.

    PubMed

    Wilde, Richard C; McBarron, James W; Manatt, Scott A; McMann, Harold J; Fullerton, Richard K

    2002-01-01

    In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program. PMID:12583391

  13. EVA Exercise Device

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The EVA (Extra Vehicular Activity) Exercise Device for evaluation and effectiveness of weightlessness on astronauts during long duration spaceflights, at the NASA Ames Research Center, Mountain View, California

  14. EVA Performance Prediction

    NASA Technical Reports Server (NTRS)

    Peacock, Brian; Maida, James; Rajulu, Sudhakar

    2004-01-01

    out for EVA activities are based more on extensive domain experience than any formal analytic structure. Conversely, physical task analysis for industrial and structured evidence from training and EV A contexts. Again on earth there is considerable evidence of human performance degradation due to encumbrance and fatigue. These industrial models generally take the form of a discounting equation. The development of performance estimates for space operations, such as timeline predictions for EVA is generally based on specific input from training activity, for example in the NBL or KC135. uniformed services tasks on earth are much more formalized. Human performance data in the space context has two sources: first there is the micro analysis of performance in structured tasks by the space physiology community and second there is the less structured evidence from training and EV A contexts.

  15. A Pilot Model for the NASA Simplified Aid for EVA Rescue (SAFER) (Single-Axis Pitch Task)

    NASA Astrophysics Data System (ADS)

    Handley, Patrick Mark

    This thesis defines, tests, and validates a descriptive pilot model for a single-axis pitch control task of the Simplified Aid for EVA Rescue (SAFER). SAFER is a small propulsive jetpack used by astronauts for self-rescue. Pilot model research supports development of improved self-rescue strategies and technologies through insights into pilot behavior.This thesis defines a multi-loop pilot model. The innermost loop controls the hand controller, the middle loop controls pitch rate, and the outer loop controls pitch angle. A human-in-the-loop simulation was conducted to gather data from a human pilot. Quantitative and qualitative metrics both indicate that the model is an acceptable fit to the human data. Fuel consumption was nearly identical; time to task completion matched very well. There is some evidence that the model responds faster to initial pitch rates than the human, artificially decreasing the model's time to task completion. This pilot model is descriptive, not predictive, of the human pilot. Insights are made into pilot behavior from this research. Symmetry implies that the human responds to positive and negative initial conditions with the same strategy. The human pilot appears indifferent to pitch angles within 0.5 deg, coasts at a constant pitch rate 1.09 deg/s, and has a reaction delay of 0.1 s.

  16. Use MACES IVA Suit for EVA Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  17. Exploration EVA System

    NASA Technical Reports Server (NTRS)

    Kearney, Lara

    2004-01-01

    In January 2004, the President announced a new Vision for Space Exploration. NASA's Office of Exploration Systems has identified Extravehicular Activity (EVA) as a critical capability for supporting the Vision for Space Exploration. EVA is required for all phases of the Vision, both in-space and planetary. Supporting the human outside the protective environment of the vehicle or habitat and allow ing him/her to perform efficient and effective work requires an integrated EVA "System of systems." The EVA System includes EVA suits, airlocks, tools and mobility aids, and human rovers. At the core of the EVA System is the highly technical EVA suit, which is comprised mainly of a life support system and a pressure/environmental protection garment. The EVA suit, in essence, is a miniature spacecraft, which combines together many different sub-systems such as life support, power, communications, avionics, robotics, pressure systems and thermal systems, into a single autonomous unit. Development of a new EVA suit requires technology advancements similar to those required in the development of a new space vehicle. A majority of the technologies necessary to develop advanced EVA systems are currently at a low Technology Readiness Level of 1-3. This is particularly true for the long-pole technologies of the life support system.

  18. Eva Physiology, Systems, and Performance (EPSP) Project Overview

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2007-01-01

    Extravehicular activity (EVA) is any activity performed by astronauts outside their space vehicle or habitat. EVA may be performed on orbit, such as outside the Space Shuttle or the International Space Station, or on a planetary surface such as Mars or on the moon. Astronauts wear a pressurized suit that provides environmental protection, mobility, life support, and communications while they work in the harsh conditions of a microgravity environment. Exploration missions to the moon and Mars may last many days and will include many types of EVAs; exploration, science, construction and maintenance. The effectiveness and success of these EVA-filled missions is dependent on the ability to perform tasks efficiently. The EVA Physiology, Systems and Performance (EPSP) project will conduct a number of studies to understand human performance during EVA, from a molecular level to full-scale equipment and suit design aspects, with the aim of developing safe and efficient systems for Exploration missions and the Constellation Program. The EPSP project will 1) develop Exploration Mission EVA suit requirements for metabolic and thermal loading, optional center of gravity location, biomedical sensors, hydration, nutrition, and human biomedical interactions; 2) develop validated EVA prebreathe protocols that meet medical, vehicle, and habitat constraints while minimizing crew time and thus increasing EVA work efficiency; and 3) define exploration decompression sickness (DCS) risks, policy, and mission success statistics and develop a DCS risk definition report.

  19. Results from an Investigation into Extra-Vehicular Activity (EVA) Training Related Shoulder Injuries

    NASA Technical Reports Server (NTRS)

    Johnson, Brian J.; Williams, David R.

    2004-01-01

    The number and complexity of extravehicular activities (EVAs) required for the completion and maintenance of the International Space Station (ISS) is unprecedented. The training required to successfully complete this magnitude of space walks presents a real risk of overuse musculoskeletal injuries to the EVA crew population. There was mounting evidence raised by crewmembers, trainers, and physicians at the Johnson Space Center (JSC) between 1999 and 2002 that suggested a link between training in the Neutral - Buoyancy Lab (NBL) and the several reported cases of shoulder injuries. The short- and long-term health consequences of shoulder injury to astronauts in training as well as the potential mission impact associated with surgical intervention to assigned EVA crew point to this as a critical problem that must be mitigated. Thus, a multi-directorate tiger team was formed in December of 2002 led by the EVA Office and Astronaut Office at the JSC. The primary objectives of this Tiger Team were to evaluate the prevalence of these injuries and substantiate the relationship to training in the NBL with the crew person operating in the EVA Mobility Unit (EMU). Between December 2002 and June of 2003 the team collected data, surveyed crewmembers, consulted with a variety of physicians, and performed tests. The results of this effort were combined with the vast knowledge and experience of the Tiger Team members to formulate several findings and over fifty recommendations. This paper summarizes those findings and recommendations as well as the process by which these were determined. The Tiger Team concluded that training in the NBL was directly linked to several major and minor shoulder injuries that had occurred. With the assistance of JSC flight surgeons, outside consultants, and the lead crewmember/physician on the team, the mechanisms of injury were determined. These mechanisms were then linked to specific aspects of the hardware design, operational techniques, and the

  20. Interoperability Trends in Extravehicular Activity (EVA) Space Operations for the 21st Century

    NASA Technical Reports Server (NTRS)

    Miller, Gerald E.

    1999-01-01

    No other space operations in the 21 st century more comprehensively embody the challenges and dependencies of interoperability than EVA. This discipline is already functioning at an W1paralleled level of interagency, inter-organizational and international cooperation. This trend will only increase as space programs endeavor to expand in the face of shrinking budgets. Among the topics examined in this paper are hardware-oriented issues. Differences in design standards among various space participants dictate differences in the EVA tools that must be manufactured, flown and maintained on-orbit. Presently only two types of functional space suits exist in the world. However, three versions of functional airlocks are in operation. Of the three airlocks, only the International Space Station (ISS) Joint Airlock can accommodate both types of suits. Due to functional differences in the suits, completely different operating protocols are required for each. Should additional space suit or airlock designs become available, the complexity will increase. The lessons learned as a result of designing and operating within such a system are explored. This paper also examines the non-hardware challenges presented by interoperability for a discipline that is as uniquely dependent upon the individual as EVA. Operation of space suits (essentially single-person spacecrafts) by persons whose native language is not that of the suits' designers is explored. The intricacies of shared mission planning, shared control and shared execution of joint EVA's are explained. For example, once ISS is fully functional, the potential exists for two crewmembers of different nationality to be wearing suits manufactured and controlled by a third nation, while operating within an airlock manufactured and controlled by a fourth nation, in an effort to perform tasks upon hardware belonging to a fifth nation. Everything from training issues, to procedures development and writing, to real-time operations is

  1. Application of shuttle EVA systems to payloads. Volume 1: EVA systems and operational modes description

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Descriptions of the EVA system baselined for the space shuttle program were provided, as well as a compendium of data on available EVA operational modes for payload and orbiter servicing. Operational concepts and techniques to accomplish representative EVA payload tasks are proposed. Some of the subjects discussed include: extravehicular mobility unit, remote manipulator system, airlock, EVA translation aids, restraints, workstations, tools and support equipment.

  2. Creating a Lunar EVA Work Envelope

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  3. EVA manipulation and assembly of space structure columns

    NASA Technical Reports Server (NTRS)

    Loughead, T. E.; Pruett, E. C.

    1980-01-01

    Assembly techniques and hardware configurations used in assembly of the basic tetrahedral cell by A7LB pressure-suited subjects in a neutral bouyancy simulator were studied. Eleven subjects participated in assembly procedures which investigated two types of structural members and two configurations of attachment hardware. The assembly was accomplished through extra-vehicular activity (EVA) only, EVA with simulated manned maneuvering unit (MMU), and EVA with simulated MMU and simulated remote manipulator system (RMS). Assembly times as low as 10.20 minutes per tetrahedron were achieved. Task element data, as well as assembly procedures, are included.

  4. EVA safety: Space suit system interoperability

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.; McBarron, J. W.; Abramov, L. P.; Zvezda, A. O.

    1995-01-01

    The results and the recommendations of the International Academy of Astronautics extravehicular activities (IAA EVA) Committee work are presented. The IAA EVA protocols and operation were analyzed for harmonization procedures and for the standardization of safety critical and operationally important interfaces. The key role of EVA and how to improve the situation based on the identified EVA space suit system interoperability deficiencies were considered.

  5. Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Kesterson, Matthew; Bue, Grant; Trevino, Luis

    2006-01-01

    In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series off tubes through which cooling water is circulated. To better predict the effectiveness of the LCG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained. Currently, increasing the fabric s thermal conductivity along with also examining an increase in the cooling tube conductivity to more efficiently remove the excess heat generated during EVA is being simulated. Initial trials varied cooling water temperature, water flow rate, garment conductivity, tube conductivity, and total number of cooling tubes in the LCVG. Results indicate that the total number of cooling tubes could be reduced to 22 and still achieve the desired heat removal rate of 361 W. Further improvements are being made to the garment network used in the model to account for temperature gradients associated with the spacing of the cooling tubes over the surface of the garment

  6. An Experimental Investigation of Dextrous Robots Using EVA Tools and Interfaces

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert; Culbert, Christopher; Rehnmark, Frederik

    2001-01-01

    This investigation of robot capabilities with extravehicular activity (EVA) equipment looks at how improvements in dexterity are enabling robots to perform tasks once thought to be beyond machines. The approach is qualitative, using the Robonaut system at the Johnson Space Center (JSC), performing task trials that offer a quick look at this system's high degree of dexterity and the demands of EVA. Specific EVA tools attempted include tether hooks, power torque tools, and rock scoops, as well as conventional tools like scissors, wire strippers, forceps, and wrenches. More complex EVA equipment was also studied, with more complete tasks that mix tools, EVA hand rails, tethers, tools boxes, PIP pins, and EVA electrical connectors. These task trials have been ongoing over an 18 month period, as the Robonaut system evolved to its current 43 degree of freedom (DOF) configuration, soon to expand to over 50. In each case, the number of teleoperators is reported, with rough numbers of attempts and their experience level, with a subjective difficulty rating assigned to each piece of EVA equipment and function. JSC' s Robonaut system was successful with all attempted EVA hardware, suggesting new options for human and robot teams working together in space.

  7. EVA worksite analysis--use of computer analysis for EVA operations development and execution.

    PubMed

    Anderson, D

    1999-01-01

    To sustain the rate of extravehicular activity (EVA) required to assemble and maintain the International Space Station, we must enhance our ability to plan, train for, and execute EVAs. An underlying analysis capability has been developed to ensure EVA access to all external worksites as a starting point for ground training, to generate information needed for on-orbit training, and to react quickly to develop contingency EVA plans, techniques, and procedures. This paper describes the use of computer-based EVA worksite analysis techniques for EVA worksite design. EVA worksite analysis has been used to design 80% of EVA worksites on the U.S. portion of the International Space Station. With the launch of the first U.S. element of the station, EVA worksite analysis is being developed further to support real-time analysis of unplanned EVA operations. This paper describes this development and deployment of EVA worksite analysis for International Space Station (ISS) mission support.

  8. A Human Factors Analysis of EVA Time Requirements

    NASA Technical Reports Server (NTRS)

    Pate, Dennis W.

    1997-01-01

    Human Factors Engineering (HFE) is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. During the summer of 1995, a human factors motion and time study was initiated with the goals of developing a database of EVA task times and developing a method of utilizing the database to predict how long an EVA should take. Initial development relied on the EVA activities performed during the STS-61 (Hubble) mission. The first step of the study was to become familiar with EVA's, the previous task-time studies, and documents produced on EVA's. After reviewing these documents, an initial set of task primitives and task-time modifiers was developed. Data was collected from videotaped footage of two entire STS-61 EVA missions and portions of several others, each with two EVA astronauts. Feedback from the analysis of the data was used to further refine the primitives and modifiers used. The project was continued during the summer of 1996, during which data on human errors was also collected and analyzed. Additional data from the STS-71 mission was also collected. Analysis of variance techniques for categorical data was used to determine which factors may affect the primitive times and how much of an effect they have. Probability distributions for the various task were also generated. Further analysis of the modifiers and interactions is planned.

  9. Survey of Software Problems with Impacts to 'Campout' Protocol Extravehicular Activity (EVA) Prebreathe

    NASA Technical Reports Server (NTRS)

    Diderich, Greg; Matty, Christopher M.

    2009-01-01

    During International Space Station campout protocol ExtraVehicular Activity (EVA) preparations, the crew is isolated overnight in the small airlock volume in a reduced pressure, oxygen enriched atmosphere. As such, there are special considerations for the software in terms of air composition, pressure control and emergency responses. For one, the ISS software must monitor and manage two distinct atmospheres. Also, the small airlock volume is especially sensitive to small changes in the environment, and what would be a minor emergency in the larger vehicle volume can have catastrophic results in the isolated airlock. Finally, in cases of emergency, the crew needs to rapidly egress the airlock, which requires an aggressive automatic repressurization to equalize pressure on the hatch. This paper will describe the software which is modified for the airlock campout protocol. In addition, the paper will describe the software problems and hardware problems with software workarounds which have affected campout protocol.

  10. EVA Physiology

    NASA Video Gallery

    An introduction to the risk of decompression sickness (DCS) in astronauts during EVA. This will include an explanation of Prebreathe Protocols (PB), to affect nitrogen washout as a primary risk mit...

  11. Study of roles of remote manipulator systems and EVA for shuttle mission support, volume 1

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Micocci, A. J.

    1974-01-01

    Alternate extravehicular activity (EVA) and remote manipulator system (RMS) configurations were examined for their relative effectiveness in performing an array of representative shuttle and payload support tasks. Initially a comprehensive analysis was performed of payload and shuttle support missions required to be conducted exterior to a pressurized inclosure. A set of task selection criteria was established, and study tasks were identified. The EVA and RMS modes were evaluated according to their applicability for each task and task condition. The results are summarized in tabular form, showing the modes which are chosen as most effective or as feasible for each task/condition. Conclusions concerning the requirements and recommendations for each mode are presented.

  12. Thermoregulation and heat exchange in a nonuniform thermal environment during simulated extended EVA. Extravehicular activities

    NASA Technical Reports Server (NTRS)

    Koscheyev, V. S.; Leon, G. R.; Hubel, A.; Nelson, E. D.; Tranchida, D.

    2000-01-01

    BACKGROUND: Nonuniform heating and cooling of the body, a possibility during extended duration extravehicular activities (EVA), was studied by means of a specially designed water circulating garment that independently heated or cooled the right and left sides of the body. The purpose was to assess whether there was a generalized reaction on the finger in extreme contradictory temperatures on the body surface, as a potential heat status controller. METHOD: Eight subjects, six men and two women, were studied while wearing a sagittally divided experimental garment with hands exposed in the following conditions: Stage 1 baseline--total body garment inlet water temperature at 33 degrees C; Stage 2--left side inlet water temperature heated to 45 degrees C; right side cooled to 8 degrees C; Stage 3--left side inlet water temperature cooled to 8 degrees C, right side heated to 45 degrees C. RESULTS: Temperatures on each side of the body surface as well as ear canal temperature (Tec) showed statistically significant Stage x Side interactions, demonstrating responsiveness to the thermal manipulations. Right and left finger temperatures (Tfing) were not significantly different across stages; their dynamic across time was similar. Rectal temperature (Tre) was not reactive to prevailing cold on the body surface, and therefore not informative. Subjective perception of heat and cold on the left and right sides of the body was consistent with actual temperature manipulations. CONCLUSIONS: Tec and Tre estimates of internal temperature do not provide accurate data for evaluating overall thermal status in nonuniform thermal conditions on the body surface. The use of Tfing has significant potential in providing more accurate information on thermal status and as a feedback method for more precise thermal regulation of the astronaut within the EVA space suit.

  13. Extravehicular activity at geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Shields, Nicholas, Jr.; Schulze, Arthur E.; Carr, Gerald P.; Pogue, William

    1988-01-01

    The basic contract to define the system requirements to support the Advanced Extravehicular Activity (EVA) has three phases: EVA in geosynchronous Earth orbit; EVA in lunar base operations; and EVA in manned Mars surface exploration. The three key areas to be addressed in each phase are: environmental/biomedical requirements; crew and mission requirements; and hardware requirements. The structure of the technical tasks closely follows the structure of the Advanced EVA studies for the Space Station completed in 1986.

  14. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  15. Utilization of ISS to Develop and Test Operational Concepts and Hardware for Low-Gravity Terrestrial EVA

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    NASA has considerable experience in two areas of Extravehicular Activities (EVA). The first can be defined as microgravity, orbital EVAs. This consists of everything done in low Earth orbit (LEO), from the early, proof of concept EVAs conducted during the Gemini program of the 1960s, to the complex International Space Station (ISS) assembly tasks of the first decade of the 21st century. The second area of expertise is comprised of those EVAs conducted on the lunar surface, under a gravitational force one-sixth that of Earth. This EVA expertise encapsulates two extremes - microgravity and Earthlike gravitation - but is insufficient as humans expand their exploration purview, most notably with respect to spacewalks conducted on very low-gravity bodies, such as near- Earth objects (NEO) and the moons of Mars. The operational and technical challenges of this category of EVA have yet to be significantly examined, and as such, only a small number of operational concepts have been proposed thus far. To ensure mission success, however, EVA techniques must be developed and vetted to allow the selection of operational concepts that can be utilized across an assortment of destinations whose physical characteristics vary. This paper examines the utilization of ISS-based EVAs to test operational concepts and hardware in preparation for a low-gravity terrestrial EVA. While the ISS cannot mimic some of the fundamental challenges of a low-gravity terrestrial EVA - such as rotation rate and surface composition - it may be the most effective test bed available.

  16. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2010-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new concept of operations will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), the Japan Aerospace Exploration Agency's (JAXA's) H-II Transfer Vehicle (HTV) and the Boeing Delta IV Heavy (DIV-H). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  17. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Blome, Elizabeth; Tetsuya, Sakashita

    2011-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new operations concept will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), and the Japan Aerospace Exploration Agency's (JAXA s) H-II Transfer Vehicle (HTV). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  18. Effective Presentation of Metabolic Rate Information for Lunar Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Mackin, Michael A.; Gonia, Philip; Lombay-Gonzalez, Jose

    2010-01-01

    During human exploration of the lunar surface, a suited crewmember needs effective and accurate information about consumable levels remaining in their life support system. The information must be presented in a manner that supports real-time consumable monitoring and route planning. Since consumable usage is closely tied to metabolic rate, the lunar suit must estimate metabolic rate from life support sensors, such as oxygen tank pressures, carbon dioxide partial pressure, and cooling water inlet and outlet temperatures. To provide adequate warnings that account for traverse time for a crewmember to return to a safe haven, accurate forecasts of consumable depletion rates are required. The forecasts must be presented to the crewmember in a straightforward, effective manner. In order to evaluate methods for displaying consumable forecasts, a desktop-based simulation of a lunar Extravehicular Activity (EVA) has been developed for the Constellation lunar suite s life-support system. The program was used to compare the effectiveness of several different data presentation methods.

  19. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    NASA Technical Reports Server (NTRS)

    Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar

    2010-01-01

    The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.

  20. Simulated EVA operation of a remote connector assembly test report

    NASA Technical Reports Server (NTRS)

    Lefever, A.

    1979-01-01

    The features of a connector concept with respect to timelines and ease of connection by EVA (extravehicular activity), in various mating orientations were evaluated. The connector tests were conducted by thee EVA astronaut test subjects. Each of four test conditions (baseline, off angle, overhead, and with visual obstruction) were run three times by each of the test subjects. Time data were taken on each test run. Visual and voice communications with the subjects were recorded. The tests demonstrated that EVA personnel can perform connection tasks in relatively short times (generally one minute) and the connector configuration was a reasonable design base for such tasks. The in-situ communications and post-test comments indicated that the connector was generally acceptable but requires improvement to its manual interface features.

  1. Study to evaluate the effect of EVA on payload systems. Volume 1: Executive summary. [project planning of space missions employing extravehicular activity as a means of cost reduction

    NASA Technical Reports Server (NTRS)

    Patrick, J. W.; Kraly, E. F.

    1975-01-01

    Programmatic benefits to payloads are examined which can result from the routine use of extravehicular activity (EVA) during space missions. Design and operations costs were compared for 13 representative baseline payloads to the costs of those payloads adapted for EVA operations. The EVA-oriented concepts developed in the study were derived from these baseline concepts and maintained mission and program objectives as well as basic configurations. This permitted isolation of cost saving factors associated specifically with incorporation of EVA in a variety of payload designs and operations. The study results were extrapolated to a total of 74 payload programs. Using appropriate complexity and learning factors, net EVA savings were extrapolated to over $551M for NASA and U.S. civil payloads for routine operations. Adding DOD and ESRO payloads increases the net estimated savings of $776M. Planned maintenance by EVA indicated an estimated $168M savings due to elimination of automated service equipment. Contingency problems of payloads were also analyzed to establish expected failure rates for shuttle payloads. The failure information resulted in an estimated potential for EVA savings of $1.9 B.

  2. EVA Glove Research Team

    NASA Technical Reports Server (NTRS)

    Strauss, Alvin M.; Peterson, Steven W.; Main, John A.; Dickenson, Rueben D.; Shields, Bobby L.; Lorenz, Christine H.

    1992-01-01

    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area.

  3. Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system

    NASA Technical Reports Server (NTRS)

    Mclauchlan, Robert A.

    1987-01-01

    Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.

  4. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Mesloh, Miranda; Thompson, Shelby; England, Scott; Benson, Liz

    2009-01-01

    With the new vision of space travel aimed at traveling back to the Moon and eventually to Mars, NASA is designing a new spacesuit glove. The purpose of this study was to baseline hand strength while wearing the current Extravehicular Activity (EVA) glove, the Phase VI. By varying the pressure in the glove, hand strength could be characterized as a function of spacesuit pressure. This finding is of extreme importance when evaluating missions that require varying suit pressures associated with different operations within NASA's current human spaceflight program, Constellation. This characterization fed directly into the derivation of requirements for the next EVA glove. This study captured three types of maximum hand strength: grip, lateral pinch, and pulp-2 pinch. All three strengths were measured under varying pressures and compared to a bare-hand condition. The resulting standardized data was reported as a percentage of the bare-hand strength. The first wave of tests was performed while the subjects, four female and four male, were wearing an Extravehicular Mobility Unit (EMU) suit supported by a suit stand. This portion of the test collected data from the barehand, suited unpressurized, and suited pressurized (4.3 psi) conditions. In addition, the effects of the Thermal Micrometeoroid Garment (TMG) on hand strength were examined, with the suited unpressurized and pressurized cases tested with and without a TMG. It was found that, when pressurized and with the TMG, the Phase VI glove reduced applied grip strength to a little more than half of the subject s bare-hand strength. The lateral pinch strength remained relatively constant while the pulp-2 pinch strength actually increased with pressure. The TMG was found to decrease maximum applied grip strength by an additional 10% for both pressurized and unpressurized cases, while the pinch strengths saw little to no change. In developing requirements based on human subjects, it is important to attempt to derive

  5. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis

  6. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane M.; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis.

  7. EVA Skills Training

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    Dr. Parazynski and a colleague from Extravehicular Activity (EVA), Robotics, & Crew Systems Operations (DX) worked closely to build the EVA Skills Training Program, and for the first time, defined the gold standards of EVA performance, allowing crewmembers to increase their performance significantly. As part of the program, individuals had the opportunity to learn at their own rate, taking additional water time as required, to achieve that level of performance. This focus on training to one's strengths and weaknesses to bolster them enabled the Crew Office and DX to field a much larger group of spacewalkers for the daunting "wall of EVA" required for the building and maintenance of the ISS. Parazynski also stressed the need for designers to understand the capabilities and the limitations of a human in a spacesuit, as well as opportunities to improve future generations of space. He shared lessons learned (how the Crew Office engaged in these endeavors) and illustrated the need to work as a team to develop these complex systems.

  8. Development of an air-bearing fan for space extravehicular activity (EVA) suit ventilation

    NASA Technical Reports Server (NTRS)

    Fukumoto, Paul; Allen, Norman; Stonesifer, Greg

    1992-01-01

    A high-speed/variable flow fan has been developed for EVA suit ventilation which combines air bearings with a two-pole, toothless permanent-magnet motor. The fan has demonstrated quiet and vibration-free operation and a 2:1 range in flow rate variation. System weight is 0.9 kg, and input powers range from 12.4 to 42 W.

  9. Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2004-01-01

    This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

  10. Metabolic Assessment of Suited Mobility Using Functional Tasks

    NASA Technical Reports Server (NTRS)

    Norcross, J. R.; McFarland, S. M.; Ploutz-Snyder, Robert

    2016-01-01

    Existing methods for evaluating extravehicular activity (EVA) suit mobility have typically focused on isolated joint range of motion or torque, but these techniques have little to do with how well a crewmember functionally performs in an EVA suit. To evaluate suited mobility at the system level through measuring metabolic cost (MC) of functional tasks.

  11. What's NEXT for EVA

    NASA Astrophysics Data System (ADS)

    Fullerton, R. K.

    The NASA Exploration Team (NEXT) promotes a vision of new capabilities through an ongoing, integrated and prioritized investment in leap ahead concepts and technologies. The wise marriage of robotic and human work systems is a key element of this vision. To enable a wide array of future destinations and applications, it is important to develop and implement systems which are scalable, environmentally adaptable, reliable and efficiently productive. This paper highlights a few of the recently envisioned customers and applications for advanced extravehicular activity (EVA) systems. It also summarizes recent conceptual and practical studies to define the features and options of such a system. More importantly, it communicates the need and progress of knowledge capture, clearly defined performance targets, credible decision making tools, tangible benefits and creative leverage. With this integrated long range approach, space exploration and EVA can accelerate and enable the future for all generations.

  12. A Human Machine Interface for EVA

    NASA Astrophysics Data System (ADS)

    Hartmann, L.

    , the overlaid graphical information can be registered with the external world. For example, information about an object can be positioned on or beside the object. This wearable HMI supports many applications during EVA including robot teleoperation, procedure checklist usage, operation of virtual control panels and general information or documentation retrieval and presentation. Whether the robot end effector is a mobile platform for the EVA astronaut or is an assistant to the astronaut in an assembly or repair task, the astronaut can control the robot via a direct manipulation interface. Embedded in the suit or the astronaut's clothing, Shapetape can measure the user's arm/hand position and orientation which can be directly mapped into the workspace coordinate system of the robot. Motion of the users hand can generate corresponding motion of the robot end effector in order to reposition the EVA platform or to manipulate objects in the robot's grasp. Speech input can be used to execute commands and mode changes without the astronaut having to withdraw from the teleoperation task. Speech output from the system can provide feedback without affecting the user's visual attention. The procedure checklist guiding the astronaut's detailed activities can be presented on the HUD and manipulated (e.g., move, scale, annotate, mark tasks as done, consult prerequisite tasks) by spoken command. Virtual control panels for suit equipment, equipment being repaired or arbitrary equipment on the space station can be displayed on the HUD and can be operated by speech commands or by hand gestures. For example, an antenna being repaired could be pointed under the control of the EVA astronaut. Additionally arbitrary computer activities such as information retrieval and presentation can be carried out using similar interface techniques. Considering the risks, expense and physical challenges of EVA work, it is appropriate that EVA astronauts have considerable support from station crew and

  13. Advanced EVA system design requirements study: EVAS/space station system interface requirements

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1985-01-01

    The definition of the Extravehicular Activity (EVA) systems interface requirements and accomodations for effective integration of a production EVA capability into the space station are contained. A description of the EVA systems for which the space station must provide the various interfaces and accomodations are provided. The discussion and analyses of the various space station areas in which the EVA interfaces are required and/or from which implications for EVA system design requirements are derived, are included. The rationale is provided for all EVAS mechanical, fluid, electrical, communications, and data system interfaces as well as exterior and interior requirements necessary to facilitate EVA operations. Results of the studies supporting these discussions are presented in the appendix.

  14. Metabolic rate control during extravehicular activity simulations and measurement techniques during actual EVAS

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.

    1975-01-01

    A description of the methods used to control and measure metabolic rate during ground simulations is given. Work levels attained at the Space Environment Simulation Laboratory are presented. The techniques and data acquired during ground simulations are described and compared with inflight procedures. Data from both the Skylab and Apollo Program were utilized and emphasis is given to the methodology, both in simulation and during flight. The basic techniques of work rate assessment are described. They include oxygen consumption, which was useful for averages over long time periods, heart rate correlations based on laboratory calibrations, and liquid cooling garment temperature changes. The relative accuracy of these methods as well as the methods of real-time monitoring at the Mission Control Center are discussed. The advantages and disadvantages of each of the metabolic measurement techniques are discussed. Particular emphasis is given to the problem of utilizing oxygen decrement for short time periods and heart rate at low work levels. A summary is given of the effectiveness of work rate control and measurements; and current plans for future EVA monitoring are discussed.

  15. TEJAS - TELEROBOTICS/EVA JOINT ANALYSIS SYSTEM VERSION 1.0

    NASA Technical Reports Server (NTRS)

    Drews, M. L.

    1994-01-01

    The primary objective of space telerobotics as a research discipline is the augmentation and/or support of extravehicular activity (EVA) with telerobotic activity; this allows increased emplacement of on-orbit assets while providing for their "in situ" management. Development of the requisite telerobot work system requires a well-understood correspondence between EVA and telerobotics that to date has been only partially established. The Telerobotics/EVA Joint Analysis Systems (TEJAS) hypermedia information system uses object-oriented programming to bridge the gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains twenty HyperCard stacks that use a visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about the primitives, technologies, tasks, assumptions, and open issues involved in space telerobot or crew EVA tasks. These stacks are meant to be interactive and can be used with any database system running on a Macintosh, including spreadsheets, relational databases, word-processed documents, and hypermedia utilities. The software provides a means for managing volumes of data and for communicating complex ideas, relationships, and processes inherent to task planning. The stack system contains 3MB of data and utilities to aid referencing, discussion, communication, and analysis within the EVA and telerobotics communities. The six baseline analysis stacks (EVATasks, EVAAssume, EVAIssues, TeleTasks, TeleAssume, and TeleIssues) work interactively to manage and relate basic information which you enter about the crew-EVA and telerobot tasks you wish to analyze in depth. Analysis stacks draw on information in the Reference stacks as part of a rapid point-and-click utility for building scripts of specific task primitives or for any EVA or telerobotics task. Any or all of these stacks can be completely incorporated within other hypermedia applications, or they can be

  16. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of

  17. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-01

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space.

  18. STS-31 crew training: firefighting, food tasting, EVA prep and post

    NASA Astrophysics Data System (ADS)

    1990-03-01

    The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

  19. Space shuttle EVA/IVA support equipment requirements study. Volume 1: Final summary report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the support equipment requirements for space shuttle intravehicular and extravehicular activities. The subjects investigated are; (1) EVA/IVA task identification and analysis,. (2) primary life support system, (3) emergency life support system, (4) pressure suit assembly, (5) restraints, (6) work site provision, (7) emergency internal vehicular emergencies, and (8) vehicular interfaces.

  20. STS-31 Crew Training: Firefighting, Food Tasting, EVA Prep and Post

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

  1. Human task-specific somatosensory activation.

    PubMed

    Ginsberg, M D; Yoshii, F; Vibulsresth, S; Chang, J Y; Duara, R; Barker, W W; Boothe, T E

    1987-08-01

    We used positron emission tomography to study normal patterns of local cortical metabolic activation induced by somatosensory stimuli. Palpation and sorting of mah-jongg tiles by textured design increased local glucose metabolic rate (lCMRgl), by 18% on average, in contralateral somatosensory cortex. A graphesthesia task gave a similar result. In contrast, vigorous vibrotactile stimulation of fingers, face, or knee did not produce a consistent focus of activation. Our results indicate that lCMRgl activation is best achieved by somatosensory tasks requiring an active perceptual effort.

  2. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  3. Miniature EVA Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  4. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie

    2016-01-01

    The EVA (Extravehicular Activity) Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, searchable repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, the one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision control system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, and also for hundreds of other NASA and contract employees. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  5. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2012-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and, as a result, crew members ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVAs, and provides a historical look at energy expenditure during EVAs through the Apollo Program.

  6. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and crewmembers (CMs) ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVA, and provides a historical look at energy expenditure during EVA through the Apollo program.

  7. Preparing for space - EVA training at the European Astronaut Centre

    NASA Astrophysics Data System (ADS)

    Bolender, Hans; Stevenin, Hervé; Bessone, Loredana; Torres, Antonio

    2006-11-01

    The European Astronaut Centre has developed an Extra Vehicular Activity (EVA) training course for ESA astronauts to bridge the gap between their scuba diving certification and the spacesuit qualification provided by NASA. ESA astronauts André Kuipers and Frank De Winne have already completed this "EVA Pre-Familiarisation Training Programme" before their training at NASA. In June 2006, an international crew of experienced EVA astronauts approved the course as good preparation for suited EVA training; they recommended that portions of it be used to help maintain EVA proficiency for astronauts.

  8. Understanding Skill in EVA Mass Handling. Volume 4; An Integrated Methodology for Evaluating Space Suit Mobility and Stability

    NASA Technical Reports Server (NTRS)

    McDonald, P. Vernon; Newman, Dava

    1999-01-01

    The empirical investigation of extravehicular activity (EVA) mass handling conducted on NASA's Precision Air-Bearing Floor led to a Phase I SBIR from JSC. The purpose of the SBIR was to design an innovative system for evaluating space suit mobility and stability in conditions that simulate EVA on the surface of the Moon or Mars. The approach we used to satisfy the Phase I objectives was based on a structured methodology for the development of human-systems technology. Accordingly the project was broken down into a number of tasks and subtasks. In sequence, the major tasks were: 1) Identify missions and tasks that will involve EVA and resulting mobility requirements in the near and long term; 2) Assess possible methods for evaluating mobility of space suits during field-based EVA tests; 3) Identify requirements for behavioral evaluation by interacting with NASA stakeholders;.4) Identify necessary and sufficient technology for implementation of a mobility evaluation system; and 5) Prioritize and select technology solutions. The work conducted in these tasks is described in this final volume of the series on EVA mass handling. While prior volumes in the series focus on novel data-analytic techniques, this volume addresses technology that is necessary for minimally intrusive data collection and near-real-time data analysis and display.

  9. Study of EVA operations associated with satellite services

    NASA Technical Reports Server (NTRS)

    Nash, J. O.; Wilde, R. D.

    1982-01-01

    Extravehicular mobility unit (EMU) factors associated with satellite servicing activities are identified and the EMU improvements necessary to enhance satellite servicing operations are outlined. Areas of EMU capabilities, equipment and structural interfaces, time lines, EMU modifications for satellite servicing, environmental hazards, and crew training are vital to manned Eva/satellite services and as such are detailed. Evaluation of EMU capabilities indicates that the EMU can be used in performing near term, basic satellite servicing tasks; however, satellite servicing is greatly enhanced by incorporating key modifications into the EMU. The servicing missions involved in contamination sensitive payload repair are illustrated. EVA procedures and equipment can be standardized, reducing both crew training time and in orbit operations time. By standardizing and coordinating procedures, mission cumulative time lines fall well within the EMU capability.

  10. Relationship between simulated extravehicular activity tasks and measurements of physical performance.

    PubMed

    Ade, C J; Broxterman, R M; Craig, J C; Schlup, S J; Wilcox, S L; Barstow, T J

    2014-11-01

    The purpose was to evaluate the relationships between tests of fitness and two activities that simulate components of Lunar- and Martian-based extravehicular activities (EVA). Seventy-one subjects completed two field tests: a physical abilities test and a 10km Walkback test. The relationships between test times and the following parameters were determined: running V˙O2max, gas exchange threshold (GET), speed at V˙O2max (s-V˙O2max), highest sustainable rate of aerobic metabolism [critical speed (CS)], and the finite distance that could be covered above CS (D'): arm cranking V˙O2peak, GET, critical power (CP), and the finite work that can be performed above CP (W'). CS, running V˙O2max, s-V˙O2max, and arm cranking V˙O2peak had the highest correlations with the physical abilities field test (r=0.66-0.82, P<0.001). For the 10km Walkback, CS, s-V˙O2max, and running V˙O2max were significant predictors (r=0.64-0.85, P<0.001). CS and to a lesser extent V˙O2max are most strongly associated with tasks that simulate aspects of EVA performance, highlighting CS as a method for evaluating astronaut physical capacity.

  11. Astronaut Bernard Harris on RMS during EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Bernard A. Harris, Jr., payload commander, standing on a foot restraint attached to the Remote Manipulator System (RMS) arm carries astronaut C. Michael Foale, mission specialist, during their shared extravehicular activity (EVA) in the Space Shuttle Discovery's cargo bay.

  12. Astronaut Bernard Harris on RMS during EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Bernard A. Harris, Jr., payload commander, watches astronaut C. Michael Foale (out of frame), mission specialist, during the late phases of their shared extravehicular activity (EVA) in the STS-63 Space Shuttle Discovery's cargo bay.

  13. EVA Physiology, Systems and Performance [EPSP] Project

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2010-01-01

    This viewgraph presentation gives a general overview of the biomedical and technological challenges of Extravehicular Activity (EVA). The topics covered include: 1) Prebreathe Protocols; 2) Lunar Suit Testing and Development; and 3) Lunar Electric Rover and Exploration Operations Concepts.

  14. EVA Suit Microbial Leakage Investigation Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Baker, Christopher; Clayton, Ronald; Rucker, Michelle

    2016-01-01

    The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during simulated planetary exploration activities. Data will be released to the planetary protection and science communities, and advanced EVA system designers. In the best case scenario, we will discover that very little microbial contamination leaks from our current or prototype suit designs, in the worst case scenario, we will identify leak paths, learn more about what affects leakage--and we'll have a new, flight-certified swab tool for our EVA toolbox.

  15. EVA Physiology and Medical Considerations Working in the Suit

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  16. Human performance profiles for planetary analog extra-vehicular activities: 120 day and 30 day analog missions

    NASA Astrophysics Data System (ADS)

    Swarmer, Tiffany M.

    Understanding performance factors for future planetary missions is critical for ensuring safe and successful planetary extra-vehicular activities (EVAs). The goal of this study was to gain operational knowledge of analog EVAs and develop biometric profiles for specific EVA types. Data was collected for a 120 and 30 day analog planetary exploration simulation focusing on EVA type, pre and post EVA conditions, and performance ratings. From this five main types of EVAs were performed: maintenance, science, survey/exploratory, public relations, and emergency. Each EVA type has unique characteristics and performance ratings showing specific factors in chronological components, environmental conditions, and EVA systems that have an impact on performance. Pre and post biometrics were collected to heart rate, blood pressure, and SpO2. Additional data about issues and specific EVA difficulties provide some EVA trends illustrating how tasks and suit comfort can negatively affect performance ratings. Performance decreases were noted for 1st quarter and 3rd quarter EVAs, survey/exploratory type EVAs, and EVAs requiring increased fine and gross motor function. Stress during the simulation is typically higher before the EVA and decreases once the crew has returned to the habitat. Stress also decreases as the simulation nears the end with the 3rd and 4th quarters showing a decrease in stress levels. Operational components and studies have numerous variable and components that effect overall performance, by increasing the knowledge available we may be able to better prepare future crews for the extreme environments and exploration of another planet.

  17. Brain activities during synchronized tapping task.

    PubMed

    Hiroyasu, Tomoyuki; Murakami, Akiho; Mao Gto; Yokouchi, Hisatake

    2015-01-01

    This study aims to investigate how people process information about other people to determine a response during human-to-human cooperative work. As a preliminary study, the mechanism of cooperative work was examined using interaction between a machine and a human. This machine was designed to have an "other person" model that simulates an emotional model of another person. The task performed in the experiment was a synchronized tapping task. Two models were prepared for this experiment, a simple model that does not employ the other person model and a synchronized model that employs the other person model. Subjects performed cooperative work with these machines. During the experiment, brain activities were measured using functional near-infrared spectroscopy. It was observed that the left inferior frontal gyrus was activated more with the synchronized model than the simple model. PMID:26737670

  18. Walking to Olympus: An EVA Chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Trevino, Robert C.

    1997-01-01

    Spacewalkers enjoy a view of Earth once reserved for Apollo, Zeus, and other denizens of Mt. Olympus. During humanity's first extravehicular activity (EVA), Alexei Leonov floated above Gibraltar, the rock ancient seafarers saw as the gateway to the great unknown Atlantic. The symbolism was clear, Leonov stepped past a new Gibraltar when he stepped into space. More than 32 years and 154 EVAs later, Jerry Linenger conducted an EVA with Vladimir Tsibliyev as part of International Space Station Phase 1. They floated together above Gibraltar. Today the symbolism has new meaning: humanity is starting to think of stepping out of Earth orbit, space travel's new Gibraltar, and perhaps obtaining a new olympian view, a close-up look at Olympus Mons on Mars. Walking to Olympus: An EVA Chronology chronicles the 154 EVAs conducted from March 1965 to April 1997. It is intended to make clear the crucial role played by EVA in the history of spaceflight, as well as to chronicle the large body of EVA "lessons learned." Russia and the U.S. define EVA differently. Russian cosmonauts are said to perform EVA any time they are in vacuum in a space suit. A U.S. astronaut must have at least his head outside his spacecraft before he is said to perform an EVA. The difference is based in differing spacecraft design philoso- phies. Russian and Soviet spacecraft have always had a specialized airlock through which the EVA cosmonaut egressed, leaving the main habitable volume of the spacecraft pressurized. The U.S. Gemini and Apollo vehicles, on the other hand, depressurized their entire habitable volume for egress. In this document, we apply the Russian definition to Russian EVAS, and the U.S. definition to U.S. EVAS. Thus, for example, Gemini 4 Command Pilot James McDivitt does not share the honor of being first American spacewalker with Ed White, even though he was suited and in vacuum when White stepped out into space. Non-EVA spaceflights are listed in the chronology to provide context and to

  19. EVA Radio DRATS 2011 Report

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Bakula, Casey J.

    2012-01-01

    In the Fall of 2011, National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) participated in the Desert Research and Technology Studies (DRATS) field experiments held near Flagstaff, Arizona. The objective of the DRATS outing is to provide analog mission testing of candidate technologies for space exploration, especially those technologies applicable to human exploration of extra- terrestrial rocky bodies. These activities are performed at locations with similarities to extra-terrestrial conditions. This report describes the Extravehicular Activity (EVA) Dual-Band Radio Communication System which was demonstrated during the 2011 outing. The EVA radio system is designed to transport both voice and telemetry data through a mobile ad hoc wireless network and employs a dual-band radio configuration. Some key characteristics of this system include: 1. Dual-band radio configuration. 2. Intelligent switching between two different capability wireless networks. 3. Self-healing network. 4. Simultaneous data and voice communication.

  20. Advanced EVA Suit Camera System Development Project

    NASA Technical Reports Server (NTRS)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  1. Refinement of Optimal Work Envelope for Extra-Vehicular Activity (EVA) Suit Operations

    NASA Technical Reports Server (NTRS)

    Jaramillo, Marcos A.; Angermiller, Bonnie L.; Morency, Richard M.; Rajululu, Sudhakar L.

    2008-01-01

    The purpose of the Extravehicular Mobility Unit (EMU) Work Envelope study is to determine and revise the work envelope defined in NSTS 07700 "System Description and Design Data - Extravehicular Activities" [1], arising from an action item as a result of the Shoulder Injury Tiger Team findings. The aim of this study is to determine a common work envelope that will encompass a majority of the crew population while minimizing the possibility of shoulder and upper arm injuries. There will be approximately two phases of testing: arm sweep analysis to be performed in the Anthropometry and Biomechanics Facility (ABF), and torso lean testing to be performed on the Precision Air Bearing Facility (PABF). NSTS 07700 defines the preferred work envelope arm reach in terms of maximum reach, and defines the preferred work envelope torso flexibility of a crewmember to be a net 45 degree backwards lean [1]. This test served two functions: to investigate the validity of the standard discussed in NSTS 07700, and to provide recommendations to update this standard if necessary.

  2. EVA Retriever Demonstration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The EVA retriever is demonstrated in the Manipulator Development Facility (MDF). The retriever moves on the air bearing table 'searching' for its target, in this case tools 'dropped' by astronauts on orbit.

  3. STS-101 / Atlantis EVA briefing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was James D. Halsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape is a press briefing by Scott Bleisath, STS-101 Lead EVA Officer, about the planned Extravehicular Activity planned for the fourth day of the mission. The work that this EVA is to accomplish is the repair of a crane and the installation of a beam on Unity. The astronauts will also replace antennae and install hand rails and cables. The astronauts who are scheduled to perform the EVA activities are Williams and Voss. They will be assisted by Weber, who will operate the Shuttle's robotic arm, and Scott Horowitz. The spacewalk is scheduled to take 6 hours. The videotape includes some views of the astronauts training in an underwater environment. Mr. Bleisath answered questions from the press after he completed the briefing.

  4. The ESA-Facility MATROSHKA: A human phantom for dose measurements occurring in men being exposed during an Extra Vehicular Activity (EVA).

    NASA Astrophysics Data System (ADS)

    Reitz, G.

