Science.gov

Sample records for activity gel analysis

  1. Simultaneous immunoblotting analysis with activity gel electrophoresis and 2-D gel electrophoresis.

    PubMed

    Lee, Der-Yen; Chang, Geen-Dong

    2015-01-01

    Diffusion blotting method can couple immunoblotting analysis with another biochemical technique in a single polyacrylamide gel, however, with lower transfer efficiency as compared to the conventional electroblotting method. Thus, with diffusion blotting, protein blots can be obtained from an SDS polyacrylamide gel for zymography assay, from a native polyacrylamide gel for electrophoretic mobility shift assay (EMSA) or from a 2-D polyacrylamide gel for large-scale screening and identification of a protein marker. Thereafter, a particular signal in zymography, electrophoretic mobility shift assay, and 2-dimensional gel can be confirmed or identified by simultaneous immunoblotting analysis with a corresponding antiserum. These advantages make diffusion blotting desirable when partial loss of transfer efficiency can be tolerated or be compensated by a more sensitive immunodetection reaction using enhanced chemiluminescence detection.

  2. Rheology of Active Gels

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2015-03-01

    Active networks drive a diverse range of critical processes ranging from motility to division in living cells, yet a full picture of their rheological capabilities in non-cellular contexts is still emerging, e.g., How does the rheological response of a network capable of remodeling under internally-generated stresses differ from that of a passive biopolymer network? In order to address this and other basic questions, we have engineered an active gel composed of microtubules, bidirectional kinesin motors, and molecular depletant that self-organizes into a highly dynamic network of active bundles. The network continually remodels itself under ATP-tunable cycles of extension, buckling, fracturing, and self-healing. Using confocal rheometry we have simultaneously characterized the network's linear and non-linear rheological responses to shear deformation along with its dynamic morphology. We find several surprising and unique material properties for these active gels; most notably, rheological cloaking, the ability of the active gel to drive large-scale fluid mixing over several orders of flow magnitude while maintaining an invariant, solid-like rheological profile and spontaneous flow under confinement, the ability to exert micro-Newton forces to drive persistent directed motion of the rheometer tool. Taken together, these results and others to be discussed highlight the rich stress-structure-dynamics relationships in this class of biologically-derived active gels.

  3. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions.

    PubMed

    Miyawaki, Osato; Omote, Chiaki; Matsuhira, Keiko

    2015-12-01

    Sol-gel transition of gelatin was analyzed as a multisite stoichiometric reaction of a gelatin molecule with water and solute molecules. The equilibrium sol-gel transition temperature, Tt , was estimated from the average of gelation and melting temperature measured by differential scanning calorimetry. From Tt and the melting enthalpy, ΔHsol , the equilibrium sol-to-gel ratio was estimated by the van't Hoff equation. The reciprocal form of the Wyman-Tanford equation, which describes the sol-to-gel ratio as a function of water activity, was successfully applied to obtain a good linear relationship. From this analysis, the role of water activity on the sol-gel transition of gelatin was clearly explained and the contributions of hydration and solute binding to gelatin molecules were separately discussed in sol-gel transition. The general solution for the free energy for gel-stabilization in various solutions was obtained as a simple function of solute concentration.

  4. Self-Pumping Active Gel

    NASA Astrophysics Data System (ADS)

    Wu, Kun-Ta; Hishamunda, Jean Bernard; Fraden, Seth; Dogic, Zvonimir

    Isotropic active gels are the network which is consist of cross-linked building blocks and the structure of which changes randomly and isotropically with time. Dogic et. al. show that pairs of anti-parallel microtubules form extensile bundles, which merge, extend, and buckle. In an unconfined system, the dynamics of these bundles causes spontaneous turbulent-like flow driven by motion of microscopic molecular motors. We found that confining these active gels in a millimeter sized toroids causes a transition into a new dynamical state characterized by circulation currents persisting for hours until ATP is depleted. We show how toroid dimensions impact the properties of self-organized circular currents, how directions of circulation can be designed by engineering ratchet-shaped boundaries, and how circulations of connected toroids can be either synchronized or antisynchronized. Furthermore, we demonstrate that the flow rate in the circulation is independent of curvature and length of flow path. The flow rate persists for centimeters without decay, disregarding conventional pipe flow resistance. Such findings pave the path to self-pumping pipe transport and performing physical work with biological system.

  5. Active gel model of amoeboid cell motility

    NASA Astrophysics Data System (ADS)

    Callan-Jones, A. C.; Voituriez, R.

    2013-02-01

    We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-substrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.

  6. Active protease mapping in 2DE gels.

    PubMed

    Zhao, Zhenjun; Russell, Pamela J

    2009-01-01

    Proteases act as the molecular mediators of many vital biological processes. To understand the function of each protease, it needs to be separated from other proteins and characterized in its natural, biologically active form. In the method described in this chapter, proteases in a biological sample are separated under nonreducing conditions in 2DE gels. A specific small protease substrate, tagged with a fluorescent dye, is copolymerized into the SDS gel in the second dimension. After electrophoresis, the proteins are renatured by washing the gel with Triton X-100 solution or Milli Q water to remove SDS. The gel is then incubated in a protease assay buffer. The hydrolysis of the tagged specific substrate by the renatured protease releases the free fluorescent dye, which fluoresces in situ. The fluorescent spots indicate the location of the specific proteases in the gel and the specificity of the proteases.

  7. Analysis of gel heterogeneities on a local level

    NASA Astrophysics Data System (ADS)

    Boyne, Philip; Lechenault, Frederic; Daniels, Karen

    2008-10-01

    We study the heterogeneity of gels near the sol-gel transition through measurements of the spatial variations in gel strength. The correlated motion of fluorescent polystyrene microspheres suspended in gels is measured via two-point microrheology. Analysis of this correlated motion provides a local measure of gel heterogeneity. Additionally, we divide the images into micron-wide squares and determine how rheological properties spatially vary as a function of gel concentration. Our results imply that weaker gels exhibit more heterogeneity than stronger gels.

  8. Globular body production, their anatomy, DNase gel analysis and NDP kinase activity in root tips of Poncirus trifoliata L.

    PubMed

    Tzatzani, Thiresia-Teresa; Dimassi-Theriou, Kortessa; Yupsanis, Traianos; Bosabalidis, Artemios; Therios, Ioannis; Sarropoulou, Virginia

    2013-10-01

    Green globular bodies were developed from Poncirus trifoliata L. root tip explants as a response to addition in the substrate of different growth regulators. From the globular bodies, shoots initiated and grew. Median section of the globular bodies reveals that they are composed of parenchyma cells and originate from the pericycle. The activity of DNases during shoot formation from globular bodies was influenced by the type and concentration of plant growth regulators that were added in the nutrient substrate. Peptide bands formation was also influenced by the increase of BA concentration. Consequently, BA, NAA and IAA combination influenced 5'-triphosphonucleosides (NTPs) appearance and activity in the presence of metal. Peptide bands resulted from the electrophoretic analysis of endogenous protein phosphorylation, proved to be catalytic subunits of NDP kinases, as they all phosphorylate diphosphonucleosides. The enzymes DNases and NDP kinases could be used as a scientific tool for the study of shoot formation from P. trifoliata L. green globular bodies.

  9. Fluidization and Active Thinning by Molecular Kinetics in Active Gels.

    PubMed

    Oriola, David; Alert, Ricard; Casademunt, Jaume

    2017-02-24

    We derive the constitutive equations of an active polar gel from a model for the dynamics of elastic molecules that link polar elements. Molecular binding kinetics induces the fluidization of the material, giving rise to Maxwell viscoelasticity and, provided that detailed balance is broken, to the generation of active stresses. We give explicit expressions for the transport coefficients of active gels in terms of molecular properties, including nonlinear contributions on the departure from equilibrium. In particular, when activity favors linker unbinding, we predict a decrease of viscosity with activity-active thinning-of kinetic origin, which could explain some experimental results on the cell cortex. By bridging the molecular and hydrodynamic scales, our results could help understand the interplay between molecular perturbations and the mechanics of cells and tissues.

  10. Fluidization and Active Thinning by Molecular Kinetics in Active Gels

    NASA Astrophysics Data System (ADS)

    Oriola, David; Alert, Ricard; Casademunt, Jaume

    2017-02-01

    We derive the constitutive equations of an active polar gel from a model for the dynamics of elastic molecules that link polar elements. Molecular binding kinetics induces the fluidization of the material, giving rise to Maxwell viscoelasticity and, provided that detailed balance is broken, to the generation of active stresses. We give explicit expressions for the transport coefficients of active gels in terms of molecular properties, including nonlinear contributions on the departure from equilibrium. In particular, when activity favors linker unbinding, we predict a decrease of viscosity with activity—active thinning—of kinetic origin, which could explain some experimental results on the cell cortex. By bridging the molecular and hydrodynamic scales, our results could help understand the interplay between molecular perturbations and the mechanics of cells and tissues.

  11. Analysis of HeLa cell hypoxanthine phosphoribosyltransferase mutants and revertants by two-dimensional polyacrylamide gel electrophoresis: evidence for silent gene activation.

    PubMed Central

    Milman, G; Lee, E; Ghangas, G S; McLaughlin, J R; George, M

    1976-01-01

    The spot corresponding to hypoxanthine phosphoribosyltransferase (HPRT; IMP:pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) has been identified in two-dimensional polyacrylamide gels of HeLa cell extracts. This spot is absent in gels of 24 HPRT dificient mutants. A missense mutant displays a new HPRT spot at the same molecular weight but different isoelectric focusing position. Five independently isolated revertants of the missense mutant display spots corresponding to both the wild-type and mutant proteins indicating that they synthesize HPRT from two separate genes. If the missense protein is synthesized from a mutated form of the initially active HPRT gene, then wild-type HPRT protein in the revertants must be snythesized from a newly activated but prevously silent wild-type gene. The newly activated gene in the revertants of the missense mutation appears unstable producing a high frequency of spontaneous HPRT mutants. Images PMID:63948

  12. Modified gel preparation for distinct DNA fragment analysis in agarose gel electrophoresis.

    PubMed

    Lee, S V; Bahaman, A R

    2010-08-01

    Agarose gel electrophoresis is the standard method that is used to separate, identify, and purify DNA fragments. However, this method is time-consuming and capable of separating limited range of fragments. A new technique of gel preparation was developed to improve the DNA fragment analysis via electrophoresis.

  13. Giant Volume Change of Active Gels under Continuous Flow

    DTIC Science & Technology

    2014-04-21

    communication17 of BZ droplets and chemical self-organiza- tion,18 the properties and potential of self-oscillating gels in a microfluidic system have yet to be...active gels driven by the Belousov−Zhabotinsky reaction. These results demon- strate that microfluidics offers a useful and facile experimental...soft materials and microfluidic systems. ■ INTRODUCTION This paper reports the use of a continuous reactant flow in a microfluidic system to achieve

  14. Large deformation analysis of gellan gels

    NASA Astrophysics Data System (ADS)

    Kawai, Shinnosuke; Nitta, Yoko; Nishinari, Katsuyoshi

    2007-08-01

    Gellan gel, a typical polysaccharide gel, is ruptured with different deformation behaviors from gelatin gel or rubber. It exhibits both strain hardening and softening; hardening is observed for moderate strain and softening occurs for larger strain. From the analyses of stress-strain curves of gellan gels, we propose forms of strain energy function. The fit with the proposed equation was excellent, while the existing models fail because they consider only one of hardening or softening effect. Furthermore, these equations are shown to be capable of extracting the hardening and softening effects separately from the observed stress-strain curves. By using these fitting equations, the concentration dependences of hardening and softening are investigated. It is shown that the degrees of hardening and softening both increase with increasing gellan concentration.

  15. Antibacterial Activity of Copaiba Oil Gel on Dental Biofilm

    PubMed Central

    Simões, Cláudia A.C.G.; Conde, Nikeila C. de Oliveira; Venâncio, Gisely N.; Milério, Patrícia S.L.L.; Bandeira, Maria F.C.L.; da Veiga Júnior, Valdir F.

    2016-01-01

    Amazonian biodiversity products that have been used for years in folk medicine, have emerged as feasible and promising alternatives for the inhibition of microorganisms in dental biofilm. Copaiba oil, a phytotherapic agent widely used by the Amazonian populations, is known for its antibacterial, anti-inflammatory, anesthetic, healing and antitumor medicinal properties. Objective: The aim of this study was to evaluate the in vitro antibacterial activity of copaiba oil (Copaifera multijuga) gel against strains of Streptococcus sp present in dental biofilm. Materials and Methods: The copaiba oil was obtained and the chemical components were identified. The oil emulsions were formulated and used with the Brain Heart Infusion agar diffusion method with strains of Streptococcus mitis, Streptococcus constellatus and Streptococcus salivarius isolated from patients as well as standard strains of S. mitis (ATCC903), S. mutans (ATCC10449), S. sanguinis (ATCC15300) and S. oralis (ATCC10557). The study groups were as follows: experimental copaiba oil gel, 1% chlorhexidine gel (positive control) and base gel (negative control). The seeded plates were incubated at 37ºC for 12, 24 and 48 hours, respectively. The results obtained were analyzed by Shapiro-Wilk and Friedman Tests (p<0.05) for non parametric data and the Tukey test was used for pH values with 5% level of significance. Results: The experimental copaiba oil gel and 1% chlorhexidine gel showed antibacterial activity against the tested microorganisms. Conclusion: The copaiba oil gel demonstrated antibacterial activity against all the strains of Streptococcus sp tested, suggesting that it can be used for dental biofilm control. PMID:27386004

  16. Electrophoretic gel image analysis software for the molecular biology laboratory.

    PubMed

    Redman, T; Jacobs, T

    1991-06-01

    We present GelReader 1.0, a microcomputer program designed to make precision, digital analysis of one-dimensional electrophoretic gels accessible to the molecular biology laboratory of modest means. Images of electrophoretic gels are digitized via a desktop flatbed scanner from instant photographs, autoradiograms or chromogenically stained blotting media. GelReader is then invoked to locate lanes and bands and generate a report of molecular weights of unknowns, based on specified sets of standards. Frequently used standards can be stored in the program. Lanes and bands can be added or removed, based upon users' subjective preferences. A unique lane histogram feature facilitates precise manual addition of bands missed by the software. Image enhancement features include palette manipulation, histogram equalization, shadowing and magnification. The user interface strikes a balance between program autonomy and user intervention, in recognition of the variability in electrophoretic gel quality and users' analytical needs.

  17. Elasto-hydrodynamic network analysis of colloidal gels

    NASA Astrophysics Data System (ADS)

    Swan, James; Varga, Zsigmond

    Colloidal gels formed at low particle volume fractions result from a competition between two rate processes: aggregation of colloids and compaction of pre-gel aggregates. Recent work has shown that the former process is highly sensitive to the nature of the hydrodynamic interactions between suspended colloids. This same sensitivity to hydrodynamic flows within the gel leads to pronounced differences in the spectrum of relaxation times and response to deformation of the gel. This talk explores those differences and their consequences through computational simulations and the framework of elasto-hydrodynamic network analysis. We demonstrate a significant impact of hydrodynamic interactions between gelled colloids on macroscopic gel dynamics and rheology as well as the effect of hydrodynamic screening in gelled materials.

  18. Enzymatically active biomimetic micropropellers for the penetration of mucin gels

    PubMed Central

    Walker, Debora; Käsdorf, Benjamin T.; Jeong, Hyeon-Ho; Lieleg, Oliver; Fischer, Peer

    2015-01-01

    In the body, mucus provides an important defense mechanism by limiting the penetration of pathogens. It is therefore also a major obstacle for the efficient delivery of particle-based drug carriers. The acidic stomach lining in particular is difficult to overcome because mucin glycoproteins form viscoelastic gels under acidic conditions. The bacterium Helicobacter pylori has developed a strategy to overcome the mucus barrier by producing the enzyme urease, which locally raises the pH and consequently liquefies the mucus. This allows the bacteria to swim through mucus and to reach the epithelial surface. We present an artificial system of reactive magnetic micropropellers that mimic this strategy to move through gastric mucin gels by making use of surface-immobilized urease. The results demonstrate the validity of this biomimetic approach to penetrate biological gels, and show that externally propelled microstructures can actively and reversibly manipulate the physical state of their surroundings, suggesting that such particles could potentially penetrate native mucus. PMID:26824056

  19. Solvent-induced lysozyme gels: rheology, fractal analysis, and sol-gel kinetics.

    PubMed

    da Silva, Marcelo A; Arêas, Elizabeth P G

    2005-09-15

    In this work, the gelation kinetics and fractal character of lysozyme gel matrices developed in tetramethylurea (TMU)-water media were investigated. Gelation times were determined from the temporal crossover point between the storage, G', and loss, G'', moduli, as a function of the binary solvent composition and of protein concentration. The inverse dependence of the upper limit of the linear viscoelastic region (gamma0) on protein concentration indicate that the lysozyme gels belong to the "strong link" kind, a gel category where interparticle links are stronger than intraparticle ones. Lysozyme gel fractal dimensions (Df) were determined from the analysis of rheological data according to a scaling theory by Shih et al. [Phys. Rev. A 42 (1990) 4772-4779] and were found to be compatible with a diffusion-limited cluster-aggregation kinetics (DLCA) for lysozyme gels formed at the TMU mass fraction in the binary organic-aqueous solvent, wTMU=0.9, and with a reaction-limited cluster aggregation kinetics (RLCA) for wTMU in the 0.6< or =wTMU< or =0.8 range.

  20. Boundaries steer the contraction of active gels

    NASA Astrophysics Data System (ADS)

    Schuppler, Matthias; Keber, Felix C.; Kröger, Martin; Bausch, Andreas R.

    2016-10-01

    Cells set up contractile actin arrays to drive various shape changes and to exert forces to their environment. To understand their assembly process, we present here a reconstituted contractile system, comprising F-actin and myosin II filaments, where we can control the local activation of myosin by light. By stimulating different symmetries, we show that the force balancing at the boundaries determine the shape changes as well as the dynamics of the global contraction. Spatially anisotropic attachment of initially isotropic networks leads to a self-organization of highly aligned contractile fibres, being reminiscent of the order formation in muscles or stress fibres. The observed shape changes and dynamics are fully recovered by a minimal physical model.

  1. Boundaries steer the contraction of active gels

    PubMed Central

    Schuppler, Matthias; Keber, Felix C.; Kröger, Martin; Bausch, Andreas R.

    2016-01-01

    Cells set up contractile actin arrays to drive various shape changes and to exert forces to their environment. To understand their assembly process, we present here a reconstituted contractile system, comprising F-actin and myosin II filaments, where we can control the local activation of myosin by light. By stimulating different symmetries, we show that the force balancing at the boundaries determine the shape changes as well as the dynamics of the global contraction. Spatially anisotropic attachment of initially isotropic networks leads to a self-organization of highly aligned contractile fibres, being reminiscent of the order formation in muscles or stress fibres. The observed shape changes and dynamics are fully recovered by a minimal physical model. PMID:27739426

  2. Heterogeneity of mammalian DNA ligase detected on activity and DNA sequencing gels.

    PubMed Central

    Mezzina, M; Sarasin, A; Politi, N; Bertazzoni, U

    1984-01-01

    A new method to detect DNA ligase activity in situ after NaDodSO4 polyacrylamide gel electrophoresis has been developed. After renaturation of active polypeptides the ligase reaction occurs in situ by incubating the intact gel in the presence of Mg++ and ATP. Further treatment with alkaline phosphatase removes the unligated 5'-32P-end of oligo (dT) used as a substrate and active polypeptides having ligase activity are identified by autoradiography. Analysis on DNA sequencing gels of the oligo (dT) reaction products present in the activity bands ensures that the radioactive material detected in activity gels or in standard in vitro ligase assays corresponds unambiguously to a ligase activity. Using these methods, we have analysed the purified phage T4 DNA ligase, and the activities present in crude extracts and in purified fractions from monkey kidney (CV1-P) cells. The purified T4 enzyme yields one or two active peptides with Mr values of 60,000 and 70,000. Crude extracts from CV1-P cells contain several polypeptides having DNA ligase activity. Partial purification of these extracts shows that DNA ligase I isolated from hydroxylapatite column is enriched in polypeptides with Mr 200,000, 150,000 and 120,000, while DNA ligase II is enriched in those with Mr 60,000 and 70,000. Images PMID:6377238

  3. Electrical activation of artificial muscles containing polyacrylonitrile gel fibers.

    PubMed

    Schreyer, H B; Gebhart, N; Kim, K J; Shahinpoor, M

    2000-01-01

    Gel fibers made from polyacrylonitrile (PAN) are known to elongate and contract when immersed in caustic and acidic solutions, respectively. The amount of contraction for these pH-activated fibers is 50% or greater, and the strength of these fibers is shown to be comparable to that of human muscle. Despite these attributes, the need of strong acids and bases for actuation has limited the use of PAN gel fibers as linear actuators or artificial muscles. Increasing the conductivity by depositing platinum on the fibers or combining the fibers with graphite fibers has allowed for electrical activation of artificial muscles containing gel fibers when placed in an electrochemical cell. The electrolysis of water in such a cell produces hydrogen ions at an artificial muscle anode, thus locally decreasing the pH and causing the muscle to contract. Reversing the electric field allows the PAN muscle to elongate. A greater than 40% contraction in artificial muscle length in less than 10 min is observed when it is placed as an electrode in a 10 mM NaCl electrolyte solution and connected to a 10 V power supply. These results indicate potential in developing electrically activated PAN muscles and linear actuators, which would be much more applicable than chemically activated muscles.

  4. Anomalous discontinuity at the percolation critical point of active gels.

    PubMed

    Sheinman, M; Sharma, A; Alvarado, J; Koenderink, G H; MacKintosh, F C

    2015-03-06

    We develop a percolation model motivated by recent experimental studies of gels with active network remodeling by molecular motors. This remodeling was found to lead to a critical state reminiscent of random percolation (RP), but with a cluster distribution inconsistent with RP. Our model not only can account for these experiments, but also exhibits an unusual type of mixed phase transition: We find that the transition is characterized by signatures of criticality, but with a discontinuity in the order parameter.

  5. Synchronization of oscillations in hybrid gel-piezoelectric active materials

    NASA Astrophysics Data System (ADS)

    Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    We model the hybrid gel-piezoelectric active material that could perform oscillator based unconventional computing tasks (``materials that compute''). The material is assumed to have a cellular structure, where each cell contains a polymer gel, which undergoes cyclic swelling and deswelling due to the oscillatory Belousov-Zhabotinsky (BZ) reaction, and is coupled to a piezoelectric (PZ) film. Upon electrical connection, oscillations in the BZ-PZ units get synchronized, and the mode of synchronization is shown to depend on the number of units in the system, type of circuit connection, etc. Introduction of capacitors into the circuits allows us to further manipulate the synchronization modes, i.e., the distinctive patterns in phase of oscillations. The results indicate the BZ-PZ systems could be used for spatio-temporal pattern recognition.

  6. Design of electro-active polymer gels as actuator materials

    NASA Astrophysics Data System (ADS)

    Popovic, Suzana

    Smart materials, alternatively called active or adaptive, differ from passive materials in their sensing and activation capability. These materials can sense changes in environment such as: electric field, magnetic field, UV light, pH, temperature. They are capable of responding in numerous ways. Some change their stiffness properties (electro-rheological fluids), other deform (piezos, shape memory alloys, electrostrictive materials) or change optic properties (electrochromic polymers). Polymer gels are one of such materials which can change the shape, volume and even optical properties upon different applied stimuli. Due to their low stiffness property they are capable of having up to 100% of strain in a short time, order of seconds. Their motion resembles the one of biosystems, and they are often seen as possible artificial muscle materials. Despite their delicate nature, appropriate design can make them being used as actuator materials which can form controllable surfaces and mechanical switches. In this study several different groups of polymer gel material were investigated: (a) acrylamide based gels are sensitive to pH and electric field and respond in volume change, (b) polyacrylonitrile (PAN) gel is sensitive to pH and electric field and responds in axial strain and bending, (c) polyvinylalcohol (PVA) gel is sensitive to electric field and responds in axial strain and bending and (d) perfluorinated sulfonic acid membrane, Nafion RTM, is sensitive to electric field and responds in bending. Electro-mechanical and chemo-mechanical behavior of these materials is a function of a variety of phenomena: polymer structure, affinity of polymer to the solvent, charge distribution within material, type of solvent, elasticity of polymer matrix, etc. Modeling of this behavior is a task aimed to identify what is driving mechanism for activation and express it in a quantitative way in terms of deformation of material. In this work behavior of the most promising material as

  7. Detection of Non-Equilibrium Fluctuations in Active Gels

    NASA Astrophysics Data System (ADS)

    Bacanu, Alexandru; Broedersz, Chase; Gladrow, Jannes; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Active force generation at the molecular scale in cells can result in stochastic non-equilibrium dynamics on mesoscpopic scales. Molecular motors such as myosin can drive steady-state stress fluctuations in cytoskeletal networks. Here, we present a non-invasive technique to probe non-equilibrium fluctuations in an active gel using single-walled carbon nanotubes (SWNTs). SWNTs are semiflexible polymers with intrinsic fluorescence in the near infrared. Both thermal and active motor-induced forces in the network induce transverse fluctuations of SWNTs. We demonstrate that active driven shape fluctuations of the SWNTs exhibit dynamics that reflect the non-equilibrium activity, in particular the emergence of correlations between the bending modes. We discuss the observation of breaking of detailed balance in this configurational space of the SWNT probes. Supported by National Defense Science and Engineering Graduate Student Fellowship (NDSEG).

  8. Reovirus-specific polypeptides: analysis using discontinuous gel electrophoresis.

    PubMed Central

    Cross, R K; Fields, B N

    1976-01-01

    The electrophoretic analysis of reovirus-specific polypeptides in infected cells using a discontinuous gel system has allowed the resolution of additional viral-specific polypeptides, including one large-sized gamma3 and two (or possibly three) medium-sized (mu3, mu4, mu5(?)) species. The proteins designated mu0, sigma1, and sigma2 based on electrophoretic mobility in gel systems containing phosphate-urea correspond to mu4, sigma2, and sigma1, respectively, when analyzed in systems containing Tris-glycine. It is likely that protein modifications (phosphorylation and glycosylation) are responsible for at least some of these differences. Images PMID:950684

  9. Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol-gel surfaces.

    PubMed

    Jaiswal, Swarna; McHale, Patrick; Duffy, Brendan

    2012-06-01

    The colonisation of clinical and industrial surfaces with microorganisms, including antibiotic-resistant strains, has promoted increased research into the development of effective antibacterial and antifouling coatings. This study describes the preparation of metal nitrate (Ag, Cu, Zn) doped methyltriethoxysilane (MTEOS) coatings and the rapid assessment of their antibacterial activity using polyproylene microtitre plates. Microtitre plate wells were coated with different volumes of liquid sol-gel and cured under various conditions. Curing parameters were analysed by thermogravimetric analysis (TGA) and visual examination. The optimum curing conditions were determined to be 50-70°C using a volume of 200 μl. The coated wells were challenged with Gram-positive and Gram-negative bacterial cultures, including biofilm-forming and antibiotic-resistant strains. The antibacterial activities of the metal doped sol-gel, at equivalent concentrations, were found to have the following order: silver>zinc>copper. The order is due to several factors, including the increased presence of silver nanoparticles at the sol-gel coating surface, as determined by X-ray photoelectron spectroscopy, leading to higher elution rates as measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The use of microtitre plates enabled a variety of sol-gel coatings to be screened for their antibacterial activity against a wide range of bacteria in a relatively short time. The broad-spectrum antibacterial activity of the silver doped sol-gel showed its potential for use as a coating for biomaterials.

  10. Antiinflammatory activity of extracts from Aloe vera gel.

    PubMed

    Vázquez, B; Avila, G; Segura, D; Escalante, B

    1996-12-01

    We studied the effects of aqueous, chloroform, and ethanol extracts of Aloe vera gel on carrageenan-induced edema in the rat paw, and neutrophil migration into the peritoneal cavity stimulated by carrageenan. We also studied the capacity of the aqueous extract to inhibit cyclooxygenase activity. The aqueous and chloroform extracts decreased the edema induced in the hind-paw and the number of neutrophils migrating into the peritoneal cavity, whereas the ethanol extract only decreased the number of neutrophils. The antiinflammatory agents indomethacin and dexamethasone also decreased carrageenan-induced edema and neutrophil migration. The aqueous extract inhibited prostaglandin E2 production from [14C]arachidonic acid. The chemical tests performed in the aqueous extract for anthraglycosides, reductor sugars and cardiotonic glycosides were positive. In the ethanol extract, the chemical tests performed for saponins, carbohydrates naftoquinones, sterols, triterpenoids and anthraquinones were also positive. In the chloroform extract, the chemical tests performed for sterols type delta 5, and anthraquinones were positive. These results demonstrated that the extracts of Aloe vera gel have antiinflammatory activity and suggested its inhibitory action on the arachidonic acid pathway via cyclooxygenase.

  11. Pharmacodynamic activity of Dapivirine and Maraviroc single entity and combination topical gels for HIV-1 prevention

    PubMed Central

    Dezzutti, Charlene S.; Yandura, Sarah; Wang, Lin; Moncla, Bernard; Teeple, Elizabeth A.; Devlin, Brid; Nuttall, Jeremy; Brown, Elizabeth R.; Rohan, Lisa C.

    2015-01-01

    Purpose Dapivirine (DPV), a non-nucleoside reverse transcriptase inhibitor, and maraviroc (MVC), a CCR5 antagonist, were formulated into aqueous gels designed to prevent mucosal HIV transmission. Methods 0.05% DPV, 0.1% MVC, 0.05% DPV/0.1% MVC and placebo gels were evaluated for pH, viscosity, osmolality, and in vitro release. In vitro assays and mucosal tissues were used to evaluate anti-HIV activity. Viability (Lactobacilli only) and epithelial integrity in cell lines and mucosal tissues defined safety. Results The gels were acidic and viscous. DPV gel had an osmolality of 893 mOsm/kg while the other gels had an osmolality of <100 mOsm/kg. MVC release was similar from the single and combination gels (~5 μg/cm2/min1/2), while DPV release was 10-fold less from the single as compared to the combination gel (0.4331 μg/cm2/min1/2). Titrations of the gels showed 10-fold more drug was needed to protect ectocervical than colonic tissue. The combination gel showed ~10- and 100-fold improved activity as compared to DPV and MVC gel, respectively. All gels were safe. Conclusions The DPV/MVC gel showed a benefit blocking HIV infection of mucosal tissue compared to the single entity gels. Combination products with drugs affecting unique steps in the viral replication cycle would be advantageous for HIV prevention. PMID:26078001

  12. Internal structure analysis of particle-double network gels used in a gel organ replica

    NASA Astrophysics Data System (ADS)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  13. In vitro angiogenic activity of Aloe vera gel on calf pulmonary artery endothelial (CPAE) cells.

    PubMed

    Lee, M J; Lee, O H; Yoon, S H; Lee, S K; Chung, M H; Park, Y I; Sung, C K; Choi, J S; Kim, K W

    1998-06-01

    Angiogenic activity of Aloe vera gel was investigated by in vitro assay. We obtained the most active fraction from dichloromethane extract of Aloe vera gel by partitioning between hexane and 90% aqueous methanol. The most active fraction (F3) increased the proliferation of calf pulmonary artery endothelial (CPAE) cells. In addition, F3 fraction induced CPAE cells to invade type 1 collagen gel and form capillary-like tube through in vitro angiogenesis assay, and increased the invasion of CPAE cells into matrigel through in vitro invasion assay. Furthermore, the effect on the mRNA expression of proteolytic enzymes which are key participants in the regulation of extracellular matrix degradation was investigated by northern blot analysis. F3 fraction enhanced mRNA expression of urokinase-type plasminogen activator (u-PA), matrix metalloproteinase-2 (MMP-2), and membrane-type MMP (MT-MMP) in CPAE cells whereas the expression of plasminogen activator inhibitor-1 (PAI-1) mRNA was not changed.

  14. Active gels: dynamics of patterning and self-organization

    NASA Astrophysics Data System (ADS)

    Backouche, F.; Haviv, L.; Groswasser, D.; Bernheim-Groswasser, A.

    2006-12-01

    The actin cytoskeleton is an active gel which constantly remodels during cellular processes such as motility and division. Myosin II molecular motors are involved in this active remodeling process and therefore control the dynamic self-organization of cytoskeletal structures. Due to the complexity of in vivo systems, it is hard to investigate the role of myosin II in the reorganization process which determines the resulting cytoskeletal structures. Here we use an in vitro model system to show that myosin II actively reorganizes actin into a variety of mesoscopic patterns, but only in the presence of bundling proteins. We find that the nature of the reorganization process is complex, exhibiting patterns and dynamical phenomena not predicted by current theoretical models and not observed in corresponding passive systems (excluding motors). This system generates active networks, asters and even rings depending on motor and bundling protein concentrations. Furthermore, the motors generate the formation of the patterns, but above a critical concentration they can also disassemble them and even totally prevent the polymerization and bundling of actin filaments. These results may suggest that tuning the assembly and disassembly of cytoskeletal structures can be obtained by tuning the local myosin II concentration/activity.

  15. A mechanism for cell motility by active polar gels

    PubMed Central

    Marth, W.; Praetorius, S.; Voigt, A.

    2015-01-01

    We analyse a generic motility model, with the motility mechanism arising by contractile stress due to the interaction of myosin and actin. A hydrodynamic active polar gel theory is used to model the cytoplasm of a cell and is combined with a Helfrich-type model to account for membrane properties. The overall model allows consideration of the motility without the necessity for local adhesion. Besides a detailed numerical approach together with convergence studies for the highly nonlinear free boundary problem, we also compare the induced flow field of the motile cell with that of classical squirmer models and identify the motile cell as a puller or pusher, depending on the strength of the myosin–actin interactions. PMID:25926698

  16. Topical anti-inflammatory activity of pinda thailam, a herbal gel formulation.

    PubMed

    Periyanayagam, K; Venkatarathnakumar, T; Nagaveni, A; Subitha, V G; Sundari, P; Vaijorohini, M; Umamaheswari, V

    2004-07-01

    The present study aims to evaluate the topical anti-inflammatory activity of "Pinda thailam", a herbal gel formulation containing aqueous extract of roots of Rubia cordifolia (Rubiaceae) and Hemidesmus indicus (Asclepiadaceae) which are known for their anti-inflammatory activity using the technique of carrageenin induced paw oedema in albino rats. The herbal gel formulation showed significant anti-inflammatory activity comparable to the reference standard Diclofenac sodium gel.

  17. Enzyme renaturation to higher activity driven by the sol-gel transition: Carbonic anhydrase

    PubMed Central

    Vinogradov, Vladimir V.; Avnir, David

    2015-01-01

    We describe a so-far unknown route for renaturing denatured enzymes, namely subjecting the denatured enzyme to an oxide sol-gel transition. The phenomenon was revealed in a detailed study of denatured carbonic anhydrase which was subjected to an alumina sol-gel transition, up to the thermally stabilizing entrapment in the final xerogel. Remarkably, not only that the killed enzyme regained its activity during the sol-gel process, but its activity increased to 180% of the native enzyme. To the best of our knowledge, this is the first report of enhanced activity following by renaturing (a “Phoenix effect”). Kinetic study which revealed a five-orders of magnitude (!) increase in the Arrhenius prefactor upon entrapment compared to solution. Circular dichroism analysis, differential scanning calorimetry, zeta potential analyses as well as synchronous fluorescence measurements, all of which were used to characterize the phenomenon, are consistent with a proposed mechanism which is based on the specific orienting interactions of the active site of the enzyme with respect to the alumina interface and its pores network. PMID:26394694

  18. Enzyme renaturation to higher activity driven by the sol-gel transition: Carbonic anhydrase

    NASA Astrophysics Data System (ADS)

    Vinogradov, Vladimir V.; Avnir, David

    2015-09-01

    We describe a so-far unknown route for renaturing denatured enzymes, namely subjecting the denatured enzyme to an oxide sol-gel transition. The phenomenon was revealed in a detailed study of denatured carbonic anhydrase which was subjected to an alumina sol-gel transition, up to the thermally stabilizing entrapment in the final xerogel. Remarkably, not only that the killed enzyme regained its activity during the sol-gel process, but its activity increased to 180% of the native enzyme. To the best of our knowledge, this is the first report of enhanced activity following by renaturing (a “Phoenix effect”). Kinetic study which revealed a five-orders of magnitude (!) increase in the Arrhenius prefactor upon entrapment compared to solution. Circular dichroism analysis, differential scanning calorimetry, zeta potential analyses as well as synchronous fluorescence measurements, all of which were used to characterize the phenomenon, are consistent with a proposed mechanism which is based on the specific orienting interactions of the active site of the enzyme with respect to the alumina interface and its pores network.

  19. Application of SYPRO Ruby- and Flamingo-stained polyacrylamide gels to Western blot analysis.

    PubMed

    Hagiwara, Makoto; Kobayashi, Ken-Ichi; Tadokoro, Tadahiro; Yamamoto, Yuji

    2010-02-15

    Western blots are widely used for analysis of the expression levels of specific proteins. Blotting is conducted after sodium dodecyl sulfate or native polyacrylamide gel electrophoresis without staining the gel. However, when it is necessary to analyze the gel, duplicate polyacrylamide gels (one of which is stained) usually must be prepared, leading to the consumption of precious sample. Thus, we have developed a convenient and efficient Western blot method using a stained gel. This simple modification should be beneficial for the analysis of samples that are limited in quantity and/or samples for which the stained gel serves as the loading control.

  20. Application of SYPRO Ruby- and Flamingo-stained polyacrylamide gels to Western blot analysis.

    PubMed

    Hagiwara, Makoto; Kobayashi, Ken-Ichi; Tadokoro, Tadahiro; Yamamoto, Yuji

    2009-06-15

    Western blot analysis has been a useful method for analysis of expression levels of specific proteins and is conducted after sodium dodecyl sulfate (SDS) or native polyacrylamide gel electrophoresis without staining the gel. However, when it is necessary to analyze the gel, duplicate polyacrylamide gels usually must be prepared, one of which is stained, leading to the consumption of precious sample. Thus, we developed a convenient and efficient Western blotting method using a stained gel. This simple modification should be beneficial for analyzing samples that are limited in quantity and/or samples for which the stained gel serves as the loading control.

  1. Preparation, characterization and photocatalytic activity of manganese doped TiO(2) immobilized on silica gel.

    PubMed

    Xu, Yuehua; Lei, Bo; Guo, Laiqiu; Zhou, Wuyi; Liu, Youqin

    2008-12-15

    A series of Mn-TiO(2)/SiO(2) (silica gel loaded with manganese doped TiO(2)) photocatalysts have been prepared by sol-gel method, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities were enhanced in photocatalytic degradation of methyl orange over Mn-TiO(2)/SiO(2). XPS analysis shows that a Ti-O-Si or Ti-O-Mn bond is formed on the surface of photocatalyst. Mn is doped as a mixture of Mn(2+) and Mn(3+) on the surface of 1.0mol% Mn-TiO(2)/SiO(2). Mn(3+) appears to trap electrons and prohibit the electron-hole recombination. The electrons trapped in Mn(3+) site are subsequently transferred to the adsorbed O(2). As a result, the combination of the electron-hole pair was reduced.

  2. Challenges of glycoprotein analysis by microchip capillary gel electrophoresis.

    PubMed

    Engel, Nicole; Weiss, Victor U; Wenz, Christian; Rüfer, Andreas; Kratzmeier, Martin; Glück, Susanne; Marchetti-Deschmann, Martina; Allmaier, Günter

    2015-08-01

    Glycosylations severely influence a protein's biological and physicochemical properties. Five exemplary proteins with varying glycan moieties were chosen to establish molecular weight (MW) determination (sizing), quantitation, and sensitivity of detection for microchip capillary gel electrophoresis (MCGE). Although sizing showed increasing deviations from literature values (SDS-PAGE or MALDI-MS) with a concomitant higher degree of analyte glycosylation, the reproducibility of MW determination and accuracy of quantitation with high sensitivity and reliability were demonstrated. Additionally, speed of analysis together with the low level of analyte consumption render MCGE attractive as an alternative to conventional SDS-PAGE.

  3. Biological activity of insulin in GMO gels and the effect of agitation.

    PubMed

    Sadhale, Y; Shah, J C

    1999-11-25

    Glyceryl monooleate (GMO)-water cubic phase gel was previously shown to protect insulin from agitation induced aggregation. However, it is not known if insulin is biologically active in the gel and what effect agitation has on insulin in the gel. Therefore, the objective was to determine the stability of insulin in cubic phase gel in terms of its biological activity in a suitable animal model such as Sprague-Dawley rats. Effect of agitation on biological activity of insulin in cubic phase GMO gel was determined by subcutaneous injections of the agitated and non-agitated gels to two groups of previously fasted rats and measuring the effect on their blood glucose levels. Two groups of rats administered with agitated insulin solution and normal saline were used as controls. The biological activity of insulin was evaluated by comparing AAC (area above the blood glucose level-time curve, in %-h), C(max) (maximum % decrease in blood glucose levels) and t(max) (time required to attain C(max), in h) values for the four groups of rats. Since cubic phase gel is highly viscous, therapeutic equivalency of insulin in the lamellar phase gel, which converts in situ into cubic phase gel, was compared to insulin solution with normal saline as the control, using AAC, C(max) and t(max) of the blood glucose profile. Insulin was biologically active in both agitated and non-agitated gels; however, upon agitation, insulin in solution totally lost its hypoglycemic activity. Agitation of insulin in the cubic phase gel was seen to have very little deleterious effect on its biological activity. Insulin in the lamellar phase gel was not only biologically active but also therapeutically equivalent to insulin solution based on AAC (327.9+/-100.8 and 431.7+/-113.3), C(max) (57. 1+/-7.0 and 70.2+/-6.5) and t(max) (2.8+/-0.7 and 4.0+/-1.7) for the lamellar phase gel and insulin solution, respectively (no significant difference, P0.05). In summary, GMO cubic phase gel protected insulin from

  4. Proteome profile of zebrafish caudal fin based on one-dimensional gel electrophoresis LCMS/MS and two-dimensional gel electrophoresis MALDI MS/MS analysis.

    PubMed

    Singh, Sachin K; Lakshmi, Mula G Meena; Saxena, Sandeep; Swamy, Cherukuvada V Brahmendra; Idris, Mohammed M

    2011-01-01

    Zebrafish (Danio rerio) is the widely used vertebrate model animal for understanding the complexity of development and disease process. Zebrafish has been also extensively used in understanding the mechanism of regeneration for its extensive capability of regenerating fins and other tissues. We have analyzed the proteome profile of zebrafish caudal fin in its native state based on one-dimensional gel electrophoresis LCMS/MS and two-dimensional gel electrophoresis MS/MS analyses. A total of 417 proteins were identified as zebrafish fin tissue specific, which includes 397 proteins identified based on one-dimensional gel electrophoresis LCMS/MS analysis and 101 proteins identified based on two-dimensional gel electrophoresis MALDI MS/MS. The proteins mapped to the zebrafish fin tissue were shown to be involved in various biological activities related to development, apoptosis, signaling and metabolic process. Focal adhesion, regulation of actin cytoskeleton, cancer-related pathways, mitogen-activated protein kinase signaling, antigen processing and presentation, and proteasome are some of the important pathways associated with the identified proteome data set of the zebrafish fin.

  5. UC781 Microbicide Gel Retains Anti-HIV Activity in Cervicovaginal Lavage Fluids Collected following Twice-Daily Vaginal Application

    PubMed Central

    Evans-Strickfaden, Tammy; Holder, Angela; Pau, Chou-Pong; McNicholl, Janet M.; Chaikummao, Supraporn; Chonwattana, Wannee; Hart, Clyde E.

    2012-01-01

    The potent nonnucleoside reverse transcriptase inhibitor UC781 has been safety tested as a vaginal microbicide gel formulation for prevention of HIV-1 sexual transmission. To investigate whether UC781 retained anti-infective activity following exposure to the female genital tract, we conducted an ex vivo analysis of the UC781 levels and antiviral activity in cervicovaginal lavage (CVL) fluids from 25 Thai women enrolled in a 14-day safety trial of twice-daily vaginal application of two concentrations of the UC781 microbicide gel. CVL samples were collected from women in the 0.1% (n = 5), 0.25% (n = 15), and placebo (n = 5) gel arms following the first application of gel (T15 min) and 8 to 24 h after the final application (T8-24 h) and separated into cell-free (CVL-s) and pelletable (CVL-p) fractions. As UC781 is highly hydrophobic, there were significantly higher levels of UC781 in the CVL-p samples than in the CVL-s samples for the UC781 gel arms. In T8-24 h CVL-p samples, 2/5 and 13/15 samples collected from the 0.1% and 0.25% UC781 gel arms, respectively, efficiently blocked infection with ≥4 log10 50% tissue culture infective dose (TCID50) of a CCR5-tropic CRF01_AE HIV-1 virus stock. Independent of the arm, the 11 CVL-p samples with UC781 levels of ≥5 μg/CVL sample reduced infectious HIV by ≥4 log10 TCID50. Our results suggest that the levels and anti-infective activities of UC781 gel formulations are likely to be associated with a cellular or pelletable component in CVL samples. Therefore, cellular and pelletable fractions should be assayed for drug levels and anti-infective activity in preclinical studies of candidate microbicides. PMID:22508307

  6. Analysis of variations in band positions for normalization in across-gel denaturing gradient gel electrophoresis.

    PubMed

    Matsushita, Yuko; Yamamura, Kohji; Morimoto, Sho; Bao, Zhihua; Kurose, Daisuke; Sato, Ikuo; Yoshida, Shigenobu; Tsushima, Seiya

    2015-05-01

    Variation in band position between gels is a well-known problem in denaturing gradient gel electrophoresis (DGGE). However, few reports have evaluated the degree of variation in detail. In this study, we investigated the variation in band positions of DNA samples extracted from soil, normalized using reference positions within marker lanes for DGGE in three organismal (bacterial, fungal, and nematode) conditions. For sample lanes, marker DNA (as a control) and sample DNA were used. The test for normality of distribution showed that the position data of a large percentage of bands were normally distributed but not for certain bands. For the normally-distributed data, their variations [standard deviation of marker bands (SDM) and standard deviation of sample bands (SDS), respectively] were assessed. For all organismal conditions, the degree of within-gel variation were similar between SDMs and SDSs, while between-gel variations in SDSs were larger than those in SDMs. Due to the large effect of between-gel variations, the total variations in SDSs were more varied between sample bands, and the mean variations of all sample bands were higher than those in the markers. We found that the total variation in the fungal and nematode SDSs decreased when the intervals between marker bands were narrowed, suggesting that band interval is important for reducing total variation in normalized band positions. For the non-normally distributed data, the distribution was examined in detail. This study provided detailed information on the variation of band positions, which could help to optimize markers for reducing band position variation, and could aid in the accurate identification of bands in across-gel DGGE analyses.

  7. Separation and recovery of nucleic acids with improved biological activity by acid-degradable polyacrylamide gel electrophoresis.

    PubMed

    Kim, Yoon Kyung; Kwon, Young Jik

    2010-05-01

    One of the fundamental challenges in studying biomacromolecules (e.g. nucleic acids and proteins) and their complexes in a biological system is isolating them in their structurally and functionally intact forms. Electrophoresis offers convenient and efficient separation and analysis of biomacromolecules but recovery of separated biomacromolecules is a significant challenge. In this study, DNAs of various sizes were separated by electrophoresis in an acid-degradable polyacrylamide gel. Almost 100% of the nucleic acids were recovered after the identified gel bands were hydrolyzed under a mildly acidic condition and purified using anion exchange resin. Further concentration by centrifugal filtration and a second purification using ion exchange column chromatography yielded 44-84% of DNA. The second conventional (non-degradable) gel electrophoresis confirmed that the nucleic acids recovered from acid-degradable gel bands preserved their electrophoretic properties through acidic gel hydrolysis, purification, and concentration processes. The plasmid DNA recovered from acid-degradable gel transfected cells significantly more efficiently than the starting plasmid DNA (i.e. improved biological activity via acid-degradable PAGE). Separation of other types of nucleic acids such as small interfering RNA using this convenient and efficient technique was also demonstrated.

  8. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    PubMed

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  9. Multiple forms of phosphatase from human brain: isolation and partial characterization of affi-gel blue nonbinding phosphatase activities.

    PubMed

    Cheng, L Y; Wang, J Z; Gong, C X; Pei, J J; Zaidi, T; Grundke-Iqbal, I; Iqbal, K

    2001-04-01

    Phosphatases extracted from a human brain were resolved into two main groups, namely affi-gel blue-binding phosphatases and affi-gel blue-nonbinding phosphatases. Affi-gel blue binding phosphatases were further separated into four different phosphatase activities, designated P1-P4, and described previously. In the present study we describe the affi-gel blue-nonbinding phosphatases which were separated into seven different phosphatase activities, designated P5-P11 by poly-(L-lysine)-agarose and aminohexyl Sepharose 4B chromatographies. These seven phosphatase activities were active toward nonprotein phosphoester. P7-P11 and to some extent P5 could also dephosphorylate a phosphoprotein. They displayed different enzyme kinetics. On the basis of activity peak, the apparent molecular mass as estimated by Sephadex G-200 column chromatography for P5 was 49 kDa; P6, 32 kDa; P7, 150 kDa; P8, 250 kDa; P9, 165 kDa; P10, 90 kDa and P11, 165 kDa. Immunoblot analysis indicated that P8-P11 may belong to PP2B family, whereas P7 may associate with PP2A. The phosphatases P7-P11 were found to be effective in the dephosphorylation of Alzheimer's disease abnormally hyperphosphorylated tau. The resulting dephosphorylated tau regained its activity in promoting the microtubule assembly, suggesting that P7-P11 might regulate the phosphorylation of tau protein in the brain.