    The Matroshka facility basically consists of the upper part of a body phantom, com- posed of various tissue substitutes simulating the human body with respect to size, shape, position, mass density and nuclear interactions. At the site of the organs of interest, spaces are provided at the surface and in different depths inside the phan- tom to accommodate active and passive dosimeter packages for measurements of any radiation type. The phantom is mounted on a base structure containing the facility electronics and surrounded by a Carbon Fiber container providing structural support and fixation of the phantom and providing shielding thickness comparable to the EVA suit. The container and the base structure build up a sealed compartment. The objective of the proposed facility is to determine the empirical relations between measurable absorbed doses and the required tissue absorbed doses in a realistic hu- man phantom exposed to the concrete radiation field to be monitored. The radiation field during extravehicular activities (EVA) is that of the free space environment mod- ified only by the space suit. Since EVAs will form a substantial fraction of the work- schedule in the space station scenario, such measurements have highest priority. Once the ratios for the tissue absorbed doses and surface absorbed doses are known for a given radiation field around the human body, these values may be used in future expo- sures to determine the required tissue absorbed doses from measurements of surface absorbed doses, only. This technical presentation will describe the design of the MATROSHKA facility which is expected to be launched late 2003.

  5. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, participated in the EVA with Lousma. During the EVA the two crewmen deployed the twin pole solar shield to help shade the Orbital Workshop.

  6. EVA - Don't Leave Earth Without It

    NASA Technical Reports Server (NTRS)

    Cupples, J. Scott; Smith, Stephen A.

    2011-01-01

    Modern manned space programs come in two categories: those that need Extravehicular Activity (EVA) and those that will need EVA. This paper discusses major milestones in the Shuttle Program where EVA was used to save payloads, enhance on-orbit capabilities, and build structures in order to ensure success of National Aeronautics and Space Administration (NASA) missions. In conjunction, the Extravehicular Mobility Unit s (EMU) design, and hence, its capabilities evolved as its mission evolved. It is the intent that lessons can be drawn from these case studies so that EVA compatibility is designed into future vehicles and payloads.

  7. Task-free MRI predicts individual differences in brain activity during task performance.

    PubMed

    Tavor, I; Parker Jones, O; Mars, R B; Smith, S M; Behrens, T E; Jbabdi, S

    2016-04-01

    When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects. PMID:27124457

  8. Task-free MRI predicts individual differences in brain activity during task performance.

    PubMed

    Tavor, I; Parker Jones, O; Mars, R B; Smith, S M; Behrens, T E; Jbabdi, S

    2016-04-01

    When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects.

  9. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  10. STS-33 EVA Prep and Post with Gregory, Blaha, Carter, Thorton, and Musgrave in FFT

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This video shows the crew in the airlock of the FFT, talking with technicians about the extravehicular activity (EVA) equipment. Thornton and Carter put on EVA suits and enter the airlock as the other crew members help with checklists.

  11. Simulation of Martian EVA at the Mars Society Arctic Research Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  12. Astronaut Dale Gardner holds up for sale sign after EVA

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  13. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benson, E.; England, S.; Charvat, J.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2015-01-01

    Human hands play a significant role during Extravehicular Activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. Because of this high frequency usage, hand and arm related injuries are known to occur during EVA and EVA training in the NBL. The primary objectives of this investigation were to: 1) document all known EVA glove related injuries and circumstances of these incidents, 2) determine likely risk factors, and 3) recommend interventions where possible that could be implemented in the current and future glove designs. METHODS: The investigation focused on the discomforts and injuries of U.S. crewmembers who had worn the pressurized Extravehicular Mobility Unit (EMU) spacesuit and experienced 4000 Series or Phase VI glove related incidents during 1981 to 2010 for either EVA ground training or in-orbit flight. We conducted an observational retrospective case-control investigation using 1) a literature review of known injuries, 2) data mining of crew injury, glove sizing, and hand anthropometry databases, 3) descriptive statistical analyses, and finally 4) statistical risk correlation and predictor analyses to better understand injury prevalence and potential causation. Specific predictor statistical analyses included use of principal component analyses (PCA), multiple logistic regression, and survival analyses (Cox proportional hazards regression). Results of these analyses were computed risk variables in the forms of odds ratios (likelihood of an injury occurring given the magnitude of a risk variable) and hazard ratios (likelihood of time to injury occurrence). Due to the exploratory nature of this investigation, we selected predictor variables significant at p=0.15. RESULTS: Through 2010, there have been a total of 330 NASA crewmembers, from which 96 crewmembers performed 322 EVAs during 1981-2010, resulting in 50 crewmembers being injured inflight and 44

  14. Exploration EVA Purge Flow Assessment

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Conger, Bruce; Campbell, Colin

    2011-01-01

    An advanced future spacesuit will require properly sized suit and helmet purge flow rates in order to sustain a crew member with a failed Portable Life Support System (PLSS) during an Extravehicular Activity (EVA). A computational fluid dynamics evaluation was performed to estimate the helmet purge flow rate required to washout carbon dioxide and to prevent the condensing ("fogging") of water vapor on the helmet visor. An additional investigation predicted the suit purge flow rate required to provide sufficient convective cooling to keep the crew member comfortable. This paper summarizes the results of these evaluations.

  15. Exploration EVA Purge Flow Assessment

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Conger, Bruce

    2010-01-01

    An advanced future spacesuit will require properly sized suit and helmet purge flow rates in order to sustain a crew member with a failed Portable Life Support System (PLSS) during an Extravehicular Activity (EVA). A computational fluid dynamics evaluation was performed to estimate the helmet purge flow rate required to washout carbon dioxide and to prevent the condensing ("fogging") of water vapor on the helmet visor. An additional investigation predicted the suit purge flow rate required to provide sufficient convective cooling to keep the crew member comfortable. This paper summarizes the results of these evaluations.

  16. Emergency vehicle alert system (EVAS)

    NASA Technical Reports Server (NTRS)

    Reed, Bill; Crump, Roger; Harper, Warren; Myneni, Krishna

    1995-01-01

    The Emergency Vehicle Alert System (EVAS) program is sponsored by the NASA/MSFC Technology Utilization (TU) office. The program was conceived to support the needs of hearing impaired drivers. The objective of the program is to develop a low-cost, small device which can be located in a personal vehicle and warn the driver, via a visual means, of the approach of an emergency vehicle. Many different technologies might be developed for this purpose and each has its own advantages and drawbacks. The requirements for an acoustic detection system, appear to be pretty stringent and may not allow the development of a reliable, low-cost device in the near future. The problems include variations in the sirens between various types of emergency vehicles, distortions due to wind and surrounding objects, competing background noise, sophisticated signal processing requirements, and omni-directional coverage requirements. Another approach is to use a Radio Frequency (RF) signal between the Emergency Vehicle (EV) and the Personal Vehicle (PV). This approach requires a transmitter on each EV and a receiver in each PV, however it is virtually assured that a system can be developed which works. With this approach, the real technology issue is how to make a system work as inexpensively as possible. This report gives a brief summary of the EVAS program from its inception and concentrates on describing the activities that occurred during Phase 4. References 1-3 describe activities under Phases 1-3. In the fourth phase of the program, the major effort to be expended was in development of the microcontroller system for the PV, refinement of some system elements and packaging for demonstration purposes. An EVAS system was developed and demonstrated which used standard spread spectrum modems with minor modifications.

  17. Evaluation of a Human Modeling Software Tool in the Prediction of Extra Vehicular Activity Tasks for an International Space Station Assembly Mission

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles; Loughead, Tomas E.

    1997-01-01

    The difficulty of accomplishing work in extravehicular activity (EVA) is well documented. It arises as a result of motion constraints imposed by a pressurized spacesuit in a near-vacuum and of the frictionless environment induced in microgravity. The appropriate placement of foot restraints is crucial to ensuring that astronauts can remove and drive bolts, mate and demate connectors, and actuate levers. The location on structural members of the foot restraint sockets, to which the portable foot restraint is attached, must provide for an orientation of the restraint that affords the astronaut adequate visual and reach envelopes. Previously, the initial location of these sockets was dependent upon the experienced designer's ability to estimate placement. The design was tested in a simulated zero-gravity environment; spacesuited astronauts performed the tasks with mockups while submerged in water. Crew evaluation of the tasks based on these designs often indicated the bolt or other structure to which force needed to be applied was not within an acceptable work envelope, resulting in redesign. The development of improved methods for location of crew aids prior to testing would result in savings to the design effort for EVA hardware. Such an effort to streamline EVA design is especially relevant to International Space Station construction and maintenance. Assembly operations alone are expected to require in excess of four hundred hours of EVA. Thus, techniques which conserve design resources for assembly missions can have significant impact. We describe an effort to implement a human modelling application in the design effort for an International Space Station Assembly Mission. On Assembly Flight 6A, the Canadian-built Space Station Remote Manipulator System will be delivered to the U.S. Laboratory. It will be released from its launch restraints by astronauts in EVA. The design of the placement of foot restraint sockets was carried out using the human model Jack, and

  18. Moments applied in the manual assembly of space structures - Ease biomechanics results from STS-61B. [Experimental Assembly of Structures in EVA

    NASA Technical Reports Server (NTRS)

    Cousins, D.; Akin, D. L.

    1989-01-01

    Measurements of the level and pattern of moments applied in the manual assembly of a space structure were made in extravehicular activity (EVA) and neutral buoyancy simulation (NBS). The Experimental Assembly of Structures in EVA program included the repeated assembly of a 3.6 m tetrahedral truss structure in EVA on STS-61B after extensive neutral buoyancy crew training. The flight and training structures were of equivalent mass and geometry to allow a direct correlation between EVA and NBS performance. A stereo photographic motion camera system was used to reconstruct in three dimensions rotational movements of structural beams during assembly. Moments applied in these manual handling tasks were calculated on the basis of the reconstructed movements taking into account effects of inertia, drag and virtual mass. Applied moments of 2.0 Nm were typical for beam rotations in EVA. Corresponding applied moments in NBS were typically up to five times greater. Moments were applied as impulses separated by several seconds of coasting in both EVA and NBS. Decelerating impulses were only infrequently observed in NBS.

  19. Anterior Medial Prefrontal Cortex Exhibits Activation during Task Preparation but Deactivation during Task Execution

    PubMed Central

    Koshino, Hideya; Minamoto, Takehiro; Ikeda, Takashi; Osaka, Mariko; Otsuka, Yuki; Osaka, Naoyuki

    2011-01-01

    Background The anterior prefrontal cortex (PFC) exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN), which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC) is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. Methodology/Principal Findings Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition) or to ignore them (No face memory condition), then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. Conclusions/Significance The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing. PMID:21829668

  20. Astronaut hazard during free-flight polar EVA

    NASA Technical Reports Server (NTRS)

    Hall, W. N.

    1985-01-01

    Extravehicular Activity (EVA) during Shuttle flights planned for the late 1980's includes several factors which together may constitute an astronaut hazard. Free-flight EVA is planned whereas prior United States Earth orbit EVA has used umbilical tethers carrying communications, coolant, and oxygen. EVA associated with missions like LANDSAT Retrieval will be in orbits through the auroral oval where charging of spacecraft may occur. The astronaut performing free flight EVA constitutes an independent spacecraft. The astronaut and the Shuttle make up a system of electrically isolated spacecraft with a wide disparity in size. Unique situations, such as the astronaut being in the wake of the Shuttle while traversing an auroral disturbance, could result in significant astronaut and Shuttle charging. Charging and subsequent arc discharge are important because they have been associated with operating upsets and even satellite failure at geosynchronous orbit. Spacecraft charging theory and experiments are examined to evaluate charging for Shuttle size spacecraft in the polar ionosphere.

  1. Effective Teamwork: The EVA NBL Experience

    NASA Technical Reports Server (NTRS)

    Crocker, Lori

    2007-01-01

    This viewgraph presentation reviews the experience of improving the operation of the ExtraVehiclar Activity (EVA) Neutral Buoyancy Laboratory as a team of NASA employees and contractors. It reviews specific recommendations to use in turning a struggling organization around as a NASA/contractor team

  2. The Evolution of Extravehicular Activity Operations to Lunar Exploration Based on Operational Lessons Learned During 2009 NASA Desert RATS Field Testing

    NASA Technical Reports Server (NTRS)

    Bell, Ernest R., Jr.; Welsh, Daren; Coan, Dave; Johnson, Kieth; Ney, Zane; McDaniel, Randall; Looper, Chris; Guirgis, Peggy

    2010-01-01

    This paper will present options to evolutionary changes in several philosophical areas of extravehicular activity (EVA) operations. These areas will include single person verses team EVAs; various loss of communications scenarios (with Mission Control, between suited crew, suited crew to rover crew, and rover crew A to rover crew B); EVA termination and abort time requirements; incapacitated crew ingress time requirements; autonomous crew operations during loss of signal periods including crew decisions on EVA execution (including decision for single verses team EVA). Additionally, suggestions as to the evolution of the make-up of the EVA flight control team from the current standard will be presented. With respect to the flight control team, the major areas of EVA flight control, EVA Systems and EVA Tasks, will be reviewed, and suggested evolutions of each will be presented. Currently both areas receive real-time information, and provide immediate feedback during EVAs as well as spacesuit (extravehicular mobility unit - EMU) maintenance and servicing periods. With respect to the tasks being performed, either EMU servicing and maintenance, or the specific EVA tasks, daily revising of plans will need to be able to be smoothly implemented to account for unforeseen situations and findings. Many of the presented ideas are a result of lessons learned by the NASA Johnson Space Center Mission Operations Directorate operations team support during the 2009 NASA Desert Research and Technology Studies (Desert RATS). It is important that the philosophy of both EVA crew operations and flight control be examined now, so that, where required, adjustments can be made to a next generation EMU and EVA equipment that will complement the anticipated needs of both the EVA flight control team and the crews.

  3. STS-55 MS3 Harris, wearing EMU and CCA, prepares for EVA simulation at JSC WETF

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, suited in the extravehicular mobility unit (EMU) upper torso and communications carrier assembly (CCA), smiles as he prepares for an underwater simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. This portrait-like view captures Harris as he checks out his communications equipment. Once fully suited, Harris will be lowered into the WETF's 25-foot deep pool for an underwater contingency extravehicular activity (EVA) simulation. There is no scheduled EVA for the 1993 flight but each spaceflight crew includes astronauts trained for a variety of contingency tasks that could require exiting the shirt-sleeve environment of a Shuttle's cabin.

  4. Modified Advanced Crew Escape Suit Intravehicular Activity Suit for Extravehicular Activity Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration

  5. Astronaut Richard Gordon returns to hatch of spacecraft following EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., pilot for the Gemini 11 space flight, returns to the hatch of the spacecraft following extravehicular activity (EVA). This picture was taken over the Atlantic Ocean at approximately 160 nautical miles above the earth's surface.

  6. Astronaut Michael Foale on RMS arm during EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut C. Michael Foale (red stripe), mission specialist, on the Remote Manipulator System (RMS) arm prepares to grab SPARTAN 204 as astronaut Bernard A. Harris Jr., payload commander, looks on during the STS-63 extravehicular activity (EVA).

  7. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Sipila, Stephanie A.; Scoville, Zebulon C.; Bowie, Jonathan T.; Buffington, Jesse A.

    2014-01-01

    One of the challenging primary objectives associated with NASA's Asteroid Redirect Crewed Mission (ARCM) is to demonstrate deep space Extravehicular Activity (EVA) and tools and to obtain asteroid samples to return to Earth for further study. Prior Shuttle and International Space Station (ISS) spacewalks have benefited from engineered EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as behavior of the asteroid capture mechanism will complicate EVA translation, tool restraint, and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the Modified Advanced Crew Escape Suit (MACES) suit. This paper will summarize the overall operational concepts for conducting EVAs for the ARCM mission including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, and the results of early development testing of potential EVA tasks.

  8. EVA Design, Verification, and On-Orbit Operations Support Using Worksite Analysis

    NASA Technical Reports Server (NTRS)

    Hagale, Thomas J.; Price, Larry R.

    2000-01-01

    The International Space Station (ISS) design is a very large and complex orbiting structure with thousands of Extravehicular Activity (EVA) worksites. These worksites are used to assemble and maintain the ISS. The challenge facing EVA designers was how to design, verify, and operationally support such a large number of worksites within cost and schedule. This has been solved through the practical use of computer aided design (CAD) graphical techniques that have been developed and used with a high degree of success over the past decade. The EVA design process allows analysts to work concurrently with hardware designers so that EVA equipment can be incorporated and structures configured to allow for EVA access and manipulation. Compliance with EVA requirements is strictly enforced during the design process. These techniques and procedures, coupled with neutral buoyancy underwater testing, have proven most valuable in the development, verification, and on-orbit support of planned or contingency EVA worksites.

  9. Modulation of human motoneuron activity by a mental arithmetic task.

    PubMed

    Bensoussan, Laurent; Duclos, Yann; Rossi-Durand, Christiane

    2012-10-01

    This study aimed to determine whether the performance of a mental task affects motoneuron activity. To this end, the tonic discharge pattern of wrist extensor motor units was analyzed in healthy subjects while they were required to maintain a steady wrist extension force and to concurrently perform a mental arithmetic (MA) task. A shortening of the mean inter-spike interval (ISI) and a decrease in ISI variability occurred when MA task was superimposed to the motor task. Aloud and silent MA affected equally the rate and variability of motoneuron discharge. Increases in surface EMG activity and force level were consistent with the modulation of the motor unit discharge rate. Trial-by-trial analysis of the characteristics of motor unit firing revealed that performing MA increases activation of wrist extensor SMU. It is suggested that increase in muscle spindle afferent activity, resulting from fusimotor drive activation by MA, may have contributed to the increase in synaptic inputs to motoneurons during the mental task performance, likely together with enhancement in the descending drive. The finding that a mental task affects motoneuron activity could have consequences in assessment of motor disabilities and in rehabilitation in motor pathologies.

  10. Task-Related, Low-Frequency Task-Residual, and Resting State Activity in the Default Mode Network Brain Regions

    PubMed Central

    Zhang, Sheng; Li, Chiang-Shan R.

    2012-01-01

    The hypothesis of a default mode network (DMN) of brain function is based on observations of task-independent decreases of brain activity during effort as participants are engaged in tasks in contrast to resting. On the other hand, studies also showed that DMN regions activate rather than deactivate in response to task-related events. Thus, does DMN “deactivate” during effort as compared to resting? We hypothesized that, with high-frequency event-related signals removed, the task-residual activities of the DMN would decrease as compared to resting. We addressed this hypothesis with two approaches. First, we examined DMN activities during resting, task residuals, and task conditions in the stop signal task using independent component analysis (ICA). Second, we compared the fractional amplitude of low-frequency fluctuation (fALFF) signals of DMN in resting, task residuals, and task data. In the results of ICA of 76 subjects, the precuneus and posterior cingulate cortex (PCC) showed increased activation during task as compared to resting and task residuals, indicating DMN responses to task events. Precuneus but not the PCC showed decreased activity during task residual as compared to resting. The latter finding was mirrored by fALFF, which is decreased in the precuneus during task residuals, as compared to resting and task. These results suggested that the low-frequency blood oxygen level-dependent signals of the precuneus may represent a useful index of effort during cognitive performance. PMID:22661964

  11. Robonaut 2 - IVA Experiments On-Board ISS and Development Towards EVA Capability

    NASA Technical Reports Server (NTRS)

    Diftler, Myron; Hulse, Aaron; Badger, Julia; Thackston, Allison; Rogers, Jonathan

    2014-01-01

    Robonaut 2 (R2) has completed its fixed base activities on-board the ISS and is scheduled to receive its climbing legs in early 2014. In its continuing line of firsts, the R2 torso finished up its on-orbit activities on its stanchion with the manipulation of space blanket materials and performed multiple tasks under teleoperation control by IVA astronauts. The successful completion of these two IVA experiments is a key step in Robonaut's progression towards an EVA capability. Integration with the legs and climbing inside the ISS will provide another important part of the experience that R2 will need prior to performing tasks on the outside of ISS. In support of these on-orbit activities, R2 has been traversing across handrails in simulated zero-g environments and working with EVA tools and equipment on the ground to determine manipulation strategies for an EVA Robonaut. R2 made significant advances in robotic manipulation of deformable materials in space while working with its softgoods task panel. This panel features quarter turn latches that secure a space blanket to the task panel structure. The space blanket covers two cloth cubes that are attached with Velcro to the structure. R2 was able to open and close the latches, pull back the blanket, and remove the cube underneath. R2 simulated cleaning up an EVA worksite as well, by replacing the cube and reattaching the blanket. In order to interact with the softgoods panel, R2 has both autonomously and with a human in the loop identified and localized these deformable objects. Using stereo color cameras, R2 identified characteristic elements on the softgoods panel then extracted the location and orientation of the object in its field of view using stereo disparity and kinematic transforms. R2 used both vision processing and supervisory control to successfully accomplish this important task. Teleoperation is a key capability for Robonaut's effectiveness as an EVA system. To build proficiency, crewmembers have

  12. Task-dependent posterior cingulate activation in mild cognitive impairment

    PubMed Central

    Ries, Michele L.; Schmitz, Taylor W.; Kawahara-Baccus, Tisha N.; Torgerson, Britta M.; Trivedi, Mehul A.; Johnson, Sterling C.

    2009-01-01

    Neuroimaging research has demonstrated that the posterior cingulate cortex (PCC) is functionally compromised in individuals diagnosed with amnestic Mild Cognitive Impairment (MCI), a major risk factor for the development of Alzheimer’s disease (AD). In functional magnetic resonance imaging (fMRI) studies with healthy participants, this same region is active during self-appraisal (requiring retrieval of semantic knowledge about the self) as well as episodic recognition of recently-learned information. Administering both types of tasks to people with MCI may reveal important information regarding the role of the PCC in recollection. This study investigated fMRI activation in the PCC in individuals with MCI and age, gender, and education-matched controls across two tasks. The first task was a visual episodic recognition task in which participants indicated whether pictures had or had not been presented during a study session. The second task was an autobiographical self-appraisal task in which subjects rated themselves on a set of trait adjectives. Results of a conjunction analysis revealed the PCC as the sole region commonly active during both tasks in the healthy older adults. Furthermore, additional analysis revealed an interaction in the PCC indicating a task-dependent response in the MCI group. MCI participants showed PCC activation during self-appraisal, but not during episodic retrieval. These results suggest in MCI that the PCC shows functional degradation during episodic retrieval of visual information learned in the laboratory. In contrast, the PCC’s role in retrieval and evaluation of highly-elaborated information regarding the self is more well-preserved. PMID:16102979

  13. ChEVAS: Combining Suprarenal EVAS with Chimney Technique

    SciTech Connect

    Torella, Francesco; Chan, Tze Y. Shaikh, Usman; England, Andrew; Fisher, Robert K.; McWilliams, Richard G.

    2015-10-15

    Endovascular sealing with the Nellix{sup ®} endoprosthesis (EVAS) is a new technique to treat infrarenal abdominal aortic aneurysms. We describe the use of endovascular sealing in conjunction with chimney stents for the renal arteries (chEVAS) in two patients, one with a refractory type Ia endoleak and an expanding aneurysm, and one with a large juxtarenal aneurysm unsuitable for fenestrated endovascular repair (EVAR). Both aneurysms were successfully excluded. Our report confirms the utility of chEVAS in challenging cases, where suprarenal seal is necessary. We suggest that, due to lack of knowledge on its durability, chEVAS should only been considered when more conventional treatment modalities (open repair and fenestrated EVAR) are deemed difficult or unfeasible.

  14. Integrated Extravehicular Activity Human Research Plan: 2016

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott; Rajulu, Sudhakar; Norcross, Jason R.; Chappell, Steven P.

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Human Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Human Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Report is will also continue at a frequency determined by HRP management. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Human Research Plan are presented including description of ongoing and planned research activities in the areas of

  15. Change in hippocampal theta activity with transfer from simple discrimination tasks to a simultaneous feature-negative task

    PubMed Central

    Sakimoto, Yuya; Sakata, Shogo

    2014-01-01

    It was showed that solving a simple discrimination task (A+, B−) and a simultaneous feature-negative (FN) task (A+, AB−) used the hippocampal-independent strategy. Recently, we showed that the number of sessions required for a rat to completely learn a task differed between the FN and simple discrimination tasks, and there was a difference in hippocampal theta activity between these tasks. These results suggested that solving the FN task relied on a different strategy than the simple discrimination task. In this study, we provided supportive evidence that solving the FN and simple discrimination tasks involved different strategies by examining changes in performance and hippocampal theta activity in the FN task after transfer from the simple discrimination task (A+, B− → A+, AB−). The results of this study showed that performance on the FN task was impaired and there was a difference in hippocampal theta activity between the simple discrimination task and FN task. Thus, we concluded that solving the FN task uses a different strategy than the simple discrimination task. PMID:24917797

  16. Task Analysis of Shuttle Entry and Landing Activities

    NASA Technical Reports Server (NTRS)

    Holland, Albert W.; Vanderark, Stephen T.

    1993-01-01

    The Task Analysis of Shuttle Entry and Landing (E/L) Activities documents all tasks required to land the Orbiter following an STS mission. In addition to analysis of tasks performed, task conditions are described, including estimated time for completion, altitude, relative velocity, normal and lateral acceleration, location of controls operated or monitored, and level of g's experienced. This analysis precedes further investigations into potential effects of zero g on piloting capabilities for landing the Orbiter following long-duration missions. This includes, but is not limited to, researching the effects of extended duration missions on piloting capabilities. Four primary constraints of the analysis must be clarified: (1) the analysis depicts E/L in a static manner--the actual process is dynamic; (2) the task analysis was limited to a paper analysis, since it was not feasible to conduct research in the actual setting (i.e., observing or filming duration an actual E/L); (3) the tasks included are those required for E/L during nominal, daylight conditions; and (4) certain E/L tasks will vary according to the flying style of each commander.

  17. An Effective Division of Labor Between Human and Robotic Agents Performing a Cooperative Assembly Task

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Bluethmann, William; Rochlis, Jennifer; Huber, Eric; Ambrose, Robert

    2003-01-01

    NASA's Human Space Flight program depends heavily on spacewalks performed by human astronauts. These so-called extra-vehicular activities (EVAs) are risky, expensive and complex. Work is underway to develop a robotic astronaut's assistant that can help reduce human EVA time and workload by delivering human-like dexterous manipulation capabilities to any EVA worksite. An experiment is conducted to evaluate human-robot teaming strategies in the context of a simplified EVA assembly task in which Robonaut, a collaborative effort with the Defense Advanced Research Projects Agency (DARPA), an anthropomorphic robot works side-by-side with a human subject. Team performance is studied in an effort to identify the strengths and weaknesses of each teaming configuration and to recommend an appropriate division of labor. A shared control approach is developed to take advantage of the complementary strengths of the human teleoperator and robot, even in the presence of significant time delay.

  18. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benosn, E.; England, S.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2014-01-01

    Human hands play a significant role during extravehicular activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. It is because of this high frequency usage that hand- and arm-related injuries and discomfort are known to occur during training in the NBL and while conducting EVAs. Hand-related injuries and discomforts have been occurring to crewmembers since the days of Apollo. While there have been numerous engineering changes to the glove design, hand-related issues still persist. The primary objectives of this study are therefore to: 1) document all known EVA glove-related injuries and the circumstances of these incidents, 2) determine likely risk factors, and 3) recommend ergonomic mitigations or design strategies that can be implemented in the current and future glove designs. METHODS: The investigator team conducted an initial set of literature reviews, data mining of Lifetime Surveillance of Astronaut Health (LSAH) databases, and data distribution analyses to understand the ergonomic issues related to glove-related injuries and discomforts. The investigation focused on the injuries and discomforts of U.S. crewmembers who had worn pressurized suits and experienced glove-related incidents during the 1980 to 2010 time frame, either during training or on-orbit EVA. In addition to data mining of the LSAH database, the other objective of the study was to find complimentary sources of information such as training experience, EVA experience, suit-related sizing data, and hand-arm anthropometric data to be tied to the injury data from LSAH. RESULTS: Past studies indicated that the hand was the most frequently injured part of the body during both EVA and NBL training. This study effort thus focused primarily on crew training data in the NBL between 2002 and 2010. Of the 87 recorded training incidents, 19 occurred to women and 68 to men. While crew ages ranged from

  19. EVA-Compatible Microbial Swab Tool

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    When we send humans to search for life on Mars, we'll need to know what we brought with us versus what may already be there. To ensure our crewed spacecraft meet planetary protection requirements—and to protect our science from human contamination—we'll need to know whether micro-organisms are leaking/venting from our ships and spacesuits. This is easily done by swabbing external vents and suit surfaces for analysis, but requires a specialized tool for the job. Engineers at the National Aeronautics and Space Administration (NASA) recently developed an Extravehicular Activity (EVA)-compatible swab tool that can be used to sample current space suits and life support systems. Data collected now will influence Mars life support and EVA hardware early in the planning process, before design changes become difficult and expensive.NASA’s EVA swab tool pairs a Space Shuttle-era tool handle with a commercially available swab tip mounted into a custom-designed end effector. A glove-compatible release mechanism allows the handle to quickly switch between swab tips, much like a shaving razor handle can snap onto a disposable blade cartridge. Swab tips are stowed inside individual sterile containers, each fitted with a microbial filter that allows the container to equalize atmospheric pressure, but prevents cabin contaminants from rushing into the container when passing from the EVA environment into a pressurized cabin. A bank of containers arrayed inside a tool caddy allows up to six individual samples to be collected during a given spacewalk.NASA plans to use the tool in 2016 to collect samples from various spacesuits during ground testing to determine what (if any) human-borne microbial contamination leaks from the suit under simulated thermal vacuum conditions. Next, the tool will be used on board the International Space Station to assess the types of microbial contaminants found on external environmental control and life support system vents. Data will support

  20. EVA assembly of large space structure element

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bush, H. G.; Heard, W. L., Jr.; Stokes, J. W., Jr.

    1981-01-01

    The results of a test program to assess the potential of manned extravehicular activity (EVA) assembly of erectable space trusses are described. Seventeen tests were conducted in which six "space-weight" columns were assembled into a regular tetrahedral cell by a team of two "space"-suited test subjects. This cell represents the fundamental "element" of a tetrahedral truss structure. The tests were conducted under simulated zero-gravity conditions. Both manual and simulated remote manipulator system modes were evaluated. Articulation limits of the pressure suit and zero gravity could be accommodated by work stations with foot restraints. The results of this study have confirmed that astronaut EVA assembly of large, erectable space structures is well within man's capabilities.

  1. Skylab 3 crewmen practice EVA procedures

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The three prime crewmen of the Skylab 3 mission practice procedures which will be used during the extravehicular activity (EVA) portion of the scheduled Skylab rate gyro six-pac installation. They are Scientist-Astronaut Owen K. Garriott (center), Astronaut Alan L. Bean (center background) and Astronaut Jack R. Lousma (right). Garriott is working with a mock-up of a trunion plug plate which is on the space station's deployment assembly. This picture was taken during Skylab 3 prelaunch training at JSC. In the left foreground with back to camera is Astronaut Russell L. Schweickart, who is assisting with the Skylab 3 training. Another training officer is in the left background (31322); Lousma practices procedures for EVA in his extravehicular mobility unit (EMU). He is working with a mock-up of a trunion plug plate which is on the space station's deployment assembly (31323).

  2. Spontaneous and task-evoked brain activity negatively interact

    PubMed Central

    He, Biyu J.

    2013-01-01

    A widely held assumption is that spontaneous and task-evoked brain activity sum linearly, such that the recorded brain response in each single trial is the algebraic sum of the constantly changing ongoing activity and the stereotypical evoked activity. Using functional magnetic resonance imaging (fMRI) signals acquired from normal humans, we show that this assumption is invalid. Across widespread cortices, evoked activity interacts negatively with ongoing activity, such that higher prestimulus baseline results in less activation or more deactivation. As a consequence of this negative interaction, trial-to-trial variability of cortical activity decreases following stimulus onset. We further show that variability reduction follows overlapping but distinct spatial pattern from that of task activation/deactivation and it contains behaviorally relevant information. These results favor an alternative perspective to the traditional dichotomous framework of ongoing and evoked activity – one that views the brain as a nonlinear dynamical system whose trajectory is tighter when performing a task; further, incoming sensory stimuli modulate the brain’s activity in a manner that depends on its initial state. We propose that across-trial variability may provide a new approach to brain mapping in the context of cognitive experiments. PMID:23486941

  3. Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.; Fong, T. W.; Bualat, M. G.; Lee, S. Y.; Dorsey, J. T.; Doggett, W. R.

    2007-01-01

    Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.

  4. Task Lists for Health Occupations. Radiologic Aide. Activity Aide. Optometric Assistant. Physical Therapy Aide. Education for Employment Task Lists.

    ERIC Educational Resources Information Center

    Lathrop, Janice

    These task lists contain employability skills and tasks for the following health occupations: radiologic aide, activity aide, physical therapy aide, and optometric assistant. The duties and tasks found in these lists form the basis of instructional content for secondary, postsecondary, and adult occupational training programs. Employability skills…

  5. Physical Activity Perceptions of Task- and Ego-Oriented Children

    ERIC Educational Resources Information Center

    Cruickshanks, Carla M.

    2010-01-01

    Children begin to show sedentary behaviors around the age of 12 and increased mortality is associated with sedentary behaviors in children and adults. This case study examined physical activity (PA) perceptions of task oriented and ego oriented children. Research has addressed perceptions based on goal orientations and how perception of PA changes…

  6. Power assist EVA glove development

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    Structural modeling of the EVA glove indicates that flexibility in the metacarpophalangeal (MCP) joint can be improved by selectively lowering the elasticity of the glove fabric. Two strategies are used to accomplish this. One method uses coil springs on the back of the glove to carry the tension in the glove skin due to pressurization. These springs carry the loads normally borne by the glove fabric, but are more easily deformed. An active system was also designed for the same purpose and uses gas filled bladders attached to the back of the EVA glove that change the dimensions of the back of the glove and allow the glove to bend at the MCP joint, thus providing greater flexibility at this joint. A threshold control scheme was devised to control the action of the joint actuators. Input to the controller was provided by thin resistive pressure sensors placed between the hand and the pressurized glove. The pressure sensors consist of a layer of polyester film that has a thin layer of ink screened on the surface. The resistivity of the ink is pressure dependent, so an extremely thin pressure sensor can be fabricated by covering the ink patch with another layer of polyester film and measuring the changing resistance of the ink with a bridge circuit. In order to sense the force between the hand and the glove at the MCP joint, a sensor was placed on the palmar face of the middle finger. The resultant signal was used by the controller to decide whether to fill or exhaust the bladder actuators on the back of the glove. The information from the sensor can also be used to evaluate the effectiveness of a given control scheme or glove design since the magnitude of the measured pressures gives some idea of the torque required to bend a glove finger at the MCP joint. Tests of this actuator, sensor, and control system were conducted in an 57.2 kPa glove box by performing a series of 90 degree finger bends with a glove without an MCP joint assembly, a glove with the coil spring

  7. Extravehicular activity training and hardware design consideration.

    PubMed

    Thuot, P J; Harbaugh, G J

    1995-07-01

    Preparing astronauts to perform the many complex extravehicular activity (EVA) tasks required to assemble and maintain Space Station will be accomplished through training simulations in a variety of facilities. The adequacy of this training is dependent on a thorough understanding of the task to be performed, the environment in which the task will be performed, high-fidelity training hardware and an awareness of the limitations of each particular training facility. Designing hardware that can be successfully operated, or assembled, by EVA astronauts in an efficient manner, requires an acute understanding of human factors and the capabilities and limitations of the space-suited astronaut. Additionally, the significant effect the microgravity environment has on the crew members' capabilities has to be carefully considered not only for each particular task, but also for all the overhead related to the task and the general overhead associated with EVA. This paper will describe various training methods and facilities that will be used to train EVA astronauts for Space Station assembly and maintenance. User-friendly EVA hardware design considerations and recent EVA flight experience will also be presented. PMID:11541312

  8. Extravehicular activity training and hardware design consideration.

    PubMed

    Thuot, P J; Harbaugh, G J

    1995-07-01

    Preparing astronauts to perform the many complex extravehicular activity (EVA) tasks required to assemble and maintain Space Station will be accomplished through training simulations in a variety of facilities. The adequacy of this training is dependent on a thorough understanding of the task to be performed, the environment in which the task will be performed, high-fidelity training hardware and an awareness of the limitations of each particular training facility. Designing hardware that can be successfully operated, or assembled, by EVA astronauts in an efficient manner, requires an acute understanding of human factors and the capabilities and limitations of the space-suited astronaut. Additionally, the significant effect the microgravity environment has on the crew members' capabilities has to be carefully considered not only for each particular task, but also for all the overhead related to the task and the general overhead associated with EVA. This paper will describe various training methods and facilities that will be used to train EVA astronauts for Space Station assembly and maintenance. User-friendly EVA hardware design considerations and recent EVA flight experience will also be presented.

  9. STS-55 MS3 Harris in EMU and CCA tests equipment prior to EVA simulation at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), listens to instructions during a communications check prior to an underwater simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. When checkout procedures are complete, Harris will don EMU helmet (held by technician in the foreground). Then, the platform he is standing on will be lowered into the WETF's 25-foot deep pool. Once underwater, Harris will perform contingency extravehicular activity (EVA) procedures. There is no scheduled EVA for the 1993 flight but each space flight crew includes astronauts trained for a variety of contingency tasks that could require exiting the shirt-sleeve environment of a Shuttle's cabin.

  10. ICA model order selection of task co-activation networks

    PubMed Central

    Ray, Kimberly L.; McKay, D. Reese; Fox, Peter M.; Riedel, Michael C.; Uecker, Angela M.; Beckmann, Christian F.; Smith, Stephen M.; Fox, Peter T.; Laird, Angela R.

    2013-01-01

    Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders. PMID:24339802

  11. Flexible task-specific control using active vision

    NASA Astrophysics Data System (ADS)

    Firby, Robert J.; Swain, Michael J.

    1992-04-01

    This paper is about the interface between continuous and discrete robot control. We advocate encapsulating continuous actions and their related sensing strategies into behaviors called situation specific activities, which can be constructed by a symbolic reactive planner. Task- specific, real-time perception is a fundamental part of these activities. While researchers have successfully used primitive touch and sonar sensors in such situations, it is more problematic to achieve reasonable performance with complex signals such as those from a video camera. Active vision routines are suggested as a means of incorporating visual data into real time control and as one mechanism for designating aspects of the world in an indexical-functional manner. Active vision routines are a particularly flexible sensing methodology because different routines extract different functional attributes from the world using the same sensor. In fact, there will often be different active vision routines for extracting the same functional attribute using different processing techniques. This allows an agent substantial leeway to instantiate its activities in different ways under different circumstances using different active vision routines. We demonstrate the utility of this architecture with an object tracking example. A control system is presented that can be reconfigured by a reactive planner to achieve different tasks. We show how this system allows us to build interchangeable tracking activities that use either color histogram or motion based active vision routines.

  12. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, Bill; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The EVA hardware used to assemble and maintain the ISS was designed with the assumption that it would be returned to Earth on the Space Shuttle for ground processing, refurbishment, or failure investigation (if necessary). With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (EMU, Airlock Systems, EVA tools, and associated support equipment and consumables) to perform ISS EVAs until 2016 and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, NASA and the One EVA contractor team jointly initiated the EVA 2010 Project. Challenges were addressed to extend the operating life and certification of EVA hardware, secure the capability to launch EVA hardware safely on alternate launch vehicles, and protect EMU hardware operability on orbit for long durations.

  13. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  14. Energy Expenditure During Extravehicular Activity: Apollo Skylab Through STS-135

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    The importance of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to conduct an EVA over-tasked the crewmember and exceeded the capabilities of vehicle and space suit life support systems. Energy expenditure was closely evaluated through the Apollo lunar surface EVAs, resulting in modifications to space suit design and EVA operations. After the Apollo lunar surface missions were completed, the United States shifted its focus to long duration human space flight, to study the human response to living and working in a microgravity environment. This paper summarizes the energy expenditure during EVA from Apollo Skylab through STS-135.

  15. FY13 High Performance EVA Glove (HPEG) Collaboration: Glove Injury Data Mining Effort - Training Data Overview

    NASA Technical Reports Server (NTRS)

    Reid, Christopher; Benson, Elizabeth; England, Scott; Charvat, Jacqueline; Norcross, Jason; McFarland, Shane; Rajulu, Sudhakar

    2014-01-01

    From the time hand-intensive tasks were first created for EVAs, discomforts and injuries have been noted.. There have been numerous versions of EVA gloves for US crew over the past 50 years, yet pain and injuries persist. The investigation team was tasked with assisting in a glove injury assessment for the High Performance EVA Glove (HPEG) project.center dot To aid in this assessment, the team was asked to complete the following objectives: - First, to develop the best current understanding of what glove-related injuries have occurred to date, and when possible, identify the specific mechanisms that caused those injuries - Second, to create a standardized method for comparison of glove injury potential from one glove to another. center dot The overall goal of the gloved hand injury assessment is to utilize ergonomics in understanding how these glove injuries are occurring, and to propose mitigations to current designs or design changes in the next generation of EVA gloves.

  16. NEEMO 14: Evaluation of Human Performance for Rover, Cargo Lander, Crew Lander, and Exploration Tasks in Simulated Partial Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2011-01-01

    The ultimate success of future human space exploration missions is dependent on the ability to perform extravehicular activity (EVA) tasks effectively, efficiently, and safely, whether those tasks represent a nominal mode of operation or a contingency capability. To optimize EVA systems for the best human performance, it is critical to study the effects of varying key factors such as suit center of gravity (CG), suit mass, and gravity level. During the 2-week NASA Extreme Environment Mission Operations (NEEMO) 14 mission, four crewmembers performed a series of EVA tasks under different simulated EVA suit configurations and used full-scale mockups of a Space Exploration Vehicle (SEV) rover and lander. NEEMO is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Quantitative and qualitative data collected during NEEMO 14, as well as from spacesuit tests in parabolic flight and with overhead suspension, are being used to directly inform ongoing hardware and operations concept development of the SEV, exploration EVA systems, and future EVA suits. OBJECTIVE: To compare human performance across different weight and CG configurations. METHODS: Four subjects were weighed out to simulate reduced gravity and wore either a specially designed rig to allow adjustment of CG or a PLSS mockup. Subjects completed tasks including level ambulation, incline/decline ambulation, standing from the kneeling and prone position, picking up objects, shoveling, ladder climbing, incapacitated crewmember handling, and small and large payload transfer. Subjective compensation, exertion, task acceptability, and duration data as well as photo and video were collected. RESULTS: There appear to be interactions between CG, weight, and task. CGs nearest the subject s natural CG are the most predictable in terms of acceptable performance across tasks. Future research should focus on

  17. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Scoville, Zebulon; Sipila, Stephanie; Bowie, Jonathan

    2014-01-01

    NASA's Asteroid Redirect Crewed Mission (ARCM) is challenged with primary mission objectives of demonstrating deep space Extravehicular Activity (EVA) and tools, and obtaining asteroid samples to return to Earth for further study. Although the Modified Advanced Crew Escape Suit (MACES) is used for the EVAs, it has limited mobility which increases fatigue and decreases the crews' capability to perform EVA tasks. Furthermore, previous Shuttle and International Space Station (ISS) spacewalks have benefited from EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, some vehicle interfaces and tools can leverage heritage designs and experience. However, when the crew ventures onto an asteroid capture bag to explore the asteroid and collect rock samples, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as bunching of the fabric bag will complicate EVA translation, tool restraint and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the MACES suit. The proposed concept utilizes expandable booms and integrated features of the asteroid capture bag to position and restrain the crew at the asteroid worksite. These methods enable the capability to perform both finesse, and high load tasks necessary to collect samples for scientific characterization of the asteroid. This paper will explore the design trade space and options that were examined for EVA, the

  18. Response Activation in Overlapping Tasks and the Response-Selection Bottleneck

    ERIC Educational Resources Information Center

    Schubert, Torsten; Fischer, Rico; Stelzel, Christine

    2008-01-01

    The authors investigated the impact of response activation on dual-task performance by presenting a subliminal prime before the stimulus in Task 2 (S2) of a psychological refractory period (PRP) task. Congruence between prime and S2 modulated the reaction times in Task 2 at short stimulus onset asynchrony despite a PRP effect. This Task 2…

  19. STS-26 EVA rescue training

    NASA Astrophysics Data System (ADS)

    1988-07-01

    This video shows astronauts Covey, Hilmers, and Hauck training in SES. It involves a simulated EVA rescue using the RMS. A computer-generated image is used to simulate the movement of a free-floating astronaut for grapple with the arm.

  20. The Education of Eva Hoffman.

    ERIC Educational Resources Information Center

    Proefriedt, William

    1991-01-01

    Reviews the autobiography of Eva Hoffman, "Lost in Translation: A Life in a New Language" (Dutton, 1989). Hoffman, whose family left Poland in the 1950s, offers a consciously bicultural view of the immigrant experience, in contrast to many autobiographies of those who forsake the old world for the new. (DM)

  1. Shoulder Injuries in US Astronauts Related to EVA Suit Design

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; McCulloch, P.; Van Baalen, Mary; Minard, Charles; Watson, Richard; Blatt, T.

    2011-01-01

    Introduction: For every one hour spent performing extravehicular activity (EVA) in space, astronauts in the US space program spend approximately six to ten hours training in the EVA spacesuit at NASA-Johnson Space Center's Neutral Buoyancy Lab (NBL). In 1997, NASA introduced the planar hard upper torso (HUT) EVA spacesuit which subsequently replaced the existing pivoted HUT. An extra joint in the pivoted shoulder allows increased mobility but also increased complexity. Over the next decade a number of astronauts developed shoulder problems requiring surgical intervention, many of whom performed EVA training in the NBL. This study investigated whether changing HUT designs led to shoulder injuries requiring surgical repair. Methods: US astronaut EVA training data and spacesuit design employed were analyzed from the NBL data. Shoulder surgery data was acquired from the medical record database, and causal mechanisms were obtained from personal interviews Analysis of the individual HUT designs was performed as it related to normal shoulder biomechanics. Results: To date, 23 US astronauts have required 25 shoulder surgeries. Approximately 48% (11/23) directly attributed their injury to training in the planar HUT, whereas none attributed their injury to training in the pivoted HUT. The planar HUT design limits shoulder abduction to 90 degrees compared to approximately 120 degrees in the pivoted HUT. The planar HUT also forces the shoulder into a forward flexed position requiring active retraction and extension to increase abduction beyond 90 degrees. Discussion: Multiple factors are associated with mechanisms leading to shoulder injury requiring surgical repair. Limitations to normal shoulder mechanics, suit fit, donning/doffing, body position, pre-existing injury, tool weight and configuration, age, in-suit activity, and HUT design have all been identified as potential sources of injury. Conclusion: Crewmembers with pre-existing or current shoulder injuries or certain

  2. Brain Activation of Identity Switching in Multiple Identity Tracking Task.

    PubMed

    Lyu, Chuang; Hu, Siyuan; Wei, Liuqing; Zhang, Xuemin; Talhelm, Thomas

    2015-01-01

    When different objects switch identities in the multiple identity tracking (MIT) task, viewers need to rebind objects' identity and location, which requires attention. This rebinding helps people identify the regions targets are in (where they need to focus their attention) and inhibit unimportant regions (where distractors are). This study investigated the processing of attentional tracking after identity switching in an adapted MIT task. This experiment used three identity-switching conditions: a target-switching condition (where the target objects switched identities), a distractor-switching condition (where the distractor objects switched identities), and a no-switching condition. Compared to the distractor-switching condition, the target-switching condition elicited greater activation in the frontal eye fields (FEF), intraparietal sulcus (IPS), and visual cortex. Compared to the no-switching condition, the target-switching condition elicited greater activation in the FEF, inferior frontal gyrus (pars orbitalis) (IFG-Orb), IPS, visual cortex, middle temporal lobule, and anterior cingulate cortex. Finally, the distractor-switching condition showed greater activation in the IFG-Orb compared to the no-switching condition. These results suggest that, in the target-switching condition, the FEF and IPS (the dorsal attention network) might be involved in goal-driven attention to targets during attentional tracking. In addition, in the distractor-switching condition, the activation of the IFG-Orb may indicate salient change that pulls attention away automatically.