  10. Electromyography analysis of natural mastication behavior using varying mouthful quantities of two types of gels.

    PubMed

    Kohyama, Kaoru; Gao, Zhihong; Ishihara, Sayaka; Funami, Takahiro; Nishinari, Katsuyoshi

    2016-07-01

    The objectives of this study were to examine the effects of mouthful quantities and mechanical properties of gels on natural mastication behaviors using electromyography (EMG). Two types of hydrocolloid gels (A and K) with similar fracture loads but different moduli and fracture strains were served to eleven normal women in 3-, 6-, 12-, and 24-g masses in a randomized order. EMG activities from both masseter muscles were recorded during natural mastication. Because of the similar fracture loads, the numbers of chews, total muscle activities, and entire oral processing times were similar for similar masses of both gel types. Prior to the first swallow, the more elastic K gel with a higher fracture strain required higher muscle activities than the brittle A gel, which had higher modulus. Majority of subjects had preferred sides of chewing, but all subjects with or without preferred sides used both masseters during the consumption of gels. Similar effects of masses and types of gels were observed in EMG activities of both sides of masseters. Contributions of the dominant side of chewing were diminished with increasing masses of gels, and the mass dependency on ratio of the dominant side was more pronounced with K gel. More repetitions of smaller masses required greater muscle activities and longer periods for the consumption of 24-g gel portions. Reduction in the masses with an increased number of repetitions necessitated slower eating and more mastication to consume the gel portions. These observations suggest that chewing using both sides is more effective and unconsciously reduces mastication times during the consumption of gels.

  11. The latest advancements in proteomic two-dimensional gel electrophoresis analysis applied to biological samples.

    PubMed

    Santucci, Laura; Bruschi, Maurizio; Ghiggeri, Gian Marco; Candiano, Giovanni

    2015-01-01

    Two-dimensional gel electrophoresis (2DE) is one of the fundamental approaches in proteomics for the separation and visualization of complex protein mixtures. Proteins can be analyzed by 2DE using isoelectric focusing (IEF) in the first dimension, combined to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, gel staining (silver and Coomassie), image analysis, and 2DE gel database. High-resolution 2DE can resolve up to 5,000 different proteins simultaneously (∼2,000 proteins routinely), and detect and quantify <1 ng of protein per spot. Here, we describe the latest developments for a more complete analysis of biological fluids.

  12. In vivo evidence of the immunomodulatory activity of orally administered Aloe vera gel.

    PubMed

    Im, Sun-A; Lee, Young-Ran; Lee, Young-Hee; Lee, Myung-Koo; Park, Young In; Lee, Sungwon; Kim, Kyungjae; Lee, Chong-Kil

    2010-03-01

    The gels of Aloe species contain immunomodulatory components such as aloctin A and acemannan. Most studies on these gels were performed in in vitro cell culture systems. Although several studies examined their immunomodulatory activity in vivo, the route of administration was intraperitoneal or intramuscular. Here, we evaluated the in vivo immunomodulatory activity of processed Aloe vera gel (PAG) in mice. Oral administration of PAG significantly reduced the growth of C. albicans in the spleen and kidney following intravenous injection of C. albicans in normal mice. PAG administration also reduced the growth of C. albicans in streptozotocin-induced diabetic mice. PAG administration did not increase ovalbumin (OVA)-specific cytotoxic T lymphocyte (CTL) generation in normal mice, but did increase it in high-fat-diet induced diabetic mice. These findings provide the first clear evidence for the immunomodulatory activity of orally administered Aloe vera gel.

  13. Evaluation of Skin Permeation and Analgesic Activity Effects of Carbopol Lornoxicam Topical Gels Containing Penetration Enhancer

    PubMed Central

    Al-Suwayeh, Saleh A.; Taha, Ehab I.; Al-Qahtani, Fahad M.; Ahmed, Mahrous O.; Badran, Mohamed M.

    2014-01-01

    The current study was designed to develop a topical gel formulation for improved skin penetration of lornoxicam (LOR) for enhancement of its analgesic activity. Moreover, the effect of different penetration enhancers on LOR was studied. The LOR gel formulations were prepared by using hydroxylpropyl methylcellulose (HPMC) and carbopol. The carbopol gels in presence of propylene glycol (PG) and ethanol were developed. The formulated gels were characterized for pH, viscosity, and LOR release using Franz diffusion cells. Also, in vitro skin permeation of LOR was conducted. The effect of hydroxypropyl β-cyclodextrin (HP β-CD), beta-cyclodextrin (β-CD), Tween 80, and oleic acid on LOR permeation was evaluated. The optimized LOR gel formulation (LORF8) showed the highest flux (14.31 μg/cm2/h) with ER of 18.34 when compared to LORF3. Incorporation of PG and HP β-CD in gel formulation (LORF8) enhanced the permeation of LOR significantly. It was observed that LORF3 and LORF8 show similar analgesic activity compared to marketed LOR injection (Xefo). This work shows that LOR can be formulated into carbopol gel in presence of PG and HP β-CD and may be promising in enhancing permeation. PMID:25045724

  14. Designing Active Coatings and Multilayer Composites: Harnessing Mechano-chemical Transduction in Responsive Gels

    DTIC Science & Technology

    2011-03-02

    underlying components need to be checked for incipient damage. Importantly, Profs. Irv Epstein and Bing Xu at Brandeis University have just...of a BZ gel using the tip of a needle. Image courtesy of Irving Epstein and Jorge Delgado, Brandeis University (unpublished data). Fig. I...Motion of Active Gels”, Langmuir , 25 (2009) 4298-4301. *6. Dayal, P., Kuksenok, O. and Balazs, A.C., “Designing autonomously motile gels that follow

  15. A novel low-molecular-mass gelator with a redox active ferrocenyl group: tuning gel formation by oxidation.

    PubMed

    Liu, Jing; Yan, Junlin; Yuan, Xuanwei; Liu, Kaiqiang; Peng, Junxia; Fang, Yu

    2008-02-15

    A novel low-molecular-mass gelator containing a redox-active ferrocenyl group, cholesteryl glycinate ferrocenoylamide (CGF), was intentionally designed and prepared. It was demonstrated that the gelator gels 13 out of the 45 solvents tested. Scanning electron microscopy (SEM) measurements revealed that the gelator self-assembled into different supramolecular network structures in different gels. Chemical oxidation of the ferrocenyl residue resulted in phase transition of the gel from gel state to solution state. FTIR and (1)H NMR spectroscopy studies revealed that hydrogen bonding between the gelator molecules in the gel was one of the main driving forces for the formation of the gels.

  16. Scanning electron microscopy analysis of sol-gel derived biocompatible glass

    NASA Astrophysics Data System (ADS)

    Holmes-Smith, A. S.; Hungerford, G.; Uttamlal, M.; Amaro, M.; Martins, P.; McBrearty, L.; Love, G.; Ferreira, M. I. C.

    2008-08-01

    Bioactive silica gels/polymer systems have been produced using a sol-gel route and their bio-compatibility has been investigated by immersing them in simulated body fluid (SBF). The porous monoliths have been characterised by SEM and EDX analysis where images obtained show pores on the surface of 10-200 μm. The silica gels are not homogeneous and distinct regions of silicon and calcium are observed. The growth of an apatite layer on the surface of the gels was evident after steeping in SBF.

  17. Effect of chemical activation of 10% carbamide peroxide gel in tooth bleaching.

    PubMed

    Batista, Graziela Ribeiro; Arantes, Paula Tamiao; Attin, Thomas; Wiegand, Annette; Torres, Carlos Rocha

    2013-01-01

    This study aimed to evaluate the efficacy of chemical agents to increase the bleaching effectiveness of 10% carbamide peroxide. Two hundred and ninety enamel-dentin discs were prepared from bovine incisors. The color measurement was performed by a spectrophotometer using the CIE L*a*b*system. The groups were divided according to the bleaching treatment: negative control group (NC): without bleaching; positive control group (PC): bleached with 10% carbamide peroxide gel without any chemical activator; Manganese gluconate (MG); Manganese chloride (MC); Ferrous gluconate (FG); Ferric chloride (FC); and Ferrous sulphate (FS). Three different concentrations (MG, MC, FG, FC: 0.01, 0.02 and 0.03% w/w; FS: 0.001, 0.002 and 0.003% w/w) for each agent were tested. The bleaching gel was applied on the specimens for 8 h, after which they were immersed in artificial saliva for 16 h, during 14 days. Color assessments were made after 7 and 14 days. The data were analyzed by repeated measures analysis of variance and Tukey's test (5%). Generally, the test groups were unable to increase the bleaching effect (ΔE) significantly compared to the PC group. Only for ΔL, significant higher values compared to the PC group could be seen after 7 days in groups MG (0.02%), and FS (0.002 and 0.003%). The NC group showed significantly lower values than all tested groups. It was concluded that for home bleaching procedures, the addition of chemical activators did not produce a bleaching result significantly higher than the use of 10% carbamide peroxide without activation, and that the concentration of chemical activators used did not significantly influence the effectiveness of treatment.

  18. Assessment of Anti HSV-1 Activity of Aloe Vera Gel Extract: an In Vitro Study

    PubMed Central

    Rezazadeh, Fahimeh; Moshaverinia, Maryam; Motamedifar, Mohammad; Alyaseri, Montazer

    2016-01-01

    Statement of the Problem Herpes simplex virus (HSV) infection is one of the most common and debilitating oral diseases; yet, there is no standard topical treatment to control it. The extract of Aloe vera leaves has been previously reported to have anti-inflammatory, antibacterial, and also antiviral effects. There is no data on anti-Herpes simplex virus type 1 (HSV-1) activity of Aloe vera gel. Purpose This study aimed to evaluate the anti-HSV-1 activity of Aloe vera gel in Vero cell line. Materials and Method In this study, gel extraction and cytotoxicity of various increasing concentrations of Aloe vera gel (0.2, 0.5, 1, 2, and 5%) was evaluated in Dulbecco’s Modified Eagle Medium (DMEM) containing 2% fetal bovine serum (FBS). Having been washed with phosphate buffered saline, 50 plaque-forming units (PFU) of HSV-1 was added to each well. After 1 hour of incubation at 37°C, cell monolayers in 24 well plates were exposed to different increasing concentrations of Aloe vera gel. The anti-HSV-1 activity of Aloe vera gel in different concentrations was assessed by plaque reduction assays. Data were analyzed by using One-way ANOVA. Results The cytotoxicity assay showed that Aloe vera in prearranged concentrations was cell-compatible. The inhibitory effect of various concentrations of Aloe vera was observed one hour after the Vero cell was infected with HSV-1. However, there was no significant difference between two serial concentrations (p> 0.05). One-way ANOVA also revealed no significant difference between the groups. The findings indicated a dose-dependent antiviral effect of Aloe vera. Conclusion The findings showed significant inhibitory effect of 0.2-5% Aloe vera gel on HSV-1 growth in Vero cell line. Therefore, this gel could be a useful topical treatment for oral HSV-1 infections without any significant toxicity. PMID:26966709

  19. "JCE" Classroom Activity Connections: NaCl or CaCl[subscript 2], Smart Polymer Gel Tells More

    ERIC Educational Resources Information Center

    Chen, Yueh-Huey; Lin, Jia-Ying; Wang, Yu-Chen; Yaung, Jing-Fun

    2010-01-01

    This classroom activity connection demonstrates the differences between the effects of NaCl (a salt of monovalent metal ions) and CaCl[subscript 2] (a salt of polyvalent metal ions) on swollen superabsorbent polymer gels. Being ionic compounds, NaCl and CaCl[subscript 2] both collapse the swollen polymer gels. The gel contracted by NaCl reswells…

  20. Inhibitory activity of Aloe vera gel on some clinically isolated cariogenic and periodontopathic bacteria.

    PubMed

    Fani, Mohammadmehdi; Kohanteb, Jamshid

    2012-03-01

    Aloe vera is a medicinal plant with anti-inflammatory, antimicrobial, antidiabetic and immune-boosting properties. In the present study we investigated the inhibitory activities of Aloe vera gel on some cariogenic (Streptococcus mutans), periodontopathic (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis) and an opportunistic periodontopathogen (Bacteroides fragilis) isolated from patients with dental caries and periodontal diseases. Twenty isolates of each of these bacteria were investigated for their sensitivity to Aloe vera gel using the disk diffusion and microdilution methods. S. mutans was the species most sensitive to Aloe vera gel with a MIC of 12.5 µg/ml, while A. actinomycetemcomitans, P. gingivalis, and B. fragilis were less sensitive, with a MIC of 25-50 µg/ml (P < 0.01). Based on our present findings it is concluded that Aloe vera gel at optimum concentration could be used as an antiseptic for prevention of dental caries and periodontal diseases.

  1. Spectrum of antimicrobial activity and user acceptability of the hand disinfectant agent Sterillium Gel.

    PubMed

    Kampf, G; Rudolf, M; Labadie, J-C; Barrett, S P

    2002-10-01

    The antimicrobial efficacy of alcohol-based hand gels has been shown to be significantly less than liquid hand rubs probably because of a lower concentration of alcohol. Sterillium Gel is the first hand gel with 85% ethanol. Its antimicrobial efficacy and user acceptability was studied. Bactericidal activity was tested according to prEN 12054 against Staphylococcus aureus, Enterococcus hirae, Pseudomonas aeruginosa and Escherichia coli (suspension test) and EN 1500 (15 volunteers; four replicates), fungicidal activity according to EN 1275 against Candida albicans and spores of Aspergillus niger (suspension test) and tuberculocidal activity against Mycobacterium terrae using the DGHM suspension test. Virucidal activity was determined in suspension tests based on reduction of infectivity with and without interfering substances (10% fetal calf serum; 0.3% erythrocytes and 0.3% bovine serum albumin). Ninety-six healthcare workers in hospitals in France and the UK used the gel for four weeks and assessed it by filling out a questionnaire. The gel was bactericidal (a reduction factor of > 10(5)-fold), tuberculocidal (reduction factor > 10(5)) and fungicidal (reduction factor > 10(4)) in 30 s. Irrespective of interfering substances the gel inactivated orthopoxvirus and herpes simplex virus type 1 and 2 in 15 s, adenovirus in 2 min, poliovirus in 3 min and papovavirus in 15 min by a factor of > 10(4)-fold. Rotavirus and human immunodeficiency virus were inactivated in 30 s (without interfering substances). Under practical use conditions it was as effective in 30 s as the reference alcohol in 60 s. Most users described the tackiness, aggregation, skin feeling after use and smell as positive or acceptable. A total of 65.6% assessed the new gel to be better than a comparator irrespective of its type (gel or liquid). Overall Sterillium Gel had a unique spectrum of antimicrobial activity. It is probably the first alcohol-based hand gel to pass EN 1500 in 30 s. Due to the

  2. Analysis of Dictyostelium discoideum inositol pyrophosphate metabolism by gel electrophoresis.

    PubMed

    Pisani, Francesca; Livermore, Thomas; Rose, Giuseppina; Chubb, Jonathan Robert; Gaspari, Marco; Saiardi, Adolfo

    2014-01-01

    The social amoeba Dictyostelium discoideum was instrumental in the discovery and early characterization of inositol pyrophosphates, a class of molecules possessing highly-energetic pyrophosphate bonds. Inositol pyrophosphates regulate diverse biological processes and are attracting attention due to their ability to control energy metabolism and insulin signalling. However, inositol pyrophosphate research has been hampered by the lack of simple experimental procedures to study them. The recent development of polyacrylamide gel electrophoresis (PAGE) and simple staining to resolve and detect inositol pyrophosphate species has opened new investigative possibilities. This technology is now commonly applied to study in vitro enzymatic reactions. Here we employ PAGE technology to characterize the D. discoideum inositol pyrophosphate metabolism. Surprisingly, only three major bands are detectable after resolving acidic extract on PAGE. We have demonstrated that these three bands correspond to inositol hexakisphosphate (IP₆ or Phytic acid) and its derivative inositol pyrophosphates, IP₇ and IP₈. Biochemical analyses and genetic evidence were used to establish the genuine inositol phosphate nature of these bands. We also identified IP₉ in D. discoideum cells, a molecule so far detected only from in vitro biochemical reactions. Furthermore, we discovered that this amoeba possesses three different inositol pentakisphosphates (IP₅) isomers, which are largely metabolised to inositol pyrophosphates. Comparison of PAGE with traditional Sax-HPLC revealed an underestimation of the cellular abundance of inositol pyrophosphates by traditional methods. In fact our study revealed much higher levels of inositol pyrophosphates in D. discoideum in the vegetative state than previously detected. A three-fold increase in IP₈ was observed during development of D. discoideum a value lower that previously reported. Analysis of inositol pyrophosphate metabolism using ip6k null amoeba

  3. Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging.

    PubMed

    Rees, Catherine A; Provis, John L; Lukey, Grant C; van Deventer, Jannie S J

    2007-07-17

    Structural changes in fly ash geopolymers activated with different sodium hydroxide and silicate concentrations are investigated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy over a period of 200 days. A strong correlation is found between the concentration of silicate monomer in the activating solution and the position of the main Si-O-T stretching band in the FTIR spectrum, which gives an indication of the relative changes in the gel Si/Al ratio. The FTIR spectra of geopolymer samples with activating solution concentrations of up to 1.2 M SiO2 indicate that an Al-rich gel forms before the final gel composition is reached. The time required for the system to reach a steady gel composition depends on the silicate activating solution concentration and speciation. Geopolymers activated with solutions containing predominantly high-order silicate species rapidly reach a steady gel composition without first forming an Al-rich gel. A minimum silicate monomer concentration of approximately 0.6 M is required to shift the geopolymer synthesis mechanism from hydroxide activation to silicate activation. Silicate speciation in the activating solutions also affects zeolite formation and geopolymer microstructures, with a more homogeneous microstructure and less zeolite formation observed at a higher SiO2 content.

  4. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation

    SciTech Connect

    Yip, C.K.; Lukey, G.C.; Deventer, J.S.J. van . E-mail: jannie@unimelb.edu.au

    2005-09-01

    Scanning electron microscopy was used to study the effects of the addition of ground granulated blast furnace slag (GGBFS) on the microstructure and mechanical properties of metakaolin (MK) based geopolymers. It was found that it is possible to have geopolymeric gel and calcium silicate hydrate (CSH) gel forming simultaneously within a single binder. The coexistence of these two phases is dependent on the alkalinity of the alkali activator and the MK / GGBFS mass ratio. It has been found that the formation of CSH gel together with the geopolymeric gel occurs only in a system at low alkalinity. In the presence of high concentrations of NaOH (> 7.5 M), the geopolymeric gel is the predominant phase formed with small calcium precipitates scattered within the binder. The coexistence of the two phases is not observed unless a substantial amount of a reactive calcium source is present initially. It is thought that voids and pores within the geopolymeric binder become filled with the CSH gel. This helps to bridge the gaps between the different hydrated phases and unreacted particles; thereby resulting in the observed increase in mechanical strength for these binders.

  5. Two-dimensional finite element analysis of a polymer gel drug delivery system

    SciTech Connect

    Segalman, D.J.; Witkowski, W.R.

    1993-12-31

    Hydrogels are being investigated as drug delivery mechanisms. Gels can be impregnated with a drug and then stimulated through various means to release it. Having the capability to numerically predict the dynamic behavior of these release process would benefit the design and control of the such a process. In the paper, a finite element analysis is used to simulate the dynamic behavior of an eroding polyelectrolyte gel. The gel is impregnated in a collapsed state. It is then subjected to a higher pH environment causing it to swell. When it has swollen to a specified extent, the gel erodes, thereby releasing the drug agent. Such gels are currently being investigated in drug delivery schemes to the colon.

  6. Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab.

    PubMed

    Tyagi, Puneet; Barros, Matthew; Stansbury, Jeffrey W; Kompella, Uday B

    2013-08-05

    A light-activated polycaprolactone dimethacrylate (PCM) and hydroxyethyl methacrylate (HEMA) based gel network was developed to sustain the release of stable, active bevacizumab (an anti-VEGF antibody used to treat choroidal neovascularization) and used to assess sustained ex vivo delivery in rabbit eyes and in vivo delivery in rat eyes following in situ gel formation in the suprachoroidal space. PCM was synthesized from polycaprolactone diol (PCD) and evaluated using NMR spectroscopy. PCM was used to cross-link HEMA in the presence of 365 nm UV light and 2,2-dimethoxy-2-phenylacetophenone (DMPA) as a photoinitiator. Bevacizumab was entrapped in the gel using three different cross-linking durations of 3, 7, and 10 min. In vitro release of bevacizumab in PBS pH 7.4 at 37 °C during a 4 month study was quantified using a VEGF-binding based ELISA. The stability of released bevacizumab was monitored by size exclusion chromatography (SEC) and circular dichroism. Alexa Fluor 488 dye conjugated bevacizumab mixed with polymers was injected suprachoroidally in rabbit eyes to study the effect of different cross-linking durations on the spread of the dye conjugated bevacizumab. In vivo delivery was assessed in Sprague-Dawley (SD) rats by injecting Alexa Fluor 488 dye conjugated bevacizumab mixed with polymers followed by cross-linking for 10 min. Spread in the rabbit eyes and in vivo delivery in rat eyes was monitored noninvasively using a fundus camera and Fluorotron Master. The formation of PCM was confirmed by the disappearance of hydroxyl peak in NMR spectra. A cross-linking duration of 10 min resulted in a burst release of 21% of bevacizumab. Other cross-linking durations had ≥62% burst release. Bevacizumab release from 10 min cross-linked gel was sustained for ∼4 months. Release samples contained ≥96.1% of bevacizumab in the monomeric form as observed in SEC chromatograms. Circular dichroism confirmed that secondary β-sheet structure of bevacizumab was maintained

  7. GC analysis of black gel pen ink stored under different conditions.

    PubMed

    Li, Biao; Xie, Peng; Guo, Ying-min; Fei, Qing

    2014-03-01

    In many criminal and civil cases in China, the most commonly questioned documents are those written with gel pen ink. An important task for forensic document examiners is to identify whether two or more ink entries in one or more documents were written with the same ink type. The identification of the age of gel ink entries made poses an important and difficult problem for forensic document examiners. In this paper, the volatile components of gel ink were determined and the gel ink was classified by gas chromatography with a flame ionization detector. Calibration curves were created to express the relationship between the content of volatile gel ink components and the age of gel ink entries stored under natural and UV-induced aging conditions. The correspondence between the natural and UV-induced aging conditions was also established. The experimental results showed that GC was useful in the analysis of black gel ink and applicable for determining the relative age of gel ink entries under certain conditions.

  8. An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder

    SciTech Connect

    Osaka, Tetsuya, Liu, X.; Nojima, Masashi; Momma, Toshiyuki

    1999-05-01

    An electric double layer capacitor (EDLC) was prepared with an activated carbon powder electrode with poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based gel electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were used as plasticizer and tetraethylammonium tetrafluoroborate (TEABF{sub 4}) was used as the supporting electrolyte. An optimized gel electrolyte of PVdF-HFP/PC/EC/TEABF{sub 4} - 23/31/35/11 mass ratio exhibited high ionic conductivity of 5 {times} 10{sup {minus}3} S/cm, high electrode capacitance, and good mechanical strength. An electrode consisting of activated carbon (AC) with the gel electrolyte as the binder (AC/PVdF-HFP based gel, 7/3 mass ratio) showed a higher specific capacitance and a lower ion diffusion resistance within the electrode than a carbon electrode, prepared with PVdF-HFP binder without plasticizer. This suggests that an electrode mixed with the gel electrolyte has a lower ion diffusion resistance inside the electrode. The highest specific capacitance of 123 F/g was achieved with an electrode containing AC with a specific surface area of 2500 m{sup 2}/g. A coin-type EDLC cell with optimized components showed excellent cycleability exceeding 10{sup 4} cycles with ca. 100% coulombic efficiency achieved when charging and discharging was repeated between 1.0 and 2.5 V at 1.66 mA/cm{sup 2}.

  9. [Optimization of gel radial diffusion method for serum immunoglobulin analysis].

    PubMed

    Gerasimov, I G; Zorkova, E V

    2002-07-01

    Serum IgA, IgM, and IgG were measured by radial immunodiffusion in gel; immunoglobulin concentrations correlated with the diameter of their diffusion. A theoretically-based equation was derived; use of this equation will help estimate serum Ig content without plotting a calibration curve by the square diameter of the immunodiffusion ring of undiluted reference serum in a wide range of concentrations (0.3-3 mg/ml for IgA and IgM and 2-18 mg/ml for IgG). This modification of measuring serum immunoglobulins by radial immunodiffusion in gel is as accurate as other methods, but is reagent- and time-saving.

  10. Clindamycin 1% Nano-emulsion Gel Formulation for the Treatment of Acne Vulgaris: Results of a Randomized, Active Controlled, Multicentre, Phase IV Clinical Trial

    PubMed Central

    Bhavsar, Bhavik; Choksi, Bimal; Dogra, Alka; Haq, Rizwan; Mehta, Sudhanshu; Mukherjee, Santanu; Subramanian, V; Sheikh, Shafiq; Mittal, Ravindra

    2014-01-01

    Background: Acne vulgaris of the face is a common dermatological disease with a significant impact on the quality of life, psychosocial development as well as self-esteem of the patients. Nano emulsion gel formulations are said to have various advantages over the conventional formulations. Aim: The present study was conducted to assess the comparative efficacy and safety of a nano-emulsion gel formulation of clindamycin with its conventional formulation in the treatment of acne vulgaris of the face. Materials and Methods: This prospective, active controlled, multicentric, phase IV clinical trial evaluated the treatment of patients with acne vulgaris of the face by a nano emulsion gel formulation or conventional gel formulation of clindamycin (as phosphate) 1% locally applied twice daily for 12 weeks as per random allocation. Acne lesion counts (inflammatory, non-inflammatory and total) and severity grading were carried out on the monthly scheduled visits along with tolerability assessments. Results: A total of 200 patients (97 males) were included for Intention to Treat analysis in the trial with 100 patients in each group. Reductions in total (69.3 vs. 51.9%; p<0.001), inflammatory (73.4 vs. 60.6%; p<0.005) and non inflammatory (65.1 vs. 43.7%; p<0.001) acne lesions were reported to be significantly greater with the nano-emulsion gel formulation as compared to the conventional gel formulation. Significantly more reduction in the mean acne severity score was noticeable with the nano-emulsion gel formulation (-1.6 ± 0.9 vs. -1.0 ± 0.8; p<0.001) than the comparator. A trend towards better safety profile of the nano emulsion gel formulation was reported. Conclusion: In the treatment of acne vulgaris of the face, clindamycin nano emulsion gel formulation appears to be more effective than the conventional gel formulation and is also well tolerated. PMID:25302253

  11. Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments

    NASA Astrophysics Data System (ADS)

    Kruse, K.; Joanny, J. F.; Jülicher, F.; Prost, J.; Sekimoto, K.

    2004-02-01

    We develop a general theory for active viscoelastic materials made of polar filaments. This theory is motivated by the dynamics of the cytoskeleton. The continuous consumption of a fuel generates a nonequilibrium state characterized by the generation of flows and stresses. Our theory applies to any polar system with internal energy consumption such as active chemical gels and cytoskeletal networks which are set in motion by active processes at work in cells.

  12. In vitro activity of Aloe vera inner gel against microorganisms grown in planktonic and sessile phases.

    PubMed

    Cataldi, V; Di Bartolomeo, S; Di Campli, E; Nostro, A; Cellini, L; Di Giulio, M

    2015-12-01

    The failure of traditional antimicrobial treatments is becoming a worldwide problem. The use of Aloe vera is of particular interest for its role as curative agent and its efficacy in complementary therapies for a variety of illnesses. This study evaluated the antimicrobial activity of A. vera inner gel against a panel of microorganisms, Gram-positive and -negative bacteria, and Candida albicans. In addition to A. vera inner gel being used in the treatment of peptic ulcers, in dermatological treatments, and wound healing, it was also tested on the sessile phase of clinical Helicobacter pylori strains (including multi-drug-resistant strains) and on planktonic and sessile phase of Staphylococcus aureus/Pseudomonas aeruginosa clinical isolates from venous leg ulcers.A. vera inner gel expresses its prevalent activity against Gram-negative bacteria and C. albicans in respect to Gram-positive bacteria. The results of the A. vera antibiofilm activity showed a decrease of the produced biomass in a concentration-dependent-way, in each analyzed microorganism. The data obtained show that A. vera inner gel has both an antimicrobial and antibiofilm activity suggesting its potential use for the treatment of microbial infections, in particular for H. pylori gastric infection, especially in case of multi-drug-resistance, as well as for an effective wound dressing.

  13. Preparation, characterization, and catalytic activity of zirconocene bridged on surface of silica gel

    NASA Astrophysics Data System (ADS)

    El Majdoub, Lotfia; Shi, Yasai; Yuan, Yuan; Zhou, Annan; Abutartour, Abubaker; Xu, Qinghong

    2015-10-01

    Zirconocene catalyst supported on silica gel was prepared for olefin polymerization by surface modification of calcined silica with SiCl4, and the reaction between the modified silica and cyclopentadienyl sodium and ZrCl4. The catalyst was characterized by using Fourier-transform infrared (FT-IR) spectrometer, thermogravimetric (TG), and differential scanning calorimetric (DSC) analytic spectrometer. It was found that the metallocene structure could be formed and connected on silica surface by chemical bond. Initial catalytic tests showed that the supported metallocene was catalytically active (methylaluminoxane as a cocatalyst), producing polymer with higher molecular weight than the metallocene just immobilized on the surface of silica gel.

  14. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation

    SciTech Connect

    Bernal, Susan A.; Provis, John L.; Walkley, Brant; San Nicolas, Rackel; Gehman, John D.; Brice, David G.; Kilcullen, Adam R.; Duxson, Peter; Deventer, Jannie S.J. van

    2013-11-15

    Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclear magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.

  15. The antioxidant activity of Clitoria ternatea flower petal extracts and eye gel.

    PubMed

    Kamkaen, N; Wilkinson, J M

    2009-11-01

    Extracts of Clitoria ternatea (butterfly pea) flowers are used in Thailand as a component of cosmetics and the chemical composition of the flowers suggest that they may have antioxidant activity. In this study the potential antioxidant activity of C. ternatea extracts and an extract containing eye gel formulation was investigated. Aqueous extracts were shown to have stronger antioxidant activity (as measured by DPPH scavenging activity) than ethanol extracts (IC(50) values were 1 mg/mL and 4 mg/mL, respectively). Aqueous extracts incorporated in to an eye gel formulation were also shown to retain this activity, however, it was significantly less than a commercial antiwrinkle cream included for comparison. The total phenolic content was 1.9 mg/g extract as gallic acid equivalents. The data from this study support the use of C. ternatea extracts as antioxidant inclusions in cosmetic products.

  16. Principles and examples of gel-based approaches for phosphoprotein analysis.

    PubMed

    Steinberger, Birgit; Mayrhofer, Corina

    2015-01-01

    Methods for analyzing the phosphorylation status of proteins are essential to investigate in detail key cellular processes, including signal transduction and cell metabolism. The transience of this post-translational modification and the generally low abundance of phosphoproteins require specific enrichment and/or detection steps prior to analysis. Here, we describe three gel-based approaches for the analysis of differentially expressed phosphoproteins. These approaches comprise (1) the sequential fluorescence staining of two-dimensional (2-D) gels using Pro-Q(®) Diamond and SYPRO(®) Ruby dyes to visualize and quantify phosphoproteins in total cellular lysates as well as (2) affinity enrichment of phosphoproteins in conjunction with sequential fluorescence staining of the 2-D gels and (3) affinity enrichment of proteins prior to pre-electrophoretic fluorescence labeling and 2-D gel electrophoresis.

  17. Statistical analysis of image data provided by two-dimensional gel electrophoresis for discovery proteomics.

    PubMed

    Crossett, Ben; Edwards, Alistair V G; White, Melanie Y; Cordwell, Stuart J

    2008-01-01

    Standardized methods for the solubilization of proteins prior to proteomics analyses incorporating two-dimensional gel electrophoresis (2-DE) are essential for providing reproducible data that can be subjected to rigorous statistical interrogation for comparative studies investigating disease-genesis. In this chapter, we discuss the imaging and image analysis of proteins separated by 2-DE, in the context of determining protein abundance alterations related to a change in biochemical or biophysical conditions. We then describe the principles behind 2-DE gel statistical analysis, including subtraction of background noise, spot detection, gel matching, spot quantitation for data comparison, and statistical requirements to create meaningful gel data sets. We also emphasize the need to develop reproducible and robust protocols for protein sample preparation and 2-DE itself.

  18. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Barzegar, Farshad; Dangbegnon, Julien K.; Bello, Abdulhakeem; Momodu, Damilola Y.; Johnson, A. T. Charlie; Manyala, Ncholu

    2015-09-01

    This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA) based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg-1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  19. Er3+-activated photonic structures fabricated by sol-gel and rf-sputtering techniques

    NASA Astrophysics Data System (ADS)

    Ferrari, M.; Alombert-Goget, G.; Armellini, C.; Berneschi, S.; Bhaktha, S. N. B.; Boulard, B.; Brenci, M.; Chiappini, A.; Chiasera, A.; Duverger-Arfuso, C.; Féron, P.; Gonçalves, R. R.; Jestin, Y.; Minati, L.; Moser, E.; Nunzi Conti, G.; Pelli, S.; Rao, D. N.; Retoux, R.; Righini, G. C.; Speranza, G.

    2009-05-01

    The realization of photonic structures operating at visible and near infrared frequencies is a highly attractive scientific and technological challenge. Since optical fiber innovation, a huge of activity has been performed leading to interesting results, such as optical waveguides and planar lightwave circuits, microphotonic devices, optical microcavities, nanowires, plasmonic structures, and photonic crystals. These systems have opened new possibilities in the field of both basic and applied physics, in a large area covering Information Communication Technologies, Health and Biology, Structural Engineering, and Environment Monitoring Systems. Several materials and techniques are employed to successfully fabricate photonic structures. Concerning materials, Er3+-activated silica-based glasses still play an important role, although recently interesting results have been published about fluoride glass-ceramic waveguides. As far as regards the fabrication methods sol-gel route and rf sputtering have proved to be versatile and reliable techniques. In this article we will present a review of some Er3+-activated photonic structures fabricated by sol gel route and rf sputtering deposition. In the discussion on the sol-gel approach we focus our attention on the silica-hafnia binary system presenting an overview concerning fabrication protocols and structural, optical and spectroscopic assessment of SiO2-HfO2 waveguides activated by Er3+ ions. In order to put in evidence the reliability and versatility of the sol-gel route for photonics applications four different confined structures are briefly presented: amorphous waveguides, coated microspheres, monolithic waveguide laser, and core-shell nanospheres. As examples of rf sputtering technique, we will discuss Er3+-activated silica-hafnia and silica-germania waveguides, the latter system allowing fabrication of integrated optics structures by UV photo-imprinting. Finally, two examples of photonic crystal structures, one

  20. Two-dimensional polyacrylamide gel analysis of Plodia interpunctella granulosis virus

    SciTech Connect

    Russell, D.L.; Consigli, R.A.

    1986-10-01

    The structural polypeptides of purified Plodia interpunctella granulosis virus were analyzed by three different two-dimensional gel systems. Isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of 53 acidic polypeptides in the enveloped nucleocapsid of the virus ranging in molecular weight from 97,300 to 8000. Nine of these polypeptides were shown to be glycoproteins by the technique of radiolabeled lectin blotting. Separation of the granulin in this system allowed resolution of five species, all of which have identical tryptic peptide maps. This matrix protein was demonstrated to be a phosphoglycoprotein by radiolabeled lectin blotting and acid phosphatase dephosphorylation. Nonequilibrium pH gel electrophoresis followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of the major basic protein of the virus, VP12, from a more acidic protein of the same molecular weight. Tryptic peptide analysis demonstrated that these two proteins were indeed different and acid urea gels followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed localization of the acidic protein to the envelope and the basic protein to the nucleocapsid of the virus. Finally, probing of the separated envelope nucleocapsid proteins in both the isoelectric focusing and nonequilibrium pH gel electrophoresis two-dimensional systems after transfer to nitrocellulose with iodinated, purified viral proteins allowed further insight into reactions which may be important in the maintenance of the virion structure.

  1. Product-selective blot: a technique for measuring enzyme activities in large numbers of samples and in native electrophoresis gels

    SciTech Connect

    Thompson, G.A.; Davies, H.M.; McDonald, N.

    1985-08-01

    A method termed product-selective blotting has been developed for screening large numbers of samples for enzyme activity. The technique is particularly well suited to detection of enzymes in native electrophoresis gels. The principle of the method was demonstrated by blotting samples from glutaminase or glutamate synthase reactions into an agarose gel embedded with ion-exchange resin under conditions favoring binding of product (glutamate) over substrates and other substances in the reaction mixture. After washes to remove these unbound substances, the product was measured using either fluorometric staining or radiometric techniques. Glutaminase activity in native electrophoresis gels was visualized by a related procedure in which substrates and products from reactions run in the electrophoresis gel were blotted directly into a resin-containing image gel. Considering the selective-binding materials available for use in the image gel, along with the possible detection systems, this method has potentially broad application.

  2. Comprehensive bactericidal activity of an ethanol-based hand gel in 15 seconds

    PubMed Central

    Kampf, Günter; Hollingsworth, Angela

    2008-01-01

    Background Some studies indicate that the commonly recommended 30 s application time for the post contamination treatment of hands may not be necessary as the same effect may be achieved with some formulations in a shorter application time such as 15 s. Method We evaluated the bactericidal activity of an ethanol-based hand gel (Sterillium® Comfort Gel) within 15 s in a time-kill-test against 11 Gram-positive, 16 Gram-negative bacteria and 11 emerging bacterial pathogens. Each strain was evaluated in quadruplicate. Results The hand gel (85% ethanol, w/w) was found to reduce all 11 Gram-positive and all 16 Gram-negative bacteria by more than 5 log10 steps within 15 s, not only against the ATCC test strains but also against corresponding clinical isolates. In addition, a log10 reduction > 5 was observed against all tested emerging bacterial pathogens. Conclusion The ethanol-based hand gel was found to have a broad spectrum of bactericidal activity in only 15 s which includes the most common species causing nosocomial infections and the relevant emerging pathogens. Future research will hopefully help to find out if a shorter application time for the post contamination treatment of hands provides more benefits or more risks. PMID:18211682

  3. Aligning Goals, Assessments, and Activities: An Approach to Teaching PCR and Gel Electrophoresis

    PubMed Central

    Robertson, Amber L.; Batzli, Janet; Harris, Michelle; Miller, Sarah

    2008-01-01

    Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments done in lab. Here we report the development and implementation of novel exercises that integrate the biological concepts of DNA structure and replication with the techniques of PCR and gel electrophoresis. Learning goals were defined based on concepts taught throughout the cell biology lab course and learning objectives specific to the PCR and gel electrophoresis lab. Exercises developed to promote critical thinking and target the underlying concepts of PCR, primer design, gel analysis, and troubleshooting were incorporated into an existing lab unit based on the detection of genetically modified organisms. Evaluative assessments for each exercise were aligned with the learning goals and used to measure student learning achievements. Our analysis found that the exercises were effective in enhancing student understanding of these concepts as shown by student performance across all learning goals. The new materials were particularly helpful in acquiring relevant knowledge, fostering critical-thinking skills, and uncovering prevalent misconceptions. PMID:18316813

  4. Aligning goals, assessments, and activities: an approach to teaching PCR and gel electrophoresis.

    PubMed

    Phillips, Allison R; Robertson, Amber L; Batzli, Janet; Harris, Michelle; Miller, Sarah

    2008-01-01

    Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments done in lab. Here we report the development and implementation of novel exercises that integrate the biological concepts of DNA structure and replication with the techniques of PCR and gel electrophoresis. Learning goals were defined based on concepts taught throughout the cell biology lab course and learning objectives specific to the PCR and gel electrophoresis lab. Exercises developed to promote critical thinking and target the underlying concepts of PCR, primer design, gel analysis, and troubleshooting were incorporated into an existing lab unit based on the detection of genetically modified organisms. Evaluative assessments for each exercise were aligned with the learning goals and used to measure student learning achievements. Our analysis found that the exercises were effective in enhancing student understanding of these concepts as shown by student performance across all learning goals. The new materials were particularly helpful in acquiring relevant knowledge, fostering critical-thinking skills, and uncovering prevalent misconceptions.

  5. The importance of gel properties for mucoadhesion measurements: a multivariate data analysis approach.

    PubMed

    Hägerström, Helene; Bergström, Christel A S; Edsman, Katarina

    2004-02-01

    In this study we used tensile strength measurements and a recently developed interpretation procedure to evaluate the mucoadhesive properties of a large set of gel preparations with diverse rheological properties. Multivariate data analysis in the form of principal component analysis (PCA) and partial least square projection to latent structures (PLS) was applied to extract useful information from the rather large quantities of data obtained. PCA showed that the selected series of gels was heterogeneous. Some groupings could be detected but none of the gels was identified as an outlier. By using PLS we investigated the relations between the rheological properties of a gel and the parameters defining the cohesiveness, as measured with the texture analyser used for the mucoadhesion measurements. The rheological properties proved to be important for the results of both the mucoadhesion and the cohesiveness measurements. Furthermore, by using PLS two different measurement configurations were evaluated and it was concluded that the combination of a relatively small volume of gel and two pieces of mucosa seems to be more appropriate than a large volume of gel in combination with one piece of mucosa.

  6. Tris-acetate polyacrylamide gradient gel electrophoresis for the analysis of protein oligomerization.

    PubMed

    Cubillos-Rojas, Monica; Schneider, Taiane; Sánchez-Tena, Susana; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2016-02-01

    Here we report a new approach for studying protein oligomerization in cells using a single electrophoresis gel. We combined the use of a crosslinking reagent for sample preparation, such as glutaraldehyde, with the analysis of oligomers by Tris-acetate polyacrylamide gel electrophoresis. The use of a 3-15% Tris-acetate polyacrylamide gradient gel allows for the simultaneous analysis of proteins of masses ranging from 10 to 500 kDa. We showed the usefulness of this method for analyzing endogenous p53 oligomerization with high resolution and sensitivity in human cells. Oligomerization analysis was dependent on the crosslinker concentration used. We also showed that this method could be used to study the regulation of oligomerization. In all experiments, Tris-acetate polyacrylamide gel electrophoresis proved to be a robust, manageable, and cost- and time-efficient method that provided excellent results using a single gel. This approach can be easily extrapolated to the study of other oligomers. All of these features make this method a highly useful tool for the analysis of protein oligomerization.

  7. Hydroxyapatite formed on/in agarose gel induces activation of blood coagulation and platelets aggregation.

    PubMed

    Arimura, Shin-ichiro; Kawahara, Ko-ichi; Biswas, Kamal Krishna; Abeyama, Kazuhiro; Tabata, Masashi; Shimoda, Toru; Ogomi, Daisuke; Matsusaki, Michiya; Kato, Shinya; Ito, Takashi; Sugihara, Kazumasa; Akashi, Mitsuru; Hashiguchi, Teruto; Maruyama, Ikuro

    2007-05-01

    We reported earlier that hydroxyapatite (HA) formed on/in agarose gels (HA/agarose) produced by alternate soaking process is a bone-filling material possessing osteoconductive and hemostatic effects. This process could allow us to make bone-like apatite that was formed on/in organic polymer hydrogel matrices. Here, we investigated the mechanism of hemostasis induced by HA/agarose and found that HA/agarose, but not agarose or HA powder, significantly shortened activated partial thromboplastin time (APTT). While HA/agarose did not show significant platelet aggregation, it markedly enhanced adenosine diphosphate (ADP)-induced platelet aggregation. Moreover, Western blot analysis revealed selective adsorption of vitronectin onto HA/agarose. We also observed marked differences between HA powder and HA/agarose in their XRD patterns. The crystallinity of HA powder was much higher compared to that of HA/agarose. Furthermore, 50-100 nm of tube-form aggregations was observed in HA powder on the other hand 100-200 nm of particles was observed in HA/agarose by SEM observation. Thus 100-200 nm of low crystallized particles on the surface structure of HA/agarose may play an important role in hemostasis. Our results demonstrated a crucial role of HA/agarose in the mechanism of hemostasis and suggested a potential role for HA/agarose as a bone-grafting material.

  8. In vitro and in vivo antioxidant activities of polysaccharide purified from aloe vera (Aloe barbadensis) gel.

    PubMed

    Kang, Min-Cheol; Kim, Seo Young; Kim, Yoon Taek; Kim, Eun-A; Lee, Seung-Hong; Ko, Seok-Chun; Wijesinghe, W A J P; Samarakoon, Kalpa W; Kim, Young-Sun; Cho, Jin Hun; Jang, Hyeang-Su; Jeon, You-Jin

    2014-01-01

    The in vitro and in vivo antioxidant potentials of a polysaccharide isolated from aloe vera gel were investigated. Enzymatic extracts were prepared from aloe vera gel by using ten digestive enzymes including five carbohydrases and five proteases. Among them, the highest yield was obtained with the Viscozyme extract and the same extract showed the best radical scavenging activity. An active polysaccharide was purified from the Viscozyme extract using ethanol-added separation and anion exchange chromatography. Purified aloe vera polysaccharide (APS) strongly scavenged radicals including DPPH, hydroxyl and alkyl radicals. In addition, APS showed a protective effect against AAPH-induced oxidative stress and cell death in Vero cells as well as in the in vivo zebrafish model. In this study, it is proved that both the in vitro and in vivo antioxidant potentials of APS could be further utilized in relevant industrial applications.

  9. Improved detection of amylase activity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with copolymerized starch.

    PubMed

    Martínez, T F; Alarcón, F J; Díaz-López, M; Moyano, F J

    2000-08-01

    An improved method, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for detection of amylase activity is described. This method will allow better characterization of certain amylases than that obtained by the Davis technique. The main features of the technique are: (i) identification of amylase bands and molecular mass determination are possible in the same gel; (ii) the hydrolysis of copolymerized substrate during electrophoretic separation is prevented using very low temperatures instead of inactivating agents such as chelating agents; and (iii) the technique is applicable to reveal amylase activity in a wide range of biological samples. The method is not useful for enzymes sensitive to SDS and for high molecular mass amylases.

  10. Detection of connexins in liver cells using sodiumdodecylsulfate polyacrylamide gel electrophoresis and immunoblot analysis

    PubMed Central

    Willebrords, Joost; Maes, Michaël; Yanguas, Sara Crespo; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Summary Since connexin expression is partly regulated at the protein level, immunoblot analysis represents a frequently addressed technique in the connexin research field. The present chapter describes the set-up of an immunoblot procedure, including protein extraction and quantification from biological samples, gel electrophoresis, protein transfer and immunoblotting, which is optimized for analysis of connexins in liver tissue. In essence, proteins are separated on a polyacrylamide gel using sodiumdodecylsulfate followed by transfer of proteins on a nitrocellulose membrane. The latter allows specific detection of connexins with antibodies combined with revelation through enhanced chemiluminescence. PMID:27207285

  11. Photocatalytic activity of titania coatings synthesised by a combined laser/sol–gel technique

    SciTech Connect

    Adraider, Y.; Pang, Y.X.; Nabhani, F.; Hodgson, S.N.; Sharp, M.C.; Al-Waidh, A.

    2014-06-01

    Highlights: • Sol–gel method was used to prepare titania coatings. • Titania thin films were coated on substrate surface by dip coating. • Fibre laser was employed to irradiate the titania coated surfaces. • Photocatalytic efficiency of titania coatings was significantly improved after laser processing. - Abstract: Titania coatings were prepared using sol–gel method and then applied on the substrate surface by dip coating. Fibre laser (λ = 1064 nm) in continuous wave mode was used to irradiate the titania coated surfaces at different specific energies. The ATR-FTIR, XRD, SEM, EDS and contact angle measurement were employed to analyse surface morphology, phase composition and crystalline structure of laser-irradiated titania coatings, whilst the photocatalytic activity was evaluated by measuring the decomposition of methylene blue (MB) after exposure to the visible light for various illumination times. Results showed that the laser-irradiated titania coatings demonstrate significant different composition and microstructure in comparison with the as-coated from the same sol–gel titania. Photocatalytic efficiency of titania coatings was significantly improved after laser processing. The photocatalytic activity of laser-irradiated titania coatings was higher than that of the as-coated titania. The titania coating processed at laser specific energy of 6.5 J/mm{sup 2} exhibited the highest photocatalytic activity among all titania samples.

  12. Two-dimensional gel proteomic analysis of Dermatophagoides farinae feces.

    PubMed

    Erban, Tomas; Hubert, Jan

    2015-01-01

    Dermatophagoides farinae fecal allergens are a major source of immunogens in home environments; however, as the source of mite fecal allergen is considered spent growth medium extract that can only mimic the pure fecal extract. In this study, we prepared and using proteomic methods analyzed a D. farinae fecal extract for the first time. The preparation approach used D. farinae feces that were produced within 8 weeks of initiating cultivation in minimized growth media. The feces were collected via adhesion to the tissue culture flask surfaces after removing the SGM and mites. This study contains in-depth proteomic mapping of the allergenic isoforms from the D. farinae fecal extract. Despite extensive analysis, MALDI TOF/TOF spectrometry showed that only six proteins/allergens, Der f1, Der f2, Der f3, Der f6, Der f15 and ferritin, originated from D. farinae. No other analyzed proteins were exactly assigned to Dermatophagoides or to similar invertebrate species by sequence similarity. The remaining proteins were assigned mostly to yeasts or cereals (originally dietary proteins); however, many of the proteins were not successfully identified in the current NCBInr. The numerous dietary proteins identified in the feces suggest that these proteins remained highly stable after passing through the gut. Isoforms of the allergens Der f1, Der f3 and Der f15 were identified in more MWs indicating the presence of zymogens and active-enzyme forms. The identified fecal allergens accumulate in the environment during the life of the mite and represent quantitatively greater amounts of mite immunogens than those that were missed in the 2D-E. The results contribute to our understanding of D. farinae digestive physiology with regard to the enzymes/proteins present in the feces.

  13. Increasing the activity and enantioselectivity of lipases by sol-gel immobilization: further advancements of practical interest.

    PubMed

    Tielmann, Patrick; Kierkels, Hans; Zonta, Albin; Ilie, Adriana; Reetz, Manfred T

    2014-06-21

    The entrapment of lipases in hydrophobic silicate matrices formed by sol-gel mediated hydrolysis of RSi(OCH3)3/Si(OCH3)4 as originally reported in 1996 has been improved over the years by a number of modifications. In the production of second-generation sol-gel lipase immobilizates, a variety of additives during the sol-gel process leads to increased activity and enhanced stereoselectivity in esterifying kinetic resolution. Recent advances in this type of lipase immobilization are reviewed here, in addition to new results regarding the sol-gel entrapment of the lipase from Burkholderia cepacia. It constitutes an excellent heterogeneous biocatalyst in the acylating kinetic resolution of two synthetically and industrially important chiral alcohols, rac-sulcatol and rac-trans-2-methoxycyclohexanol. The observation that the catalyst can be used 10 times in recycling experiments without losing its significant activity or enantioselectivity demonstrates the practical viability of the sol-gel approach.

  14. Transparent gels: study of their formation and assimilation of active ingredients through phase diagrams.

    PubMed

    Comelles, F; Caelles, J; Parra, J L; Leal, J S

    1992-08-01

    Synopsis Multicomponent gel formulations capable of assimilating, simultaneously, several active ingredients of potential application in the cosmetic field were studied. The possibility of formation of a transparent gel was determined using a method which consisted in the optimization of several lipophilic basic compositions, composed of oil, a mixture of surfactants, a sunscreen agent, several vitamins and antioxidants situated in the base of a regular tetrahedron that symbolized the considered system. To this, a polar phase made of water, a cosolvent and urea in appropriate proportions and situated in the fourth vertex, was progressively added. It may be concluded, that the use of phase diagrams on cosmetic systems, constitutes a useful way to select the components and their mutual ratios, allowing an adaptation to the specific requested conditions of formulation.

  15. Analysis of mucosal mucins separated by SDS-urea agarose polyacrylamide composite gel electrophoresis.

    PubMed

    Issa, Samah M A; Schulz, Benjamin L; Packer, Nicolle H; Karlsson, Niclas G

    2011-12-01

    Efficient separation of mucins (200 kDa-2 MDa) was demonstrated using gradient SDS agarose/polyacrylamide composite gel electrophoresis (SDS-AgPAGE). Inclusion of urea (SDS-UAgPAGE) in the gels casting were shown to have no effect on the migration of mucins in the gel and allowed casting of gel at room temperature. This simplified the procedure for multiple casting of agarose polyacrylamide gradients and increased reproducibility of these gels. Hence, the implementation of urea makes the technique applicable for high throughput isolation and screening of mucin oligosaccharides by LC-MS after releasing the oligosaccharides from isolated, blotted mucin subpopulations. It was also shown that the urea addition had no effect on other supporting applications such as western and lectin blotting. In addition, identification of the mucin protein after tryptic digestion and LC-MS was possible and no protein carbamylation due to the presence of urea in the gel was detected. LC-MS software developed for metabolomic analysis was used for O-linked oligosaccharide detection and differential display of various mucin samples. Using this method, heterogeneous glycosylation of mucins and mucin-type molecules isolated by SDS-AgPAGE and SDS-UAgPAGE was shown to consist of more than 80 different components in a single band, and in the extreme cases, up to 300-500 components (MUC5B/AC from saliva and sputum and). Metabolomic software was also used to show that the migration of mucin isoforms within the gel is due to heterogeneous size distribution of the oligosaccharides, with the slower migrating bands enriched in high-molecular-weight oligosaccharides.

  16. [The development of an image analysis system of medical electrophoresis and DNA gel].

    PubMed

    Zhu, S; Gao, Y

    1998-07-01

    This thesis introduced a kind of computerized image analysis system of medical electrophoresis and DNA gel, which have a high performance/price ratio. Moreover, it gives a detailed presentation of how to eliminate the background obstruction by the conjunction of hardware and software.

  17. Laser interferometric analysis of glucose and sucrose diffusion in agarose gel.

    PubMed

    Wąsik, Sławomir; Arabski, Michał; Dworecki, Kazimierz; Janoska, Joanna; Semaniak, Jacek; Szary, Karol; Slęzak, Andrzej

    2014-01-01

    The paper presents the investigation results of glucose and sucrose diffusion in agarose gel studied with laser interferometry method and the results of fluorescence analysis of the macroscopic gel structure. The diffusion kinetics of these substances released from aqueous solutions of a molar concentration of 0.05 M into the agarose solutions of concentrations of 0.5% and 3% in two gravitational configurations of measuring system was analysed. In the first configuration the solute diffused according, whereas in the second one - opposite to the gravitational force. The diffusion was analysed in the time period between 120 and 2400 s with a time interval of Δt = 120 s. We observed that the convective instabilities were damped well by the agarose gel, which gives the possibility of the interferometric studies of the diffusive transport for other substances in different gravitational configurations of the system. The time characteristics of glucose and sucrose fluxes in both configurations of the system and the gravitational polarisation coefficient values were obtained. The substantial differences in fluxes of glucose and sucrose diffused according and opposite to the gravitational force were observed. Additionally, we observed the differences between the diffusive fluxes of these substances in both configurations in dependence on the gel solution concentration (which is associated with gel porosity dependent on its concentration) and the kind of diffused substance.

  18. Silver-stained fibrin zymography: separation of proteases and activity detection using a single substrate-containing gel.

    PubMed

    Chung, Dong-Min; Kim, Ki Eun; Ahn, Keug-Hyun; Park, Chan-Sun; Kim, Dong-Ho; Koh, Hong Bum; Chun, Hyo Kon; Yoon, Byung-Dae; Kim, Hong Jib; Kim, Min-Soo; Choi, Nack-Shick

    2011-08-01

    A new zymogram method, silver-stained fibrin zymography, for separation of protease bands and activity detection using a single substrate gel, was developed. The method takes advantage of the nanoscale sensitivity of both zymography and silver staining. After SDS-PAGE in a gel containing fibrin, the gel was incubated in enzyme reaction buffer and the zymogram was silver-stained. Bands with protease activity were stained with silver in clear areas where the protein substrate had been degraded. The molecular sizes of proteases were accurately determined. Furthermore, proteases of high molecular weight were clearly and sharply resolved.

  19. Detection of human butyrylcholinesterase-nerve gas adducts by liquid chromatography-mass spectrometric analysis after in gel chymotryptic digestion.

    PubMed

    Tsuge, Kouichiro; Seto, Yasuo

    2006-06-21

    To verify the exposure to nerve gas, a method for detecting human butyrylcholinesterase (BuChE)-nerve gas adduct was developed using LC-electrospray mass spectrometry (ESI-MS). Purified human serum BuChE was incubated with sarin, soman or VX, and the adduct was purified by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and digested in gel by treatment with chymotrypsin. The resulting peptide mixture was subjected to LC-ESI-MS. From the chymotryptic digest of untreated human BuChE, one peak corresponding to the peptide fragment containing the active center serine residue was detected on the extracted ion chromatogram at m/z 948.5, and the sequence was ascertained to be "GESAGAASVSL" by MS/MS analysis. From the chymotryptic digest of the human BuChE-sarin adduct, a singly charged peptide peak was detected on the extracted ion chromatogram at m/z 1,069.5, and the sequence was ascertained to be "GEXAGAASVSL" by MS/MS analysis (X denotes isopropylmethylphosphonylated serine). The difference in molecular weight (120.0 Da) between the active center peptide fragments corresponding to the untreated BuChE and BuChE-sarin adduct was assumed to be derived from the addition of an isopropyl methylphosphonyl moiety to the serine residue. The formation of human BuChE adducts with soman, VX and an aged soman adduct was confirmed by detecting the respective active center peptide fragments using LC-ESI-MS. To apply the established method to an actual biological sample, human serum was incubated with VX, and the adduct was purified by procainamide affinity chromatography followed by SDS-PAGE. After chymotryptic in gel digestion, the ethylphosphonylated active center peptide fragment could be detected, and the structure of the residue was ascertained by LC-ESI-MS analysis.

  20. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    PubMed Central

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-01-01

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts. PMID:27092510

  1. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis.

    PubMed

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-04-16

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts.

  2. Properties of collagen gels cross-linked by N-hydroxysuccinimide activated adipic acid deriviate.

    PubMed

    Duan, Lian; Liu, Wentao; Tian, Zhenhua; Li, Conghu; Li, Guoying

    2014-08-01

    In order to improve the properties of collagen gel, N-hydroxysuccinimide activated adipic acid derivative (NHS-AA) was introduced into the formation of collagen fibrils. NHS-AA with different [NHS-AA]/[NH2] ratios (0.1-1.5, calculated by [ester group] of NHS-AA and [NH2] of lysine and hydroxylysine residues of collagen) was added after, simultaneously with or before the formation of collagen fibrils (abbreviated CAF, CSF and CBF, respectively) to obtain different collagen gels. With the same dose of NHS-AA, the cross-linking degree for CAF was lower than those for CSF and CBF. The formation of collagen fibrils was restrained by NHS-AA for CSF and CBF while that for CAF was unaffected. When the dose of NHS-AA increased from 0.1 to 1.5, the water contents of CSF and CBF increased while that of CAF had no obvious change. With lower dose of NHS-AA (0.1), CAF possessed higher value of G' (87.3Pa) and the best thermal stability (47.6°C). As the ratio of [NHS-AA]/[NH2] increased to 1.5, CSF had the maximum value of G' (288.8Pa) and CAF had the best thermal stability (52.9°C). These results showed collagen gels with different properties could be prepared by adding NHS-AA with different adding sequence and dose.

  3. Contribution of stratified extracellular polymeric substances to the gel-like and fractal structures of activated sludge.

    PubMed

    Yuan, D Q; Wang, Y L; Feng, J

    2014-06-01

    The gel-like and fractal structures of activated sludge (AS) before and after extracellular polymeric substances (EPS) extraction as well as different EPS fractions were investigated. The contributions of individual components in different EPS fractions to the gel-like behavior of sludge samples by enzyme treatment were examined as well. The centrifugation and ultrasound method was employed to stratify the EPS into slime, loosely and tightly bound EPS (LB- and TB-EPS). It was observed that all samples behaved as weak gels with weak-link. TB-EPS and AS after LB-EPS extraction showed the strongest elasticity in higher concentrations and highest mass fractal dimension, which may indicate the key role of TB-EPS in the gel-like and fractal structures of the sludge. Effects of protease or amylase on the gel-like property of sludge samples differed in the presence of different EPS fractions.

  4. Silica-tin nanotubes prepared from rice husk ash by sol-gel method: Characterization and its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Adam, Farook; Appaturi, Jimmy Nelson; Thankappan, Radhika; Nawi, Mohd Asri Mohd

    2010-11-01

    Silica-tin material has been synthesized by simple sol-gel method using rice husk ash as the source of silica and cetyltrimethylammonium bromide as the surfactant at room temperature. Calcination of the material at 500 °C for 5 h gave nanotubes with external diameter of 2-4 nm and an internal diameter of 1-2 nm. The BET specific surface area was found to be 607 m 2 g -1. Nitrogen sorption analysis exhibits a type IV isotherm with H3 hysteresis loop. The powder X-ray diffraction pattern showed that the material is amorphous. The photocatalytic activity of the prepared material was studied towards degradation of methylene blue under UV-irradiation. According to the experimental results the silica-tin nanotubes exhibit high photocatalytic activity compared to pure rice husk silica.

  5. Analysis of photoaffinity-labeled aryl hydrocarbon receptor heterogeneity by two-dimensional gel electrophoresis

    SciTech Connect

    Perdew, G.H.; Hollenback, C.E. )

    1990-07-03

    The level of charge heterogeneity in the aryl hydrocarbon receptor (AhR) was examined by high-resolution denaturing two-dimensional (2D) gel electrophoresis. Hepa 1c1c7 cell cytosolic fraction was photoaffinity-labeled with 2-azido-3-({sup 125}I)-iodo-7,8-dibromodibenzo-p-dioxin and applied to isoelectric focusing (IEF) tube gels. After optimization of focusing conditions a broad peak of radioactivity was detected in the apparent pI range of 5.2-5.7. IEF tube gels were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by visualization of the radiolabeled AhR by autoradiography; three distinct isoforms were detected. The same 2D electrophoretic isoform pattern was obtained when the AhR from Hepa 1c1c7 was photoaffinity-labeled in cell culture. BP{sup r}Cl cells, a mutant line derived from Hepa 1c1c7 cells, contain an AhR that is unable to bind to DNA. Photoaffinity-labeled BP{sup r}Cl cytosolic fractions were subjected to 2D gel electrophoretic analysis resulting in essentially the same molecular weight and isoform pattern as seen in Hepa 1c1c7 cytosol. This result would suggest that if a mutation is present in the BP{sup r}Cl AhR it has not caused a significant change in its IEF pattern, although a small shift in the pI values was observed. Two-dimensional gel electrophoresis of photoaffinity-labeled cytosolic fractions from HeLa cells, the rat liver tumor cell line McA-RH777, and buffalo rat thymus revealed three isoforms, essentially the same isoform pattern as in Hepa 1c1c7 cells. This would indicate that despite the considerable molecular weight polymorphism between species the level of charge heterogeneity is high conserved.

  6. Adsorption of CO{sub 2} on microporous materials. 1: On activated carbon and silica gel

    SciTech Connect

    Berlier, K.; Frere, M.

    1997-05-01

    Adsorption isotherms of carbon dioxide (CO{sub 2}) at temperatures ranging from 278 K to 328 K (seven temperatures) and at pressures up to 3300 kPa on activated carbon and on silica gel are presented. These experimental results are useful as they allow one to broaden, the T, P domain of CO{sub 2} adsorption. These data, together with more classical ones (obtained at low temperature and low pressure (Berlier and Frere, 1996)), will make possible the test of theoretical developments for the prediction of adsorption isotherms in a range of temperature and pressure conditions never studied before.

  7. Nonequilibrium structure and dynamics in a microscopic model of thin-film active gels

    NASA Astrophysics Data System (ADS)

    Head, D. A.; Briels, W. J.; Gompper, Gerhard

    2014-03-01

    In the presence of adenosine triphosphate, molecular motors generate active force dipoles that drive suspensions of protein filaments far from thermodynamic equilibrium, leading to exotic dynamics and pattern formation. Microscopic modeling can help to quantify the relationship between individual motors plus filaments to organization and dynamics on molecular and supramolecular length scales. Here, we present results of extensive numerical simulations of active gels where the motors and filaments are confined between two infinite parallel plates. Thermal fluctuations and excluded-volume interactions between filaments are included. A systematic variation of rates for motor motion, attachment, and detachment, including a differential detachment rate from filament ends, reveals a range of nonequilibrium behavior. Strong motor binding produces structured filament aggregates that we refer to as asters, bundles, or layers, whose stability depends on motor speed and differential end detachment. The gross features of the dependence of the observed structures on the motor rate and the filament concentration can be captured by a simple one-filament model. Loosely bound aggregates exhibit superdiffusive mass transport, where filament translocation scales with lag time with nonunique exponents that depend on motor kinetics. An empirical data collapse of filament speed as a function of motor speed and end detachment is found, suggesting a dimensional reduction of the relevant parameter space. We conclude by discussing the perspectives of microscopic modeling in the field of active gels.

  8. Molecular motors robustly drive active gels to a critically connected state

    NASA Astrophysics Data System (ADS)

    Alvarado, José; Sheinman, Michael; Sharma, Abhinav; Mackintosh, Fred C.; Koenderink, Gijsje H.

    2013-09-01

    Living systems naturally exhibit internal driving: active, molecular processes drive non-equilibrium phenomena such as metabolism or migration. Active gels constitute a fascinating class of internally driven matter, in which molecular motors exert localized stresses inside polymer networks. There is evidence that network crosslinking is required to allow motors to induce macroscopic contraction. Yet a quantitative understanding of how network connectivity enables contraction is lacking. Here we show experimentally that myosin motors contract crosslinked actin polymer networks to clusters with a scale-free size distribution. This critical behaviour occurs over an unexpectedly broad range of crosslink concentrations. To understand this robustness, we developed a quantitative model of contractile networks that takes into account network restructuring: motors reduce connectivity by forcing crosslinks to unbind. Paradoxically, to coordinate global contractions, motor activity should be low. Otherwise, motors drive initially well-connected networks to a critical state where ruptures form across the entire network.

  9. Analysis of spatial diffusion of ferric ions in PVA-GTA gel dosimeters through magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Collura, Giorgio; Gallo, Salvatore; Nici, Stefania; Tranchina, Luigi; Abbate, Boris Federico; Marineo, Sandra; Caracappa, Santo; d'Errico, Francesco

    2017-04-01

    This work focused on the analysis of the temporal diffusion of ferric ions through PVA-GTA gel dosimeters. PVA-GTA gel samples, partly exposed with 6 MV X-rays in order to create an initial steep gradient, were mapped using magnetic resonance imaging on a 7T MRI scanner for small animals. Multiple images of the gels were acquired over several hours after irradiation and were analyzed to quantitatively extract the signal profile. The spatial resolution achieved is 200 μm and this makes this technique particularly suitable for the analysis of steep gradients of ferric ion concentration. The results obtained with PVA-GTA gels were compared with those achieved with agarose gels, which is a standard dosimetric gel formulation. The analysis showed that the diffusion process is much slower (more than five times) for PVA-GTA gels than for agarose ones. Furthermore, it is noteworthy that the diffusion coefficient value obtained through MRI analysis is significantly consistent with that obtained in separate study Marini et al. (Submitted for publication) using a totally independent method such as spectrophotometry. This is a valuable result highlighting that the good dosimetric features of this gel matrix not only can be reproduced but also can be measured through independent experimental techniques based on different physical principles.

  10. Enzyme encapsulation in silica gel prepared by polylysine and its catalytic activity

    NASA Astrophysics Data System (ADS)

    Kawachi, Yuki; Kugimiya, Shin-ichi; Nakamura, Hitomi; Kato, Katsuya

    2014-09-01

    Enzymes used in industrial applications are often immobilized onto different types of supports because they are sensitive to pH, temperature, and various other environmental conditions. However, many of the current immobilization approaches face problems such as the requirement of tedious multi-step procedures, loss of enzyme activity during immobilization, and poor reusability. In this study, we chose poly-L-lysine (Ki) as a catalyst for silica mineralization and attempted a one-step “leave to stand” synthesis method under mild conditions, so as to simultaneously maintain both high enzymatic activity and reusability. To examine the effect of Kx on the enzymatic reaction of lipase, we performed hydrolysis of 2-octylacetate without adding a silica precursor. Results indicate that Kx hardly exerts adverse influence on the enzymatic activity of lipase. The lipase encapsulated in the silica gel prepared by leave to stand (Gelstand) retained 70% of the activity compared to the free solution, which is two times higher than that obtained by mixing (Gelmix). However, the Km value was found to be similar to that of free enzymes. These results suggest that the leave to stand is a suitable procedure for immobilization, without any decrease in the mass transfer of substrate. The Gel-stand sample retained 100% activity even after the 5th cycle, and retained above 95% of its activity after 4 h of heat treatment at 65 °C. Using phenyltriethoxysilane as a silica precursor, tertiary structural stability of enzyme was obtained, and its Kcat value was improved when compared to a free solution.

  11. Thermoplastic elastomer gels: an advanced substrate for microfluidic chemical analysis systems.

    PubMed

    Sudarsan, Arjun P; Wang, Jian; Ugaz, Victor M

    2005-08-15

    We demonstrate the use of thermoplastic elastomer gels as advanced substrates for construction of complex microfluidic networks suitable for use in miniaturized chemical analysis systems. These gels are synthesized by combining inexpensive polystyrene-(polyethylene/polybutylene)-polystyrene triblock copolymers with a hydrocarbon extender oil for which the ethylene/butylene midblocks are selectively miscible. The insoluble styrene end blocks phase separate into localized nanodomains, resulting in the formation of an optically transparent, viscoelastic, and biocompatible gel network that is melt-processable at temperatures in the vicinity of 100 degrees C. This unique combination of properties allows microfluidic channels to be fabricated in a matter of minutes by simply making impressions of the negative relief structures on heated master molds. Melt processability allows multiple impressions to be made against different masters to construct complex geometries incorporating multi-height features within the same microchannel. Intricate interconnected multilayered structures are also easily fabricated owing to the ability to bond and seal multiple layers by briefly heating the material at the bond interface. Thermal and mechanical properties are tunable over a wide range through proper selection of gel composition.

  12. Analysis of mitochondrial respiratory chain supercomplexes using blue native polyacrylamide gel electrophoresis (BN-PAGE)

    PubMed Central

    Jha, Pooja; Wang, Xu; Auwerx, Johan

    2016-01-01

    Mitochondria are cellular organelles that produce energy in the form of ATP through a process termed oxidative phosphorylation (OXPHOS), which occurs via the protein complexes of the electron transport chain (ETC). In recent years it has become unequivocally clear that mitochondrial complexes of the ETC are not static entities in the inner mitochondrial membrane. These complexes are dynamic and in mammals they aggregate in different stoichiometric combinations to form supercomplexes (SCs) or respirasomes. It has been proposed that the net respiration is more efficient via SCs than via isolated complexes. However, it still needs to be determined whether the activity of a particular SC is associated with a disease etiology. Here we describe a simplified method to visualize and assess in-gel activity of SCs and the individual complexes with a good resolution on blue native polyacrylamide gel electrophoresis (BN-PAGE). PMID:26928661

  13. Microheterogeneous forms of radioiodinated bovine thyrotropin: discrimination of different receptor-active components by gel permeation chromatography

    SciTech Connect

    Stanton, P.G.; Hearn, M.T.

    1986-01-01

    The products of the radioiodination and subsequent receptor adsorption of bovine TSH (bTSH) radiolabeled by the lactoperoxidase method have been further investigated. After receptor adsorption, (125I)bTSH was resolved by gel permeation chromatography on Sephadex G-100 (superfine) under low ionic strength conditions into three peaks of radioactivity (tracers 2a, 2b, and 2c, respectively). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions demonstrated that each tracer component was radiolabeled on both the alpha- and beta-subunits. Analysis of the three tracers by TSH radioreceptor assay (under different radioreceptor assay conditions) showed that tracers 2b and 2c exhibited saturable rebinding to crude thyroid membranes containing functional TSH receptors. However, tracer 2c exhibited a maximum binding 2-fold greater than tracer 2b. This difference has been attributed to the abundance of an apparently low affinity binding component in tracer 2c. Rechromatography of tracers 2b and 2c on Sephadex G-100 (superfine) under high ionic strength conditions yielded tracer profiles that were coincident, demonstrating that the initial separation under low ionic strength conditions was not based on differences in molecular volume. The data indicate that radioiodination of highly purified bTSH yields multiple tracer components. Further, receptor adsorption, commonly used to purify freshly iodinated bTSH before radioreceptor assay, purifies at least two species of receptor-active (125I) bTSH.

  14. Coupling sequencing by hybridization (SBH) with gel sequencing for an inexpensive analysis of genes and genomes

    SciTech Connect

    Drmanac, S.; Labat, I.; Hauser, B.; Drmanac, R.

    1996-11-01

    The speed and cost of DNA sequencing are bottlenecks in the analysis of genes end genomes. Sequencing by hybridization (SBH) is a versatile method with several applications which can accelerated DNA screening, mapping and sequencing. Requirements, achievements and problems in the development of the SBH format 1 (DNA samples arrayed) are presented and schemes for its synergetic coupling with gel sequencing techniques are discussed. It appears that by one hybridization machine with 24 boxes and four ABI gel sequencers 100- 300 Mb of DNA sequence can be determined per year. Various genetic studies based on computer assisted analysis of large collections of partial or complete DNA sequences (`sequenetics`) may be achieved in this century.

  15. Increasing the activity and enantioselectivity of lipases by sol-gel immobilization: further advancements of practical interest

    NASA Astrophysics Data System (ADS)

    Tielmann, Patrick; Kierkels, Hans; Zonta, Albin; Ilie, Adriana; Reetz, Manfred T.

    2014-05-01

    The entrapment of lipases in hydrophobic silicate matrices formed by sol-gel mediated hydrolysis of RSi(OCH3)3/Si(OCH3)4 as originally reported in 1996 has been improved over the years by a number of modifications. In the production of second-generation sol-gel lipase immobilizates, a variety of additives during the sol-gel process leads to increased activity and enhanced stereoselectivity in esterifying kinetic resolution. Recent advances in this type of lipase immobilization are reviewed here, in addition to new results regarding the sol-gel entrapment of the lipase from Burkholderia cepacia. It constitutes an excellent heterogeneous biocatalyst in the acylating kinetic resolution of two synthetically and industrially important chiral alcohols, rac-sulcatol and rac-trans-2-methoxycyclohexanol. The observation that the catalyst can be used 10 times in recycling experiments without losing its significant activity or enantioselectivity demonstrates the practical viability of the sol-gel approach.The entrapment of lipases in hydrophobic silicate matrices formed by sol-gel mediated hydrolysis of RSi(OCH3)3/Si(OCH3)4 as originally reported in 1996 has been improved over the years by a number of modifications. In the production of second-generation sol-gel lipase immobilizates, a variety of additives during the sol-gel process leads to increased activity and enhanced stereoselectivity in esterifying kinetic resolution. Recent advances in this type of lipase immobilization are reviewed here, in addition to new results regarding the sol-gel entrapment of the lipase from Burkholderia cepacia. It constitutes an excellent heterogeneous biocatalyst in the acylating kinetic resolution of two synthetically and industrially important chiral alcohols, rac-sulcatol and rac-trans-2-methoxycyclohexanol. The observation that the catalyst can be used 10 times in recycling experiments without losing its significant activity or enantioselectivity demonstrates the practical viability of

  16. Microbicidal activity of TiO2 nanoparticles synthesised by sol-gel method.

    PubMed

    Priyanka, Karathan Parakkandi; Sukirtha, Thiruvangium Henry; Balakrishna, Kagalagodu Manjunthiah; Varghese, Thomas

    2016-04-01

    In this study, the authors investigated antimicrobial activity of TiO2 nanoparticles (NPs) synthesised by sol-gel method. As synthesised TiO2 NPs were characterised by X-ray diffraction, scanning electron microscopy and ultraviolet-visible absorption spectroscopy. The antimicrobial activity of calcined TiO2 nanoparticle samples was examined in day light on Gram positive bacteria (Staphylococcus aureus, Streptococcus pneumonia and Bacillus subtilis), Gram negative bacteria (Proteus vulgaris, Pseudomonas aeruginosa and Escherichia coli) and fungal test pathogen Candida albicans. The synthesised TiO2 NPs were found to be effective in visible light against Streptococcus pneumonia, Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa and Candida albicans.

  17. Multicapillary gel electrophoresis based analysis of genetic variants in the WFS1 gene.

    PubMed

    Elek, Zsuzsanna; Dénes, Réka; Prokop, Susanne; Somogyi, Anikó; Yowanto, Handy; Luo, Jane; Souquet, Manfred; Guttman, András; Rónai, Zsolt

    2016-09-01

    The WFS1 gene is one of the thoroughly investigated targets in diabetes research, variants of the gene were suggested to be the genetic components of the common forms (type 1 and type 2) of diabetes. Our project focused on the analysis of polymorphisms (rs4689388, rs148797429, rs4273545) localized in the WFS1 promoter region. Although submarine gel electrophoresis based approaches were also employed in the genetic tests, it was demonstrated that multicapillary electrophoresis offers a state of the art approach for reliable high-throughput SNP and VNTR analysis. Association studies were carried out in a case-control setup. Luciferase reporter assay was employed to test the effect of the investigated loci on the activity of gene expression in vitro. Significant association could be demonstrated between all three polymorphisms and type 2 diabetes in both allele- and genotype-wise settings even using Bonferroni correction. It is notable; however, that the three loci were in strong linkage disequilibrium, thus the observed associations cannot be considered as separate effects. Molecular analyses showed that the rs4273545 GT SNP played a role in the regulation of transcription in vitro. However, this effect took place only in the presence of the region including the rs148797429 site, although this latter locus did not have its own impact on the regulation of gene expression. The paper provides genotyping protocols readily applicable in any multiplex SNP and VNTR analyses, moreover confirms and extends previous results about the role of WFS1 polymorphisms in the genetic risk of diabetes mellitus.

  18. Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol-gel method.

    PubMed

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h.

  19. In vitro mutagenicity and genotoxicity study of a number of short-chain chlorinated hydrocarbons using the micronucleus test and the alkaline single cell gel electrophoresis technique (Comet assay) in human lymphocytes: a structure-activity relationship (QSAR) analysis of the genotoxic and cytotoxic potential.

    PubMed

    Tafazoli, M; Baeten, A; Geerlings, P; Kirsch-Volders, M

    1998-03-01

    Using the micronucleus (MN) test and the alkaline single cell gel electrophoresis (Comet) assay, potential mutagenicity (MN formation), genotoxicity (DNA breakage capacity) and cytotoxicity (cell proliferation reduction) of five chlorinated hydrocarbons (carbon tetrachloride, hexachloroethane, 1,2-dichloroethane, 1-chlorohexane and 2,3-dichlorobutane) have been evaluated in isolated human lymphocytes. With the MN test a low but statistically significant mutagenic activity was detected for all tested substances (except 2,3-dichlorobutane) with one out of the two donors and in the presence or absence of an exogenous metabolic activation system (S9 mix). However, at the concentration ranges tested none of the positive compounds induced a clear dose-dependent mutagenic effect. The Comet assay detected a strong DNA damaging effect for 1-chlorohexane, 2,3-dichlorobutane and 1,2-dichloroethane, but not for carbon tetrachloride and hexachloroethane. The influence of metabolism on the genotoxic activity of the chemicals was more clear in the Comet assay than in the MN test. The experimental genotoxicity and cytotoxicity data obtained in this study, together with data on five more related chemicals previously investigated, and their physico-chemical descriptors or electronic parameters have been used for QSAR analysis. The QSAR analysis high-lighted that the toxicity of the tested compounds was influenced by different parameters, like lipophilicity (logP), electron donor ability (charge) and longest carbon-chlorine (LBC-Cl) bond length. In addition, steric parameters, like molar refractivity (MR) and LBC-Cl, and electronic parameters, like ELUMO (energy of the lowest unoccupied molecular orbital, indicating electrophilicity), were predominant factors discriminating genotoxins from non-genotoxins in the presence but not in the absence of S9 mix. Although a limited number of compounds have been examined and cytotoxicity and genotoxicity were identified in two different

  20. Analytical Chemistry with Silica Sol-Gels: Traditional Routes to New Materials for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Walcarius, Alain; Collinson, Maryanne M.

    2009-07-01

    The versatility of sol-gel chemistry enables us to generate a wide range of silica and organosilica materials with controlled structure, composition, morphology and porosity. These materials’ hosting and recognition properties, as well as their wide-open structures containing many easily accessible active sites, make them particularly attractive for analytical purposes. In this review, we summarize the importance of silica sol-gels in analytical chemistry by providing examples from the separation sciences, optical and electrochemical sensors, molecular imprinting, and biosensors. Recent work suggests that manipulating the structure and composition of these materials at different scales (from molecular to macromolecular states and/or from micro- to meso- and/or macroporous levels) promises to generate chemical and biochemical sensing devices with improved selectivity and sensitivity.

  1. Two-dimensional agarose gel electrophoresis for analysis of DNA replication.

    PubMed

    Villwock, Sandra K; Aparicio, Oscar M

    2014-01-01

    The initiation, elongation, and termination of DNA replication are each associated with distinct, nonlinear DNA structures that can be resolved and identified by two-dimensional (2D) agarose gel electrophoresis. This method involves: isolation of genomic DNA while preserving fragile replication structures, digestion of the DNA with a restriction enzyme, separation of DNA by size and shape through two distinct stages of agarose gel electrophoresis, and Southern blotting to probe for the specific sequence(s) of interest. The method has been most commonly used to determine the activity level of putative replication origin-containing sequences, and has also been used to analyze replication timing, fork progression, fork pausing, fork stalling and collapse, termination, and recombinational repair.

  2. A meta-analysis of platelet gel for prevention of sternal wound infections following cardiac surgery

    PubMed Central

    Kirmani, Bilal H.; Jones, Siôn G.; Datta, Subir; McLaughlin, Edward K.; Hoschtitzky, Andreas J.

    2017-01-01

    Deep sternal wound infection and bleeding are devastating complications following cardiac surgery, which may be reduced by topical application of autologous platelet gel. Systematic review identified seven comparative studies involving 4,692 patients. Meta-analysis showed significant reductions in all sternal wound infections (odds ratio 3.48 [1.08–11.23], p=0.04) and mediastinitis (odds ratio 2.69 [1.20–6.06], p=0.02) but not bleeding. No adverse events relating to the use of topical platelet-rich plasma were reported. The use of autologous platelet gel in cardiac surgery appears to provide significant reductions in serious sternal wound infections, and its use is unlikely to be associated with significant risk. PMID:27177403

  3. Nearly Finished Genomes Produced Using Gel Microdroplet Culturing (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Fitzsimmons, Michael [LANL

    2016-07-12

    Michael Fitzsimmons from Los Alamos National Laboratory gives a talk titled "Nearly Finished Genomes Produced Using Gel Microdroplet Culturing" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  4. Active fibers from sol-gel derived granulated silica: state of the art and potential

    NASA Astrophysics Data System (ADS)

    Romano, Valerio; Sandoz, Frederic

    2010-10-01

    In the recent past we have studied the granulated silica method as a versatile and cost effective way of fiber preform production. We have used the sol-gel technology combined with a laser-assisted remelting step to produce high homogeneity Rare Earth or Transition Metal - activated microsized particles for the fiber core. For the fiber cladding pure or index-raised granulated Silica has been employed. Silica glass tubes, appropriately filled with these granular materials, are then drawn to fibers, eventually after an optional quality enhancing vitrification step. The process offers a high degree of compositional flexibility with respect to dopants; it further facilitates to achieve high concentrations even in cases when several dopants are used. By this "rapid preform production" technique, that is also ideally suited for the preparation of microstructured optical fibers, several fibers ranging from broadband emitters, PCFs and large mode area fibers have been produced and will be presented here.

  5. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts.

    PubMed

    Pérez-Díaz, M; Alvarado-Gomez, E; Magaña-Aquino, M; Sánchez-Sánchez, R; Velasquillo, C; Gonzalez, C; Ganem-Rondero, A; Martínez-Castañon, G; Zavala-Alonso, N; Martinez-Gutierrez, F

    2016-03-01

    The development of multi-species biofilms in chronic wounds is a serious health problem that primarily generates strong resistance mechanisms to antimicrobial therapy. The use of silver nanoparticles (AgNPs) as a broad-spectrum antimicrobial agent has been studied previously. However, their cytotoxic effects limit its use within the medical area. The purpose of this study was to evaluate the anti-biofilm capacity of chitosan gel formulations loaded with AgNPs, using silver sulfadiazine (SSD) as a standard treatment, on strains of clinical isolates, as well as their cytotoxic effect on human primary fibroblasts. Multi-species biofilm of Staphylococcus aureus oxacillin resistant (MRSA) and Pseudomonas aeruginosa obtained from a patient with chronic wound infection were carried out using a standard Drip Flow Reactor (DFR) under conditions that mimic the flow of nutrients in the human skin. Anti-biofilm activity of chitosan gels and SSD showed a log-reduction of 6.0 for MRSA when chitosan gel with AgNPs at a concentration of 100 ppm was used, however it was necessary to increase the concentration of the chitosan gel with AgNPs to 1000 ppm to get a log-reduction of 3.3, while the SSD showed a total reduction of both bacteria in comparison with the negative control. The biocompatibility evaluation on primary fibroblasts showed better results when the chitosan gels with AgNPs were tested even in the high concentration, in contrast with SSD, which killed all the primary fibroblasts. In conclusion, chitosan gel formulations loaded with AgNPs effectively prevent the formation of biofilm and kill bacteria in established biofilm, which suggest that chitosan gels with AgNPs could be used for prevention and treatment of infections in chronic wounds. The statistic significance of the biocompatibility of chitosan gel formulations loaded with AgNPs represents an advance; however further research and development are necessary to translate this technology into therapeutic and

  6. High Pressure Homogenization of Porcine Pepsin Protease: Effects on Enzyme Activity, Stability, Milk Coagulation Profile and Gel Development

    PubMed Central

    Leite Júnior, Bruno Ricardo de Castro; Tribst, Alline Artigiani Lima; Cristianini, Marcelo

    2015-01-01

    This study investigated the effect of high pressure homogenization (HPH) (up to 190 MPa) on porcine pepsin (proteolytic and milk-clotting activities), and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure). Although the proteolytic activity (PA) was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA) of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G’ value 92% higher after 90 minutes) when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network) and lower porosity (evidenced by confocal microscopy). These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese. PMID:25938823

  7. High Pressure Homogenization of Porcine Pepsin Protease: Effects on Enzyme Activity, Stability, Milk Coagulation Profile and Gel Development.

    PubMed

    Leite Júnior, Bruno Ricardo de Castro; Tribst, Alline Artigiani Lima; Cristianini, Marcelo

    2015-01-01

    This study investigated the effect of high pressure homogenization (HPH) (up to 190 MPa) on porcine pepsin (proteolytic and milk-clotting activities), and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure). Although the proteolytic activity (PA) was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA) of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G' value 92% higher after 90 minutes) when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network) and lower porosity (evidenced by confocal microscopy). These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese.

  8. Fractional Order Analysis of Sephadex Gel Structures: NMR Measurements Reflecting Anomalous Diffusion.

    PubMed

    Magin, Richard L; Akpa, Belinda S; Neuberger, Thomas; Webb, Andrew G

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-(bD)(α)], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4,000 s-mm(-2)). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  9. Tris-acetate polyacrylamide gradient gels for the simultaneous electrophoretic analysis of proteins of very high and low molecular mass.

    PubMed

    Cubillos-Rojas, Monica; Amair-Pinedo, Fabiola; Tato, Irantzu; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2012-01-01

    Polyacrylamide gel electrophoresis (PAGE) is one of the most powerful tools used for protein analysis. We describe the use of Tris-acetate buffer and 3-15% polyacrylamide gradient gels to simultaneously separate proteins in the mass range of 10-500 kDa. We show that this system is highly sensitive, it has good resolution and high reproducibility, and that it can be used for general applications of PAGE such as Coomassie Brilliant Blue staining and immunoblotting. Moreover, we describe how to generate mini Tris-acetate polyacrylamide gels to use them in miniprotein electrophoresis systems. These economical gels are easy to generate and to manipulate and allow a rapid analysis of proteins. All these features make the Tris-acetate-PAGE system a very helpful tool for protein analysis.

  10. Photocatalytic activity and characterization of sol-gel-derived Ni-doped TiO2-coated active carbon composites

    NASA Astrophysics Data System (ADS)

    Bhosale, R. R.; Pujari, S. R.; Lande, M. K.; Arbad, B. R.; Pawar, S. B.; Gambhire, A. B.

    2012-11-01

    Ni-doped, TiO2-coated active carbon (Ni-TiO2/AC) were prepared by a sol-gel method. The effect of supports, including TiO2 and active carbon (AC), on the molecular structure and photocatalytic activity of nickel oxide for complete decomposition of methylene blue has been examined with respect to the content of Ni on the catalyst surface. The photocatalytic activities of the Ni-TiO2/AC composites were evaluated in the decomposition of methylene blue solution under visible-light irradiation. The results indicate that Ni-TiO2/AC has a higher efficiency in decomposition of methylene blue than TiO2 and TiO2/AC. This was attributed to the different functions of active carbon and nickel species. First, nanosize TiO2 particles on composites were not reunited, possible because active carbon retards transformation of anatase into rutile and decrease the crystallite size. Second, production of high concentrations of organic compound near Ni-TiO2. Third, carbon in active carbon causes some of the TiO2 to reduce to Ti3+ ions, which prevents electron-hole pair recombination. It was found that the addition of Ni to TiO2 sol could suppress the grain growth of TiO2 crystals and increase the hydroxyl content on the surface of TiO2/AC. The photocatalytic efficiency and activity of the composites remained good, even after three cycles.

  11. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis.

    PubMed

    Temmerman, R; Scheirlinck, I; Huys, G; Swings, J

    2003-01-01

    In order to obtain functional and safe probiotic products for human consumption, fast and reliable quality control of these products is crucial. Currently, analysis of most probiotics is still based on culture-dependent methods involving the use of specific isolation media and identification of a limited number of isolates, which makes this approach relatively insensitive, laborious, and time-consuming. In this study, a collection of 10 probiotic products, including four dairy products, one fruit drink, and five freeze-dried products, were subjected to microbial analysis by using a culture-independent approach, and the results were compared with the results of a conventional culture-dependent analysis. The culture-independent approach involved extraction of total bacterial DNA directly from the product, PCR amplification of the V3 region of the 16S ribosomal DNA, and separation of the amplicons on a denaturing gradient gel. Digital capturing and processing of denaturing gradient gel electrophoresis (DGGE) band patterns allowed direct identification of the amplicons at the species level. This whole culture-independent approach can be performed in less than 30 h. Compared with culture-dependent analysis, the DGGE approach was found to have a much higher sensitivity for detection of microbial strains in probiotic products in a fast, reliable, and reproducible manner. Unfortunately, as reported in previous studies in which the culture-dependent approach was used, a rather high percentage of probiotic products suffered from incorrect labeling and yielded low bacterial counts, which may decrease their probiotic potential.

  12. Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol-gel technique

    NASA Astrophysics Data System (ADS)

    Jadalannagari, Sushma; Deshmukh, Ketaki; Ramanan, Sutapa Roy; Kowshik, Meenal

    2013-02-01

    Silver doped hydroxyapatite (Ag x Ca100-x (PO4)6 (OH)2) nanorods were synthesized using a modified sol gel method at a low temperature of 100 °C. Silver concentration was varied as x = 1, 3 and 5. X-ray diffraction studies showed that the synthesized silver doped hydroxyapatite (Ag-HAp) was fully crystalline with hexagonal structure and an average crystallite size of 25 nm. At all the doping concentrations, the nanoparticles were rod shaped with an average length of 110-180 nm and diameter of 20-25 nm as determined from transmission electron microscopy (TEM) studies. These compounds were tested for their antimicrobial activities against E. coli (MTCC 2345) and S. aureus (MTCC 737). Antimicrobial activity was observed for all the three silver doping concentrations with the highest activity for x = 3, in terms of the zone of inhibition and the percentage reduction in the number of colonies. Hemolysis ratios for x = 1 and 3 Ag-HAp samples were below 2 %, indicating that they are highly hemocompatible and can be a promising biomaterial for tissue engineering applications in orthopedics.

  13. Whole blood assay for trypsin activity using polyanionic focusing gel electrophoresis.

    PubMed

    Lefkowitz, Roy B; Schmid-Schönbein, Geert W; Heller, Michael J

    2010-07-01

    The measurement of trypsin activity directly in blood is important for the development of novel diagnostics and for biomedical research. Presently, most degradative enzyme assays require sample preparation, making them time consuming, costly, and less accurate. We recently demonstrated a simple and rapid electrophoretic assay for the measurement of trypsin activity directly in whole blood. This assay utilizes a charge-changing fluorescent peptide substrate that produces a positively charged fluorescent product fragment upon cleavage by the target enzyme. This fragment is then rapidly separated from whole blood by electrophoresis and quantified with a fluorescent detector. In this study, we demonstrate that polyanionic poly-L-glutamic acid-doped polyacrylamide gels can focus the fluorescent cleavage product and markedly improve the LODs of the assay. A LOD of 2 pg in 6 microL (0.3 ng/mL) in whole human blood was achieved after a 1-h reaction of enzyme and substrate followed by 10 min of electrophoresis. This is 50- to 200-fold better than the estimated reference levels for trypsin (15-60 ng/mL) in blood. This straightforward technique now allows for the rapid measurement of clinically relevant levels of trypsin activity in microliter volumes of whole blood, providing a useful tool for the development of novel point-of-care diagnostics.

  14. General Toxicity and Antifungal Activity of a New Dental Gel with Essential Oil from Abies Sibirica L

    PubMed Central

    Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankeviandccaron;ius, Edgaras

    2017-01-01

    Background The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. Material/Methods The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. Results The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. Conclusions The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity. PMID:28132065

  15. General Toxicity and Antifungal Activity of a New Dental Gel with Essential Oil from Abies Sibirica L.

    PubMed

    Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankevičius, Edgaras

    2017-01-29

    BACKGROUND The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. MATERIAL AND METHODS The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. RESULTS The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. CONCLUSIONS The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity.

  16. Reconstruction of active regular motion in amoeba extract: dynamic cooperation between sol and gel states.

    PubMed

    Nishigami, Yukinori; Ichikawa, Masatoshi; Kazama, Toshiya; Kobayashi, Ryo; Shimmen, Teruo; Yoshikawa, Kenichi; Sonobe, Seiji

    2013-01-01

    Amoeboid locomotion is one of the typical modes of biological cell migration. Cytoplasmic sol-gel conversion of an actomyosin system is thought to play an important role in locomotion. However, the mechanisms underlying sol-gel conversion, including trigger, signal, and regulating factors, remain unclear. We developed a novel model system in which an actomyosin fraction moves like an amoeba in a cytoplasmic extract. Rheological study of this model system revealed that the actomyosin fraction exhibits shear banding: the sol-gel state of actomyosin can be regulated by shear rate or mechanical force. Furthermore, study of the living cell indicated that the shear-banding property also causes sol-gel conversion with the same order of magnitude as that of shear rate. Our results suggest that the inherent sol-gel transition property plays an essential role in the self-regulation of autonomous translational motion in amoeba.

  17. Gel electrophoretic methods for the analysis of biosimilar pharmaceuticals using the example of recombinant erythropoietin.

    PubMed

    Reichel, Christian; Thevis, Mario

    2013-03-01

    Due to their versatility and cost-effectiveness, gel electrophoretic methods provide an important set of tools for the analysis of therapeutic proteins. As an increasing number of biosimilar pharmaceuticals are entering the market, techniques are required that allow reliable demonstration of comparability of these products with the reference products. Isoelectric focusing, SDS-PAGE, native PAGE and 2D electrophoresis (2D-PAGE) have been frequently applied for this purpose. Supplementary techniques are fluorophore-assisted carbohydrate electrophoresis and sarcosyl-PAGE. Of additional importance is the comparison of recombinant with endogenously synthesized glycoproteins. Reagent array analysis combined with SDS-PAGE and western blotting proved especially useful for this purpose. As an example for the application of these methods, the analysis of recombinant originator erythropoietins and some of their biosimilar counterparts is described.

  18. Sol–gel synthesis and enhanced photocatalytic activity of doped bismuth tungsten oxide composite

    SciTech Connect

    Xu, Xuetang; Ge, Yuanxing; Wang, Hong; Li, Bin; Yu, Liuhui; Liang, Yanyan; Chen, Kun; Wang, Fan

    2016-01-15

    Highlights: • Co dopant results in the phase change from Bi{sub 2}WO{sub 6} to Bi{sub 2}WO{sub 6}/Bi{sub 14}W{sub 2}O{sub 27} heterostructure. • Enhanced photocatalytic activity of Bi{sub 2}WO{sub 6}/Bi{sub 14}W{sub 2}O{sub 27} heterostructure. • Synergistic effects coming from the interactions between Bi{sub 14}W{sub 2}O{sub 27} and Bi{sub 2}WO{sub 6} - Abstract: Pristine Bi{sub 2}WO{sub 6} and Bi{sub 2}WO{sub 6}/Bi{sub 14}W{sub 2}O{sub 27} photocatalysts were synthesized by sol–gel method using Co(II) cation as dopant. The influence of Co dopant to the formation of Bi{sub 2}WO{sub 6}/Bi{sub 14}W{sub 2}O{sub 27} heterostructure composite was discussed. The photocatalytic activities of as-prepared samples were evaluated sufficiently by using rhodamine B as target organic pollutants under visible light. The as-prepared Bi{sub 2}WO{sub 6}/Bi{sub 14}W{sub 2}O{sub 27} heterostructure achieved enhanced optical absorption in the visible-light region, and exhibited much higher photocatalytic activities than that of pristine Bi{sub 2}WO{sub 6}. The optimum Bi/Co molar ratio and calcining temperature were also explored. The enhanced activities were attributed to the formation of heterostructure in suppressing the recombination of photo-generated carriers. The Co dopant species would participate to reduce the charge carrier recombination by acting as trapping sites for photogenerated charges. A possible photocatalytic mechanism over Bi{sub 2}WO{sub 6}/Bi{sub 14}W{sub 2}O{sub 27} heterostructure was proposed.

  19. Theoretical analysis of the kinetics of DNA hybridization with gel-immobilized oligonucleotides.

    PubMed Central

    Livshits, M A; Mirzabekov, A D

    1996-01-01

    A new method of DNA sequencing by hybridization using a microchip containing a set of immobilized oligonucleotides is being developed. A theoretical analysis is presented of the kinetics of DNA hybridization with deoxynucleotide molecules chemically tethered in a polyacrylamide gel layer. The analysis has shown that long-term evolution of the spatial distribution and of the amount of DNA bound in a hybridization cell is governed by "retarded diffusion," i.e., diffusion of the DNA interrupted by repeated association and dissociation with immobile oligonucleotide molecules. Retarded diffusion determines the characteristic time of establishing a final equilibrium state in a cell, i.e., the state with the maximum quantity and a uniform distribution of bound DNA. In the case of cells with the most stable, perfect duplexes, the characteristic time of retarded diffusion (which is proportional to the equilibrium binding constant and to the concentration of binding sites) can be longer than the duration of the real hybridization procedure. This conclusion is indirectly confirmed by the observation of nonuniform fluorescence of labeled DNA in perfect-match hybridization cells (brighter at the edges). For optimal discrimination of perfect duplexes from duplexes with mismatches the hybridization process should be brought to equilibrium under low-temperature nonsaturation conditions for all cells. The kinetic differences between perfect and nonperfect duplexes in the gel allow further improvement in the discrimination through additional washing at low temperature after hybridization. Images FIGURE 1 PMID:8913616

  20. Enhanced anti-inflammatory activity of carbopol loaded meloxicam nanoethosomes gel.

    PubMed

    Ahad, Abdul; Raish, Mohammad; Al-Mohizea, Abdullah M; Al-Jenoobi, Fahad I; Alam, Mohd Aftab

    2014-06-01

    The aim of the current investigation is to develop nanoethosomes for transdermal meloxicam delivery. The ethosomes were prepared by varying the variables such as concentrations of phospholipids 90G, ethanol, and sonication time while entrapment efficiency, vesicle size and transdermal flux were the chosen responses. Results indicate that the nanoethosomes of meloxicam provides lesser vesicles size, better entrapment efficiency and improved flux for transdermal delivery as compared to rigid liposomes. The optimized formulation (MCEF-OPT) obtained was further evaluated for an in vivo anti-inflammatory activity in rats. Optimized nanoethosomal formulation with vesicles size of 142.3nm showed 78.25% entrapment efficiency and achieved transdermal flux of 10.42μg/cm(2)/h. Nanoethosomes proved to be significantly superior in terms of, amount of drug permeated into the skin, with an enhancement ratio of 3.77 when compared to rigid liposomes. In vivo pharmacodynamic study of carbopol(®) loaded nanoethosomal gel showed significant higher percent inhibition of rat paw edema compared with oral administration of meloxicam. Our results suggest that nanoethosomes are an efficient carrier for transdermal delivery of meloxicam.