  3. Electrostatic Discharge Issues in International Space Station Program EVAs

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    EVA activity in the ISS program encounters several dangerous ESD conditions. The ISS program has been aggressive for many years to find ways to mitigate or to eliminate the associated risks. Investments have included: (1) Major mods to EVA tools, suit connectors & analytical tools (2) Floating Potential Measurement Unit (3) Plasma Contactor Units (4) Certification of new ISS flight attitudes (5) Teraflops of computation (6) Thousands of hours of work by scores of specialists (7) Monthly management attention at the highest program levels. The risks are now mitigated to a level that is orders of magnitude safer than prior operations

  4. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Lousma is at the Apollo Telescope Mount EVA work station assembling one of the two 55-foot long sectionalized poles for the twin pole solar shield which was deployed to help cool the Orbital Workshop. Part of the Airlock Module's thermal/meteoroid curtain is in the left foreground.

  5. EVA 2000: a European/Russian space suit concept.

    PubMed

    Skoog, A I; Abramov, I P

    1995-07-01

    For the European manned space activities an EVA space suit system was being developed in the frame of the Hermes Space Vehicle Programme of the European Space Agency (ESA). The space suit was to serve the needs for all relevant extravehicular activities for the Hermes Columbus operations planned to begin in 2004. For the present Russian manned space programme the relevant EVAs are performed by the Orlan-DMA semi-rigid space suit. The origin of its development reaches back to the 1970s and has since been adapted to cover the needs for extravehicular activities on Salyut and MIR until today. The latest modification of the space suit, which guaranteed its completely self-contained operation, was made in 1988. However, Russian specialists considered it necessary to start developing an EVA space suit of a new generation, which would have improved performance and would cover the needs by the turn of the century and into the beginning of the next century. Potentially these two suit developments could have a lot in common based on similarities in present concepts. As future manned space activities become more and more an international effort, a safe and reliable interoperability of the different space suit systems is required. Based on the results of the Munich Minister Conference in 1991, the European Space Agency and the Russian Space Agency agreed to initiate a requirements analysis and conceptual design study to determine the feasibility of a joint space suit development, EVA 2000. The design philosophy for the EVA 2000 study was oriented on a space suit system design of: space suit commonality and interoperability; increased crew productivity and safety; increase in useful life and reduced maintainability; reduced development and production cost. The EVA 2000 feasibility study was performed in 1992, and with the positive conclusions for EVA 2000, this approach became the new joint European Russian EVA Suit 2000 Development Programme. This paper gives an overview of

  6. Medical, Psychophysiological, and Human Performance Problems During Extended EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP1, the discussion focuses on the following topics: New Developments in the Assessment of the Risk of Decompression Sickness in Null Gravity During Extravehicular Activity; The Dynamic of Physiological Reactions of Cosmonauts Under the Influence of Repeated EVA Workouts, The Russian Experience; Medical Emergencies in Space; The Evolution from 'Physiological Adequacy' to 'Physiological Tuning'; Five Zones of Symmetrical and Asymmetrical Conflicting Temperatures on the Human Body, Physiological Consequences; Human Performance and Subjective Perception in Nonuniform Thermal Conditions; The Hand as a Control System, Implications for Hand-Finger Dexterity During Extended EVA; and Understanding the Skill of Extravehicular Mass Handling.

  7. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  8. The use of an extended ventilation tube as a countermeasure for EVA-associated upper extremity medical issues

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Hoffman, R. B.; Buckland, D. A.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Strauss, S.; Novak, J.; Gernhardt, M. L.

    Introduction: Onycholysis due to repetitive activity in the space suit glove during Neutral Buoyancy Laboratory (NBL) training and during spaceflight extravehicular activity (EVA) is a common observation. Moisture accumulates in gloves during EVA task performance and may contribute to the development of pain and damage to the fingernails experienced by many astronauts. The study evaluated the use of a long ventilation tube to determine if improved gas circulation into the hand area could reduce hand moisture and thereby decrease the associated symptoms. Methods: The current Extravehicular Mobility Unit (EMU) was configured with a ventilation tube that extended down a single arm of the crew member (E) and compared with the unventilated arm (C). Skin surface moisture was measured on both hands immediately after glove removal and a questionnaire administered to determine subjective measures. Astronauts ( n=6) were examined pre- and post-run. Results: There were consistent trends in the reduction of relative hydration ratios at dorsum ( C=3.34, E=2.11) and first ring finger joint ( C=2.46, E=1.96) when the ventilation tube was employed. Ventilation appeared more effective on the left versus the right hand, implying an interaction with hand anthropometry and glove fit. Symptom score was lower on the hand that had the long ventilation tube relative to the control hand in 2/6 EVA crew members. Conclusions: Increased ventilation to the hand was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in one-third of the subjects. Improved design in the ventilation capability of EVA spacesuits is expected to improve efficiency of air flow distribution.

  9. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  10. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  11. International Reference Ionosphere (IRI): Task Force Activity 2000

    NASA Technical Reports Server (NTRS)

    Bilitza, D.

    2000-01-01

    The annual IRI Task Force Activity was held at the Abdus Salam International Center for Theoretical Physics in Trieste, Italy from July 10 to July 14. The participants included J. Adeniyi (University of Ilorin, Nigeria), D. Bilitza (NSSDC/RITSS, USA), D. Buresova (Institute of Atmospheric Physics, Czech Republic), B. Forte (ICTP, Italy), R. Leitinger (University of Graz, Austria), B. Nava (ICTP, Italy), M. Mosert (University National Tucuman, Argentina), S. Pulinets (IZMIRAN, Russia), S. Radicella (ICTP, Italy), and B. Reinisch (University of Mass. Lowell, USA). The main topic of this Task Force Activity was the modeling of the topside ionosphere and the development of strategies for modeling of ionospheric variability. Each day during the workshop week the team debated a specific modeling problem in the morning during informal presentations and round table discussions of all participants. Ways of resolving the specific modeling problem were devised and tested in the afternoon in front of the computers of the ICTP Aeronomy and Radiopropagation Laboratory using ICTP s computer networks and internet access.

  12. Astronaut Alan Bean with subpackages of the ALSEP during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, traverses with the two subpackages of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA). Bean deployed the ALSEP components 300 feet from the Lunar Module (LM). The LM and deployed erectable S-band antenna can be seen in the background.

  13. Television transmission of Astronaut Harrison Schmitt falling during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt loses his balance and heads for a fall during the second Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site, in this black and white reproduction taken from a color television transmission made by the RCA color TV camera mounted on the Lunar Roving Vehicle. Schmitt is the lunar module pilot.

  14. Astronaut Richard Gordon practices attaching camera to film EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., prime crew pilot for the Gemini 11 space flight, practices attaching to a Gemini boilerplate a camera which will film his extravehicular activity (EVA) outside the spacecraft. The training exercise is being conducted in the Astronaut Training Building, Kennedy Space Center, Florida.

  15. Task complexity modulates pilot electroencephalographic activity during real flights.

    PubMed

    Di Stasi, Leandro L; Diaz-Piedra, Carolina; Suárez, Juan; McCamy, Michael B; Martinez-Conde, Susana; Roca-Dorda, Joaquín; Catena, Andrés

    2015-07-01

    Most research connecting task performance and neural activity to date has been conducted in laboratory conditions. Thus, field studies remain scarce, especially in extreme conditions such as during real flights. Here, we investigated the effects of flight procedures of varied complexity on the in-flight EEG activity of military helicopter pilots. Flight procedural complexity modulated the EEG power spectrum: highly demanding procedures (i.e., takeoff and landing) were associated with higher EEG power in the higher frequency bands, whereas less demanding procedures (i.e., flight exercises) were associated with lower EEG power over the same frequency bands. These results suggest that EEG recordings may help to evaluate an operator's cognitive performance in challenging real-life scenarios, and thus could aid in the prevention of catastrophic events. PMID:25728307

  16. Meditation leads to reduced default mode network activity beyond an active task

    PubMed Central

    Garrison, Kathleen A.; Zeffiro, Thomas A.; Scheinost, Dustin; Constable, R. Todd; Brewer, Judson A.

    2015-01-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest despite other studies reporting differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, this study compared meditation to another active cognitive task, both to replicate findings that meditation is associated with relatively reduced default mode network activity, and to extend these findings by testing whether default mode activity was reduced during meditation beyond the typical reductions observed during effortful tasks. In addition, prior studies have used small groups, whereas the current study tested these hypotheses in a larger group. Results indicate that meditation is associated with reduced activations in the default mode network relative to an active task in meditators compared to controls. Regions of the default mode showing a group by task interaction include the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that suppression of default mode processing may represent a central neural process in long-term meditation, and suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  17. Meditation leads to reduced default mode network activity beyond an active task.

    PubMed

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.

  18. Interfacing with an EVA Suit

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2011-01-01

    A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.

  19. A new method of measuring the stiffness of astronauts' EVA gloves

    NASA Astrophysics Data System (ADS)

    Mousavi, Mehdi; Appendino, Silvia; Battezzato, Alessandro; Bonanno, Alberto; Chen Chen, Fai; Crepaldi, Marco; Demarchi, Danilo; Favetto, Alain; Pescarmona, Francesco

    2014-04-01

    Hand fatigue is one of the most important problems of astronauts during their missions to space. This fatigue is due to the stiffness of the astronauts' gloves known as Extravehicular Activity (EVA) gloves. The EVA glove has a multilayered, bulky structure and is pressurized against the vacuum of space. In order to evaluate the stiffness of EVA gloves, different methods have been proposed in the past. In particular, the effects of wearing an EVA glove on the performance of the hands have been published by many researchers to represent the stiffness of the EVA glove. In this paper, a new method for measuring the stiffness of EVA gloves is proposed. A tendon-actuated finger probe is designed and used as an alternative to the human index finger in order to be placed inside an EVA glove and measure its stiffness. The finger probe is equipped with accelerometers, which work as tilt sensors, to measure the angles of its phalanges. The phalanges are actuated by applying different amount of torque using the tendons of the finger probe. Moreover, a hypobaric glove box is designed and realized to simulate the actual operating pressure of the EVA glove and to measure its stiffness in both pressurized and non-pressurized conditions. In order to prove the right performance of the proposed finger probe, an Orlam-DM EVA glove is used to perform a number of tests. The equation of stiffness for the PIP joint of this glove is extracted from the results acquired from the tests. This equation presents the torque required to flex the middle phalanx of the glove. Then, the effect of pressurization on the stiffness is highlighted in the last section. This setup can be used to measure the stiffness of different kinds of EVA gloves and allows direct, numerical comparison of their stiffness.

  20. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper; Durkin, Robert

    2012-01-01

    As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC’s Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

  1. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper; Durkin, Robert

    2012-01-01

    As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC's Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

  2. EVA Systems Flight Controller Talks With Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, EVA Systems Flight Controller Sandy Fletcher participates in a Digital Learning Network (DLN) event with students from Northtowne Ele...

  3. Active vision task and postural control in healthy, young adults: Synergy and probably not duality.

    PubMed

    Bonnet, Cédrick T; Baudry, Stéphane

    2016-07-01

    In upright stance, individuals sway continuously and the sway pattern in dual tasks (e.g., a cognitive task performed in upright stance) differs significantly from that observed during the control quiet stance task. The cognitive approach has generated models (limited attentional resources, U-shaped nonlinear interaction) to explain such patterns based on competitive sharing of attentional resources. The objective of the current manuscript was to review these cognitive models in the specific context of visual tasks involving gaze shifts toward precise targets (here called active vision tasks). The selection excluded the effects of early and late stages of life or disease, external perturbations, active vision tasks requiring head and body motions and the combination of two tasks performed together (e.g., a visual task in addition to a computation in one's head). The selection included studies performed by healthy, young adults with control and active - difficult - vision tasks. Over 174 studies found in Pubmed and Mendeley databases, nine were selected. In these studies, young adults exhibited significantly lower amplitude of body displacement (center of pressure and/or body marker) under active vision tasks than under the control task. Furthermore, the more difficult the active vision tasks were, the better the postural control was. This underscores that postural control during active vision tasks may rely on synergistic relations between the postural and visual systems rather than on competitive or dual relations. In contrast, in the control task, there would not be any synergistic or competitive relations.

  4. STS-54 EV2 Runco attaches PFR to OV-105's PLB longeron during DTO 1210 EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-54 Mission Specialist (MS1) and extravehicular crewmember 2 (EV2) Mario Runco, Jr, wearing extravehicular mobility unit (EMU), uses tool (wrench) to attach the portable foot restraint (PFR) into its position on sill longeron in Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB) during Detailed Test Objective (DTO) 1210, extravehicular activity (EVA) operations procedure/training. Once attached, Runco will test the ability to climb into the PFR without handholds. This EVA is the first in a series to broaden EVA procedures and training experience bases and proficiency in preparation for future EVAs such as the Hubble Space Telescope (HST) and Space Station Freedom (SSF).

  5. STS-54 EV2 Runco attaches PFR to OV-105's PLB longeron during DTO 1210 EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-54 Mission Specialist (MS1) and extravehicular crewmember 2 (EV2) Mario Runco, Jr, wearing extravehicular mobility unit (EMU), positions a portable foot restraint (PFR) on sill longeron in Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB) during Detailed Test Objective (DTO) 1210, extravehicular activity (EVA) operations procedure/training. Once attached, Runco will test the ability to climb into the PFR without handholds. This EVA is the first in a series to broaden EVA procedures and training experience bases and proficiency in preparation for future EVAs such as the Hubble Space Telescope (HST) and Space Station Freedom (SSF).

  6. The main results of EVA medical support on the Mir Space Station

    NASA Astrophysics Data System (ADS)

    Katuntsev, V. P.; Osipov, Yu. Yu.; Barer, A. S.; Gnoevaya, N. K.; Tarasenkov, G. G.

    2004-04-01

    The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9- 13 kcal/ min and 150- 174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.

  7. The main results of EVA medical support on the Mir Space Station.

    PubMed

    Katuntsev, V P; Osipov, Yu Yu; Barer, A S; Gnoevaya, N K; Tarasenkov, G G

    2004-04-01

    The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9-13 kcal/min and 150-174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.

  8. STS-31 MS Sullivan wearing EMU prepares for contingency EVA in OV-103 airlock

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-31 Mission Specialist (MS) Kathryn D. Sullivan, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), prepares for contingency extravehicular activity (EVA) in the event of problems with the Hubble Space Telescope (HST) deployment.

  9. Characterizing “fibrofog”: Subjective appraisal, objective performance, and task-related brain activity during a working memory task

    PubMed Central

    Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L.; Rayhan, Rakib; VanMeter, John W.; Gracely, Richard H.

    2016-01-01

    The subjective experience of cognitive dysfunction (“fibrofog”) is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, “fibrofog” appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks. PMID:26955513

  10. Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

  11. Design, development and evaluation of Stanford/Ames EVA prehensors

    NASA Technical Reports Server (NTRS)

    Leifer, Larry J.; Aldrich, J.; Leblanc, M.; Sabelman, E.; Schwandt, D.

    1988-01-01

    Space Station operations and maintenance are expected to make unprecedented demands on astronaut EVA. With Space Station expected to operate with an 8 to 10 psi atmosphere (4 psi for Shuttle operations), the effectivness of pressurized gloves is called into doubt at the same time that EVA activity levels are to be increased. To address the need for more frequent and complex EVA missions and also to extend the dexterity, duration, and safety of EVA astronauts, NASA Ames and Stanford University have an ongoing cooperative agreement to explore and compare alternatives. This is the final Stanford/Ames report on manually powered Prehensors, each of which consists of a shroud forming a pressure enclosure around the astronaut's hand, and a linkage system to transfer the motions and forces of the hand to mechanical digits attached to the shroud. All prehensors are intended for attachment to a standard wrist coupling, as found on the AX-5 hard suit prototype, so that realistic tests can be performed under normal and reduced gravity as simulated by water flotation.

  12. Transient Decline in Hippocampal Theta Activity during the Acquisition Process of the Negative Patterning Task

    PubMed Central

    Sakimoto, Yuya; Okada, Kana; Takeda, Kozue; Sakata, Shogo

    2013-01-01

    Hippocampal function is important in the acquisition of negative patterning but not of simple discrimination. This study examined rat hippocampal theta activity during the acquisition stages (early, middle, and late) of the negative patterning task (A+, B+, AB-). The results showed that hippocampal theta activity began to decline transiently (for 500 ms after non-reinforced stimulus presentation) during the late stage of learning in the negative patterning task. In addition, this transient decline in hippocampal theta activity in the late stage was lower in the negative patterning task than in the simple discrimination task. This transient decline during the late stage of task acquisition may be related to a learning process distinctive of the negative patterning task but not the simple discrimination task. We propose that the transient decline of hippocampal theta activity reflects inhibitory learning and/or response inhibition after the presentation of a compound stimulus specific to the negative patterning task. PMID:23936249

  13. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murray, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered a hazardous duty for NASA astronauts. This places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies. The purpose of this paper is to document the comprehensive EVA training data set that was compiled from multiple sources by the Lifetime Surveillance of Astronaut Health (LSAH) epidemiologists to investigate musculoskeletal injuries. The EVA training dataset does not contain any medical data, rather it only documents when EVA training was performed, by whom and other details about the session. The first activities practicing EVA maneuvers in water were performed at the Neutral Buoyancy Simulator (NBS) at the Marshall Spaceflight Center in Huntsville, Alabama. This facility opened in 1967 and was used for EVA training until the early Space Shuttle program days. Although several photographs show astronauts performing EVA training in the NBS, records detailing who performed the training and the frequency of training are unavailable. Paper training records were stored within the NBS after it was designated as a National Historic Landmark in 1985 and closed in 1997, but significant resources would be needed to identify and secure these records, and at this time LSAH has not pursued acquisition of these early training records. Training in the NBS decreased when the Johnson Space Center in Houston, Texas, opened the Weightless Environment Training Facility (WETF) in 1980. Early training records from the WETF consist of 11 hand-written dive logbooks compiled by individual workers that were digitized at the request of LSAH. The WETF was integral in the training for Space Shuttle EVAs until its closure in 1998. The Neutral Buoyancy Laboratory (NBL) at the Sonny Carter Training Facility near JSC

  14. Dust Tolerant EVA-Compatible Connectors

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Townsend, Ivan I., III

    2010-01-01

    The objectives of this project are to develop connectors (quick disconnects and umbilical systems) that can be repetitively and reliably mated and de-mated during Lunar surface extra-vehicular activities. These standardized interfaces will be required for structural integrity and commodities transfer between linked surface elements. QD's fittings are needed for EVA spacesuit Primary Life Support Systems as well as liquid cooled garment circulation and suit heat rejection. Umbilical electro-mechanical systems (connectors) are needed between discrete surface systems for transfer of air, power, fluid (water), and data must be capable of being operated by extra vehicular astronaut crew members and/or robotic assistants. There exists an urgent need to prevent electro-statically charged dust and debris from clogging and degrading the interface seals and causing leakage and spills of hazardous commodities, contaminating the flowstream, and degrading the mechanisms needed for umbilical connection. Other challenges include modularity, standardization, autonomous operation, and lifetime sealing issues.

  15. Exploration Architecture Options - ECLSS, TCS, EVA Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don

    2011-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. The Augustine Commission evaluated human space flight for the Obama administration then the Human Exploration Framework Teams (HEFT and HEFT2) evaluated potential exploration missions and the infrastructure and technology needs for those missions. Lunar architectures have been identified and addressed by the Lunar Surface Systems team to establish options for how to get to, and then inhabit and explore, the moon. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), Thermal Control (TCS), and Extravehicular Activity (EVA) Systems.

  16. Exploration Architecture Options - ECLSS, EVA, TCS Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don; Lawrence, Carl

    2010-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. Lunar architectures have been identified and addressed in the Lunar Surface Systems team to establish options for how to get to and then inhabit and explore the moon. The Augustine Commission evaluated human space flight for the Obama administration and identified many options for how to conduct human spaceflight in the future. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), ExtraVehicular Activity (EVA) and Thermal Control System (TCS) Systems. The advantages and disadvantages of each architecture and options are presented.

  17. Mission Specialist Tamara Jernigan During STRELA EVA

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-96 mission, the second International Space Station (ISS) assembly and resupply flight, launched on May 27, 1999 aboard the Orbiter Discovery for an almost 10 day mission. The Shuttle's SPACEHAB double module carried internal and resupply cargo for station outfitting and the Russian cargo crane, STRELA, was carried aboard the shuttle in the integrated Cargo Carrier (ICC). In this STS-96 onboard photo of the first Extra Vehicular Activity (EVA), Mission Specialist Tamara Jernigan totes part of the Russian built crane. Jernigans' feet are anchored on a mobile foot restraint cornected to the Shuttle's Remote Manipulator System (RMS) operated by Mission Specialist Ellen Ochoa. The STS-96 flight was the first to perform docking with the ISS.

  18. Augmented robotic device for EVA hand manoeuvres

    NASA Astrophysics Data System (ADS)

    Matheson, Eloise; Brooker, Graham

    2012-12-01

    During extravehicular activities (EVAs), pressurised space suits can lead to difficulties in performing hand manoeuvres and fatigue. This is often the cause of EVAs being terminated early, or taking longer to complete. Assistive robotic gloves can be used to augment the natural motion of a human hand, meaning work can be carried out more efficiently with less stress to the astronaut. Lightweight and low profile solutions must be found in order for the assistive robotic glove to be easily integrated with a space suit pressure garment. Pneumatic muscle actuators combined with force sensors are one such solution. These actuators are extremely light, yet can output high forces using pressurised gases as the actuation drive. Their movement is omnidirectional, so when combined with a flexible exoskeleton that itself provides a degree of freedom of movement, individual fingers can be controlled during flexion and extension. This setup allows actuators and other hardware to be stored remotely on the user's body, resulting in the least possible mass being supported by the hand. Two prototype gloves have been developed at the University of Sydney; prototype I using a fibreglass exoskeleton to provide flexion force, and prototype II using torsion springs to achieve the same result. The gloves have been designed to increase the ease of human movements, rather than to add unnatural ability to the hand. A state space control algorithm has been developed to ensure that human initiated movements are recognised, and calibration methods have been implemented to accommodate the different characteristics of each wearer's hands. For this calibration technique, it was necessary to take into account the natural tremors of the human hand which may have otherwise initiated unexpected control signals. Prototype I was able to actuate the user's hand in 1 degree of freedom (DOF) from full flexion to partial extension, and prototype II actuated a user's finger in 2 DOF with forces achieved

  19. Next Generation Life Support: High Performance EVA Glove

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah K.

    2015-01-01

    The objectives of the High Performance EVA Glove task are to develop advanced EVA gloves for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. New technologies and manufacturing techniques will be incorporated into the new gloves to address finger and hand mobility, injury reduction and durability in nonpristine environments. Three prototypes will be developed, each focusing on different technological advances. A robotic assist glove will integrate a powered grasping system into the current EVA glove design to reduce astronaut hand fatigue and hand injuries. A mechanical counter pressure (MCP) glove will be developed to further explore the potential of MCP technology and assess its capability for countering the effects of vacuum or low pressure environments on the body by using compression fabrics or materials to apply the necessary pressure. A gas pressurized glove, incorporating new technologies, will be the most flight-like of the three prototypes. Advancements include the development and integration of aerogel insulation, damage sensing components, dust-repellant coatings, and dust tolerant bearings.

  20. Manned NEO Mission EVA Challenges

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The President has proposed to land astronauts on an asteroid by 2025. However, Manned NEO (Near Earth Objects) Missions will present a host of new and exciting problems that will need to be better defined and solved before such a mission is launched. Here I will focus on the challenges for conducting asteroidal EVAs. Specfically, crew locomotion, sampling, drilling, documentation, and instrument deployment issues arising from the micro gravity environments associated with NEOs. Therefore, novel methods and techniques will need to be developed and tested in order to achieve specific mission science objectives. Walking or driving on the surface will not be a realistic option due to the small sizes (10 s to 100 s of meters in diameter) and hence extremely low gravity of the present day known candidate NEOs. EVAs will have to be carried out with crew members either using a self propelled device (akin to the MMU and SAFER units used on Shuttle/ISS) and or tethers. When using tethers a grid system could be deployed which is anchored to the asteroid. These anchor points could be inserted by firing penetrators into the surface from the spacecraft while it is still at a safe standoff distance. These penetrators would pull double duty by being laden with scientific instrumentation to probe the subsurface. Dust and debris generated by sample collection and locomotion in a microgravity environment could also pose some problems that will require forethought.

  1. Reaction time-related activity reflecting periodic, task-specific cognitive control.

    PubMed

    Barber, Anita D; Pekar, James J; Mostofsky, Stewart H

    2016-01-01

    Reaction time (RT) is associated with increased amplitude of the Blood Oxygen-Level Dependent (BOLD) response in cognitive control regions. The current study examined whether the Primary Condition (PC) effect and RT-BOLD effect both reflect the same cognitive control processes. In addition, RT-BOLD effects were examined in two Go/No-go tasks with different demands to determine whether RT-related activity is task-dependent, reflecting the recruitment of task-specific cognitive processes. Data simulations showed that RT-related activity could be distinguished from that of the primary condition if it is mean-centered. In that case, RT-related activity reflects periodically-engaged processes rather than "time-on-task" (ToT). RT-related activity was mostly distinct from that of the primary Go contrast, particularly for the perceptual decision task. Therefore, RT effects can reflect additional cognitive processes that are not captured by the PC contrast consistent with a periodic-engagement account. RT-BOLD effects occurred in a separate set of regions for the two tasks. For the task requiring a perceptual decision, RT-related activity occurred within occipital and posterior parietal regions supporting visual attention. For the task requiring a working memory decision, RT-related activity occurred within fronto-parietal regions supporting the maintenance and retrieval of task representations. The findings suggest that RT-related activity reflects task-specific processes that are periodically-engaged, particularly during less demanding tasks. PMID:26318935

  2. CLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation

    PubMed Central

    Ramena, Grace; Yin, Yufang; Yu, Yang; Walia, Vijay; Elble, Randolph C.

    2016-01-01

    CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1) and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC) caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS). The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines. PMID:26930581

  3. CLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation.

    PubMed

    Ramena, Grace; Yin, Yufang; Yu, Yang; Walia, Vijay; Elble, Randolph C

    2016-01-01

    CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1) and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC) caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS). The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines. PMID:26930581

  4. CLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation.

    PubMed

    Ramena, Grace; Yin, Yufang; Yu, Yang; Walia, Vijay; Elble, Randolph C

    2016-01-01

    CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1) and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC) caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS). The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines.

  5. Reduction of Dual-task Costs by Noninvasive Modulation of Prefrontal Activity in Healthy Elders

    PubMed Central

    Manor, Brad; Zhou, Junhong; Jor'dan, Azizah; Zhang, Jue; Fang, Jing; Pascual-Leone, Alvaro

    2016-01-01

    Dual tasking (e.g., walking or standing while performing a cognitive task) disrupts performance in one or both tasks, and such dual-task costs increase with aging into senescence. Dual tasking activates a network of brain regions including pFC. We therefore hypothesized that facilitation of prefrontal cortical activity via transcranial direct current stimulation (tDCS) would reduce dual-task costs in older adults. Thirty-seven healthy older adults completed two visits during which dual tasking was assessed before and after 20 min of real or sham tDCS targeting the left pFC. Trials of single-task standing, walking, and verbalized serial subtractions were completed, along with dual-task trials of standing or walking while performing serial subtractions. Dual-task costs were calculated as the percent change in markers of gait and postural control and serial subtraction performance, from single to dual tasking. Significant dual-task costs to standing, walking, and serial subtraction performance were observed before tDCS (p < .01). These dual-task costs were less after real tDCS as compared with sham tDCS as well as compared with either pre-tDCS condition (p < .03). Further analyses indicated that tDCS did not alter single task performance but instead improved performance solely within dual-task conditions (p < .02). These results demonstrate that dual tasking can be improved by modulating prefrontal activity, thus indicating that dual-task decrements are modifiable and may not necessarily reflect an obligatory consequence of aging. Moreover, tDCS may ultimately serve as a novel approach to preserving dual-task capacity into senescence. PMID:26488591

  6. EVA Suit 2000: a joint European/Russian space suit design.

    PubMed

    Moller, P; Loewens, R; Abramov, I P; Albats, E A

    1995-07-01

    A feasibility study in 1992 showed the benefits of a common European Russian space suit development, EVA Suit 2000, replacing the Russian space suit Orlan-DMA and the planned European Hermes EVA space suit at the turn of the century. This EVA Suit 2000 is a joint development initiated by the European Space Agency (ESA) and the Russian Space Agency (RKA). The main objectives of this development program are: first utilization aboard the Russian Space Station MIR-2; performance improvement with respect to current operational suits; development cost reduction. Russian experience gained with the present extravehicular activity (EVA) suit on the MIR Space Station and extensive application of European Technologies will be needed to achieve these ambitious goals. This paper presents the current status of the development activities, the space suit system design and concentrates in more detail on life support aspects. Specific subjects addressed will include the overall life support conceptual architecture, design features, crew comfort and operational considerations.

  7. Hippocampal theta wave activity during configural and non-configural tasks in rats.

    PubMed

    Sakimoto, Yuya; Hattori, Minoru; Takeda, Kozue; Okada, Kana; Sakata, Shogo

    2013-03-01

    This study examined hippocampal theta power during configural and non-configural tasks in rats. Experiment 1 compared hippocampal theta power during a negative patterning task (A+, B+, AB-) to a configural task and a simple discrimination task (A+, B-) as a non-configural task. The results showed that hippocampal theta power during the non-reinforcement trial (non-RFT) of the negative patterning task was higher than that during the simple discrimination task. However, this hippocampal power may reflect sensory processing for compound stimuli that have cross-modality features (the non-RFT of the negative patterning task was presented together with visual and auditory stimuli, but the non-RFT of the simple discrimination task was presented with visual or auditory stimulus alone). Thus, in experiment 2, we examined whether the experiment 1 results were attributable to sensory processing of a compound stimulus by comparing hippocampal theta power during negative patterning (A+, B+, AB-), simultaneous feature-negative (A+, AB-), and simple discrimination tasks (A+, B-). Experiment 2 showed that hippocampal theta activity during the non-RFT in the negative patterning task was higher than that in the simultaneous feature-negative and simple discrimination tasks. Thus, we showed that hippocampal theta activity increased during configural tasks but not during non-configural tasks.

  8. Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels

    NASA Astrophysics Data System (ADS)

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari

    2010-10-01

    A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.

  9. A Cabin Air Separator for EVA Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  10. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie S.; Alpert, Brian K.; Montalvo, Edwin James; Welsh, Lawrence Daren; Wray, Scott; Mavridis, Costa

    2016-01-01

    The EVA Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, easy to search repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision controlled system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, as well as hundreds of others that support the EVA. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  11. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie S.; Alpert, Brian K.; Montalvo, Edwin James; Welsh, Lawrence Daren; Wray, Scott; Mavridis, Costa

    2016-01-01

    The EVA Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, easy to search repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision controlled system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, as well as hundreds of others that support EVA. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  12. Task-discriminative space-by-time factorization of muscle activity.

    PubMed

    Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien

    2015-01-01

    Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment.

  13. The micro conical system: Lessons learned from a successful EVA/robot-compatible mechanism

    NASA Technical Reports Server (NTRS)

    Gittleman, Mark; Johnston, Alistair

    1996-01-01

    The Micro Conical System (MCS) is a three-part, multi-purpose mechanical interface system used for acquiring and manipulating masses on-orbit by either extravehicular activity (EVA) or telerobotic means. The three components of the system are the micro conical fitting (MCF), the EVA micro tool (EMCT), and the Robot Micro Conical Tool (RMCT). The MCS was developed and refined over a four-year period. This period culminated with the delivery of 358 Class 1 and Class 2 micro conical fittings for the International Space Station and with its first use in space to handle a 1272 kg (2800 lbm) Spartan satellite (11000 times greater than the MCF mass) during an EVA aboard STS-63 in February, 1995. The micro conical system is the first successful EVA/robot-compatible mechanism to be demonstrated in the external environment aboard the U.S. Space Shuttle.

  14. Human Space Exploration and Radiation Exposure from EVA: 1981-2011

    NASA Astrophysics Data System (ADS)

    Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.

    2011-12-01

    There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.

  15. Apollo 16 lunar module 'Orion' photographed from distance during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 Lunar Module 'Orion' is photographed from a distance by Astronaut Chares M. Duke Jr., lunar module pilot, aboard the moving Lunar Roving Vehicle. Astronauts Duke and John W. Young, commander, were returing from the third Apollo 16 extravehicular activity (EVA-2). The RCA color television camera mounted on the LRV is in the foreground. A portion of the LRV's high-gain antenna is at top left.

  16. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the

  17. Computational simulation of extravehicular activity dynamics during a satellite capture attempt.

    PubMed

    Schaffner, G; Newman, D J; Robinson, S K

    2000-01-01

    A more quantitative approach to the analysis of astronaut extravehicular activity (EVA) tasks is needed because of their increasing complexity, particularly in preparation for the on-orbit assembly of the International Space Station. Existing useful EVA computer analyses produce either high-resolution three-dimensional computer images based on anthropometric representations or empirically derived predictions of astronaut strength based on lean body mass and the position and velocity of body joints but do not provide multibody dynamic analysis of EVA tasks. Our physics-based methodology helps fill the current gap in quantitative analysis of astronaut EVA by providing a multisegment human model and solving the equations of motion in a high-fidelity simulation of the system dynamics. The simulation work described here improves on the realism of previous efforts by including three-dimensional astronaut motion, incorporating joint stops to account for the physiological limits of range of motion, and incorporating use of constraint forces to model interaction with objects. To demonstrate the utility of this approach, the simulation is modeled on an actual EVA task, namely, the attempted capture of a spinning Intelsat VI satellite during STS-49 in May 1992. Repeated capture attempts by an EVA crewmember were unsuccessful because the capture bar could not be held in contact with the satellite long enough for the capture latches to fire and successfully retrieve the satellite.

  18. Cognitive tasks in information analysis: Use of event dwell time to characterize component activities

    SciTech Connect

    Sanquist, Thomas F.; Greitzer, Frank L.; Slavich, Antoinette L.; Littlefield, Rik J.; Littlefield, Janis S.; Cowley, Paula J.

    2004-09-28

    Technology-based enhancement of information analysis requires a detailed understanding of the cognitive tasks involved in the process. The information search and report production tasks of the information analysis process were investigated through evaluation of time-stamped workstation data gathered with custom software. Model tasks simulated the search and production activities, and a sample of actual analyst data were also evaluated. Task event durations were calculated on the basis of millisecond-level time stamps, and distributions were plotted for analysis. The data indicate that task event time shows a cyclic pattern of variation, with shorter event durations (< 2 sec) reflecting information search and filtering, and longer event durations (> 10 sec) reflecting information evaluation. Application of cognitive principles to the interpretation of task event time data provides a basis for developing “cognitive signatures” of complex activities, and can facilitate the development of technology aids for information intensive tasks.

  19. Fuel Oxidizer Reaction Products (FORP) Contamination of Service Module (SM) and Release of N-nitrosodimethylamine(NDMA)in a Humid Environment from Crew EVA Suits Contaminated with FORP

    NASA Technical Reports Server (NTRS)

    Schmidl, William; Mikatarian, Ron; Lam, Chiu-Wing; West, Bil; Buchanan, Vanessa; Dee, Louis; Baker, David; Koontz, Steve

    2004-01-01

    The Service Module (SM) is an element of the Russian Segment of the International Space Station (ISS). One of the functions of the SM is to provide attitude control for the ISS using thrusters when the U.S. Control Moment Gyros (CMG's) must be desaturated. Prior to an Extravehicular Activity (EVA) on the Russian Segment, the Docking Compartment (DC1) is depressurized, as it is used as an airlock. When the DC1 is depressurized, the CMG's margin of momentum is insufficient and the SM attitude control thrusters need to fire to desaturate the CMG's. SM roll thruster firings induce contamination onto adjacent surfaces with Fuel Oxidizer Reaction Products (FORP). FORP is composed of both volatile and non-volatile components. One of the components of FORP is the potent carcinogen N-nitrosdimethylamine (NDMA). Since the EVA crewmembers often enter the area surrounding the thrusters for tasks on the aft end of the SM and when translating to other areas of the Russian Segment, the presence of FORP is a concern. This paper will discuss FORP contamination of the SM surfaces, the release of NDMA in a humid environment from crew EVA suits, if they happen to be contaminated with FORP, and the toxicological risk associated with the NDMA release.

  20. JV Task 119 - Effects of Aging on Treated Activated Carbons

    SciTech Connect

    Edwin Olson; Lucinda Hamre; John Pavlish; Blaise Mibeck

    2009-03-25

    For both the United States and Canada, testing has been under way for electric utilities to find viable and economical mercury control strategies to meet pending future mercury emission limits. The technology that holds the most promise for mercury control in low-chlorine lignite to meet the needs of the Clean Air Act in the United States and the Canada-Wide Standards in Canada is injection of treated activated carbon (AC) into the flue gas stream. Most of the treated carbons are reported to be halogenated, often with bromine. Under a previous multiyear project headed by the Energy & Environmental Research Center (EERC), testing was performed on a slipstream unit using actual lignite-derived flue gas to evaluate various sorbent technologies for their effectiveness, performance, and cost. Testing under this project showed that halogenated ACs performed very well, with mercury capture rates often {ge} 90%. However, differences were noted between treated ACs with respect to reactivity and capacity, possibly as a result of storage conditions. Under certain conditions (primarily storage in ambient air), notable performance degradation had occurred in mercury capture efficiency. Therefore, a small exploratory task within this project evaluated possible differences resulting from storage conditions and subsequent effects of aging that might somehow alter their chemical or physical properties. In order to further investigate this potential degradation of treated (halogenated) ACs, the EERC, together with DOE's National Energy Technology Laboratory, the North Dakota Industrial Commission (NDIC), the Electric Power Research Institute (EPRI), SaskPower, and Otter Tail Power Company, assessed the aging effects of brominated ACs for the effect that different storage durations, temperatures, and humidity conditions have on the mercury sorption capacity of treated ACs. No aging effects on initial capture activity were observed for any carbons or conditions in the investigation

  1. High-Pressure Oxygen Generation for Outpost EVA Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  2. Evidence of Conjoint Activation of the Anterior Insular and Cingulate Cortices during Effortful Tasks.

    PubMed

    Engström, Maria; Karlsson, Thomas; Landtblom, Anne-Marie; Craig, A D Bud

    2014-01-01

    The ability to perform effortful tasks is a topic that has received considerable interest in the research of higher functions of the human brain. Neuroimaging studies show that the anterior insular and the anterior cingulate cortices are involved in a multitude of cognitive tasks that require mental effort. In this study, we investigated brain responses to effort using cognitive tasks with task-difficulty modulations and functional magnetic resonance imaging (fMRI). We hypothesized that effortful performance involves modulation of activation in the anterior insular and the anterior cingulate cortices, and that the modulation correlates with individual performance levels. Healthy participants performed tasks probing verbal working memory capacity using the reading span task, and visual perception speed using the inspection time task. In the fMRI analysis, we focused on identifying effort-related brain activation. The results showed that working memory and inspection time performances were directly related. The bilateral anterior insular and anterior cingulate cortices showed significantly increased activation during each task with common portions that were active across both tasks. We observed increased brain activation in the right anterior insula and the anterior cingulate cortex in participants with low working memory performance. In line with the reported results, we suggest that activation in the anterior insular and cingulate cortices is consistent with the neural efficiency hypothesis (Neubauer).

  3. Formal Derivation of Lotka-Volterra-Haken Amplitude Equations of Task-Related Brain Activity in Multiple, Consecutively Performed Tasks

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    The Lotka-Volterra-Haken equations have been frequently used in ecology and pattern formation. Recently, the equations have been proposed by several research groups as amplitude equations for task-related patterns of brain activity. In this theoretical study, the focus is on the circular causality aspect of pattern formation systems as formulated within the framework of synergetics. Accordingly, the stable modes of a pattern formation system inhibit the unstable modes, whereas the unstable modes excite the stable modes. Using this circular causality principle it is shown that under certain conditions the Lotka-Volterra-Haken amplitude equations can be derived from a general model of brain activity akin to the Wilson-Cowan model. The model captures the amplitude dynamics for brain activity patterns in experiments involving several consecutively performed multiple-choice tasks. This is explicitly demonstrated for two-choice tasks involving grasping and walking. A comment on the relevance of the theoretical framework for clinical psychology and schizophrenia is given as well.

  4. Atypical Activation during the Embedded Figures Task as a Functional Magnetic Resonance Imaging Endophenotype of Autism

    ERIC Educational Resources Information Center

    Spencer, Michael D.; Holt, Rosemary J.; Chura, Lindsay R.; Calder, Andrew J.; Suckling, John; Bullmore, Edward T.; Baron-Cohen, Simon

    2012-01-01

    Atypical activation during the Embedded Figures Task has been demonstrated in autism, but has not been investigated in siblings or related to measures of clinical severity. We identified atypical activation during the Embedded Figures Task in participants with autism and unaffected siblings compared with control subjects in a number of temporal…

  5. Maturing Pump Technology for EVA Applications in a Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Dionne, Steven; Gervais, Edward; Anchondo, Ian

    2012-01-01

    The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.

  6. Overview of EVA PRA for TPS Repair for Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Duncan, Gary; Roeschel, Eduardo; Canga, Michael

    2010-01-01

    Following the Columbia accident in 2003, NASA developed techniques to repair the Thermal Protection System (TPS) in the event of damage to the TPS as one of several actions to reduce the risk to future flights from ascent debris, micro-meteoroid and/or orbital debris (MMOD). Other actions to help reduce the risk include improved inspection techniques, reduced shedding of debris from the External Tank and ability to rescue the crew with a launch on need vehicle. For the Hubble Space Telescope (HST) Servicing Mission the crew rescue capability was limited by the inability to safe haven on the International Space Station (ISS), resulting in a greater reliance on the repair capability. Therefore it was desirable to have an idea of the risk associated with conducting a repair, where the repair would have to be conducted using an Extra-Vehicular Activity (EVA). Previously, focused analyses had been conducted to quantify the risk associated with certain aspects of an EVA, for example the EVA Mobility Unit (EMU) or Space Suit; however, the analyses were somewhat limited in scope. A complete integrated model of an EVA which could quantify the risk associated with all of the major components of an EVA had never been done before. It was desired to have a complete integrated model to be able to assess the risks associated with an EVA to support the Space Shuttle Program (SSP) in making risk informed decisions. In the case of the HST Servicing Mission, this model was developed to assess specifically the risks associated with performing a TPS repair EVA. This paper provides an overview of the model that was developed to support the HST mission in the event of TPS damage. The HST Servicing Mission was successfully completed on May 24th 2009 with no critical TPS damage; therefore the model was not required for real-time mission support. However, it laid the foundation upon which future EVA quantitative risk assessments could be based.

  7. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    NASA Astrophysics Data System (ADS)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  8. Selecting Tasks for Evaluating Human Performance as a Function of Gravity

    NASA Technical Reports Server (NTRS)

    Norcross, Jason R.; Gernhardt, Michael L.

    2011-01-01

    A challenge in understanding human performance as a function of gravity is determining which tasks to research. Initial studies began with treadmill walking, which was easy to quantify and control. However, with the development of pressurized rovers, it is less important to optimize human performance for ambulation as pressurized rovers will likely perform gross translation for them. Future crews are likely to spend much of their extravehicular activity (EVA) performing geology, construction,a nd maintenance type tasks. With these types of tasks, people have different performance strategies, and it is often difficult to quantify the task and measure steady-state metabolic rates or perform biomechanical analysis. For many of these types of tasks, subjective feedback may be the only data that can be collected. However, subjective data may not fully support a rigorous scientific comparison of human performance across different gravity levels and suit factors. NASA would benefit from having a wide variety of quantifiable tasks that allow human performance comparison across different conditions. In order to determine which tasks will effectively support scientific studies, many different tasks and data analysis techniques will need to be employed. Many of these tasks and techniques will not be effective, but some will produce quantifiable results that are sensitive enough to show performance differences. One of the primary concerns related to EVA performance is metabolic rate. The higher the metabolic rate, the faster the astronaut will exhaust consumables. The focus of this poster will be on how different tasks affect metabolic rate across different gravity levels.

  9. Study of space shuttle EVA/IVA support requirements. Volume 1: Technical summary report

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    Results are summarized which were obtained for equipment requirements for the space shuttle EVA/IVA pressure suit, life support system, mobility aids, vehicle support provisions, and energy 4 support. An initial study of tasks, guidelines, and constraints and a special task on the impact of a 10 psia orbiter cabin atmosphere are included. Supporting studies not related exclusively to any one group of equipment requirements are also summarized. Representative EVA/IVA task scenarios were defined based on an evaluation of missions and payloads. Analysis of the scenarios resulted in a total of 788 EVA/IVA's in the 1979-1990 time frame, for an average of 1.3 per shuttle flight. Duration was estimated to be under 4 hours on 98% of the EVA/IVA's, and distance from the airlock was determined to be 70 feet or less 96% of the time. Payload water vapor sensitivity was estimated to be significant on 9%-17% of the flights. Further analysis of the scenarios was carried out to determine specific equipment characteristics, such as suit cycle and mobility requirements.

  10. Approaches to decompression safety support of EVA for orbital and interplanetary missions

    NASA Astrophysics Data System (ADS)

    Katuntsev, Vladimir P.

    2010-01-01

    The paper is devoted to the analysis of possible methods for decompression safety support of extravehicular activity (EVA) in order to ground the perspective approaches for solution of decompression sickness (DCS) problem in space missions of the near and distant future. Current DCS risk mitigation strategies reduce operational efficiency: preoxygenation extends the time required on preparation to EVA. The crewmembers often experience general and hand fatigue during long EVA due to the lack of flexibility of space suits enclosure operated at 30-40 kPa. To create the safe and comfortable working conditions for EVA crewmembers on the Lunar and Martian surfaces the main biomedical requirements to a planetary space suit have to include low mass of EVA system, high mobility and flexibility of space suit enclosure and reliable protection against DCS with a short or zero preoxygenation period. Reviewed here are the possibilities for the use of preoxygenation, hypobaric gas atmosphere in space cabin and/or planetary habitat, idea of substitution of nitrogen in normobaric gas atmosphere to another inert gas (helium and neon) as countermeasures against DCS in EVA crewmembers. Physiological aspects of the conception for space suit with high operating pressure are considered.