  1. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOEpatents

    Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.

    1999-01-01

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

  2. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOEpatents

    Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.

    1999-07-20

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.

  3. Use of near-infrared for quantitative measurement of viscosity and concentration of active ingredient in pharmaceutical gel.

    PubMed

    Donoso, M; Ghaly, E S

    2006-01-01

    Near infrared (NIR) spectroscopy is gaining worldwide interest as an analytical tool for quality control of raw materials, intermediate products, and final dosage forms. This technique can be used without sample preparation, therefore, avoiding the need for reagents and solvents. Quantitative NIR analyses involve calibration by sophisticated mathematical techniques that have been used extensively since the advent of microcomputing and chemometrics. The main objective of this investigation was to use transmission near-Infrared spectroscopy to measure the potency of an active ingredient in a topical gel preparation. A second objective was to evaluate the effect of gel viscosity on the NIR reflectance spectra. Four gel formulations with different ibuprofen concentrations were used for quantitative determination of the active ingredient, and five gel formulations with different viscosity values were used for the evaluation of the effect of viscosity change on the near-infrared reflectance spectra. The laboratory ibuprofen quantitative determination was compared to near-infrared transmission data using linear, quadratic, cubic and partial least square techniques to determine the relationship between ultraviolet (UV) determination and near-infrared spectra. For viscosity, the laboratory data were compared to near-infrared diffuse reflectance data using the same techniques used to determine the relationship between Brookfield viscometer determination and near-infrared spectra. The results demonstrated that an increase in ibuprofen concentration and viscosity produced an increase in near-infrared absorbance. Series of model equations were developed from the calibration of laboratory vs. the near-infrared data for each formulation. The near-infrared spectroscopy method is an alternative method that does not require sample pretreatment for quantitative measurement of active ingredient and viscosity of pharmaceutical gel.

  4. Two-Dimensional Gel Electrophoresis Image Analysis via Dedicated Software Packages.

    PubMed

    Maurer, Martin H

    2016-01-01

    Analyzing two-dimensional gel electrophoretic images is supported by a number of freely and commercially available software. Although the respective program is highly specific, all the programs follow certain standardized algorithms. General steps are: (1) detecting and separating individual spots, (2) subtracting background, (3) creating a reference gel and (4) matching the spots to the reference gel, (5) modifying the reference gel, (6) normalizing the gel measurements for comparison, (7) calibrating for isoelectric point and molecular weight markers, and moreover, (8) constructing a database containing the measurement results and (9) comparing data by statistical and bioinformatic methods.

  5. Analysis of lipoprotein profiles of healthy cats by gel-permeation high-performance liquid chromatography

    PubMed Central

    MIZUTANI, Hisashi; SAKO, Toshinori; OKUDA, Hiroko; ARAI, Nobuaki; KURIYAMA, Koji; MORI, Akihiro; YOSHIMURA, Itaru; KOYAMA, Hidekazu

    2016-01-01

    Density gradient ultracentrifugation (DGUC) and gel electrophoresis are conventionally used to obtain lipoprotein profiles of animals. We recently applied high-performance liquid chromatography with a gel permeation column (GP-HPLC) and an on-line dual enzymatic system to dogs for lipoprotein profile analysis. We compared the GP-HPLC with DGUC as a method to obtain a feline lipoprotein profile. The lipoprotein profiles showed large and small peaks, which corresponded to high-density lipoprotein (HDL) and low-density lipoprotein (LDL), respectively, whereas very low-density lipoprotein (VLDL) and chylomicron (CM) were only marginally detected. This profile was very similar to that of dogs reported previously. Healthy cats also had a small amount of cholesterol-rich particles distinct from the normal LDL or HDL profile. There was no difference in lipoprotein profiles between the sexes, but males had a significantly larger LDL particle size (P=0.015). This study shows the feasibility of GP-HPLC for obtaining accurate lipoprotein profiles with small sample volumes and provides valuable reference data for healthy cats that should facilitate diagnoses. PMID:27170431

  6. Microfluidic polyacrylamide gel electrophoresis with in situ immunoblotting for native protein analysis.

    PubMed

    He, Mei; Herr, Amy E

    2009-10-01

    We introduce an automated immunoblotting method that reports protein electrophoretic mobility and identity in a single streamlined microfluidic assay. Native polyacrylamide gel electrophoresis (PAGE) was integrated with subsequent in situ immunoblotting. Integration of three PA gel elements into a glass microfluidic chip achieved multiple functions, including (1) rapid protein separation via on-chip PAGE, (2) directed electrophoretic transfer of resolved protein peaks to an in-line blotting membrane, and (3) high-efficiency identification of the transferred proteins using antibody-functionalized blotting membranes. In-chip blotting membranes were photopatterned with biotinylated antibody using streptavidin polyacrylamide (PA) thus yielding postseparation sample analysis. No pressure driven flow or fluid valving was required, as the assay was operated by electrokinetically programmed control. A model sample of fluorescently labeled BSA (negative control), alpha-actinin, and prostate specific antigen (PSA) was selected to develop and characterize the assay. A 5 min assay time was required without operator intervention. Optimization of the blotting membrane (geometry, operation, and composition) yielded a detection limit of approximately 0.05 pg (alpha-actinin peak). An important additional blotting fabrication strategy was developed and characterized to allow vanishingly small antibody consumption (approximately 1 microg), as well as end-user customization of the blotting membrane after device fabrication and storage. This first report of rapid on-chip protein PAGE integrated with in situ immunoblotting forms the basis for a sensitive, automated approach applicable to numerous forms of immunoblotting.

  7. Comparison of Different Protein Extraction Methods for Gel-Based Proteomic Analysis of Ganoderma spp.

    PubMed

    Al-Obaidi, Jameel R; Saidi, Noor Baity; Usuldin, Siti Rokhiyah Ahmad; Hussin, Siti Nahdatul Isnaini Said; Yusoff, Noornabeela Md; Idris, Abu Seman

    2016-04-01

    Ganoderma species are a group of fungi that have the ability to degrade lignin polymers and cause severe diseases such as stem and root rot and can infect economically important plants and perennial crops such as oil palm, especially in tropical countries such as Malaysia. Unfortunately, very little is known about the complex interplay between oil palm and Ganoderma in the pathogenesis of the diseases. Proteomic technologies are simple yet powerful tools in comparing protein profile and have been widely used to study plant-fungus interaction. A critical step to perform a good proteome research is to establish a method that gives the best quality and a wide coverage of total proteins. Despite the availability of various protein extraction protocols from pathogenic fungi in the literature, no single extraction method was found suitable for all types of pathogenic fungi. To develop an optimized protein extraction protocol for 2-DE gel analysis of Ganoderma spp., three previously reported protein extraction protocols were compared: trichloroacetic acid, sucrose and phenol/ammonium acetate in methanol. The third method was found to give the most reproducible gels and highest protein concentration. Using the later method, a total of 10 protein spots (5 from each species) were successfully identified. Hence, the results from this study propose phenol/ammonium acetate in methanol as the most effective protein extraction method for 2-DE proteomic studies of Ganoderma spp.

  8. Sol-gel derived mesoporous cobalt silica catalyst: Synthesis, characterization and its activity in the oxidation of phenol

    NASA Astrophysics Data System (ADS)

    Andas, Jeyashelly; Adam, Farook; Rahman, Ismail Ab.

    2014-10-01

    Highly mesoporous cobalt silica rice husk catalysts with (5-15 wt.%) Co2+ loading were prepared via a simple sol-gel technique at room temperature. The successful insertion of cobalt ions into silica matrix was evidenced from FT-IR, NMR, XPS and AAS analyses. Preservation of the mesoporosity nature of silica upon incorporating Co2+ was confirmed from the N2-sorption studies. The topography and morphology viewed by TEM analysis differs as the cobalt concentration varies from 5 to 15 wt.%. Parallel pore channels and spherical nanoparticles of 9.44 nm were achieved for cobalt silica catalysts with 10 and 15 wt.% respectively. Cobalt catalysts were active in the liquid-phase oxidation of phenol with H2O2 as an oxygen source. The performances of the catalysts were greatly influenced by various parameters such as reaction temperature, catalyst amount, molar ratio of substrate to oxidant, nature of solvent, metal loading and homogeneous precursor salt. Water served as the best reaction medium for this oxidation system. The regeneration studies confirmed cobalt catalyst could be reused for five cycles without experiencing large loss in the conversion. Both leaching and reusability studies testified that the catalysts were truly heterogeneous.

  9. Pulsed-field gel electrophoresis analysis of multicellular DNA double-strand break damage and repair.

    PubMed

    Joshi, Nina; Grant, Stephen G

    2014-01-01

    This assay quantifies the extent of double-strand break (DSB) DNA damage in cell populations embedded in agarose and analyzed for migratory DNA using pulsed-field gel electrophoresis with ethidium bromide staining. The assay can measure preexisting damage as well as induction of DSB by chemical (e.g., bleomycin), physical (e.g., X-irradiation), or biological (e.g., restriction enzymes) agents. By incubating the cells under physiological conditions prior to processing, the cells can be allowed to repair DSB, primarily via the process of nonhomologous end joining. The amount of repair, corresponding to the repair capacity of the treated cells, is then quantified by determining the ratio of the fractions of activity released in the lanes in comparison to the total amount of DNA fragmentation following determination of an optimal exposure for maximum initial fragmentation. Repair kinetics can also be analyzed through a time-course regimen.

  10. BANANA GEL.

    PubMed

    McGuire, G; Falk, K G

    1922-03-20

    The conditions for the formation of gels from banana extracts were studied. Gels were obtained with extracts more alkaline than pH 7.0 with very small quantities of calcium, strontium, and barium salts, the gel formation with these salts decreasing in the indicated order. In solutions more acid than pH 6.0, no gels were obtained with these salts. Magnesium, lithium, and sodium salts did not cause gel formation either in acid or alkaline solutions. Pancreatine gave a gel on incubation with banana extract at pH 5.0. The gel-forming property of banana extracts was destroyed on boiling.

  11. Proteomic profiling of the mesenteric lymph after hemorrhagic shock: Differential gel electrophoresis and mass spectrometry analysis

    PubMed Central

    2011-01-01

    Experiments show that upon traumatic injury the composition of mesenteric lymph changes such that it initiates an immune response that can ultimately result in multiple organ dysfunction syndrome (MODS). To identify candidate protein mediators of this process we carried out a quantitative proteomic study on mesenteric lymph from a well characterized rat shock model. We analyzed three animals using analytical 2D differential gel electrophoresis. Intra-animal variation for the majority of protein spots was minor. Functional clustering of proteins revealed changes arising from several global classes that give novel insight into fundamental mechanisms of MODS. Mass spectrometry based proteomic analysis of proteins in mesenteric lymph can effectively be used to identify candidate mediators and loss of protective agents in shock models. PMID:21906351

  12. Two-dimensional fluorescence difference gel electrophoresis analysis of Listeria monocytogenes submitted to a redox shock.

    PubMed

    Ignatova, Maria; Guével, Blandine; Com, Emmanuelle; Haddad, Nabila; Rossero, Albert; Bogard, Philippe; Prévost, Hervé; Guillou, Sandrine

    2013-02-21

    The influence of redox alteration on the growth and proteomic pattern of Listeria monocytogenes was investigated. A redox shock was induced in cultures by addition of 3mM ferricyanide (FeCN) and 6mM dithiothreitol (DTT) to increase or to decrease respectively the redox potential naturally occurring at the beginning of growth. In both conditions, the reducing and oxidizing redox shock had a strong influence, decreasing the maximum growth rate by half compared to a control culture. The proteomic analysis of L. monocytogenes performed by two-dimensional difference gel electrophoresis (2D-DIGE) exhibited twenty-three proteins differentially expressed (P<0.05), among these, many were oxidoreductases, and proteins involved in cellular metabolism (glycolysis, protein synthesis), detoxification (kat) or adhesion (Lmo1634).

  13. In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calcium-silicate-hydrate gel

    SciTech Connect

    Morandeau, Antoine E.; White, Claire E.

    2015-04-21

    Calcium–silicate–hydrate (C–S–H) gel is the main binder component in hydrated ordinary Portland cement (OPC) paste, and is known to play a crucial role in the carbonation of cementitious materials, especially for more sustainable alternatives containing supplementary cementitious materials. However, the exact atomic structural changes that occur during carbonation of C–S–H gel remain unknown. Here, we investigate the local atomic structural changes that occur during carbonation of a synthetic calcium–silicate–hydrate gel exposed to pure CO₂ vapour, using in situ X-ray total scattering measurements and subsequent pair distribution function (PDF) analysis. By analysing both the reciprocal and real-space scattering data as the C–S–H carbonation reaction progresses, all phases present during the reaction (crystalline and non-crystalline) have been identified and quantified, with the results revealing the emergence of several polymorphs of crystalline calcium carbonate (vaterite and calcite) in addition to the decalcified C–S–H gel. Furthermore, the results point toward residual calcium being present in the amorphous decalcified gel, potentially in the form of an amorphous calcium carbonate phase. As a result of the quantification process, the reaction kinetics for the evolution of the individual phases have been obtained, revealing new information on the rate of growth/dissolution for each phase associated with C–S–H gel carbonation. Moreover, the investigation reveals that the use of real space diffraction data in the form of PDFs enables more accurate determination of the phases that develop during complex reaction processes such as C–S–H gel carbonation in comparison to the conventional reciprocal space Rietveld analysis approach.

  14. Experimental selectivity curves of gaseous binary mixtures of hydrocarbons and carbon dioxide on activated carbon and silica gel

    SciTech Connect

    Olivier, M.G.; Jadot, R.

    1998-07-01

    The selectivity curves of gaseous binary mixtures of ethane + ethylene, methane + carbon dioxide at 303 K and 700 kPa and butane + 2 methylpropane at 318 K and 200 kPa have been determined on activated carbon and silica gel using an original apparatus. In this paper, a brief description of this apparatus is given. The difference in behavior of these two adsorbents is discussed.

  15. A Novel Method of Estimating Dose Responses for Polymer Gels Using Texture Analysis of Scanning Electron Microscopy Images

    PubMed Central

    Shih, Cheng-Ting; Hsu, Jui-Ting; Han, Rou-Ping; Hsieh, Bor-Tsung; Chang, Shu-Jun; Wu, Jay

    2013-01-01

    Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM) images. The modified N-isopropyl-acrylamide (NIPAM) gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM). The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R2 value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were −7.60%, 5.80%, 2.53%, and −0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection. PMID:23843998

  16. In-gel NHS-propionate derivatization for histone post-translational modifications analysis in Arabidopsis thaliana.

    PubMed

    Chen, Jiajia; Gao, Jun; Peng, Maolin; Wang, Yi; Yu, Yanyan; Yang, Pengyuan; Jin, Hong

    2015-07-30

    Post-translational modifications (PTMs) on histone are highly correlated with genetic and epigenetic regulation of gene expression from chromatin. Mass spectrometry (MS) has developed to be an optimal tool for the identification and quantification of histone PTMs. Derivatization of histones with chemicals such as propionic anhydride, N-hydroxysuccinimide ester (NHS-propionate) has been widely used in histone PTMs analysis in bottom-up MS strategy, which requires high purity for histone samples. However, biological samples are not always prepared with high purity, containing detergents or other interferences in most cases. As an alternative approach, an adaptation of in gel derivatization method, termed In-gel NHS, is utilized for a broader application in histone PTMs analysis and it is shown to be a more time-saving preparation method. The proposed method was optimized for a better derivatization efficiency and displayed high reproducibility, indicating quantification of histone PTMs based on In-gel NHS was achievable. Without any traditional fussy histone purification procedures, we succeeded to quantitatively profile the histone PTMs from Arabidopsis with selective knock down of CLF (clf-29) and the original parental (col) with In-gel NHS method in a rapid way, which indicated the high specificity of CLF on H3K27me3 in Arabidopsis. In-gel NHS quantification results also suggest distinctive histone modification patterns in plants, which is invaluable foundation for future studies on histone modifications in plants.

  17. A novel method of estimating dose responses for polymer gels using texture analysis of scanning electron microscopy images.

    PubMed

    Shih, Cheng-Ting; Hsu, Jui-Ting; Han, Rou-Ping; Hsieh, Bor-Tsung; Chang, Shu-Jun; Wu, Jay

    2013-01-01

    Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM) images. The modified N-isopropyl-acrylamide (NIPAM) gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM). The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R (2) value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were -7.60%, 5.80%, 2.53%, and -0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection.

  18. GelBandFitter--a computer program for analysis of closely spaced electrophoretic and immunoblotted bands.

    PubMed

    Mitov, Mihail I; Greaser, Marion L; Campbell, Kenneth S

    2009-03-01

    GelBandFitter is a computer program that uses non-linear regression techniques to fit mathematical functions to densitometry profiles of protein gels. This allows for improved quantification of gels with partially overlapping and potentially asymmetric protein bands. The program can also be used to analyze immunoblots with closely spaced bands. GelBandFitter was developed in Matlab and the source code and/or a Windows executable file can be downloaded at no cost to academic users from http://www.gelbandfitter.org.

  19. Pulse Field Gel Electrophoresis

    PubMed Central

    Sharma-Kuinkel, Batu K.; Rude, Thomas H.; Fowler, Vance G.

    2015-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments. PMID:25682374

  20. Pulse Field Gel Electrophoresis.

    PubMed

    Sharma-Kuinkel, Batu K; Rude, Thomas H; Fowler, Vance G

    2016-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments.

  1. Aligning Goals, Assessments, and Activities: An Approach to Teaching PCR and Gel Electrophoresis

    ERIC Educational Resources Information Center

    Phillips, Allison R.; Robertson, Amber L.; Batzli, Janet; Harris, Michelle; Miller, Sarah

    2008-01-01

    Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments…

  2. A high-definition native polyacrylamide gel electrophoresis system for the analysis of membrane complexes.

    PubMed

    Ladig, Roman; Sommer, Maik S; Hahn, Alexander; Leisegang, Matthias S; Papasotiriou, Dimitrios G; Ibrahim, Mohamed; Elkehal, Rajae; Karas, Michael; Zickermann, Volker; Gutensohn, Michael; Brandt, Ulrich; Klösgen, Ralf Bernd; Schleiff, Enrico

    2011-07-01

    Native polyacrylamide gel electrophoresis (PAGE) is an important technique for the analysis of membrane protein complexes. A major breakthrough was the development of blue native (BN-) and high resolution clear native (hrCN-) PAGE techniques. Although these techniques are very powerful, they could not be applied to all systems with the same resolution. We have developed an alternative protocol for the analysis of membrane protein complexes of plant chloroplasts and cyanobacteria, which we termed histidine- and deoxycholate-based native (HDN-) PAGE. We compared the capacity of HDN-, BN- and hrCN-PAGE to resolve the well-studied respiratory chain complexes in mitochondria of bovine heart muscle and Yarrowia lipolytica, as well as thylakoid localized complexes of Medicago sativa, Pisum sativum and Anabaena sp. PCC7120. Moreover, we determined the assembly/composition of the Anabaena sp. PCC7120 thylakoids and envelope membranes by HDN-PAGE. The analysis of isolated chloroplast envelope complexes by HDN-PAGE permitted us to resolve complexes such as the translocon of the outer envelope migrating at approximately 700 kDa or of the inner envelope of about 230 and 400 kDa with high resolution. By immunodecoration and mass spectrometry of these complexes we present new insights into the assembly/composition of these translocation machineries. The HDN-PAGE technique thus provides an important tool for future analyses of membrane complexes such as protein translocons.

  3. Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis

    PubMed Central

    Churchward, Matthew A; Butt, R Hussain; Lang, John C; Hsu, Kimberly K; Coorssen, Jens R

    2005-01-01

    Background The analysis of hydrophobic membrane proteins by two-dimensional gel electrophoresis has long been hampered by the concept of inherent difficulty due to solubility issues. We have optimized extraction protocols by varying the detergent composition of the solubilization buffer with a variety of commercially available non-ionic and zwitterionic detergents and detergent-like phospholipids. Results After initial analyses by one-dimensional SDS-PAGE, quantitative two-dimensional analyses of human erythrocyte membranes, mouse liver membranes, and mouse brain membranes, extracted with buffers that included the zwitterionic detergent MEGA 10 (decanoyl-N-methylglucamide) and the zwitterionic lipid LPC (1-lauroyl lysophosphatidylcholine), showed selective improvement over extraction with the common 2-DE detergent CHAPS (3 [(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate). Mixtures of the three detergents showed additive improvements in spot number, density, and resolution. Substantial improvements in the analysis of a brain membrane proteome were observed. Conclusion This study demonstrates that an optimized detergent mix, coupled with rigorous sample handling and electrophoretic protocols, enables simple and effective analysis of membrane proteomes using two-dimensional electrophoresis. PMID:15941475

  4. High resolution melt analysis (HRMA); a viable alternative to agarose gel electrophoresis for mouse genotyping.

    PubMed

    Thomsen, Nicole; Ali, Radiya G; Ahmed, Jehangir N; Arkell, Ruth M

    2012-01-01

    Most mouse genetics laboratories maintain mouse strains that require genotyping in order to identify the genetically modified animals. The plethora of mutagenesis strategies and publicly available mouse alleles means that any one laboratory may maintain alleles with random or targeted insertions of orthologous or unrelated sequences as well as random or targeted deletions and point mutants. Many experiments require that different strains be cross bred conferring the need to genotype progeny at more than one locus. In contrast to the range of new technologies for mouse mutagenesis, genotyping methods have remained relatively static with alleles typically discriminated by agarose gel electrophoresis of PCR products. This requires a large amount of researcher time. Additionally it is susceptible to contamination of future genotyping experiments because it requires that tubes containing PCR products be opened for analysis. Progress has been made with the genotyping of mouse point mutants because a range of new high-throughput techniques have been developed for the detection of Single Nucleotide Polymorphisms. Some of these techniques are suitable for genotyping point mutants but do not detect insertion or deletion alleles. Ideally, mouse genetics laboratories would use a single, high-throughput platform that enables closed-tube analysis to genotype the entire range of possible insertion and deletion alleles and point mutants. Here we show that High Resolution Melt Analysis meets these criteria, it is suitable for closed-tube genotyping of all allele types and current genotyping assays can be converted to this technology with little or no effort.

  5. In-gel activity-based protein profiling of a clickable covalent ERK1/2 inhibitor.

    PubMed

    Lebraud, Honorine; Wright, David J; East, Charlotte E; Holding, Finn P; O'Reilly, Marc; Heightman, Tom D

    2016-08-16

    In-gel activity-based protein profiling (ABPP) offers rapid assessment of the proteome-wide selectivity and target engagement of a chemical tool. Here we demonstrate the use of the inverse electron demand Diels Alder (IEDDA) click reaction for in-gel ABPP by evaluating the selectivity profile and target engagement of a covalent ERK1/2 probe tagged with a trans-cyclooctene group. The chemical probe was shown to bind covalently to Cys166 of ERK2 using protein MS and X-ray crystallography, and displayed submicromolar GI50s in A375 and HCT116 cells. In both cell lines, the probe demonstrated target engagement and a good selectivity profile at low concentrations, which was lost at higher concentrations. The IEDDA cycloaddition enabled fast and quantitative fluorescent tagging for readout with a high background-to-noise ratio and thereby provides a promising alternative to the commonly used copper catalysed alkyne-azide cycloaddition.

  6. Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5- to 500-kDa hyaluronan.

    PubMed

    Bhilocha, Shardul; Amin, Ripal; Pandya, Monika; Yuan, Han; Tank, Mihir; LoBello, Jaclyn; Shytuhina, Anastasia; Wang, Wenlan; Wisniewski, Hans-Georg; de la Motte, Carol; Cowman, Mary K

    2011-10-01

    Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5-500 kDa were investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffer systems was determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample as well as calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa at sample loads of 0.5 μg (for polyacrylamide) to 2.5 μg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150-kDa HA standard.

  7. Sol-gel microextraction phases for sample preconcentration in chromatographic analysis.

    PubMed

    Segro, Scott S; Tran, Minh Phuong; Kesani, Sheshanka; Alhendal, Abdullah; Turner, Erica B

    2010-10-01

    Sol-gel technology provides a simple and reliable method for solid-phase microextraction (SPME) fiber preparation through in situ creation of surface-bonded organic-inorganic hybrid coatings characterized by enhanced thermal stability and solvent-resistance properties that are important for the coupling of SPME with GC and HPLC, respectively. The sol-gel coating technology has led to the development of an extensive array of sol-gel sorbent coatings for SPME. In this article, sol-gel microextraction coatings are reviewed, with particular attention on their synthesis, characterization, and applications in conjunction with GC and HPLC analyses. In addition, the development of sol-gel-coated stir bars, their inherent advantages, and applications are discussed. Next, the development and applications of sol-gel capillary microextraction (CME) in hyphenation with GC and HPLC is extensively reviewed. The newly emerging germania- and titania-based sol-gel microextraction phases look promising, especially in terms of pH and hot solvent stability. Finally, sol-gel monolithic beds for CME are reviewed. Such monolithic beds are in a position to greatly improve the extracting capabilities and enhanced sensitivity in CME.

  8. Analysis of strains of Campylobacter fetus by pulsed-field gel electrophoresis.

    PubMed Central

    Fujita, M; Fujimoto, S; Morooka, T; Amako, K

    1995-01-01

    Campylobacter fetus chromosomal DNA from 21 strains was analyzed by pulsed-field gel electrophoresis. The fingerprint patterns generated with SmaI and SalI were distinctive. Using the profiles obtained by pulsed-field gel electrophoresis, we established the phylogenetic dendrogram of C. fetus to identify the genetic relationship of the strains. PMID:7650215

  9. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels.

    PubMed

    Nicodemus, G D; Skaalure, S C; Bryant, S J

    2011-02-01

    While designing poly(ethylene glycol) hydrogels with high moduli suitable for in situ placement is attractive for cartilage regeneration, the impact of a tighter crosslinked structure on the organization and deposition of the matrix is not fully understood. The objectives of this study were to characterize the composition and spatial organization of new matrix as a function of gel crosslinking and study its impact on chondrocytes in terms of anabolic and catabolic gene expression and catabolic activity. Bovine articular chondrocytes were encapsulated in hydrogels with three crosslinking densities (compressive moduli 60, 320 and 590 kPa) and cultured for 25 days. Glycosaminoglycan production increased with culture time and was greatest in the gels with lowest crosslinking. Collagens II and VI, aggrecan, link protein and decorin were localized to pericellular regions in all gels, but their presence decreased with increasing gel crosslinking. Collagen II and aggrecan expression were initially up-regulated in gels with higher crosslinking, but increased similarly up to day 15. Matrix metalloproteinase (MMP)-1 and MMP-13 expression were elevated (∼25-fold) in gels with higher crosslinking throughout the study, while MMP-3 was unaffected by gel crosslinking. The presence of aggrecan and collagen degradation products confirmed MMP activity. These findings indicate that chondrocytes synthesized the major cartilage components within PEG hydrogels, however, gel structure had a significant impact on the composition and spatial organization of the new tissue and on how chondrocytes responded to their environment, particularly with respect to their catabolic expression.

  10. Texture analysis in gel electrophoresis images using an integrative kernel-based approach

    PubMed Central

    Fernandez-Lozano, Carlos; Seoane, Jose A.; Gestal, Marcos; Gaunt, Tom R.; Dorado, Julian; Pazos, Alejandro; Campbell, Colin

    2016-01-01

    Texture information could be used in proteomics to improve the quality of the image analysis of proteins separated on a gel. In order to evaluate the best technique to identify relevant textures, we use several different kernel-based machine learning techniques to classify proteins in 2-DE images into spot and noise. We evaluate the classification accuracy of each of these techniques with proteins extracted from ten 2-DE images of different types of tissues and different experimental conditions. We found that the best classification model was FSMKL, a data integration method using multiple kernel learning, which achieved AUROC values above 95% while using a reduced number of features. This technique allows us to increment the interpretability of the complex combinations of textures and to weight the importance of each particular feature in the final model. In particular the Inverse Difference Moment exhibited the highest discriminating power. A higher value can be associated with an homogeneous structure as this feature describes the homogeneity; the larger the value, the more symmetric. The final model is performed by the combination of different groups of textural features. Here we demonstrated the feasibility of combining different groups of textures in 2-DE image analysis for spot detection. PMID:26758643

  11. The limitations of pulsed-field gel electrophoresis for analysis of Yersinia enterocolitica isolates.

    PubMed

    Gilpin, B J; Robson, B; Lin, S; Hudson, J A; Weaver, L; Dufour, M; Strydom, H

    2014-09-01

    This study describes the analysis of 432 isolates of Yersinia enterocolitica by pulsed-field gel electrophoresis (PFGE). PFGE had a high level of discrimination with biotype 1A isolates (Simpson's Diversity Index 0.997), but with the clinically important biotypes 2, 3 and 4, the discriminatory ability of PFGE was so low as to severely limit its usefulness (DI <0.6). For biotypes 2, 3 and 4, 79% or more of isolates of each biotype were of just three different PFGE profiles. Because of this, four known outbreaks of yersiniosis would not have been identified by PFGE analysis. However, a previously unrecognized potential outbreak of yersiniosis caused by biotype 4 isolates was identified on the basis of a rare PFGE genotype with spatial and temporal clustering. We conclude that PFGE has a very limited application to the genotyping of Y. enterocolitica biotypes 2, 3 and 4, and inferences based on finding indistinguishable PFGE profiles among cases or between cases and sources need to be substantiated using alternative typing tools, or strong epidemiological evidence.

  12. A charge-coupled-device camera image analysis system for quantifying DNA distributions in agarose gels after pulsed-field gel electrophoresis

    SciTech Connect

    Dewey, W.C.; Thompson, L.L.; Trinh, M.L.; Latz, D.L. |; Ward, J.F.

    1994-10-01

    A charge-coupled-device camera system was coupled to a personal computer and, with uniformity in illumination and detection (within 4-8%) along each lane, was used for quantifying the distribution of DNA molecules that migrate from the PFGE well (plug) into the lane at distances varying from 1 to 50 mm (with 0.5 mm/pixel). By using a specially designed transmission filter for transmitting 470-725 nm fluorescence from ethidium bromide-stained DNA while eliminating most of the fluorescence (<400 nm) from the agarose gel, and by using neutral density filters to prevent saturation of the camera, the fluorescence intensity is linearly related to the amount of DNA varying from {approximately} 0.03 {mu}g in a 3-mm-diameter cylindrical plug 5 mm long (equal to background) to {approximately} 4 {mu}g (where ethidium bromide staining saturates). The percentage DNA released from the plug and distribution in the lane (with 1-2 mm resolution) obtained by quantifying DNA fluorescence were not significantly different from the same data obtained by analysis of radioactivity of the same DNA labeled with [{sup 3}H]dThd. However, scattering of fluorescence from one lane into an adjacent lane 3 mm away and as far as 10 mm from the plug into the lane presented a problem. This problem was overcome by using a form with slots to cover every other lane when the images were obtained and either (1) cutting the lane from the plug and moving it 15 mm away or (2) imaging the intact gel and applying a correction for {approximately} 7% of the fluorescence from the plug tailing out {approximately} 10 mm beyond the first 1 mm in the lane. In addition, the following were required: (1) carefully controlled staining and destaining procedures, and (2) a low background that is obtained as an average uniform background in each lane 5 mm beyond where DNA migration stops. 31 refs., 7 figs.

  13. Ink-native electrophoresis: an alternative to blue-native electrophoresis more suitable for in-gel detection of enzymatic activity.

    PubMed

    Kaneko, Keisuke; Sueyoshi, Noriyuki; Kameshita, Isamu; Ishida, Atsuhiko

    2013-09-15

    Blue-native electrophoresis (BNE) is a useful technique for analyzing protein complexes, but the Coomassie brilliant blue (CBB) dye used in BNE often hampers in-gel detection of enzymatic activity. Here we report an improved method, termed ink-native electrophoresis (INE), in which Pelikan 4001 fountain pen ink is used as a charge-shifting agent instead of CBB. INE is more suitable than BNE for in-gel detection of protein kinase activity after polyacrylamide gel electrophoresis (PAGE), and its performance in protein complex separation is comparable to that of conventional BNE. INE may provide a powerful tool to isolate and analyze various protein complexes.

  14. Ion activated in situ gel of gellan gum containing salbutamol sulphate for nasal administration.

    PubMed

    Salunke, Sneha R; Patil, Sanjay B

    2016-06-01

    Nasal delivery is the promising approach for rapid onset of action and avoids the first pass metabolism. The main aim of present study was to develop a novel mucoadhesive in situ gel of salbutamol sulphate using gellan gum and hydroxylpropyl methyl cellulose (HPMC) for nasal administration. The formulations were prepared so as to have gelation at physiological ion content after nasal administration. Developed formulations were evaluated for gelation, viscosity, drug content, in vitro mucoadhesion, in vitro drug release study, ex vivo permeation, and histopathology. Formulations showed pH in the range of nasal cavity and optimum viscosity for nasal administration. The mucoadhesive force depends upon concentration of HPMC and drug release was found to be 97.34% in 11h. The histopathology did not detect any damage during ex vivo permeation studies. Hence, in situ gel system of gellan gum may be a promising approach for nasal delivery of salbutamol sulphate for therapeutic improvement.

  15. Functionalized silicate sol-gel-supported TiO2-Au core-shell nanomaterials and their photoelectrocatalytic activity.

    PubMed

    Pandikumar, Alagarsamy; Murugesan, Sepperumal; Ramaraj, Ramasamy

    2010-07-01

    The N-[3-(trimethoxysilyl)propyl]ethylenediamine (EDAS) derived silicate matrix supported core-shell TiO(2)-Au nanoparticles (EDAS/(TiO(2)-Au)(nps)) were prepared by NaBH(4) reduction of HAuCl(4) precursor on preformed TiO(2) nanoparticles in the presence of EDAS monomer. The core-shell (TiO(2)-Au)(nps) nanoparticles were stabilized by the amine functional group of the EDAS silicate sol-gel network. The potential application of this EDAS/(TiO(2)-Au)(nps) modified electrode toward the photoelectrochemical oxidation of methanol was explored. The EDAS/(TiO(2)-Au)(nps) modified electrode showed a 12-fold enhancement in the catalytic activity toward photoelectrooxidation of methanol when compared to TiO(2) dispersed in EDAS silicate sol-gel matrix. This improved photoelectrochemical performance is explained on the basis of beneficial promotion of interfacial charge transfer processes of the EDAS/(TiO(2)-Au)(nps) nanocomposite. A methanol oxidation peak current density of 12.3 mA cm(-2) was achieved at an optimum loading of Au(nps) on TiO(2) particles. This novel amine functionalized EDAS silicate sol-gel stabilized core-shell (TiO(2)-Au)(nps) nanomaterial could be an excellent candidate for the photocatalytic and photoelectrochemical applications.

  16. The Role of Molecular Motors in the Mechanics of Active Gels and the Effects of Inertia, Hydrodynamic Interaction and Compressibility in Passive Microrheology

    DTIC Science & Technology

    2014-07-01

    to characterize are active gels. They are formed by semiflexible polymer filaments driven by motor proteins that convert chemical energy from the...a single-chain mean-field model to describe the mechanical properties of active gels. We model the semiflexible filaments as bead-spring chains and...attachment state of the filaments , and the motor-generated forces, as stochastic state variables which evolve according to a proposed differential

  17. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  18. Sol–gel synthesis of SnO{sub 2}–MgO nanoparticles and their photocatalytic activity towards methylene blue degradation

    SciTech Connect

    Bayal, Nisha; Jeevanandam, P.

    2013-10-15

    Graphical abstract: - Highlights: • A simple sol–gel method for the synthesis of SnO{sub 2}–MgO nanoparticles is reported. • Band gap of SnO{sub 2} can be tuned by varying the magnesium content in SnO{sub 2}–MgO. • SnO{sub 2}–MgO shows good photocatalytic activity towards degradation of methylene blue. - Abstract: SnO{sub 2}–MgO mixed metal oxide nanoparticles were prepared by a simple sol–gel method. The nanoparticles were characterized by power X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The XRD results indicate the formation of mixed metal oxide nanoparticles and also a decrease of SnO{sub 2} crystallite size in the mixed metal oxide nanoparticles with increasing magnesium oxide content. The reflectance spectroscopy results show a blue shift of the band gap of SnO{sub 2} in the mixed metal oxide nanoparticles. The photocatalytic activity of the SnO{sub 2}–MgO nanoparticles was tested using the photodegradation of aqueous methylene blue in the presence of sunlight. The results indicate that the mixed metal oxide nanoparticles possess higher efficiency for the photodegradation of methylene blue compared to pure SnO{sub 2} nanoparticles.

  19. Studies on selenoproteins in bovine kidneys by gel chromatography and neutron activation

    SciTech Connect

    Chatt, A.; Jayawickreme, C.K.

    1986-01-01

    Selenium at low concentrations has been claimed to be an element which is essential for life and growth. In recent years, selenium attracted increasing interest from researchers around the world because of its possible biological functions in preventing cancer, enhancing the immune system, slowing the aging process, and stimulating sexual activity. In living matter, selenium is mainly incorporated with macromolecules. Much of the metabolic behavior, biological effects, and involvement in homeostatic mechanism of this element may very well depend on the presence of the particular type of selenoproteins in the system. Neutron activation analysis (NAA) in conjunction with several bioanalytical techniques can be used to characterize metalloproteins in general. In a recent study, the distribution of trace elements in subcellular fractions of bovine kidney has been reported. The present work deals with the application of NAA together with other techniques to the isolation and characterization of selenoproteins in bovine kidneys with particular emphasis on the NAA method developed.

  20. Fluctuation Analysis of Liquid/Liquid and Gel/Liquid Interfaces

    DTIC Science & Technology

    1989-03-17

    gel/water interface were determined by using cyclic voltammetry and zero current potentiometric methods in a four-electrode system. It has been...interface is due to the difference of the diffusion coefficients in the gel-nitrobenzene as opposed to pure nitrobenzene. In the present study an...and the real part of the diffusional impedance is calculated ; its absolute values can be obtained by multiplying the numbers in the Table by 12 e

  1. [Comparative characteristic of activity of urease, incorporated into polysiloxane hydrogels and xerogels, obtained by sol-gel technique].

    PubMed

    Pohorilyĭ, R P; Honcharyk, V P; Kozhara, L I; Zub, Iu L; Chuĭko, O O

    2006-01-01

    Polysiloxane hydrogels with incorporated urease (degree of immobilization is 79-88%) that retains fermentative activity at the level of 56-84% were obtained by sol-gel technique. An influence of polysiloxane matrix functionalization on a degree of incorporation, activity retention and a factor of efficiency of urease immobilization was studied. Polysiloxane matrix functionalization with methyl groups causes decreasing a degree of ferment immobilization and a factor of immobilization efficiency. Functionalization of polysiloxane matrix with 3-aminopropyl groups leads to practically quantitative incorporation of the enzyme. And the highest degree of urease activity retention and maximal factor of its immobilization were observed at 3-aminopropyl groups content in polysiloxane matrix equals 2-5% (mol.). Transformation of hydrogels into xerogels via vacuum drying causes decreasing urease fermentative activity on nearly 2 orders.

  2. Serine transhydroxymethylase: a simplified radioactive assay; purification and stabilization of enzyme activity employing Affi-Gel Blue.

    PubMed

    Braman, J C; Black, M J; Mangum, J H

    1981-01-01

    An improved radioactive assay has been developed for serine transhydroxymethylase. This assay involves the direct measurement of the [14C]HCHO which is generated when [3- 14C]-serine is employed as the substrate. The new assay eliminates the need for a solvent extraction of a [14C]HCHO-dimedon adduct which is the basis of the assay devised by Taylor and Weissbach. The enzyme has been purified employing Affi-Gel Blue. The purified enzyme retains full activity when bound to this affinity chromatography matrix and can be stored in this state at 4 degrees indefinitely.

  3. The Use of Gel Electrophoresis to Study the Reactions of Activated Amino Acids with Oligonucleotides

    NASA Technical Reports Server (NTRS)

    Zieboll, Gerhard; Orgel, Leslie E.

    1994-01-01

    We have used gel electrophoresis to study the primary covalent addition of amino acids to oligonu-cleotides or their analogs and the subsequent addition of further molecules of the amino acids to generate peptides covalently linked to the oligonucleotides. We have surveyed the reactions of a variety of amino acids with the phosphoramidates derived from oligonucleotide 5 inches phosphates and ethylenediamine. We find that arginine and amino acids can interact with oligonucleotidesl through stacking interactions react most efficiently. D- and L-amino acids give indistinguishable families of products.

  4. A one-dimensional analysis of sol-gel film-coating drying: Pore evolution, network shrinkage and stress development

    SciTech Connect

    Chen, K.S.; Schunk, P.R.

    1998-02-01

    Highly porous sol-gel films have potential applications as electrical and thermal insulators, catalyst supports, sensors, and membranes for gas separations. Pore dimensions in these sol-gel films are usually small e.g., on the order of tens of nanometers or less. Their successful fabrications, however, greatly depend on the fundamental understanding of mechanisms that underlie the phenomena of pore evolution, network shrinkage, and stress development since the final microstructure of a solid gel film is strongly affected by composition of its starting sol and its processing conditions. This report documents a simplified one-dimensional analysis of drying a solidifying sol-gel thin film coating supported by an impermeable solid substrate. Portions of this work were presented at the 1994 Annual Joint Meeting of the New Mexico Section of the American Ceramic Society and Materials Research Society in Albuquerque. The authors considered the solid/liquid two phase coexistent regime during the drying solidifying process in which solvent is removed continuously via evaporation, the solid phase grows significantly in mechanical strength, and pore space shrinks appreciably. From overall and differential mass balances and a force balance at equilibrium, coupled with empirical correlations of solid phase modulus and permeability to strain or deformation, the authors followed the evolution of pore space, solid phase elastic stress, and liquid phase hydrodynamic pressure; they also determined their respective values at equilibrium. By assuming microscopic pore shape models, they estimated and compared the predicted mean pore radii. Their simplified one-dimensional analysis shows that the final mean pore radius is controlled by four parameters: pore-liquid surface tension, solid phase modulus, mean pore radius, and porosity at the initial stress-free state. The one-dimensional model can be employed to guide process design and optimization in sol-gel film fabrications.

  5. Staining with highly sensitive Coomassie brilliant blue SeePico™ Stain after Flamingo™ fluorescent gel stain is useful for cancer proteomic analysis by means of two-dimensional gel electrophoresis.

    PubMed

    Kuramitsu, Yasuhiro; Hayashi, Eiko; Okada, Futoshi; Zhang, Xiulian; Tanaka, Toshiyuki; Ueyama, Yoshiya; Nakamura, Kazuyuki

    2010-10-01

    Highly sensitive Coomassie brilliant blue SeePico™ Stain was applied for proteomic analysis using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). After staining with Flamingo™ Fluorescent Gel Stain, the images of the protein spots were analyzed, and 424 protein spots were detected. After washing with Milli-Q water three times, the gels were re-stained with SeePico™ Stain and the images of the protein spots were analyzed; 272 spots were detected. To assess whether SeePico™ Stain alters MS analysis, a spot was picked up and was analyzed by LC-MS/MS. The MS analysis showed good protein identification. These results show a possible role for SeePico™ Stain in cancer proteomics using 2-DE and MS.

  6. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the flow capacity of

  7. Silica Gel for Enhanced Activity and Hypochlorite Protection of Cyanuric Acid Hydrolase in Recombinant Escherichia coli

    PubMed Central

    Radian, Adi; Aukema, Kelly G.; Aksan, Alptekin

    2015-01-01

    ABSTRACT Chlorinated isocyanuric acids are widely used water disinfectants that generate hypochlorite, but with repeated application, they build up cyanuric acid (CYA) that must be removed to maintain disinfection. 3-Aminopropyltriethoxysilane (APTES)-treated Escherichia coli cells expressing cyanuric acid hydrolase (CAH) from Moorella thermoacetica exhibited significantly high CYA degradation rates and provided protection against enzyme inactivation by hypochlorite (chlorine). APTES coating or encapsulation of cells had two benefits: (i) overcoming diffusion limitations imposed by the cell wall and (ii) protecting against hypochlorite inactivation of CAH activity. Cells encapsulated in APTES gels degraded CYA three times faster than nonfunctionalized tetraethoxysilane (TEOS) gels, and cells coated with APTES degraded CYA at a rate of 29 µmol/min per mg of CAH protein, similar to the rate with purified enzyme. UV spectroscopy, fluorescence spectroscopy, and scanning electron microscopy showed that the higher rates were due to APTES increasing membrane permeability and enhancing cyanuric acid diffusion into the cytoplasm to reach the CAH enzyme. Purified CAH enzyme was shown to be rapidly inactivated by hypochlorite. APTES aggregates surrounding cells protected via the amine groups reacting with hypochlorite as shown by pH changes, zeta potential measurements, and infrared spectroscopy. APTES-encapsulated E. coli cells expressing CAH degraded cyanuric acid at high rates in the presence of 1 to 10 ppm hypochlorite, showing effectiveness under swimming pool conditions. In contrast, CAH activity in TEOS gels or free cells was completely inactivated by hypochlorite. These studies show that commercially available silica materials can selectively enhance, protect, and immobilize whole-cell biocatalysts for specialized applications. PMID:26530383

  8. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-09-30

    This report describes work performed during the third and final year of the project, ''Conformance Improvement Using Gels.'' Corefloods revealed throughput dependencies of permeability reduction by polymers and gels that were much more prolonged during oil flow than water flow. This behavior was explained using simple mobility ratio arguments. A model was developed that quantitatively fits the results and predicts ''clean up'' times for oil productivity when production wells are returned to service after application of a polymer or gel treatment. X-ray computed microtomography studies of gels in strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene suggested that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than gel-ripping or gel-displacement mechanisms. In contrast, analysis of data from the University of Kansas suggests that the gel-ripping or displacement mechanisms are more important in more permeable, strongly water-wet sandpacks. These findings help to explain why aqueous gels can reduce permeability to water more than to oil under different conditions. Since cement is the most commonly used material for water shutoff, we considered when gels are preferred over cements. Our analysis and experimental results indicated that cement cannot be expected to completely fill (top to bottom) a vertical fracture of any width, except near the wellbore. For vertical fractures with apertures less than 4 mm, the cement slurry will simply not penetrate very far into the fracture. For vertical fractures with apertures greater than 4 mm, the slurry may penetrate a substantial distance into the bottom part of the fracture. However, except near the wellbore, the upper part of the fracture will remain open due to gravity segregation. We compared various approaches to plugging fractures using gels, including (1) varying polymer content, (2) varying placement (extrusion) rate, (3) using partially formed gels, (4

  9. Optimal imaging and analysis of human vaginal coating by drug delivery gels

    PubMed Central

    Henderson, Marcus H; Couchman, Grace M; Walmer, David K; Peters, Jennifer J; Owen, Derek H; Brown, Matthew A; Lavine, Michael L; Katz, David F

    2007-01-01

    Objective We used a new optical imaging technique to compare human intravaginal coating distributions of Conceptrol® and Advantage™. These gels are surrogates for future microbicidal gels, differing in molecular structures and biophysical properties. Methods For each protocol, a 3-mL gel bolus was inserted to the posterior fornix while the woman was in the supine position. She then either: (1) remained supine (10 min); or (2) sat up (1 min), stood up (1 min), sat down (1 min), and returned to supine for a net elapsed time of 10 min. The imaging device is sized/shaped like a phallus, and measurements while the device was inserted provide data that simulate peri-intromission coating. Results Coating by Advantage™ was more extensive and uniform than coating by Conceptrol®, with smaller bare spots of uncoated epithelium. Change in posture tended to increase extent and uniformity of coating, details differing between gels. Conclusions Results are consistent with predictions of mechanistic coating theory, using gel rheological data as inputs. PMID:17241845

  10. Sol-gel immobilization as a suitable technique for enhancement of α-amylase activity of Aspergillus oryzae PP.

    PubMed

    Evstatieva, Yana; Yordanova, Mariya; Chernev, Georgi; Ruseva, Yanislava; Nikolova, Dilyana

    2014-07-04

    Bioencapsulation of microbial cells in silica-based matrices has proved to be a good strategy to enhance the biosynthetic capabilities and viability of bioproducers. In the present study, mycelium and pellet cultures of strain Aspergillus oryzae PP were successfully immobilized in sol-gel hybrid matrices composed of tetraethylorthosilicate as an inorganic precursor, 5% (w/v) starch and 10 or 15% (w/v) polyethylene oxide, or 10% (w/v) calcium alginate as organic compounds. Biosynthetic activity of immobilized cultures was investigated by batch and fed-batch cultivation and the obtained results of 3042.04 IU cm(-3) were comparable with the enzyme activity of the free cell culture. Immobilized cultures retained their viability and biosynthetic capabilities up to the 744th h during fed-batch fermentation processes. Consequently, sol-gel encapsulation in hybrid matrices could be considered as a promising technique for immobilization of Aspergillus oryzae PP in order to increase the α-amylase production.

  11. Sol–gel immobilization as a suitable technique for enhancement of α-amylase activity of Aspergillus oryzae PP

    PubMed Central

    Evstatieva, Yana; Yordanova, Mariya; Chernev, Georgi; Ruseva, Yanislava; Nikolova, Dilyana

    2014-01-01

    Bioencapsulation of microbial cells in silica-based matrices has proved to be a good strategy to enhance the biosynthetic capabilities and viability of bioproducers. In the present study, mycelium and pellet cultures of strain Aspergillus oryzae PP were successfully immobilized in sol–gel hybrid matrices composed of tetraethylorthosilicate as an inorganic precursor, 5% (w/v) starch and 10 or 15% (w/v) polyethylene oxide, or 10% (w/v) calcium alginate as organic compounds. Biosynthetic activity of immobilized cultures was investigated by batch and fed-batch cultivation and the obtained results of 3042.04 IU cm−3 were comparable with the enzyme activity of the free cell culture. Immobilized cultures retained their viability and biosynthetic capabilities up to the 744th h during fed-batch fermentation processes. Consequently, sol–gel encapsulation in hybrid matrices could be considered as a promising technique for immobilization of Aspergillus oryzae PP in order to increase the α-amylase production. PMID:26740773

  12. Enhanced ultraviolet photocatalytic activity of Ag/ZnO nanoparticles synthesized by modified polymer-network gel method

    NASA Astrophysics Data System (ADS)

    Lu, Y. H.; Xu, M.; Xu, L. X.; Zhang, C. L.; Zhang, Q. P.; Xu, X. N.; Xu, S.; Ostrikov, K.

    2015-09-01

    Ag/ZnO nanoparticle (NP) heterostructures are synthesized through a modified polymer-network gel method in which glucose is added to the precursor solution to prevent the gel from drastically shrinking during drying of the aqueous solution. Structural and optical properties of the samples are characterized by a range of techniques including XRD, SEM, TEM, XPS, UV-Vis, and PL. The high-quality Ag-ZnO heterostructure is evidenced clearly by high-resolution TEM. The Ag/ZnO heterostructure nanocomposites exhibit a higher photocatalytic activity in the degradation of methyl orange than pure ZnO. Especially, Ag/ZnO NP heterostructures with the Ag/Zn molar ratio of 5:95 (sample ZA-5) show the highest degradation efficiency, which is 11 times higher compared with pure ZnO. The photoluminescence properties of the heterostructures and O defect states are studied to well explain the observed photocatalytic effects. ZA-5 also exhibits competitive photocatalytic activity for the degradation of other pollutant dyes such as Methylene blue and Rhodamine B compared with the recently reported techniques, while showing excellent catalyst photostability as well as offering simplicity and reliability.

  13. Inhibitor screening and enzymatic activity determination for autophagy target Atg4B using a gel electrophoresis-based assay.

    PubMed

    Cleenewerck, Matthias; Grootaert, Mandy O J; Gladysz, Rafaela; Adriaenssens, Yves; Roelandt, Ria; Joossens, Jurgen; Lambeir, Anne-Marie; De Meyer, Guido R Y; Declercq, Wim; Augustyns, Koen; Martinet, Wim; Van der Veken, Pieter

    2016-11-10

    Atg4B is a cysteine hydrolase that plays a key role in autophagy. Although it has been proposed as an attractive drug target, inhibitor discovery has proven highly challenging. The absence of a standardized, easily implementable enzyme activity/inhibition assay for Atg4B most likely contributes to this situation. Therefore, three different assay types for Atg4B activity/inhibition quantification were first compared: (1) an approach using fluorogenic Atg4B-substrates, (2) an in-gel densitometric quantification assay and (3) a thermal shift protocol. The gel-based approach showed the most promising results and was validated for screening of potential Atg4B inhibitors. A set of 8 literature inhibitors was included. Remarkably, in our hands only 2 literature references were found to have measurable Atg4B affinity. Furthermore, a fragment library (n = 182) was tested for Atg4B inhibition. One library member showed inhibition at high micromolar concentration and was found fit for further, fragment-based inhibitor design.

  14. Thermal and catalytic degradation of polyethylene wastes in the presence of silica gel, 5A molecular sieve and activated carbon.

    PubMed

    González, Yovana Sander; Costa, Carlos; Márquez, M Carmen; Ramos, Pedro

    2011-03-15

    A comparative study of thermal and catalytic degradation of polyethylene wastes has been carried out with the aim of obtaining chemical compounds with potential use in the chemical industry and the energy production. Polyethylene wastes were obtained from polyethylene bags used in supermarkets. Catalysts utilized in the study were silica gel, 5A molecular sieve and activated carbon. The pyrolysis was performed in a batch reactor at 450, 500 and 700 °C during 2h for each catalyst. The ratio catalyst/PE was 10% w/w and the solid and gaseous products were analyzed by gas chromatography and mass spectrometry. The optimum operation temperature and the influence of the three catalysts are discussed with regards to the products formed. The best temperature for degradation with silica gel and activated carbon as catalysts was 450 °C and with 5A molecular sieve was 700 °C. Degradation products of PE (solid fraction and gas fraction) are depending on temperature and catalyst used. External surface and structure of catalysts were visualized by Scanning Electron Microscopy (SEM) and the contribution on product distribution is commented. All products from different degradations could be used as feed stocks in chemical industry or in energy production based on the value of heat of combustion for solid fraction (45000 J/g), similar to the heat of combustion of commercial fuels.

  15. Characteristics and antioxidant activity of catechin-loaded calcium pectinate gel beads prepared by internal gelation.

    PubMed

    Lee, Ji-Soo; Kim, Eek-Joo; Chung, Donghwa; Lee, Hyeon Gyu

    2009-11-01

    Catechin-loaded calcium pectinate gel beads prepared by internal gelation were characterized for their catechin entrapment efficiency and release behavior. The entrapment efficiency was higher when the beads were prepared with a lower catechin-to-pectin ratio, shorter gelling time, higher pectin concentration, and lower acetic acid concentration. The entrapment efficiency was much higher under all tested conditions, when the beads were prepared by internal gelation instead of external gelation. The catechin release was slower for the beads prepared with lower catechin-to-pectin ratio, longer gelling time, and higher concentrations of pectin and acetic acid in both simulated gastric and intestinal fluids. Antioxidant power of catechin was effectively maintained in alkaline simulated intestinal fluid when catechin was entrapped within the beads, compared to cases where it was not entrapped, indicating that the beads can protect catechin molecules from the alkaline environment and release them in a sustained fashion.

  16. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films.

    PubMed

    Kim, Yong-Hoon; Heo, Jae-Sang; Kim, Tae-Hyeong; Park, Sungjun; Yoon, Myung-Han; Kim, Jiwan; Oh, Min Suk; Yi, Gi-Ra; Noh, Yong-Young; Park, Sung Kyu

    2012-09-06

    Amorphous metal-oxide semiconductors have emerged as potential replacements for organic and silicon materials in thin-film electronics. The high carrier mobility in the amorphous state, and excellent large-area uniformity, have extended their applications to active-matrix electronics, including displays, sensor arrays and X-ray detectors. Moreover, their solution processability and optical transparency have opened new horizons for low-cost printable and transparent electronics on plastic substrates. But metal-oxide formation by the sol-gel route requires an annealing step at relatively high temperature, which has prevented the incorporation of these materials with the polymer substrates used in high-performance flexible electronics. Here we report a general method for forming high-performance and operationally stable metal-oxide semiconductors at room temperature, by deep-ultraviolet photochemical activation of sol-gel films. Deep-ultraviolet irradiation induces efficient condensation and densification of oxide semiconducting films by photochemical activation at low temperature. This photochemical activation is applicable to numerous metal-oxide semiconductors, and the performance (in terms of transistor mobility and operational stability) of thin-film transistors fabricated by this route compares favourably with that of thin-film transistors based on thermally annealed materials. The field-effect mobilities of the photo-activated metal-oxide semiconductors are as high as 14 and 7 cm(2) V(-1) s(-1) (with an Al(2)O(3) gate insulator) on glass and polymer substrates, respectively; and seven-stage ring oscillators fabricated on polymer substrates operate with an oscillation frequency of more than 340 kHz, corresponding to a propagation delay of less than 210 nanoseconds per stage.

  17. Analysis of supercoiled DNA by agarose gel electrophoresis using low-conducting sodium threonine medium.

    PubMed

    Ishido, Tomomi; Ishikawa, Mitsuru; Hirano, Ken

    2010-05-01

    We describe a new low-ionic-strength sodium threonine (STh) medium with the advantage of avoiding relative DNA band migration changes following electrophoresis of supercoiled DNA in agarose gel when substituted for the standard conductive medium of TBE (Tris-boric acid-ethylenediaminetetraacetic acid [EDTA]) or TAE (Tris-acetic acid-EDTA) or the low-ionic-strength sodium boric acid medium. Low-ionic-strength STh medium provided better resolution, less heat generation, and prevention of relative migration order changes among linear, covalently closed circular-, and open circular-formed DNA in the range of 2-10 kilobase pairs in 1% agarose gel electrophoresis.

  18. At-line coupling of magnetic-nanoparticle-based extraction with gel isoelectric focusing for protein analysis.

    PubMed

    Dou, Peng; Liu, Zhen

    2011-04-01

    Sample preparation is a crucial step for protein analysis. Functionalized magnetic nanoparticle (MNP)-based extraction has been developed to be a useful sample preparation technique for proteomic analysis. In this paper, we present a strategy for at-line coupling of MNP-based extraction (MNE) with gel isoelectric focusing (IEF). The key to the at-line combination is to use an anolyte or a catholyte as the desorbing agent. Thus, functionalized MNPs can be facilely at-line coupled with gel IEF, provided that the extraction/desorption process is pH-controlled. MNPs extracted with target proteins are added to the sample well, which can function as a natural adapter. Once a focusing electric field has been applied across the gel, proton ions migrating from the anolyte or hydroxide ions migrating from the catholyte can act as a desorbing agent, releasing the proteins from the MNE probes. The released proteins are consequently focused into distinct bands where the local pH equals their pI values. The at-line combination was well demonstrated with three types of functionalized nanoparticles: (1) phenylboronic acid functionalized MNPs for extracting glycoproteins through boronate affinity; (2) carboxyl-functionalized MNPs for extracting positively charged proteins through a weak cation exchange mechanism; and (3) amino-functionalized MNPs for extracting negatively charged proteins through a weak anion exchange mechanism. The at-line combination exhibited several significant advantages, including selectivity, sensitivity, and speed.

  19. Interaction of surfactants with poly(acryloyl- L-proline methyl ester) gel and its statistical moment analysis

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaru; Safranj, Agneza; Omichi, Hideki; Miyajima, Masaharu; Katakai, Ryoichi

    1995-08-01

    The swelling behavior of acryloyl- L-proline methyl ester (A-ProOMe) gel with a reversible and stepwise volume change was studied in aqueous solutions containing sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate (LDS). The transition temperature was evaluated from both the midpoint of the slope under the swelling vs temperature curve (VPTT) and the statistical moment analysis using an area under the curve (ISTT). With the addition of surfactants, the VPTT and ISTT increased and, as a result, it was found that no changes in transition temperature are influenced by the difference between the counterions of the two surfactants. A plot of VPTT and ISTT gave a straight line with a reasonable correlation, suggesting that the transition temperature of the gel, which is affected by surfactant concentration, can be evaluated from ISTT.

  20. Quantifying clustered DNA damage induction and repair by gel electrophoresis, electronic imaging and number average length analysis

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)

    2003-01-01

    Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.

  1. Characterization and Antimicrobial Activity of N-Methyl-2-pyrrolidone-loaded Ethylene Oxide-Propylene Oxide Block Copolymer Thermosensitive Gel

    PubMed Central

    Phaechamud, T.; Mahadlek, J.; Charoenteeraboon, J.; Choopun, S.

    2012-01-01

    The purpose of this study is to investigate the effects of N-methyl-2-pyrrolidone on the thermosensitive properties of aqueous ethylene oxide-propylene oxide block copolymer (Lutrol® F127) system. Due to the aqueous solubility enhancement and biocompatibility, N-methyl-2-pyrrolidone is an interesting solubilizer for the poorly water soluble drugs to be incorporated in the Lutrol® F127 system. Effect of N-methyl-2-pyrrolidone on physicochemical properties of Lutrol® F127 system was investigated using appearance, pH, gelation, gel melting temperature and rheology. The antimicrobial activity of the thermosensitive N-methyl-2-pyrrolidone gel was also tested. Lower N-methyl-2-pyrrolidone amount (≤30%w/w) could shift the sol-gel transition to a lower temperature but the gel-sol transition was shifted to a higher temperature. Higher N-methyl-2-pyrrolidone (≥40%w/w) could shift both sol-gel and gel-sol transitions of the system to a lower temperature. The amount of N-methyl-2-pyrrolidone >60% w/w could reverse the phase of the Lutrol® F127 system to non-newtonian flow at 4° and Newtonian flow at high temperature. Aqueous Lutrol® F127 system containing N-methyl-2-pyrrolidone exhibited antimicrobial activities against Staphylococcus aureus, Escherichia coli and Candida albicans with the N-methyl-2-pyrrolidone in a dose-dependent manner. PMID:23798774

  2. Antimicrobial and Cytotoxic Activity of Cuminum Cyminum as an Intracanal Medicament Compared to Chlorhexidine Gel

    PubMed Central

    Abbaszadegan, Abbas; Gholami, Ahmad; Ghahramani, Yasamin; Ghareghan, Razieh; Ghareghan, Marzieh; Kazemi, Aboozar; Iraji, Aida; Ghasemi, Younes

    2016-01-01

    Introduction: The aims of this study were i) to define the chemical constituents of Cuminum cyminum (cumin) essential oil, ii) to compare the antimicrobial activity of this oil to that of chlorhexidine (CHX) and co-trimoxazole on planktonic and biofilm forms of bacteria isolated from the teeth with persistent endodontic infection and iii) to compare the cytotoxicity of these medicaments on L929 fibroblasts. Methods and Materials: Three groups of microorganisms [aerobic bacterial mixture, anaerobic bacterial mixture and Enterococcus faecalis (E .faecalis)] were isolated from the teeth with persistent apical periodontitis. Zone of inhibition (ZOI), minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC) and time-kill tests were performed to assess the antimicrobial efficacy of the medicaments. Further, a cytocompatibility analysis of the medicaments was performed on L929 fibroblasts. The results obtained from disc diffusion test and mean cell viability values of the experimental medicaments were analyzed using two-way and one-way analysis of variance (ANOVA). Results: Seventeen constituents were recognized in cumin oil (predominantly cumin aldehyde and γ-terpinene). Co-trimoxazole showed the greatest ZOI followed by cumin and CHX. The smallest MIC and MBC belonged to co-trimoxazole followed by cumin and CHX for all groups of bacteria except for E. faecalis for which the MBC of cumin was smaller than co-trimoxazole. The results of time-kill assay revealed that all medicaments totally inhibited the bacterial growth in all groups after 24 h. CHX was the most cytotoxic solution while there were no significant differences between the cytocompatibility of different concentrations of cumin essential oil and co-trimoxazole. Conclusion: Cumin exhibited a strong antimicrobial efficiency against the microbial flora of the teeth with failed endodontic treatments and it was biocompatible for L929 mouse

  3. Curative effect of topical treatment of digital dermatitis with a gel containing activated copper and zinc chelate

    PubMed Central

    Holzhauer, M.; Bartels, C. J.; van Barneveld, M.; Vulders, C.; Lam, T.

    2011-01-01

    The efficacy of two topical treatments for painful ulcerative stage (M2) of bovine digital dermatitis (BDD) lesions was compared in a clinical trial conducted on five dairy farms in 2009 to 2010. The first treatment was a water-based gel with active components copper and zinc (Intra Hoof-fit gel [IHF]) and the second treatment was a topical chlortetracycline spray (CTC spray). The experimental unit for this study was the hindleg with the presence of a BDD lesion. Cure was defined as the transition of an M2 lesion into a healed (M0) or a non-painful chronic stage (M4) of BDD at D28. On day 0, cows with M2 BDD lesions were photographed and were treated with either IHF or CTC. Subsequently, feet were photographed and scored on D28. The cure rate of M2 BDD lesions treated with IHF at D28 was 0.92 (CI 0.84 to 0.96) and was significantly better than for M2 BDD lesions treated with CTC, which was 0.58 (CI 0.47 to 0.68). PMID:21957114

  4. Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma.

    PubMed

    Sidhu, Sukhvinder S; Yuan, Shaopeng; Innes, Anh L; Kerr, Sheena; Woodruff, Prescott G; Hou, Lydia; Muller, Susan J; Fahy, John V

    2010-08-10

    Periostin is considered to be a matricellular protein with expression typically confined to cells of mesenchymal origin. Here, by using in situ hybridization, we show that periostin is specifically up-regulated in bronchial epithelial cells of asthmatic subjects, and in vitro, we show that periostin protein is basally secreted by airway epithelial cells in response to IL-13 to influence epithelial cell function, epithelial-mesenchymal interactions, and extracellular matrix organization. In primary human bronchial epithelial cells stimulated with periostin and epithelial cells overexpressing periostin, we reveal a function for periostin in stimulating the TGF-beta signaling pathway in a mechanism involving matrix metalloproteinases 2 and 9. Furthermore, conditioned medium from the epithelial cells overexpressing periostin caused TGF-beta-dependent secretion of type 1 collagen by airway fibroblasts. In addition, mixing recombinant periostin with type 1 collagen in solution caused a dramatic increase in the elastic modulus of the collagen gel, indicating that periostin alters collagen fibrillogenesis or cross-linking and leads to stiffening of the matrix. Epithelial cell-derived periostin in asthma has roles in TGF-beta activation and collagen gel elasticity in asthma.

  5. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Suleman, M.; Deraman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.; Jasni, M. R. M.

    2016-08-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ~ 1700 m2g-1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (~3.6×10-3 S cm-1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (~270 F g-1), specific energy (~ 36 Wh kg-1), and power density (~ 33 kW kg-1).

  6. Assessing variability in gel-based proteomic analysis of Nitrosomonas europaea.

    PubMed

    Burton, Emily O; Hickey, William J

    2011-01-01

    Proteomics offers a unique look at the way protein expression changes in response to stimuli, and "gel-based" methods that utilize two-dimensional gel electrophoresis (2-DE) are key technologies in such studies. However, the many steps involved can be technically complex, and the resulting data are subject to variability from both technical and biological sources. Designing 2-DE proteomic studies can be challenging, as a set of standard methods or experimental designs has not been established. This being the case, it is especially important to identify and control sources of variability. Statistically significant results can be obtained if the experimental design includes a sufficient number of replicate 2-DE gels, and if the replicate gels are similar enough to be analyzed in the same experiment. While three or four replicates are often sufficient for compensation of variability, the pilot study illustrated in this chapter showed that statistically significant expression differences could be detected for 90% of the spots matched if six replicate experiments were done.

  7. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method

    SciTech Connect

    Lee, C.Y.G.; Huang, Y.S.; Hu, P.C.; Gomel, V.; Menge, A.C.

    1982-06-01

    A radioimmunobinding method based on the blotting of renatured proteins from sodium dodecyl sulfate gels on to nitrocellulose filter papers was developed to analyze the sperm antigens that elicit serum anti-sperm antibodies. In rabbits, serum anti-sperm antibodies were raised by immunization with homologous epididymal spermatozoa mixed with complete Freund's adjuvant. The raised antisera from either male or female rabbits were shown to react with three major sperm protein bands on sodium dodecyl sulfate gels with the corresponding molecular weights of about 70,000 +/- 5000, 14,000, and 13,000, respectively. In humans, the monoclonal antibodies against human sperm were raised by a hybridoma technique. Out of six independent hybrid cell lines that were generated, three of them were shown to secrete immunoglobulins that react with the same two protein bands on sodium dodecyl sulfate gels, which have the approximate molecular weight of 10,000. The same procedure was also used to analyze human serum samples that were shown to contain anti-sperm antibodies by the known techniques. Unique sperm antigens that elicit anti-sperm antibodies in humans were identified and correlated. The results of this study suggest that sodium dodecyl sulfate gel/protein blot radioimmunobinding method may be a sensitive and useful tool for the study of sperm antigens that elicit autoimmune responses and their association with human infertility.

  8. Peptide fractionation by SDS-free polyacrylamide gel electrophoresis for proteomic analysis via DF-PAGE.

    PubMed

    Ramos, Yassel; Besada, Vladimir; Castellanos-Serra, Lila

    2012-01-01

    Here we present a procedure for peptide fractionation by SDS-free polyacrylamide gel electrophoresis, based on discontinuous buffer systems. In the absence of SDS, peptide migration depends both on their molecular mass and on their net charge at the electrophoresis pH. By selecting the separation pH, peptide mobility is modulated. In the original discontinuous buffer system (Tris/glycine), peptides that migrate to the anode have pI values below 6.8 and distribute along the lane in a pI decreasing order, while at acidic pH, as that afforded by histidine/MOPS buffer system, peptides with pI below 5.5 are fractionated. Separation at acid pH is particularly useful for recovering phosphopeptides as well as other highly negatively charged peptides, as those containing sialic or sulfate substituents. Both separation conditions in Tris/glycine and in histidine/MOPS are applicable to proteomic studies, by dual-fractionation polyacrylamide gel electrophoresis (DF-PAGE). First, complex protein samples are separated via SDS-PAGE, and after in-gel proteolysis, peptides are loaded on a second SDS-free gel, where they are separated as described here.

  9. Effect of papain-based gel on type I collagen - spectroscopy applied for microstructural analysis

    PubMed Central

    Júnior, Zenildo Santos Silva; Botta, Sergio Brossi; Ana, Patricia Aparecida; França, Cristiane Miranda; Fernandes, Kristianne Porta Santos; Mesquita-Ferrari, Raquel Agnelli; Deana, Alessandro; Bussadori, Sandra Kalil

    2015-01-01

    Considering the improvement of biomaterials that facilitate atraumatic restorative techniques in dentistry, a papain-based gel can be used in the chemomechanical removal of decayed dental tissue. However, there is no information regarding the influence of this gel on the structure of sound collagen. The aim of the present study was to investigate the adsorption of a papain-based gel (PapacarieTM) to collagen and determine collagen integrity after treatment. A pilot study was first performed with 10 samples of type I collagen membrane obtained from bovine Achilles deep tendon to compare the influence of hydration (Milli-Q water) on infrared bands of collagen. In a further experiment, 10 samples of type I collagen membrane were used to evaluate the effects of PapacarieTM on the collagen microstructure. All analyses were performed using the attenuated total reflectance technique of Fourier transform infrared (ATR-FTIR). The results demonstrated that the application of PapacarieTM does not lead to the degradation of collagen and this product can be safely used in minimally invasive dentistry. As the integrity of sound collagen is preserved after the application of the papain-based gel, this product is indicated for the selective removal of infected dentin, leaving the affected dentin intact and capable of re-mineralization. PMID:26101184

  10. Analysis of soybean embryonic axis proteins by two-dimensional gel electrophoresis and mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for protein separation and subsequent mass spectrometry (MS) for protein identification was applied to establish a proteomic reference map for the soybean embryonic axis. Proteins were extracted from dissecte...

  11. Silver sucrose octasulfate (IASOS™) as a valid active ingredient into a novel vaginal gel against human vaginal pathogens: in vitro antimicrobial activity assessment.

    PubMed

    Marianelli, Cinzia; Petrucci, Paola; Comelli, Maria Cristina; Calderini, Gabriella

    2014-01-01

    This in vitro study assessed the antimicrobial properties of a novel octasilver salt of Sucrose Octasulfate (IASOS) as well as of an innovative vaginal gel containing IASOS (SilSOS Femme), against bacterial and yeast pathogens isolated from human clinical cases of symptomatic vaginal infections. In BHI and LAPT culture media, different ionic silver concentrations and different pHs were tested. IASOS exerted a strong antimicrobial activity towards all the pathogens tested in both culture media. The results demonstrated that salts and organic compounds present in the culture media influenced IASOS efficacy only to a moderate extent. Whereas comparable MBCs (Minimal Bactericidal Concentrations) were observed for G. vaginalis (10 mg/L Ag+), E. coli and E. aerogenes (25 mg/L Ag+) in both media, higher MBCs were found for S. aureus and S. agalactiae in LAPT cultures (50 mg/L Ag+ versus 25 mg/L Ag+). No minimal concentration totally inhibiting the growth of C. albicans was found. Nevertheless, in both media at the highest ionic silver concentrations (50-200 mg/L Ag+), a significant 34-52% drop in Candida growth was observed. pH differently affected the antimicrobial properties of IASOS against bacteria or yeasts; however, a stronger antimicrobial activity at pH higher than the physiological pH was generally observed. It can be therefore concluded that IASOS exerts a bactericidal action against all the tested bacteria and a clear fungistatic action against C. albicans. The antimicrobial activity of the whole vaginal gel SilSOS Femme further confirmed the antimicrobial activity of IASOS. Overall, our findings support IASOS as a valid active ingredient into a vaginal gel.

  12. Silver Sucrose Octasulfate (IASOS™) as a Valid Active Ingredient into a Novel Vaginal Gel against Human Vaginal Pathogens: In Vitro Antimicrobial Activity Assessment

    PubMed Central

    Marianelli, Cinzia; Petrucci, Paola; Comelli, Maria Cristina; Calderini, Gabriella

    2014-01-01

    This in vitro study assessed the antimicrobial properties of a novel octasilver salt of Sucrose Octasulfate (IASOS) as well as of an innovative vaginal gel containing IASOS (SilSOS Femme), against bacterial and yeast pathogens isolated from human clinical cases of symptomatic vaginal infections. In BHI and LAPT culture media, different ionic silver concentrations and different pHs were tested. IASOS exerted a strong antimicrobial activity towards all the pathogens tested in both culture media. The results demonstrated that salts and organic compounds present in the culture media influenced IASOS efficacy only to a moderate extent. Whereas comparable MBCs (Minimal Bactericidal Concentrations) were observed for G. vaginalis (10 mg/L Ag+), E. coli and E. aerogenes (25 mg/L Ag+) in both media, higher MBCs were found for S. aureus and S. agalactiae in LAPT cultures (50 mg/L Ag+ versus 25 mg/L Ag+). No minimal concentration totally inhibiting the growth of C. albicans was found. Nevertheless, in both media at the highest ionic silver concentrations (50–200 mg/L Ag+), a significant 34–52% drop in Candida growth was observed. pH differently affected the antimicrobial properties of IASOS against bacteria or yeasts; however, a stronger antimicrobial activity at pH higher than the physiological pH was generally observed. It can be therefore concluded that IASOS exerts a bactericidal action against all the tested bacteria and a clear fungistatic action against C. albicans. The antimicrobial activity of the whole vaginal gel SilSOS Femme further confirmed the antimicrobial activity of IASOS. Overall, our findings support IASOS as a valid active ingredient into a vaginal gel. PMID:24897299

  13. A pilot-scale study on PVA gel beads based integrated fixed film activated sludge (IFAS) plant for municipal wastewater treatment.

    PubMed

    Kumar Singh, Nitin; Singh, Jasdeep; Bhatia, Aakansha; Kazmi, A A

    2016-01-01

    In the present study, a pilot-scale reactor incorporating polyvinyl alcohol gel beads as biomass carrier and operating in biological activated sludge mode (a combination of moving bed biofilm reactor (MBBR) and activated sludge) was investigated for the treatment of actual municipal wastewater. The results, during a monitoring period of 4 months, showed effective removal of chemical oxygen demand (COD), biological oxygen demand (BOD) and NH3-N at optimum conditions with 91%, ∼92% and ∼90% removal efficiencies, respectively. Sludge volume index (SVI) values of activated sludge varied in the range of 25-72 mL/g, indicating appreciable settling characteristics. Furthermore, soluble COD and BOD in the effluent of the pilot plant were reduced to levels well below discharge limits of the Punjab Pollution Control Board, India. A culture dependent method was used to enrich and isolate abundant heterotrophic bacteria in activated sludge. In addition to this, 16S rRNA genes analysis was performed to identify diverse dominant bacterial species in suspended and attached biomass. Results revealed that Escherichia coli, Pseudomonas sp. and Nitrosomonas communis played a significant role in biomass carrier, while Acinetobactor sp. were dominant in activated sludge of the pilot plant. Identification of ciliated protozoa populations rendered six species of ciliates in the plant, among which Vorticella was the most dominant.

  14. Achieving synchronization with active hybrid materials: Coupling self-oscillating gels and piezoelectric films

    PubMed Central

    Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    2015-01-01

    Lightweight, deformable materials that can sense and respond to human touch and motion can be the basis of future wearable computers, where the material itself will be capable of performing computations. To facilitate the creation of “materials that compute”, we draw from two emerging modalities for computation: chemical computing, which relies on reaction-diffusion mechanisms to perform operations, and oscillatory computing, which performs pattern recognition through synchronization of coupled oscillators. Chemical computing systems, however, suffer from the fact that the reacting species are coupled only locally; the coupling is limited by diffusion as the chemical waves propagate throughout the system. Additionally, oscillatory computing systems have not utilized a potentially wearable material. To address both these limitations, we develop the first model for coupling self-oscillating polymer gels to a piezoelectric (PZ) micro-electro-mechanical system (MEMS). The resulting transduction between chemo-mechanical and electrical energy creates signals that can be propagated quickly over long distances and thus, permits remote, non-diffusively coupled oscillators to communicate and synchronize. Moreover, the oscillators can be organized into arbitrary topologies because the electrical connections lift the limitations of diffusive coupling. Using our model, we predict the synchronization behavior that can be used for computational tasks, ultimately enabling “materials that compute”. PMID:26105979

  15. Highly Visible Light Activity of Nitrogen Doped TiO2 Prepared by Sol-Gel Approach

    NASA Astrophysics Data System (ADS)

    Than, Le Dien; Luong, Ngo Sy; Ngo, Vu Dinh; Tien, Nguyen Manh; Dung, Ta Ngoc; Nghia, Nguyen Manh; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai

    2017-01-01

    A simple approach was explored to prepare N-doped anatase TiO2 nanoparticles (N-TiO2 NPs) from titanium chloride (TiCl4) and ammonia (NH3) via sol-gel method. The effects of important process parameters such as calcination temperatures, NH3/TiCl4 molar ratio ( R N) on crystallite size, structure, phase transformation, and photocatalytic activity of titanium dioxide (TiO2) were thoroughly investigated. The as-prepared samples were characterized by ultraviolet-visible spectroscopy, x-ray diffraction, transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The photocatalytic activity of the samples was evaluated upon the degradation of methylene blue aqueous solution under visible-light irradiation. The results demonstrated that both calcination temperatures and NH3/TiCl4 molar ratios had significant impacts on the formation of crystallite nanostructures, physicochemical, as well as catalytic properties of the obtained TiO2. Under the studied conditions, calcination temperature of 600°C and NH3/TiCl4 molar ratio of 4.2 produced N-TiO2 with the best crystallinity and photocatalytic activity. The high visible light activity of the N-TiO2 nanomaterials was ascribed to the interstitial nitrogen atoms within TiO2 lattice units. These findings could provide a practical pathway capable of large-scale production of a visible light-active N-TiO2 photocatalyst.

  16. Poloxamer-Based Thermoreversible Gel for Topical Delivery of Emodin: Influence of P407 and P188 on Solubility of Emodin and Its Application in Cellular Activity Screening.

    PubMed

    Ban, Eunmi; Park, Mijung; Jeong, Seonghee; Kwon, Taekhyun; Kim, Eun-Hee; Jung, Kiwon; Kim, Aeri

    2017-02-07

    Emodin is a component in a Chinese herb, Rheum officinale Baill, traditionally used for diabetes and anticancer. Its poor solubility is one of the major challenges to pharmaceutical scientists. We previously reported on thermoreversible gel formulations based on poloxamer for the topical delivery of emodin. The present study was to understand the effect of poloxamer type on emodin solubility and its application in cellular activity screening. Various gel formulations composed of poloxamer 407 (P407), poloxamer 188 (P188) and PEG400 were prepared and evaluated. Major evaluation parameters were the gelation temperature (Tgel) and solubility of emodin. The emodin solubility increased with increasing poloxamer concentration and the Tgel was modulated by the proper combination of P407. In particular, this study showed that the amount of P407 in thermoreversible poloxamer gel (PG) was the dominant factor in enhancing solubility and P188 was effective at fixing gelation temperature in the desired range. A thermoreversible emodin PG was selected as the proper composition with the liquid state at room temperature and gel state at body temperature. The gel showed the solubility enhancement of emodin at least 100-fold compared to 10% ethanol or water. The thermoreversible formulation was applied for in vitro cellular activity screening in the human dermal fibroblast cell line and DLD-1 colon cancer cell line after dilution with cell culture media. The thermoreversible gel formulation remained as a clear solution in the microplate, which allowed reliable cellular activity screening. In contrast, emodin solution in ethanol or DMSO showed precipitation at the corresponding emodin concentration, complicating data interpretation. In conclusion, the gel formulation is proposed as a useful prototype topical formulation for testing emodin in vivo as well as in vitro.

  17. Fabrication of tungsten oxide microfibers with photocatalytic activity by electrospunning from PVA/H 3PW 12O 40 gel

    NASA Astrophysics Data System (ADS)

    Sui, Chunhong; Gong, Jian; Cheng, Tiexin; Zhou, Guangdong; Dong, Shunfu

    2011-08-01

    Regarding gel poly (vinyl alcohol)/H 3PW 12O 40 as precursor, the ultra-fine fibers tungsten oxide (WO 3) was prepared by using electrospinning and calcinating techniques. Scanning electron microscope (SEM) shows that the average diameter of fibrous WO 3 were changed from 200 nm to 600 nm after calcined PVA/H 3PW 12O 40 fibers at 600 and 800 °C, respectively. X-ray diffraction (XRD) and Raman spectroscope revealed that the fibrous WO 3 was monoclinic phase, and the band-gap energies were observed by UV-vis diffuse reflectance spectra. The small size WO 3 exhibits excellent photocatalytcic activity in degradation of Rhodamine B at 365 nm wavelength.

  18. A Single Dose of Beetroot Gel Rich in Nitrate Does Not Improve Performance but Lowers Blood Glucose in Physically Active Individuals.

    PubMed

    Vasconcellos, Julia; Henrique Silvestre, Diego; Dos Santos Baião, Diego; Werneck-de-Castro, João Pedro; Silveira Alvares, Thiago; Paschoalin, Vânia M Flosi

    2017-01-01

    Background. Beetroot consumption has been proposed to improve exercise performance, since the nitrate content of this food is able to stimulate the synthesis of nitric oxide. Objective. The acute effect of 100 g of a beetroot gel containing ~10 mmol of nitrate was tested on the nitric oxide synthesis, on metabolic and biochemical parameters, and on performance in physically active individuals. Methods. Through a double blind, crossover, placebo-controlled study, 25 healthy runners ingested a single dose of beetroot and placebo gels. Participants performed an aerobic exercise protocol on a treadmill (3 min warm-up of 40% peak oxygen consumption, 4 min at 90% of gas exchange threshold I and 70% (Δ) maximal end speed until volitional fatigue). Results. Urinary levels of nitrite and nitrate increased after 90 min of beetroot gel ingestion. Plasma glucose concentrations lowered after the exercise and the decrease was maintained for 20 min. Systolic and diastolic blood pressures, serum cortisol, and blood lactate were not altered after the beetroot gel ingestion compared to a placebo gel. Conclusion. The single dose of beetroot gel provoked an increase of nitric oxide synthesis although no improvement on the physical performance of athletes during aerobic submaximal exercise was observed.

  19. A Single Dose of Beetroot Gel Rich in Nitrate Does Not Improve Performance but Lowers Blood Glucose in Physically Active Individuals

    PubMed Central

    Vasconcellos, Julia; Henrique Silvestre, Diego; Werneck-de-Castro, João Pedro; Silveira Alvares, Thiago

    2017-01-01

    Background. Beetroot consumption has been proposed to improve exercise performance, since the nitrate content of this food is able to stimulate the synthesis of nitric oxide. Objective. The acute effect of 100 g of a beetroot gel containing ~10 mmol of nitrate was tested on the nitric oxide synthesis, on metabolic and biochemical parameters, and on performance in physically active individuals. Methods. Through a double blind, crossover, placebo-controlled study, 25 healthy runners ingested a single dose of beetroot and placebo gels. Participants performed an aerobic exercise protocol on a treadmill (3 min warm-up of 40% peak oxygen consumption, 4 min at 90% of gas exchange threshold I and 70% (Δ) maximal end speed until volitional fatigue). Results. Urinary levels of nitrite and nitrate increased after 90 min of beetroot gel ingestion. Plasma glucose concentrations lowered after the exercise and the decrease was maintained for 20 min. Systolic and diastolic blood pressures, serum cortisol, and blood lactate were not altered after the beetroot gel ingestion compared to a placebo gel. Conclusion. The single dose of beetroot gel provoked an increase of nitric oxide synthesis although no improvement on the physical performance of athletes during aerobic submaximal exercise was observed. PMID:28243471

  20. Efficacy of a new topical gel-spray formulation of ketoprofen lysine salt in the rat: percutaneous permeation in vitro and in vivo and pharmacological activity.

    PubMed

    Porzio, S; Caselli, G; Pellegrini, L; Pallottini, V; Del Rosario, M; Coppola, A; Boltri, L; Gentile, M; Clavenna, G; Melillo, G

    1998-01-01

    The aim of this study was to evaluate the percutaneous permeation of a new topical Gel-Spray formulation, containing 15% of ketoprofen lysine salt (KLS), both in vitro, using the Franz-type diffusion cells and in vivo, by evaluating urinary recovery after topical administration and to correlate the absorption data with KLS pharmacological activity in the rat. Concentrations of ketoprofen free acid (KFA) were determined by HPLC in the receptor compartment (in vitro), or in urine (in vivo). The permeation of ketoprofen evaluated in vitro after the application of KLS Gel-Spray was higher than that observed with the marketed formulation Profénid gel (containing KFA at 2.5%). The same evidence was found in vivo, except when the ratio between the administered dose and the area treated was higher than 1 mg cm-2. Thus, the difference between the two formulations seems to be the resultant of two opposing components: a positive gradient of concentration that favours the absorption of ketoprofen from KLS Gel-Spray and the presence of the enhancer ethanol that could favour the efficacy of Profénid gel. Under our conditions the former prevailed. As for the efficacy, evaluated in the carrageenan-induced oedema and hyperalgesia model, KLS Gel-Spray confirmed the data obtained for in vivo absorption, being more efficient than the reference standard Profénid gel. The observed inhibitory effects were due only to dermal absorption, oral absorption was excluded by an Elizabethan collar applied around the neck of the rat. In these experimental conditions, no significant damage of the rat stomach mucosa was observed. These results indicate that KLS Gel-Spray, due to its high KLS concentration, allows a very high efficiency in delivering ketoprofen to the inflamed area using a minimal amount of formulation, even in the absence of permeation enhancers.

  1. A Block-matching based technique for the analysis of 2D gel images.

    PubMed

    Freire, Ana; Seoane, José A; Rodríguez, Alvaro; Ruiz-Romero, Cristina; López-Campos, Guillermo; Dorado, Julián

    2010-01-01

    Research at protein level is a useful practice in personalized medicine. More specifically, 2D gel images obtained after electrophoresis process can lead to an accurate diagnosis. Several computational approaches try to help the clinicians to establish the correspondence between pairs of proteins of multiple 2D gel images. Most of them perform the alignment of a patient image referred to a reference image. In this work, an approach based on block-matching techniques is developed. Its main characteristic is that it does not need to perform the whole alignment between two images considering each protein separately. A comparison with other published methods is presented. It can be concluded that this method works over broad range of proteomic images, although they have a high level of difficulty.

  2. [Orthogonal test analysis of compressive strength of porous hydroxylapatite prepared by gel-casting process].

    PubMed

    Han, Yanjun; Li, Musen; Lü, Yupeng; Song, Yunjing; Chen, Y; Low, H

    2004-10-01

    Porous hydroxylapatite (HA) has excellent osseous inductive ability. It has been prepared by gel-casting process, which is feasible and can make complex ceramic material. According to the result of orthogonal test based on the compressive strength, the order and the level of the factors, including monomer HA, initiator MBAM, catalyst APS and water, were dealt with. The effects of drying and sintering technique on the properties of porous hydroxylapatite were also researched. The results showed that the order of every factor in the gel-casting process is as follows, AM-APS, MBAM, H2O. Based on the determined level of each factor, the suitable slurry constituents and drying and sintering technologies were selected, and the porous hydroxylapatite with compressive strength of 6-7 MPa was produced.

  3. An introduction to the statistical physics of active matter: motility-induced phase separation and the "generic instability" of active gels

    NASA Astrophysics Data System (ADS)

    Marenduzzo, Davide

    2016-11-01

    In this work we review some statistical physics techniques to coarse grain active matter systems, writing down a set of continuum fields which track the evolution of macroscopic fields such as density, momentum, etc. While the method can be applied in general, we will focus here on two simple and by now well-studied, active matter examples. First, we will consider motility-induced phase separation, the phenomenon by which a concentrated suspension of self-propelled particles spontaneously separates into a dense and a dilute phase. Second, we will review the so-called "generic instability" of active gels, which refers to the nonequilibrium phase transition between a quiescent and a spontaneously flowing phase in a concentrated suspension of rodlike active particles. For both these cases, we also outline recent developments in the literature.

  4. Disintegration kinetics of food gels during gastric digestion and its role on gastric emptying: an in vitro analysis.

    PubMed

    Guo, Qing; Ye, Aiqian; Lad, Mita; Ferrua, Maria; Dalgleish, Douglas; Singh, Harjinder

    2015-03-01

    The understanding of the disintegration and gastric emptying of foods in the stomach is important for designing functional foods. In this study, a dynamic stomach model (human gastric simulator, HGS) was employed to investigate the disintegration and subsequent emptying of two differently structured whey protein emulsion gels (soft and hard gels).The gels were mechanically ground into fragments to reproduce the particle size distribution of an in vivo gel bolus. The simulated gel bolus was prepared by mixing gel fragments and artificial saliva, and exposed to 5 hours of simulated gastric digestion in the presence and absence of pepsin. Results showed that regardless of pepsin, the soft gel always disintegrated faster than the hard gel. The presence of pepsin significantly accelerated the disintegration of both gels. In particular, it enhanced abrasion of the soft gel into fine particles (<0.425 mm) after 180 min of processing. The emptying of the gels was influenced by the combined effects of the original particle size of the gel boluses and their disintegration kinetics in the HGS. In the presence or absence of pepsin, the larger particles of the soft gel emptied slower than the hard one during the first 120 min of process. However, in the presence of pepsin, the soft gel emptied faster than the hard one after 120 min because of a higher level of disintegration. These findings highlight the role of food structure, bolus properties and biochemical effects on the disintegration and gastric emptying patterns of gels during gastric digestion.

  5. Non-Aqueous Glycerol Monolaurate Gel Exhibits Antibacterial and Anti-Biofilm Activity against Gram-Positive and Gram-Negative Pathogens

    PubMed Central

    Mueller, Elizabeth A.; Schlievert, Patrick M.

    2015-01-01

    Background Skin and surgical infections due to Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii are causes of patient morbidity and increased healthcare costs. These organisms grow planktonically and as biofilms, and many strains exhibit antibiotic resistance. This study examines the antibacterial and anti-biofilm activity of glycerol monolaurate (GML), as solubilized in a non-aqueous vehicle (5% GML Gel), as a novel, broadly-active topical antimicrobial. The FDA has designated GML as generally recognized as safe for human use, and the compound is commonly used in the cosmetic and food industries. Methods In vitro, bacterial strains in broths and biofilms were exposed to GML Gel, and effects on bacterial colony-forming units (CFUs) were assessed. In vivo,subcutaneous incisions were made in New Zealand white rabbits; the incisions were closed with four sutures. Bacterial strains were painted onto the incision sites, and then GML Gel or placebo was liberally applied to cover the sites completely. Rabbits were allowed to awaken and were examined for CFUs as a function of exposure time. Results In vitro, GML Gel was bactericidal for all broth culture and biofilm organisms in <1 hour and <4 hour, respectively; no CFUs were detected after the entire 24 h test period. In vivo, GML Gel inhibited bacterial growth in the surgical incision sites, compared to no growth inhibition in controls. GML Gel significantly reduced inflammation, as viewed by lack of redness in and below the incision sites. Conclusions Our findings suggest that 5% GML Gel is useful as a potent topical antibacterial and anti-inflammatory agent for prevention of infections. PMID:25799455

  6. High-resolution gel electrophoresis and sodium dodecyl sulphate-agarose gel electrophoresis on urine samples for qualitative analysis of proteinuria in dogs.

    PubMed

    Giori, Luca; Tricomi, Flavia Marcella; Zatelli, Andrea; Roura, Xavier; Paltrinieri, Saverio

    2011-07-01

    The aims of the current study were to assess whether sodium dodecyl sulphate-agarose gel electrophoresis (SDS-AGE) and high-resolution electrophoresis (HRE) can identify dogs with a urinary protein-to-creatinine ratio (UPC ratio) >0.2 and whether HRE can provide preliminary information about the type of proteinuria, using SDS-AGE as a reference method. HRE and SDS-AGE were conducted on 87 urine samples classified according to the International Renal Interest Society as non-proteinuric (NP; UPC ratio: <0.20; 32/87), borderline proteinuric (BP; UPC ratio: 0.21-0.50; 15/87), or proteinuric (P; UPC ratio: >0.51; 40/87). SDS-AGE and HRE were positive in 14 out of 32 and 3 out of 32 NP samples and in 52 out of 55 and 40 out of 55 samples with a UPC ratio >0.20, respectively. The concordance between HRE or SDS and UPC ratio was comparable (κ = 0.59; κ = 0.55). However, specificity (90%) and positive likelihood ratio (7.76) were higher for HRE than for SDS-AGE (56% and 2.16) while sensitivity was lower (73% vs. 94%). The analysis of HRE results revealed that a percentage of albumin >41.4% and an albumin/α(1)-globulin ratio (alb/α(1) ratio) >1.46 can identify samples classified by SDS-AGE as affected by glomerular proteinuria while a percentage of α(1)-globulin >40.8% and an alb/α(1) ratio <0.84 can identify samples classified by SDS-AGE as affected by tubular proteinuria. In conclusion, both SDS-AGE and HRE could misclassify samples with a UPC ratio higher or lower than 0.20. Therefore, UPC ratio must always be determined before conducting these tests. The percentage of albumin and α(1)-globulin or the alb/α(1) ratio determined by HRE can provide preliminary information about the origin of proteinuria.

  7. Topical Niosome Gel of Zingiber cassumunar Roxb. Extract for Anti-inflammatory Activity Enhanced Skin Permeation and Stability of Compound D.

    PubMed

    Priprem, Aroonsri; Janpim, Khwanhatai; Nualkaew, Somsak; Mahakunakorn, Pramote

    2016-06-01

    An extract of Zingiber cassumunar Roxb. (ZC) was encapsulated in niosomes of which a topical gel was formed. (E)-4-(3',4'-dimethoxyphenyl)but-3-en-1-ol or compound D detected by a gradient HPLC was employed as the marker and its degradation determined to follow zero-order kinetics. Niosomes significantly retarded thermal-accelerated decomposition of compound D in the gel (p < 0.05) but did not change the activation energy of compound D. Niosomes enhanced in vitro permeation rate of compound D from the gel. Topical applications of ZC noisome gel gave a faster change in tail flick latency than piroxicam gel and hydrocortisone cream (p < 0.05) while there were insignificant differences in anti-inflammatory activity up to 6 h using croton oil-induced ear edema model in mice (p > 0.05). Thus, encapsulation of ZC extract in niosomes enhanced chemical stability and skin permeation with comparable topical anti-inflammatory effects to steroid and NSAID.

  8. Semi-quantitative digital analysis of polymerase chain reaction-electrophoresis gel: Potential applications in low-income veterinary laboratories

    PubMed Central

    Antiabong, John F.; Ngoepe, Mafora G.; Abechi, Adakole S.

    2016-01-01

    Aim: The interpretation of conventional polymerase chain reaction (PCR) assay results is often limited to either positive or negative (non-detectable). The more robust quantitative PCR (qPCR) method is mostly reserved for quantitation studies and not a readily accessible technology in laboratories across developing nations. The aim of this study was to evaluate a semi-quantitative method for conventional PCR amplicons using digital image analysis of electrophoretic gel. The potential applications are also discussed. Materials and Methods: This study describes standard conditions for the digital image analysis of PCR amplicons using the freely available ImageJ software and confirmed using the qPCR assay. Results and Conclusion: Comparison of ImageJ analysis of PCR-electrophoresis gel and qPCR methods showed similar trends in the Fusobacterium necrophorum DNA concentration associated with healthy and periodontal disease infected wallabies (p≤0.03). Based on these empirical data, this study adds descriptive attributes (“more” or “less”) to the interpretation of conventional PCR results. The potential applications in low-income veterinary laboratories are suggested, and guidelines for the adoption of the method are also highlighted. PMID:27733792

  9. Analysis of chicken bile by gel precipitation reactions using a lectin in the place of antibody.

    PubMed

    Cotter, P F

    2000-09-01

    A lectin obtained from black turtle beans (BTB) was precipitated with IgA in chicken bile samples in various forms of agarose gel systems. Ouchterlony-type double-diffusion (ODD) precipitation patterns between the lectin, bile IgA, and heavy chain-specific antibody contained spurs of the type suggestive of partial immunologic identity. The immunoelectrophoresis precipitation patterns between the same three reactants were mirror images and fused on the cathodic side of the immunoelectrophoresis origin. In addition to use in ODD-type gels, BTB could also be incorporated into agarose gels suitable for Mancini (radial immunodiffusion) or Laurell-type rocket electrophoresis. Bile samples obtained from Cornell lines OS and C, broiler breeder males, and University of California-Davis congenic lines were investigated using BTB- and antibody-based methods. The results of this study indicated that IgA was the most frequently detected isotype in bile, occurring in 139 of 156 (89%) samples. Most bile samples (128/156; 82%) also contained IgG, whereas fewer (19/156; 12%) contained IgM. Cornell lines appeared to differ from broiler breeders, having a higher frequency of IgM-positive samples. Of the total bile samples studied, 11% (17/156) of samples from broiler breeders and the Cornell lines appeared to be devoid of IgA; the bile of one broiler breeder was found to be devoid of all three isotypes. Instances were found in which bile samples shown to be negative for IgA by antibody-ODD were shown to be positive by BTB-ODD. Thus BTB appears to be a suitable adjunct to antibody for the study of IgA.

  10. TWO-DIMENSIONAL GEL ELECTROPHORESIS ANALYSIS OF BROWN ALGAL PROTEIN EXTRACTS(1).

    PubMed

    Contreras, Loretto; Ritter, Andrés; Dennett, Geraldine; Boehmwald, Freddy; Guitton, Nathalie; Pineau, Charles; Moenne, Alejandra; Potin, Philippe; Correa, Juan A

    2008-10-01

    High-quality protein extracts are required for proteomic studies, a field that is poorly developed for marine macroalgae. A reliable phenol extraction protocol using Scytosiphon gracilis Kogame and Ectocarpus siliculosus (Dillwyn) Lyngb. (Phaeophyceae) as algal models resulted in high-quality protein extracts. The performance of the new protocol was tested against four methods available for vascular plants and a seaweed. The protocol, which includes an initial step to remove salts from the algal tissues, allowed the use of highly resolving two-dimensional gel electrophoresis (2-DE) protein analyses, providing the opportunity to unravel potentially novel physiological processes unique to this group of marine organisms.

  11. Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants.

    PubMed

    Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E

    2007-01-01

    Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications.

  12. Calcium alginate gels as stem cell matrix-making paracrine stem cell activity available for enhanced healing after surgery.