  11. Increased Brain Activation for Dual Tasking with 70-Days Head-Down Bed Rest

    PubMed Central

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia A.; De Dios, Yiri E.; Gadd, Nichole E.; Wood, Scott J.; Riascos, Roy; Kofman, Igor S.; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2016-01-01

    Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the underlying brain activation changed as a function of HDBR. Eighteen healthy men participated in this study. They remained continuously in the 6° head-down tilt position for 70 days. Functional MRI for bimanual finger tapping was acquired during both single task and dual task conditions, and repeated at 7 time points pre-, during- and post-HDBR. Another 12 healthy males participated as controls who did not undergo HDBR. A widely distributed network involving the frontal, parietal, cingulate, temporal, and occipital cortices exhibited increased activation for dual tasking and increased activation differences between dual and single task conditions during HDBR relative to pre- or post-HDBR. This HDBR-related brain activation increase for dual tasking implies that more neurocognitive control is needed for dual task execution during HDBR compared to pre- and post-HDBR. We observed a positive correlation between pre-to-post HDBR changes in dual-task cost of reaction time and pre-to-post HDBR change in dual-task cost of brain activation in several cerebral and cerebellar regions. These findings could be predictive of changes in dual task processing during spaceflight.

  12. Increased Brain Activation for Dual Tasking with 70-Days Head-Down Bed Rest.

    PubMed

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia A; De Dios, Yiri E; Gadd, Nichole E; Wood, Scott J; Riascos, Roy; Kofman, Igor S; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2016-01-01

    Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the underlying brain activation changed as a function of HDBR. Eighteen healthy men participated in this study. They remained continuously in the 6° head-down tilt position for 70 days. Functional MRI for bimanual finger tapping was acquired during both single task and dual task conditions, and repeated at 7 time points pre-, during- and post-HDBR. Another 12 healthy males participated as controls who did not undergo HDBR. A widely distributed network involving the frontal, parietal, cingulate, temporal, and occipital cortices exhibited increased activation for dual tasking and increased activation differences between dual and single task conditions during HDBR relative to pre- or post-HDBR. This HDBR-related brain activation increase for dual tasking implies that more neurocognitive control is needed for dual task execution during HDBR compared to pre- and post-HDBR. We observed a positive correlation between pre-to-post HDBR changes in dual-task cost of reaction time and pre-to-post HDBR change in dual-task cost of brain activation in several cerebral and cerebellar regions. These findings could be predictive of changes in dual task processing during spaceflight. PMID:27601982

  13. Increased Brain Activation for Dual Tasking with 70-Days Head-Down Bed Rest

    PubMed Central

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia A.; De Dios, Yiri E.; Gadd, Nichole E.; Wood, Scott J.; Riascos, Roy; Kofman, Igor S.; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2016-01-01

    Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the underlying brain activation changed as a function of HDBR. Eighteen healthy men participated in this study. They remained continuously in the 6° head-down tilt position for 70 days. Functional MRI for bimanual finger tapping was acquired during both single task and dual task conditions, and repeated at 7 time points pre-, during- and post-HDBR. Another 12 healthy males participated as controls who did not undergo HDBR. A widely distributed network involving the frontal, parietal, cingulate, temporal, and occipital cortices exhibited increased activation for dual tasking and increased activation differences between dual and single task conditions during HDBR relative to pre- or post-HDBR. This HDBR-related brain activation increase for dual tasking implies that more neurocognitive control is needed for dual task execution during HDBR compared to pre- and post-HDBR. We observed a positive correlation between pre-to-post HDBR changes in dual-task cost of reaction time and pre-to-post HDBR change in dual-task cost of brain activation in several cerebral and cerebellar regions. These findings could be predictive of changes in dual task processing during spaceflight. PMID:27601982

  14. Absorbed in the task: Personality measures predict engagement during task performance as tracked by error negativity and asymmetrical frontal activity.

    PubMed

    Tops, Mattie; Boksem, Maarten A S

    2010-12-01

    We hypothesized that interactions between traits and context predict task engagement, as measured by the amplitude of the error-related negativity (ERN), performance, and relative frontal activity asymmetry (RFA). In Study 1, we found that drive for reward, absorption, and constraint independently predicted self-reported persistence. We hypothesized that, during a prolonged monotonous task, absorption would predict initial ERN amplitudes, constraint would delay declines in ERN amplitudes and deterioration of performance, and drive for reward would predict left RFA when a reward could be obtained. Study 2, employing EEG recordings, confirmed our predictions. The results showed that most traits that have in previous research been related to ERN amplitudes have a relationship with the motivational trait persistence in common. In addition, trait-context combinations that are likely associated with increased engagement predict larger ERN amplitudes and RFA. Together, these results support the hypothesis that engagement may be a common underlying factor predicting ERN amplitude.

  15. Enhanced Controlled Transdermal Delivery of Ambroxol from the EVA Matrix

    PubMed Central

    Cho, C. W.; Kim, D. B.; Cho, H. W.; Shin, S. C.

    2012-01-01

    To avoid the systemic adverse effects that might occur after oral administration, transdermal delivery of ambroxol was studied as a method for maintaining proper blood levels for an extended period. Release of ambroxol according to concentration and temperature was determined, and permeation of drug through rat skin was studied using two chamber-diffusion cells. The solubility according to PEG 400 volume fraction was highest at 40% PEG 400. The rate of drug release from the EVA matrix increased with increased temperature and drug loading doses. A linear relationship existed between the release rate and the square root of loading rate. The activation energy (Ea) was measured from the slope of the plot of log P versus 1000/T and was found to be 10.71, 10.39, 10.33 and 9.87 kcal/mol for 2, 3, 4 and 5% loading dose from the EVA matrix, respectively. To increase the permeation rate of ambroxol across rat skin from the EVA matrix, various penetration enhancers such as fatty acids (saturated, unsaturated), propylene glycols, glycerides, pyrrolidones, and non-ionic surfactants were used. The enhancing effects of the incorporated enhancers on the skin permeation of ambroxol were evaluated using Franz diffusion cells fitted with intact excised rat skin at 37° using 40% PEG 400 solution as a receptor medium. Among the enhancers used, polyoxyethylene-2-oleyl ether increased the permeation rate by 4.25-fold. In conclusion, EVA matrix containing plasticizer and permeation enhancer could be developed for enhanced transdermal delivery of ambroxol. PMID:23325993

  16. Astronaut Sellers Performs STS-112 EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard Side Integrated Truss Structure (S1) and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. In this photograph, Astronaut Piers J. Sellers uses both a handrail on the Destiny Laboratory and a foot restraint on the Space Station Remote Manipulator System or Canadarm2 to remain stationary while performing work at the end of the STS-112 mission's second space walk. A cloud-covered Earth provides the backdrop for the scene.

  17. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  18. TMEM166/EVA1A interacts with ATG16L1 and induces autophagosome formation and cell death.

    PubMed

    Hu, Jia; Li, Ge; Qu, Liujing; Li, Ning; Liu, Wei; Xia, Dan; Hongdu, Beiqi; Lin, Xin; Xu, Chentong; Lou, Yaxin; He, Qihua; Ma, Dalong; Chen, Yingyu

    2016-01-01

    The formation of the autophagosome is controlled by an orderly action of ATG proteins. However, how these proteins are recruited to autophagic membranes remain poorly clarified. In this study, we have provided a line of evidence confirming that EVA1A (eva-1 homolog A)/TMEM166 (transmembrane protein 166) is associated with autophagosomal membrane development. This notion is based on dotted EVA1A structures that colocalize with ZFYVE1, ATG9, LC3B, ATG16L1, ATG5, STX17, RAB7 and LAMP1, which represent different stages of the autophagic process. It is required for autophagosome formation as this phenotype was significantly decreased in EVA1A-silenced cells and Eva1a KO MEFs. EVA1A-induced autophagy is independent of the BECN1-PIK3C3 (phosphatidylinositol 3-kinase, catalytic subunit type 3) complex but requires ATG7 activity and the ATG12-ATG5/ATG16L1 complex. Here, we present a molecular mechanism by which EVA1A interacts with the WD repeats of ATG16L1 through its C-terminal and promotes ATG12-ATG5/ATG16L1 complex recruitment to the autophagic membrane and enhances the formation of the autophagosome. We also found that both autophagic and apoptotic mechanisms contributed to EVA1A-induced cell death while inhibition of autophagy and apoptosis attenuated EVA1A-induced cell death. Overall, these findings provide a comprehensive view to our understanding of the pathways involved in the role of EVA1A in autophagy and programmed cell death. PMID:27490928

  19. EVA Glove Sensor Feasbility II Abstract

    NASA Technical Reports Server (NTRS)

    Melone, Kate

    2014-01-01

    The main objectives for the glove project include taking various measurements from human subjects during and after they perform different tasks in the glove box, acquiring data from these tests and determining the accuracy of these results, interpreting and analyzing this data, and using the data to better understand how hand injuries are caused during EVAs.1 Some of these measurements include force readings, temperature readings, and micro-circulatory blood flow.1 The three glove conditions tested were ungloved (a comfort glove was worn to house the sensors), Series 4000, and Phase VI. The general approach/procedure for the glove sensor feasibility project is as follows: 1. Prepare test subject for testing. This includes attaching numerous sensors (approximately 50) to the test subject, wiring, and weaving the sensors and wires in the glove which helps to keep everything together. This also includes recording baseline moisture data using the Vapometer and MoistSense. 2. Pressurizing the glove box. Once the glove box is pressurized to the desired pressure (4.3 psid), testing can begin. 3. Testing. The test subject will perform a series of tests, some of which include pinching a load cell, making a fist, pushing down on a force plate, and picking up metal pegs, rotating them 90 degrees, and placing them back in the peg board. 4. Post glove box testing data collection. After the data is collected from inside the glove box, the Vapometer and MoistSense device will be used to collect moisture data from the subject's hand. 5. Survey. At the conclusion of testing, he/she will complete a survey that asks questions pertaining to comfort/discomfort levels of the glove, glove sizing, as well as offering any additional feedback.

  20. Prefrontal activation during two Japanese Stroop tasks revealed with multi-channel near-infrared spectroscopy.

    PubMed

    Watanabe, Yukina; Sumitani, Satsuki; Hosokawa, Mai; Ohmori, Tetsuro

    2015-01-01

    The Stroop task is sometimes used in psychiatric research to elicit prefrontal activity, which presumably reflects cognitive functioning. Although there are two Stroop tasks (Kana script and Kanji script) in Japan, it is unclear whether these tasks elicit the same hemoglobin changes. Moreover, it is unclear whether psychological conditions or characteristics influence hemoglobin changes in the Japanese Stroop task. The aim of this study was to clarify whether hemoglobin changes elicited by the two Japanese Stroop tasks accurately reflected cognitive functioning. Hemoglobin changes were measured with multi-channel near-infrared spectroscopy (NIRS) in 100 healthy Japanese participants performing two Japanese Stroop tasks. The Beck-Depression Inventory (BDI), State-Trait-Anxiety Inventory (STAI), and Maudsley Obsessive Compulsive Inventory (MOCI) were administered to participants to identify psychological conditions or personality characteristics. Compared with the Kanji task, the Kana task produced a greater Stroop effect and a larger increase in oxyhemoglobin (oxy-Hb) concentration. Moreover there were no significant correlations between oxy-Hb concentration and BDI, STAI-trait, STAI-state, or MOCI scores. Therefore we found that a participant's psychological conditions or characteristics did not influence the hemodynamic changes during either task. These data suggest the Kana Stroop task is more useful than the Kanji Stroop task for NIRS studies in psychiatric research.

  1. EVA Robotic Assistant Project: Platform Attitude Prediction

    NASA Technical Reports Server (NTRS)

    Nickels, Kevin M.

    2003-01-01

    The Robotic Systems Technology Branch is currently working on the development of an EVA Robotic Assistant under the sponsorship of the Surface Systems Thrust of the NASA Cross Enterprise Technology Development Program (CETDP). This will be a mobile robot that can follow a field geologist during planetary surface exploration, carry his tools and the samples that he collects, and provide video coverage of his activity. Prior experiments have shown that for such a robot to be useful it must be able to follow the geologist at walking speed over any terrain of interest. Geologically interesting terrain tends to be rough rather than smooth. The commercial mobile robot that was recently purchased as an initial testbed for the EVA Robotic Assistant Project, an ATRV Jr., is capable of faster than walking speed outside but it has no suspension. Its wheels with inflated rubber tires are attached to axles that are connected directly to the robot body. Any angular motion of the robot produced by driving over rough terrain will directly affect the pointing of the on-board stereo cameras. The resulting image motion is expected to make tracking of the geologist more difficult. This will either require the tracker to search a larger part of the image to find the target from frame to frame or to search mechanically in pan and tilt whenever the image motion is large enough to put the target outside the image in the next frame. This project consists of the design and implementation of a Kalman filter that combines the output of the angular rate sensors and linear accelerometers on the robot to estimate the motion of the robot base. The motion of the stereo camera pair mounted on the robot that results from this motion as the robot drives over rough terrain is then straightforward to compute. The estimates may then be used, for example, to command the robot s on-board pan-tilt unit to compensate for the camera motion induced by the base movement. This has been accomplished in two ways

  2. Trunk postures and upper-body muscle activations during physically demanding wildfire suppression tasks.

    PubMed

    Neesham-Smith, Daniel; Aisbett, Brad; Netto, Kevin

    2014-01-01

    This study examined the trunk postures and upper-body muscle activations during four physically demanding wildfire suppression tasks. Bilateral, wireless surface electromyography was recorded from the trapezius and erector spinae muscles of nine experienced, wildfire fighters. Synchronised video captured two retroreflective markers to allow for quantification of two-dimensional sagittal trunk flexion. In all tasks, significantly longer time was spent in the mild and severe trunk flexion (p ≤ 0.002) compared to the time spent in a neutral posture. Mean and peak muscle activation in all tasks exceeded previously established safe limits. These activation levels also significantly increased through the performance of each task (p < 0.001). The results suggest that the wildfire suppression tasks analysed impose significant musculoskeletal demand on firefighters. Fire agencies should consider developing interventions to reduce the exposure of their personnel to these potentially injurious musculoskeletal demands.

  3. Trunk postures and upper-body muscle activations during physically demanding wildfire suppression tasks.

    PubMed

    Neesham-Smith, Daniel; Aisbett, Brad; Netto, Kevin

    2014-01-01

    This study examined the trunk postures and upper-body muscle activations during four physically demanding wildfire suppression tasks. Bilateral, wireless surface electromyography was recorded from the trapezius and erector spinae muscles of nine experienced, wildfire fighters. Synchronised video captured two retroreflective markers to allow for quantification of two-dimensional sagittal trunk flexion. In all tasks, significantly longer time was spent in the mild and severe trunk flexion (p ≤ 0.002) compared to the time spent in a neutral posture. Mean and peak muscle activation in all tasks exceeded previously established safe limits. These activation levels also significantly increased through the performance of each task (p < 0.001). The results suggest that the wildfire suppression tasks analysed impose significant musculoskeletal demand on firefighters. Fire agencies should consider developing interventions to reduce the exposure of their personnel to these potentially injurious musculoskeletal demands. PMID:24365452

  4. Studying modulation on simultaneously activated SSVEP neural networks by a cognitive task.

    PubMed

    Wu, Zhenghua

    2014-01-01

    Since the discovery of steady-state visually evoked potential (SSVEP), it has been used in many fields. Numerous studies suggest that there exist three SSVEP neural networks in different frequency bands. An obvious phenomenon has been observed, that the amplitude and phase of SSVEP can be modulated by a cognitive task. Previous works have studied this modulation on separately activated SSVEP neural networks by a cognitive task. If two or more SSVEP neural networks are activated simultaneously in the process of a cognitive task, is the modulation on different SSVEP neural networks the same? In this study, two different SSVEP neural networks were activated simultaneously by two different frequency flickers, with a working memory task irrelevant to the flickers being conducted at the same time. The modulated SSVEP waves were compared with each other and to those only under one flicker in previous studies. The comparison results show that the cognitive task can modulate different SSVEP neural networks with a similar style.

  5. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks

    PubMed Central

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention. PMID:25745395

  6. Cognitive Activities in Solving Mathematical Tasks: The Role of a Cognitive Obstacle

    ERIC Educational Resources Information Center

    Antonijevic, Radovan

    2016-01-01

    In the process of learning mathematics, students practice various forms of thinking activities aimed to substantially contribute to the development of their different cognitive structures. In this paper, the subject matter is a "cognitive obstacle", a phenomenon that occurs in the procedures of solving mathematical tasks. Each task in…

  7. A Goal Activation Approach to the Study of Executive Function: An Application to Antisaccade Tasks

    ERIC Educational Resources Information Center

    Nieuwenhuis, Sander; Broerse, Annelies; Nielen, Marjan M. A.; de Jong, Ritske

    2004-01-01

    We argue that a general control process, responsible for the activation and maintenance of task goals, is central to the concept of executive function. Failures of this process can become manifest as "goal neglect": disregard of a task requirement even though it has been understood (Duncan, 1995). We discuss the results of several published and…

  8. A Cross-Cultural Investigation into How Tasks Influence Seatwork Activities in Mathematics Lessons

    ERIC Educational Resources Information Center

    Serrano, Ana M.

    2012-01-01

    This study examined how types of tasks influenced student activities/thinking and defined the role of Seatwork in mathematics lessons. It used 60 lessons from the TIMSS videotaped Study. These data indicated that practice was the most prevalent form of tasks in the U.S. In Germany, students completed mathematical calculations after a complex…

  9. Advanced Marketing 8130. Instructional Areas. Duties and Tasks. Learning Activities. Referenced Resources.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Education, Richmond.

    This resource handbook, which is designed for use by instructors of courses in advanced marketing, consists of a duty/task list with referenced resources, a duty/task list with learning activities, and a list of resources. Included in each list are materials dealing with the following topics: communication in marketing, economics in marketing,…

  10. Children's Performance on a False-belief Task Is Impaired by Activation of an Evolutionarily-Canalized Response System.

    ERIC Educational Resources Information Center

    Keenan, Thomas; Ellis, Bruce J.

    2003-01-01

    Two studies examined how task content that activates predator-avoidance affects preschool children's performance on a false-belief task. Findings indicated that the proportion of correct answers on the playmate-avoidance task was greater than that for the predator-avoidance task, suggesting that activation of the predator-avoidance system…

  11. Investigating the muscle activities of performing surgical training tasks using a virtual simulator.

    PubMed

    Huang, Chun-Kai; Suh, Irene H; Chien, Jung Hung; Vallabhajosula, Srikant; Oleynikov, Dmitry; Siu, Ka-Chun

    2012-01-01

    The objective of this study was to determine the muscle activities of upper extremities while performing fundamental surgical training tasks using a virtual simulator. Six subjects performed virtual cutting tasks and their muscle activities of upper extremities were measured. The results demonstrated a significant increase in muscle activities in both proximal and distal upper extremities, which are the common areas of occurrence of injury after prolonged practice. This study suggests that the upper trapezius and the extensor digitorum are essential prime movers to perform surgical training tasks. These muscles should be monitored for performance assessment in future studies.

  12. Expedition 16 Flight Engineer Tani Performs EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Astronaut Daniel Tani (top center), Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the 6-hour and 33-minute space walk, Tani and STS-120 mission specialist Scott Parazynski (out of frame), worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of 'shavings' he found under the joint's multilayer insulation covers. The space walkers also outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later. The moon is visible at lower center. The STS-120 mission launched from Kennedy Space Center's launch pad 39A at 11:38:19 a.m. (EDT) on October 23, 2007.

  13. The role of peer groups in male and female adolescents' task values and physical activity.

    PubMed

    Yli-Piipari, Sami; Jaakkola, Timo; Liukkonen, Jarmo; Kiuru, Noona; Watt, Anthony

    2011-02-01

    The purpose of this longitudinal study was to examine the role of peer groups and sex in adolescents' task values and physical activity. The participants were 330 Finnish Grade 6 students (173 girls, 157 boys), who responded to questionnaires that assessed physical education task values during the spring semester (Time 1). Students' physical activity was assessed one year later (Time 2). The results indicated that adolescent peer groups were moderately homogeneous in terms of task values toward physical education and physical activity. Girls' peer groups were more homogeneous than those of boys in regards to utility and attainment values. Furthermore, the results for both girls and boys showed that particularly intrinsic task value typical for the peer group predicted group members' physical activity. The findings highlight the important role of peer group membership as a determinant of future physical activity. PMID:21526593

  14. Task discrimination from myoelectric activity: a learning scheme for EMG-based interfaces.

    PubMed

    Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J

    2013-06-01

    A learning scheme based on Random Forests is used to discriminate the task to be executed using only myoelectric activity from the upper limb. Three different task features can be discriminated: subspace to move towards, object to be grasped and task to be executed (with the object). The discrimination between the different reach to grasp movements is accomplished with a random forests classifier, which is able to perform efficient features selection, helping us to reduce the number of EMG channels required for task discrimination. The proposed scheme can take advantage of both a classifier and a regressor that cooperate advantageously to split the task space, providing better estimation accuracy with task-specific EMG-based motion decoding models, as reported in [1] and [2]. The whole learning scheme can be used by a series of EMG-based interfaces, that can be found in rehabilitation cases and neural prostheses.

  15. Biosensors for EVA: Muscle Oxygen and pH During Walking, Running and Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Ellerby, G.; Scott, P.; Stroud, L.; Norcross, J.; Pesholov, B.; Zou, F.; Gernhardt, M.; Soller, B.

    2009-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO2 on the leg during cycling. Our NSBRI-funded project is looking to extend this methodology to examine activities which more appropriately represent EVA activities, such as walking and running and to better understand factors that determine the metabolic cost of exercise in both normal and lunar gravity. Our 4 year project specifically addresses risk: ExMC 4.18: Lack of adequate biomedical monitoring capability for Constellation EVA Suits and EPSP risk: Risk of compromised EVA performance and crew health due to inadequate EVA suit systems.

  16. SHINE Tritium Nozzle Design: Activity 6, Task 1 Report

    SciTech Connect

    Okhuysen, Brett S.; Pulliam, Elias Noel

    2015-11-05

    In FY14, we studied the qualitative and quantitative behavior of a SHINE/PNL tritium nozzle under varying operating conditions. The result is an understanding of the nozzle’s performance in terms of important flow features that manifest themselves under different parametric profiles. In FY15, we will consider nozzle design with a focus on nozzle geometry and integration. From FY14 work, we will understand how the SHINE/PNL nozzle behaves under different operating scenarios. The first task for FY15 is to evaluate the FY14 model as a predictor of the actual flow. Considering different geometries is more time-intensive than parameter studies, therefore we recommend considering any relevant flow features that were not included in the FY14 model. In the absence of experimental data, it is particularly important to consider any sources of heat in the domain or boundary conditions that may affect the flow and incorporate these into the simulation if they are significant. Additionally, any geometric features of the beamline segment should be added to the model such as the orifice plate. The FY14 model works with hydrogen. An improvement that can be made for FY15 is to develop CFD properties for tritium and incorporate those properties into the new models.

  17. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number

  18. Incentive value, unclear task difficulty, and cardiovascular reactivity in active coping.

    PubMed

    Richter, Michael; Gendolla, Guido H E

    2007-03-01

    An experiment with 44 participants assessed the moderating effects of four levels of incentive value on cardiovascular responses in active coping. Randomly assigned to one of four different incentive conditions, participants performed a memory task without knowing its difficulty in advance. By means of successfully performing the task participants could either win no reward, 10 Swiss Francs, 20 Swiss Francs, or 30 Swiss Francs. In accordance with the theoretical predictions derived from motivational intensity theory, reactivity of systolic blood pressure and heart rate monotonically increased with incentive value. Thereby, these findings provide additional empirical evidence for the predictions of motivational intensity theory with regard to unclear task difficulty and extend recent research (Richter, M., Gendolla, G.H.E., 2006. Incentive effects on cardiovascular reactivity in active coping with unclear task difficulty. Int. J. Psychophysiol. 61, 216-225.), which was not conclusive regarding the predicted monotonic relationship between incentive value and cardiovascular reactivity under conditions of unclear task difficulty.

  19. PFC Activity Pattern During Verbal WM Task in Healthy Male and Female Subjects: A NIRS Study.

    PubMed

    Gao, Chenyang; Zhang, Lei; Luo, Dewu; Liu, Dan; Gong, Hui

    2016-01-01

    Near-infrared spectroscopy (NIRS), as a non-invasive optical imaging method, has been widely used in psychology research. Working memory (WM) is an extensively researched psychological concept related to the temporary storage and processing of information. Many neuropsychological studies demonstrate that several brain areas of prefrontal cortex (PFC) are engaged during verbal WM tasks. The gender-based differences in WM remains under dispute. To better understand the active module and gender differences in PFC activity patterns during verbal WM tasks, we investigated the blood oxygenation changes of the PFC in 15 healthy subjects using a homemade multichannel continuous-wave NIRS instrument, while performing a verbal n-back task. We employed traditional activation and novel connectivity analyses simultaneously. Males had a higher level of oxygenation activity and connectivity in PFC than females. Only the results of females revealed a leftward lateralization in the 2-back task. PMID:27526142

  20. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.

  1. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    PubMed Central

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  2. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  3. Development of statistical models for predicting muscle and mental activities during repetitive precision tasks.

    PubMed

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md; Taha, Zahari

    2016-09-01

    This study was conducted to develop muscle and mental activities on repetitive precision tasks. A laboratory experiment was used to address the objectives. Surface electromyography was used to measure muscle activities from eight upper limb muscles, while electroencephalography recorded mental activities from six channels. Fourteen university students participated in the study. The results show that muscle and mental activities increase for all tasks, indicating the occurrence of muscle and mental fatigue. A linear relationship between muscle activity, mental activity and time was found while subjects were performing the task. Thus, models were developed using those variables. The models were found valid after validation using other students' and workers' data. Findings from this study can contribute as a reference for future studies investigating muscle and mental activity and can be applied in industry as guidelines to manage muscle and mental fatigue, especially to manage job schedules and rotation. PMID:27053140

  4. Motivated cognitive control: Reward incentives modulate preparatory neural activity during task-switching

    PubMed Central

    Savine, Adam C.; Braver, Todd S.

    2010-01-01

    It is increasingly appreciated that executive control processes need to be understood in terms of motivational as well as cognitive mechanisms. The current study examined the impact of performance-contingent reward incentives (monetary bonuses) on neural activity dynamics during cued task-switching performance. Behavioral measures indicated that performance was improved and task-switch costs selectively reduced on incentive trials. Trial-by-trial fluctuations in incentive value were associated with activation in reward-related brain regions (dopaminergic midbrain, paracingulate cortex) and also modulated the dynamics of switch-selective activation in the brain cognitive control network in both an additive (posterior PFC) and interactive way (dorsolateral PFC, dorsomedial PFC, and inferior parietal cortex). In dorsolateral PFC, incentive-modulation of activation predicted task-switching behavioral performance effects in a hemispherically specialized manner. Further, in left dorsolateral PFC, incentive modulation specifically enhanced task-cue related activation, and this activation in turn predicted that the trial would be subsequently rewarded (due to optimal performance). The results suggest that motivational incentives have a selective effect on brain regions that subserve cognitive control processes during task-switching, and moreover, that one mechanism of effect might be the enhancement of cue-related task preparation within left dorsolateral PFC. PMID:20685974

  5. A human factors evaluation of Extravehicular Activity gloves

    NASA Technical Reports Server (NTRS)

    O'Hara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1989-01-01

    One of the major problems faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human-hand capabilities. NASA has sponsored a program to develop a standardized set of tests designed to assess EVA-gloved hand capabilities in six performance domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based upon an assessment of general human-hand functioning and EVA task requirements, several tests within each performance domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand, an EVA glove without pressure, an EVA glove at operation pressure. Thus, the differential effect on performance of the glove with and without pressure was tested. Bare hand performance was used to 'calibrate' the effects. Ten subjects participated in the test setup as a repeated-measures experimental design. The paper will report the results of the test program.

  6. Robot hands and extravehicular activity

    NASA Technical Reports Server (NTRS)

    Marcus, Beth

    1987-01-01

    Extravehicular activity (EVA) is crucial to the success of both current and future space operations. As space operations have evolved in complexity so has the demand placed on the EVA crewman. In addition, some NASA requirements for human capabilities at remote or hazardous sites were identified. One of the keys to performing useful EVA tasks is the ability to manipulate objects accurately, quickly and without early or excessive fatigue. The current suit employs a glove which enables the crewman to perform grasping tasks, use tools, turn switches, and perform other tasks for short periods of time. However, the glove's bulk and resistance to motion ultimately causes fatigue. Due to this limitation it may not be possible to meet the productivity requirements that will be placed on the EVA crewman of the future with the current or developmental Extravehicular Mobility Unit (EMU) hardware. In addition, this hardware will not meet the requirements for remote or hazardous operations. In an effort to develop ways for improving crew productivity, a contract was awarded to develop a prototype anthromorphic robotic hand (ARH) for use with an extravehicular space suit. The first step in this program was to perform a a design study which investigated the basic technology required for the development of an ARH to enhance crew performance and productivity. The design study phase of the contract and some additional development work is summarized.

  7. Feasibility Assessment of an EVA Glove Sensing Platform to Evaluate Potential Hand Injury Risk Factors

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane M.

    2015-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals that 58% of total astronaut hand and arm injuries from NBL training between 1993 and 2010 occurred either to the fingernail, MCP, or fingertip. The purpose of this study was to assess the potential of using small sensors to measure force acting on the fingers and hand within pressurized gloves and other variables such as blood perfusion, skin temperature, humidity, fingernail strain, skin moisture, among others. Tasks were performed gloved and ungloved in a pressurizable glove box. The test demonstrated that fingernails saw greater transverse strain levels for tension or compression than for longitudinal strain, even during axial fingertip loading. Blood perfusion peaked and dropped as the finger deformed during finger presses, indicating an initial dispersion and decrease of blood perfusion levels. Force sensitive resistors to force plate comparisons showed similar force curve patterns as fingers were depressed, indicating suitable functionality for future testing. Strategies for proper placement and protection of these sensors for ideal data collection and longevity through the test session were developed and will be implemented going forward for future testing.

  8. STS-57 astronauts Low and Wisoff, in EMUs, perform DTO 1210 EVA in OV-105's PLB

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Backdropped against the blackness of space and upside down in relation to Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) and Payload Commander (PLC) G. David Low and MS3 Peter J.K. Wisoff, wearing extravehicular mobility units (EMUs), simulate handling of large components in space. Above OV-105's payload bay (PLB), Low, anchored by a portable foot restraint (PFR) (manipulator foot restraint (MFR)) on the remote manipulator system (RMS) end effector, holds Wisoff and maneuvers him as if he were a large space component. This particular task was rehearsed with eyes toward the servicing of the Hubble Space Telescope (HST) or the assembly and maintenance of Space Station. This extravehicular activity (EVA), Detailed Test Objective (DTO) 1210, was conducted both with and without intentional disturbances from OV-105's thrusters and movements of the RMS. This phase of DTO 1210 will enable helpful evaluation for the HST wide field planetary camera (WFPC) during the STS-61 HST-serv

  9. STS-57 astronauts Low and Wisoff, in EMUs, perform DTO 1210 EVA in OV-105's PLB

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Backdropped against the blue and white Earth, Mission Specialist (MS) and Payload Commander (PLC) G. David Low and MS3 Peter J.K. Wisoff, wearing extravehicular mobility units (EMUs), simulate handling of large components in space. Above Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB), Low, anchored by a portable foot restraint (PFR) (manipulator foot restraint (MFR)) on the remote manipulator system (RMS) end effector, maneuvers Wisoff, representing the mass of a large space component. This particular task was rehearsed with eyes toward the servicing of the Hubble Space Telescope (HST) or the assembly and maintenance of Space Station. This extravehicular activity (EVA), Detailed Test Objective (DTO) 1210, was conducted both with and without intentional disturbances from OV-105's thrusters and movements of the RMS. This phase of DTO 1210 will enable helpful evaluation for the HST wide field planetary camera (WFPC) during the STS-61 HST-servicing mission. The SPACEHAB-01 (Com

  10. Using Antecedent Physical Activity to Increase On-Task Behavior in Young Children

    ERIC Educational Resources Information Center

    Luke, Sara; Vail, Cynthia O.; Ayres, Kevin M.

    2014-01-01

    A withdrawal design was used to investigate how physical activity affects on-task behavior of young children with significant developmental delays in a special education preschool classroom. Five preschool age children with significant developmental delays engaged in either physical activity or seated center activities for 20 min prior to a 15-min…

  11. [The present status and development of thermal control system of spacesuits for extravehicular activity].

    PubMed

    Zhao, C Y; Sun, J B; Yuan, X G

    1999-04-01

    With the extension of extravehicular activity (EVA) duration, the need for more effective thermal control of EVA spacesuits is required. The specific schemes investigated in heat sink system for EVA are discussed, including radiator, ice storage, metal hydride heat pump, phase-change storage/radiator and sublimator. The importance and requirements of automatic thermal control for EVA are also discussed. Existed automatic thermal control for EVA are reviewed. Prospects of further developments of thermal control of spacesuits for EVA are proposed.

  12. Failing to deactivate: the association between brain activity during a working memory task and creativity.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Nagase, Tomomi; Nouchi, Rui; Kawashima, Ryuta

    2011-03-15

    Working memory (WM) is an essential component for human higher order cognitive activities. Creativity has been essential to the development of human civilization. Previous studies from different fields have suggested creativity and capacity of WM have opposing characteristics possibly in terms of diffuse attention. However, despite a number of functional imaging studies on creativity, how creativity relates to brain activity during WM has never been investigated. In this functional magnetic resonance imaging (fMRI) study, we investigated this issue using an n-back WM paradigm and a psychometric measure of creativity (a divergent thinking test). A multiple regression analysis revealed that individual creativity was significantly and positively correlated with brain activity in the precuneus during the 2-back task (WM task), but not during the non-WM 0-back task. As the precuneus shows deactivation during cognitive tasks, our findings show that reduced task induced deactivation (TID) in the precuneus is associated with higher creativity measured by divergent thinking. The precuneus is included in the default mode network, which is deactivated during cognitive tasks. The magnitude of TID in the default mode network is considered to reflect the reallocation of cognitive resources from networks irrelevant to the performance of the task. Thus, our findings may indicate that individual creativity, as measured by the divergent thinking test, is related to the inefficient reallocation of attention, congruent with the idea that diffuse attention is associated with individual creativity.

  13. Effects of overhead work configuration on muscle activity during a simulated drilling task.

    PubMed

    Maciukiewicz, Jacquelyn M; Cudlip, Alan C; Chopp-Hurley, Jaclyn N; Dickerson, Clark R

    2016-03-01

    Overhead work is a known catalyst for occupational shoulder injury. Industrial workers must often adopt awkward overhead postures and loading profiles to complete required tasks, potentially elevating injury risk. This research examined the combined influence of multiple overhead working parameters on upper extremity muscular demands for an industrial drilling application. Twenty-two right-handed males completed 24 unilateral and bilateral overhead work exertions stratified by direction (upward, forward), point of force application (15, 30 and 45 cm in front of the body), and whole-body posture (seated, standing). The dependency of electromyographic (EMG) activity on several factors was established. Significant two-way interactions existed between point of force application and direction (p < 0.0001) and direction and whole body posture (p < 0.0001). An average increase in muscular activity of 6.5% maximal voluntary contraction (MVC) occurred for the contralateral limb when the bilateral task was completed, compared to unilateral tasks, with less than a 1% MVC increase for the active limb. These findings assist evidence-based approaches to overhead tasks, specifically in the construction industry. A bilateral task configuration is recommended to reduce glenohumeral stability demands. As well, particularly for tasks with a far reach distance, design tasks to promote a forward directed exertion. The considerable inter-subject variability suggests that fixed heights are not ideal, and should be avoided, and where this is not possible reaches should be reduced. PMID:26674399

  14. EVA tools and equipment reference book

    NASA Technical Reports Server (NTRS)

    Fullerton, R. K.

    1993-01-01

    This document contains a mixture of tools and equipment used throughout the space shuttle-based extravehicular activity (EVA) program. Promising items which have reached the prototype stage of development are also included, but should not be considered certified ready for flight. Each item is described with a photo, a written discussion, technical specifications, dimensional drawings, and points of contact for additional information. Numbers on the upper left-hand corner of each photo may be used to order specific pictures from NASA and contractor photo libraries. Points of contact were classified as either operational or technical. An operational contact is an engineer from JSC Mission Operations Directorate who is familiar with the basic function and on-orbit use of the tool. A technical contact would be the best source of detailed technical specifications and is typically the NASA subsystem manager. The technical information table for each item uses the following terms to describe the availability or status of each hardware item: Standard - Flown on every mission as standard manifest; Flight specific - Potentially available for flight, not flown every mission (flight certification cannot be guaranteed and recertification may be required); Reference only - Item no longer in active inventory or not recommended for future use, some items may be too application-specific for general use; and Developmental - In the prototype stage only and not yet available for flight. The current availability and certification of any flight-specific tool should be verified with the technical point of contact. Those tools built and fit checked for Hubble Space Telescope maintenance are program dedicated and are not available to other customers. Other customers may have identical tools built from the existing, already certified designs as an optional service.

  15. Individual differences in neural activity during a facial expression vs. identity working memory task.

    PubMed

    Neta, Maital; Whalen, Paul J

    2011-06-01

    Facial expressions of emotion constitute a critical portion of our non-verbal social interactions. In addition, the identity of the individual displaying this expression is critical to these interactions as they embody the context in which these expressions will be interpreted. To identify any overlapping and/or unique brain circuitry involved in the processing of these two information streams in a laboratory setting, participants performed a working memory (WM) task (i.e., n-back) in which they were instructed to monitor either the expression (EMO) or the identity (ID) of the same set of face stimuli. Consistent with previous work, during both the EMO and ID tasks, we found a significant increase in activity in dorsolateral prefrontal cortex (DLPFC) supporting its generalized role in WM. Further, individuals that showed greater DLPFC activity during both tasks also showed increased amygdala activity during the EMO task and increased lateral fusiform gyrus activity during the ID task. Importantly, the level of activity in these regions significantly correlated with performance on the respective tasks. These findings provide support for two separate neural circuitries, both involving the DLPFC, supporting working memory for the faces and expressions of others. PMID:21349341

  16. Advanced extravehicular activity systems requirements definition study. Phase 2: Extravehicular activity at a lunar base

    NASA Technical Reports Server (NTRS)

    Neal, Valerie; Shields, Nicholas, Jr.; Carr, Gerald P.; Pogue, William; Schmitt, Harrison H.; Schulze, Arthur E.

    1988-01-01

    The focus is on Extravehicular Activity (EVA) systems requirements definition for an advanced space mission: remote-from-main base EVA on the Moon. The lunar environment, biomedical considerations, appropriate hardware design criteria, hardware and interface requirements, and key technical issues for advanced lunar EVA were examined. Six remote EVA scenarios (three nominal operations and three contingency situations) were developed in considerable detail.

  17. Age-Related Changes in Brain Activation Underlying Single- and Dual-Task Performance: Visuomanual Drawing and Mental Arithmetic

    ERIC Educational Resources Information Center

    Van Impe, A.; Coxon, J. P.; Goble, D. J.; Wenderoth, N.; Swinnen, S. P.

    2011-01-01

    Depending on task combination, dual-tasking can either be performed successfully or can lead to performance decrements in one or both tasks. Interference is believed to be caused by limitations in central processing, i.e. structural interference between the neural activation patterns associated with each task. In the present study, single- and…

  18. Job level risk assessment using task level ACGIH hand activity level TLV scores: a pilot study.

    PubMed

    Drinkaus, Phillip; Sesek, Richard; Bloswick, Donald S; Mann, Clay; Bernard, Thomas

    2005-01-01

    Existing upper extremity musculoskeletal disorder analytical tools are primarily intended for single or mono-task jobs. However, many jobs contain more than 1 task and some include job rotation. This case/control study investigates methods of modifying an existing tool, the American Conference of Governmental Industrial Hygienists (ACGIH) Hand Activity Level (HAL) Threshold Limit Value (TLV), to assess the upper extremity risk of multi-task jobs. Various methods of combining the task differences and ratios into a job level assessment were explored. Two methods returned significant odds ratios, (p < .05) of 18.0 (95% CI 1.8-172) and 12.0 (95% CI 1.2-120). These results indicate that a modified ACGIH HAL TLV may provide insight into the work-related risk of multi-task jobs. Further research is needed to optimize this process. PMID:16219155

  19. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    PubMed Central

    Wenzel, Markus A.; Almeida, Inês; Blankertz, Benjamin

    2016-01-01

    Objective Brain-computer interfaces (BCIs) that are based on event-related potentials (ERPs) can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli) in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG). Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI), because it would allow software to adapt to the user’s interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli. Approach Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions. Results Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG). Significance The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI. PMID:27792781

  20. Central as well as Peripheral Attentional Bottlenecks in Dual-Task Performance Activate Lateral Prefrontal Cortices

    PubMed Central

    Szameitat, André J.; Vanloo, Azonya; Müller, Hermann J.

    2016-01-01

    Human information processing suffers from severe limitations in parallel processing. In particular, when required to respond to two stimuli in rapid succession, processing bottlenecks may appear at central and peripheral stages of task processing. Importantly, it has been suggested that executive functions are needed to resolve the interference arising at such bottlenecks. The aims of the present study were to test whether central attentional limitations (i.e., bottleneck at the decisional response selection stage) as well as peripheral limitations (i.e., bottleneck at response initiation) both demand executive functions located in the lateral prefrontal cortex. For this, we re-analyzed two previous studies, in which a total of 33 participants performed a dual-task according to the paradigm of the psychological refractory period (PRP) during functional magnetic resonance imaging (fMRI). In one study (N = 17), the PRP task consisted of two two-choice response tasks known to suffer from a central bottleneck (CB group). In the other study (N = 16), the PRP task consisted of two simple-response tasks known to suffer from a peripheral bottleneck (PB group). Both groups showed considerable dual-task costs in form of slowing of the second response in the dual-task (PRP effect). Imaging results are based on the subtraction of both single-tasks from the dual-task within each group. In the CB group, the bilateral middle frontal gyri and inferior frontal gyri were activated. Higher activation in these areas was associated with lower dual-task costs. In the PB group, the right middle frontal and inferior frontal gyrus (IFG) were activated. Here, higher activation was associated with higher dual-task costs. In conclusion we suggest that central and peripheral bottlenecks both demand executive functions located in lateral prefrontal cortices (LPFC). Differences between the CB and PB groups with respect to the exact prefrontal areas activated and the correlational patterns

  1. Central as well as Peripheral Attentional Bottlenecks in Dual-Task Performance Activate Lateral Prefrontal Cortices.

    PubMed

    Szameitat, André J; Vanloo, Azonya; Müller, Hermann J

    2016-01-01

    Human information processing suffers from severe limitations in parallel processing. In particular, when required to respond to two stimuli in rapid succession, processing bottlenecks may appear at central and peripheral stages of task processing. Importantly, it has been suggested that executive functions are needed to resolve the interference arising at such bottlenecks. The aims of the present study were to test whether central attentional limitations (i.e., bottleneck at the decisional response selection stage) as well as peripheral limitations (i.e., bottleneck at response initiation) both demand executive functions located in the lateral prefrontal cortex. For this, we re-analyzed two previous studies, in which a total of 33 participants performed a dual-task according to the paradigm of the psychological refractory period (PRP) during functional magnetic resonance imaging (fMRI). In one study (N = 17), the PRP task consisted of two two-choice response tasks known to suffer from a central bottleneck (CB group). In the other study (N = 16), the PRP task consisted of two simple-response tasks known to suffer from a peripheral bottleneck (PB group). Both groups showed considerable dual-task costs in form of slowing of the second response in the dual-task (PRP effect). Imaging results are based on the subtraction of both single-tasks from the dual-task within each group. In the CB group, the bilateral middle frontal gyri and inferior frontal gyri were activated. Higher activation in these areas was associated with lower dual-task costs. In the PB group, the right middle frontal and inferior frontal gyrus (IFG) were activated. Here, higher activation was associated with higher dual-task costs. In conclusion we suggest that central and peripheral bottlenecks both demand executive functions located in lateral prefrontal cortices (LPFC). Differences between the CB and PB groups with respect to the exact prefrontal areas activated and the correlational patterns

  2. Apollo 16 lunar module 'Orion' photographed from distance during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 Lunar Module 'Orion' is photographed from a distance by Astronaut Chares M. Duke Jr., lunar module pilot, aboard the moving Lunar Roving Vehicle. Astronauts Duke and John W. Young, commander, were returning from the excursion to Stone Mountain during the second Apollo 16 extravehicular activity (EVA-2). The RCA color television camera mounted on the LRV is in the foreground. A portion of the LRV's high-gain antenna is at top left. Smoky Mountain rises behind the LM in this north-looking view at the Descartes landing site.

  3. STS-118 Astronauts Rick Mastracchio and Clay Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist Rick Mastracchio was anchored on the foot restraint of the Canadarm2 as he participated in the third session of Extra Vehicular Activity (EVA) for the mission. Assisting Mastracchio was Expedition 15 flight engineer Clay Anderson (out of frame). During the 5 hour, 28 minute space walk, the two relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) truss to the Port 1 (P1) truss, installed a new transponder on P1 and retrieved the P6 transponder.

  4. Astronaut Thomas Mattingly performs EVA during Apollo 16 transearth coast

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, performs extravehicular activity (EVA) during the Apollo 16 transearth coast. mattingly is assisted by Astronaut Charles M. Duke Jr., lunar module pilot. Mattingly inspected the SIM bay of the Service Module, and retrieved film from the Mapping and Panoramic cameras. Mattingly is wearing the helmet of Astronaut John W. Young, commander. The helmet's lunar extravehicular visor assembly helped protect Mattingly's eyes frmo the bright sun. This view is a frame from motion picture film exposed by a 16mm Maurer camera.

  5. Perceptual demand modulates activation of human auditory cortex in response to task-irrelevant sounds.

    PubMed

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Mangalathu, Jain; Desai, Anjali; Binder, Jeffrey R; Liebenthal, Einat

    2013-09-01

    In the visual modality, perceptual demand on a goal-directed task has been shown to modulate the extent to which irrelevant information can be disregarded at a sensory-perceptual stage of processing. In the auditory modality, the effect of perceptual demand on neural representations of task-irrelevant sounds is unclear. We compared simultaneous ERPs and fMRI responses associated with task-irrelevant sounds across parametrically modulated perceptual task demands in a dichotic-listening paradigm. Participants performed a signal detection task in one ear (Attend ear) while ignoring task-irrelevant syllable sounds in the other ear (Ignore ear). Results revealed modulation of syllable processing by auditory perceptual demand in an ROI in middle left superior temporal gyrus and in negative ERP activity 130-230 msec post stimulus onset. Increasing the perceptual demand in the Attend ear was associated with a reduced neural response in both fMRI and ERP to task-irrelevant sounds. These findings are in support of a selection model whereby ongoing perceptual demands modulate task-irrelevant sound processing in auditory cortex.