    PubMed

    Schmitt, Andreas; Rödel, Philipp; Anamur, Cihad; Seeliger, Claudine; Imhoff, Andreas B; Herbst, Elmar; Vogt, Stephan; van Griensven, Martijn; Winter, Gerhard; Engert, Julia

    2015-01-01

    Regeneration after surgery can be improved by the administration of anabolic growth factors. However, to locally maintain these factors at the site of regeneration is problematic. The aim of this study was to develop a matrix system containing human mesenchymal stem cells (MSCs) which can be applied to the surgical site and allows the secretion of endogenous healing factors from the cells. Calcium alginate gels were prepared by a combination of internal and external gelation. The gelling behaviour, mechanical stability, surface adhesive properties and injectability of the gels were investigated. The permeability of the gels for growth factors was analysed using bovine serum albumin and lysozyme as model proteins. Human MSCs were isolated, cultivated and seeded into the alginate gels. Cell viability was determined by AlamarBlue assay and fluorescence microscopy. The release of human VEGF and bFGF from the cells was determined using an enzyme-linked immunoassay. Gels with sufficient mechanical properties were prepared which remained injectable through a syringe and solidified in a sufficient time frame after application. Surface adhesion was improved by the addition of polyethylene glycol 300,000 and hyaluronic acid. Humans MSCs remained viable for the duration of 6 weeks within the gels. Human VEGF and bFGF was found in quantifiable concentrations in cell culture supernatants of gels loaded with MSCs and incubated for a period of 6 weeks. This work shows that calcium alginate gels can function as immobilization matrices for human MSCs.

  13. Calcium Alginate Gels as Stem Cell Matrix – Making Paracrine Stem Cell Activity Available for Enhanced Healing after Surgery

    PubMed Central

    Schmitt, Andreas; Rödel, Philipp; Anamur, Cihad; Seeliger, Claudine; Imhoff, Andreas B.; Herbst, Elmar; Vogt, Stephan; van Griensven, Martijn; Winter, Gerhard; Engert, Julia

    2015-01-01

    Regeneration after surgery can be improved by the administration of anabolic growth factors. However, to locally maintain these factors at the site of regeneration is problematic. The aim of this study was to develop a matrix system containing human mesenchymal stem cells (MSCs) which can be applied to the surgical site and allows the secretion of endogenous healing factors from the cells. Calcium alginate gels were prepared by a combination of internal and external gelation. The gelling behaviour, mechanical stability, surface adhesive properties and injectability of the gels were investigated. The permeability of the gels for growth factors was analysed using bovine serum albumin and lysozyme as model proteins. Human MSCs were isolated, cultivated and seeded into the alginate gels. Cell viability was determined by AlamarBlue assay and fluorescence microscopy. The release of human VEGF and bFGF from the cells was determined using an enzyme-linked immunoassay. Gels with sufficient mechanical properties were prepared which remained injectable through a syringe and solidified in a sufficient time frame after application. Surface adhesion was improved by the addition of polyethylene glycol 300,000 and hyaluronic acid. Humans MSCs remained viable for the duration of 6 weeks within the gels. Human VEGF and bFGF was found in quantifiable concentrations in cell culture supernatants of gels loaded with MSCs and incubated for a period of 6 weeks. This work shows that calcium alginate gels can function as immobilization matrices for human MSCs. PMID:25793885

  14. In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics.

    PubMed

    White, Claire E; Provis, John L; Bloomer, Breaunnah; Henson, Neil J; Page, Katharine

    2013-06-14

    With the ever-increasing environmentally-driven demand for technologically advanced structural materials, geopolymer cement is fast becoming a viable alternative to traditional cements due to its proven engineering characteristics and the reduction in CO2 emitted during manufacturing (as much as 80% less CO2 emitted in manufacture, compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of reaction responsible for nanostructural evolution during the geopolymerisation process. Here, in situ X-ray total scattering measurements and pair distribution function (PDF) analysis are used to quantify the extent of reaction as a function of time for alkali-activated metakaolin/slag geopolymer binders, including the impact of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerisation reaction. Quantifying the reaction process in situ from X-ray PDF data collected during the initial ten hours can provide an estimate of the total reaction extent, but when combined with data obtained at longer times (128 days here) enables more accurate determination of the overall rate of reaction. To further assess the initial stages of the geopolymerisation reaction process, a pseudo-single step first order rate equation is fitted to the extent of reaction data, which reveals important mechanistic information regarding the role of free silica in the activators in the evolution of the binder systems. Hence, it is shown that in situ X-ray PDF analysis is an ideal experimental local structure tool to probe the reaction kinetics of complex reacting systems involving transitions between disordered/amorphous phases, of which geopolymerisation is an important example.

  15. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    SciTech Connect

    Sciancalepore, Corrado; Bondioli, Federica; Manfredini, Tiziano; Gualtieri, Alessandro

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals was followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.

  16. Nested PCR-denaturing gradient gel electrophoresis analysis of human skin microbial diversity with age.

    PubMed

    Li, Wei; Han, Lei; Yu, Pengbo; Ma, Chaofeng; Wu, Xiaokang; Xu, Jiru

    2014-01-01

    To determine whether the composition and structure of skin microbiota differ with age, cutaneous bacteria were isolated from the axillary fossa of 37 healthy human adults in two age groups (old people and young adults). Bacterial genomic DNA was extracted and characterized by nested PCR-denaturing gradient gel electrophoresis (PCR-DGGE) with primers specifically targeting V3 region of the 16S rRNA gene. The excised gel bands were sequenced to identify bacterial categories. The total bacteria, Staphylococcus spp., Staphylococcus epidermidis and Corynebacterium spp. were further enumerated by quantitative PCR. There were no significant differences in the species diversity profiles between age groups. The similarity index was lower across age groups than that it was intra-group. This indicates that the composition of skin flora is more similar to others of the same age than across age groups. While Staphylococcus spp. and Corynebacterium spp. were the dominant bacteria in both groups, sequencing and quantitative PCR revealed that skin bacterial composition differed by age. The copy number of total bacteria and Corynebacterium spp. were significantly lower in younger subjects, whereas there were no statistical differences in the quantity of Staphylococcus spp. and Staphylococcus epidermidis. These results suggest that the skin flora undergo both quantitative and qualitative changes related to aging.

  17. Single universal primer multiplex ligation-dependent probe amplification with sequencing gel electrophoresis analysis.

    PubMed

    Shang, Ying; Zhu, Pengyu; Xu, Wentao; Guo, Tianxiao; Tian, Wenying; Luo, Yunbo; Huang, Kunlun

    2013-12-15

    In this study, a novel single universal primer multiplex ligation-dependent probe amplification (SUP-MLPA) technique that uses only one universal primer to perform multiplex polymerase chain reaction (PCR) was developed. Two reversely complementary common sequences were designed on the 5' or 3' end of the ligation probes (LPs), which allowed the ligation products to be amplified through only a single universal primer (SUP). SUP-MLPA products were analyzed on sequencing gel electrophoresis with extraordinary resolution. This method avoided the high expenses associated with capillary electrophoresis, which was the commonly used detection instrument. In comparison with conventional multiplex PCR, which suffers from low sensitivity, nonspecificity, and amplification disparity, SUP-MLPA had higher specificity and sensitivity and a low detection limit of 0.1 ng for detecting single crop species when screening the presence of genetically modified crops. We also studied the effect of different lengths of stuffer sequences on the probes for the first time. Through comparing the results of quantitative PCR, the LPs with different stuffer sequences did not affect the ligation efficiency, which further increased the multiplicity of this assay. The improved SUP-MLPA and sequencing gel electrophoresis method will be useful for food and animal feed identification, bacterial detection, and verification of genetic modification status of crops.

  18. Sol-gel derived silica/siloxane composite materials: The effect of loading level and catalyst activity on silica domain formation

    SciTech Connect

    Black, E.P.; Ulibarri, T.A.; Beaucage, G.; Schaefer, D.W.; Assink, R.A.; Bergstrom, D.F.; Giwa-Agbomeirele, P.A.; Burns, G.T.

    1993-11-01

    Currently, the production of in situ reinforcement in polymeric systems by sol-gel methods is undergoing rapid development. However, understanding of synthesis/structure/property relationships is still lacking. In order to produce sol-gel derived composite materials with sufficient mechanical properties for commercial applications, this deficit of information must be addressed. We have completed a detailed investigation of in situ silica growth in polydimethylsiloxane (PDMS)/tetraethylorthosilicate (TEOS) systems. Factors which affect the domain growth, such as catalyst activity and silica loading, have been examined by solid state {sup 29}Si NMR, SEM, mechanical testing and small angle neutron scattering.

  19. Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery.

    PubMed

    Gupta, Himanshu; Velpandian, T; Jain, Sanyog

    2010-08-01

    Poor bioavailability (<1%) of drugs from conventional eye drops is mainly due to the various precorneal loss factors which include rapid tear turnover, systemic drug absorption through naso-lachrymal duct, transient residence time of the drug solution in the cul-de-sac and the relative impermeability of the drugs to corneal epithelial membrane. The present study describes the formulation and evaluation of chitosan and gellan gum based novel in-situ gel system activated by dual physiological mechanisms. Chitosan (a pH-sensitive polymer) in combination with gellan gum (an ion-activated polymer) were used as gelling agent. Timolol maleate, the drug which is frequently used for glaucoma therapy was used as model drug to check the efficacy of the formulation. The developed formulation was characterized for various in vitro parameters, for example, clarity, gelation pH, isotonicity, sterility, viscosity, transcorneal permeation profile, and ocular irritation. Ocular retention was studied by gamma scintigraphy and a significant increase in retention time was observed. The formulation was also found to be nonirritant and well tolerable. The developed system can be a viable alternative to conventional eye drops for the treatment of various ocular diseases and is suitable for clinical application.

  20. Characterization and photocatalytic activity of Ag-Cu/TiO2 nanoparticles prepared by sol-gel method.

    PubMed

    Behnajady, Mohammad A; Eskandarloo, Hamed

    2013-01-01

    In this study, monometallic and bimetallic silver and copper doped TiO2 nanoparticles were prepared by sol-gel method. Structural and morphological characterizations of prepared nanoparticles were performed by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and N2 physisorption techniques. Co-doped TiO2 nanoparticles displayed pure anatase phase with 20-30 nm particle size and a humdrum distribution. The stability of anatase phase was increased with co-doping of silver and copper to TiO2 lattice. In addition, the co-doped TiO2 nanoparticles had a mesoporous structure with slit-shaped pores. The photocatalytic activity of all samples was evaluated in the photocatalytic removal of C.I. Acid Orange 7. Co-doped TiO2 nanoparticles by Ag and Cu were shown to have highest activity as compared with the Ag/TiO2, Cu/TiO2 and pure TiO2 nanoparticles. The best performance of co-doped TiO2 nanoparticles was observed for a sample calcined under 550 degrees C, containing optimum molar contents of silver (0.08 mol%) and copper (0.01 mol%) dopant ions.

  1. Immobilization of enzymes to porous-bead polymers and silica gels activated by graft polymerization of 2,3-epoxypropyl methacrylate.

    PubMed

    Wójcik, A; Lobarzewski, J; Błaszczyńska, T

    1990-01-01

    Three types of organic polymers and bead-shape silica gels were activated by graft polymerization of 2,3-epoxypropyl methacrylate; in some cases, epoxide groups on the support surface were modified to NH2 groups. Eight active matrices so obtained were assessed as supports for immobilized enzymes using peroxidase, glucoamylase and urease. The immobilization yield of protein and specific activities of enzymes were better with supports containing NH2 groups than with those containing epoxide spacer arms. Maximum enzyme immobilization and storage stabilities were obtained with silica-gel beads activated by graft polymerization of 2,3-epoxypropyl methacrylate. With all eight matrices tested, the immobilized enzymes showed good stability with not less than 82% of the original activity persisting after 28 days. The developed matrices have potential for use in process-scale biotechnological operations.

  2. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  3. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  4. Protein/RNA coextraction and small two-dimensional polyacrylamide gel electrophoresis for proteomic/gene expression analysis of renal cancer biopsies.

    PubMed

    Barbero, Giovanna; Carta, Franco; Giribaldi, Giuliana; Mandili, Giorgia; Crobu, Salvatore; Ceruti, Carlo; Fontana, Dario; Destefanis, Paolo; Turrini, Francesco

    2006-02-01

    A small amount of bioptic tissue ( approximately 5-10mg of fresh tissue) usually does not contain enough material to extract protein and RNA separately, to obtain preparative two-dimensional polyacrylamide gel electrophoresis (2-DE), and to identify a large number of separated proteins by MS. We tested a method, on small renal cancer specimens, for the coextraction of protein and RNA coupled with 2-DE and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) or quadrupole time-of-flight (Q-TOF) analysis. We coextracted 0.28+/-0.05mg of proteins and 2.5+/-0.33microg of RNA for each 10mg of renal carcinoma tissue. Small and large 2-DE gels were compared: they showed a similar number of spots, and it was possible to match each other; using small format gels, one-fifth of the protein amount was required to identify, by Q-TOF analysis, the same number of proteins identifiable in large-format gel using MALDI-TOF analysis. Quality of RNA coextracted with the proteins was tested by real-time PCR on a set of housekeeping genes. They were quantified with high amplification efficiency and specificity. In conclusion, using 5 to 10mg of fresh tissue, it was possible to perform comprehensive parallel proteomic and genomic analysis by high-resolution, small-format 2-DE gels, allowing approximately 300 proteins identification and 1000 genes expression analysis.

  5. Insulin biosynthesis: studies of Islet polyribosomes (nascent peptides-sucrose gradient analysis-gel filtration).

    PubMed

    Permutt, M A; Kipnis, D M

    1972-02-01

    A method is described for separation of polyribosomes from as few as 25 isolated Islets of Langerhans, representing about 250 mug of pancreatic tissue. Islets are labeled with [(3)H]leucine and polysomes are isolated with liver polyribosomes, which serve as carrier and inhibitor of ribonuclease activity. Islets incubated at 37 degrees C for 45 min in 15.5 mM glucose, then pulsed with [(3)H]leucine, incorporated about 2-3 times more label into nascent peptides on islet polysomes than islets incubated in 2.8 mM glucose. Sucrose gradient analysis of the labeled polysomes indicated that raising the glucose concentration preferentially stimulated synthesis of peptides on trisomes and larger polyribosomes. Islets incubated with [(3)H]leucine for 15 min incorporated two-thirds of the label into proteins on membrane-bound polysomes. At least 85% of the proinsulin synthesis during this time occurs on membrane-bound polysomes.

  6. Active musculoskeletal structures equipped with a circulatory system and a network of ionic polymeric gel muscles

    SciTech Connect

    Shahinpoor, M.; Mojarrad, M.

    1994-12-31

    Presented are descriptions of design and fabrication of an active musculoskeletal structure composed of an artificial human skeleton of 5.3 feet in height. This skeletal structure is further equipped with an artificial heart in the form of a multi-channel computer-controlled fluid pump. The fluid pump may be programmed to selectively pump either an acid, a base or de-ionized water to a network of veins that feed a network of pairs of antagonist contractile synthetic muscles. These muscles are manufactured in the laboratory from polyacrylonitrile (PAN) fiber bundles that are specially designed and packaged inside flexible, hyperelastic latex membranes. Each pair of muscles act as a pair of antagonist actuator similar to the biceps and triceps muscles of the human arm. The initial fabrication indicates that it is possible to dynamically control such active musculoskeletal structures. A model is also presented for the dynamic control of such antagonist muscles. The model is intended to be used to study the human musculoskeletal dynamics.

  7. Improved corneal bioavailability of ofloxacin: biodegradable microsphere-loaded ion-activated in situ gel delivery system

    PubMed Central

    Sayed, Elshaimaa G; Hussein, Amal K; Khaled, Khaled A; Ahmed, Osama AA

    2015-01-01

    The aim of the study was to improve corneal penetration and bioavailability of ofloxacin (OFX) eye preparations. OFX was incorporated in poly (lactide-co-glycolide) as biodegradable microspheres using oil in oil emulsion solvent evaporation technique. The prepared OFX microspheres were then incorporated in Gelrite® in situ gel preparation. In addition, OFX Gelrite-based in situ gel formulations were prepared. OFX formulations were characterized for gelling capacity, viscosity, and rheological properties. Release studies for OFX microspheres, OFX in situ gel, and OFX-loaded microspheres in situ gel formulations were carried out to investigate release characteristics of the drug. The prepared OFX formulations were then investigated in vivo compared with commercially available OFX eyedrops. Results showed that the optimum Gelrite concentration was at 0.4%–0.7% w/v; the prepared formulations were viscous liquid transformed into a pourable gel immediately after the addition of simulated tear fluid with a gelling factor of 27–35. Incorporation of OFX-loaded microspheres in Gelrite solution (0.4% w/v) significantly altered the release profiles of OFX-loaded microspheres in situ gel formula compared with the corresponding OFX gels and OFX microspheres. In vivo results in rabbits showed that OFX-loaded microspheres in situ gel formula improved the relative bioavailability by 11.7-fold compared with the commercially available OFX eyedrops. In addition, the longer duration of action of OFX-loaded microspheres in situ gel formula preparations is thought to avoid frequent instillations, which improves patient tolerability and compliance. PMID:25792803

  8. Molecular analysis of chromosomal rearrangements using pulsed field gel electrophoresis and somatic cell hybrids

    SciTech Connect

    Davis, L.M. )

    1991-01-01

    Many human genetic diseases, including some cancers, are characterized by consistent chromosome abnormalities, such as deletions and translocations. Analyses of these mutations often prove crucial to the eventual cloning and characterization of the gene(s) responsible for the disease. Two methods for analyzing these chromosome abnormalities have been developed in recent years: somatic cell hybridization and pulsed field gel electrophoresis (PFGE). Somatic cell hybridization is a technique for segregating an aberrant chromosome from its normal homologue in a cell derived from an unrelated species, which is usually a rodent. Demonstrations of these analytic techniques are presented, using as an example chromosomal abnormalities involving human chromosome band 11p13, the locus for the Wilms' tumor, aniridia, genitourinary abnormality, and mental retardation (WAGR) syndrome.

  9. Analysis of Replicating Mitochondrial DNA by In Organello Labeling and Two-Dimensional Agarose Gel Electrophoresis.

    PubMed

    Holt, Ian J; Kazak, Lawrence; Reyes, Aurelio; Wood, Stuart R

    2016-01-01

    Our understanding of the mechanisms of DNA replication in a broad range of organisms and viruses has benefited from the application of two-dimensional agarose gel electrophoresis (2D-AGE). The method resolves DNA molecules on the basis of size and shape and is technically straightforward. 2D-AGE sparked controversy in the field of mitochondria when it revealed replicating molecules with lengthy tracts of RNA, a phenomenon never before reported in nature. More recently, radioisotope labeling of the DNA in the mitochondria has been coupled with 2D-AGE. In its first application, this procedure helped to delineate the "bootlace mechanism of mitochondrial DNA replication," in which processed mitochondrial transcripts are hybridized to the lagging strand template at the replication fork as the leading DNA strand is synthesized. This chapter provides details of the method, how it has been applied to date and concludes with some potential future applications of the technique.

  10. Micro free-flow IEF enhanced by active cooling and functionalized gels.

    PubMed

    Albrecht, Jacob W; Jensen, Klavs F

    2006-12-01

    Rapid free-flow IEF is achieved in a microfluidic device by separating the electrodes from the focusing region with porous buffer regions. Moving the electrodes outside enables the use of large electric fields without the detrimental effects of bubble formation in the active region. The anode and cathode porous buffer regions, which are formed by acrylamide functionalized with immobilized pH groups, allow ion transport while providing buffering capacity. Thermoelectric cooling mitigates the effects of Joule heating on sample focusing at high field strengths (approximately 500 V/cm). This localized cooling was observed to increase device performance. Rapid focusing of low-molecular-weight p/ markers and Protein G-mouse IgG complexes demonstrate the versatility of the technique. Simulations provide insight into and predict device performance based on a well-defined sample composition.

  11. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes.

    PubMed

    Marini, M; De Niederhausern, S; Iseppi, R; Bondi, M; Sabia, C; Toselli, M; Pilati, F

    2007-04-01

    Silver-doped organic-inorganic hybrid coatings were prepared starting from tetraethoxysilane- and triethoxysilane-terminated poly(ethylene glycol)-block-polyethylene by the sol-gel process. They were applied as a thin layer (0.6-1.1 microm) to polyethylene (PE) and poly(vinyl chloride) (PVC) films and the antibacterial activity of the coated films was tested against Gram-negative (Escherichia coli ATCC 25922) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. The effect of several factors (such as organic-inorganic ratio, type of catalyst, time of post-curing, silver ion concentration, etc.) was investigated. Measurements at different contact times showed a rapid decrease of the viable count for both tested strains. The highest antibacterial activity [more than 6 log reduction within 6 h starting from 106 colony-forming units (cfu) mL-1] was obtained for samples with an organic-inorganic weight ratio of 80:20 and 5 wt % silver salt with respect to the coating. For the coatings prepared by an acid-catalyzed process, a high level of permanence of the antibacterial activity of the coated films was demonstrated by repeatedly washing the samples in warm water or by immersion in physiological saline solution at 37 degrees C for 3 days. The release of silver ions per square meter of coating is very similar to that previously observed for polyamides filled with metallic silver nanoparticles; however, when compared on the basis of Ag content, the concentration of silver ions released from the coating is much higher than that released from 1 mm thick specimens of polyamide (PA) filled with silver nanoparticles. Transparency and good adhesion of the coating to PE and PVC plastic substrates without any previous surface treatment are further interesting features.

  12. Application of partial least squares discriminant analysis to two-dimensional difference gel studies in expression proteomics.

    PubMed

    Karp, Natasha A; Griffin, Julian L; Lilley, Kathryn S

    2005-01-01

    Two-dimensional difference gel electrophoresis (DIGE) is a tool for measuring changes in protein expression between samples involving pre-electrophoretic labeling ith cyanine dyes. In multi-gel experiments, univariate statistical tests have been used to identify differential expression between sample types by looking for significant changes in spot volume. Multivariate statistical tests, which look for correlated changes between sample types, provide an alternate approach for identifying spots with differential expression. Partial least squares-discriminant analysis (PLS-DA), a multivariate statistical approach, was combined with an iterative threshold process to identify which protein spots had the greatest contribution to the model, and compared to univariate test for three datasets. This included one dataset where no biological difference was expected. The novel multivariate approach, detailed here, represents a method to complement the univariate approach in identification of differentially expressed protein spots. This new approach has the advantages of reduced risk of false-positives and the identification of spots that are significantly altered in terms of correlated expression rather than absolute expression values.

  13. Effects of the sol-gel route on the structural characteristics and antibacterial activity of silica-encapsulated gentamicin.

    PubMed

    Corrêa, G G; Morais, E C; Brambilla, R; Bernardes, A A; Radtke, C; Dezen, D; Júnior, A V; Fronza, N; Santos, J H Z Dos

    2014-04-01

    The effects of sol-gel processes, i.e., acid-catalyzed gelation, base-catalyzed gelation and base-catalyzed precipitation routes, on the encapsulation of gentamicin were investigated. The resulting xerogels were characterized using a series of complementary instrumental techniques, i.e., the adsorption/desorption of nitrogen, small-angle X-ray scattering, Fourier transform infrared spectroscopy, diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and scanning electron microscopy. The encapsulated gentamicin samples were tested against a series of Gram-positive and Gram-negative bacterial strains. The best antimicrobial activity was observed with the encapsulated gentamicin that was prepared via the precipitation route, even in comparison with the neat antibiotic, especially in the case of the Gram-positive strain Staphylococcus aureus. The gentamicin concentration on the outermost surface and the zeta potential were identified as factors that affected the highest efficiency, as observed in the case of encapsulation via the base-catalyzed process.

  14. Sol concentration effect on ZnO nanofibers photocatalytic activity synthesized by sol–gel dip coating method

    NASA Astrophysics Data System (ADS)

    Toubane, M.; Tala-Ighil, R.; Bensouici, F.; Bououdina, M.; Souier, M.; Liu, S.; Cai, W.; Iratni, A.

    2017-03-01

    ZnO thin films were deposited onto glass substrate by sol–gel dip coating method. The initial sol concentrations were varied from 0.2 to 0.5 M. Zinc acetate dihydrate, ethanol and Diethanolamine (DEA) were used as staring material, solvent and stabilizer respectively. The evolution of structural, optical properties and methylene blue (MB) photodegradation of the as-deposited films on sol concentration was investigated. Rietveld refinements of x-ray patterns reveal that all the as-prepared thin films have a Zincite-type structure with grain orientation along to c-axis. The strongest sol concentration is favorable for the highest crystallization quality. However, the high preferred orientation factor (POF) occurs for 0.3 M sol concentration. The field emission scanning electron microscopy observations reveals nanofibrous morphology with different lengths. The nanofibers density increases with increasing sols concentrations until forming a flower-like morphology. The EDS analysis confirms the high purity of the as-deposited ZnO films. It is found that all films present good transparency greater than 95% in the visible range; the optical band gap is slightly reduced with the increase in sol concentration. The photocatalytic degradation is enhanced by 90% with the sol concentration. The K app rate reaction increased with increasing sol concentration. The films stability is found to slightly decrease after the third cycle, especially for 0.5 M sol concentration.

  15. Temperature-sensitive polymer-conjugated IFN-gamma induces the expression of IDO mRNA and activity by fibroblasts populated in collagen gel (FPCG).

    PubMed

    Sarkhosh, Kourosh; Tredget, Edward E; Uludag, Hasan; Kilani, Ruhangiz T; Karami, Ali; Li, Yunyuan; Iwashina, Takashi; Ghahary, Aziz

    2004-10-01

    Indoleamine 2,3-dioxygenase (IDO) is an intracellular tryptophan-catabolizing enzyme possessing various immunosuppressive properties. Here, we report the use of this enzyme to suppress the proliferation of peripheral blood mononuclear cells (PBMC) co-cultured with IDO-expressing fibroblasts of an allogeneic skin substitute in vitro. Fetal foreskin fibroblasts populated within collagen gel (FPCG) were treated with interferon-gamma (IFN-gamma) conjugated with a temperature-sensitive polymer to induce the expression of IDO mRNA and protein. SDS-PAGE showed successful conjugation of IFN-gamma with the temperature-sensitive polymer. Expression of IDO mRNA was evaluated by Northern analysis. IDO enzyme activity was evaluated by the measurement of kynurenine levels. The results of Northern blot analysis showed an induction of IDO mRNA expression when treated with polymer-conjugated IFN-gamma. Kynurenine levels, as a measure of IDO bioactivity, were significantly higher in IFN-gamma-treated fibroblasts than in controls (P < 0.001). In a lasting effect experiment, the expression of IDO mRNA in FPCG treated with polymer-conjugated IFN-gamma was significantly longer than in those treated with free (non-conjugated) IFN-gamma (P < 0.001). IFN-gamma radiolabeling showed a prolonged retention of IFN-gamma within collagen gel in its polymer-conjugated form, compared to its free form. Presence of IDO protein in FPCG was demonstrated by Western analysis even 16 days after removal of the conditioned medium (containing released IFN-gamma). To demonstrate the immunosuppressive effects of IDO on the proliferation of PBMC, IDO-expressing FPCG treated with polymer-conjugated IFN-gamma were co-cultured with PBMC for a period of 5 days. The results showed a significant reduction in proliferation of PBMC co-cultured with IFN-gamma-treated IDO-expressing fibroblasts, compared to those co-cultured with non-IDO-expressing fibroblasts (P < 0.001). The addition of an IDO inhibitor (1-methyl

  16. Tretinoin Nanogel 0.025% Versus Conventional Gel 0.025% in Patients with Acne Vulgaris: A Randomized, Active Controlled, Multicentre, Parallel Group, Phase IV Clinical Trial

    PubMed Central

    Chandrashekhar, B S; Anitha, M.; Ruparelia, Mukesh; Vaidya, Pradyumna; Aamir, Riyaz; Shah, Sunil; Thilak, S; Aurangabadkar, Sanjeev; Pal, Sandeep; Saraswat, Abir

    2015-01-01

    Background: Conventional topical tretinoin formulation is often associated with local adverse events. Nanogel formulation of tretinoin has good physical stability and enables good penetration of tretinoin into the pilo-sebaceous glands. Aim: The present study was conducted to assess the efficacy and safety of a nanogel formulation of tretinoin as compared to its conventional gel formulation in the treatment of acne vulgaris of the face. Materials and Methods: This randomized, active controlled, multicentric, phase IV clinical trial evaluated the treatment of patients with acne vulgaris of the face by the two gel formulations locally applied once daily at night for 12 wk. Acne lesion counts (inflammatory, non-inflammatory & total) and severity grading were carried out on the monthly scheduled visits along with the tolerability assessments. Results: A total of 207 patients were randomized in the study. Reductions in the total (72.9% vs. 65.0%; p = 0.03) and inflammatory (78.1% vs. 66.9%; p = 0.02) acne lesions were reported to be significantly greater with the nanogel formulation as compared to the conventional gel formulation. Local adverse events were significantly less (p = 0.04) in the nanogel group (13.3%) as compared to the conventional gel group (24.7%). Dryness was the most common adverse event reported in both the treatment groups while peeling of skin, burning sensation and photosensitivity were reported in patients using the conventional gel only. Conclusion: In the treatment of acne vulgaris of the face, tretinoin nanogel formulation appears to be more effective and better tolerated than the conventional gel formulation. PMID:25738069

  17. Comparative Analysis of Denaturing Gradient Gel Electrophoresis and Temporal Temperature Gradient Gel Electrophoresis Profiles as a Tool for the Differentiation of Candida Species

    PubMed Central

    Mohammadi, Parisa; Hamidkhani, Aida; Asgarani, Ezat

    2015-01-01

    Background: Candida species are usually opportunistic organisms that cause acute to chronic infections when conditions in the host are favorable. Accurate identification of Candida species is an essential pre-requisite for improved therapeutic strategy. Identification of Candida species by conventional methods is time-consuming with low sensitivity, yet molecular approaches have provided an alternative way for early diagnosis of invasive candidiasis. Denaturing gradient gel electrophoresis (DGGE) and temporal temperature gradient gel electrophoresis (TTGE) are polymerase chain reaction (PCR)-based approaches that are used for studying the community structure of microorganisms. By using these methods, simultaneous identification of multiple yeast species will be possible and reliable results will be obtained quickly. Objectives: In this study, DGGE and TTGE methods were set up and evaluated for the detection of different Candida species, and their results were compared. Materials and Methods: Five different Candida species were cultured on potato dextrose agar medium for 24 hours. Next, total DNA was extracted by the phenol-chloroform method. Two sets of primers, ITS3-GC/ITS4 and NL1-GC/LS2 were applied to amplify the desired regions. The amplified fragments were then used to analyze DGGE and TTGE profiles. Results: The results showed that NL1-GC/LS2 primer set could yield species-specific amplicons, which were well distinguished and allowed better species discrimination than that generated by the ITS3-GC/ITS4 primer set, in both DGGE and TTGE profiles. All five Candida species were discriminated by DGGE and TTGE using the NL1-GC/LS2 primer set. Conclusions: Comparison of DGGE and TTGE profiles obtained from NL1-GC/LS2 amplicons exhibited the same patterns. Although both DGGE and TTGE techniques are capable of detecting Candida species, TTGE is recommended because of easier performance and lower costs. PMID:26568801

  18. Modified Sol-Gel Processing of NiCr2O4 Nanoparticles; Structural Analysis and Optical Band Gap

    NASA Astrophysics Data System (ADS)

    Enhessari, Morteza; Salehabadi, Ali; Khanahmadzadeh, Salah; Arkat, Kamal; Nouri, Jalal

    2017-02-01

    Nickel Chromite nanoparticles were successfully synthesized via a modified sol-gel method using nickel acetate and ammonium dichromate in melted stearic acid as a complexing agent. The diffractograms of the nanoparticles confirmed a pure formation of NiCr2O4 spinel without any minor phase. The coordination structure of as prepared nanoparticles shows a series of absorption bands below 1,000 cm-1 were evidenced the M-O (Cr-O, Ni-O) bond in the sample. Optical band gap, magnetic properties and color parameters (L*.a*.b*) indicates that the final nanoparticles are optically and magnetically active. The particle size of NiCr2O4 was calculated using Scherrer equation at about 24 nm. Optical band gap obtained at 1.7 eV indicating that NiCr2O4 nanoparticles are semiconductor material and can be used in electrical devices.

  19. Computational Analysis of Silica gel-Water Adsorption Refrigeration Cycle with Mass Recovery

    NASA Astrophysics Data System (ADS)

    Akahira, Akira; Alam, K. C. Amanul; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The study aims at clarifying the performance of silica gel-water adsorption refrigeration cycle with mass recovery process.Two kinds of heat exchanger were examined and the performances were compared with each other. One type of heat exchanger was a spiral tube and it was immersed in a low temperature thermostatic bath. The other was coil-shaped double tube heat exchanger using two tubes. The emulsion was circulated to make ice continuously. These systems were operated under various cooling conditions (flow rates of the emulsion and brine temperatures). The effects of the tube materials (fluororesin and non-fluororesin) and thickness were also examined. Slurry ice was formed continuously without adhesion of ice to the cooling wall under certain conditions. Using the fluororesin tube prevented ice from the adhesion and it enlarged the range of the cooling conditions under which slurry ice was formed continuously. Furthermore, by making thickness of the tube thinner and increasing the heat transfer coefficient on the outside of the tube, ice was made continuously without lowering the rate of ice formation at a higher brine temperature.

  20. Two-dimensional difference gel electrophoresis (DiGE) analysis of plasmas from dengue fever patients.

    PubMed

    Albuquerque, Lidiane M; Trugilho, Monique R O; Chapeaurouge, Alex; Jurgilas, Patrícia B; Bozza, Patrícia T; Bozza, Fernando A; Perales, Jonas; Neves-Ferreira, Ana G C

    2009-12-01

    Dengue fever is the world's most important arthropod-born viral disease affecting humans. To contribute to a better understanding of its pathogenesis, this study aims to identify proteins differentially expressed in plasmas from severe dengue fever patients relative to healthy donors. The use of 2-D Fluorescence Difference Gel Electrophoresis to analyze plasmas depleted of six high-abundance proteins (albumin, IgG, antitrypsin, IgA, transferrin and haptoglobin) allowed for the detection of 73 differentially expressed protein spots (n = 13, p < 0.01), of which 37 could be identified by mass spectrometry. These 37 spots comprised a total of 14 proteins, as follows: 7 had increased expression in plasmas from dengue fever patients (C1 inhibitor, alpha1-antichymotrypsin, vitamin D-binding protein, fibrinogen gamma-chain, alpha1-acid glycoprotein, apolipoprotein J and complement component C3c), while 7 others had decreased expression in the same samples (alpha-2 macroglobulin, prothrombin, histidine-rich glycoprotein, apolipoproteins A-IV and A-I, transthyretin and complement component C3b). The possible involvement of these proteins in the inflammatory process triggered by dengue virus infection and in the repair mechanisms of vascular damage occurring in this pathology is discussed in this study.

  1. Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress

    PubMed Central

    Oh, MyeongWon; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions. To better understand the flooding-responsive mechanisms of soybean, the effect of exogenous calcium on flooding-stressed soybeans was analyzed using proteomic technique. An increase in exogenous calcium levels enhanced soybean root elongation and suppressed the cell death of root tip under flooding stress. Proteins were extracted from the roots of 4-day-old soybean seedlings exposed to flooding stress without or with calcium for 2 days and analyzed using gel-free proteomic technique. Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment. Development, lipid metabolism, and signaling-related proteins were increased in soybean roots when calcium was supplied under flooding stress. Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation. Furthermore, urease and copper chaperone proteins exhibited similar profiles in 4-day-old untreated soybeans and 4-day-old soybeans exposed to flooding for 2 days in the presence of calcium. These results suggest that calcium might affect the cell wall/hormone metabolisms, protein degradation/synthesis, and DNA synthesis in soybean roots under flooding stress. PMID:25368623

  2. Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis.

    PubMed

    Schrodt, Caroline; McHugh, Erin E; Gawinowicz, Mary Ann; Dupont, Herbert L; Brown, Eric L

    2013-01-01

    Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens.

  3. Rapid, simple method of preparing rotaviral double-stranded ribonucleic acid for analysis by polyacrylamide gel electrophoresis.

    PubMed Central

    Theil, K W; McCloskey, C M; Saif, L J; Redman, D R; Bohl, E H; Hancock, D D; Kohler, E M; Moorhead, P D

    1981-01-01

    A procedure for extracting rotaviral double-stranded ribonucleic acid (RNA) directly from fecal and intestinal specimens collected from calves and pigs is described. This procedure provides a rapid, simple, reproducible method of obtaining rotaviral double-stranded RNA preparations suitable for electrophoretic analysis in polyacrylamide-agarose composite gels. The rotaviral genome electrophoretic migration pattern produced by double-stranded RNA extracted directly from a specimen by this procedure was qualitatively identical to the electrophoretic migration pattern obtained with double-stranded RNA extracted from purified rotavirus derived from the same specimen. Direct extraction of specimens containing porcine rotavirus-like virus by this procedure gave preparations that had electrophoretic migration patterns similar, but not identical, to the characteristic electrophoretic migration pattern of the rotaviral genome. Sufficient rotaviral double-stranded RNA could be extracted from 6 ml of fecal or intestinal specimen by this procedure to permit 15 or more electrophoretic assays. Images PMID:6270190

  4. Selective modification of polylactide by introducing acrylate groups: IR spectroscopy, gel permeation chromatography, and differential thermal analysis

    NASA Astrophysics Data System (ADS)

    Shashkova, V. T.; Matveeva, I. A.; Glagolev, N. N.; Zarkhina, T. S.; Timashev, P. S.; Bagratashvili, V. N.; Solov'eva, A. B.

    2016-10-01

    One-stage modification of polylactide has been performed to obtain the acrylate derivatives of the polymer capable of further polymerization and preparation of cross-linked polymer materials suitable for creating implants. The reaction mechanism was determined by IR spectroscopy, gel permeation chromatography, and differential thermal analysis. It was shown for the first time that the reaction path changes depending on the ratio of components so that the desired product polylactide acrylate forms with a ~90% yield only in the presence of large (approximately tenfold) excesses of the isocyanate and acrylate components; at the equimolar ratio of components generally used in urethane formation, a mixture of the desired product (~30%), oligourethane diacrylates, and unchanged polylactide forms.

  5. Multiplex agarose gel electrophoresis system for variable number of tandem repeats genotyping: analysis example using Mycobacterium tuberculosis.

    PubMed

    Wada, Takayuki; Maeda, Shinji

    2013-04-01

    As one genotyping method for Mycobacterium tuberculosis, variable number of tandem repeats (VNTR) is a promising tool to trace the undefined transmission of tuberculosis, but it often requires large equipment such as a genetic analyzer for DNA fragment analysis or CE system to conduct systematic analyses. For convenient genotyping at low cost in laboratories, we designed a multiplex PCR system that is applicable to agarose gel electrophoresis using fluorescent PCR primers. For tuberculosis genotyping by VNTR, the copy quantities of minisatellite DNA must be determined in more than 12 loci. The system can halve laborious electrophoresis processes by presenting an image of two VNTR amplicons on a single lane. No expensive equipment is necessary for this method. Therefore, it is useful even in developing countries.

  6. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  7. Detection and analysis of protein-protein interactions of organellar and prokaryotic proteomes by blue native and colorless native gel electrophoresis.

    PubMed

    Krause, Frank; Seelert, Holger

    2008-11-01

    Native gels enable the analysis of protein complexes on a proteome-wide scale in a single experiment. The protocols described in this unit are based on separation of protein complexes by blue native polyacrylamide electrophoresis (BN-PAGE), the most versatile native gel system, and the closely related milder colorless native PAGE (CN-PAGE). Both BN-PAGE and CN-PAGE are described on analytical to preparative scales. In addition, methods for subsequent analysis of protein complexes are given, including electroelution from native gels as well as denaturing and native two-dimensional PAGE. Finally, the removal of Coomassie dye from electroeluted proteins is detailed along with a discussion of fundamental considerations for the solubilization of membrane protein complexes from various biological samples, which are exemplified for mitochondria, chloroplasts (thylakoids), and cyanobacteria.

  8. Fluorographic detection of tritiated glycopeptides and oligosaccharides separated on polyacrylamide gels: analysis of glycans from Dictyostelium discoideum glycoproteins

    SciTech Connect

    Prem Das, O.; Henderson, E.J.

    1986-11-01

    Previous workers have shown that oligosaccharides and glycopeptides can be separated by electrophoresis in buffers containing borate ions. However, normal fluorography of tritium-labeled structures cannot be performed because the glycans are soluble and can diffuse during equilibration with scintillants. This problem has been circumvented by equilibration of the gel with 2,5-diphenyloxazole (PPO) prior to electrophoresis. The presence of PPO in the gel during electrophoresis does not alter mobility of the glycopeptides and oligosaccharides. After electrophoresis, the gel is simply dried and fluorography performed. This allows sensitive and precise comparisons of labeled samples in parallel lanes of a slab gel and, since mobilities are highly reproducible, between different gels. The procedure is preparative in that after fluorography the gel bands can be quantitatively eluted for further study, without any apparent modification by the procedure. In this report, the procedure is illustrated by fractionation of both neutral and anionic glycopeptides produced by the cellular slime mold Dictyostelium discoideum.

  9. Coupled gel spreading and diffusive transport models describing microbicidal drug delivery

    NASA Astrophysics Data System (ADS)

    Funke, Claire; MacMillan, Kelsey; Ham, Anthony S.; Szeri, Andrew J.; Katz, David F.

    2016-11-01

    Gels are a drug delivery platform being evaluated for application of active pharmaceutical ingredients, termed microbicides, that act topically against infection by sexually transmitted HIV. Despite success in one Phase IIb trial of a vaginal gel delivering tenofovir, problems of user adherence to designed gel application regimen compromised results in two other trials. The microbicide field is responding to this issue by simultaneously analyzing behavioral determinants of adherence and pharmacological determinants of drug delivery. Central to both user adherence and mucosal drug delivery are gel properties (e.g. rheology) and applied volume. The specific problem to be solved here is to develop a model for how gel rheology and volume, interacting with loaded drug concentration, govern the transport of the microbicide drug tenofovir into the vaginal mucosa to its stromal layer. The analysis here builds upon our current understanding of vaginal gel deployment and drug delivery, incorporating key features of the gel's environment, fluid production and subsequent gel dilution, and vaginal wall elasticity. We consider the microbicide drug tenofovir as it is the most completely studied drug, in both in vitroand in vivostudies, for use in vaginal gel application. Our goal is to contribute to improved pharmacological understanding of gel functionality, providing a computational tool that can be used in future vaginal microbicide gel design.

  10. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  11. Beading instability in soft cylindrical gels with capillary energy: Weakly non-linear analysis and numerical simulations

    NASA Astrophysics Data System (ADS)

    Taffetani, M.; Ciarletta, P.

    2015-08-01

    Soft cylindrical gels can develop a long-wavelength peristaltic pattern driven by a competition between surface tension and bulk elastic energy. In contrast to the Rayleigh-Plateau instability for viscous fluids, the macroscopic shape in soft solids evolves toward a stable beading, which strongly differs from the buckling arising in compressed elastic cylinders. This work proposes a novel theoretical and numerical approach for studying the onset and the non-linear development of the elasto-capillary beading in soft cylinders, made of neo-Hookean hyperelastic material with capillary energy at the free surface, subjected to axial stretch. Both a theoretical study, deriving the linear and the weakly non-linear stability analyses for the problem, and numerical simulations, investigating the fully non-linear evolution of the beaded morphology, are performed. The theoretical results prove that an axial elongation can not only favour the onset of beading, but also determine the nature of the elastic bifurcation. The fully non-linear phase diagrams of the beading are also derived from finite element numerical simulations, showing two peculiar morphological transitions when varying either the axial stretch or the material properties of the gel. Since the bifurcation is found to be subcritical for very slender cylinders, an imperfection sensitivity analysis is finally performed. In this case, it is shown that a surface sinusoidal imperfection can resonate with the corresponding marginally stable solution, thus selecting the emerging beading wavelength. In conclusion, the results of this study provide novel guidelines for controlling the beaded morphology in different experimental conditions, with important applications in micro-fabrication techniques, such as electrospun fibres.

  12. Effects of coffee bean aroma on the rat brain stressed by sleep deprivation: a selected transcript- and 2D gel-based proteome analysis.

    PubMed

    Seo, Han-Seok; Hirano, Misato; Shibato, Junko; Rakwal, Randeep; Hwang, In Kyeong; Masuo, Yoshinori

    2008-06-25

    The aim of this study was 2-fold: (i) to demonstrate influences of roasted coffee bean aroma on rat brain functions by using the transcriptomics and proteomics approaches and (ii) to evaluate the impact of roasted coffee bean aroma on stress induced by sleep deprivation. The aroma of the roasted coffee beans was administered to four groups of adult male Wistar rats: 1, control group; 2, 24 h sleep deprivation-induced stress group (the stress group); 3, coffee aroma-exposed group without stress (the coffee group); and 4, the stress with coffee aroma group (the stress with coffee group). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of some known genes responsive to aroma or stress was performed using total RNA from these four groups. A total of 17 selected genes of the coffee were differently expressed over the control. Additionally, the expression levels of 13 genes were different between the stress group and the stress with coffee group: Up-regulation was found for 11 genes, and down-regulation was seen for two genes in the stress with coffee group. We also looked to changes in protein profiles in these four samples using two-dimensional (2D) gel electrophoresis; 25 differently expressed gel spots were detected on 2D gels stained by silver nitrate. Out of these, a total of nine proteins were identified by mass spectrometry. Identified proteins belonged to five functional categories: antioxidant; protein fate; cell rescue, defense, and virulence; cellular communication/signal transduction mechanism; and energy metabolism. Among the differentially expressed genes and proteins between the stress and the stress with coffee group, NGFR, trkC, GIR, thiol-specific antioxidant protein, and heat shock 70 kDa protein 5 are known to have antioxidant or antistress functions. In conclusion, the roasted coffee bean aroma changes the mRNA and protein expression levels of the rat brain, providing for the first time clues to the potential antioxidant or stress

  13. Adsorption of Pb(II) using silica gel composite from rice husk ash modified 3-aminopropyltriethoxysilane (APTES)-activated carbon from coconut shell

    NASA Astrophysics Data System (ADS)

    Yusmaniar, Purwanto, Agung; Putri, Elfriyana Awalita; Rosyidah, Dzakiyyatur

    2017-03-01

    Silica gel modified by 3-aminopropyltriethoxysilane (APTES) was synthesized from rice husk ash combined with activated carbon from coconut shell yielded the composite adsorbent. The composite was characterized by Fourier Transform Infra Red spectroscopy (FT-IR), Electron Dispersive X-Ray (EDX), Surface Area Analyzer (SAA) and adsorption test by Atomic Absorption Spectrometry (AAS). This composite adsorbent has been used moderately for the removal of lead ions from metal solutions and compared with silica gel modified APTES and activated carbon. The adsorption experiments of Pb -ions by adsorbents were performed at different pH and contact time with the same metal solutions concentration, volume solution, and adsorbent dosage. The optimum pH for the adsorption was found to be 5.0 and the equilibrium was achieved for Pb with 20 min of contact time. Pb ions adsorption by composite silica gel modified APTES-activated carbon followed by Langmuir isotherm model with qmax value of 46.9483 mg/g that proved an adsorbent mechanism consistent to the mechanism of monolayer formation.

  14. Estimation of activation energy for electroporation and pore growth rate in liquid crystalline and gel phases of lipid bilayers using molecular dynamics simulations.

    PubMed

    Majhi, Amit Kumar; Kanchi, Subbarao; Venkataraman, V; Ayappa, K G; Maiti, Prabal K

    2015-11-28

    Molecular dynamics simulations of electroporation in POPC and DPPC lipid bilayers have been carried out at different temperatures ranging from 230 K to 350 K for varying electric fields. The dynamics of pore formation, including threshold field, pore initiation time, pore growth rate, and pore closure rate after the field is switched off, was studied in both the gel and liquid crystalline (Lα) phases of the bilayers. Using an Arrhenius model of pore initiation kinetics, the activation energy for pore opening was estimated to be 25.6 kJ mol(-1) and 32.6 kJ mol(-1) in the Lα phase of POPC and DPPC lipids respectively at a field strength of 0.32 V nm(-1). The activation energy decreases to 24.2 kJ mol(-1) and 23.7 kJ mol(-1) respectively at a higher field strength of 1.1 V nm(-1). At temperatures below the melting point, the activation energy in the gel phase of POPC and DPPC increases to 28.8 kJ mol(-1) and 34.4 kJ mol(-1) respectively at the same field of 1.1 V nm(-1). The pore closing time was found to be higher in the gel than in the Lα phase. The pore growth rate increases linearly with temperature and quadratically with field, consistent with viscosity limited growth models.

  15. Genetic diversity analysis of faba bean (Vicia faba L.) germplasms using sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Hou, W W; Zhang, X J; Shi, J B; Liu, Y J

    2015-10-30

    To investigate genetic diversity and relationships of 101 faba bean (Vicia faba L.), landraces and varieties from different provinces of China and abroad were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). A total of 2625 unambiguous and stable bands from 101 germplasms were detected, and 36 different bands were classified according to the electrophoretic mobility patterns of the proteins as determined by the SDS-PAGE analysis, of which 16 were polymorphic. Besides the common bands, the protein bands of 92, 75, 62, 40, 34, 17, and 13 kDa presented the highest frequencies of 92.08, 90.10, 99.01, 95.05, 95.05, 98.02, and 95.05%, respectively. The other 29 polymorphic protein bands showed higher polymorphism with 16.09 polymorphic bands in average. The genetic similarity of the 101 genotypes tested varied from 0.6111 to 0.9722, with an average of 0.7122. Cluster analysis divided the 101 genotypes into six major clusters, which was consistent with the systematic classification of faba bean done in previous studies. The overall results indicated that SDS-PAGE was a useful tool for genetic diversity analysis and laid a solid foundation for future faba bean breeding.

  16. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis.