  6. Next-Generation Maneuvering System with Control-Moment Gyroscopes for Extravehicular Activities Near Low-Gravity Objects

    NASA Technical Reports Server (NTRS)

    Carpenter, Michele; Jackson, Kimberly; Cohanim, Babak; Duda, Kevin R.; Rize, Jared; Dopart, Celena; Hoffman, Jeffrey; Curiel, Pedro; Studak, Joseph; Ponica, Dina; RochlisZumbado, Jennifer

    2013-01-01

    Looking ahead to the human exploration of Mars, NASA is planning for exploration of near-Earth asteroids and the Martian moons. Performing tasks near the surface of such low-gravity objects will likely require the use of an updated version of the Manned Maneuvering Unit (MMU) since the surface gravity is not high enough to allow astronauts to walk, or have sufficient resistance to counter reaction forces and torques during movements. The extravehicular activity (EVA) Jetpack device currently under development is based on the Simplified Aid for EVA Rescue (SAFER) unit and has maneuvering capabilities to assist EVA astronauts with their tasks. This maneuvering unit has gas thrusters for attitude control and translation. When EVA astronauts are performing tasks that require ne motor control such as sample collection and equipment placement, the current control system will re thrusters to compensate for the resulting changes in center-of-mass location and moments of inertia, adversely affecting task performance. The proposed design of a next-generation maneuvering and stability system incorporates control concepts optimized to support astronaut tasks and adds control-moment gyroscopes (CMGs) to the current Jetpack system. This design aims to reduce fuel consumption, as well as improve task performance for astronauts by providing a sti er work platform. The high-level control architecture for an EVA maneuvering system using both thrusters and CMGs considers an initial assessment of tasks to be performed by an astronaut and an evaluation of the corresponding human-system dynamics. For a scenario in which the astronaut orbits an asteroid, simulation results from the current EVA maneuvering system are compared to those from a simulation of the same system augmented with CMGs, demonstrating that the forces and torques on an astronaut can be significantly reduced with the new control system actuation while conserving onboard fuel.

  7. EVA - A Textual Data Processing Tool.

    ERIC Educational Resources Information Center

    Jakopin, Primoz

    EVA, a text processing tool designed to be self-contained and useful for a variety of languages, is described briefly, and its extensive coded character set is illustrated. Features, specifications, and database functions are noted. Its application in development of a Slovenian literary dictionary is also described. (MSE)

  8. Embodied simulation as part of affective evaluation processes: task dependence of valence concordant EMG activity.

    PubMed

    Weinreich, André; Funcke, Jakob Maria

    2014-01-01

    Drawing on recent findings, this study examines whether valence concordant electromyography (EMG) responses can be explained as an unconditional effect of mere stimulus processing or as somatosensory simulation driven by task-dependent processing strategies. While facial EMG over the Corrugator supercilii and the Zygomaticus major was measured, each participant performed two tasks with pictures of album covers. One task was an affective evaluation task and the other was to attribute the album covers to one of five decades. The Embodied Emotion Account predicts that valence concordant EMG is more likely to occur if the task necessitates a somatosensory simulation of the evaluative meaning of stimuli. Results support this prediction with regard to Corrugator supercilii in that valence concordant EMG activity was only present in the affective evaluation task but not in the non-evaluative task. Results for the Zygomaticus major were ambiguous. Our findings are in line with the view that EMG activity is an embodied part of the evaluation process and not a mere physical outcome.

  9. Astronaut EVA exposure estimates from CAD model spacesuit geometry.

    PubMed

    De Angelis, Giovanni; Anderson, Brooke M; Atwell, William; Nealy, John E; Qualls, Garry D; Wilson, John W

    2004-03-01

    Ongoing assembly and maintenance activities at the International Space Station (ISS) require much more extravehicular activity (EVA) than did the earlier U.S. Space Shuttle missions. It is thus desirable to determine and analyze, and possibly foresee, as accurately as possible what radiation exposures crew members involved in EVAs will experience in order to minimize risks and to establish exposure limits that must not to be exceeded. A detailed CAD model of the U.S. Space Shuttle EVA Spacesuit, developed at NASA Langley Research Center (LaRC), is used to represent the directional shielding of an astronaut; it has detailed helmet and backpack structures, hard upper torso, and multilayer space suit fabric material. The NASA Computerized Anatomical Male and Female (CAM and CAF) models are used in conjunction with the space suit CAD model for dose evaluation within the human body. The particle environments are taken from the orbit-averaged NASA AP8 and AE8 models at solar cycle maxima and minima. The transport of energetic particles through space suit materials and body tissue is calculated by using the NASA LaRC HZETRN code for hadrons and a recently developed deterministic transport code, ELTRN, for electrons. The doses within the CAM and CAF models are determined from energy deposition at given target points along 968 directional rays convergent on the points and are evaluated for several points on the skin and within the body. Dosimetric quantities include contributions from primary protons, light ions, and electrons, as well as from secondary brehmsstrahlung and target fragments. Directional dose patterns are displayed as rays and on spherical surfaces by the use of a color relative intensity representation. PMID:15133283

  10. Astronaut EVA exposure estimates from CAD model spacesuit geometry.

    PubMed

    De Angelis, Giovanni; Anderson, Brooke M; Atwell, William; Nealy, John E; Qualls, Garry D; Wilson, John W

    2004-03-01

    Ongoing assembly and maintenance activities at the International Space Station (ISS) require much more extravehicular activity (EVA) than did the earlier U.S. Space Shuttle missions. It is thus desirable to determine and analyze, and possibly foresee, as accurately as possible what radiation exposures crew members involved in EVAs will experience in order to minimize risks and to establish exposure limits that must not to be exceeded. A detailed CAD model of the U.S. Space Shuttle EVA Spacesuit, developed at NASA Langley Research Center (LaRC), is used to represent the directional shielding of an astronaut; it has detailed helmet and backpack structures, hard upper torso, and multilayer space suit fabric material. The NASA Computerized Anatomical Male and Female (CAM and CAF) models are used in conjunction with the space suit CAD model for dose evaluation within the human body. The particle environments are taken from the orbit-averaged NASA AP8 and AE8 models at solar cycle maxima and minima. The transport of energetic particles through space suit materials and body tissue is calculated by using the NASA LaRC HZETRN code for hadrons and a recently developed deterministic transport code, ELTRN, for electrons. The doses within the CAM and CAF models are determined from energy deposition at given target points along 968 directional rays convergent on the points and are evaluated for several points on the skin and within the body. Dosimetric quantities include contributions from primary protons, light ions, and electrons, as well as from secondary brehmsstrahlung and target fragments. Directional dose patterns are displayed as rays and on spherical surfaces by the use of a color relative intensity representation.

  11. The temporal dynamics of metacognition: Dissociating task-related activity from later metacognitive processes.

    PubMed

    Desender, Kobe; Van Opstal, Filip; Hughes, Gethin; Van den Bussche, Eva

    2016-02-01

    In recent years, neuroscience research spent much effort in revealing brain activity related to metacognition. Despite this endeavor, it remains unclear exactly when metacognitive experiences develop during task performance. To investigate this, the current study used EEG to temporally and spatially dissociate task-related activity from metacognitive activity. In a masked priming paradigm, metacognitive experiences of difficulty were induced by manipulating congruency between prime and target. As expected, participants more frequently rated incongruent trials as difficult and congruent trials as easy, while being completely unable to perceive the masked primes. Results showed that both the N2 and the P3 ERP components were modulated by congruency, but that only the P3 modulation interacted with metacognitive experiences. Single-trial analysis additionally showed that the magnitude of the P3 modulation by congruency accurately predicted the metacognitive response. Source localization indicated that the N2 task-related activity originated in the ACC, whereas the P3-interplay between task-related activation and metacognitive experiences originated from the precuneus. We conclude that task-related activity can be dissociated from later metacognitive processing.

  12. Water Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  13. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional

  14. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation (Presentation)

    SciTech Connect

    Miller, D.; Wohlgemuth, J.; Gu, X.; Haldeman, S.; Hidalgo, M.; Malguth, E.; Reid, C.; Shioda, T.; Schulze, S.; Wang, Z.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  15. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation: Preprint

    SciTech Connect

    Miller, D. C.; Gu, X.; Haldenman, S.; Hidalgo, M.; Malguth, E.; Reid, C. G.; Shioda, T.; Schulze, S. H.; Wang, Z. Y.; Wohlgemuth, J. H.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  16. Dissociating sentential prosody from sentence processing: activation interacts with task demands.

    PubMed

    Plante, Elena; Creusere, Marlena; Sabin, Cynthia

    2002-09-01

    Sentence processing was contrasted with processing of syntactic prosody under two task conditions in order to examine the representation of these components of language and their interaction with working memory load. Twelve adults received fMDI scans while they listened to low-pass filtered and unfiltered sentences either passively, or during tasks that required subjects to remember and recognize information contained in the stimuli. Results indicated that temporal activation for prosodic stimuli differed compared to activation for sentence stimuli only during passive listening tasks. The inclusion of memory demands was associated with frontal activation, which was differentially lateralized for sentence and prosodic stimuli. The results demonstrate differential brain activation for prosodic vs sentential stimuli which interacts with the memory demands placed on the subjects.

  17. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1993-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the space shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A space shuttle repair mission in late 1993 will install small corrective mirrors that will restore the full intended optical capability of the HST. The first servicing mission (FSM) will involve considerable extravehicular activity (EVA). It is proposed to design special EVA tools for the FSM. This report includes details of the data acquisition system being developed to test the performance of the various EVA tools in ambient as well as simulated space environment.

  18. Stability and variability: indicators for passive stability and active control in a rhythmic task.

    PubMed

    Wei, Kunlin; Dijkstra, Tjeerd M H; Sternad, Dagmar

    2008-06-01

    Using a rhythmic task where human subjects bounced a ball with a handheld racket, fine-grained analyses of stability and variability extricated contributions from open-loop control, noise strength, and active error compensation. Based on stability analyses of a stochastic-deterministic model of the task--a surface contacting the ball by periodic movements--open-loop or dynamic stability was assessed by the acceleration of the racket at contact. Autocovariance analyses of model and data were further used to gauge the contributions of open-loop stability and noise strength. Variability and regression analyses estimated active error compensation. Empirical results demonstrated that experienced actors exploited open-loop stability more than novices, had lower noise strength, and applied more active error compensations. By manipulating the model parameter coefficient of restitution, task stability was varied and showed that actors graded these three components as a function of task stability. It is concluded that actors tune into task stability when stability is high but use more active compensation when stability is reduced. Implications for the neural underpinnings for passive stability and active control are discussed. Further, results showed that stability and variability are not simply the inverse of each other but contain more quantitative information when combined with model analyses.

  19. STS-54 EV1 Harbaugh carries EV2 Runco during DTO 1210 EVA in OV-105's PLB

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-54 Mission Specialist (MS2) and extravehicular crewmember 1 (EV1) Gregory J. Harbaugh, wearing extravehicular mobility unit (EMU) (red stripes),carries EMU-suited MS1 and EV2 Mario Runco, Jr along Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB) starboard sill longeron during Detailed Test Objective (DTO) 1210, extravehicular activity (EVA) operations procedure/ training. Harbaugh uses Runco's EMU mini-workstation as a handhold. The objective of this exercise is to simulate carrying a large object. It will also evaluate the ability of an astronaut to move about it space with a 'bulky' object in hand. The empty airborne support equipment (ASE) frames appear below the crewmembers and the PLB aft bulkhead behind them. This EVA is the first in a series to broaden EVA procedures and training experience bases and proficiency in preparation for future EVAs such as the Hubble Space Telescope (HST) and Space Station Freedom (SSF).

  20. Performance-Related Activity in Medial Rostral Prefrontal Cortex (Area 10) during Low-Demand Tasks

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Simons, Jon S.; Frith, Christopher D.; Burgess, Paul W.

    2006-01-01

    Neuroimaging studies have frequently observed relatively high activity in medial rostral prefrontal cortex (PFC) during rest or baseline conditions. Some accounts have attributed this high activity to the occurrence of unconstrained stimulus-independent and task-unrelated thought processes during baseline conditions. Here, the authors investigated…

  1. STS-57 astronauts Low and Wisoff perform DTO 1210 EVA in OV-105's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During STS-57 extravehicular activity (EVA), Mission Specialist (MS) and Payload Commander (PLC) G. David Low (foreground) secures portable foot restraint (PFR) (manipulator foot restraint (MFR)) to the remote manipulator system (RMS) end effector using a PFR attachment device (PAD). MS3 Peter J.K. Wisoff performs operations next to Low at the stowed European Retrievable Carrier (EURECA). This EVA, designated Detailed Test Objective (DTO) 1210, included evaluation of procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. The scene is backdropped against the blackness of space with Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB) and payloads appearing in the foreground.

  2. STS-37 Mission Specialist (MS) Ross prepares for EVA exercise in JSC WETF

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-37 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Jerry L. Ross, wearing extravehicular mobility unit (EMU), fastens neck strap on communications carrier assembly (CCA) in preparation for extravehicular activity (EVA) simulation exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Ross will rehearse scheduled EVA procedures with the Crew and Equipment Translation Aid (CETA) during the training session in the WETF's 25-ft deep pool. CETA is a type of railroad hand cart vehicle planned as a spacewalker's transportation system along the truss of Space Station Freedom (SSF). CETA will be in OV-104's payload bay.

  3. An innovative exercise method to simulate orbital EVA work - Applications to PLSS automatic controls

    NASA Technical Reports Server (NTRS)

    Lantz, Renee; Vykukal, H.; Webbon, Bruce

    1987-01-01

    An exercise method has been proposed which may satisfy the current need for a laboratory simulation representative of muscular, cardiovascular, respiratory, and thermoregulatory responses to work during orbital extravehicular activity (EVA). The simulation incorporates arm crank ergometry with a unique body support mechanism that allows all body position stabilization forces to be reacted at the feet. By instituting this exercise method in laboratory experimentation, an advanced portable life support system (PLSS) thermoregulatory control system can be designed to more accurately reflect the specific work requirements of orbital EVA.

  4. Neutral buoyancy evaluation of technologies for space station external operations. [EVA weightlessness simulation

    NASA Technical Reports Server (NTRS)

    Akin, D. L.; Bowden, M. L.; Spofford, J. R.

    1984-01-01

    In order to perform a complete systems analysis for almost any large space program, it is vital to have a thorough understanding of human capabilities in extravehicular activity (EVA). The present investigation is concerned with the most significant results from the MIT Space Systems Lab's neutral buoyancy tests. An evaluation of neutral buoyancy is considered along with the tested structures, aspects of learning, productivity, time and motion analysis, and assembly loads. Attention is given to EVA assembly with a manned maneuvering unit, teleoperated structural assembly, an integrated control station, a beam assembly teleoperator, and space station proximity operations.

  5. Hubble Space Telescope EVA Power Ratchet Tool redesign. [Abstract only

    NASA Technical Reports Server (NTRS)

    Richards, Paul W.; Park, Chan; Brown, Lee

    1993-01-01

    The Power Ratchet Tool (PRT) is a self contained, power-driven, 3/8 inch drive ratchet wrench which will be used by astronauts during Extravehicular Activities (EVA). This battery-powered tool is controlled by a dedicated electonic controller. The PRT was flown during the Hubble Space Telescope (HST) Deployment Mission STS-31 to deploy the solar arrays if the automatic mechanisms failed. The PRT is currently intended for use during the first HST Servicing Mission STS-61 as a general purpose power tool. The PRT consists of three major components; the wrench, the controller, and the battery module. Fourteen discrete combinations of torque, turns, and speed may be programmed into the controller before the EVA. The crewmember selects the desired parameter profile by a switch mounted on the controller. The tool may also be used in the manual mode as a non-powered ratchet wrench. The power is provided by a silver-zinc battery module, which fits into the controller and is replaceable during an EVA. The original PRT did not meet the design specification of torque output and hours of operation. To increase efficiency and reliability the PRT underwent a redesign effort. The majority of this effort focused on the wrench. The original PRT drive train consisted of a low torque, high speed brushless DC motor, a face gear set, and a planocentric gear assembly. The total gear reduction was 300:1. The new PRT wrench consists of a low speed, high torque brushless DC motor, two planetary gear sets and a bevel gear set. The total gear reduction is now 75:1. A spline clutch has also been added to disengage the drive train in the manual mode. The design changes to the controller will consist of only those modifications necessary to accomodate the redesigned wrench. The battery design will be unaffected.

  6. Spatio-temporal analysis reveals active control of both task-relevant and task-irrelevant variables

    PubMed Central

    Rácz, Kornelius; Valero-Cuevas, Francisco J.

    2013-01-01

    The Uncontrolled Manifold (UCM) hypothesis and Minimal Intervention principle propose that the observed differential variability across task relevant (i.e., task goals) vs. irrelevant (i.e., in the null space of those goals) variables is evidence of a separation of task variables for efficient neural control, ranked by their respective variabilities (sometimes referred to as hierarchy of control). Support for this comes from spatial domain analyses (i.e., structure of) of kinematic, kinetic, and EMG variability. While proponents admit the possibility of preferential as opposed to strictly uncontrolled variables, such distinctions have only begun to be quantified or considered in the temporal domain when inferring control action. Here we extend the study of task variability during tripod static grasp to the temporal domain by applying diffusion analysis. We show that both task-relevant and task-irrelevant parameters show corrective action at some time scales; and conversely, that task-relevant parameters do not show corrective action at other time scales. That is, the spatial fluctuations of fingertip forces show, as expected, greater ranges of variability in task-irrelevant variables (>98% associated with changes in total grasp force; vs. only <2% in task-relevant changes associated with acceleration of the object). But at some time scales, however, temporal fluctuations of task-irrelevant variables exhibit negative correlations clearly indicative of corrective action (scaling exponents <0.5); and temporal fluctuations of task-relevant variables exhibit neutral and positive correlations clearly indicative of absence of corrective action (scaling exponents ≥0.5). In agreement with recent work in other behavioral contexts, these results propose we revise our understanding of variability vis-á-vis task relevance by considering both spatial and temporal features of all task variables when inferring control action and understanding how the CNS confronts task

  7. Age-related shifts in brain activity dynamics during task switching.

    PubMed

    Jimura, Koji; Braver, Todd S

    2010-06-01

    Cognitive aging studies have suggested that older adults show declines in both sustained and transient cognitive control processes. However, previous neuroimaging studies have primarily focused on age-related change in the magnitude, but not temporal dynamics, of brain activity. The present study compared brain activity dynamics in healthy old and young adults during task switching. A mixed blocked/event-related functional magnetic resonance imaging design enabled separation of transient and sustained neural activity associated with cognitive control. Relative to young adults, older adults exhibited not only decreased sustained activity in the anterior prefrontal cortex (aPFC) during task-switching blocks but also increased transient activity on task-switch trials. Another pattern of age-related shift in dynamics was present in the lateral PFC (lPFC) and posterior parietal cortex (PPC), with younger adults showing a cue-related response during task-switch trials in lPFC and PPC, whereas older adults exhibited switch-related activation during the cue period in PPC only. In all 3 regions, these qualitatively distinct patterns of brain activity predicted qualitatively distinct patterns of behavioral performance across the 2 age groups. Together, these results suggest that older adults may shift from a proactive to reactive cognitive control strategy as a means of retaining relatively preserved behavioral performance in the face of age-related neurocognitive changes. PMID:19805420

  8. Subjective Significance Shapes Arousal Effects on Modified Stroop Task Performance: A Duality of Activation Mechanisms Account.

    PubMed

    Imbir, Kamil K

    2016-01-01

    Activation mechanisms such as arousal are known to be responsible for slowdown observed in the Emotional Stroop and modified Stroop tasks. Using the duality of mind perspective, we may conclude that both ways of processing information (automatic or controlled) should have their own mechanisms of activation, namely, arousal for an experiential mind, and subjective significance for a rational mind. To investigate the consequences of both, factorial manipulation was prepared. Other factors that influence Stroop task processing such as valence, concreteness, frequency, and word length were controlled. Subjective significance was expected to influence arousal effects. In the first study, the task was to name the color of font for activation charged words. In the second study, activation charged words were, at the same time, combined with an incongruent condition of the classical Stroop task around a fixation point. The task was to indicate the font color for color-meaning words. In both studies, subjective significance was found to shape the arousal impact on performance in terms of the slowdown reduction for words charged with subjective significance. PMID:26869974

  9. Effects of reaction time variability and age on brain activity during Stroop task performance.

    PubMed

    Tam, Angela; Luedke, Angela C; Walsh, Jeremy J; Fernandez-Ruiz, Juan; Garcia, Angeles

    2015-09-01

    Variability in reaction time during task performance may reflect fluctuations in attention and cause reduced performance in goal-directed tasks, yet it is unclear whether the mechanisms behind this phenomenon change with age. Using fMRI, we tested young and cognitively healthy older adults with the Stroop task to determine whether aging affects the neural mechanisms underlying intra-individual reaction time variability. We found significant between-group differences in BOLD activity modulated by reaction time. In older adults, longer reaction times were associated with greater activity in frontoparietal attentional areas, while in younger adults longer reaction times were associated with greater activity in default mode network areas. Our results suggest that the neural correlates of reaction time variability change with healthy aging, reinforcing the concept of functional plasticity to maintain high cognitive function throughout the lifespan.

  10. Investigating the correlation between the neural activity and task performance in a psychomotor vigilance test.

    PubMed

    Hu, Zhongze; Sun, Yu; Lim, Julian; Thakor, Nitish; Bezerianos, Anastasios

    2015-01-01

    Neural activity is known to correlate with decrements in task performance as individuals enter the state of mental fatigue which might lead to lowered productivity and increased safety risks. Incorporating a passive brain computer interface (BCI) technique that detects changes in subject's neural activity and predicts the behavioral performance when the subject is underperforming might be a promising approach to reduce human error in real-world situations. Here, we developed a reliable model using EEG power spectrum to estimate time-on-task performance in a psychomotor vigilance test (PVT) which can fit across individuals. High correlation between the estimated and actual reaction time was achieved. Hence, our results illustrate the feasibility for modeling time-on-task decrements in performance among different individuals from their brainwave activity, with potential applications in several domains, including traffic and industrial safety. PMID:26737349

  11. TASK DIFFICULTY MODULATES ACTIVITY OF SPECIFIC NEURONAL POPULATIONS IN PRIMARY VISUAL CORTEX

    PubMed Central

    Chen, Yao; Martinez-Conde, Susana; Macknik, Stephen L.; Bereshpolova, Yulia; Swadlow, Harvey A.; Alonso, Jose-Manuel

    2008-01-01

    Spatial attention enhances our ability to detect stimuli at restricted regions of the visual field. This enhancement is thought to depend on the difficulty of the task being performed, but the underlying neuronal mechanisms for this dependency remain largely unknown. Here we demonstrate that task difficulty modulates neuronal firing rate at the earliest stages of cortical visual processing (area V1) in the macaque monkey. These modulations are spatially specific: increasing task difficulty enhances V1 neuronal firing rate at the focus of attention and suppresses it in regions surrounding the focus. Moreover, we show that response enhancement and suppression are mediated by distinct populations of neurons that differ in direction selectivity, spike width, interspike interval distribution and contrast sensitivity. Our results provide strong support for center-surround models of spatial attention and suggest that task difficulty modulates the activity of specific populations of neurons in the primary visual cortex. PMID:18604204

  12. Evaluation of 16 measures of mental workload using a simulated flight task emphasizing mediational activity

    NASA Technical Reports Server (NTRS)

    Wierwille, W. W.; Rahimi, M.; Casali, J. G.

    1985-01-01

    As aircraft and other systems become more automated, a shift is occurring in human operator participation in these systems. This shift is away from manual control and toward activities that tap the higher mental functioning of human operators. Therefore, an experiment was performed in a moving-base flight simulator to assess mediational (cognitive) workload measurement. Specifically, 16 workload estimation techniques were evaluated as to their sensitivity and intrusion in a flight task emphasizing mediational behavior. Task loading, using navigation problems presented on a display, was treated as an independent variable, and workload-measure values were treated as dependent variables. Results indicate that two mediational task measures, two rating scale measures, time estimation, and two eye behavior measures were reliably sensitive to mediational loading. The time estimation measure did, however, intrude on mediational task performance. Several of the remaining measures were completely insensitive to mediational load.

  13. Associations between prefrontal cortex activation and H-reflex modulation during dual task gait

    PubMed Central

    Meester, Daan; Al-Yahya, Emad; Dawes, Helen; Martin-Fagg, Penny; Piñon, Carmen

    2014-01-01

    Walking, although a largely automatic process, is controlled by the cortex and the spinal cord with corrective reflexes modulated through integration of neural signals from central and peripheral inputs at supraspinal level throughout the gait cycle. In this study we used an additional cognitive task to interfere with the automatic processing during walking in order to explore the neural mechanisms involved in healthy young adults. Participants were asked to walk on a treadmill at two speeds, both with and without additional cognitive load. We evaluated the impact of speed and cognitive load by analyzing activity of the prefrontal cortex (PFC) using functional Near-Infrared Spectroscopy (fNIRS) alongside spinal cord reflex activity measured by soleus H-reflex amplitude and gait changes obtained by using an inertial measuring unit. Repeated measures ANOVA revealed that fNIRS Oxy-Hb concentrations significantly increased in the PFC with dual task (walking while performing a cognitive task) compared to a single task (walking only; p < 0.05). PFC activity was unaffected by increases of walking speed. H-reflex amplitude and gait variables did not change in response to either dual task or increases in walking speed. When walking under additional cognitive load participants adapted by using greater activity in the PFC, but this adaptation did not detrimentally affect H-reflex amplitude or gait variables. Our findings suggest that in a healthy young population central mechanisms (PFC) are activated in response to cognitive loads but that H-reflex activity and gait performance can successfully be maintained. This study provides insights into the mechanisms behind healthy individuals safely performing dual task walking. PMID:24600375

  14. Noise power associated with decreased task-induced variability of brain electrical activity in schizophrenia.

    PubMed

    Molina, Vicente; Bachiller, Alejandro; Suazo, Vanessa; Lubeiro, Alba; Poza, Jesús; Hornero, Roberto

    2016-02-01

    In schizophrenia, both increased baseline metabolic and electroencephalographic (EEG) activities as well as decreased task-related modulation of neural dynamics have been reported. Noise power (NP) can measure the background EEG activity during task performance, and Shannon entropy (SE) is useful for quantifying the global modulation of EEG activity with a high temporal resolution. In this study, we have assessed the possible relationship between increased NP in theta and gamma bands and decreased SE modulation in 24 patients with schizophrenia and 26 controls over the parietal and central regions during a P300 task. SE modulation was calculated as the change from baseline to the active epoch (i.e., 150-550 ms following the target stimulus onset). Patients with schizophrenia displayed statistically significant higher NP values and lower SE modulation than healthy controls. We found a significant association between gamma NP and SE in all of the participants. Specifically, a NP increase in the gamma band was followed by a decrease in SE change. These results support the notion that an excess of gamma activity, unlocked to the task being performed, is accompanied by a decreased modulation of EEG activity in schizophrenia.

  15. Neural correlates of executive dysfunction in schizophrenia: failure to modulate brain activity with task demands.

    PubMed

    Dirnberger, Georg; Fuller, Rebecca; Frith, Chris; Jahanshahi, Marjan

    2014-11-12

    In schizophrenia, executive functions are impaired and are associated with altered activation of prefrontal areas. We used H2[15]O PET to examine patients with schizophrenia and matched controls on a random number generation (RNG) task and a control counting (COUNT) task. To assess the effects of increasing task demand, both tasks were performed at three different rates (intervals 1, 2 or 3 s). Both groups showed a significant increase in the nonrandomness of responses at faster rates of RNG. Despite similar performances, patients but not controls showed higher activation of the right dorsolateral prefrontal cortex (DLPFC) and atypically reduced activation of the right anterior cingulate gyrus and the right medial frontal gyrus in RNG compared with COUNT, whereas only for controls, activation of the left DLPFC was increased and activation of the right superior temporal gyrus and the right superior frontal gyrus was reduced in the same comparison. Whereas for the controls several cortical areas including the bilateral superior temporal gyrus and the bilateral DLPFC, together with the right cerebellum, showed significant changes in regional cerebral blood flow with faster or slower rates, patients with schizophrenia showed rate-dependent changes only in the left cerebellum. In conclusion, the patients' failure to modulate cortical activation with changing demands of rate, particularly in prefrontal areas and in the cerebellum, and even when performance is similar to that in healthy controls, is a characteristic of their abnormal pattern of executive processing. PMID:25275638

  16. Effects of feedback on activation of the quadriceps during weight-bearing tasks of the Wii

    PubMed Central

    Fernandes da Silva, Fabiano; Aparecido de Souza, Renato; Dias, Eric Fernandes; Silveira, Landulfo; Villaverde, Antonio Balbin

    2015-01-01

    [Purpose] This investigation evaluated the effect of real-time feedback on electrical activation of the quadriceps during 3 weight-bearing tasks of the Wii Fit Plus®. [Subjects] Thirty male healthy volunteers were recruited. [Methods] Activation of the vastus medialis, vastus lateralis, and rectus femoris muscles was recorded during virtual lunge, single leg extension, and single leg reach exercises. Each exercise was performed twice in 3 randomized experimental conditions (with visual feedback, with auditory feedback, and with no feedback). The normalized electromyographic data (using maximum voluntary isometric contraction) were analyzed using repeated measures analysis of variance and Tukey’s test. [Results] No significant difference was found in the muscles among the feedback conditions during the 3 exercises. However, the variation in the muscle activity of the vastus medialis and vastus lateralis (18.23–29.20% of maximum voluntary isometric contraction) was higher (47–62%) than that in the rectus femoris (7.35–12.98% of maximum voluntary isometric contraction). [Conclusion] Real-time feedback did not alter quadriceps activation during the Wii tasks. Additionally, these games showed electromyographic activation levels similar to those for the same tasks outside the virtual environment. The Wii weight-bearing tasks could therefore constitute a physical activity program but without the additional benefit of feedback. PMID:26180301

  17. Effects of feedback on activation of the quadriceps during weight-bearing tasks of the Wii.

    PubMed

    Fernandes da Silva, Fabiano; Aparecido de Souza, Renato; Dias, Eric Fernandes; Silveira, Landulfo; Villaverde, Antonio Balbin

    2015-06-01

    [Purpose] This investigation evaluated the effect of real-time feedback on electrical activation of the quadriceps during 3 weight-bearing tasks of the Wii Fit Plus(®). [Subjects] Thirty male healthy volunteers were recruited. [Methods] Activation of the vastus medialis, vastus lateralis, and rectus femoris muscles was recorded during virtual lunge, single leg extension, and single leg reach exercises. Each exercise was performed twice in 3 randomized experimental conditions (with visual feedback, with auditory feedback, and with no feedback). The normalized electromyographic data (using maximum voluntary isometric contraction) were analyzed using repeated measures analysis of variance and Tukey's test. [Results] No significant difference was found in the muscles among the feedback conditions during the 3 exercises. However, the variation in the muscle activity of the vastus medialis and vastus lateralis (18.23-29.20% of maximum voluntary isometric contraction) was higher (47-62%) than that in the rectus femoris (7.35-12.98% of maximum voluntary isometric contraction). [Conclusion] Real-time feedback did not alter quadriceps activation during the Wii tasks. Additionally, these games showed electromyographic activation levels similar to those for the same tasks outside the virtual environment. The Wii weight-bearing tasks could therefore constitute a physical activity program but without the additional benefit of feedback.

  18. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling

    PubMed Central

    Hagmann, Patric; Deco, Gustavo

    2015-01-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information. PMID:26317432

  19. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling.

    PubMed

    Ponce-Alvarez, Adrián; He, Biyu J; Hagmann, Patric; Deco, Gustavo

    2015-08-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.

  20. Dizocilpine (MK-801) impairs learning in the active place avoidance task but has no effect on the performance during task/context alternation.

    PubMed

    Vojtechova, Iveta; Petrasek, Tomas; Hatalova, Hana; Pistikova, Adela; Vales, Karel; Stuchlik, Ales

    2016-05-15

    The prevention of engram interference, pattern separation, flexibility, cognitive coordination and spatial navigation are usually studied separately at the behavioral level. Impairment in executive functions is often observed in patients suffering from schizophrenia. We have designed a protocol for assessing these functions all together as behavioral separation. This protocol is based on alternated or sequential training in two tasks testing different hippocampal functions (the Morris water maze and active place avoidance), and alternated or sequential training in two similar environments of the active place avoidance task. In Experiment 1, we tested, in adult rats, whether the performance in two different spatial tasks was affected by their order in sequential learning, or by their day-to-day alternation. In Experiment 2, rats learned to solve the active place avoidance task in two environments either alternately or sequentially. We found that rats are able to acquire both tasks and to discriminate both similar contexts without obvious problems regardless of the order or the alternation. We used two groups of rats, controls and a rat model of psychosis induced by a subchronic intraperitoneal application of 0.08mg/kg of dizocilpine (MK-801), a non-competitive antagonist of NMDA receptors. Dizocilpine had no selective effect on parallel/sequential learning of tasks/contexts. However, it caused hyperlocomotion and a significant deficit in learning in the active place avoidance task regardless of the task alternation. Cognitive coordination tested by this task is probably more sensitive to dizocilpine than spatial orientation because no hyperactivity or learning impairment was observed in the Morris water maze.

  1. Effect of Mild Thyrotoxicosis on Performance and Brain Activations in a Working Memory Task

    PubMed Central

    Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F.

    2016-01-01

    Aims Disturbed levels of thyroid hormones are associated with neuropsychiatric disorders, including memory impairments. The aim of this study was to evaluate effects of mild induced thyrotoxicosis on working memory and its neural correlates. Methods Twenty-nine healthy, male subjects with normal thyroid state participated in the study. Functional MRI was acquired during a working memory task (n-back task) before and after ingesting 250 μg L-thyroxin per day for a period of eight weeks. In addition, neuropsychological tests were performed. Results In the hyperthyroid condition the subjects showed slower reaction times, but a higher accuracy in the 0-back version of the memory tasks. Fewer differences between euthyroid and hyperthyroid state were seen for the more difficult conditions of the n-back task. FMRI revealed effects of difficulty in the parahippocampal gyrus, supplementary motor area, prefrontal cortex, anterior cingulate cortex, posterior cerebellum, rolandic operculum and insula (p<0.05, FWE corrected). When comparing euthyroid and hyperthyroid condition in relation to task-induced activation, differences of activation were found in the right prefrontal cortex as well as in the right parahippocampal area. In the psychological assessment, the alerting effect in the Attention Network Task (ANT) and four out of five parameters of the auditory verbal learning test (AVLT) showed an increase from euthyroid to hyperthyroid state. Conclusions It can be concluded that even a short-term intake of thyroid hormones leads to an activation of brain areas associated with working memory and to an improvement of accuracy of working memory tasks. PMID:27536945

  2. View of the Lunar Module 'Orion' and Lunar Roving Vehicle during first EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A view of the Lunar Module (LM) 'Orion' and Lunar Roving Vehicle (LRV), as photographed by Astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA-1) at the Descates landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain.

  3. Astronaut David Wolf participates in training for contingency EVA in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is aided by technicians in donning the gloves for his extravehicular mobility unit (EMU).

  4. Astronaut Alan Bean deploys ALSEP during first Apollo 12 EVA on moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, Apollo 12 lunar module pilot, deploys components of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA) on the moon. The photo was made by Astronaut Charles Conrad Jr., Apollo 12 commander, using a 70mm handheld Haselblad camera modified for lunar surface usage.

  5. Astronaut Shannon Lucid in training for contingency EVA for STS-58 in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Shannon W. Lucid participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. For simulation purposes, the mission specialist is about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF).

  6. STS-26 MS Nelson prepares for EVA exercises at JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson, wearing extravehicular mobilty unit (EMU) and communications carrier assembly (CCA), stands on poolside platform while technicians assist him with EMU gloves. Nelson dons EMU for contingency extravehicular activity (EVA) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Photograph was taken by Keith Meyers of the NEW YORK TIMES.

  7. Astronaut Jack Lousma participates in EVA to deploy twin pole solar shield

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, participates in the August 6, 1973 extravehicular activity (EVA) during which he and Astronaut Owen K. Garriott, science pilot, deployed the twin pole solar shield to help shade the Orbital Workshop (OWS). Note the striking reflection of the Earth in Lousma's helmet visor.

  8. Astronaut Jack Lousma participates in EVA to deploy twin pole solar shield

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, participates in the August 6, 1973 extravehicular activity (EVA) during which he and Astronauts Owen K. Garriott, science pilot, deployed the twin pole solar shield to help shade the Orbital Workshop (OWS). Note the reflection of the Apollo Telescope Mount and the Earth in Lousma's helmet visor.

  9. Task Control Signals in Pediatric Tourette Syndrome Show Evidence of Immature and Anomalous Functional Activity

    PubMed Central

    Church, Jessica A.; Wenger, Kristin K.; Dosenbach, Nico U. F.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2009-01-01

    Tourette Syndrome (TS) is a pediatric movement disorder that may affect control signaling in the brain. Previous work has proposed a dual-networks architecture of control processing involving a task-maintenance network and an adaptive control network (Dosenbach et al., 2008). A prior resting-state functional connectivity MRI (rs-fcMRI) analysis in TS has revealed functional immaturity in both putative control networks, with “anomalous” correlations (i.e., correlations outside the typical developmental range) limited to the adaptive control network (Church et al., 2009). The present study used functional MRI (fMRI) to study brain activity related to adaptive control (by studying start-cues signals), and to task-maintenance (by studying signals sustained across a task set). Two hypotheses from the previous rs-fcMRI results were tested. First, adaptive control (i.e., start-cue) activity will be altered in TS, including activity inconsistent with typical development (“anomalous”). Second, group differences found in task-maintenance (i.e., sustained) activity will be consistent with functional immaturity in TS. We examined regions found through a direct comparison of adolescents with and without TS, as well as regions derived from a previous investigation that showed differences between unaffected children and adults. The TS group showed decreased start-cue signal magnitude in regions where start-cue activity is unchanged over typical development, consistent with anomalous adaptive control. The TS group also had higher magnitude sustained signals in frontal cortex regions that overlapped with regions showing differences over typical development, consistent with immature task-maintenance in TS. The results demonstrate task-related fMRI signal differences anticipated by the atypical functional connectivity found previously in adolescents with TS, strengthening the evidence for functional immaturity and anomalous signaling in control networks in adolescents with TS

  10. Multi-EVA communications system analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A communications concept is analyzed to establish requirements of a confident candidate system for space shuttle. Conceptual baseline configurations, EVA's-to-spacecraft via PCM/FDM and spacecraft-to-EVA via PAM/FM, and respective functional performance requirements are discussed. The baseline system is analyzed to determine link characteristics, EMI levels at various frequency bands, and determination of desirable spectrum. Selected L- and S-Band links are analyzed to ascertain signal design parameters. A trade-off is performed, which establishes L-Band frequency as the best compromise. The results of the analysis along with the reliability/safety aspects and physical characteristics of the candidate system, indicate that the initial baseline concept meets functional requirements, but is poor from standpoint of overall space shuttle program cost.

  11. The Association Between Eye Movements and Cerebellar Activation in a Verbal Working Memory Task.

    PubMed

    Peterburs, Jutta; Cheng, Dominic T; Desmond, John E

    2016-09-01

    It has been argued that cerebellar activations during cognitive tasks may masquerade as cognition, while actually reflecting processes related to movement planning or motor learning. The present study investigated whether the cerebellar load effect for verbal working memory, that is, increased activations in lobule VI/Crus I and lobule VIIB/VIIIA, is related to eye movements and oculomotor processing. Fifteen participants performed an fMRI-based Sternberg verbal working memory task. Oculomotor and cognitive task demands were manipulated by using closely and widely spaced stimuli, and high and low cognitive load. Trial-based quantitative eye movement parameters were obtained from concurrent eye tracking. Conventional MRI analysis replicated the cerebellar load effect in lobules VI and VIIB/VIIIa. With quantitative eye movement parameters as regressors, analysis yielded very similar activation patterns. While load effect and eye regressor generally recruited spatially distinct neocortical and cerebellar regions, conjunction analysis showed that a small subset of prefrontal areas implicated in the load effect also responded to the eye regressor. The present results indicate that cognitive load-dependent activations in lateral superior and posteroinferior cerebellar regions in the Sternberg task are independent of eye movements occurring during stimulus encoding. This is inconsistent with the notion that cognitive load-dependent cerebellar activations merely reflect oculomotor processing. PMID:26286918

  12. Automated Visual Cognitive Tasks for Recording Neural Activity Using a Floor Projection Maze

    PubMed Central

    Kent, Brendon W.; Yang, Fang-Chi; Burwell, Rebecca D.

    2014-01-01

    Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze1,2 that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze1,2. Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes. PMID:24638057

  13. Balancing emotional processing with ongoing cognitive activity: the effects of task modality on intrusions and rumination

    PubMed Central

    Curci, Antonietta; Soleti, Emanuela; Lanciano, Tiziana; Doria, Valentina; Rimé, Bernard

    2015-01-01

    In the present paper we aimed to show that competition for resources between post-emotional processes and the execution of a cognitive task will result in two possible effects: (1) an impairment of the cognitive task in the short run and (2) an elongation of intrusions and rumination in the long run. The outcome of this competition is influenced by the interaction of the modality (verbal vs. visuospatial) of cognitive tasks run in the aftermath of an emotional experience and the nature (verbal vs. visuospatial) of the same experience. Non-clinical participants were given a working memory task (OSPAN vs. an analog Visual task) before and after the presentation of negative vs. neutral material (a novel excerpt in Experiment 1 and a video clip in Experiment 2). Intrusions and rumination were measured after a 24-h delay. Rumination was also assessed immediately after the experimental induction. Results showed that exposure to verbal negative material impaired verbal performance (Experiment 1); by contrast, exposure to visual negative material impaired both verbal and visuospatial performance (Experiment 2). Intrusions were only affected by the emotional valence of the original experience, while performing a visuospatial task resulted in enhanced rumination only after exposure to verbal emotional material. The findings of both experiments suggest that emotional processing spreads over time in balance with ongoing cognitive activities, and, in such a balance, the visuospatial processing mode tends to prevail over verbal engagements. PMID:26379598

  14. Eva Szabo, MD | Division of Cancer Prevention

    Cancer.gov

    Dr. Eva Szabo is Chief of the Lung and Upper Aerodigestive Cancer Research Group at the NCI Division of Cancer Prevention. She graduated from Yale University with a BS in Molecular Biophysics and Biochemistry, received her MD from Duke University, and completed her internal medicine residency at Bellevue-NYU Medical Center. After completing her medical oncology fellowship at the National Cancer Institute, Dr. Szabo led a laboratory effort studying lung cancer biology. |

  15. Frontal EEG activation asymmetry reflects cognitive biases in anxiety: evidence from an emotional face Stroop task.

    PubMed

    Avram, Julia; Balteş, Felicia Rodica; Miclea, Mircea; Miu, Andrei C

    2010-12-01

    Electroencephalography (EEG) has been extensively used in studies of the frontal asymmetry of emotion and motivation. This study investigated the midfrontal EEG activation, heart rate and skin conductance during an emotional face analog of the Stroop task, in anxious and non-anxious participants. In this task, the participants were asked to identify the expression of calm, fearful and happy faces that had either a congruent or incongruent emotion name written across them. Anxious participants displayed a cognitive bias characterized by facilitated attentional engagement with fearful faces. Fearful face trials induced greater relative right frontal activation, whereas happy face trials induced greater relative left frontal activation. Moreover, anxiety specifically modulated the magnitude of the right frontal activation to fearful faces, which also correlated with the cognitive bias. Therefore, these results show that frontal EEG activation asymmetry reflects the bias toward facilitated processing of fearful faces in anxiety. PMID:20607389

  16. Task-dependent Modulations of Prefrontal and Hippocampal Activity during Intrinsic Word Production

    PubMed Central

    Whitney, Carin; Weis, Susanne; Krings, Timo; Huber, Walter; Grossman, Murray; Kircher, Tilo

    2009-01-01

    Functional imaging studies of single word production have consistently reported activation of the lateral prefrontal and cingulate cortex. Its contribution has been shown to be sensitive to task demands, which can be manipulated by the degree of response specification. Compared with classical verbal fluency, free word association relies less on response restrictions but to a greater extent on associative binding processes, usually subserved by the hippocampus. To elucidate the relevance of the frontal and medial-temporal areas during verbal retrieval tasks, we applied varying degrees of response specification. During fMRI data acquisition, 18 subjects performed a free verbal association (FVA), a semantic verbal fluency (SVF) task, and a phonological verbal fluency (PVF) task. Externally guided word production served as a baseline condition to control for basic articulatory and reading processes. As expected, increased brain activity was observed in the left lateral and bilateral medial frontal cortices for SVF and PVF. The anterior cingulate gyrus was the only structure common to both fluency tasks in direct comparison to the less restricted FVA task. The hippocampus was engaged during associative and semantic retrieval. Interestingly, hippocampal activity was selectively evident during FVA in direct comparison to SVF when it was controlled for stimulus–response relations. The current data confirm the role of the left prefrontal–cingulate network in constrained word production. Hippocampal activity during spontaneous word production is a novel finding and seems to be dependent on the retrieval process (free vs. constrained) rather than the variety of stimulus–response relationships that is involved. PMID:18578599

  17. Trait Anxiety Modulates Brain Activity during Performance of Verbal Fluency Tasks

    PubMed Central

    Gawda, Barbara; Szepietowska, Ewa

    2016-01-01

    Trait anxiety is thought to be associated with pathological anxiety, and a risk factor for psychiatric disorders. The present study examines the brain mechanisms associated with trait anxiety during the performing of verbal fluency tasks. The aim is to show how trait anxiety modulates executive functions as measured by verbal fluency, and to explore the link between verbal fluency and anxiety due to the putative negative biases in high-anxious individuals. Seven tasks of verbal fluency were used: letter “k,” “f,” verbs, “animals,” “vehicles,” “joy,” and “fear.” The results of 35 subjects (whole sample), and 17 subjects (nine men, eight women) selected from the whole sample for the low/high-anxious groups on the basis of Trait Anxiety scores were analyzed. The subjects were healthy, Polish speaking, right-handed and aged from 20 to 35 years old. fMRI (whole-brain analysis with FWE corrections) was used to show the neural signals under active participation in verbal fluency tasks. The results confirm that trait anxiety slightly modulates neural activation during the performance of verbal fluency tasks, especially in the more difficult tasks. Significant differences were found in brain activation during the performance of more complex tasks between individuals with low anxiety and those with high anxiety. Greater activation in the right hemisphere, frontal gyri, and cerebellum was found in people with low anxiety. The results reflect better integration of cognitive and affective capacities in individuals with low anxiety. PMID:26903827

  18. Initial Work Toward a Robotically Assisted EVA Glove

    NASA Technical Reports Server (NTRS)

    Rogers, J.; Peters, B.; McBryan, E.; Laske, E.

    2016-01-01

    The Space Suit RoboGlove is a device designed to provide additional grasp strength or endurance for an EVA crew member since gloved hand performance is a fraction of what the unencumbered human hand can achieve. There have been past efforts to approach this problem by employing novel materials and construction techniques to the glove design, as well as integrating powered assistance devices. This application of the NASA/GM RoboGlove technology uses a unique approach to integrate the robotic actuators and sensors into a Phase VI EVA glove. This design provides grasp augmentation to the glove user while active, but can also function as a normal glove when disabled. Care was taken to avoid adding excessive bulk to the glove or affecting tactility by choosing low-profile sensors and extrinsically locating the actuators. Conduits are used to guide robotic tendons from linear actuators, across the wrist, and to the fingers. The second generation of the SSRG includes updated electronics, sensors, and actuators to improve performance. The following discusses the electromechanical design, softgoods integration, and control system of the SSRG. It also presents test results from the first integration of a powered mobility element onto a space suit, the NASA Mark III. Early results show that sensor integration did not impact tactile feedback in the glove and the actuators show potential for reduction in grasp fatigue over time.

  19. The Relationship between Cortisol Activity during Cognitive Task and Posttraumatic Stress Symptom Clusters

    PubMed Central

    Duan, Hongxia; Wang, Li; Zhang, Liang; Liu, Jing; Zhang, Kan; Wu, Jianhui

    2015-01-01

    Background The latest development in the dimensional structure of posttraumatic stress disorder (PTSD) is a novel 6-factor model, which builds on the newly released DSM-5. One notable gap in the literature is that little is known about how distinct symptom clusters of PTSD are related to hypothalamic–pituitary–adrenal (HPA) axis activity when people perform a relatively less stressful cognitive task. The purpose of this study was to investigate the relationship between cortisol activity when individuals perform cognitive tasks in the laboratory and a contemporary phenotypic model of posttraumatic stress symptomatology in earthquake survivors. Methods Salivary cortisol while performing cognitive tasks was collected and analyzed in 89 adult earthquake survivors. The PTSD Checklist for the DSM-5 (PCL-5) was used to assess the severity of total PTSD as well as six distinct symptom clusters. Regression analyses were conducted to examine the associations between the six distinct PTSD symptom clusters and cortisol profiles. Results The results showed that the score of the negative affect symptom cluster, but not anhedonia or other clusters, was positively associated with cortisol levels before and during the cognitive tasks. Conclusion The results showed that higher cortisol levels before and during cognitive tasks might be specifically linked to a distinct symptom cluster of PTSD—negative affect symptomatology. This suggests that a distinction should be made between negative affect and anhedonia symptom clusters, as the 6-factor model proposed. PMID:26630485

  20. Differences in neural activation as a function of risk-taking task parameters.

    PubMed

    Congdon, Eliza; Bato, Angelica A; Schonberg, Tom; Mumford, Jeanette A; Karlsgodt, Katherine H; Sabb, Fred W; London, Edythe D; Cannon, Tyrone D; Bilder, Robert M; Poldrack, Russell A

    2013-01-01

    Despite evidence supporting a relationship between impulsivity and naturalistic risk-taking, the relationship of impulsivity with laboratory-based measures of risky decision-making remains unclear. One factor contributing to this gap in our understanding is the degree to which different risky decision-making tasks vary in their details. We conducted an fMRI investigation of the Angling Risk Task (ART), which is an improved behavioral measure of risky decision-making. In order to examine whether the observed pattern of neural activation was specific to the ART or generalizable, we also examined correlates of the Balloon Analog Risk Taking (BART) task in the same sample of 23 healthy adults. Exploratory analyses were conducted to examine the relationship between neural activation, performance, impulsivity and self-reported risk-taking. While activation in a valuation network was associated with reward tracking during the ART but not the BART, increased fronto-cingulate activation was seen during risky choice trials in the BART as compared to the ART. Thus, neural activation during risky decision-making trials differed between the two tasks, and this observation was likely driven by differences in task parameters, namely the absence vs. presence of ambiguity and/or stationary vs. increasing probability of loss on the ART and BART, respectively. Exploratory association analyses suggest that sensitivity of neural response to the magnitude of potential reward during the ART was associated with a suboptimal performance strategy, higher scores on a scale of dysfunctional impulsivity (DI) and a greater likelihood of engaging in risky behaviors, while this pattern was not seen for the BART. Our results suggest that the ART is decomposable and associated with distinct patterns of neural activation; this represents a preliminary step toward characterizing a behavioral measure of risky decision-making that may support a better understanding of naturalistic risk-taking.

  1. Left inferior-parietal lobe activity in perspective tasks: identity statements.

    PubMed

    Arora, Aditi; Weiss, Benjamin; Schurz, Matthias; Aichhorn, Markus; Wieshofer, Rebecca C; Perner, Josef

    2015-01-01

    We investigate the theory that the left inferior parietal lobe (IPL) is closely associated with tracking potential differences of perspective. Developmental studies find that perspective tasks are mastered at around 4 years of age. Our first study, meta-analyses of brain imaging studies shows that perspective tasks specifically activate a region in the left IPL and precuneus. These tasks include processing of false belief, visual perspective, and episodic memory. We test the location specificity theory in our second study with an unusual and novel kind of perspective task: identity statements. According to Frege's classical logical analysis, identity statements require appreciation of modes of presentation (perspectives). We show that identity statements, e.g., "the tour guide is also the driver" activate the left IPL in contrast to a control statements, "the tour guide has an apprentice." This activation overlaps with the activations found in the meta-analysis. This finding is confirmed in a third study with different types of statements and different comparisons. All studies support the theory that the left IPL has as one of its overarching functions the tracking of perspective differences. We discuss how this function relates to the bottom-up attention function proposed for the bilateral IPL.

  2. Cognitive Conflict in a Syllable Identification Task Causes Transient Activation of Speech Perception Area

    ERIC Educational Resources Information Center

    Saetrevik, Bjorn; Specht, Karsten

    2012-01-01

    It has previously been shown that task performance and frontal cortical activation increase after cognitive conflict. This has been argued to support a model of attention where the level of conflict automatically adjusts the amount of cognitive control applied. Conceivably, conflict could also modulate lower-level processing pathways, which would…

  3. Beyond Rhyme or Reason: ERPs Reveal Task-Specific Activation of Orthography on Spoken Language

    ERIC Educational Resources Information Center

    Pattamadilok, Chotiga; Perre, Laetitia; Ziegler, Johannes C.

    2011-01-01

    Metaphonological tasks, such as rhyme judgment, have been the primary tool for the investigation of the effects of orthographic knowledge on spoken language. However, it has been recently argued that the orthography effect in rhyme judgment does not reflect the automatic activation of orthographic codes but rather stems from sophisticated response…

  4. Task-Dependent Modulations of Prefrontal and Hippocampal Activity during Intrinsic Word Production

    ERIC Educational Resources Information Center

    Whitney, Carin; Weis, Susanne; Krings, Timo; Huber, Walter; Grossman, Murray; Kircher, Tilo

    2009-01-01

    Functional imaging studies of single word production have consistently reported activation of the lateral prefrontal and cingulate cortex. Its contribution has been shown to be sensitive to task demands, which can be manipulated by the degree of response specification. Compared with classical verbal fluency, free word association relies less on…

  5. Evaluating Integrated Task Based Activities and Computer Assisted Language Learning (CALL)

    ERIC Educational Resources Information Center

    Anwar, Khoirul; Husniah, Rohmy

    2016-01-01

    This study is to evaluate the implementation of Task Activities based on CALL which consist of observing, questioning, exploring, and communicating. The developed materials are nine chapters that had been implemented in two different classes of SMPN 1 Gresik and SMPM 4 Gresik in Indonesia. Of quesionnaires and interviews, the results indicate that…

  6. Left inferior-parietal lobe activity in perspective tasks: identity statements

    PubMed Central

    Arora, Aditi; Weiss, Benjamin; Schurz, Matthias; Aichhorn, Markus; Wieshofer, Rebecca C.; Perner, Josef

    2015-01-01

    We investigate the theory that the left inferior parietal lobe (IPL) is closely associated with tracking potential differences of perspective. Developmental studies find that perspective tasks are mastered at around 4 years of age. Our first study, meta-analyses of brain imaging studies shows that perspective tasks specifically activate a region in the left IPL and precuneus. These tasks include processing of false belief, visual perspective, and episodic memory. We test the location specificity theory in our second study with an unusual and novel kind of perspective task: identity statements. According to Frege's classical logical analysis, identity statements require appreciation of modes of presentation (perspectives). We show that identity statements, e.g., “the tour guide is also the driver” activate the left IPL in contrast to a control statements, “the tour guide has an apprentice.” This activation overlaps with the activations found in the meta-analysis. This finding is confirmed in a third study with different types of statements and different comparisons. All studies support the theory that the left IPL has as one of its overarching functions the tracking of perspective differences. We discuss how this function relates to the bottom-up attention function proposed for the bilateral IPL. PMID:26175677

  7. Individual Differences for Self-Regulating Task-Oriented Reading Activities

    ERIC Educational Resources Information Center

    Vidal-Abarca, Eduardo; Mana, Amelia; Gil, Laura

    2010-01-01

    The goal of this study is to analyze the self-regulation processes present in task-oriented reading activities. In the 1st experiment, we examined the following self-regulation processes in the context of answering questions about an available text: (a) monitoring the comprehension of the question, (b) self-regulating the search process, and (c)…

  8. Task Rotation: Strategies for Differentiating Activities and Assessments by Learning Style. A Strategic Teacher PLC Guide

    ERIC Educational Resources Information Center

    Silver, Harvey; Moirao, Daniel; Jackson, Joyce

    2011-01-01

    One of the hardest jobs in teaching is to differentiate learning activities and assessments to your students' learning styles. But you and your colleagues can learn how to do this together when each of you has this guide to the Task Rotation strategy from our ultimate guide to teaching strategies, "The Strategic Teacher". Use the guide in your…

  9. Atypical activation during the Embedded Figures Task as a functional magnetic resonance imaging endophenotype of autism.

    PubMed

    Spencer, Michael D; Holt, Rosemary J; Chura, Lindsay R; Calder, Andrew J; Suckling, John; Bullmore, Edward T; Baron-Cohen, Simon

    2012-11-01

    Atypical activation during the Embedded Figures Task has been demonstrated in autism, but has not been investigated in siblings or related to measures of clinical severity. We identified atypical activation during the Embedded Figures Task in participants with autism and unaffected siblings compared with control subjects in a number of temporal and frontal brain regions. Autism and sibling groups, however, did not differ in terms of activation during this task. This suggests that the pattern of atypical activation identified may represent a functional endophenotype of autism, related to familial risk for the condition shared between individuals with autism and their siblings. We also found that reduced activation in autism relative to control subjects in regions including associative visual and face processing areas was strongly correlated with the clinical severity of impairments in reciprocal social interaction. Behavioural performance was intact in autism and sibling groups. Results are discussed in terms of atypical information processing styles or of increased activation in temporal and frontal regions in autism and the broader phenotype. By separating the aspects of atypical activation as markers of familial risk for the condition from those that are autism-specific, our findings offer new insight into the factors that might cause the expression of autism in families, affecting some children but not others.

  10. Influence of monkey dorsolateral prefrontal and posterior parietal activity on behavioral choice during attention tasks

    PubMed Central

    Katsuki, Fumi; Saito, Mizuki; Constantinidis, Christos

    2014-01-01

    The dorsolateral prefrontal and the posterior parietal cortex have both been implicated in the guidance of visual attention. Traditionally, posterior parietal cortex has been thought to guide visual bottom-up attention, whereas prefrontal cortex to bias attention through top-down information. More recent studies suggest a parallel time course of activation of the two areas in bottom-up attention tasks, suggesting a common involvement, though these results do not necessarily imply identical roles, either. To address the specific roles of the two areas, we examined the influence of neuronal activity recorded from the prefrontal and parietal cortex of monkeys as they performed attention tasks based on choice probability and correlation between reaction time and neuronal activity. The results revealed that posterior parietal but not dorsolateral prefrontal activity correlated with behavioral choice during the fixation period, prior to the appearance of the stimulus, resembling a bias factor. This preferential influence of posterior parietal activity on behavior was transient, so that dorsolateral prefrontal activity predicted choice after the appearance of the stimulus. Additionally, reaction time was better predicted by posterior parietal activity. These findings confirm an involvement of both dorsolateral prefrontal and posterior parietal cortex in the bottom-up guidance of visual attention but indicate different roles of the two areas in the guidance of attention and a dynamic time course of their effects, influencing behavior at different stages of the task. PMID:24964224

  11. Working together may be better: activation of reward centers during a cooperative maze task.

    PubMed

    Krill, Austen L; Platek, Steven M

    2012-01-01

    Humans use theory of mind when predicting the thoughts and feelings and actions of others. There is accumulating evidence that cooperation with a computerized game correlates with a unique pattern of brain activation. To investigate the neural correlates of cooperation in real-time we conducted an fMRI hyperscanning study. We hypothesized that real-time cooperation to complete a maze task, using a blind-driving paradigm, would activate substrates implicated in theory of mind. We also hypothesized that cooperation would activate neural reward centers more than when participants completed the maze themselves. Of interest and in support of our hypothesis we found left caudate and putamen activation when participants worked together to complete the maze. This suggests that cooperation during task completion is inherently rewarding. This finding represents one of the first discoveries of a proximate neural mechanism for group based interactions in real-time, which indirectly supports the social brain hypothesis.

  12. Flight tests for the assessment of task performance and control activity

    NASA Technical Reports Server (NTRS)

    Pausder, H. J.; Hummes, D.

    1982-01-01

    The tests were performed with the helicopters BO 105 and UH-1D. Closely connected with tactical demands the six test pilots' task was to minimize the time and the altitude over the obstacles. The data reduction yields statistical evaluation parameters describing the control activity of the pilots and the achieved task performance. The results are shown in form of evaluation diagrams. Additionally dolphin tests with varied control strategy were performed to get more insight into the influence of control techniques. From these test results recommendations can be derived to emphasize the direct force control and to reduce the collective to pitch crosscoupling for the dolphin.

  13. Effect of postural angle on back muscle activities in aging female workers performing computer tasks.

    PubMed

    Kamil, Nabilla Sofia Mohd; Dawal, Siti Zawiah Md

    2015-06-01

    [Purpose] This study investigated the effects of postural angle on back muscle activity during a computer task in aging women. [Subjects] Seventeen women ≥50 years old participated. [Methods] The participants were instructed to perform computer-related tasks for 20 minutes on a workstation that simulated typical office working conditions. Back posture was measured from the measured trunk and pelvic angles. Electromyography activities were recorded simultaneously from the cervical erector spinae, longissimus, and multifidus muscles. [Results] The lowest mean percentages of maximum voluntary contraction for the cervical erector spinae and longissimus muscles were obtained when the upper trunk and pelvic angles were between 0° to -5° from the sagittal plane. The back muscle activities increased as the upper trunk and pelvic angles exceeded 0°. Statistical analysis showed significant correlations between upper trunk angle and cervical erector spinae and longissimus muscle activities. Similarly, pelvic angle was significantly correlated with cervical erector spinae and multifidus muscle activities. [Conclusion] A neutral back posture minimizes muscle activities in aging women performing computer tasks.

  14. Brain Activations Related to Saccadic Response Conflict are not Sensitive to Time on Task

    PubMed Central

    Beldzik, Ewa; Domagalik, Aleksandra; Oginska, Halszka; Marek, Tadeusz; Fafrowicz, Magdalena

    2015-01-01

    Establishing a role of the dorsal medial frontal cortex in the performance monitoring and cognitive control has been a challenge to neuroscientists for the past decade. In light of recent findings, the conflict monitoring hypothesis has been elaborated to an action-outcome predictor theory. One of the findings that led to this re-evaluation was the fMRI study in which conflict-related brain activity was investigated in terms of the so-called time on task effect, i.e., a linear increase of the BOLD signal with longer response times. The aim of this study was to investigate brain regions involved in the processing of saccadic response conflict and to account for the time on task effect. A modified spatial cueing task was implemented in the event-related fMRI study with oculomotor responses. The results revealed several brain regions which show higher activity for incongruent trials in comparison to the congruent ones, including pre-supplementary motor area together with the frontal and parietal regions. Further analysis accounting for the effect of response time provided evidence that these brain activations were not sensitive to time on task but reflected purely the congruency effect. PMID:26696871

  15. An 8-Month Randomized Controlled Exercise Trial Alters Brain Activation During Cognitive Tasks in Overweight Children

    PubMed Central

    Krafft, Cynthia E.; Schwarz, Nicolette F.; Chi, Lingxi; Weinberger, Abby L.; Schaeffer, David J.; Pierce, Jordan E.; Rodrigue, Amanda L.; Yanasak, Nathan E.; Miller, Patricia H.; Tomporowski, Phillip D.; Davis, Catherine L.; McDowell, Jennifer E.

    2014-01-01

    Objective Children who are less fit reportedly have lower performance on tests of cognitive control and differences in brain function. This study examined the effect of an exercise intervention on brain function during two cognitive control tasks in overweight children. Design and Methods Participants included 43 unfit, overweight (BMI ≥ 85th percentile) children 8- to 11-years old (91% Black), who were randomly divided into either an aerobic exercise (n = 24) or attention control group (n = 19). Each group was offered a separate instructor-led after-school program every school day for 8 months. Before and after the program, all children performed two cognitive control tasks during functional magnetic resonance imaging (fMRI): antisaccade and flanker. Results Compared to the control group, the exercise group decreased activation in several regions supporting antisaccade performance, including precentral gyrus and posterior parietal cortex, and increased activation in several regions supporting flanker performance, including anterior cingulate and superior frontal gyrus. Conclusions Exercise may differentially impact these two task conditions, or the paradigms in which cognitive control tasks were presented may be sensitive to distinct types of brain activation that show different effects of exercise. In sum, exercise appears to alter efficiency or flexible modulation of neural circuitry supporting cognitive control in overweight children. PMID:23788510

  16. Walking while Performing Working Memory Tasks Changes the Prefrontal Cortex Hemodynamic Activations and Gait Kinematics

    PubMed Central

    Lin, Ming-I B.; Lin, Kuan-Hung

    2016-01-01

    Background: Increasing evidence suggests that walking while performing a concurrent task negatively influences gait performance. However, it remains unclear how higher-level cognitive processes and coordination of limb movements are altered in challenging walking environments. This study investigated the influence of cognitive task complexity and walking road condition on the neutral correlates of executive function and postural control in dual-task walking. Methods: Twenty-four healthy young adults completed a series of overground walks with three walking road conditions (wide, narrow, with obstacles) with and without the concurrent n-back working memory tasks of two complexity levels (1-back and 3-back). Prefrontal brain activation was assessed by functional near-infrared spectroscopy. A three-dimensional motion analysis system was used simultaneously to measure gait performance and lower-extremity kinematics. Repeated measures analysis of variance were performed to examine the differences between the conditions. Results: In comparison with standing still, participants showed lower n-back task accuracy while walking, with the worst performance from the road with obstacles. Spatiotemporal gait parameters, lower-extremity joint movements, and the relative changes in oxygenated hemoglobin (HbO) concentration levels were all significantly different across the task complexity and walking path conditions. While dual-tasking participants were found to flex their hips and knees less, leading to a slower gait speed, longer stride time, shorter step length, and greater gait variability than during normal walking. For narrow-road walking, smaller ankle dorsiflexion and larger hip flexion were observed, along with a reduced gait speed. Obstacle negotiation was mainly characterized by increased gait variability than other conditions. HbO levels appeared to be lower during dual-task walking than normal walking. Compared to wide and obstacle conditions, walking on the narrow

  17. A modelization of the task allocation problem for prescribing activity in an ICU.

    PubMed Central

    Renard, J. M.; Bricon-Souf, N.; Guigue, L.; Beuscart, R.

    2000-01-01

    The improvement of coordination between Health Care Professionals belonging different specialities and who are extremely mobile, is a crucial problem in Medicine. A workflow System is one example of the new informatics tools which facilitate the transfer of information and responsibility between health care providers. Medical informatics systems in particular should be reactive enough to cope with the flexibility of real work situations: in this paper, we present the task allocation problem. We distinguish between the workflow control process and the notifying process, which concerns the sharing out of the tasks between the actors concerned. We focus on the impact of strategies of notification on the progress of coordinated work. We propose a simulator to model and study the different ways of sharing tasks between actors in an Intensive Care Unit's activity of prescription. PMID:11079971

  18. EVA Communications Avionics and Informatics

    NASA Technical Reports Server (NTRS)

    Carek, David Andrew

    2005-01-01

    The Glenn Research Center is investigating and developing technologies for communications, avionics, and information systems that will significantly enhance extra vehicular activity capabilities to support the Vision for Space Exploration. Several of the ongoing research and development efforts are described within this presentation including system requirements formulation, technology development efforts, trade studies, and operational concept demonstrations.

  19. Short- and long-term changes in anterior cingulate activation during resolution of task-set competition.

    PubMed

    Woodward, Todd S; Ruff, Christian C; Ngan, Elton T C

    2006-01-12

    Alternating between task sets involves detection that the current task set is unfavorable, initiation of a change in set, and application of the new task set while fine-tuning to optimally adjust to the demands of the environment. Functional magnetic resonance imaging (fMRI) studies of cognitive flexibility consistently report activation of the anterior cingulate cortex and/or adjacent pre-supplementary motor regions (ACC/pre-SMA, medial Brodmann's areas 24/32/6), suggesting that these cortical regions are involved in switching task set. In the current study, our objective was to probe whether ACC/pre-SMA activation would decrease for a number of trials following a switch in task set, implying longer-term involvement in fine-tuning adjustments. By measuring activation when switching between word reading and color naming in response to Stroop stimuli, ACC/pre-SMA activation was observed when actively countering the influence of the irrelevant task set, and this activation decreased as a function of the number of trials since a task switch. Basal ganglia and thalamic regions also displayed a decreased response over successive trials after task switches. These findings suggest that the ACC/pre-SMA are not only involved in generating a new course of action, but are also involved (along with subcortical regions) in fine-tuning operations that resolve competition between task sets over subsequent repetitions of the same task. PMID:16376861

  20. Predicting hand orientation in reach-to-grasp tasks using neural activities from primary motor cortex.

    PubMed

    Zhang, Peng; Ma, Xuan; Huang, Hailong; He, Jiping

    2014-01-01

    Hand orientation is an important control parameter during reach-to-grasp task. In this paper, we presented a study for predicting hand orientation of non-human primate by decoding neural activities from primary motor cortex (M1). A non-human primate subject was guided to do reaching and grasping tasks meanwhile neural activities were acquired by chronically implanted microelectrode arrays. A Support Vector Machines (SVMs) classifier has been trained for predicting three different hand orientations using these M1 neural activities. Different number of neurons were selected and analyzed; the classifying accuracy was 94.1% with 2 neurons and was 100% with 8 neurons. Data from highly event related neuron units contribute a lot to the accuracy of hand orientation prediction. These results indicate that three different hand orientations can be predicted accurately and effectively before the actual movements occurring with a small number of related neurons in M1.

  1. Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Riazansky, S. N.; Goulet, C.; Badakva, A. M.; Kozlovskaya, I. B.; Recktenwald, M. R.; McCall, G.; Roy, R. R.; Fanton, J. W.; Edgerton, V. R.

    2000-01-01

    Rhesus monkeys (Macaca mulatta) were trained to perform a foot lever pressing task for a food reward. EMG activity was recorded from selected lower limb muscles of 2 animals before, during, and after a 14-day spaceflight and from 3 animals during a ground-based simulation of the flight. Integrated EMG activity was calculated for each muscle during the 20-min test. Comparisons were made between data recorded before any experimental manipulations and during flight or flight simulation. Spaceflight reduced soleus (Sol) activity to 25% of preflight levels, whereas it was reduced to 50% of control in the flight simulation. During flight, medial gastrocnemius (MG) activity was reduced to 25% of preflight activity, whereas the simulation group showed normal activity levels throughout all tests. The change in MG activity was apparent in the first inflight recording, suggesting that some effect of microgravity on MG activity was immediate.

  2. Task Performance and Meta-Cognitive Outcomes When Using Activity Workstations and Traditional Desks

    PubMed Central

    Pilcher, June J.; Baker, Victoria C.

    2016-01-01

    The purpose of the current study is to compare the effects of light physical activity to sedentary behavior on cognitive task performance and meta-cognitive responses. Thirty-eight undergraduate students participated in the study. The participants used a stationary bicycle with a desk top and a traditional desk while completing two complex cognitive tasks and measures of affect, motivation, morale, and engagement. The participants pedaled the stationary bicycle at a slow pace (similar in exertion to a normal walking pace) while working. The results indicated that cognitive task performance did not change between the two workstations. However, positive affect, motivation, and morale improved when using the stationary bicycle. These results suggest that activity workstations could be implemented in the work place and in educational settings to help decrease sedentary behavior without negatively affecting performance. Furthermore, individuals could experience a positive emotional response when working on activity workstations which in turn could help encourage individuals to choose to be more physical active during daily activities. PMID:27445921

  3. Muscle activation during the Pack Hike test and a critical wildfire fighting task.

    PubMed

    Netto, Kevin; Lord, Cara; Petersen, Aaron; Janssen, James; Nichols, David; Aisbett, Brad

    2013-03-01

    The aim of this study was to examine the muscle activation of six global muscles during the successful completion of the Pack Hike test (PHT) and compare this to muscle activations during a critical wildfire fighting task. In-field surface electromyography was recorded from eight male wildfire fighters during the PHT and the rakehoe task - a critical wildfire suppression activity. All participants successfully completed the PHT within the 45-min time limit. No significant changes in peak muscle activation levels as well as no significant shifts in median frequency in the six muscle analysed were recorded during the 4.83-km hike. Significantly different peak muscle activation levels were recorded in four of the six muscles tested when the PHT was compared to the rakehoe task. These results suggest the PHT should not be administered in isolation and other tests that specifically challenge upper body muscle endurance should be incorporated into a battery that accurately assesses the job-specific fitness of wildfire fighters.

  4. Muscle activation during the Pack Hike test and a critical wildfire fighting task.

    PubMed

    Netto, Kevin; Lord, Cara; Petersen, Aaron; Janssen, James; Nichols, David; Aisbett, Brad

    2013-03-01

    The aim of this study was to examine the muscle activation of six global muscles during the successful completion of the Pack Hike test (PHT) and compare this to muscle activations during a critical wildfire fighting task. In-field surface electromyography was recorded from eight male wildfire fighters during the PHT and the rakehoe task - a critical wildfire suppression activity. All participants successfully completed the PHT within the 45-min time limit. No significant changes in peak muscle activation levels as well as no significant shifts in median frequency in the six muscle analysed were recorded during the 4.83-km hike. Significantly different peak muscle activation levels were recorded in four of the six muscles tested when the PHT was compared to the rakehoe task. These results suggest the PHT should not be administered in isolation and other tests that specifically challenge upper body muscle endurance should be incorporated into a battery that accurately assesses the job-specific fitness of wildfire fighters. PMID:22981470

  5. Reliability of negative BOLD in ipsilateral sensorimotor areas during unimanual task activity.

    PubMed

    McGregor, Keith M; Sudhyadhom, Atchar; Nocera, Joe; Seff, Ari; Crosson, Bruce; Butler, Andrew J

    2015-06-01

    Research using functional magnetic resonance imaging has for numerous years now reported the existence of a negative blood oxygenation level dependent (BOLD) response. Based on accumulating evidence, this negative BOLD signal appears to represent an active inhibition of cortical areas in which it is found during task activity. This particularly important with respect to motor function given that it is fairly well-established that, in younger adults, the ipsilateral sensorimotor cortex exhibits negative BOLD during unimanual movements in fMRI. This interhemispheric suppression of cortical activity may have useful implications for our understanding of both basic motor function and rehabilitation of injury or disease. However, to date, we are aware of no study that has tested the reliability of evoked negative BOLD in ipsilateral sensorimotor cortex in individuals across sessions. The current study employs a unimanual finger opposition task previously shown to evoke negative BOLD in ipsilateral sensorimotor cortex across three sessions. Reliability metrics across sessions indicates that both the magnitude and location of ipsilateral sensorimotor negative BOLD response is relatively stable over each of the three sessions. Moreover, the volume of negative BOLD in ipsilateral cortex was highly correlated with volume of positive BOLD activity in the contralateral primary motor cortex. These findings show that the negative BOLD signal can be reliably evoked in unimanual task paradigms, and that the signal dynamic could represent an active suppression of the ipsilateral sensorimotor cortex originating from the contralateral motor areas.

  6. Motivation alters response bias and neural activation patterns in a perceptual decision-making task.

    PubMed

    Reckless, G E; Bolstad, I; Nakstad, P H; Andreassen, O A; Jensen, J

    2013-05-15

    Motivation has been demonstrated to affect individuals' response strategies in economic decision-making, however, little is known about how motivation influences perceptual decision-making behavior or its related neural activity. Given the important role motivation plays in shaping our behavior, a better understanding of this relationship is needed. A block-design, continuous performance, perceptual decision-making task where participants were asked to detect a picture of an animal among distractors was used during functional magnetic resonance imaging (fMRI). The effect of positive and negative motivation on sustained activity within regions of the brain thought to underlie decision-making was examined by altering the monetary contingency associated with the task. In addition, signal detection theory was used to investigate the effect of motivation on detection sensitivity, response bias and response time. While both positive and negative motivation resulted in increased sustained activation in the ventral striatum, fusiform gyrus, left dorsolateral prefrontal cortex (DLPFC) and ventromedial prefrontal cortex, only negative motivation resulted in the adoption of a more liberal, closer to optimal response bias. This shift toward a liberal response bias correlated with increased activation in the left DLPFC, but did not result in improved task performance. The present findings suggest that motivation alters aspects of the way perceptual decisions are made. Further, this altered response behavior is reflected in a change in left DLPFC activation, a region involved in the computation of perceptual decisions.

  7. Task Performance and Meta-Cognitive Outcomes When Using Activity Workstations and Traditional Desks.

    PubMed

    Pilcher, June J; Baker, Victoria C

    2016-01-01

    The purpose of the current study is to compare the effects of light physical activity to sedentary behavior on cognitive task performance and meta-cognitive responses. Thirty-eight undergraduate students participated in the study. The participants used a stationary bicycle with a desk top and a traditional desk while completing two complex cognitive tasks and measures of affect, motivation, morale, and engagement. The participants pedaled the stationary bicycle at a slow pace (similar in exertion to a normal walking pace) while working. The results indicated that cognitive task performance did not change between the two workstations. However, positive affect, motivation, and morale improved when using the stationary bicycle. These results suggest that activity workstations could be implemented in the work place and in educational settings to help decrease sedentary behavior without negatively affecting performance. Furthermore, individuals could experience a positive emotional response when working on activity workstations which in turn could help encourage individuals to choose to be more physical active during daily activities. PMID:27445921

  8. Evaluation of a novel molecular vibration-based descriptor (EVA) for QSAR studies: 2. Model validation using a benchmark steroid dataset.

    PubMed

    Turner, D B; Willett, P; Ferguson, A M; Heritage, T W

    1999-05-01

    The EVA molecular descriptor derived from calculated molecular vibrational frequencies is validated for use in QSAR studies. EVA provides a conformationally sensitive but, unlike 3D-QSAR methods such as CoMFA, superposition-free descriptor that has been shown to perform well with a wide range of datasets and biological endpoints. A detailed study is made using a benchmark steroid dataset with a training/test set division of structures. Intensive statistical validation tests are undertaken including various forms of crossvalidation and repeated random permutation testing. Latent variable score plots show that the distribution of structures in reduced dimensional space can be rationalized in terms of activity classes and that EVA is sensitive to structural inconsistencies. Together, the findings indicate that EVA is a statistically robust means of detecting structure-activity correlations with performance entirely comparable to that of analogous CoMFAs. The EVA descriptor is shown to be conformationally sensitive and as such can be considered to be a 3D descriptor but with the advantage over CoMFA that structural superposition is not required. EVA has the property that in certain situations the conformational sensitivity can be altered through the appropriate choice of the EVA sigma parameter. PMID:10216834

  9. Alzheimer Disease Alters the Relationship of Cardiorespiratory Fitness With Brain Activity During the Stroop Task

    PubMed Central

    Gayed, Matthew R.; Honea, Robyn A.; Savage, Cary R.; Hobbs, Derek; Burns, Jeffrey M.

    2013-01-01

    Background Despite mounting evidence that physical activity has positive benefits for brain and cognitive health, there has been little characterization of the relationship between cardiorespiratory (CR) fitness and cognition-associated brain activity as measured by functional magnetic resonance imaging (fMRI). The lack of evidence is particularly glaring for diseases such as Alzheimer disease (AD) that degrade cognitive and functional performance. Objective The aim of this study was to describe the relationship between regional brain activity during cognitive tasks and CR fitness level in people with and without AD. Design A case-control, single-observation study design was used. Methods Thirty-four individuals (18 without dementia and 16 in the earliest stages of AD) completed maximal exercise testing and performed a Stroop task during fMRI. Results Cardiorespiratory fitness was inversely associated with anterior cingulate activity in the participants without dementia (r=−.48, P=.05) and unassociated with activation in those with AD (P>.7). Weak associations of CR fitness and middle frontal cortex were noted. Limitations The wide age range and the use of a single task in fMRI rather than multiple tasks challenging different cognitive capacities were limitations of the study. Conclusions The results offer further support of the relationship between CR fitness and regional brain activity. However, this relationship may be attenuated by disease. Future work in this area may provide clinicians and researchers with interpretable and dependable regional fMRI biomarker signatures responsive to exercise intervention. It also may shed light on mechanisms by which exercise can support cognitive function. PMID:23559521

  10. Correlations in background activity control persistent state stability and allow execution of working memory tasks

    PubMed Central

    Dipoppa, Mario; Gutkin, Boris S.

    2013-01-01

    Working memory (WM) requires selective information gating, active information maintenance, and rapid active updating. Hence performing a WM task needs rapid and controlled transitions between neural persistent activity and the resting state. We propose that changes in correlations in neural activity provides a mechanism for the required WM operations. As a proof of principle, we implement sustained activity and WM in recurrently coupled spiking networks with neurons receiving excitatory random background activity where background correlations are induced by a common noise source. We first characterize how the level of background correlations controls the stability of the persistent state. With sufficiently high correlations, the sustained state becomes practically unstable, so it cannot be initiated by a transient stimulus. We exploit this in WM models implementing the delay match to sample task by modulating flexibly in time the correlation level at different phases of the task. The modulation sets the network in different working regimes: more prompt to gate in a signal or clear the memory. We examine how the correlations affect the ability of the network to perform the task when distractors are present. We show that in a winner-take-all version of the model, where two populations cross-inhibit, correlations make the distractor blocking robust. In a version of the mode where no cross inhibition is present, we show that appropriate modulation of correlation levels is sufficient to also block the distractor access while leaving the relevant memory trace in tact. The findings presented in this manuscript can form the basis for a new paradigm about how correlations are flexibly controlled by the cortical circuits to execute WM operations. PMID:24155714

  11. When the brain simulates stopping: Neural activity recorded during real and imagined stop-signal tasks.

    PubMed

    González-Villar, Alberto J; Bonilla, F Mauricio; Carrillo-de-la-Peña, María T

    2016-10-01

    It has been suggested that mental rehearsal activates brain areas similar to those activated by real performance. Although inhibition is a key function of human behavior, there are no previous reports of brain activity during imagined response cancellation. We analyzed event-related potentials (ERPs) and time-frequency data associated with motor execution and inhibition during real and imagined performance of a stop-signal task. The ERPs characteristic of stop trials-that is, the stop-N2 and stop-P3-were also observed during covert performance of the task. Imagined stop (IS) trials yielded smaller stop-N2 amplitudes than did successful stop (SS) and unsuccessful stop (US) trials, but midfrontal theta power similar to that in SS trials. The stop-P3 amplitude for IS was intermediate between those observed for SS and US. The results may be explained by the absence of error-processing and correction processes during imagined performance. For go trials, real execution was associated with higher mu and beta desynchronization over motor areas, which confirms previous reports of lower motor activation during imagined execution and also with larger P3b amplitudes, probably indicating increased top-down attention to the real task. The similar patterns of activity observed for imagined and real performance suggest that imagination tasks may be useful for training inhibitory processes. Nevertheless, brain activation was generally weaker during mental rehearsal, probably as a result of the reduced engagement of top-down mechanisms and limited error processing. PMID:27160368

  12. Hormonal contraceptives masculinize brain activation patterns in the absence of behavioral changes in two numerical tasks.

    PubMed

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert

    2014-01-16

    The aim of the present study was to identify, whether and how oral hormonal contraceptives (OCs) alter women's number processing. Behavioral performance and brain activation patterns (BOLD-response) of 14 OC-users were evaluated during two distinct numerical tasks (number comparison, number bisection) and compared to 16 men (high testosterone), and 16 naturally cycling women, once during their follicular (low hormone levels) and once during their luteal cycle phase (high progesterone). For both tasks, reliable sex differences and menstrual cycle dependent modulation have previously been described. If progestogenic effects of the synthetic progestins contained in OC play a predominant role, OC-users should be comparable to luteal women. If androgenic effects of the synthetic steroids exert the progestogenic actions, OC-users should be comparable to men. Likewise, if neither of the above are the case, the reduction of endogenous steroids by OCs should make OC-users comparable to follicular women. Our findings suggest that OC-users resemble follicular women in their behavioral performance, but show male-like brain activation patterns during both tasks. Analysis of brain-behavior relationships suggests that OC-users differ from naturally cycling women in the way they recruit their neural resources to deal with challenges of the tasks. We conclude that OCs, which are used by 100 million women worldwide, may have profound effects on cognition that have not been recognized so far. PMID:24231554

  13. Dynamic trajectory of multiple single-unit activity during working memory task in rats

    PubMed Central

    Zhang, Xiaofan; Yi, Hu; Bai, Wenwen; Tian, Xin

    2015-01-01

    Working memory plays an important role in complex cognitive tasks. A popular theoretical view is that transient properties of neuronal dynamics underlie cognitive processing. The question raised here as to how the transient dynamics evolve in working memory. To address this issue, we investigated the multiple single-unit activity dynamics in rat medial prefrontal cortex (mPFC) during a Y-maze working memory task. The approach worked by reconstructing state space from delays of the original single-unit firing rate variables, which were further analyzed using kernel principal component analysis (KPCA). Then the neural trajectories were obtained to visualize the multiple single-unit activity. Furthermore, the maximal Lyapunov exponent (MLE) was calculated to quantitatively evaluate the neural trajectories during the working memory task. The results showed that the neuronal activity produced stable and reproducible neural trajectories in the correct trials while showed irregular trajectories in the incorrect trials, which may establish a link between the neurocognitive process and behavioral performance in working memory. The MLEs significantly increased during working memory in the correctly performed trials, indicating an increased divergence of the neural trajectories. In the incorrect trials, the MLEs were nearly zero and remained unchanged during the task. Taken together, the trial-specific neural trajectory provides an effective way to track the instantaneous state of the neuronal population during the working memory task and offers valuable insights into working memory function. The MLE describes the changes of neural dynamics in working memory and may reflect different neuronal population states in working memory. PMID:26441626

  14. Energy utilization rates during shuttle extravehicular activities.

    PubMed

    Waligora, J M; Kumar, K V

    1995-01-01

    The work rates or energy utilization rates during EVA are major factors in sizing of life support systems. These rates also provide a measure of ease of EVA and its cost in crew fatigue. From the first Shuttle EVA on the STS-6 mission in 1983, we have conducted 59 man-EVA and 341 man-hours of EVA. Energy utilization rates have been measured on each of these EVA. Metabolic rate was measured during each EVA using oxygen utilization corrected for suit leakage. From 1981-1987, these data were available for average data over the EVA or over large segments of the EVA. Since 1987, EVA oxygen utilization data were available at 2-minute intervals. The average metabolic rate on Shuttle EVA (194 kcal/hr.) has been significantly lower than metabolic rates during Apollo and Skylab missions. Peak rates have been below design levels, infrequent, and of short duration. The data suggest that the energy cost of tasks may be inversely related to the degree of training for the task. The data provide insight on the safety margins provided by life support designs and on the energy cost of Station construction EVA.

  15. Energy utilization rates during shuttle extravehicular activities.

    PubMed

    Waligora, J M; Kumar, K V

    1995-01-01

    The work rates or energy utilization rates during EVA are major factors in sizing of life support systems. These rates also provide a measure of ease of EVA and its cost in crew fatigue. From the first Shuttle EVA on the STS-6 mission in 1983, we have conducted 59 man-EVA and 341 man-hours of EVA. Energy utilization rates have been measured on each of these EVA. Metabolic rate was measured during each EVA using oxygen utilization corrected for suit leakage. From 1981-1987, these data were available for average data over the EVA or over large segments of the EVA. Since 1987, EVA oxygen utilization data were available at 2-minute intervals. The average metabolic rate on Shuttle EVA (194 kcal/hr.) has been significantly lower than metabolic rates during Apollo and Skylab missions. Peak rates have been below design levels, infrequent, and of short duration. The data suggest that the energy cost of tasks may be inversely related to the degree of training for the task. The data provide insight on the safety margins provided by life support designs and on the energy cost of Station construction EVA. PMID:11540993

  16. Payload crew activity planning integration. Task 2: Inflight operations and training for payloads

    NASA Technical Reports Server (NTRS)

    Hitz, F. R.

    1976-01-01

    The primary objectives of the Payload Crew Activity Planning Integration task were to: (1) Determine feasible, cost-effective payload crew activity planning integration methods. (2) Develop an implementation plan and guidelines for payload crew activity plan (CAP) integration between the JSC Orbiter planners and the Payload Centers. Subtask objectives and study activities were defined as: (1) Determine Crew Activity Planning Interfaces. (2) Determine Crew Activity Plan Type and Content. (3) Evaluate Automated Scheduling Tools. (4) Develop a draft Implementation Plan for Crew Activity Planning Integration. The basic guidelines were to develop a plan applicable to the Shuttle operations timeframe, utilize existing center resources and expertise as much as possible, and minimize unnecessary data exchange not directly productive in the development of the end-product timelines.

  17. Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks

    PubMed Central

    Pinti, Paola; Aichelburg, Clarisse; Lind, Frida; Power, Sarah; Swingler, Elizabeth; Merla, Arcangelo; Hamilton, Antonia; Gilbert, Sam; Burgess, Paul; Tachtsidis, Ilias

    2015-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is a neuroimaging technique that uses near-infrared light to monitor brain activity. Based on neurovascular coupling, fNIRS is able to measure the haemoglobin concentration changes secondary to neuronal activity. Compared to other neuroimaging techniques, fNIRS represents a good compromise in terms of spatial and temporal resolution. Moreover, it is portable, lightweight, less sensitive to motion artifacts and does not impose significant physical restraints. It is therefore appropriate to monitor a wide range of cognitive tasks (e.g., auditory, gait analysis, social interaction) and different age populations (e.g., new-borns, adults, elderly people). The recent development of fiberless fNIRS devices has opened the way to new applications in neuroscience research. This represents a unique opportunity to study functional activity during real-world tests, which can be more sensitive and accurate in assessing cognitive function and dysfunction than lab-based tests. This study explored the use of fiberless fNIRS to monitor brain activity during a real-world prospective memory task. This protocol is performed outside the lab and brain haemoglobin concentration changes are continuously measured over the prefrontal cortex while the subject walks around in order to accomplish several different tasks. PMID:26651025

  18. Working memory training is associated with lower prefrontal cortex activation in a divergent thinking task.

    PubMed

    Vartanian, O; Jobidon, M-E; Bouak, F; Nakashima, A; Smith, I; Lam, Q; Cheung, B

    2013-04-16

    Working memory (WM) training has been shown to lead to improvements in WM capacity and fluid intelligence. Given that divergent thinking loads on WM and fluid intelligence, we tested the hypothesis that WM training would improve performance and moderate neural function in the Alternate Uses Task (AUT)-a classic test of divergent thinking. We tested this hypothesis by administering the AUT in the functional magnetic resonance imaging scanner following a short regimen of WM training (experimental condition), or engagement in a choice reaction time task not expected to engage WM (active control condition). Participants in the experimental group exhibited significant improvement in performance in the WM task as a function of training, as well as a significant gain in fluid intelligence. Although the two groups did not differ in their performance on the AUT, activation was significantly lower in the experimental group in ventrolateral prefrontal and dorsolateral prefrontal cortices-two brain regions known to play dissociable and critical roles in divergent thinking. Furthermore, gain in fluid intelligence mediated the effect of training on brain activation in ventrolateral prefrontal cortex. These results indicate that a short regimen of WM training is associated with lower prefrontal activation-a marker of neural efficiency-in divergent thinking.

  19. The odontological identification of Eva Braun Hitler.

    PubMed

    Keiser-Nielsen, S; Strøm, F

    1983-01-01

    On May 7th-9th, 1945, a team of Russian pathologists autopsied several bodies found in and near the Fuehrer Bunker in Berlin; among them, a female body (No. 13) was later identified as that of Eva Braun Hitler (EBH), mainly by means of a gold bridge from the lower right jaw. A postmortem photograph of this bridge also shows a separate gold filling. Data now available on the dental treatment of EBH have permitted the present authors to substantiate that this gold filling also came from the mouth of EBH. Further speculation about the fate of EBH would henceforth seem professionally unfounded.

  20. Maintaining Gait Performance by Cortical Activation during Dual-Task Interference: A Functional Near-Infrared Spectroscopy Study.

    PubMed

    Lu, Chia-Feng; Liu, Yan-Ci; Yang, Yea-Ru; Wu, Yu-Te; Wang, Ray-Yau

    2015-01-01

    In daily life, mobility requires walking while performing a cognitive or upper-extremity motor task. Although previous studies have evaluated the effects of dual tasks on gait performance, few studies have evaluated cortical activation and its association with gait disturbance during dual tasks. In this study, we simultaneously assessed gait performance and cerebral oxygenation in the bilateral prefrontal cortices (PFC), premotor cortices (PMC), and supplemental motor areas (SMA), using functional near-infrared spectroscopy, in 17 young adults performing dual tasks. Each participant was evaluated while performing normal-pace walking (NW), walking while performing a cognitive task (WCT), and walking while performing a motor task (WMT). Our results indicated that the left PFC exhibited the strongest and most sustained activation during WCT, and that NW and WMT were associated with minor increases in oxygenation levels during their initial phases. We observed increased activation in channels in the SMA and PMC during WCT and WMT. Gait data indicated that WCT and WMT both caused reductions in walking speed, but these reductions resulted from differing alterations in gait properties. WCT was associated with significant changes in cadence, stride time, and stride length, whereas WMT was associated with reductions in stride length only. During dual-task activities, increased activation of the PMC and SMA correlated with declines in gait performance, indicating a control mechanism for maintaining gait performance during dual tasks. Thus, the regulatory effects of cortical activation on gait behavior enable a second task to be performed while walking.