    PubMed

    Sekiguchi, Hiroyuki; Watanabe, Masataka; Nakahara, Tadaatsu; Xu, Baohua; Uchiyama, Hiroo

    2002-10-01

    Bacterial community structure along the Changjiang River (which is more than 2,500 km long) was studied by using denaturing gradient gel electrophoresis (DGGE) and clone library analysis of PCR-amplified 16S ribosomal DNA (rDNA) with universal bacterial primer sets. DGGE profiles and principal-component analysis (PCA) demonstrated that the bacterial community gradually changed from upstream to downstream in both 1998 and 1999. Bacterial diversity, as determined by the Shannon index (H'), gradually decreased from upstream to downstream. The PCA plots revealed that the differences in the bacterial communities among riverine stations were not appreciable compared with the differences in two adjacent lakes, Lake Dongting and Lake Poyang. The relative stability of the bacterial communities at the riverine stations was probably due to the buffering action of the large amount of water flowing down the river. Clone library analysis of 16S rDNA revealed that the dominant bacterial groups changed from beta-proteobacteria and the Cytophaga-Flexibacter-Bacteroides group upstream to high-G+C-content gram-positive bacteria downstream and also that the bacterial community structure differed among the stations in the river and the lakes. The results obtained in this study should provide a reference for future changes caused by construction of the Three Gorges Dam.

  17. Cystic fibrosis (CF) mutation detection and frequencies in central New York state using single strand conformation (SSC) and heteroduplex analysis (HA) gel analysis

    SciTech Connect

    Shrimpton, A.E.; Lamberson, C.M.; Hicks, K.E.; Swender, P.T.

    1994-09-01

    Over 100 cystic fibrosis (CF) bearing chromosomes from patients living in central New York state have been screened in order to identify their CF mutations. Ethnic background information and parental samples were also collected when available. Polymerase chain reaction (PCR) amplified products from exons 3, 4, 5, 7, 9, 10, 11, 12, 13, 14B, 15, 17B, 19, 20, 21 and intro 19 have been screened for over 50 known CF mutations by restriction enzyme digest, heteroduplex analysis (HA) and/or single stand conformation (SSC) gel analysis. The exon 9 PCR product was difficult to analyze by HA or SSC gel analysis. Restriction enzyme site generating PCR primers were used to identify the R117H, 711+1,G>T, G542X, 1717-1,G>A, 1898-1,G>A and N1303K CF mutations. Haplotyping at CFTR-linked (xv-2c/Taq I, km19/Pst, I, MP6d.9/Msp I and J3.11/Pst I) and CFTR intragenic markers (intron 6 GATT{sub n}, 1540 A/G, 1898+152,T/A) was performed to aid in CF mutation identification.

  18. UV and visible activation of Cr(III)-doped TiO2 catalyst prepared by a microwave-assisted sol-gel method during MCPA degradation.

    PubMed

    Mendiola-Alvarez, S Y; Guzmán-Mar, J L; Turnes-Palomino, G; Maya-Alejandro, F; Hernández-Ramírez, A; Hinojosa-Reyes, L

    2016-11-10

    Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution using Cr(III)-doped TiO2 under UV and visible light was investigated. The semiconductor material was synthesized by a microwave-assisted sol-gel method with Cr(III) doping contents of 0.02, 0.04, and 0.06 wt%. The catalyst was characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), nitrogen physisorption, UV-Vis diffuse reflectance spectroscopy (DRS), and atomic absorption spectroscopy (AAS). The photocatalytic activity for the photodegradation of MCPA was followed by reversed-phase high-performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The intermediates formed during degradation were identified using gas chromatography-mass spectrometry (GC-MS). Chloride ion evolution was measured by ion chromatography. Characterization results showed that Cr(III)-doped TiO2 materials possessed a small crystalline size, high surface area, and mesoporous structure. UV-Vis DRS showed enhanced absorption in the visible region as a function of the Cr(III) concentration. The Cr(III)-doped TiO2 catalyst with 0.04 wt% of Cr(III) was more active than bare TiO2 for the degradation of MCPA under both UV and visible light. The intermediates identified during MCPA degradation were 4-chloro-2-methylphenol (CMP), 2-(4-hydroxy-2-methylphenoxy) acetic acid (HMPA), and 2-hydroxybuta-1,3-diene-1,4-diyl-bis (oxy)dimethanol (HBDM); the formation of these intermediates depended on the radiation source.

  19. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics

    PubMed Central

    Khan, Mohd Farhan; Ansari, Akhter H.; Hameedullah, M.; Ahmad, Ejaz; Husain, Fohad Mabood; Zia, Qamar; Baig, Umair; Zaheer, Mohd Rehan; Alam, Mohammad Mezbaul; Khan, Abu Mustafa; AlOthman, Zeid A.; Ahmad, Iqbal; Ashraf, Ghulam Md; Aliev, Gjumrakch

    2016-01-01

    The effect of mechanical stirring on sol-gel synthesis of thorn-like ZnO nanoparticles (ZnO-NPs) and antimicrobial activities is successfully reported in this study. The in-house synthesized nanoparticles were characterized by XRD, SEM, TEM, FTIR, TGA, DSC and UV-visible spectroscopy. The X-Ray Diffraction analysis revealed the wurtzite crystal lattice for ZnO-NPs with no impurities present. The diametric measurements of the synthesized thorn-like ZnO-NPs (morphology assessed by SEM) were well accounted to be less than 50 nm with the help of TEM. Relative decrease in aspect ratio was observed on increasing the agitation speed. The UV-visible spectroscopy showed the absorption peaks of the ZnO-NPs existed in both UVA and UVB region. A hypsochromic shift in λmax was observed when stirring pace was increased from 500 rpm to 2000 rpm. The FTIR spectroscopy showed the absorption bands of the stretching modes of Zn-O between 500 cm−1 to 525 cm−1. The Thermal analysis studies revealed better stability for ZnO-NPs prepared at 2000 rpm (ZnO-2000 rpm). TGA revealed the weight loss between two main temperatures ranges viz. around (90 °C–120 °C) and (240 °C–280 °C). Finally, the effect of ZnO-NPs prepared at different stirring conditions on the growth of Gram-positive (Bacillus subtilis), Gram-negative (Escherichia coli) bacteria and a fungi (Candida albicans) were examined; which showed good antibacterial as well as antifungal properties. These findings introduce a simple, inexpensive process to synthesize ZnO-NPs using conventional methods without the use of sophisticated equipments and its application as a potent nano-antibiotic. PMID:27349836

  20. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics.

    PubMed

    Khan, Mohd Farhan; Ansari, Akhter H; Hameedullah, M; Ahmad, Ejaz; Husain, Fohad Mabood; Zia, Qamar; Baig, Umair; Zaheer, Mohd Rehan; Alam, Mohammad Mezbaul; Khan, Abu Mustafa; AlOthman, Zeid A; Ahmad, Iqbal; Ashraf, Ghulam Md; Aliev, Gjumrakch

    2016-06-28

    The effect of mechanical stirring on sol-gel synthesis of thorn-like ZnO nanoparticles (ZnO-NPs) and antimicrobial activities is successfully reported in this study. The in-house synthesized nanoparticles were characterized by XRD, SEM, TEM, FTIR, TGA, DSC and UV-visible spectroscopy. The X-Ray Diffraction analysis revealed the wurtzite crystal lattice for ZnO-NPs with no impurities present. The diametric measurements of the synthesized thorn-like ZnO-NPs (morphology assessed by SEM) were well accounted to be less than 50 nm with the help of TEM. Relative decrease in aspect ratio was observed on increasing the agitation speed. The UV-visible spectroscopy showed the absorption peaks of the ZnO-NPs existed in both UVA and UVB region. A hypsochromic shift in λmax was observed when stirring pace was increased from 500 rpm to 2000 rpm. The FTIR spectroscopy showed the absorption bands of the stretching modes of Zn-O between 500 cm(-1) to 525 cm(-1). The Thermal analysis studies revealed better stability for ZnO-NPs prepared at 2000 rpm (ZnO-2000 rpm). TGA revealed the weight loss between two main temperatures ranges viz. around (90 °C-120 °C) and (240 °C-280 °C). Finally, the effect of ZnO-NPs prepared at different stirring conditions on the growth of Gram-positive (Bacillus subtilis), Gram-negative (Escherichia coli) bacteria and a fungi (Candida albicans) were examined; which showed good antibacterial as well as antifungal properties. These findings introduce a simple, inexpensive process to synthesize ZnO-NPs using conventional methods without the use of sophisticated equipments and its application as a potent nano-antibiotic.

  1. Catalytic activity of acid and base with different concentration on sol-gel kinetics of silica by ultrasonic method.

    PubMed

    Das, R K; Das, M

    2015-09-01

    The effects of both acid (acetic acid) and base (ammonia) catalysts in varying on the sol-gel synthesis of SiO2 nanoparticles using tetra ethyl ortho silicate (TEOS) as a precursor was determined by ultrasonic method. The ultrasonic velocity was received by pulsar receiver. The ultrasonic velocity in the sol and the parameter ΔT (time difference between the original pulse and first back wall echo of the sol) was varied with time of gelation. The graphs of ln[ln1/ΔT] vs ln(t), indicate two region - nonlinear region and a linear region. The time corresponds to the point at which the non-linear region change to linear region is considered as gel time for the respective solutions. Gelation time is found to be dependent on the concentration and types of catalyst and is found from the graphs based on Avrami equation. The rate of condensation is found to be faster for base catalyst. The gelation process was also characterized by viscosity measurement. Normal sol-gel process was also carried out along with the ultrasonic one to compare the effectiveness of ultrasonic. The silica gel was calcined and the powdered sample was characterized with scanning electron microscopy, energy dispersive spectra, X-ray diffractogram, and FTIR spectroscopy.

  2. Analysis of rRNA gene methylation in Arabidopsis thaliana by CHEF-Conventional 2D gel electrophoresis

    PubMed Central

    Mohannath, Gireesha; Pikaard, Craig S.

    2017-01-01

    Summary Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb to 9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes and sub-chromosomal DNA fragments, etc. Here we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~ 4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes. PMID:27576719

  3. Analysis of rRNA Gene Methylation in Arabidopsis thaliana by CHEF-Conventional 2D Gel Electrophoresis.

    PubMed

    Mohannath, Gireesha; Pikaard, Craig S

    2016-01-01

    Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb-9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes, and sub-chromosomal DNA fragments, etc. Here, we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes.

  4. Formulation and evaluation of a topical niosomal gel containing a combination of benzoyl peroxide and tretinoin for antiacne activity.

    PubMed

    Gupta, Ankush; Singh, Sima; Kotla, Niranjan G; Webster, Thomas J

    2015-01-01

    A skin disease, like acne, is very common and normally happens to everyone at least once in their lifetime. The structure of the stratum corneum is often compared with a brick wall, with corneocytes surrounded by the mortar of the intercellular lipid lamellae. One of the best options for successful drug delivery to the affected area of skin is the use of elastic vesicles (niosomes) which can be transported through the skin through channel-like structures. In this study, a combination of tretinoin (keratolytic agent) and benzoyl peroxide (BPO) (a potent antibacterial) was given by using niosomes as promising carriers for the effective treatment of acne by acting on a pathogenic site. In this section, niosomal gel formulation encapsulated drugs have been evaluated for in vitro, ex vivo, and in vivo, for their predetermined characteristics; and finally the stability of the niosome gel was tested at different temperature conditions for understanding of the storage conditions required for maintaining the quality of formulation attributes. The prepared niosome was found to be in the range of 531 nm with a zeta potential of -43 mV; the entrapment efficiencies of tretinoin (TRA) and BPO niosomes were found to be 96.25%±0.56% and 98.75%±1.25%, respectively. The permeated amount of TRA and BPO from the niosomal gel after 24 hours was calculated as 6.25±0.14 μg/cm(2) and 5.04±0.014 μg/cm(2), respectively. A comparative drug retention study in Wistar rat skin using cream, an alcoholic solution, and a niosomal gel showed 11.54 μg, 2.68 μg, and 15.54 μg amounts of TRA and 68.85 μg, 59.98 μg, and 143.78 μg amounts of BPO were retained in the layers of skin, respectively. In vivo studies of the niosomal gel and antiacne cream of TRA and BPO showed that the niosomal gel was more efficacious than the antiacne cream because niosomal gels with a 4.16-fold lower dose of BPO provided the same therapeutic index at targeted sites in comparison to the antiacne cream.

  5. On-channel base stacking in microchip capillary gel electrophoresis for high-sensitivity DNA fragment analysis.

    PubMed

    Kim, Dae-Kwang; Kang, Seong Ho

    2005-01-28

    We evaluated a novel strategy for high-sensitivity DNA fragment analysis in a conventional glass double-T microfluidic chip. The microchip allows for a DNA on-channel concentration based on base stacking (BS) with a microchip capillary gel electrophoretic (MCGE) separation step in a poly(vinylpyrrolidone) (PVP) sieving matrix. Depending if low conductivity caused a neutralization reaction between the hydroxide ions and the run buffer component Tris+, the stacking of DNA fragments were processed in the microchip. Compared to a conventional MCGE separation with a normal electrokinetic injection, the peak heights of 50-2650-base pair (bp) DNA fragments on the MCGE-BS separation were increased 3.9-8.0-fold. When we applied the MCGE-BS method to the analysis of a clinical sample of bovine theileria after PCR reaction, the peak height intensity of the amplified 816-bp DNA fragment from the 18S rRNA of T. buffeli was enhanced 7.0-fold compared to that of the normal injection method.

  6. Computer programs for analysis of nucleic acid hybridization, thermal denaturation, and gel electrophoresis data.

    PubMed Central

    Murphy, R F; Pearson, W R; Bonner, J

    1979-01-01

    Computer programs for the analysis of data from techniques frequently used in nucleic acids research are described. In addition to calculating non-linear, least-squares solutions to equations describing these systems, the programs allow for data editing, normalization, plotting and storage, and are flexible and simple to use. Typical applications of the programs are described. PMID:493129

  7. Microfluidic Gel Electrophoresis in the Undergraduate Laboratory Applied to Food Analysis

    ERIC Educational Resources Information Center

    Chao, Tzu-Chiao; Bhattacharya, Sanchari; Ros, Alexandra

    2012-01-01

    A microfluidics-based laboratory experiment for the analysis of DNA fragments in an analytical undergraduate course is presented. The experiment is set within the context of food species identification via amplified DNA fragments. The students are provided with berry samples from which they extract DNA and perform polymerase chain reaction (PCR)…

  8. Analysis of Molecular Epidemiology of Chilean Salmonella enterica Serotype Enteritidis Isolates by Pulsed-Field Gel Electrophoresis and Bacteriophage Typing

    PubMed Central

    Fernandez, Jorge; Fica, Alberto; Ebensperger, German; Calfullan, Hector; Prat, Soledad; Fernandez, Alda; Alexandre, Marcela; Heitmann, Ingrid

    2003-01-01

    Human Salmonella enterica serotype Enteritidis infections emerged in Chile in 1994. S. enterica serotype Enteritidis phage type 1 isolates predominated in the north, and phage type 4 isolates predominated in the central and southern regions. A study was planned to characterize this epidemic using the best discriminatory typing technique. Research involved 441 S. enterica serotype Enteritidis isolates, including clinical preepidemic samples (n = 74; 1975 to 1993) and epidemic (n = 199), food (n = 72), poultry (n = 57), and some Latin American (n = 39) isolates. The best method was selected based on a sample of preepidemic isolates, analyzing the discriminatory power (DP) obtained by phage typing and randomly amplified polymorphic DNA and pulsed-field gel electophoresis (PFGE) analysis. The highest DP was associated with BlnI PFGE-bacteriophage typing analysis (0.993). A total of 38 BlnI patterns (B patterns) were identified before the epidemic period, 19 since 1994, and only 4 in both periods. Two major clusters were identified by phylogenetic analysis, and the predominant B patterns clustered in the same branch. Combined analysis revealed that specific B pattern-phage type combinations (subtypes) disappeared before 1994, that different genotypes associated with S. enterica serotype Enteritidis phage type 4 had been observed since 1988, and that strain diversity increased before the expansion of S. enterica serotype Enteritidis in 1994. Predominant subtype B3-phage type 4 was associated with the central and southern regions, and subtype B38-phage type 1 was associated with the north (P < 0.0001). Food and poultry isolates matched the predominant S. enterica serotype Enteritidis subtypes, but isolates identified in neighboring countries (Peru and Bolivia) did not match S. enterica serotype Enteritidis subtypes identified in the north of Chile. The results of this work demonstrate that genetic diversity, replacement, and expansion of specific S. enterica serotype

  9. The preparation of Zn2+-doped TiO(2) nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities.

    PubMed

    Liu, Guoguang; Zhang, Xuezhi; Xu, Yajie; Niu, Xinshu; Zheng, Liqing; Ding, Xuejun

    2005-06-01

    The photocatalytic oxidation of the organic pollutants with TiO(2) as photocatalyst has been widely studied in the world, and many achievements have been made. The degradation of pollutants is highly related to the photocatalytic activity of TiO(2). It is demonstrated that doping ions to TiO(2) is one way to enhance the photocatalytic activity of TiO(2). In this paper, Zn(2+)-doped TiO(2) nanoparticles were prepared through sol-gel and solid phase reaction methods, characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The photocatalytic activity of the elaborated powders was studied following the degradation of Rhodamine B. The results showed that the photocatalytic activity of Zn(2+)-doped TiO(2) prepared by sol-gel method is close to that of pure TiO(2) particles, however, the photocatalytic activity of Zn(2+)-doped TiO(2) prepared by solid phase reaction method is much higher than that of pure TiO(2) particles. The most efficient degradation of Rhodamine B was found with TiO(2) particles doped with 0.5% Zn(2+) in mole and calcined at 500 degrees C. Also the reason for the enhancement of the photocatalytic activity of TiO(2) by Zn(2+) doping through solid phase reaction method was discussed.

  10. Nano-ZnO/ZnO-HAPw prepared via sol-gel method and antibacterial activities of inorganic agents on six bacteria associated with oral infections

    NASA Astrophysics Data System (ADS)

    Jin, Jianfeng; Liu, Wenying; Zhang, Wenyun; Chen, Qinghua; Yuan, Yanbo; Yang, Lidou; Wang, Qintao

    2014-10-01

    The antibacterial activity of zinc oxide (ZnO) and the strengthening of hydroxylapatite whiskers (HAPws) have been widely studied and applied. However, the antibacterial properties of ZnO-HAPws have scarcely been researched. The aim of this study was to further investigate several types of nano-ZnO morphologies of ZnO-HAPws that were prepared using the sol-gel method at different pondus hydrogenii (pH) values and temperatures. The four morphologies of ZnO-HAPws that were investigated here were granule, triangle, short rod and disc type, and these morphologies were investigated at 70 °C at pH 6.4, 37 °C at pH 6.6, 70 °C at pH 6.6 and 70 °C at pH 6.6, respectively. Next, the antibacterial activity of ZnO-HAPw was compared to that of nano-ZnO, commercially available ZnO and tetrapod-like ZnO whiskers (T-ZnOw) with six bacteria that are associated with oral infections: Streptococcus mutans, Lactobacillus casei, Candida albicans, Actinomyces viscosus, Staphylococcus aureus and Escherichia coli. The results of examinations of the minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) showed that the antibacterial activity of ZnO-HAPw exceeded that of the commercially available ZnO and T-ZnOw. Additionally, analysis of variance (ANOVA) analysis of the MBCs revealed that the four tested antibacterial agents had significantly different effects on S. mutans ( F = 8.940; P = 0.006), S. aureus ( F = 6.924; P = 0.013) and E. coli ( F = 4.468; P = 0.04). ANOVA analyses of the MICs revealed that the four tested antibacterial agents had significantly different effects on S. mutans ( F = 6.183; P = 0.018), A. viscosus ( F = 4.531; P = 0.039) and S. aureus ( F = 18.976; P = 0.001).

  11. Western Blot Analysis of the Exotoxins Components from Bacillus anthracis Separated by Isoelectric Focusing Gel Electrophoresis

    DTIC Science & Technology

    2004-07-01

    Biochemical and Biophysical Research Communications 317 (2004) 294–300 BBRC www.elsevier.com/locate/ybbrcWestern blot analysis...pag iden- tified five different point mutations from 26 different S.F. Little / Biochemical and Biophysical Research Communications 317 (2004) 294...identified as Iowa, it has subsequently been identified as Texas. 296 S.F. Little / Biochemical and Biophysical Research Communications 317 (2004)

  12. Microfluidic device having an immobilized pH gradient and PAGE gels for protein separation and analysis

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Singh, Anup K.; Wang, Ying-Chih

    2012-12-11

    Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.

  13. Microfluidic device having an immobilized pH gradient and page gels for protein separation and analysis

    DOEpatents

    Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

    2014-05-20

    Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.

  14. Activated dynamics in dense fluids of attractive nonspherical particles. I. Kinetic crossover, dynamic free energies, and the physical nature of glasses and gels

    NASA Astrophysics Data System (ADS)

    Tripathy, Mukta; Schweizer, Kenneth S.

    2011-04-01

    We apply the center-of-mass versions of naïve mode coupling theory and nonlinear Langevin equation theory to study how short-range attractive interactions modify the onset of localization, activated single-particle dynamics, and the physical nature of the transiently arrested state of a variety of dense nonspherical particle fluids (and the spherical analog) as a function of volume fraction and attraction strength. The form of the dynamic crossover boundary depends on particle shape, but the reentrant glass-fluid-gel phenomenon and the repulsive glass-to-attractive glass crossover always occur. Diverse functional forms of the dynamic free energy are found for all shapes including glasslike, gel-like, a glass-gel form defined by the coexistence of two localization minima and two activation barriers, and a “mixed” attractive glass characterized by a single, very short localization length but an activation barrier located at a large displacement as in repulsive-force caged glasses. For the latter state, particle trajectories are expected to be of a two-step activated form and can be accessed at high attraction strength by increasing volume fraction, or by increasing attraction strength at fixed high enough volume fraction. A new classification scheme for slow dynamics of fluids of dense attractive particles is proposed based on specification of both the nature of the localized state and the particle displacements required to restore ergodicity via activated barrier hopping. The proposed physical picture appears to be in qualitative agreement with recent computer simulations and colloid experiments.

  15. Efficacy, Safety, and Dermal Tolerability of Dapsone Gel, 7.5% in Patients with Moderate Acne Vulgaris: A Pooled Analysis of Two Phase 3 Trials

    PubMed Central

    Kircik, Leon; McMichael, Amy; Cook-Bolden, Fran E.; Tyring, Stephen K.; Berk, David R.; Chang-Lin, Joan-En; Lin, Vince; Kaoukhov, Alexandre

    2016-01-01

    Objective: Assess efficacy and safety of once-daily topical dapsone gel, 7.5% compared with vehicle for treating acne vulgaris (acne). Design: A pooled analysis of data from two identically designed, randomized, double-blind, vehicle-controlled, multicenter, 12-week clinical trials. Setting: Study sites in the United States and Canada. Participants: overall, 4,340 patients were randomized 1:1 to dapsone and vehicle. Criteria included age 12 years or older with acne diagnosis, 20 to 50 facial inflammatory lesions (papules and pustules), 30 to 100 facial noninflammatory lesions (open and closed comedones), and acne grade of 3 (moderate) on the Global Acne Assessment Score scale. Measurements: Efficacy assessments included the Global Acne Assessment Score success rate (proportion of patients with Global Acne Assessment Score of 0 [none] or 1 [minimal]) and percentage change from baseline in inflammatory and noninflammatory lesions at Week 12. Results: Global Acne Assessment Score success rates were 29.8 percent and 21.1 percent for patients who received dapsone gel, 7.5% and vehicle, respectively (p<0.001). Patients receiving dapsone gel, 7.5% had greater percentage change in lesion counts than patients receiving vehicle (inflammatory lesions: -54.6% vs. -48.1%; p<0.001; -45.1 %; noninflammatory lesions: -39.4%; p<0.001). Most adverse events were mild to moderate in severity. Mean dermal tolerability scores for stinging/burning, dryness, scaling, and erythema were similarly low with dapsone gel, 7.5% and vehicle. Conclusion: Dapsone gel, 7.5%, with a 50-percent greater dapsone concentration than twice-daily dapsone gel, 5% formulation, is applied topically once daily for acne, is effective, safe, and well-tolerated over 12 weeks, and has local tolerability similar to that of vehicle. www.clinicaltrials.gov identifiers: NCT01974141 and NCT01974323 PMID:27847545

  16. Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE)

    PubMed Central

    2010-01-01

    Background Peach fruit undergoes a rapid softening process that involves a number of metabolic changes. Storing fruit at low temperatures has been widely used to extend its postharvest life. However, this leads to undesired changes, such as mealiness and browning, which affect the quality of the fruit. In this study, a 2-D DIGE approach was designed to screen for differentially accumulated proteins in peach fruit during normal softening as well as under conditions that led to fruit chilling injury. Results The analysis allowed us to identify 43 spots -representing about 18% of the total number analyzed- that show statistically significant changes. Thirty-nine of the proteins could be identified by mass spectrometry. Some of the proteins that changed during postharvest had been related to peach fruit ripening and cold stress in the past. However, we identified other proteins that had not been linked to these processes. A graphical display of the relationship between the differentially accumulated proteins was obtained using pairwise average-linkage cluster analysis and principal component analysis. Proteins such as endopolygalacturonase, catalase, NADP-dependent isocitrate dehydrogenase, pectin methylesterase and dehydrins were found to be very important for distinguishing between healthy and chill injured fruit. A categorization of the differentially accumulated proteins was performed using Gene Ontology annotation. The results showed that the 'response to stress', 'cellular homeostasis', 'metabolism of carbohydrates' and 'amino acid metabolism' biological processes were affected the most during the postharvest. Conclusions Using a comparative proteomic approach with 2-D DIGE allowed us to identify proteins that showed stage-specific changes in their accumulation pattern. Several proteins that are related to response to stress, cellular homeostasis, cellular component organization and carbohydrate metabolism were detected as being differentially accumulated

  17. Two-dimensional gel electrophoresis-based analysis provides global insights into the cotton ovule and fiber proteomes.

    PubMed

    Jin, Xiang; Wang, Limin; He, Liping; Feng, Weiqiang; Wang, Xuchu

    2016-02-01

    Proteomic analysis of upland cotton was performed to profile the global detectable proteomes of ovules and fibers using two-dimensional electrophoresis (2DE). A total of 1,203 independent protein spots were collected from representative 2DE gels, which were digested with trypsin and identified by matrix-assisted laser desorption and ionization-time-offlight/ time-of-flight (MALDI-TOF/TOF) mass spectrometry. The mass spectrometry or tandem mass spectrometry (MS or MS/MS) data were then searched against a local database constructed from Gossypium hirsutum genome sequences, resulting in successful identification of 975 protein spots (411 for ovules and 564 for fibers). Functional annotation analysis of the 975 identified proteins revealed that ovule-specific proteins were mainly enriched in functions related to fatty acid elongation, sulfur amino acid metabolism and post-replication repair, while fiber-specific proteins were enriched in functions related to root hair elongation, galactose metabolism and D-xylose metabolic processes. Further annotation analysis of the most abundant protein spots showed that 28.96% of the total proteins in the ovule were mainly located in the Golgi apparatus, endoplasmic reticulum, mitochondrion and ribosome, whereas in fibers, 27.02% of the total proteins were located in the cytoskeleton, nuclear envelope and cell wall. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses of the ovule-specific protein spots P61, P93 and P198 and fiber-specific protein spots 230, 477 and 511 were performed to validate the proteomics data. Protein-protein interaction network analyses revealed very different network cluster patterns between ovules and fibers. This work provides the largest protein identification dataset of 2DE-detectable proteins in cotton ovules and fibers and indicates potentially important roles of tissue-specific proteins, thus providing insights into the cotton ovule and fiber proteomes on a global scale.

  18. TGF-β2 promotes RPE cell invasion into a collagen gel by mediating urokinase-type plasminogen activator (uPA) expression.

    PubMed

    Sugioka, Koji; Kodama, Aya; Okada, Kiyotaka; Iwata, Mihoko; Yoshida, Koji; Kusaka, Shunji; Matsumoto, Chota; Kaji, Hiroshi; Shimomura, Yoshikazu

    2013-10-01

    Transforming growth factor-beta (TGF-β) is one of the main epithelial-mesenchymal transition (EMT)-inducing factors. In general, TGF-β-induced EMT promotes cell migration and invasion. TGF-β also acts as a potent regulator of pericellular proteolysis by regulating the expression and secretion of plasminogen activators. Urokinase-type plasminogen activator (uPA) is a serine protease that binds to its cell surface receptor (uPAR) with high affinity. uPA binding to uPAR stimulates uPAR's interaction with transmembrane proteins, such as integrins, to regulate cytoskeletal reorganization and cell migration, differentiation and proliferation. However, the influence of TGF-β and the uPA/uPAR system on EMT in retinal pigment epithelial (RPE) cells is still unclear. The purpose of this study was to determine the effect of TGF-β2, which is the predominant isoform in the retina, and the uPA/uPAR system on RPE cells. In this study, we first examined the effect of TGF-β2 and/or the inhibitor of uPA (u-PA-STOP(®)) on the proliferation of a human retinal pigment epithelial cell line (ARPE-19 cells). Treatment with TGF-β2 or u-PA-STOP(®) suppressed cell proliferation. Combination treatment of TGF-β2 and u-PA-STOP(®) enhanced cell growth suppression. Furthermore, western blot analysis, fibrin zymography and real-time reverse transcription PCR showed that that TGF-β2 induced EMT in ARPE-19 cells and that the expression of uPA and uPAR expression was up-regulated during EMT. The TGF-β inhibitor SB431542 suppressed TGF-β2-stimulated uPA expression and secretion but did not suppress uPAR expression. Furthermore, we seeded ARPE-19 cells onto Transwell chambers and allowed them to invade the collagen matrix in the presence of TGF-β2 alone or with TGF-β2 and u-PA-STOP(®). TGF-β2 treatment induced ARPE-19 cell invasion into the collagen gel. Treatment with a combination of TGF-β2 and the uPA inhibitor strongly inhibited ARPE-19 cell invasion compared with treatment with

  19. Development of a long-acting, protein-loaded, redox-active, injectable gel formed by a polyion complex for local protein therapeutics.

    PubMed

    Ishii, Shiro; Kaneko, Junya; Nagasaki, Yukio

    2016-04-01

    Although cancer immunotherapies are attracting much attention, it is difficult to develop bioactive proteins owing to the severe systemic toxicity. To overcome the issue, we designed new local protein delivery system by using a protein-loaded, redox-active, injectable gel (RIG), which is formed by a polyion complex (PIC) comprising three components, viz., cationic polyamine-poly(ethylene glycol)-polyamine triblock copolymer possessing ROS-scavenging moieties as side chains; anionic poly(acrylic acid); and a protein. The mixture formed the protein-loaded PIC flower micelles at room temperature, which immediately converted to a gel with high mechanical strength upon exposure to physiological conditions. Because the protein electrostatically interacts with the PIC gel network, RIG provided a sustained release of the protein without a significant initial burst, regardless of the types of proteins in vitro, and much longer retention of the protein at the local injection site in mice than that of the naked protein. Subcutaneous injections of IL-12@RIG in the vicinity of tumor tissue showed remarkable tumor growth inhibition in tumor-bearing mice, compared to that observed with injection of IL-12 alone, suppressing adverse events caused by IL-12-induced ROS. Our results indicate that RIG has potential as a platform technology for an injectable sustained-release carrier for proteins.

  20. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.

    PubMed

    Wang, Xin; Oh, MyeongWon; Sakata, Katsumi; Komatsu, Setsuko

    2016-01-01

    Growth in the early stage of soybean is markedly inhibited under flooding and drought stresses. To explore the responsive mechanisms of soybean, temporal protein profiles of root tip under flooding and drought stresses were analyzed using gel-free/label-free proteomic technique. Root tip was analyzed because it was the most sensitive organ against flooding, and it was beneficial to root penetration under drought. UDP glucose: glycoprotein glucosyltransferase was decreased and increased in soybean root under flooding and drought, respectively. Temporal protein profiles indicated that fermentation and protein synthesis/degradation were essential in root tip under flooding and drought, respectively. In silico protein-protein interaction analysis revealed that the inductive and suppressive interactions between S-adenosylmethionine synthetase family protein and B-S glucosidase 44 under flooding and drought, respectively, which are related to carbohydrate metabolism. Furthermore, biotin/lipoyl attachment domain containing protein and Class II aminoacyl tRNA/biotin synthetases superfamily protein were repressed in the root tip during time-course stresses. These results suggest that biotin and biotinylation might be involved in energy management to cope with flooding and drought in early stage of soybean-root tip.

  1. Analysis of cell wall extracts of Candida albicans by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot techniques.

    PubMed Central

    Ponton, J; Jones, J M

    1986-01-01

    Cell walls of intact yeast- and mycelial-phase Candida albicans B311 were extracted with different compounds: dithiothreitol, dithiothreitol with protease, dithiothreitol with lyticase, and dithiothreitol with protease followed by beta-glucuronidase with chitinase. Extracts were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot techniques. Dithiothreitol extracts contained the most satisfactory array of components for study. Analysis of these extracts demonstrated that the outer cell wall layers of Candida blastoconidia and germ tubes contained a complex array of polysaccharides, glycoproteins, and proteins. The proteins contributed to a latticework stabilized by covalent bonds that was important in determining the porosity of the outer cell wall layers. When equivalent weights were analyzed, mycelial-phase extract contained a more varied array of proteins than did yeast-phase extract. Only a portion of proteins in mycelial-phase extract elicited antibody responses in hyperimmunized rabbits or infected humans. A polysaccharide-rich, high-molecular-weight component (migrating at a position that would correspond to proteins having molecular weights of 235,000 to 250,000) and a protein component (molecular weight, 19,000) were readily demonstrable in the mycelial-phase extract but could not be identified in the yeast-phase extract. Images PMID:3527986

  2. Differences between fertilized and unfertilized chicken egg white proteins revealed by 2-dimensional gel electrophoresis-based proteomic analysis.

    PubMed

    Qiu, Ning; Liu, Wen; Ma, Meihu; Zhao, Lei; Li, Yuqi

    2013-03-01

    The egg white protein alterations during the early phase of chicken embryonic development were recently reported by our laboratory. Nevertheless, the original albumen differences between fresh unfertilized and fertilized chicken eggs have not been investigated. By using 2-dimensional gel electrophoresis (2-DE), coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS) method, 1 ovalbumin protein spot as well as 6 ovalbumin-related protein Y spots were identified showing more than 10-fold differences (P < 0.01) in abundance between fresh unfertilized and fertilized chicken egg whites. Six of these protein spots represented higher intensity in fertilized eggs through 2-DE analysis. It was thus concluded that ovalbumin protein family, especially ovalbumin-related protein Y, may play an important role in embryonic development, which still needs to be validated. This finding will provide insight into embryogenesis to improve our understanding of the functions of ovalbumin family proteins in regulating or supporting embryonic development.

  3. Analysis of HLA-DR from alveolar macrophages and blood monocytes by two-dimensional gel electrophoresis

    SciTech Connect

    Ferro, T.J.; Monos, D.S.; Spear, B.T.; Rossman, M.D.; Zmijewski, C.M.; Kamoun, M.; Daniele, R.P.

    1986-03-01

    Human blood monocytes (BM) are more effective than alveolar macrophages (AM) in promoting lymphocyte proliferation to antigen. To further understand these differences, the HLA-DR molecules synthesized by these two cell types were compared. AM were prepared by adherence of cells obtained by bronchoscopic lavage; BM were prepared by adherence of blood mononuclear cells from the same normal volunteer. Cells were cultured for 7 hours with /sup 3/H-leucine and HLA-DR was immunoprecipitated with the murine monoclonal antibody L243. Immunoprecipitates were analyzed by two-dimensional gel electrophoresis. In three experiments, protein synthetic rate was greater and more HLA-DR was immunoprecipitated per cell in BM than in AM. Isoelectric focusing showed identical charge variation for BM and AM. However, molecular weight analysis of AM HLA-DR revealed multiple bands of slightly different molecular weight for each beta-chain peptide, whereas only a single band occurred with BM HLA-DR. Neuraminidase treatment reduced the charge heterogeneity but did not affect the molecular weight differences. These findings may relate to the differential ability of AM and BM to promote lymphocyte proliferation to antigen.

  4. Visualization of UV-induced replication intermediates in E. coli using two-dimensional agarose-gel analysis.

    PubMed

    Jeiranian, H Arthur; Schalow, Brandy J; Courcelle, Justin

    2010-12-21

    Inaccurate replication in the presence of DNA damage is responsible for the majority of cellular rearrangements and mutagenesis observed in all cell types and is widely believed to be directly associated with the development of cancer in humans. DNA damage, such as that induced by UV irradiation, severely impairs the ability of replication to duplicate the genomic template accurately. A number of gene products have been identified that are required when replication encounters DNA lesions in the template. However, a remaining challenge has been to determine how these proteins process lesions during replication in vivo. Using Escherichia coli as a model system, we describe a procedure in which two-dimensional agarose-gel analysis can be used to identify the structural intermediates that arise on replicating plasmids in vivo following UV-induced DNA damage. This procedure has been used to demonstrate that replication forks blocked by UV-induced damage undergo a transient reversal that is stabilized by RecA and several gene products associated with the RecF pathway. The technique demonstrates that these replication intermediates are maintained until a time that correlates with the removal of the lesions by nucleotide excision repair and replication resumes.

  5. Structural analysis of fluorine-containing bioactive glass nanoparticles synthesized by sol-gel route assisted by ultrasound energy.

    PubMed

    C Lins, Carolina E; R Oliveira, Agda A; Gonzalez, Ismael; A A Macedo, Waldemar; M Pereira, Marivalda

    2017-02-02

    In the last decades, studies about the specific effects of bioactive glass on remineralization of dentin were the focus of attention, due to their excellent regenerative properties in mineralized tissues. The incorporation of Fluorine in bioactive glass nanoparticles may result in the formation of fluorapatite (FAP), which is chemically more stable than hydroxyapatite or carbonated hydroxyapatite, and therefore is of interest for dental applications. The aim of this study was to synthesize and characterize a new system of Fluorine-containing bioactive glass nanoparticles (BGNPF). A sol-gel route assisted by ultrasound was used for the synthesis of BGNPF. The particles obtained were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), X-ray diffraction (XRD), dynamic light scattering (DLS), nitrogen adsorption, and X-ray photoelectron spectroscopy (XPS). SEM micrographs showed that the particles are quite uniform spherical nanostructures, occurring agglomeration or partial sinterization of the particulate system after heat treatment. XRD and XPS analysis results suggest the formation of fluorapatite crystals embedded within the matrix of the bioactive glass nanoparticles. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  6. Cu2+-assisted two dimensional charge-mass double focusing gel electrophoresis and mass spectrometric analysis of histone variants.

    PubMed

    Zhang, Wenyang; Tang, Xuemei; Ding, Mengjie; Zhong, Hongying

    2014-12-10

    Abundant isoforms and dynamic posttranslational modifications cause the separation and identification of histone variants to be experimentally challenging. To meet this need, we employ two-dimensional electrophoretic gel separation followed by mass spectrometric detection which takes advantage of the chelation of Cu(2+) with amino acid residues exposed on the surfaces of the histone proteins. Acid-extracted rat liver histones were first mixed with CuSO4 solution and then separated in one dimension with triton-acid-urea (TAU) gel electrophoresis and in a second dimension using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separations result from both the changes in charge and mass upon Cu(2+) chelation. Identities of each separated gel bands were obtained by using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). It was found that the migration of H3 histone isoforms of rat liver is markedly affected by the use of Cu(2+) ions.

  7. Comparative analysis of the DNA staining efficiencies of different fluorescent dyes in preparative agarose gel electrophoresis.

    PubMed

    Huang, Qing; Fu, Wei-Ling

    2005-01-01

    Ethidium bromide (EB) is a mutagen and toxin that is widely used in the laboratory for visualization of nucleic acids. Safer nucleic acid stains, such as SYBR Gold, SYBR Green, GoldView, GeneFinder, and GoldStar, have been developed. However, there has been no systematic comparative analysis of the staining efficiencies of these dyes. In the present study, SYBR Gold, SYBR Green I, GoldView and EB were compared. Although both SYBR Gold and SYBR Green alter electrophoretic mobility and thus DNA size estimates, they are cost-effective alternatives to EB. SYBR Gold was more sensitive than SYBR Green I at detecting short fragments, but 50-bp bands were clearly visible using either dye when visualized with a long integration time. SYBR Gold or SYBR Green I are sensitive and relatively safe alternatives to EB. In our laboratory, the SYBR Gold method is now used routinely by all members of our group with great consistency and success.

  8. Towards a proteomic analysis of atopic dermatitis: a two-dimensional-polyacrylamide gel electrophoresis/mass spectrometric analysis of cultured patient-derived fibroblasts.

    PubMed

    Park, Yong-Doo; Kim, So-Yeon; Jang, Hee-Sun; Seo, Eun-Young; Namkung, Jung-Hyun; Park, Hyung-Seok; Cho, Sang Yun; Paik, Young-Ki; Yang, Jun-Mo

    2004-11-01

    Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease typically characterized by a distribution of eczematous skin lesions with lichenification, pruritic excoriations, and dry skin with wide varieties of pathophysiologic aspects. Recently, AD was divided into extrinsic and intrinsic forms according to the presence or absence of an allergy. We investigated alterations in protein expression in primary cultured AD cells from the patient biopsy samples by two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight. In the primary cultured fibroblasts, we obtained 31 candidate proteins from the two-dimensional gel image analysis in which 18 proteins were up-regulated, eight proteins were down-regulated and five proteins were post-translationally modified. From these 2-DE results, we found several candidate genes matched proteomic expression patterns by semiquantitative reverse transcription PCR. Since the exact mechanism of atopic alterations in fibroblasts remains unknown, our results may provide new clues to aid in understanding AD.

  9. Direct analysis of in-gel proteins by carbon nanotubes-modified paper spray ambient mass spectrometry.

    PubMed

    Han, Feifei; Yang, Yuhan; Ouyang, Jin; Na, Na

    2015-02-07

    The in situ and direct extraction, desorption and ionization of in-gel intact proteins after electrophoresis has been achieved by carbon nanotubes (CNTs)-modified paper spray mass spectrometry at ambient conditions. Characteristics of CNTs (including larger surface area, smaller pore diameter and enhanced conductivity) were endowed to the porous filter paper substrate by uniformly dispersing the CNTs on the filter paper. Upon applying electric potential to the CNTs-modified paper, the in-gel proteins were extracted from the gel and subsequently migrated to the tip of the filter paper by electrophoresis-like behavior for paper spray ionization, which was monitored by extracted ion chronograms. The characterizations of modified filter papers and CNTs nanoparticles further confirmed the role of CNTs in in-gel protein extraction, protein migration as well as spray ionization at the paper tip. Under optimized conditions, a mixture of cytochrome c, lysozyme and myoglobin was successfully separated by native electrophoresis and subsequently analysed by the present method, showing a limit of detection of 10 ng per gel band. The present strategy offers a new pathway for the direct detection of in-gel intact proteins at ambient conditions without any pre-treatment (e.g. digestion, chemical extraction and desalting), which exhibits potential applications in top-down proteomics.

  10. Prompt-Gamma Activation Analysis.

    PubMed

    Lindstrom, Richard M

    1993-01-01

    A permanent, full-time instrument for prompt-gamma activation analysis is nearing completion as part of the Cold Neutron Research Facility (CNRF). The design of the analytical system has been optimized for high gamma detection efficiency and low background, particularly for hydrogen. Because of the purity of the neutron beam, shielding requirements are modest and the scatter-capture background is low. As a result of a compact sample-detector geometry, the sensitivity (counting rate per gram of analyte) is a factor of four better than the existing Maryland-NIST thermal-neutron instrument at this reactor. Hydrogen backgrounds of a few micrograms have already been achieved, which promises to be of value in numerous applications where quantitative nondestructive analysis of small quantities of hydrogen in materials is necessary.

  11. Analysis of cells isolated from bone cultured on collagen gels and polystyrene culture dishes

    SciTech Connect

    Fletcher, K.

    1981-01-01

    Bone is a complex tissue which contains three types of differentiated cells viz., osteoblasts, osteoclasts and osteocytes. In mature bone, these cells are identified both by their location within the tissue and their morphological characteristics. In fetal tissue, one also finds many progenitor cells, fibroblasts and some cartilage cells. Each of these cell types has distinct functions which are reflected in their morphology, metabolic properties and response to hormones. Studies were also undertaken to evaluate the class of problems associated with electron microprobe analysis of the extracellular fluid space in bone. It was determined that differences in elemental composition in a small volume between cells and mineral cannot be quantitatively corrected for fluorescence, atomic number or absorption effects of the mineral. A study of the use of free-flow dialysis in the study of metal binding to protein demonstrates the anomalous behavior of mercury in this experimental approach and emphasizes the importance of a thorough examination of the control situation before protein to metal binding is examined.

  12. Proteomic analysis of halotolerant proteins under high and low salt stress in Dunaliella salina using two-dimensional differential in-gel electrophoresis

    PubMed Central

    Jia, Yan-Long; Chen, Hui; Zhang, Chong; Gao, Li-Jie; Wang, Xi-Cheng; Qiu, Le-Le; Wu, Jun-Fang

    2016-01-01

    Abstract Dunaliella salina, a single-celled marine alga with extreme salt tolerance, is an important model organism for studying fundamental extremophile survival mechanisms and their potential practical applications. In this study, two-dimensional differential in-gel electrophoresis (2D-DIGE) was used to investigate the expression of halotolerant proteins under high (3 M NaCl) and low (0.75 M NaCl) salt concentrations. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and bioinformatics were used to identify and characterize the differences among proteins. 2D-DIGE analysis revealed 141 protein spots that were significantly differentially expressed between the two salinities. Twenty-four differentially expressed protein spots were successfully identified by MALDI-TOF/TOF MS, including proteins in the following important categories: molecular chaperones, proteins involved in photosynthesis, proteins involved in respiration and proteins involved in amino acid synthesis. Expression levels of these proteins changed in response to the stress conditions, which suggests that they may be involved in the maintenance of intracellular osmotic pressure, cellular stress responses, physiological changes in metabolism, continuation of photosynthetic activity and other aspects of salt stress. The findings of this study enhance our understanding of the function and mechanisms of various proteins in salt stress. PMID:27192131

  13. Sol-gel-based biosensing applied to medicinal science.

    PubMed

    Moreira, Felismina T C; Moreira-Tavares, Ana P; Sales, M Goreti F

    2015-01-01

    Biosensors have opened new horizons in biomedical analysis, by ensuring increased assay speed and flexibility, and allowing point-of-care applications, multi-target analyses, automation and reduced costs of testing. This has been a result of many studies merging nanotechnology with biochemistry over the years, thereby enabling the creation of more suitable environments to biological receptors and their substitution by synthetic analogue materials. Sol-gel chemistry, among other materials, is deeply involved in this process. Sol-gel processing allows the immobilization of organic molecules, biomacromolecules and cells maintaining their properties and activities, permitting their integration into different transduction devices, of electrochemical or optical nature, for single or multiple analyses. Sol-gel also allows to the production of synthetic materials mimicking the activity of natural receptors, while bringing advantages, mostly in terms of cost and stability. Moreover, the biocompatibility of sol-gel materials structures of biological nature allowed the use of these materials in emerging in vivo applications. In this chapter, biosensors for biomedical applications based on sol-gel derived composites are presented, compared and described, along with current emerging applications in vivo, concerning drug delivery or biomaterials. Sol-gel materials are shown as a promising tool for current, emerging and future medical applications.

  14. Evaluation of an effective sample prefractionation method for the proteome analysis of breast cancer tissue using narrow range two-dimensional gel electrophoresis.

    PubMed

    Lee, KiBeom

    2008-06-01

    One method of improving the protein profiling of complex mammalian proteomes is the use of prefractionation followed by application of narrow pH range two dimensional (2-D) gels. The success of this strategy relies on sample solubilization; poor solubilization has been associated with missing protein fractions and diffuse, streaked, and/or trailing protein spots. In this study, I sought to optimize the solubilization of prefractionated human cancer cell samples using isoelectric focusing (IEF) rehydration buffers containing a variety of commercially available reducing agents, detergents, chaotropes, and carrier ampholytes. The solubilized proteins were resolved on 2-D gels and compared. Among five tested IEF rehydration buffers, those containing 3-[(3-cholamidopropyl)dimethylamino]-1-propane sulfonate (CHAPS) and dithiothreitol (DTT) provided superior resolution, while that containing Nonidet P-40 (NP-40) did not significantly affect protein resolution, and the tributyl phosphine (TBP)-containing buffer yielded consistently poor results. In addition, I found that buffers containing typically high urea and ampholyte levels generated sharper 2-D gels. Using these optimized conditions, I was able to apply 2-D gel analysis successfully to fractionated proteins from human breast cancer tissue MCF-7, across a pH range of 4-6.7.

  15. Statistical modeling of zaltoprofen loaded biopolymeric nanoparticles: Characterization and anti-inflammatory activity of nanoparticles loaded gel

    PubMed Central

    Shah, Hirva A; Patel, Rakesh P

    2015-01-01

    Objective: The main objective of this study is to formulate polymeric nanoparticles (NPs) loaded with zaltoprofen, an NSAID drug. The optimization, in terms of polymer concentration, stabilizer concentration and pH of the formulation was employed by 3-factor-3-level Box-Behnken experimental design. Materials and Methods: The NPs of zaltoprofen were fabricated using chitosan and alginate as polymers by ionotropic gelation. The ionic interaction between the ionic polymers was studied using Fourier transform infrared and differential scanning calorimetry study. Result: For different formulation the average particle size ranged between 156 ± 1.0 nm and 554 ± 2.8 nm. The drug entrapment ranged between 61.40% ± 3.20% and 90.20% ± 2.47%. The ANOVA results exhibited that all the three factors were significant. The resultant optimized batch was characterized by particle size 156.04 ± 1.4 nm, %entrapment efficacy 88.67% ± 2.0%, zetapotential + 25.3 mV and polydispersity index 0.320. The scanning electron microscopy showed spherical NPs of average size 99.5 nm. The optimized NPs were loaded in carbopol gel, which was subjected to study of drug content, viscosity, spreadability, in vitro drug diffusion and in vivo antiinflammatory test on rats. Conclusion: This study showed that zaltoprofen NPs prepared using the ratio of polymer CS:AG:1:1.8, stabilizer concentration 0.98% and pH 4.73 was found to be of optimized particle size, maximum drug entrapment. The NPs loaded gel showed controlled release for 12 h following Korsmeryer-peppas model of the diffusion profile. The in vivo antiinflammatory study showed prolonged effect of NPs loaded gel for 10 h. PMID:25599029

  16. Multiple phases of protien gels

    NASA Astrophysics Data System (ADS)

    Annaka, Masahiko; Tanaka, Toyoichi

    1994-03-01

    A multiple phase transition was observed in gels made by covalently cross-linking proteins in either native or denatured state. The enzymatic activity of the gels prepared from native α-chymotrypsin was determined for each of the multiple phases. The reversibility of the swelling degrees and the enzymatic reaction rates upon phase transition suggests that the protein is at a free energy minimum and thus in a phase.