  1. Maintaining Gait Performance by Cortical Activation during Dual-Task Interference: A Functional Near-Infrared Spectroscopy Study

    PubMed Central

    Yang, Yea-Ru; Wu, Yu-Te; Wang, Ray-Yau

    2015-01-01

    In daily life, mobility requires walking while performing a cognitive or upper-extremity motor task. Although previous studies have evaluated the effects of dual tasks on gait performance, few studies have evaluated cortical activation and its association with gait disturbance during dual tasks. In this study, we simultaneously assessed gait performance and cerebral oxygenation in the bilateral prefrontal cortices (PFC), premotor cortices (PMC), and supplemental motor areas (SMA), using functional near-infrared spectroscopy, in 17 young adults performing dual tasks. Each participant was evaluated while performing normal-pace walking (NW), walking while performing a cognitive task (WCT), and walking while performing a motor task (WMT). Our results indicated that the left PFC exhibited the strongest and most sustained activation during WCT, and that NW and WMT were associated with minor increases in oxygenation levels during their initial phases. We observed increased activation in channels in the SMA and PMC during WCT and WMT. Gait data indicated that WCT and WMT both caused reductions in walking speed, but these reductions resulted from differing alterations in gait properties. WCT was associated with significant changes in cadence, stride time, and stride length, whereas WMT was associated with reductions in stride length only. During dual-task activities, increased activation of the PMC and SMA correlated with declines in gait performance, indicating a control mechanism for maintaining gait performance during dual tasks. Thus, the regulatory effects of cortical activation on gait behavior enable a second task to be performed while walking. PMID:26079605

  2. An air bearing fan for EVA suit ventilation

    NASA Technical Reports Server (NTRS)

    Murry, Roger P.

    1990-01-01

    The portable life-support system (PLSS) ventilation requirements are outlined, along with the application of a high-speed axial fan technology for extravehicular-activity (EVA) space-suit ventilation. Focus is placed on a mechanical design employing high-speed gas bearings, permanent magnet rotor, and current-fed chopper/inverter electronics. The operational characteristics of the fan unit and its applicability for use in a pure-oxygen environment are discussed. It delivers a nominal 0.17 cu m/min at 1.24 kPa pressure rise using 13.8 w of input power. It is shown that the overall selection of materials for all major component meets the NASA requirements.

  3. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia.

    PubMed

    Vatthauer, Karlyn E; Craggs, Jason G; Robinson, Michael E; Staud, Roland; Berry, Richard B; Perlstein, William M; McCrae, Christina S

    2015-01-01

    Patients with chronic pain exhibit altered default mode network (DMN) activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations. Thirteen women with fibromyalgia (FM) only and 26 women with fibromyalgia with comorbid chronic insomnia (FMI) underwent a single night of ambulatory polysomnography and completed a sleep diary each morning for 14 days prior to performing a neuroimaging protocol. Novel imaging analyses were utilized to identify regions associated with significantly disordered sleep that were more active in task-negative periods than task-oriented periods in participants with FMI, when compared to participants with FM. It was hypothesized that core DMN areas (ie, cingulate cortex, inferior parietal lobule, medial prefrontal cortex, medial temporal cortex, precuneus) would exhibit increased activity during task-negative periods. Analyses revealed that significantly disordered sleep significantly contributed to group differences in the right cingulate gyrus, left lentiform nucleus, left anterior cingulate, left superior gyrus, medial frontal gyrus, right caudate, and the left inferior parietal lobules. Results suggest that FMI may alter some brain areas of the DMN, above and beyond FM. However, future work will need to investigate these results further by controlling for chronic insomnia only before conclusions can be made regarding the effect of FMI comorbidity on the DMN. PMID:26648751

  4. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia

    PubMed Central

    Vatthauer, Karlyn E; Craggs, Jason G; Robinson, Michael E; Staud, Roland; Berry, Richard B; Perlstein, William M; McCrae, Christina S

    2015-01-01

    Patients with chronic pain exhibit altered default mode network (DMN) activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations. Thirteen women with fibromyalgia (FM) only and 26 women with fibromyalgia with comorbid chronic insomnia (FMI) underwent a single night of ambulatory polysomnography and completed a sleep diary each morning for 14 days prior to performing a neuroimaging protocol. Novel imaging analyses were utilized to identify regions associated with significantly disordered sleep that were more active in task-negative periods than task-oriented periods in participants with FMI, when compared to participants with FM. It was hypothesized that core DMN areas (ie, cingulate cortex, inferior parietal lobule, medial prefrontal cortex, medial temporal cortex, precuneus) would exhibit increased activity during task-negative periods. Analyses revealed that significantly disordered sleep significantly contributed to group differences in the right cingulate gyrus, left lentiform nucleus, left anterior cingulate, left superior gyrus, medial frontal gyrus, right caudate, and the left inferior parietal lobules. Results suggest that FMI may alter some brain areas of the DMN, above and beyond FM. However, future work will need to investigate these results further by controlling for chronic insomnia only before conclusions can be made regarding the effect of FMI comorbidity on the DMN. PMID:26648751

  5. Theta-Modulated Gamma-Band Synchronization Among Activated Regions During a Verb Generation Task

    PubMed Central

    Doesburg, Sam M.; Vinette, Sarah A.; Cheung, Michael J.; Pang, Elizabeth W.

    2012-01-01

    Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing. PMID:22707946

  6. Oscillatory cortical activity during a motor task in a deafferented patient.

    PubMed

    Patino, Luis; Chakarov, Vihren; Schulte-Mönting, Jürgen; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana

    2006-07-01

    Little is known about the influence of the afferent peripheral feedback on the sensorimotor cortex activation. To answer this open question we investigated the alpha and beta band task-related spectral power decreases (TRPow) in the deafferented patient G.L. and compared the results to those of six healthy subjects. The patient has been deafferented up to the nose for 24 years but her motor fibers are unaffected and she can perform complex motor tasks under visual control. We recorded EEG (58 scalp positions) as well as the exerted force during a visuomotor task. The subjects had to maintain in precision grip an isometric force at 15% of the maximal voluntary contraction. In the patient we found a significantly higher alpha band spectral power during rest and larger alpha TRPow decreases during the motor task when compared to the healthy subjects' data. In contrast, we did not observe any significant differences between patient and controls for the beta band TRPow. The results indicate an altered functional alpha band network state in the patient, probably due to the chronic deafferentation leading to a deep 'idling' state of the contralateral sensorimotor area.

  7. Evaluating Reverse Speech as a Control Task with Language-Related Gamma Activity on Electrocorticography

    PubMed Central

    Brown, Erik C; Muzik, Otto; Rothermel, Robert; Matsuzaki, Naoyuki; Juhász, Csaba; Shah, Aashit K; Atkinson, Marie D; Fuerst, Darren; Mittal, Sandeep; Sood, Sandeep; Diwadkar, Vaibhav A; Asano, Eishi

    2012-01-01

    Reverse speech has often been used as a control task in brain-mapping studies of language utilizing various non-invasive modalities. The rationale is that reverse speech is comparable to forward speech in terms of auditory characteristics, while omitting the linguistic components. Thus, it may control for non-language auditory functions. This finds some support in fMRI studies indicating that reverse speech resulted in less blood-oxygen-level-dependent (BOLD) signal intensity in perisylvian regions than forward speech. We attempted to externally validate a reverse speech control task using intracranial electrocorticography (ECoG) in eight patients with intractable focal epilepsy. We studied adolescent and adult patients who underwent extraoperative ECoG prior to resective epilepsy surgery. All patients received an auditory language task during ECoG recording. Patients were presented 115 audible question stimuli, including 30 reverse speech trials. Reverse speech trials more strongly engaged bilateral superior temporal sites than did the corresponding forward speech trials. Forward speech trials elicited larger gamma-augmentation at frontal lobe sites not attributable to sensorimotor function. Other temporal and frontal sites of significant augmentation showed no significant difference between reverse and forward speech. Thus, we failed to validate reported evidence of weaker activation of temporal neocortices during reverse compared to forward speech. Superior temporal lobe engagement may indicate increased attention to reverse speech. Reverse speech does not appear to be a suitable task for the control of non-language auditory functions on ECoG. PMID:22387167

  8. Photo-oxidation Behaviour of EVA Antimicrobial Films

    NASA Astrophysics Data System (ADS)

    Botta, L.; Scaffaro, R.; La Mantia, F. P.

    2010-06-01

    In this work the photo-oxidation of neat EVA and antimicrobial EVA/Nisin films was studied. Two EVA samples—containing two different vinyl acetate levels—were added with different amounts of nisin. The influence of the matrix type and of the nisin content on the photo-oxidation behaviour was evaluated. The photo-oxidation has been followed by monitoring the change of the mechanical and spectroscopic properties upon artificial exposure to UV-B light. The results revealed that the films incorporating nisin show a better photo resistance with respect to the neat polymer. This improvement becomes weaker with decreasing the amount of nisin incorporated. Moreover the EVA 28 based films showed a much slower photo-oxidation rate in comparison with the EVA 14 based ones.

  9. EVA Hazards due to TPS Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Stewart, Christine E.

    2007-01-01

    Tile inspection and repair activities have implicit hazards associated with them. When an Extra Vehicular Activities (EVA) crewmember and associated hardware are added into the equation, additional hazards are introduced. Potential hazards to the Extravehicular Mobility Unit (EMU), the Orbiter or the crew member themselves are created. In order to accurately assess the risk of performing a TPS inspection or repair, an accurate evaluation of potential hazards and how adequately these hazards are controlled is essential. The EMU could become damaged due to sharp edges, protrusions, thermal extremes, molten metal or impact with the Orbiter. Tools, tethers and the presence of a crew member in the vicinity of the Orbiter Thermal Protection System (TPS) pose hazards to the Orbiter. Hazards such as additional tile or Reinforced Carbon-Carbon (RCC) damage from a loose tool, safety tethers, crewmember or arm impact are introduced. Additionally, there are hazards to the crew which should be addressed. Crew hazards include laser injury, electrical shock, inability to return to the airlock for EMU failures or Orbiter rapid safing scenarios, as well as the potential inadvertent release of a crew member from the arm/boom. The aforementioned hazards are controlled in various ways. Generally, these controls are addressed operationally versus by design, as the majority of the interfaces are to the Orbiter and the Orbiter design did not originally account for tile repair. The Shuttle Remote Manipulator System (SRMS), for instance, was originally designed to deploy experiments, and therefore has insufficient design controls for retention of the Orbiter Boom Sensor System (OBSS). Although multiple methods to repair the Orbiter TPS exist, the majority of the hazards are applicable no matter which specific repair method is being performed. TPS Inspection performed via EVA also presents some of the same hazards. Therefore, the hazards common to all TPS inspection or repair methods will

  10. Effect of STS space suit on astronaut dominant upper limb EVA work performance

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.

    1987-01-01

    The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.

  11. Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups

    NASA Technical Reports Server (NTRS)

    Rabel, Emily; Aitchison, Lindsay

    2015-01-01

    During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

  12. First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit

    NASA Technical Reports Server (NTRS)

    Meade, Carl J.

    1995-01-01

    The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.

  13. Heat shrinkage of electron beam modified EVA

    NASA Astrophysics Data System (ADS)

    Datta, Sujit K.; Chaki, T. K.; Tikku, V. K.; Pradhan, N. K.; Bhowmick, A. K.

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%.

  14. Experiments with an EVA Assistant Robot

    NASA Technical Reports Server (NTRS)

    Burridge, Robert R.; Graham, Jeffrey; Shillcutt, Kim; Hirsh, Robert; Kortenkamp, David

    2003-01-01

    Human missions to the Moon or Mars will likely be accompanied by many useful robots that will assist in all aspects of the mission, from construction to maintenance to surface exploration. Such robots might scout terrain, carry tools, take pictures, curate samples, or provide status information during a traverse. At NASA/JSC, the EVA Robotic Assistant (ERA) project has developed a robot testbed for exploring the issues of astronaut-robot interaction. Together with JSC's Advanced Spacesuit Lab, the ERA team has been developing robot capabilities and testing them with space-suited test subjects at planetary surface analog sites. In this paper, we describe the current state of the ERA testbed and two weeks of remote field tests in Arizona in September 2002. A number of teams with a broad range of interests participated in these experiments to explore different aspects of what must be done to develop a program for robotic assistance to surface EVA. Technologies explored in the field experiments included a fuel cell, new mobility platform and manipulator, novel software and communications infrastructure for multi-agent modeling and planning, a mobile science lab, an "InfoPak" for monitoring the spacesuit, and delayed satellite communication to a remote operations team. In this paper, we will describe this latest round of field tests in detail.

  15. Modulation of Brain Activity during a Stroop Inhibitory Task by the Kind of Cognitive Control Required

    PubMed Central

    Grandjean, Julien; D’Ostilio, Kevin; Phillips, Christophe; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Maquet, Pierre; Salmon, Eric; Collette, Fabienne

    2012-01-01

    This study used a proportion congruency manipulation in the Stroop task in order to investigate, at the behavioral and brain substrate levels, the predictions derived from the Dual Mechanisms of Control (DMC) account of two distinct modes of cognitive control depending on the task context. Three experimental conditions were created that varied the proportion congruency: mostly incongruent (MI), mostly congruent (MC), and mostly neutral (MN) contexts. A reactive control strategy, which corresponds to transient interference resolution processes after conflict detection, was expected for the rare conflicting stimuli in the MC context, and a proactive strategy, characterized by a sustained task-relevant focus prior to the occurrence of conflict, was expected in the MI context. Results at the behavioral level supported the proactive/reactive distinction, with the replication of the classic proportion congruent effect (i.e., less interference and facilitation effects in the MI context). fMRI data only partially supported our predictions. Whereas reactive control for incongruent trials in the MC context engaged the expected fronto-parietal network including dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex, proactive control in the MI context was not associated with any sustained lateral prefrontal cortex activations, contrary to our hypothesis. Surprisingly, incongruent trials in the MI context elicited transient activation in common with incongruent trials in the MC context, especially in DLPFC, superior parietal lobe, and insula. This lack of sustained activity in MI is discussed in reference to the possible involvement of item-specific rather than list-wide mechanisms of control in the implementation of a high task-relevant focus. PMID:22911806

  16. Modulation of brain activity during a Stroop inhibitory task by the kind of cognitive control required.

    PubMed

    Grandjean, Julien; D'Ostilio, Kevin; Phillips, Christophe; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Maquet, Pierre; Salmon, Eric; Collette, Fabienne

    2012-01-01

    This study used a proportion congruency manipulation in the Stroop task in order to investigate, at the behavioral and brain substrate levels, the predictions derived from the Dual Mechanisms of Control (DMC) account of two distinct modes of cognitive control depending on the task context. Three experimental conditions were created that varied the proportion congruency: mostly incongruent (MI), mostly congruent (MC), and mostly neutral (MN) contexts. A reactive control strategy, which corresponds to transient interference resolution processes after conflict detection, was expected for the rare conflicting stimuli in the MC context, and a proactive strategy, characterized by a sustained task-relevant focus prior to the occurrence of conflict, was expected in the MI context. Results at the behavioral level supported the proactive/reactive distinction, with the replication of the classic proportion congruent effect (i.e., less interference and facilitation effects in the MI context). fMRI data only partially supported our predictions. Whereas reactive control for incongruent trials in the MC context engaged the expected fronto-parietal network including dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex, proactive control in the MI context was not associated with any sustained lateral prefrontal cortex activations, contrary to our hypothesis. Surprisingly, incongruent trials in the MI context elicited transient activation in common with incongruent trials in the MC context, especially in DLPFC, superior parietal lobe, and insula. This lack of sustained activity in MI is discussed in reference to the possible involvement of item-specific rather than list-wide mechanisms of control in the implementation of a high task-relevant focus. PMID:22911806

  17. Next Generation Life Support (NGLS): High Performance EVA Glove (HPEG) Technology Development Element

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah; Barta, Daniel; Stephan, Ryan; Gaddis, Stephen

    2015-01-01

    The overall objective is to develop advanced gloves for extra vehicular activity (EVA) for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. The glove prototypes that result from the successful completion of this technology development activity will be delivered to NASA's Human Exploration Operations Mission Directorate (HEOMD) and ultimately to be included in an integrated test with the next generation spacesuit currently under development.

  18. Simultaneous EEG-fMRI Reveals a Temporal Cascade of Task-Related and Default-Mode Activations During a Simple Target Detection Task

    PubMed Central

    Walz, Jennifer M.; Goldman, Robin I.; Carapezza, Michael; Muraskin, Jordan; Brown, Truman R.; Sajda, Paul

    2013-01-01

    Focused attention continuously and inevitably fluctuates, and to completely understand the mechanisms responsible for these modulations it is necessary to localize the brain regions involved. During a simple visual oddball task, neural responses measured by electroencephalography (EEG) modulate primarily with attention, but source localization of the correlates is a challenge. In this study we use single-trial analysis of simultaneously-acquired scalp EEG and functional magnetic resonance image (fMRI) data to investigate the blood oxygen level dependent (BOLD) correlates of modulations in task-related attention, and we unravel the temporal cascade of these transient activations. We hypothesize that activity in brain regions associated with various task-related cognitive processes modulates with attention, and that their involvements occur transiently in a specific order. We analyze the fMRI BOLD signal by first regressing out the variance linked to observed stimulus and behavioral events. We then correlate the residual variance with the trial-to-trial variation of EEG discriminating components for identical stimuli, estimated at a sequence of times during a trial. Post-stimulus and early in the trial, we find activations in right-lateralized frontal regions and lateral occipital cortex, areas that are often linked to task-dependent processes, such as attentional orienting, and decision certainty. After the behavioral response we see correlates in areas often associated with the default-mode network and introspective processing, including precuneus, angular gyri, and posterior cingulate cortex. Our results demonstrate that during simple tasks both task-dependent and default-mode networks are transiently engaged, with a distinct temporal ordering and millisecond timescale. PMID:23962956

  19. ECoG gamma activity during a language task: differentiating expressive and receptive speech areas

    PubMed Central

    Yoon, Hyun-Ah; Castelle, Michael; Edgar, J. Christopher; Biassou, Nadia M.; Frim, David M.; Spire, Jean-Paul; Kohrman, Michael H.

    2008-01-01

    Electrocorticographic (ECoG) spectral patterns obtained during language tasks from 12 epilepsy patients (age: 12–44 years) were analysed in order to identify and characterize cortical language areas. ECoG from 63 subdural electrodes (500 Hz/channel) chronically implanted over frontal, parietal and temporal lobes were examined. Two language tasks were performed. During the first language task, patients listened to a series of 50 words preceded by warning tones, and were asked to repeat each word. During a second memory task, subjects heard the 50 words from the first task randomly mixed with 50 new words and were asked to repeat the word only if it was a new word. Increases in ECoG gamma power (70–100 Hz) were observed in response to hearing tones (primary auditory cortex), hearing words (posterior temporal and parietal cortex) and repeating words (lateral frontal and anterior parietal cortex). These findings were compared to direct electrical stimulation and separate analysis of ECoG gamma changes during spontaneous inter-personal conversations. The results indicate that high-frequency ECoG reliably differentiates cortical areas associated with receptive and expressive speech processes for individual patients. Compared to listening to words, greater frontal lobe and decreased temporal lobe gamma activity was observed while speaking. The data support the concept of distributed functionally specific language modules interacting to serve receptive and expressive speech, with frontal lobe ‘corollary discharges’ suppressing low-level receptive cortical language areas in the temporal lobe during speaking. PMID:18669510

  20. In Vivo Noninvasive Analysis of Human Forearm Muscle Function and Fatigue: Applications to EVA Operations and Training Maneuvers

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Marshburn, T.; Quast, M. J.; Feeback, D. L.

    1999-01-01

    Forearm muscle fatigue is one of the major limiting factors affecting endurance during performance of deep-space extravehicular activity (EVA) by crew members. Magnetic resonance (MR) provides in vivo noninvasive analysis of tissue level metabolism and fluid exchange dynamics in exercised forearm muscles through the monitoring of proton magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (P-31-MRS) parameter variations. Using a space glove box and EVA simulation protocols, we conducted a preliminary MRS/MRI study in a small group of human test subjects during submaximal exercise and recovery and following exhaustive exercise. In assessing simulated EVA-related muscle fatigue and function, this pilot study revealed substantial changes in the MR image longitudinal relaxation times (T2) as an indicator of specific muscle activation and proton flux as well as changes in spectral phosphocreatine-to-phosphate (PCr/Pi) levels as a function of tissue bioenergetic potential.

  1. Locomotion and Task Demands Differentially Modulate Thalamic Audiovisual Processing during Active Search.

    PubMed

    Williamson, Ross S; Hancock, Kenneth E; Shinn-Cunningham, Barbara G; Polley, Daniel B

    2015-07-20

    Active search is a ubiquitous goal-driven behavior wherein organisms purposefully investigate the sensory environment to locate a target object. During active search, brain circuits analyze a stream of sensory information from the external environment, adjusting for internal signals related to self-generated movement or "top-down" weighting of anticipated target and distractor properties. Sensory responses in the cortex can be modulated by internal state, though the extent and form of modulation arising in the cortex de novo versus an inheritance from subcortical stations is not clear. We addressed this question by simultaneously recording from auditory and visual regions of the thalamus (MG and LG, respectively) while mice used dynamic auditory or visual feedback to search for a hidden target within an annular track. Locomotion was associated with strongly suppressed responses and reduced decoding accuracy in MG but a subtle increase in LG spiking. Because stimuli in one modality provided critical information about target location while the other served as a distractor, we could also estimate the importance of task relevance in both thalamic subdivisions. In contrast to the effects of locomotion, we found that LG responses were reduced overall yet decoded stimuli more accurately when vision was behaviorally relevant, whereas task relevance had little effect on MG responses. This double dissociation between the influences of task relevance and movement in MG and LG highlights a role for extrasensory modulation in the thalamus but also suggests key differences in the organization of modulatory circuitry between the auditory and visual pathways.

  2. Arousal Modulates Activity in the Medial Temporal Lobe during a Short-Term Relational Memory Task.

    PubMed

    Thoresen, Christian; Jensen, Jimmy; Sigvartsen, Niels Petter B; Bolstad, Ingeborg; Server, Andres; Nakstad, Per H; Andreassen, Ole A; Endestad, Tor

    2011-01-01

    This study investigated the effect of arousal on short-term relational memory and its underlying cortical network. Seventeen healthy participants performed a picture by location, short-term relational memory task using emotional pictures. Functional magnetic resonance imaging was used to measure the blood-oxygenation-level dependent signal relative to task. Subjects' own ratings of the pictures were used to obtain subjective arousal ratings. Subjective arousal was found to have a dose-dependent effect on activations in the prefrontal cortex, amygdala, hippocampus, and in higher order visual areas. Serial position analyses showed that high arousal trials produced a stronger primacy and recency effect than low arousal trials. The results indicate that short-term relational memory may be facilitated by arousal and that this may be modulated by a dose-response function in arousal-driven neuronal regions.

  3. Activation of the caudal anterior cingulate cortex due to task-related interference in an auditory Stroop paradigm.

    PubMed

    Haupt, Sven; Axmacher, Nikolai; Cohen, Michael X; Elger, Christian E; Fell, Juergen

    2009-09-01

    Successful information processing requires the focusing of attention on a certain stimulus property and the simultaneous suppression of irrelevant information. The Stroop task is a useful paradigm to study such attentional top-down control in the presence of interference. Here, we investigated the neural correlates of an auditory Stroop task using fMRI. Subjects focused either on tone pitch (relatively high or low; phonetic task) or on the meaning of a spoken word (high/low/good; semantic task), while ignoring the other stimulus feature. We differentiated between task-related (phonetic incongruent vs. semantic incongruent) and sensory-level interference (phonetic incongruent vs. phonetic congruent). Task-related interference activated similar regions as in visual Stroop tasks, including the anterior cingulate cortex (ACC) and the presupplementary motor-area (pre-SMA). More specifically, we observed that the very caudal/posterior part of the ACC was activated and not the dorsal/anterior region. Because identical stimuli but different task demands are compared in this contrast, it reflects conflict at a relatively high processing level. A more conventional contrast between incongruent and congruent phonetic trials was associated with a different cluster in the pre-SMA/ACC which was observed in a large number of previous studies. Finally, functional connectivity analysis revealed that activity within the regions activated in the phonetic incongruent vs. semantic incongruent contrast was more strongly interrelated during semantically vs. phonetically incongruent trials. Taken together, we found (besides activation of regions well-known from visual Stroop tasks) activation of the very caudal and posterior part of the ACC due to task-related interference in an auditory Stroop task. PMID:19180558

  4. Congruency effects in the letter search task: semantic activation in the absence of priming.

    PubMed

    Hutchison, Keith A; Bosco, Frank A

    2007-04-01

    Semantic priming is typically eliminated when participants perform a letter search on the prime, suggesting that semantic activation is conditional upon one's attentional goals. However, in such studies, semantic activation (or the lack thereof) is not measured during the letter search task itself but, instead, is inferred on the basis of the responses given to a later target. In the present study, direct online evidence for semanticactivation was tested using words whose meaning should bias either a positive or a negative response (e.g.,present vs. absent). In Experiment 1, a semantic congruency effect was obtained, with faster responses when the word meaning matched the required response. Experiment 2 replicated the congruency effect while, simultaneously, showing the elimination of semantic priming. It is concluded that letter search does not affect the initiation of semantic activation. Possible accounts for the elimination of priming following letter search include activation-based suppression and transfer-inappropriate processing.

  5. The effect of task-oriented training on the muscle activation of the upper extremity in chronic stroke patients

    PubMed Central

    Park, JuHyung

    2016-01-01

    [Purpose] The aim of this study was to determine the effects of task-oriented training on upper extremity muscle activation in daily activities performed by chronic stoke patients. [Subjects and Methods] In this research, task-oriented training was conducted by 2 chronic hemiplegic stroke patients. Task-oriented training was conducted 5 times a week, 30 minutes per day, for 2 weeks. Evaluation was conducted 3 times before and after the intervention. The Change of muscle activation in the upper extremity was measured using a BTS FreeEMG 300. [Results] The subjects’ root mean square values for agonistic muscles for the reaching activity increased after the intervention. All subjects’ co-coordination ratios decreased after the intervention in all movements of reaching activity. [Conclusion] Through this research, task-oriented training was proven to be effective in improving the muscle activation of the upper extremity in chronic hemiplegic stroke patients. PMID:27190488

  6. The effect of task-oriented training on the muscle activation of the upper extremity in chronic stroke patients.

    PubMed

    Park, JuHyung

    2016-04-01

    [Purpose] The aim of this study was to determine the effects of task-oriented training on upper extremity muscle activation in daily activities performed by chronic stoke patients. [Subjects and Methods] In this research, task-oriented training was conducted by 2 chronic hemiplegic stroke patients. Task-oriented training was conducted 5 times a week, 30 minutes per day, for 2 weeks. Evaluation was conducted 3 times before and after the intervention. The Change of muscle activation in the upper extremity was measured using a BTS FreeEMG 300. [Results] The subjects' root mean square values for agonistic muscles for the reaching activity increased after the intervention. All subjects' co-coordination ratios decreased after the intervention in all movements of reaching activity. [Conclusion] Through this research, task-oriented training was proven to be effective in improving the muscle activation of the upper extremity in chronic hemiplegic stroke patients. PMID:27190488

  7. Chronic Low Back Pain in Women: Muscle Activation during Task Performance

    PubMed Central

    Santos, Fernanda G; Carmo, Carolina M; Fracini, América C; Pereira, Rita R P; Takara, Kelly S; Tanaka, Clarice

    2014-01-01

    [Purpose] The aim of this study was to compare the activities of the trunk and hip muscles in chronic low back pain (CLBP) women and asymptomatic subjects during the kneeling to half-kneeling task. [Subjects] Twenty-nine CLBP women and thirty asymptomatic subjects (C) participated in this study. [Methods] Electromyography activity (EMG) of the obliquus internus abdominis (OI), the lumbar erector spinae (LES) and the gluteus medius (GM) muscles was recorded bilaterally. The peak amplitude, the time of peak amplitude and the integrated linear envelope EMG for each muscle were obtained. [Results] The C group bilateral OI and GM muscles displayed higher peak amplitudes and earlier times of peak amplitude. They also had higher integrated linear envelope EMG values. The CLBP group bilateral LES muscles had higher peak amplitudes and earlier times of peak amplitude. They also showed an increased integrated linear envelope EMG values. [Conclusion] The CLBP women activate the LES muscles in the kneeling to half-kneeling task, showing different patterns of motor planning activity. PMID:24409022

  8. Type 1 Diabetes Modifies Brain Activation in Young Patients While Performing Visuospatial Working Memory Tasks

    PubMed Central

    Gallardo-Moreno, Geisa B.; González-Garrido, Andrés A.; Gudayol-Ferré, Esteban; Guàrdia-Olmos, Joan

    2015-01-01

    In recent years, increasing attention has been paid to the effects of Type 1 Diabetes (T1D) on cognitive functions. T1D onset usually occurs during childhood, so it is possible that the brain could be affected during neurodevelopment. We selected young patients of normal intelligence with T1D onset during neurodevelopment, no complications from diabetes, and adequate glycemic control. The purpose of this study was to compare the neural BOLD activation pattern in a group of patients with T1D versus healthy control subjects while performing a visuospatial working memory task. Sixteen patients and 16 matched healthy control subjects participated. There was no significant statistical difference in behavioral performance between the groups, but, in accordance with our hypothesis, results showed distinct brain activation patterns. Control subjects presented the expected activations related to the task, whereas the patients had greater activation in the prefrontal inferior cortex, basal ganglia, posterior cerebellum, and substantia nigra. These different patterns could be due to compensation mechanisms that allow them to maintain a behavioral performance similar to that of control subjects. PMID:26266268

  9. Neural Activation in Humans during a Simple Motor Task Differs between BDNF Polymorphisms

    PubMed Central

    Cárdenas-Morales, Lizbeth; Grön, Georg; Sim, Eun-Jin; Stingl, Julia C.; Kammer, Thomas

    2014-01-01

    The BDNF Val66Met polymorphism has been linked to decreased synaptic plasticity involved in motor learning tasks. We investigated whether individual differences in this polymorphism may promote differences in neural activity during a two-alternative forced-choice motor performance. In two separate sessions, the BOLD signal from 22 right-handed healthy men was measured during button presses with the left and right index finger upon visual presentation of an arrow. 11 men were Val66Val carriers (ValVal group), the other 11 men carried either the Val66Met or the Met66Met polymorphism (Non-ValVal group). Reaction times, resting and active motor thresholds did not differ between ValVal and Non-ValVal groups. Compared to the ValVal group the Non-ValVal group showed significantly higher BOLD signals in the right SMA and motor cingulate cortex during motor performance. This difference was highly consistent for both hands and across all four sessions. Our finding suggests that this BDNF polymorphism may not only influence complex performance during motor learning but is already associated with activation differences during rather simple motor tasks. The higher BOLD signal observed in Non-ValVal subjects suggests the presence of cumulative effects of the polymorphism on the motor system, and may reflect compensatory functional activation mediating equal behavioral performance between groups. PMID:24828051

  10. Age- and sex-related differences for electromyography gaps during daily activity and a discrete task.

    PubMed

    Harwood, B; Edwards, D L; Jakobi, J M

    2011-05-01

    Temporal patterns of quiescent electromyography termed 'gaps' were investigated in young and old men and women for a discrete task and daily activity. Gaps in women (1.3±3.2) and old adults (1.5±3.4) were fewer compared with men (4.7±6.7) and young adults (4.6±6.9) for the discrete task (p<0.001). Gap duration was shorter for women (0.1±0.2s) and old adults (0.1±0.3s) compared with men (0.2±0.3s) and young adults (0.2±0.2s) (p<0.01). For daily activity, gap number was similar with age, but gap duration and percentage of total time occupied by gaps were less in old compared with young adults (50%), and in women compared with men (43%) (p<0.001). Results suggest gap activity is sensitive to type and duration of activity and that old adults and women demonstrate less quiescent electromyography than young adults and men.

  11. Ventrolateral prefrontal activation during a N-back task assessed with multichannel functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Zhu, Ye; Jiang, Tianzi

    2007-05-01

    Functional near-infrared spectroscopy (fNIRS) has been used to investigate the changes in the concentration of oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin in brain issue during several cognitive tasks. In the present study, by means of multichannel dual wavelength light-emitting diode continuous-wave (CW) NIRS, we investigated the blood oxygenation changes of prefrontal cortex in 18 healthy subjects while performing a verbal n-back task (0-back and 2-back), which has been rarely investigated by fNIRS. Compared to the 0-back task (control task), we found a significant increase of O2Hb and total amount of hemoglobin (THb) in left and right ventrolateral prefrontal cortex (VLPFC) during the execution of the 2-back task compared to the 0-back task (p<0.05, FDR corrected). This result is consistent with the previous functional neuroimaging studies that have found the VLPFC activation related to verbal working memory. However, we found no significant hemisphere dominance. In addition, the effects of gender and its interaction with task performance on O2Hb concentration change were suggested in the present study. Our findings not only confirm that multichannel fNIRS is suitable to detect spatially specific activation during the performance of cognitive tasks; but also suggest that it should be cautious of gender-dependent difference in cerebral activation when interpreting the fNIRS data during cognitive tasks.

  12. Effects of active pause pattern of surface electromyographic activity among subjects performing monotonous tasks: A systematic review.

    PubMed

    Januario, Leticia Bergamin; Moreira, Roberta de Fátima Carreira; Cid, Marina Machado; Samani, Afshin; Madeleine, Pascal; Oliveira, Ana Beatriz

    2016-10-01

    Active pauses have shown potentially beneficial effects to increase the variability of the electrical activation pattern of muscles. However, there is a lack of consensus as to how to design and implement those pauses and the processing methods of surface electromyography (EMG) data when evaluating low-level monotonous tasks. The aim of this systematic review was to synthesize the evidences regarding the way which active pauses have been applied, and the methods used to investigate the related EMG changes. PubMed-MEDLINE, Embase, Web of Science, Lilacs, Ebsco, and Scopus databases were searched. Two authors independently extracted data from the primary studies. The methodological quality was assessed using a list from van der Windt et al. (2000), and the level of evidence was synthesized through GRADE. The ISEK guideline for reporting EMG data was also applied as a checklist. Fifteen studies were included - 14 with high methodological quality. In general, active pauses were able to change the level of EMG activity in monotonous tasks. The level of evidence through GRADE was very low for all EMG processing methods, except RMS which was low. A vast heterogeneity concerning the methods applied to analyze EMG data contributed to decrease the quality of evidence synthesis, and the findings need to be carefully considered. The GRADE approach and the ISEK guideline contributed to identify important flaws in the literature. Future studies investigating active pauses in longitudinal studies and following the standard for recording and reporting EMG data care are warranted.

  13. Application of EVA guidelines and design criteria. Volume 1: EVA selection/systems design considerations

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    Parameters that require consideration by the planners and designers when planning for man to perform functions outside the vehicle are presented in terms of the impact the extravehicular crewmen and major EV equipment items have on the mission, vehicle, and payload. Summary data on man's performance capabilities in the weightless space environment are also provided. The performance data are based on orbital and transearth EVA from previous space flight programs and earthbound simulations, such as water immersion and zero-g aircraft.

  14. Biomedical Support of U.S. Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Dervay, J. P.; Gillis, D.; McMann, H. J.; Thomas, K. S.

    2007-01-01

    The world's first extravehicular activity (EVA) was performed by A. A. Leonov on March 18, 1965 during the Russian Voskhod-2 mission. The first US EVA was executed by Gemini IV astronaut Ed White on June 3, 1965, with an umbilical tether that included communications and an oxygen supply. A hand-held maneuvering unit (HHMU) also was used to test maneuverability during the brief EVA; however the somewhat stiff umbilical limited controlled movement. That constraint, plus difficulty returning through the vehicle hatch, highlighted the need for increased thermal control and improved EVA ergonomics. Clearly, requirements for a useful EVA were interrelated with the vehicle design. The early Gemini EVAs generated requirements for suits providing micro-meteor protection, adequate visual field and eye protection from solar visual and infrared radiation, gloves optimized for dexterity while pressurized, and thermal systems capable of protecting the astronaut while rejecting metabolic heat during high workloads. Subsequent Gemini EVAs built upon this early experience and included development of a portable environmental control and life support systems (ECLSS) and an astronaut maneuvering unit. The ECLSS provided a pressure vessel and controller with functional control over suit pressure, oxygen flow, carbon dioxide removal, humidity, and temperature control. Gemini EVA experience also identified the usefulness of underwater neutral buoyancy and altitude chamber task training, and the importance of developing reliable task timelines. Improved thermal management and carbon dioxide control also were required for high workload tasks. With the Apollo project, EVA activity was primarily on the lunar surface; and suit durability, integrated liquid cooling garments, and low suit operating pressures (3.75 pounds per square inch absolute [psia] or 25.8 kilopascal [kPa],) were required to facilitate longer EVAs with ambulation and significant physical workloads with average metabolic

  15. Using Activity Schedules to Increase On-Task Behavior in Children at Risk for Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Cirelli, Christe A.; Sidener, Tina M.; Reeve, Kenneth F.; Reeve, Sharon A.

    2016-01-01

    The effects of activity schedules on on-task and on-schedule behavior were assessed with two boys at risk for attention-deficit/hyperactivity disorder (ADHD) and referred by their public school teachers as having difficulty during independent work time. On-task behavior increased for both participants after two training sessions. Teachers, peers,…

  16. Use of the Remote Access Virtual Environment Network (RAVEN) for coordinated IVA-EVA astronaut training and evaluation.

    PubMed

    Cater, J P; Huffman, S D

    1995-01-01

    This paper presents a unique virtual reality training and assessment tool developed under a NASA grant, "Research in Human Factors Aspects of Enhanced Virtual Environments for Extravehicular Activity (EVA) Training and Simulation." The Remote Access Virtual Environment Network (RAVEN) was created to train and evaluate the verbal, mental and physical coordination required between the intravehicular (IVA) astronaut operating the Remote Manipulator System (RMS) arm and the EVA astronaut standing in foot restraints on the end of the RMS. The RAVEN system currently allows the EVA astronaut to approach the Hubble Space Telescope (HST) under control of the IVA astronaut and grasp, remove, and replace the Wide Field Planetary Camera drawer from its location in the HST. Two viewpoints, one stereoscopic and one monoscopic, were created all linked by Ethernet, that provided the two trainees with the appropriate training environments.

  17. Conversion of IVA Human Computer Model to EVA Use and Evaluation and Comparison of the Result to Existing EVA Models

    NASA Technical Reports Server (NTRS)

    Hamilton, George S.; Williams, Jermaine C.

    1998-01-01

    This paper describes the methods, rationale, and comparative results of the conversion of an intravehicular (IVA) 3D human computer model (HCM) to extravehicular (EVA) use and compares the converted model to an existing model on another computer platform. The task of accurately modeling a spacesuited human figure in software is daunting: the suit restricts the human's joint range of motion (ROM) and does not have joints collocated with human joints. The modeling of the variety of materials needed to construct a space suit (e. g. metal bearings, rigid fiberglass torso, flexible cloth limbs and rubber coated gloves) attached to a human figure is currently out of reach of desktop computer hardware and software. Therefore a simplified approach was taken. The HCM's body parts were enlarged and the joint ROM was restricted to match the existing spacesuit model. This basic approach could be used to model other restrictive environments in industry such as chemical or fire protective clothing. In summary, the approach provides a moderate fidelity, usable tool which will run on current notebook computers.

  18. Neural activity in monkey amygdala during performance of a multisensory operant task.

    PubMed

    Montes-Lourido, Pilar; Vicente, Ana F; Bermudez, Maria A; Gonzalez, Francisco

    2015-09-01

    In this paper, we study the potential involvement of monkey amygdala in the evaluation of value encoding of visual and auditive stimuli associated with reward or no reward. We recorded the activity of 93 extracellular neurons from the monkey right amygdala, while performing a multisensory operant task. The activity of 78 task-related neurons was studied. Of these, 13 neurons (16%) responded to the value of visual stimuli, 22 neurons (28%) responded after the presentation of visual stimuli, 22 neurons (28%) showed an inhibition around the lever-pressing and were classified as action related neurons and 22 neurons (28%) responded after reward delivery. These findings suggest that neurons in the amygdala play a role in encoding value and processing visual information, participate in motor regulation and are sensitive to reward. The activity of these neurons did not change in the evaluation of auditive stimuli. These data support the hypothesis that amygdala neurons are specific to each sensory modality and that different groups of amygdala neurons process visual and auditive information. PMID:26246438

  19. Disentangling stereotype activation and stereotype application in the stereotype misperception task.

    PubMed

    Krieglmeyer, Regina; Sherman, Jeffrey W

    2012-08-01

    When forming impressions about other people, stereotypes about the individual's social group often influence the resulting impression. At least 2 distinguishable processes underlie stereotypic impression formation: stereotype activation and stereotype application. Most previous research has used implicit measures to assess stereotype activation and explicit measures to assess stereotype application, which has several disadvantages. The authors propose a measure of stereotypic impression formation, the stereotype misperception task (SMT), together with a multinomial model that quantitatively disentangles the contributions of stereotype activation and application to responses in the SMT. The validity of the SMT and of the multinomial model was confirmed in 5 studies. The authors hope to advance research on stereotyping by providing a measurement tool that separates multiple processes underlying impression formation. PMID:22663350

  20. Disentangling stereotype activation and stereotype application in the stereotype misperception task.

    PubMed

    Krieglmeyer, Regina; Sherman, Jeffrey W

    2012-08-01

    When forming impressions about other people, stereotypes about the individual's social group often influence the resulting impression. At least 2 distinguishable processes underlie stereotypic impression formation: stereotype activation and stereotype application. Most previous research has used implicit measures to assess stereotype activation and explicit measures to assess stereotype application, which has several disadvantages. The authors propose a measure of stereotypic impression formation, the stereotype misperception task (SMT), together with a multinomial model that quantitatively disentangles the contributions of stereotype activation and application to responses in the SMT. The validity of the SMT and of the multinomial model was confirmed in 5 studies. The authors hope to advance research on stereotyping by providing a measurement tool that separates multiple processes underlying impression formation.

  1. Effects of Hand Dominance and Postural Selection on Muscle Activities of Virtual Laparoscopic Surgical Training Tasks.

    PubMed

    Huang, Chun-Kai; Boman, Ashley; White, Anthony; Oleynikov, Dmitry; Siu, Ka-Chun

    2016-01-01

    This study investigated how the ergonomic factors, such as hand dominance and postural selection, influenced on surgical performance regarding the changes of muscle activity. Twenty novices performed two virtual laparoscopic surgical training tasks and five target muscle activities were measured. Compared with using dominant hand, surgical skills performance using non-dominant hand increased muscle activities. Muscle fatigue is more likely induced in standing position than sitting position during practice. This study suggests an emerging need to focus on hand dominance during laparoscopic surgical training to address the impact of hand discrepancy on bimanual coordination. It is also important to pay attention on postural selection during training to reduce muscle fatigue, which possibly leads to injuries. PMID:27046567

  2. Goal striving strategies and effort mobilization: When implementation intentions reduce effort-related cardiac activity during task performance.

    PubMed

    Freydefont, Laure; Gollwitzer, Peter M; Oettingen, Gabriele

    2016-09-01

    Two experiments investigate the influence of goal and implementation intentions on effort mobilization during task performance. Although numerous studies have demonstrated the beneficial effects of setting goals and making plans on performance, the effects of goals and plans on effort-related cardiac activity and especially the cardiac preejection period (PEP) during goal striving have not yet been addressed. According to the Motivational Intensity Theory, participants should increase effort mobilization proportionally to task difficulty as long as success is possible and justified. Forming goals and making plans should allow for reduced effort mobilization when participants perform an easy task. However, when the task is difficult, goals and plans should differ in their effect on effort mobilization. Participants who set goals should disengage, whereas participants who made if-then plans should stay in the field showing high effort mobilization during task performance. As expected, using an easy task in Experiment 1, we observed a lower cardiac PEP in both the implementation intention and the goal intention condition than in the control condition. In Experiment 2, we varied task difficulty and demonstrated that while participants with a mere goal intention disengaged from difficult tasks, participants with an implementation intention increased effort mobilization proportionally with task difficulty. These findings demonstrate the influence of goal striving strategies (i.e., mere goals vs. if-then plans) on effort mobilization during task performance.

  3. Astronaut John Young at LRV prior to deployment of ALSEP during first EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of Apollo 16, is at the Lunar Roving Vehicle (LRV), just prior to deployment of the Apollo Lunar Surface Experiment Package (ALSEP) during the first extravehicular activity (EVA-1), on April 21, 1972. Note Ultraviolet Camera/Spectrometer at right of Lunar Module (LM) ladder. Also note pile of protective/thermal foil under the U.S. flag on the LM which the astronauts pulled away to get to the Modular Equipment Stowage Assembly (MESA) bay.

  4. Astronaut John Young replaces tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, replaces tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Smoky Mountain, with the large Ravine crater on its flank, is in the left background. This view is looking northeast.

  5. Astronaut John Young reaches for tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, reaches for tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. This view is looking south from the base of Stone Mountain.

  6. Astronaut David Wolf participates in training for contingency EVA in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged ito a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is displaying the flexibility of his training version of the Shuttle extravehicular mobility unit (EMU) by lifting his arms above his head (31701); Wolf waves to the camera before he is submerged in the WETF (31702).

  7. STS-26 MS Lounge prepares for contingency EVA exercises in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) John M. Lounge, wearing extravehicular mobility unit (EMU), stands on a poolside platform while technicians ready his communications carrier assembly (CCA). SCUBA divers already in the pool look on. Lounge dons EMU prior to a contingency extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 where he will achieve neutral buoyancy. Photograph was taken by Keith Meyers of the NEW YORK TIMES.

  8. Astronaut Jack Lousma hooks up cable for rate gyro six pack during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, hooks up a 23 ft. 2 in. connecting cable for the rate gyro six pack during extravehicular activity (EVA) on August 24, 1973, as senn in this photographic reproduction taken from a color television tranmsission made by a TV camera aboard the Skylab space station in Earth orbit. The rate gyros were mounted inside the Multiple Docking Adapter opposite the Apollo Telescope Mount control and display console.

  9. View of the Discovery's payload bay during EVA taken from inside shuttle

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This unusual scene of STS-51 extravehicular activity (EVA) was captured on 35mm film by one of the supportive in-cabin crew members shooting through the aft flight deck window. Astronaut James H. Newman, working on Discovery's starboard side, is nearer the camera, with astronaut Carl E. Walz traversing near the aft firewall and the airborne support equipment (ASE). A view of a section of the Earth can be seen through the upper aft window.

  10. STS-57 MS2 Sherlock in EMU is lowered into JSC's WETF pool for EVA simulation

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-57 Mission Specialist 2 (MS2) Nancy J. Sherlock, fully suited in an extravehicular mobility unit (EMU) and helmet and standing on a platform, is lowered into the 25 foot deep pool of JSC's Weightless Environment Training Facility (WETF) Bldg 29. Once underwater, Sherlock will participate in an underwater extravehicular activity (EVA) simulation. SCUBA-equipped divers already in the pool guide the platform into the water.

  11. Loads produced by a suited subject performing tool tasks without the use of foot restraints

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar L.; Poliner, Jeffrey; Klute, Glenn K.

    1993-01-01

    With an increase in the frequency of extravehicular activities (EVA's) aboard the Space Shuttle, NASA is interested in determining the capabilities of suited astronauts while performing manual tasks during an EVA, in particular the situations in which portable foot restraints are not used to stabilize the astronauts. Efforts were made to document the forces that are transmitted to spacecraft while pushing and pulling an object as well as while operating a standard wrench and an automatic power tool. The six subjects studied aboard the KC-135 reduced gravity aircraft were asked to exert a maximum torque and to maintain a constant level of torque with a wrench, to push and pull an EVA handrail, and to operate a Hubble Space Telescope (HST) power tool. The results give an estimate of the forces and moments that an operator will transmit to the handrail as well as to the supporting structure. In general, it was more effective to use the tool inwardly toward the body rather than away from the body. There were no differences in terms of strength capabilities between right and left hands. The power tool was difficult to use. It is suggested that ergonomic redesigning of the power tool may increase the efficiency of power tool use.

  12. Classroom-based high-intensity interval activity improves off-task behaviour in primary school students.

    PubMed

    Ma, Jasmin K; Le Mare, Lucy; Gurd, Brendon J

    2014-12-01

    This study examined the effects of an acute bout of brief, high-intensity interval exercise on off-task classroom behaviour in primary school students. A grade 4 class (n = 24) and a grade 2 class (n = 20) were exposed to either a no-activity break or an active break that consisted of "FUNtervals", a high-intensity interval protocol, on alternating days for 3 weeks. No-activity days consisted of a 10-min inactive break while FUNterval days consisted of a 4-min FUNterval completed within a 10-min break from regular class activities. Off-task behaviour was observed for 50 min after each no-activity/FUNterval break, with the amount of time students spent off-task (motor, passive, and verbal behaviour) being recorded. When comparing no-activity breaks with FUNtervals the grade 4 class demonstrated reductions in both passive (no activity = 29% ± 13% vs. FUNterval = 25% ± 13%, p < 0.05, effect size (ES) = 0.31) and motor (no activity = 31% ± 16% vs. FUNterval = 24% ± 13%, p < 0.01, ES = 0.48) off-task behaviour following FUNtervals. Similarly, in the grade 2 class, passive (no activity = 23% ± 14% vs. FUNterval = 14% ± 10%, p < 0.01, ES = 0.74), verbal (no activity = 8% ± 8% vs. FUNterval = 5% ± 5%, p < 0.05, ES = 0.45), and motor (no activity = 29% ± 17% vs. FUNterval = 14% ± 10%, p < 0.01, ES = 1.076) off-task behaviours were reduced following FUNtervals. In both classrooms the effects of physical activity were greatest in those students demonstrating the highest rates of off-task behaviour on no-activity days. These data demonstrate that very brief high-intensity bouts of exercise can improve off-task behaviour in grade 2 and 4 students, particularly in students with high rates of such behaviour.

  13. Bilateral motor tasks involve more brain regions and higher neural activation than unilateral tasks: an fMRI study.

    PubMed

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2014-09-01

    Movements that involve simultaneous coordination of muscles of the right and left lower limbs form a large part of our daily activities (e.g., standing, rising from a chair). This study used functional magnetic resonance imaging to determine which brain areas are used to control coordinated lower-limb movements, specifically comparing regions that are activated during bilateral exertions to those performed unilaterally. Plantarflexor exertions were produced at a target force level of 15% of the participants' maximum voluntary contraction, in three conditions, with their right (dominant) foot, with their left foot, and with both feet simultaneously. A voxel-wise analysis determined which regions were active in the bilateral, but not in the unilateral conditions. In addition, a region of interest (ROI) approach was used to determine differences in the percent signal change (PSC) between the conditions within motor areas. The voxel-wise analysis showed a large number of regions (cortical, subcortical, and cerebellar) that were active during the bilateral condition, but not during either unilateral condition. The ROI analysis showed several motor regions with higher activation in the bilateral condition than unilateral conditions; further, the magnitude of bilateral PSC was more than the sum of the two unilateral conditions in several of these regions. We postulate that the greater levels of activation during bilateral exertions may arise from interhemispheric inhibition, as well as from the greater need for motor coordination (e.g., synchronizing the two limbs to activate together) and visual processing (e.g., monitoring of two visual stimuli).

  14. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    NASA Astrophysics Data System (ADS)

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo

    2015-12-01

    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals.

  15. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    PubMed Central

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo

    2015-01-01

    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals. PMID:26632763

  16. EVA operational guidelines and considerations for use during the Space Station Freedom design review process

    NASA Technical Reports Server (NTRS)

    Trevino, Robert

    1992-01-01

    The EVA hardware interfaces, standards, and considerations are examined, as are guidelines that EVA operations engineer will use when reviewing the design packages from the EVA operational point of view. By utilizing both the EVA and robotics interfaces standards, design requirements, and the EVA operational guidelines and considerations, the Space Station Freedom program design can be more cost effective in the long term and also more compatible and friendly for on-orbit assembly and on-orbit maintenance and repair.

  17. Classification of autistic individuals and controls using cross-task characterization of fMRI activity

    PubMed Central

    Chanel, Guillaume; Pichon, Swann; Conty, Laurence; Berthoz, Sylvie; Chevallier, Coralie; Grèzes, Julie

    2015-01-01

    Multivariate pattern analysis (MVPA) has been applied successfully to task-based and resting-based fMRI recordings to investigate which neural markers distinguish individuals with autistic spectrum disorders (ASD) from controls. While most studies have focused on brain connectivity during resting state episodes and regions of interest approaches (ROI), a wealth of task-based fMRI datasets have been acquired in these populations in the last decade. This calls for techniques that can leverage information not only from a single dataset, but from several existing datasets that might share some common features and biomarkers. We propose a fully data-driven (voxel-based) approach that we apply to two different fMRI experiments with social stimuli (faces and bodies). The method, based on Support Vector Machines (SVMs) and Recursive Feature Elimination (RFE), is first trained for each experiment independently and each output is then combined to obtain a final classification output. Second, this RFE output is used to determine which voxels are most often selected for classification to generate maps of significant discriminative activity. Finally, to further explore the clinical validity of the approach, we correlate phenotypic information with obtained classifier scores. The results reveal good classification accuracy (range between 69% and 92.3%). Moreover, we were able to identify discriminative activity patterns pertaining to the social brain without relying on a priori ROI definitions. Finally, social motivation was the only dimension which correlated with classifier scores, suggesting that it is the main dimension captured by the classifiers. Altogether, we believe that the present RFE method proves to be efficient and may help identifying relevant biomarkers by taking advantage of acquired task-based fMRI datasets in psychiatric populations. PMID:26793434

  18. Locomotion and task demands differentially modulate thalamic audiovisual processing during active search

    PubMed Central

    Williamson, Ross S.; Hancock, Kenneth E.; Shinn-Cunningham, Barbara G.; Polley, Daniel B.

    2015-01-01

    SUMMARY Active search is a ubiquitous goal-driven behavior wherein organisms purposefully investigate the sensory environment to locate a target object. During active search, brain circuits analyze a stream of sensory information from the external environment, adjusting for internal signals related to self-generated movement or “top-down” weighting of anticipated target and distractor properties. Sensory responses in the cortex can be modulated by internal state [1–9], though the extent and form of modulation arising in the cortex de novo versus an inheritance from subcortical stations is not clear [4, 8–12]. We addressed this question by simultaneously recording from auditory and visual regions of the thalamus (MG and LG, respectively) while mice used dynamic auditory or visual feedback to search for a hidden target within an annular track. Locomotion was associated with strongly suppressed responses and reduced decoding accuracy in MG but a subtle increase in LG spiking. Because stimuli in one modality provided critical information about target location while the other served as a distractor, we could also estimate the importance of task relevance in both thalamic subdivisions. In contrast to the effects of locomotion, we found that LG responses were reduced overall yet decoded stimuli more accurately when vision was behaviorally relevant, whereas task relevance had little effect on MG responses. This double dissociation between the influences of task relevance and movement in MG and LG highlights a role for extrasensory modulation in the thalamus but also suggests key differences in the organization of modulatory circuitry between the auditory and visual pathways. PMID:26119749

  19. Classification of autistic individuals and controls using cross-task characterization of fMRI activity.

    PubMed

    Chanel, Guillaume; Pichon, Swann; Conty, Laurence; Berthoz, Sylvie; Chevallier, Coralie; Grèzes, Julie

    2016-01-01

    Multivariate pattern analysis (MVPA) has been applied successfully to task-based and resting-based fMRI recordings to investigate which neural markers distinguish individuals with autistic spectrum disorders (ASD) from controls. While most studies have focused on brain connectivity during resting state episodes and regions of interest approaches (ROI), a wealth of task-based fMRI datasets have been acquired in these populations in the last decade. This calls for techniques that can leverage information not only from a single dataset, but from several existing datasets that might share some common features and biomarkers. We propose a fully data-driven (voxel-based) approach that we apply to two different fMRI experiments with social stimuli (faces and bodies). The method, based on Support Vector Machines (SVMs) and Recursive Feature Elimination (RFE), is first trained for each experiment independently and each output is then combined to obtain a final classification output. Second, this RFE output is used to determine which voxels are most often selected for classification to generate maps of significant discriminative activity. Finally, to further explore the clinical validity of the approach, we correlate phenotypic information with obtained classifier scores. The results reveal good classification accuracy (range between 69% and 92.3%). Moreover, we were able to identify discriminative activity patterns pertaining to the social brain without relying on a priori ROI definitions. Finally, social motivation was the only dimension which correlated with classifier scores, suggesting that it is the main dimension captured by the classifiers. Altogether, we believe that the present RFE method proves to be efficient and may help identifying relevant biomarkers by taking advantage of acquired task-based fMRI datasets in psychiatric populations.

  20. Aberrant Oscillatory Activity during Simple Movement in Task-Specific Focal Hand Dystonia

    PubMed Central

    Hinkley, Leighton B. N.; Dolberg, Rebecca; Honma, Susanne; Findlay, Anne; Byl, Nancy N.; Nagarajan, Srikantan S.

    2012-01-01

    In task-specific focal hand dystonia (tspFHD), the temporal dynamics of cortical activity in the motor system and how these processes are related to impairments in sensory and motor function are poorly understood. Here, we use time-frequency reconstructions of magnetoencephalographic (MEG) data to elaborate the temporal and spatial characteristics of cortical activity during movement. A self-paced finger tapping task during MEG recording was performed by 11 patients with tspFHD and 11 matched healthy controls. In both groups robust changes in beta (12–30 Hz) and high gamma (65–90 Hz) oscillatory activity were identified over sensory and motor cortices during button press. A significant decrease [p < 0.05, 1% False Discovery Rate (FDR) corrected] in high gamma power during movements of the affected hand was identified over ipsilateral sensorimotor cortex in the period prior to (−575 ms) and following (725 ms) button press. Furthermore, an increase (p < 0.05, 1% FDR corrected) in beta power suppression following movement of the affected hand was identified over visual cortex in patients with tspFHD. For movements of the unaffected hand, a significant (p < 0.05, 1% FDR corrected) increase in beta power suppression was identified over secondary somatosensory cortex (S2) in the period following button press in patients with tspFHD. Oscillatory activity within in the tspFHD group was however not correlated with clinical measures. Understanding these aberrant oscillatory dynamics can provide the groundwork for interventions that focus on modulating the timing of this activity. PMID:23226140

  1. Working memory activation of neural networks in the elderly as a function of information processing phase and task complexity.

    PubMed

    Charroud, Céline; Steffener, Jason; Le Bars, Emmanuelle; Deverdun, Jérémy; Bonafe, Alain; Abdennour, Meriem; Portet, Florence; Molino, François; Stern, Yaakov; Ritchie, Karen; Menjot de Champfleur, Nicolas; Akbaraly, Tasnime N

    2015-11-01

    Changes in working memory are sensitive indicators of both normal and pathological brain aging and associated disability. The present study aims to further understanding of working memory in normal aging using a large cohort of healthy elderly in order to examine three separate phases of information processing in relation to changes in task load activation. Using covariance analysis, increasing and decreasing neural activation was observed on fMRI in response to a delayed item recognition task in 337 cognitively healthy elderly persons as part of the CRESCENDO (Cognitive REServe and Clinical ENDOphenotypes) study. During three phases of the task (stimulation, retention, probe), increased activation was observed with increasing task load in bilateral regions of the prefrontal cortex, parietal lobule, cingulate gyrus, insula and in deep gray matter nuclei, suggesting an involvement of central executive and salience networks. Decreased activation associated with increasing task load was observed during the stimulation phase, in bilateral temporal cortex, parietal lobule, cingulate gyrus and prefrontal cortex. This spatial distribution of decreased activation is suggestive of the default mode network. These findings support the hypothesis of an increased activation in salience and central executive networks and a decreased activation in default mode network concomitant to increasing task load.

  2. Working memory activation of neural networks in the elderly as a function of information processing phase and task complexity.

    PubMed

    Charroud, Céline; Steffener, Jason; Le Bars, Emmanuelle; Deverdun, Jérémy; Bonafe, Alain; Abdennour, Meriem; Portet, Florence; Molino, François; Stern, Yaakov; Ritchie, Karen; Menjot de Champfleur, Nicolas; Akbaraly, Tasnime N

    2015-11-01

    Changes in working memory are sensitive indicators of both normal and pathological brain aging and associated disability. The present study aims to further understanding of working memory in normal aging using a large cohort of healthy elderly in order to examine three separate phases of information processing in relation to changes in task load activation. Using covariance analysis, increasing and decreasing neural activation was observed on fMRI in response to a delayed item recognition task in 337 cognitively healthy elderly persons as part of the CRESCENDO (Cognitive REServe and Clinical ENDOphenotypes) study. During three phases of the task (stimulation, retention, probe), increased activation was observed with increasing task load in bilateral regions of the prefrontal cortex, parietal lobule, cingulate gyrus, insula and in deep gray matter nuclei, suggesting an involvement of central executive and salience networks. Decreased activation associated with increasing task load was observed during the stimulation phase, in bilateral temporal cortex, parietal lobule, cingulate gyrus and prefrontal cortex. This spatial distribution of decreased activation is suggestive of the default mode network. These findings support the hypothesis of an increased activation in salience and central executive networks and a decreased activation in default mode network concomitant to increasing task load. PMID:26456114

  3. Structure of EvaA: a paradigm for sugar 2,3-dehydratases.

    PubMed

    Kubiak, Rachel L; Thoden, James B; Holden, Hazel M

    2013-03-26

    Unusual deoxysugars found appended to natural products often provide or enhance the pharmacokinetic activities of the parent compound. The preferred carbohydrate donors for the biosynthesis of such glycosylated natural products are the dTDP-linked sugars. Many of the biologically relevant dTDP-deoxysugars are constructed around the 2,6-dideoxyhexoses or the 2,3(4),6-trideoxyhexoses. A key step in the biosynthesis of these sugars is the removal of the hexose C-2' hydroxyl group and the oxidation of the C-3' hydroxyl group to a carbonyl moiety. Enzymes that catalyze these reactions are referred to as 2,3-dehydratases and have been, for the most part, largely uncharacterized. Here we report the first structural analysis of a sugar 2,3-dehydratase. For this investigation, the enzyme, EvaA, was cloned from Amycolatopsis orientalis, and the structure was solved and refined to a nominal resolution of 1.7 Å. On the basis of the resulting model, it is clear that EvaA belongs to the large Nudix hydrolase superfamily and is most similar to GDP-mannose hydrolase. Each subunit of the EvaA dimer folds into two domains that clearly arose via gene duplication. Two dTDP-sugar binding pockets, A and B, are present in each EvaA subunit. On the basis of site-directed mutagenesis experiments and activity assays, it appears that pocket A functions as the active site and pocket B is simply a remnant left behind from the gene duplication event. As 2,3-dehydration is crucial for the biosynthesis of many unusual deoxysugars, this investigation provides key structural insight into this widely conserved reaction. PMID:23473392

  4. Muscular forearm activation in hand-grip tasks with superimposition of mechanical vibrations.

    PubMed

    Fattorini, L; Tirabasso, A; Lunghi, A; Di Giovanni, R; Sacco, F; Marchetti, E

    2016-02-01

    The purpose of this paper is to evaluate the muscular activation of the forearm, with or without vibration stimuli at different frequencies while performing a grip tasks of 45s at various level of exerted force. In 16 individuals, 9 females and 7 males, the surface electromyogram (EMG) of extensor carpi radialis longus and the flexor carpi ulnari muscles were assessed. At a short latency from onset EMG, RMS and the level of MU synchronization were assessed to evaluate the muscular adaptations. Whilst a trend of decay of EMG Median frequency (MDFd) was employed as an index of muscular fatigue. Muscular tasks consists of the grip of an instrumented handle at a force level of 20%, 30%, 40%, 60% of the maximum voluntary force. Vibration was supplied by a shaker to the hand in mono-frequential waves at 20, 30, 33 and 40Hz. In relation to EMG, RMS and MU synchronization, the muscular activation does not seem to change with the superimposition of the mechanical vibrations, on the contrary a lower MDFd was observed at 33Hz than in absence of vibration. This suggests an early muscular fatigue induced by vibration due to the fact that 33Hz is a resonance frequency for the hand-arm system.

  5. Brain activation during a social attribution task in adolescents with moderate to severe traumatic brain injury.

    PubMed

    Scheibel, Randall S; Newsome, Mary R; Wilde, Elisabeth A; McClelland, Michelle M; Hanten, Gerri; Krawczyk, Daniel C; Cook, Lori G; Chu, Zili D; Vásquez, Ana C; Yallampalli, Ragini; Lin, Xiaodi; Hunter, Jill V; Levin, Harvey S

    2011-01-01

    The ability to make accurate judgments about the mental states of others, sometimes referred to as theory of mind (ToM), is often impaired following traumatic brain injury (TBI), and this deficit may contribute to problems with interpersonal relationships. The present study used an animated social attribution task (SAT) with functional magnetic resonance imaging (fMRI) to examine structures mediating ToM in adolescents with moderate to severe TBI. The study design also included a comparison group of matched, typically developing (TD) adolescents. The TD group exhibited activation within a number of areas that are thought to be relevant to ToM, including the medial prefrontal and anterior cingulate cortex, fusiform gyrus, and posterior temporal and parietal areas. The TBI subjects had significant activation within many of these same areas, but their activation was generally more intense and excluded the medial prefrontal cortex. Exploratory regression analyses indicated a negative relation between ToM-related activation and measures of white matter integrity derived from diffusion tensor imaging, while there was also a positive relation between activation and lesion volume. These findings are consistent with alterations in the level and pattern of brain activation that may be due to the combined influence of diffuse axonal injury and focal lesions.

  6. Watching TV news as a memory task -- brain activation and age effects

    PubMed Central

    2010-01-01

    Background Neuroimaging studies which investigate brain activity underlying declarative memory processes typically use artificial, unimodal laboratory stimuli. In contrast, we developed a paradigm which much more closely approximates real-life situations of information encoding. Methods In this study, we tested whether ecologically valid stimuli - clips of a TV news show - are apt to assess memory-related fMRI activation in healthy participants across a wide age range (22-70 years). We contrasted brain responses during natural stimulation (TV news video clips) with a control condition (scrambled versions of the same clips with reversed audio tracks). After scanning, free recall performance was assessed. Results The memory task evoked robust activation of a left-lateralized network, including primarily lateral temporal cortex, frontal cortex, as well as the left hippocampus. Further analyses revealed that - when controlling for performance effects - older age was associated with greater activation of left temporal and right frontal cortex. Conclusion We demonstrate the feasibility of assessing brain activity underlying declarative memory using a natural stimulation paradigm with high ecological validity. The preliminary result of greater brain activation with increasing age might reflect an attempt to compensate for decreasing episodic memory capacity associated with aging. PMID:20738888

  7. On-orbit assembly/servicing task definition study

    NASA Technical Reports Server (NTRS)

    Vargo, Rick

    1990-01-01

    The OEXP vehicles being envisioned to carry out the Presidential space goals of a lunar outpost and human exploration of Mars will require on-orbit assembly, refurbishment, checkout, and launch. The On-orbit Assembly/Servicing Task Definition Study applies the space vehicle processing experience and procedures archives resident at NASA's Kennedy Space Center (KSC) to determine the task flows, and resources/facilities necessary to process the OEXP vehicles at Space Station Freedom (SSF). This data base is examined to find the closest analogies to OEXP vehicle components and assembly/refurbishment tasks. Transition tables are generated to provide traceability from KSC hardware processing experience to analogous on-orbit processing of the OEXP vehicles. Iterations in which the task flows are broken down into realistic extravehicular activity (EVA) primitive subtasks and times, and to apply automation and robotic technology to reduce crew risks and minimize EVA time, will enhance the value and accuracy of the predicted flows. These processing scenarios and the resulting resource/facility requirements are used to determine impacts of SSF, resulting in change requests to SSF requirements for provision of 'hooks and scars' to evolve the assembly complete Space Station into a transportation node. Study results to date include assembly analysis of the Martin Marietta Phobos Gateway Vehicle, refurbishment analysis of the Martin Marietta Lunar Evolution Piloted and Cargo Vehicles, and assembly analysis of the Boeing Mars Evolution Vehicle. The results of this study will be accumulated into the vehicle processing operations data base for subsequent modeling, life cycle cost, vehicle growth, and SSF impact analysis.

  8. Students Speak With EVA Operations Specialist Glenda Brown

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, EVA Operations Specialist Glenda Brown participates in a Digital Learning Network (DLN) event with students at Victory Lakes Interm...

  9. New monitoring by thermogravimetry for radiation degradation of EVA

    NASA Astrophysics Data System (ADS)

    Boguski, J.; Przybytniak, G.; Łyczko, K.

    2014-07-01

    The radiation ageing of ethylene vinyl-acetate copolymer (EVA) as the jacket of cable applied in nuclear power plant was carried out by gamma rays irradiation, and the degradation was monitored by a thermo-gravimetric analysis (TGA). The EVA decomposition rate in air by the isothermal at 400 °C decreased with increase of dose and also with decrease of the dose rate. The behavior of EVA jacket of cable indicated that the decomposition rate at 400 °C was reduced with increase of oxidation. The elongation at break by tensile test for the radiation aged EVA was closely related to the decomposition rate at 400 °C; therefore, the TGA might be applied for a diagnostic technique of the cable degradation.

  10. STS-57 astronauts Low and Wisoff perform DTO 1210 EVA in OV-105's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During STS-57 extravehicular activity (EVA), Mission Specialist (MS) and Payload Commander (PLC) G. David Low (foreground) and MS3 Peter J.K. Wisoff work along the port side sill longeron in the payload bay (PLB) of the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105. Low will secure a portable foot restraint (PFR) (manipulator foot restraint (MFR)) to the remote manipulator system (RMS) end effector (deployed behind the two astronauts) using a PFR attachment device (PAD). This EVA, designated Detailed Test Objective (DTO) 1210, included evaluation of procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. Visible in OV-105's PLB are (front to back) the SPACEHAB-01 module (Commercial Middeck Augmentation Module (CMAM)), the Superhelium Onorbit Transfer (SHOOT) liquid helium dewar assembly, and the European Retrievable Carrier (EURECA) spacecraft. The scene is backdropped against the Earth's surface.

  11. Design and simulation of EVA tools and robot end effectors for servicing missions of the HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1995-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. A Second Servicing Mission (SM2) scheduled in 1997 will involve considerable Extra Vehicular Activity (EVA). To reduce EVA time, the addition of robotic capability in the remaining servicing missions has been proposed. Toward that end, two concept designs for a general purpose end effector for robots are presented in this report.

  12. Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping Neuronal Activity

    PubMed Central

    van Ede, Freek; Maris, Eric

    2016-01-01

    Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials). Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG) recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance. PMID:27336159

  13. Abnormal functional activation during a simple word repetition task: A PET study of adult dyslexics.

    PubMed

    McCrory, E; Frith, U; Brunswick, N; Price, C

    2000-09-01

    Eight dyslexic subjects, impaired on a range of tasks requiring phonological processing, were matched for age and general ability with six control subjects. Participants were scanned using positron emission tomography (PET) during three conditions: repeating real words, repeating pseudowords, and rest. In both groups, speech repetition relative to rest elicited widespread bilateral activation in areas associated with auditory processing of speech; there were no significant differences between words and pseudowords. However, irrespective of word type, the dyslexic group showed less activation than the control group in the right superior temporal and right post-central gyri and also in the left cerebellum. Notably, the right anterior superior temporal cortex (Brodmann's area 22 [BA 22]) was less activated in each of the eight dyslexic subjects, compared to each of the six control subjects. This deficit appears to be specific to auditory repetition as it was not detected in a previous study of reading which used the same sets of stimuli (Brunswick, N., McCrory, E., Price, C., Frith, C.D., & Frith, U. [1999]. Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke's Wortschatz? Brain, 122, 1901-1917). This implies that the observed neural manifestation of developmental dyslexia is task-specific (i.e., functional rather than structural). Other studies of normal subjects indicate that attending to the phonetic structure of speech leads to a decrease in right-hemisphere processing. Lower right hemisphere activation in the dyslexic group may therefore indicate less processing of non-phonetic aspects of speech, allowing greater salience to be accorded to phonological aspects of attended speech. PMID:11054918

  14. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  15. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  16. Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity.

    PubMed

    Tompuri, Tuomo T

    2015-01-01

    Physical activity refers any bodily movements produced by skeletal muscles that expends energy. Hence the amount and the intensity of physical activity can be assessed by energy expenditure. Metabolic equivalents of task (MET) are multiplies of the resting metabolism reflecting metabolic rate during exercise. The standard MET is defined as 3.5 ml/min/kg. However, the expression of energy expenditure by body weight to normalize the size differences between subjects causes analytical hazards: scaling by body weight does not have a physiological, mathematical, or physical rationale. This review demonstrates by examples that false methodology may cause paradoxical observations if physical activity would be assessed by body weight scaled values such as standard METs. While standard METs are confounded by adiposity, lean mass proportional measures of energy expenditure would enable a more truthful choice to assess physical activity. While physical activity as a behavior and cardiorespiratory fitness or adiposity as a state represents major determinants of public health, specific measurements of health determinants must be understood to enable a truthful evaluation of the interactions and their independent role as a health predictor.

  17. Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity

    PubMed Central

    Tompuri, Tuomo T.

    2015-01-01

    Physical activity refers any bodily movements produced by skeletal muscles that expends energy. Hence the amount and the intensity of physical activity can be assessed by energy expenditure. Metabolic equivalents of task (MET) are multiplies of the resting metabolism reflecting metabolic rate during exercise. The standard MET is defined as 3.5 ml/min/kg. However, the expression of energy expenditure by body weight to normalize the size differences between subjects causes analytical hazards: scaling by body weight does not have a physiological, mathematical, or physical rationale. This review demonstrates by examples that false methodology may cause paradoxical observations if physical activity would be assessed by body weight scaled values such as standard METs. While standard METs are confounded by adiposity, lean mass proportional measures of energy expenditure would enable a more truthful choice to assess physical activity. While physical activity as a behavior and cardiorespiratory fitness or adiposity as a state represents major determinants of public health, specific measurements of health determinants must be understood to enable a truthful evaluation of the interactions and their independent role as a health predictor. PMID:26321958

  18. Mental addition in bilinguals: an FMRI study of task-related and performance-related activation.

    PubMed

    Lin, Jo-Fu Lotus; Imada, Toshiaki; Kuhl, Patricia K

    2012-08-01

    Behavioral studies show that bilinguals are slower and less accurate when performing mental calculation in their nondominant (second; L2) language than in their dominant (first; L1) language. However, little is known about the neural correlates associated with the performance differences observed between bilinguals' 2 languages during arithmetic processing. To address the cortical activation differences between languages, the current study examined task-related and performance-related brain activation during mental addition when problems were presented auditorily in participants' L1 and L2. Eleven Chinese-English bilinguals heard 2-digit addition problems that required exact or approximate calculations. Functional magnetic resonance imaging results showed that auditorily presented multidigit addition in bilinguals activates bilateral inferior parietal and inferior frontal regions in both L1 and L2. Language differences were observed in the form of greater activation for L2 exact addition in the left inferior frontal area. A negative correlation between brain activation and behavioral performance during mental addition in L2 was observed in the left inferior parietal area. Current results provide further evidence for the effects of language-specific experience on arithmetic processing in bilinguals at the cortical level.

  19. Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: a near-infrared spectroscopy study.

    PubMed

    Mandrick, Kevin; Derosiere, Gérard; Dray, Gérard; Coulon, Denis; Micallef, Jean-Paul; Perrey, Stéphane

    2013-07-01

    Functional near-infrared spectroscopy (fNIRS) is suitable for investigating cerebral oxygenation changes during motor and/or mental tasks. In the present study, we investigated how an additional mental load during a motor task at two submaximal loadings affects the fNIRS-measured brain activation over the right prefrontal cortex (PFC). Fifteen healthy males performed isometric grasping contractions at 15% and 30% of the maximal voluntary contraction (MVC) with or without an additional mental (i.e., arithmetic) task. Mental performance, force variability, fNIRS and subjective perception responses were measured in each condition. The performance of the mental task decreased significantly while the force variability increased significantly at 30% MVC as compared to 15% MVC, suggesting that performance of dual-task required more attentional resources. PFC activity increased significantly as the effort increased from 15% to 30% MVC (p<.001). Although a larger change in the deoxyhemoglobin was observed in dual-task conditions (p=.051), PFC activity did not change significantly as compared to the motor tasks alone. In summary, participants were unable to invest more attention and effort in performing the more difficult levels in order to maintain adequate mental performance.

  20. Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: a near-infrared spectroscopy study.

    PubMed

    Mandrick, Kevin; Derosiere, Gérard; Dray, Gérard; Coulon, Denis; Micallef, Jean-Paul; Perrey, Stéphane

    2013-07-01

    Functional near-infrared spectroscopy (fNIRS) is suitable for investigating cerebral oxygenation changes during motor and/or mental tasks. In the present study, we investigated how an additional mental load during a motor task at two submaximal loadings affects the fNIRS-measured brain activation over the right prefrontal cortex (PFC). Fifteen healthy males performed isometric grasping contractions at 15% and 30% of the maximal voluntary contraction (MVC) with or without an additional mental (i.e., arithmetic) task. Mental performance, force variability, fNIRS and subjective perception responses were measured in each condition. The performance of the mental task decreased significantly while the force variability increased significantly at 30% MVC as compared to 15% MVC, suggesting that performance of dual-task required more attentional resources. PFC activity increased significantly as the effort increased from 15% to 30% MVC (p<.001). Although a larger change in the deoxyhemoglobin was observed in dual-task conditions (p=.051), PFC activity did not change significantly as compared to the motor tasks alone. In summary, participants were unable to invest more attention and effort in performing the more difficult levels in order to maintain adequate mental performance. PMID:23665138

  1. Adolescents’ fMRI Activation to a Response Inhibition Task Predicts Future Substance Use

    PubMed Central

    Mahmood, O.M.; Goldenberg, D.; Thayer, R.; Migliorini, R.; Simmons, A.N.; Tapert, S.F.

    2012-01-01

    Background Deficient behavioral regulation may be a risk factor for substance use disorders in adolescents. Abnormalities in brain regions critical to cognitive control have been linked to more intense and problematic future substance use (e.g., (Durazzo, Gazdzinski, Mon, & Meyerhoff, 2010; Falk, Berkman, Whalen, & Lieberman, 2011; Paulus, Tapert, & Schuckit, 2005). The goal of this study was to examine the degree to which brain response to an inhibition task measured in mid-adolescence can predict substance use 18 months later. Method Adolescents aged 16–19 (N=80) performed a go/no-go response inhibition task during fMRI at project baseline, and were followed 18 months later with a detailed interview on substance use and dependence symptoms. Participants were 39 high frequency users and 41 demographically similar low frequency users (458 versus 2 average lifetime drug use occasions at baseline, respectively). Results Across all subjects, no-go trials produced significant increases in neural response in the ventromedial prefrontal cortex and a region including the left angular and supramarginal gyri (p(FWE)<.01, cluster threshold ≥30 voxels). Less ventromedial prefrontal activation but more left angular gyrus activation predicted higher levels of substance use and dependence symptoms in the following 18 months, particularly for those who were high frequency users in mid-adolescence (p<.05). Conclusions These findings are consistent with studies showing that impairments in cognitive control have strong associations with substance use. We found a predictive relationship between atypical activation patterns at baseline and substance use behavior 18 months later, particularly among adolescents with histories of previous heavy use. PMID:23006248

  2. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    PubMed

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Uluğ, Aziz M; Eidelberg, David

    2015-12-01

    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P < 0.05). By contrast, in DYT1 dystonia subjects, activation was relatively greater

  3. Planetary Protection Considerations in EVA System Design

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.; Kosmo, Joseph J.

    2011-01-01

    very little expression of these anomalies. hardware from the human-occupied area may limit (although not likely eliminate) external materials in the human habitat. Definition of design-to requirements is critical to understanding technical feasibility and costs. The definition of Planetary Protection needs in relation to EVA mission and system element development cost impacts should be considered and interpreted in terms of Plausible Protection criteria. Since EVA operations will have the most direct physical interaction with the Martian surface, PP needs should be considered in the terms of mitigating hardware and operations impacts and costs.

  4. Observations of Children’s Interactions with Teachers, Peers, and Tasks across Preschool Classroom Activity Settings

    PubMed Central

    Booren, Leslie M.; Downer, Jason T.; Vitiello, Virginia E.

    2014-01-01

    This descriptive study examined classroom activity settings in relation to children’s observed behavior during classroom interactions, child gender, and basic teacher behavior within the preschool classroom. 145 children were observed for an average of 80 minutes during 8 occasions across 2 days using the inCLASS, an observational measure that conceptualizes behavior into teacher, peer, task, and conflict interactions. Findings indicated that on average children’s interactions with teachers were higher in teacher-structured settings, such as large group. On average, children’s interactions with peers and tasks were more positive in child-directed settings, such as free choice. Children experienced more conflict during recess and routines/transitions. Finally, gender differences were observed within small group and meals. The implications of these findings might encourage teachers to be thoughtful and intentional about what types of support and resources are provided so children can successfully navigate the demands of particular settings. These findings are not meant to discourage certain teacher behaviors or imply value of certain classroom settings; instead, by providing an evidenced-based picture of the conditions under which children display the most positive interactions, teachers can be more aware of choices within these settings and have a powerful way to assist in professional development and interventions. PMID:25717282

  5. Greater Impulsivity is Associated with Decreased Brain Activation in Obese Women during a Delay Discounting Task

    PubMed Central

    Stoeckel, Luke E.; Murdaugh, Donna L.; Cox, James E.; Cook, Edwin W.; Weller, Rosalyn E.

    2012-01-01

    Impulsivity and poor inhibitory control are associated with higher rates of delay discounting (DD) or a greater preference for smaller, more immediate rewards at the expense of larger, but delayed rewards. Of the many functional magnetic resonance imaging (fMRI) studies of DD, few have investigated the correlation between individual differences in DD rate and brain activation related to DD trial difficulty, with difficult DD trials expected to activate putative executive function brain areas involved in impulse control. In the current study, we correlated patterns of brain activation as measured by fMRI during difficult vs. easy trials of a DD task with DD rate (k) in obese women. Difficulty was defined by how much a reward choice deviated from an individual’s ‘indifference point’, or the point where the subjective preference for an immediate and a delayed reward was approximately equivalent. We found that greater delay discounting was correlated with less modulation of activation in putative executive function brain areas, such as the middle and superior frontal gyri and inferior parietal lobule, in response to difficult compared to easy DD trials. These results support the suggestion that increased impulsivity is associated with deficient functioning of executive function areas of the brain. PMID:22948956

  6. Influence of Task Difficulty and Background Music on Working Memory Activity: Developmental Considerations.

    ERIC Educational Resources Information Center

    Kaniel, Shlomo; Aram, Dorit

    1998-01-01

    A study of 300 children in kindergarten, grade 2, and grade 6 found that background music improved visual discrimination task performance at the youngest and middle ages and had no effect on the oldest participants. On a square identification task, background music had no influence on easy and difficult tasks but lowered performance on…

  7. Promoting Physical Activity in Hong Kong Chinese Young People: Factors Influencing Their Subjective Task Values and Expectancy Beliefs in Physical Activity

    ERIC Educational Resources Information Center

    Pang, Bonnie

    2014-01-01

    According to Eccles et al.'s (1983) Expectancy Value Model, the two major constructs that influence young people's activity choice are subjective task value and expectancy beliefs (Eccles et al., 1983). Eccles et al. (1983) conceptually distinguished four dimensions of subjective task value: attainment value, intrinsic value, utility…

  8. Performance of a 6-Degree-of-Freedom Active Microsurgical Manipulator in Handheld Tasks

    PubMed Central

    Yang, Sungwook; Wells, Trent S.; MacLachlan, Robert A.; Riviere, Cameron N.

    2013-01-01

    This paper presents the first experimental results from human users of a new 6-degree-of-freedom handheld micromanipulator. This is the latest prototype of a fully-handheld system, known as “Micron,” which performs active compensation of hand tremor for microsurgery. The manipulator is a miniature Gough-Stewart platform incorporating linear ultrasonic motors that provide a cylindrical workspace 4 mm long and 4 mm wide. In addition, the platform allows the possibility of imposing a remote center of motion for controlling motion not only at the tip but also at the entry point in the sclera of the eye. We demonstrate hand tremor reduction in both static and dynamic micromanipulation tasks on a rubber pad. The handheld performance is also evaluated in an artificial eye model while imposing a remote center of motion. In all cases, hand tremor is significantly reduced. PMID:24111024

  9. Early planning activity in frontal and parietal cortex in a simplified task

    PubMed Central

    Andersen, Richard A.

    2015-01-01

    Cortical planning activity has traditionally been probed with visual targets. However, external sensory signals might obscure early correlates of internally generated plans. We devised a nonspatial decision-making task in which the monkey is encouraged to decide randomly whether to reach or saccade in the absence of sensory stimuli. Neurons in frontal and parietal planning areas (in and around the arcuate and intraparietal sulci) showed responses predictive of the monkey's upcoming movement at early stages during the planning process. Neurons predicted the animal's future movements several seconds beforehand, sometimes before the trial even began. These data cast new light on the role of the cerebral cortex in the action planning process, when the animal is free to decide on his own actions in the absence of extraneous sensory cues. PMID:25761951

  10. Inter-rater reliability of cyclic and non-cyclic task assessment using the hand activity level in appliance manufacturing

    PubMed Central

    Paulsen, Robert; Schwatka, Natalie; Gober, Jennifer; Gilkey, David; Anton, Dan; Gerr, Fred; Rosecrance, John

    2015-01-01

    This study evaluated the inter-rater reliability of the American Conference of Governmental Industrial Hygienists (ACGIH®) hand activity level (HAL), an observational ergonomic assessment method used to estimate physical exposure to repetitive exertions during task performance. Video recordings of 858 cyclic and non-cyclic appliance manufacturing tasks were assessed by sixteen pairs of raters using the HAL visual-analog scale. A weighted Pearson Product Moment-Correlation Coefficient was used to evaluate the agreement between the HAL scores recorded by each rater pair, and the mean weighted correlation coefficients for cyclic and non-cyclic tasks were calculated. Results indicated that the HAL is a reliable exposure assessment method for cyclic (r̄-barw = 0.69) and non-cyclic work tasks (r̄-barw = 0.68). When the two reliability scores were compared using a two-sample Student's t-test, no significant difference in reliability (p = 0.63) between these work task categories was found. This study demonstrated that the HAL may be a useful measure of exposure to repetitive exertions during cyclic and non-cyclic tasks. Relevance to industry Exposure to hazardous levels of repetitive action during non-cyclic task completion has traditionally been difficult to assess using simple observational techniques. The present study suggests that ergonomists could use the HAL to reliably and easily evaluate exposures associated with some non-cyclic work tasks. PMID:26120222

  11. Main problems of the Russian Orlan-M space suit utilization for EVAs on the ISS

    NASA Astrophysics Data System (ADS)

    Abramov, I. P.; Pozdnyakov, S. S.; Severin, G. I.; Stoklitsky, A. Yu.

    2001-03-01

    In the recent years the Russian Orlan-M space suits have been improved as applied to their operational requirements for the ISS. A special attention is paid to enhancement of EVA crew efficiency and safety. The paper considers the main problems regarding specific features of the Russian space suit operation in the ISS, and analyses measures on their solution. In particular, the problems associated with the following are considered: enhancement of the anthropometric range for the EVA crewmembers; use of some US EMU elements and unified NASA equipment elements; Orlan-M operation support in the wide range of the ISS thermal conditions; use of Simplified Aid For Extravehicular activity Rescue (SAFER) designed as a self-rescue device, which will be used for an EVA crewmember return in the event that he (she) breaks away inadvertently from the ISS surface. The paper states the main space suit differences with reference to solution of the above problems. The paper presents briefly the design of space suit arms developed for crewmembers with small anthropometric parameters, as well as peculiarities and test results for the gloves with enhanced thermal protection. Measures on further space suit development with the purpose to improve its performances are considered.

  12. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1994-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. The First Servicing Mission (FSM) involved considerable Extra Vehicular Activity (EVA). Special EVA tools for the FSM were designed and developed for this specific purpose. In an earlier report, the details of the Data Acquisition System developed to test the performance of the various EVA tools in ambient as well as simulated space environment were presented. The general schematic of the test setup is reproduced in this report for continuity. Although the data acquisition system was used extensively to test a number of fasteners, only the results of one test each carried on various fasteners and the Power Ratchet Tool are included in this report.

  13. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  14. Amplitude and timing of somatosensory cortex activity in Task Specific Focal Hand Dystonia

    PubMed Central

    Dolberg, Rebecca; Hinkley, Leighton B. N.; Honma, Susanne; Zhu, Zhao; Findlay, Anne M.; Byl, Nancy N.; Nagarjan, Srikantan S.

    2011-01-01

    Objective Task-specific focal hand dystonia (tspFHD) is a movement disorder diagnosed in individuals performing repetitive hand behaviors. The extent to which processing anomalies in primary sensory cortex extend to other regions or across the two hemispheres is presently unclear. Methods In response to low/high rate and novel tactile stimuli on the affected and unaffected hands, magnetoencephalography (MEG) was used to elaborate activity timing and amplitude in the primary somatosensory (S1) and secondary somatosensory/parietal ventral (S2/PV) cortices. MEG and clinical performance measures were collected from thirteen patients and matched controls. Results Compared to controls, subjects with tspFHD had increased response amplitude in S2/PV bilaterally in response to high rate and novel stimuli. Subjects with tspFHD also showed increased response latency (low rate, novel) of the affected digits in contralateral S1. For high rate, subjects with tspFHD showed increased response latency in ipsilateral S1 and S2/PV bilaterally. Activation differences correlated with functional sensory deficits (predicting a latency shift in S1), motor speed and muscle strength. Conclusions There are objective differences in the amplitude and timing of activity for both hands across contralateral and ipsilateral somatosensory cortex in patients with tspFHD. Significance Knowledge of cortical processing abnormalities across S1 and S2/PV in dystonia should be applied towards the development of learning based sensorimotor interventions. PMID:21802357

  15. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks?

    PubMed Central

    Martin, Claire; Ravel, Nadine

    2014-01-01

    Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to “bind” distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15–40 Hz) and gamma (60–100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory. PMID:25002840

  16. EVA degradation mechanisms simulating those in PV modules

    NASA Astrophysics Data System (ADS)

    Pern, F. J.; Czanderna, A. W.

    1992-12-01

    Yellow-browning of the ethylene-vinyl acetate (EVA) copolymer encapsulant used in PV modules has resulted in significant power losses of over 50% of the initial power output. The weathering-degraded yellow-brown EVA films have lost the ultraviolet (UV) absorber, Cyasorb UV 531(R), and the degree of cross-linking (gel content) has increased. EVA degradation mechanisms identified thus far are discussed in this work. Upon exposure to UV light at 45°-85 °C, virgin EVA films that are stabilized with Cyasorb UV 531(R) and two antioxidants show an increase in the gel content, a gradual loss of Cyasorb by photooxidation, and the generation of acetic acid. The deacetylation reaction, which leads to the formation of polyenes, also occurs significantly in the films heated in the dark at 130 °C for five days. Acetic acid thermally catalyzes the EVA film discoloration at 85°-130 °C, which increases from a light yellow to a yellow-brown color as the heating temperature increases. The factors can account for the yellow-browning of the EVA in the accelerated testing of mini-modules, and the discoloration is more profound when exposed to UV light at 85 °C than when heated in the dark at the same temperature. In the presence of the EVA-produced acetic acid, oxygen, and sunlight exposure, the Cu buslines that were coated with a thin layer of Pb-Sn alloy showed significant oxidation and metal interdiffusion, which in turn may contribute to the resistance increase and hence the current loss reported for weathered PV modules.

  17. Minimizing EVA Airlock Time and Depress Gas Losses

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Lafuse, Sharon A.

    2008-01-01

    This paper describes the need and solution for minimizing EVA airlock time and depress gas losses using a new method that minimizes EVA out-the-door time for a suited astronaut and reclaims most of the airlock depress gas. This method consists of one or more related concepts that use an evacuated reservoir tank to store and reclaim the airlock depress gas. The evacuated tank can be an inflatable tank, a spent fuel tank from a lunar lander descent stage, or a backup airlock. During EVA airlock operations, the airlock and reservoir would be equalized at some low pressure, and through proper selection of reservoir size, most of the depress gas would be stored in the reservoir for later reclamation. The benefit of this method is directly applicable to long duration lunar and Mars missions that require multiple EVA missions (up to 100, two-person lunar EVAs) and conservation of consumables, including depress pump power and depress gas. The current ISS airlock gas reclamation method requires approximately 45 minutes of the astronaut s time in the airlock and 1 KW in electrical power. The proposed method would decrease the astronaut s time in the airlock because the depress gas is being temporarily stored in a reservoir tank for later recovery. Once the EVA crew is conducting the EVA, the volume in the reservoir would be pumped back to the cabin at a slow rate. Various trades were conducted to optimize this method, which include time to equalize the airlock with the evacuated reservoir versus reservoir size, pump power to reclaim depress gas versus time allotted, inflatable reservoir pros and cons (weight, volume, complexity), and feasibility of spent lunar nitrogen and oxygen tanks as reservoirs.

  18. Cooperative EVA/Telerobotic Surface Operations in Support of Exploration Science

    NASA Astrophysics Data System (ADS)

    Akin, David L.

    2001-01-01

    The contents include: 1) Planetary Surface Robotics; 2) EVA Difficulties from Apollo; 3) Robotic Capabilities for EVA Support; 4) Astronaut Support Vehicle; 5) Three ASV Preliminary Designs; 6) Small Single-arm Assistant; 7) Dual-arm Assistant; 8) Large EVA Assistant; 9) Lessons Learned-Preliminary Designs; 10) Rover Design Assumptions; 11) Design Requirements-Terrain; 12) Design Requirements; 13) Science Payload; 14) Manipulator Arm; 15) EVA Multiple Robot Cooperation; 16) SSL Rover Body Concept; 17) Advanced EVA Support Rover Concept; 18) Robotic Access to Restricted Sites; 19) Robotic Rescue of EVA crew; and 19) Why Do We Need Humans? This paper is presented in viewgraph form.

  19. Task-specific stability in muscle activation space during unintentional movements.

    PubMed

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L

    2014-11-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multidimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back toward the initial position. Intertrial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two subspaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former subspace in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy. PMID:25092272

  20. TASK-SPECIFIC STABILITY IN MUSCLE ACTIVATION SPACE DURING UNINTENTIONAL MOVEMENTS

    PubMed Central

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L.

    2014-01-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multi-dimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back towards the initial position. Inter-trial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two sub-spaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former sub-space in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy. PMID:25092272