  17. Nondenaturing agarose gel electrophoresis of RNA.

    PubMed

    Rio, Donald C; Ares, Manuel; Hannon, Gregory J; Nilsen, Timothy W

    2010-06-01

    INTRODUCTION Perhaps the most important and certainly the most often used technique in RNA analysis is gel electrophoresis. Because RNAs are negatively charged, they migrate toward the anode in the presence of electric current. The gel acts as a sieve to selectively impede the migration of the RNA in proportion to its mass, given that its mass is generally proportional to its charge. Because mass is approximately related to chain length, the length of an RNA is more generally determined by its migration. In addition, topology (i.e., circularity) can affect migration, making RNAs appear longer on the gel than they actually are. There are two common types of gel: polyacrylamide and agarose. For most applications involving RNAs of < or =600 nucleotides, denaturing acrylamide gels are most appropriate. In contrast, agarose gels are generally used to analyze RNAs of > or =600 nucleotides, and are especially useful for analysis of mRNAs (e.g., by Northern blotting). RNA analysis on agarose gels is essentially identical to DNA analysis (except that the gel boxes used must be dedicated to RNA work or to other ribonuclease-free work). Here we describe the use of straightforward Tris borate, EDTA (TBE) gels for routine analysis. These gels are appropriate for determining the quantity and integrity of RNA before using it for other applications. This procedure should not be used to determine size with accuracy, because the RNA will not remain in its extended state throughout the run.

  18. Pulsed-field gel electrophoresis analysis of more than one clinical isolate of Campylobacter spp. from each of 49 patients in New Zealand.

    PubMed

    Gilpin, Brent; Robson, Beth; Lin, Susan; Scholes, Paula; On, Stephen

    2012-02-01

    Pulsed-field gel electrophoresis (PFGE) analysis demonstrated that while 76% of patients had only one genotype of campylobacter, 10% carried two different but related genotypes (Dice coefficients > 0.78), and 14% carried at least two unrelated genotypes (Dice coefficients < 0.65). This supports the clustering of Campylobacter isolates with similar PFGE patterns, highlights the need to analyze multiple isolates from both sources and patients, and confirms that caution should be exercised before epidemiological links between patients or sources are dismissed.

  19. Determination of certain trace impurities in uranium concentrates by activation analysis.

    PubMed

    Abdel-Rassoul, A A; Wahba, S S; Abdel-Aziz, A

    1966-03-01

    A method is presented for the simultaneous determination of chromium, iron, cobalt and zinc in samples of uranium concentrates, oxides and metallic uranium by neutron-activation analysis. The method involves adequate decontamination of gross fission product activities by adsorption on silica gel, removal of uranium by solvent extraction, separation of most carrier-free rare-earth activities by coprecipitation with aluminium chloride, and, finally, fractional separation of the elements concerned by ion-exchange chromatography. The method can assay ppm of such elements in limited quantities of samples by scintillation gamma-ray spectrometric analysis with a reproducibility of 10-15%.

  20. Transforming growth factor-β (TGF-β) activation in cutaneous wounds after topical application of aloe vera gel.

    PubMed

    Takzaree, Nasrin; Hadjiakhondi, Abbas; Hassanzadeh, Gholamreza; Rouini, Mohammad Reza; Manayi, Azadeh; Zolbin, Masoumeh Majidi

    2016-12-01

    Aloe vera is a medicinal plant used to treat various skin diseases. The effects of using aloe vera gel on the healing process were investigated by microscopic methods, cell counting, and TGF-β gene expression in the wound bed. Sixty Wistar rats weighing 200-250 g were placed under anesthesia in sterile conditions. A square 1.5 cm × 1.5 cm wound was made on the back of the neck. The rats were divided into control and 2 experimental groups. Additionally, the control and experimental groups were separated into 3 subgroups corresponding to 4, 7, and 14 days of study. In the first experimental group, aloe vera was used twice on the wound. The second experimental group received aloe vera overtreatment once on the wound. The positive control group received daily application of 1% phenytoein cream following surgical wound creation. The control group did not receive any treatment. This tissue was examined using histological staining (H&E) and Masson's Trichrome. Wound surface and wound healing were evaluated separately. TGF-β gene expression was analyzed by RT-PCR. Results showed that fibroblasts in both experimental groups were significantly increased, thereby acceleration wound healing. Application of aloe vera gel will increase TGF-β gene expression, ultimately accelerating the wound healing process.

  1. Analysis of polyacrylamide gels for trace metals using diffusive gradients in thin films and laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Warnken, Kent W; Zhang, Hao; Davison, William

    2004-10-15

    A simple method for the analysis of polyacrylamide diffusive gradients in thin film (DGT) gels by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), employing a novel use of (115)In internal standardization, has been developed. This method allows the determination of Co, Ni, Cu, Zn, Cd, and Pb concentrations (at the DGT filter face) or fluxes in sediments at a spatial resolution of 100 microm. Single-layered gels, using an optimized laser defocus of 4000 microm at 400 mJ power, showed high precision (generally approximately 10%) and a linear response during solution deployment. Of the elements Sc, In, Ba, La, Ce, and Tb, Ba most closely tracked variations in laser energy and showed the highest analytical precision but could not be used as an internal standard due to its elevated presence in natural sediments. Therefore, internal standardization, necessary to normalize data collected on different days, was carried out using (115)In contained within a second layer of backing gel and dried along with the analyte layer as a dual-gel disk. This multilayered gel standard required a laser defocus setting of 1000 microm and a laser power of approximately 800 mJ. Analytical precision for a 64-spot ablation grid at 100-microm spacing was approximately 10%. Verification of this method was carried out on DGT sediment probes deployed in Priest Pot (English Lake District). Results obtained by conventional slicing techniques and aqueous elution agreed with laser ablation results when the different sampling areas were considered. The elution results varied by a factor of <2, whereas the laser ablation technique showed a variability of approximately 4, indicating localized elevated concentrations of Co. This higher resolution LA-ICPMS method could ultimately lead to an improved understanding of the geochemical processes responsible for metal uptake and release in sediments.

  2. Use of polyacrylamide gel moving boundary electrophoresis to enable low-power protein analysis in a compact microdevice.

    PubMed

    Duncombe, Todd A; Herr, Amy E

    2012-10-16

    In designing a protein electrophoresis platform composed of a single-inlet, single-outlet microchannel powered solely by voltage control (no pumps, values, injectors), we adapted the original protein electrophoresis format-moving boundary electrophoresis (MBE)-to a high-performance, compact microfluidic format. Key to the microfluidic adaptation is minimization of injection dispersion during sample injection. To reduce injection dispersion, we utilize a photopatterned free-solution-polyacrylamide gel (PAG) stacking interface at the head of the MBE microchannel. The nanoporous PAG molecular sieve physically induces a mobility shift that acts to enrich and sharpen protein fronts as proteins enter the microchannel. Various PAG configurations are characterized, with injection dispersion reduced by up to 85%. When employed for analysis of a model protein sample, microfluidic PAG MBE baseline-resolved species in 5 s and in a separation distance of less than 1 mm. PAG MBE thus demonstrates electrophoretic assays with minimal interfacing and sample handling, while maintaining separation performance. Owing to the short separation lengths needed in PAG MBE, we reduced the separation channel length to demonstrate an electrophoretic immunoassay powered with an off-the-shelf 9 V battery. The electrophoretic immunoassay consumed less than 3 μW of power and was completed in 30 s. To our knowledge, this is the lowest voltage and lowest power electrophoretic protein separation reported. Looking forward, we see the low-power PAG MBE as a basis for highly multiplexed protein separations (mobility shift screening assays) as well as for portable low-power diagnostic assays.

  3. A new nano-optical sensor thin film cadmium sulfide doped in sol-gel matrix for assessment of α-amylase activity in human saliva.

    PubMed

    Attia, M S; Zoulghena, H; Abdel-Mottaleb, M S A

    2014-02-21

    A novel, simple, sensitive and precise spectrofluorimetric method is developed for measuring the activity of the α-amylase enzyme in human saliva. The remarkable quenching of the luminescence intensity at 634 nm of nano CdS doped in a sol-gel matrix by various concentrations of maltose (produced from the reaction of the enzyme with the starch substrate) was successfully used as an optical sensor for the assessment of α-amylase activity. The calibration plot was achieved over the concentration range 4.8 × 10(-10) to 1.2 × 10(-5) mol L(-1) maltose with a correlation coefficient of 0.999 and a detection limit of 5.7 × 10(-11) mol L(-1). The method was used satisfactorily for assessment of the α-amylase activity in a number of human saliva samples collected from various healthy volunteers.

  4. High Resolution Melting Analysis Is a More Sensitive and Effective Alternative to Gel-Based Platforms in Analysis of SSR – An Example in Citrus

    PubMed Central

    Distefano, Gaetano; Caruso, Marco; La Malfa, Stefano; Gentile, Alessandra; Wu, Shu-Biao

    2012-01-01

    High resolution melting curve analysis (HRM) has been used as an efficient, accurate and cost-effective tool to detect single nucleotide polymorphisms (SNPs) or insertions or deletions (INDELs). However, its efficiency, accuracy and applicability to discriminate microsatellite polymorphism have not been extensively assessed. The traditional protocols used for SSR genotyping include PCR amplification of the DNA fragment and the separation of the fragments on electrophoresis-based platform. However, post-PCR handling processes are laborious and costly. Furthermore, SNPs present in the sequences flanking repeat motif cannot be detected by polyacrylamide-gel-electrophoresis based methods. In the present study, we compared the discriminating power of HRM with the traditional electrophoresis-based methods and provided a panel of primers for HRM genotyping in Citrus. The results showed that sixteen SSR markers produced distinct polymorphic melting curves among the Citrus spp investigated through HRM analysis. Among those, 10 showed more genotypes by HRM analysis than capillary electrophoresis owing to the presence of SNPs in the amplicons. For the SSR markers without SNPs present in the flanking region, HRM also gave distinct melting curves which detected same genotypes as were shown in capillary electrophoresis (CE) analysis. Moreover, HRM analysis allowed the discrimination of most of the 15 citrus genotypes and the resulting genetic distance analysis clustered them into three main branches. In conclusion, it has been approved that HRM is not only an efficient and cost-effective alternative of electrophoresis-based method for SSR markers, but also a method to uncover more polymorphisms contributed by SNPs present in SSRs. It was therefore suggested that the panel of SSR markers could be used in a variety of applications in the citrus biodiversity and breeding programs using HRM analysis. Furthermore, we speculate that the HRM analysis can be employed to analyse SSR

  5. High resolution melting analysis is a more sensitive and effective alternative to gel-based platforms in analysis of SSR--an example in citrus.

    PubMed

    Distefano, Gaetano; Caruso, Marco; La Malfa, Stefano; Gentile, Alessandra; Wu, Shu-Biao

    2012-01-01

    High resolution melting curve analysis (HRM) has been used as an efficient, accurate and cost-effective tool to detect single nucleotide polymorphisms (SNPs) or insertions or deletions (INDELs). However, its efficiency, accuracy and applicability to discriminate microsatellite polymorphism have not been extensively assessed. The traditional protocols used for SSR genotyping include PCR amplification of the DNA fragment and the separation of the fragments on electrophoresis-based platform. However, post-PCR handling processes are laborious and costly. Furthermore, SNPs present in the sequences flanking repeat motif cannot be detected by polyacrylamide-gel-electrophoresis based methods. In the present study, we compared the discriminating power of HRM with the traditional electrophoresis-based methods and provided a panel of primers for HRM genotyping in Citrus. The results showed that sixteen SSR markers produced distinct polymorphic melting curves among the Citrus spp investigated through HRM analysis. Among those, 10 showed more genotypes by HRM analysis than capillary electrophoresis owing to the presence of SNPs in the amplicons. For the SSR markers without SNPs present in the flanking region, HRM also gave distinct melting curves which detected same genotypes as were shown in capillary electrophoresis (CE) analysis. Moreover, HRM analysis allowed the discrimination of most of the 15 citrus genotypes and the resulting genetic distance analysis clustered them into three main branches. In conclusion, it has been approved that HRM is not only an efficient and cost-effective alternative of electrophoresis-based method for SSR markers, but also a method to uncover more polymorphisms contributed by SNPs present in SSRs. It was therefore suggested that the panel of SSR markers could be used in a variety of applications in the citrus biodiversity and breeding programs using HRM analysis. Furthermore, we speculate that the HRM analysis can be employed to analyse SSR

  6. Ag-nanoparticle fractionation by low melting point agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Guarrotxena, Nekane; Braun, Gary

    2012-10-01

    The separation of surface-enhanced raman scattering (SERS)-active Ag-multi-nanoparticle (NP) assemblies by low melting point agarose gel electrophoresis was accomplished here by controlling surface charge using NP capping agents, and the pore size of agarose gel matrix. Detailed transmission electron microscopy analysis of excised gel fractions showed dimers and small clusters to have the greatest SERS activity and a mobility in between the monomers and large aggregates. This strategy enables one to: (1) stabilize small multispherical Ag clusters against further aggregation during purification; (2) fractionate and recover spherical assemblies by nuclearity; and (3) analyze SERS-enhancements for each fraction to optimize purification conditions.

  7. Phosphohydrolase activity of the isolated, brush-border membrane of Hymenolepis diminuta (Cestoda) following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis.

    PubMed

    Pappas, P W

    1980-12-01

    Following electrophoresis of isolated, brush-border membranes of Hymenolepis diminuta on SDS-polyacrylamide gels, three distinct areas of alpha-naphthyl phosphate (NP) hydrolysis were detected; these corresponded to proteins with molecular weights of 106,800, 172,700, and greater than 340,000 Daltons. Hydrolysis of NP was inhibited by adenosine triphosphate, adenosine;5'-monophosphate, p-nitrophenyl-phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-diphosphate, molybdate, ethylenediaminetetraacetate (EDTA), and ethyleneglycol-bis-(beta-amino-ethyl)-N,N'-tetraacetate (EGTA), but not by fluoride. Inhibition of NP hydrolysis by EDTA was relieved in the presence of Mg++ or Ca++. Heating the isolated, brush-border membrane in the presence of SDS for 5 min at 95 C destroyed all enzymatic activity. These characteristics indicated that the enzyme(s) responsible for NP hydrolysis (following separation of membrane proteins by SDS-polyacrylamide gel electrophoresis) were the same enzymes responsible for the phosphohydrolase activity associated with intact and solubilized, brush-border membrane preparations of H. diminuta.

  8. Sn/Cu-TiO2 nanoparticles produced via sol-gel method: Synthesis, characterization, and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Mohammadi, R.; Massoumi, B.

    2014-07-01

    TiO2 and Sn/Cu-TiO2 nanoparticles with different Sn/Cu contents have been synthesized and characterized by different analysis methods such as XRD, TEM, and BET. Sn/Cu-TiO2 was preferential to TiO2 with 2,5-fold increase in photodegradation rate of different types of dyes such as methyl orange, methylene blue and methyl red. This activity was relevant to the influences of co-doping on the physicochemical properties and surface interfacial charge transfer mechanisms. An optimum synergetic effect was found for a mass ratio of Sn/TiO2 equal to 0.75% and Cu/TiO2 equal to 0.5%. The degradation reaction fit well to a Langmuir-Hinshelwood kinetic model indicating the reaction rate is depended on initial adsorption step.

  9. Cell response to silica gels with varying mechanical properties

    NASA Astrophysics Data System (ADS)

    Lefebvre, Molly Ann

    Sol-gel encapsulation has a variety of applications in biotechnology and medicine: creating biosensors, biocatalysts, and bioartificial organs. However, encapsulated cell viability is a major challenge. Consequently, interactions between cells and their 3D microenvironment were studied through rheological, metabolic activity, and extraction studies to aid in the development of new gel protocols. The cells were encapsulated in variations of three silica sol-gels with varying stiffness. It was hypothesized that the cell viability and the amount of extracted cells would depend on gel stiffness. For two gels, there was no apparent correlation between the gel stiffness and the cell viability and extracted cell quantity. These gels did strongly depend on the varying gel ingredient, polyethylene glycol. The third gel appeared to follow the hypothesized correlation, but it was not statistically significant. Finally, one gel had a significantly longer period of cell viability and higher quantity of extracted cells than the other gels.

  10. Dynamics of a DNA Gel

    NASA Astrophysics Data System (ADS)

    Adhikari, Ramesh; Bhattacharya, Aniket; Dogariu, Aristide

    We study in silico the properties of a gel consisting of DNA strands (modeled as semi-flexible chains) and linkers of varying flexibility, length, and topology. These linkers are envisioned and modeled as active components with additional attributes so as to mimic properties of a synthetic DNA gel containing motor proteins. We use Brownian dynamics to directly obtain frequency dependent complex shear moduli of the gel. We further carry out force spectroscopy on these computer generated gels and study the relaxation properties as a function of the important parameters of the model, e.g., densities and relative ratios of the DNAs and the linkers, the average life time of a link, etc. Our studies are relevant for designing synthetic bio-materials for both materials and medical applications.

  11. Rheological characterization of hydroxypropylcellulose gels.

    PubMed

    Ramachandran, S; Chen, S; Etzler, F

    1999-02-01

    The present paper describes the rheological properties of hydroxypropylcellulose (HPC) gels formulated in propylene glycol (PG), water, ethanol, and mixtures of these components. The effects of molecular weight, polymer concentration, and solvent composition on the apparent viscosity and flow characteristics have been studied by continuous shear rheometry. The HPC gels are shear thinning and do not exhibit significant yield or hysteresis in their rheograms. The apparent viscosity increases with increasing molecular weight and concentration of the polymer, as expected. Although not so pronounced at lower concentrations (< or = 1.5%), HPC gels tend to become increasingly non-Newtonian with increasing molecular weight at higher polymer concentrations (3%). A mathematical model has been proposed for the prediction of viscosities of HPC gels. There exists a high degree of dependence on molecular interactions between various solvent molecules in the prediction of mixture viscosities in ternary systems. The effects of solvent composition on the viscoelastic behavior of these gels have also been examined by dynamic mechanical analysis. The HPC gels are highly viscoelastic and exhibit greater degrees of elasticity with increased PG content in ternary solvent mixtures with water and ethanol. The study also suggests that dynamic mechanical analysis could prove to be a useful tool in the determination of zero-shear viscosities, viscosities that are representative of most realistic situations.

  12. Innovative materials based on sol gel technology

    NASA Astrophysics Data System (ADS)

    Reisfeld, Renata; Saraidarov, Tsiala

    2006-01-01

    We review the sol-gel based new materials which were prepared in our laboratory including: tunable lasers, active waveguides, luminescent solar concentrators, electrochromic, photochromic and gasochromic plates for smart windows, chemical and biological sensors, semiconductor quantum dots and complexes of rare earth ions. In this paper we present the firstly obtained results of the Eu sulfide nanocrystalline (NCs) powder material and doped in the sol-gel based zirconia films. The powder and films were studied by high resolution transmittance electron microscopy (HRTEM), energy dispersive X-ray spectroscopy analysis (EDS) and luminescence spectroscopy. Eu sulfide nanocrystals (NCs) ranging between 8 and 10 nm were obtained as powder and 3-4 nm incorporated in zirconia film.

  13. Heat transfer within hydrodissection fluids: An analysis of thermal conduction and convection using liquid and gel materials.

    PubMed

    Johnson, Alexander; Brace, Christopher

    2015-01-01

    Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.

  14. Application of multiplex PCR, pulsed-field gel electrophoresis (PFGE), and BOX-PCR for molecular analysis of enterococci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the study was to use band-based molecular methods including BOX-PCR (Polymerase Chain Reaction) and Pulsed-Field Gel Electrophoresis (PFGE) to determine if genetically related enterococci were found among different stores, food types, or years. Enterococci were also characterized f...

  15. Influence of drying conditions of zirconium molybdate gel on performance of (99m)Tc gel generator.

    PubMed

    Davarpanah, M R; Attar Nosrati, S; Fazlali, M; Kazemi Boudani, M; Khoshhosn, H; Ghannadi Maragheh, M

    2009-10-01

    (99m)Tc can be produced from (99)Mo/(99m)Tc gel generators. These gels are part of the generator and the (99)Mo/(99m)Tc gel generator performance is directly related with gel structure. In this work a series of zirconium molybdate gels have been synthesized and dried under different conditions and characterized using thermal analysis (TGA, DTA), SEM, XRD and porosity measurements. It is found that the water content of the gel determines the structure porosity which allows the diffusion of the (99m)TcO(4)(-) ions inside the gel and was directly connected with performance of the (99)Mo/(99m)Tc gel generators. Drying conditions of the gel is as an important factor that influence water content and physical-chemical properties of this gel and must be carefully studied to optimize the properties of the gel generators.

  16. Sol-gel encapsulation of binary Zn(II) compounds in silica nanoparticles. Structure-activity correlations in hybrid materials targeting Zn(II) antibacterial use.

    PubMed

    Halevas, E; Nday, C M; Kaprara, E; Psycharis, V; Raptopoulou, C P; Jackson, G E; Litsardakis, G; Salifoglou, A

    2015-10-01

    In the emerging issue of enhanced multi-resistant properties in infectious pathogens, new nanomaterials with optimally efficient antibacterial activity and lower toxicity than other species attract considerable research interest. In an effort to develop such efficient antibacterials, we a) synthesized acid-catalyzed silica-gel matrices, b) evaluated the suitability of these matrices as potential carrier materials for controlled release of ZnSO4 and a new Zn(II) binary complex with a suitably designed well-defined Schiff base, and c) investigated structural and textural properties of the nanomaterials. Physicochemical characterization of the (empty-loaded) silica-nanoparticles led to an optimized material configuration linked to the delivery of the encapsulated antibacterial zinc load. Entrapment and drug release studies showed the competence of hybrid nanoparticles with respect to the a) zinc loading capacity, b) congruence with zinc physicochemical attributes, and c) release profile of their zinc load. The material antimicrobial properties were demonstrated against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus) and negative (Escherichia coli, Pseudomonas aeruginosa, Xanthomonas campestris) bacteria using modified agar diffusion methods. ZnSO4 showed less extensive antimicrobial behavior compared to Zn(II)-Schiff, implying that the Zn(II)-bound ligand enhances zinc antimicrobial properties. All zinc-loaded nanoparticles were less antimicrobially active than zinc compounds alone, as encapsulation controls their release, thereby attenuating their antimicrobial activity. To this end, as the amount of loaded zinc increases, the antimicrobial behavior of the nano-agent improves. Collectively, for the first time, sol-gel zinc-loaded silica-nanoparticles were shown to exhibit well-defined antimicrobial activity, justifying due attention to further development of antibacterial nanotechnology.

  17. Development and Application of a High-Performance Liquid Chromatography Stability-Indicating Assay for Beyond-Use Date Determination of Compounded Topical Gels Containing Multiple Active Drugs.

    PubMed

    Gorman, Gregory; Sokom, Simara; Coward, Lori; Arnold, John J

    2017-01-01

    Topical gels compounded by pharmacists are important clinical tools for the management of pain. Nevertheless, there is often a dearth of information about the chemical stability of drugs included in these topical formulations, complicating the assignment of beyond-use dating. The purpose of this study was to develop a high-performance liquid chromatography photodiode array-based stability-indicating assay that could simultaneously resolve six drugs (amitriptyline, baclofen, clonidine, gabapentin, ketoprofen, lidocaine) commonly included in topical gels for pain management and their potential degradation products. Furthermore, this method was applied to the determination of beyond-use dating of combinations of these drugs prepared in commonly utilized bases (Lipobase, Lipoderm, Pluronic organogel). Gabapentin was determined to be the least stable component in all formulations tested. Measured stability ranged between 7 to 49 days depending on the base and other active drugs present in the formulation. In the absence of gabapentin, baclofen was the next least stable component, lasting for 120 days, regardless of the type of formulating base used.

  18. Design and Analysis of Hammerhead Ribozyme Activity Against an Artificial Gene Target

    PubMed Central

    Carter, James; Nawtaisong, Pruksa; Balaraman, Velmurugan; Fraser, Malcolm J.

    2014-01-01

    In vitro cleavage assays are routinely conducted to properly assess the catalytic activity of hammerhead ribozymes (HHR) against target RNA molecules like the dengue virus RNA genomes. These experiments are performed for initial assessment of HHR catalysis in a cell-free system and have been simplified by the substitution of agarose gel electrophoresis for SDS-PAGE. Substituting mobility assays enables the analysis of ribozymes in a more rapid fashion without radioisotopes. Here we describe the in vitro transcription of an HHR and corresponding target from T7-promoted plasmids into RNA molecules leading to the analysis of HHR activity against the RNA target by in vitro cleavage assays. PMID:24318886

  19. DLTS analysis of amphoteric interface defects in high-TiO2 MOS structures prepared by sol-gel spin-coating

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara

    2015-11-01

    High-κ TiO2 thin films have been fabricated from a facile, combined sol - gel spin - coating technique on p and n type silicon substrate. XRD and Raman studies headed the existence of anatase phase of TiO2 with a small grain size of 18 nm. The refractive index `n' quantified from ellipsometry is 2.41. AFM studies suggest a high quality, pore free films with a fairly small surface roughness of 6 Å. The presence of Ti in its tetravalent state is confirmed by XPS analysis. The defect parameters observed at the interface of Si/TiO2 were studied by capacitance - voltage (C - V) and deep level transient spectroscopy (DLTS). The flat - band voltage (VFB) and the density of slow interface states estimated are - 0.9, - 0.44 V and 5.24×1010, 1.03×1011 cm-2; for the NMOS and PMOS capacitors, respectively. The activation energies, interface state densities and capture cross - sections measured by DLTS are EV + 0.30, EC - 0.21 eV; 8.73×1011, 6.41×1011 eV-1 cm-2 and 5.8×10-23, 8.11×10-23 cm2 for the NMOS and PMOS structures, respectively. A low value of interface state density in both P- and N-MOS structures makes it a suitable alternate dielectric layer for CMOS applications. And also very low value of capture cross section for both the carriers due to the amphoteric nature of defect indicates that the traps are not aggressive recombination centers and possibly can not contribute to the device operation to a large extent.

  20. Pepsin diffusion in dairy gels depends on casein concentration and microstructure.

    PubMed

    Thévenot, J; Cauty, C; Legland, D; Dupont, D; Floury, J

    2017-05-15

    Fundamental knowledge of gastric digestion had only focused on acid diffusion from the gastric fluid, but no data are available for pepsin diffusion. Using fluorescence recovery after photobleaching technique, diffusion coefficients D of fluorescein isothiocyanate (FITC)-pepsin were measured in rennet gels across a range of casein concentrations allowing to form networks of protein aggregates with different structures. To investigate the microstructural parameters of native gels, electron microscopy image analysis were performed and qualitatively related to diffusion behavior of FITC-pepsin in these dairy gels. This study is the first report on quantification of pepsin diffusion in dairy product. Pepsin diffusion in rennet gels depends on casein concentration and microstructure. Models of polymer science can be used to assess D in dairy gel. Such data should be confronted with pepsin activity in acidic environment, and will be very useful as input parameters in mathematical models of food degradation in the human stomach.

  1. Densitometric HPTLC method for qualitative, quantitative analysis and stability study of Coenzyme Q10 in pharmaceutical formulations utilizing normal and reversed-phase silica gel plates.

    PubMed

    Abdel-Kader, Maged Saad; Alam, Prawez; Alqasoumi, Saleh Ibrahim

    2016-03-01

    Two simple, precise and stability-indicating densitometric HPTLC method were developed and validated for qualitative and quantitative analysis of Coenzyme Q10 in pharmaceutical formulations using normal-phase (Method I) and reversed phase (Method II) silica gel TLC plates. Both methods were developed and validated with 10×20 cm glass-backed plates coated with 0.2 mm layers of either silica gel 60 F254 (E-Merck, Germany) using hexane-ethyl acetate (8.5:1.5 v/v) as developing system (Method I) or RP-18 silica gel 60 F254 (E-Merck, Germany) using methanol-acetone (4:6 v/v) as mobile phase (Method II). Both analyses were scanned with a densitometer at 282 nm. Linearity was found in the ranges 50-800 ng/spot (r(2)=0.9989) and 50-800 ng/spot (r(2)=0.9987) for Method I and Method II respectively. Stability of Coenzyme Q10 was explored by the two methods using acid, base, hydrogen peroxide, temperature and different solvents. Due to the efficiency of the method in separating Coenzyme Q10 from other ingredients including its degradation products, it can be applied for quality control, standardization of different pharmaceutical formulations and stability study.

  2. Two-Dimensional Gel Electrophoresis-Based Proteomic Analysis Reveals N-terminal Truncation of the Hsc70 Protein in Cotton Fibers In Vivo

    PubMed Central

    Tao, Chengcheng; Jin, Xiang; Zhu, Liping; Li, Hongbin

    2016-01-01

    On two-dimensional electrophoresis gels, six protein spots from cotton ovules and fibers were identified as heat shock cognate 70 kD protein (Hsc70). Three spots corresponded to an experimental molecular weight (MW) of 70 kD (spots 1, 2 and 3), and the remaining three spots corresponded to an experimental MW slightly greater than 45 kD (spots 4, 5 and 6). Protein spots 1, 2 and 3 were abundant on gels of 0-day (the day of anthesis) wild-type (WT) ovules, 0-day fuzzless-lintless mutant ovules and 10-day WT ovules but absent from gels of 10-day WT fibers. Three individual transcripts encoding these six protein spots were obtained by using rapid amplification of cDNA ends (RACE). Edman degradation and western blotting confirmed that the three 45 kD Hsc70 protein spots had the same N-terminal, which started from the T271 amino acid in the intact Hsc70 protein. Furthermore, quadrupole time-of-flight mass spectrometry analysis identified a methylation modification on the arginine at position 475 for protein spots 4 and 5. Our data demonstrate that site-specific in vivo N-terminal truncation of the Hsc70 protein was particularly prevalent in cotton fibers, indicating that post-translational regulation might play an important role in cotton fiber development. PMID:27833127

  3. Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichiro; Takashima, Yoshinori; Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2015-11-01

    Enzymes play a vital role in catalysing almost all chemical reactions that occur in biological systems. Some enzymes must form complexes with non-protein molecules called cofactors to express catalytic activities. Although the control of catalytic reactions via apoenzyme-cofactor complexes has attracted significant attention, the reports have been limited to the microscale. Here, we report a system to express catalytic activity by adhesion of an apoenzyme gel and a cofactor gel. The apoenzyme and cofactor gels act as catalysts when they form a gel assembly, but they lose catalytic ability upon manual dissociation. We successfully construct a system with switchable catalytic activity via adhesion and separation of the apoenzyme gel with the cofactor gel. We expect that this methodology can be applied to regulate the functional activities of enzymes that bear cofactors in their active sites, such as the oxygen transport of haemoglobin or myoglobin and the electron transport of cytochromes.

  4. Fundamentals of gel dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, K. B.; Nasr, A. T.

    2013-06-01

    Fundamental chemical and physical phenomena that occur in Fricke gel dosimeters, polymer gel dosimeters, micelle gel dosimeters and genipin gel dosimeters are discussed. Fricke gel dosimeters are effective even though their radiation sensitivity depends on oxygen concentration. Oxygen contamination can cause severe problems in polymer gel dosimeters, even when THPC is used. Oxygen leakage must be prevented between manufacturing and irradiation of polymer gels, and internal calibration methods should be used so that contamination problems can be detected. Micelle gel dosimeters are promising due to their favourable diffusion properties. The introduction of micelles to gel dosimetry may open up new areas of dosimetry research wherein a range of water-insoluble radiochromic materials can be explored as reporter molecules.

  5. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    PubMed

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  6. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Chevreux, Sylviane; Solari, Pier Lorenzo; Roudeau, Stéphane; Deves, Guillaume; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis; Ortega, Richard

    2009-11-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  7. Kinetic analysis of beer primary fermentation using yeast cells immobilized by ceramic support adsorption and alginate gel entrapment.

    PubMed

    Zhang, Yongming; Kennedy, John F; Knill, Charles J; Panesar, Parmjit S

    2006-01-01

    Yeast cells were immobilized by absorption onto porous ceramic support and evaluated for continuous beer primary fermentation using a bioreactor in comparison to yeast cells immobilized by entrapment in calcium alginate gel. The effects of temperature and flow rate as a function of reaction/fermentation time on fermentation rate were investigated. The fermentation reaction (in terms of loss of total soluble solids in the beer wort as a function of time) was first-order with half-lifes in the range of approximately 9-11 hours at approximately 10-12 degrees C at beer wort linear flow rates of approximately 0.8-1.6 cm/minute for ceramic support, compared with approximately 16 hours for Ca-alginate gel, the former support matrix being more efficient and demonstrating greater potential for future commercial application.

  8. Analysis of Telomere-Homologous DNA with Different Conformations Using 2D Agarose Electrophoresis and In-Gel Hybridization.

    PubMed

    Zhang, Zepeng; Hu, Qian; Zhao, Yong

    2017-01-01

    In mammalian cells, in addition to double-stranded telomeric DNA at chromosome ends, extra telomere-homologous DNA is present that adopts different conformations, including single-stranded G- or C-rich DNA, extrachromosomal circular DNA (T-circle), and telomeric complex (T-complex) with an unidentified structure. The formation of such telomere-homologous DNA is closely related to telomeric DNA metabolism and chromosome end protection by telomeres. Conventional agarose gel electrophoresis is unable to separate DNA based on conformation. Here, we introduce the method of two-dimensional (2D) agarose electrophoresis in combination with in-gel native/denatured hybridization to determine different conformations formed by telomere-homologous DNA.

  9. Analysis of DNA structures from eukaryotic cells by two-dimensional native-native DNA agarose gel electrophoresis.

    PubMed

    Ivessa, Andreas S

    2013-01-01

    The neutral-neutral two-dimensional agarose gel technique is mainly used to determine the chromosomal positions where DNA replication starts, but it is also applied to visualize replication fork progression and breakage as well as intermediates in DNA recombination. Here we provide a step-by-step protocol to analyze the fairly underrepresented and fragile replication intermediates in yeast chromosomal DNA. The technique can also be adapted to analyze replication intermediates in chromosomal DNA of higher eukaryotic organisms.

  10. Mechanical stability analysis of carrageenan-based polymer gel for magnetic resonance imaging liver phantom with lesion particles.

    PubMed

    In, Eunji; Naguib, Hani; Haider, Masoom

    2014-10-01

    Medical imaging is an effective technique used to detect and prevent disease in cancer research. To optimize medical imaging, a calibration medium or phantom with tissue-mimicking properties is required. Although the feasibility of various polymer gel materials has previously been studied, the stability of the gels' properties has not been investigated. In this study, we fabricated carrageenan-based polymer gel to examine the stability of its properties such as density, conductivity, permittivity, elastic modulus, and [Formula: see text] and [Formula: see text] relaxation times over six weeks. We fabricated eight samples with different carrageenan and agar concentrations and found that the density, elastic modulus, and compressive strength fluctuated with no specific pattern. The elastic modulus in sample 4 with 3 wt. % carrageenan and 1.5 wt. % agar fluctuated from 0.51 to 0.64 MPa in five weeks. The [Formula: see text] and [Formula: see text] relaxation times also varied by 23% to 29%. We believe that the fluctuation of these properties is related to the change in water content of the sample due to cycles of water expulsion and absorption in their containers. The fluctuation of the properties should be minimized to achieve accurate calibration over the shelf life of the phantom and to serve as the standard for quality assurance. Furthermore, a full liver phantom with spherical lesion particles was fabricated to demonstrate the potential for phantom production.

  11. Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin.

    PubMed

    Blandón, Lina M; Islan, German A; Castro, Guillermo R; Noseda, Miguel D; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2016-09-01

    Ciprofloxacin is a broad-spectrum antibiotic associated with gastric and intestinal side effects after extended oral administration. Alginate is a biopolymer commonly employed in gel synthesis by ionotropic gelation, but unstable in the presence of biological metal-chelating compounds and/or under dried conditions. Kefiran is a microbial biopolymer able to form gels with the advantage of displaying antimicrobial activity. In the present study, kefiran-alginate gel microspheres were developed to encapsulate ciprofloxacin for antimicrobial controlled release and enhanced bactericidal effect against common pathogens. Scanning electron microscopy (SEM) analysis of the hybrid gel microspheres showed a spherical structure with a smoother surface compared to alginate gel matrices. In vitro release of ciprofloxacin from kefiran-alginate microspheres was less than 3.0% and 5.0% at pH 1.2 (stomach), and 5.0% and 25.0% at pH 7.4 (intestine) in 3 and 21h, respectively. Fourier transform infrared spectroscopy (FTIR) of ciprofloxacin-kefiran showed the displacement of typical bands of ciprofloxacin and kefiran, suggesting a cooperative interaction by hydrogen bridges between both molecules. Additionally, the thermal analysis of ciprofloxacin-kefiran showed a protective effect of the biopolymer against ciprofloxacin degradation at high temperatures. Finally, antimicrobial assays of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhymurium, and Staphylococcus aureus demonstrated the synergic effect between ciprofloxacin and kefiran against the tested microorganisms.

  12. Variable number of tandem repeats and pulsed-field gel electrophoresis cluster analysis of enterohemorrhagic Escherichia coli serovar O157 strains.

    PubMed

    Yokoyama, Eiji; Uchimura, Masako

    2007-11-01

    Ninety-five enterohemorrhagic Escherichia coli serovar O157 strains, including 30 strains isolated from 13 intrafamily outbreaks and 14 strains isolated from 3 mass outbreaks, were studied by pulsed-field gel electrophoresis (PFGE) and variable number of tandem repeats (VNTR) typing, and the resulting data were subjected to cluster analysis. Cluster analysis of the VNTR typing data revealed that 57 (60.0%) of 95 strains, including all epidemiologically linked strains, formed clusters with at least 95% similarity. Cluster analysis of the PFGE patterns revealed that 67 (70.5%) of 95 strains, including all but 1 of the epidemiologically linked strains, formed clusters with 90% similarity. The number of epidemiologically unlinked strains forming clusters was significantly less by VNTR cluster analysis than by PFGE cluster analysis. The congruence value between PFGE and VNTR cluster analysis was low and did not show an obvious correlation. With two-step cluster analysis, the number of clustered epidemiologically unlinked strains by PFGE cluster analysis that were divided by subsequent VNTR cluster analysis was significantly higher than the number by VNTR cluster analysis that were divided by subsequent PFGE cluster analysis. These results indicate that VNTR cluster analysis is more efficient than PFGE cluster analysis as an epidemiological tool to trace the transmission of enterohemorrhagic E. coli O157.

  13. Sol-gel derived sorbents

    DOEpatents

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  14. Tapioca starch: An efficient fuel in gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles

    SciTech Connect

    Ramasami, Alamelu K.; Raja Naika, H.; Nagabhushana, H.; Ramakrishnappa, T.; Balakrishna, Geetha R.; Nagaraju, G.

    2015-01-15

    Zinc oxide nanoparticles were synthesized by gel-combustion method using novel bio-fuel tapioca starch pearls, derived from the tubers of Manihotesculenta. The product is characterized using various techniques. The X-ray diffraction pattern correspond to a hexagonal zincite structure. Fourier transform infrared spectrum showed main absorption peaks at 394 and 508 cm{sup −} {sup 1} due to stretching vibration of Zn–O. Ultravoilet–visible spectrum of zinc oxide nanoparticles showed absorption maximum at 373 nm whereas the maximum of the bulk zinc oxide was 377 nm. The morphology of the product was studied using scanning electron microscopy and transmission electron microscopy. The scanning electron microscopic images showed that the products are agglomerated and porous in nature. The transmission electron microscopic images revealed spherical particles of 40–50 nm in diameter. The photocatalytic degradation of methylene blue was examined using zinc oxide nanoparticles and found more efficient in sunlight than ultra-violet light due to reduced band gap. The antibacterial properties of zinc oxide nanoparticles were investigated against four bacterial strains Klebsiella aerogenes, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aereus, where Pseudomonas aeruginosa and Staphylococcus aereus exhibited significant antibacterial activity in agar well diffusion method when compared to positive control. - Highlights: • ZnO nanoparticles have been prepared from a new bio-fuel, tapioca starch by gel combustion method. • XRD pattern revealed hexagonal zincite crystal structure with crystallite size 33 nm. • ZnO nanoparticles exhibited a band gap of 2.70 eV. • The ZnO nanoparticles exhibited superior degradation in sunlight in comparison with UV light. • The product showed a good anti-bacterial activity against two bacterial strains.

  15. Molecular characterization of MT3 antigens by two-dimensional gel electrophoresis, NH2-terminal amino acid sequence analysis, and southern blot analysis.

    PubMed Central

    Sorrentino, R; Lillie, J; Strominger, J L

    1985-01-01

    The monoclonal antibody 109d6, which recognizes major histocompatibility antigen MT3-like serologic determinants, has been used to characterize the molecules bearing this determinant in HLA-DR4 and -DR7 homozygous cell lines by two-dimensional gel and sequencing analyses. By these two criteria, these molecules are identical to each other. Southern blot analysis of genomic DNA from HLA-DR1 through -DR7 homozygous cell lines with DR beta-chain gene probes reveals a striking similarity in the pattern of hybridizing fragments between DR4 and DR7 haplotypes and among DR3, DR5, and DRw6 haplotypes reminiscent of the MT3/MT2 allodeterminant distribution. The sharing of the MT2 determinant between DR3, DR5, and DRw6 haplotypes and of the MT3 determinant between DR4 and DR7 haplotypes is part of a broader "homology," which may be a consequence of more recent separation of the haplotypes sharing the MT2 determinant on the one hand and the haplotypes sharing the MT3 determinant on the other hand. Images PMID:2582424

  16. Aroma release and retronasal perception during and after consumption of flavored whey protein gels with different textures. 1. in vivo release analysis.

    PubMed

    Mestres, Montserrat; Moran, Noelia; Jordan, Alfons; Buettner, Andrea

    2005-01-26

    The influence of gel texture on retronasal aroma release during mastication was followed by means of real-time proton-transfer reaction mass spectrometry and compared to sensory perception of overall aroma intensity. A clear correlation was found between individual-specific consumption patterns and the respective physicochemical release patterns in vivo. A modified data analysis approach was used to monitor the aroma changes during the mastication process. It was found that the temporal resolution of the release profile played an important role in adequate description of the release processes. On the basis of this observation, a hypothesis is presented for the observed differences in intensity rating.

  17. An improved protocol for the preparation and restriction enzyme digestion of pulsed-field gel electrophoresis agarose plugs for the analysis of Legionella isolates.

    PubMed

    Chang, Bin; Amemura-Maekawa, Junko; Watanabe, Haruo

    2009-01-01

    Pulsed-field gel electrophoresis (PFGE), which determines the genomic relatedness of isolates, is currently used for the epidemiological investigation of infectious agents such as bacteria. In particular, this method has been used for the epidemiological investigation of Legionella outbreaks. However, it takes 4 days to complete a Legionella-PFGE analysis. Due to partial digestion and DNA damage, the reproducibility of the obtained fragment digestion patterns is poor for this pathogen. In this study, we report an improved protocol that takes only 2 days to complete and that allows clear discrimination of the restriction profile with higher reproducibility than that previously achieved.

  18. Determination of pesticides in fatty matrices using gel permeation clean-up followed by GC-MS/MS and LC-MS/MS analysis: A comparison of low- and high-pressure gel permeation columns.

    PubMed

    David, Frank; Devos, Christophe; Dumont, Emmie; Yang, Zhen; Sandra, Pat; Huertas-Pérez, José Fernando

    2017-04-01

    Two low-pressure columns (Bio-Beads SX-3) and three high-pressure GPC columns were compared for clean-up of a wide range of pesticides in fatty matrices of vegetable or animal origin. The GPC fractions were analyzed by GC-MS/MS and LC-MS/MS without additional clean-up. The performance of the GPC clean-up on the five column types was compared in terms of solvent consumption, lipid removal, pesticide recovery and repeatability. It was found that for fatty matrices, mainly consisting of high molecular weight triglycerides i.e. most vegetable oils and animal fats, good fractionation is obtained for the majority of the pesticides. On the other hand, for fats and oils containing relatively high amounts of low molecular weight triglycerides, i.e. butter fat and palm kernel oil, none of the columns provided sufficient clean-up and cause interferences and system contamination, especially in the case of GC-MS/MS analysis. For the latter case, best results in terms of lipid removal and pesticide recovery were obtained on a set (2×300mmlength) of narrow bore (7.5mm ID) columns packed with 5µm PL Gel material. Column loadability is, however, much lower on that set of columns compared the other evaluated GPC columns, impairing overall method sensitivity.

  19. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  20. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, Norman L.

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  1. Development of a biodegradable iron oxide nanoparticle gel for tumor bed therapy

    NASA Astrophysics Data System (ADS)

    Cunkelman, B. P.; Chen, E. Y.; Petryk, A. A.; Tate, J. A.; Thappa, S. G.; Collier, R. J.; Hoopes, P. J.

    2013-02-01

    Treatments of the post-operative surgical bed have proven appealing as the majority of cancer recurrence following tumor resection occurs at the tumor margin. A novel, biodegradable pullulan-based gel infused with magnetic iron oxide nanoparticles (IONP) is presented here for surgical bed administration followed by hyperthermia therapy via alternating magnetic field (AMF) activation. Pullulan is a water soluble, film-forming starch polymer that degrades at the postoperative wound site to deliver the IONP payload, targeting the remaining cancer cells. Different gel formulations containing various % wt of pullulan were tested for IONP elution. Elution levels and amount of gel degradation were measured by immersing the gel in de-ionized water for one hour then measuring particle concentrations in the supernatant and the mass of the remaining gel formulation. The most promising gel formulations will be tested in a murine model of surgical bed resection to assess in vivo gel dissolution, IONP cell uptake kinetics via histology and TEM analysis, and heating capability of the gel with AMF exposure.

  2. Total body nitrogen analysis. [neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1975-01-01

    Studies of two potential in vivo neutron activation methods for determining total and partial body nitrogen in animals and humans are described. A method using the CO-11 in the expired air as a measure of nitrogen content was found to be adequate for small animals such as rats, but inadequate for human measurements due to a slow excretion rate. Studies on the method of measuring the induced N-13 in the body show that with further development, this method should be adequate for measuring muscle mass changes occurring in animals or humans during space flight.

  3. Gel-based versus gel-free proteomics: a review.

    PubMed

    Baggerman, Geert; Vierstraete, Evy; De Loof, Arnold; Schoofs, Liliane

    2005-12-01

    With the sequencing of the genome of over 150 organisms, the field of biology has been revolutionised. Instead of studying one gene or protein at the time, it is now possible to study the effect of physiological or pathological changes on the expression of all genes or proteins in the organism. Proteomics aims at the simultaneous analysis of all proteins expressed by a cell, tissue or organism in a specific physiological condition. Because proteins are the effector molecules in all organisms, it is evident that changes in the physiological condition of an organism will be reflected by changes in protein expression and/or processing. Since the formulation of the concept of proteomics in the mid 90's proteomics has relied heavily on 2 dimensional gel electrophoresis (2DGE) for the separation and visualization of proteins. 2DGE, however, has a number of inherent drawbacks. 2DGE is costly, fairly insensitive to low copy proteins and cannot be used for the entire proteome. Therefore, over the years, several gel-free proteomics techniques have been developed to either fill the gaps left by 2DGE or to entirely abolish the gel based techniques. This review summarizes the most important gel-free and gel-based proteomics techniques and compares their advantages and drawbacks.

  4. The Role of Bimatoprost Eyelash Gel in Chemotherapy-induced Madarosis: An Analysis of Efficacy and Safety

    PubMed Central

    Morris, Carrie L; Stinnett, SS; Woodward, JA

    2011-01-01

    Objectives: Breast cancer patients suffer from madarosis (loss of eyelashes) due to chemotherapy side effects. An effective treatment or prevention for alopecia or madarosis induced by chemotherapy is not available. Potential drug side effects of bimatoprost solution include increased eyelash length, darkness, and number. A formulation of bimatoprost which maximizes eyelash enhancement and minimizes intraocular and systemic side effects has not been reported. Materials and Methods: An Institutional Review Board (IRB) and Investigational New Drug (IND) approved, randomized, single-blinded, prospective, internally controlled trial compared bimatoprost eyelash gel in relation to eyelash enhancement of madarosis patients. Forty eyelids of 20 chemotherapy-treated breast cancer patients were randomized to treatment or control (fellow eyelid). Both patient and surgeon (blindly) evaluated bimatoprost gel's effectiveness in improving eyelash appearance at baseline and at monthly intervals. Results: The median follow-up time was 3 months (range 1-4). There was a significant difference between treated and fellow eyelash length during month 2 [1.00 mm (P=0.004)] and month 3 [1.00 mm, P=0.02)], in eyelash pigment [month 1 (2.5, P=0.04); month 2 (2, P=0.0009); month 3 (3, P=0.06)] and thickness [month 2 (2, P=0.002); month 3 (3, P=0.01)]. There was an improvement in the patient satisfaction scale from baseline 16 (median, range 7-21) to 26 (median, range 17-33, P=0.002) at last follow-up. Conclusions: Bimatoprost eyelash gel appears promising for chemotherapy-induced madarosis. Patients may find the effects restorative and cosmetically enhancing. PMID:22223967

  5. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis

    PubMed Central

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    Background: As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Objective: Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Materials and Methods: Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Results: The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Conclusions: Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. SUMMARY The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines PMID:28250651

  6. Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis.

    PubMed

    Bendich, A J

    1996-02-02

    The size and structure of mitochondrial DNA (mtDNA) molecules was investigated by conventional and pulsed-field gel electrophoresis (PFGE) and by analyzing moving pictures during electrophoresis of individual fluorescently labelled mtDNA molecules. Little or no mtDNA that migrated into the gel was found in circular form for fungi (Schizosaccharomyces pombe, Saccharomyces cerevisiae and Neurospora crassa) or plants (Brassica hirta, tobacco, voodoo lily and maize). Most mtDNA migrated as a smear of linear DNA sizes from about 50 to 100 or 250 kilobases (kb), depending on the species, irrespective of the size of the mitochondrial genome over a range of 0.06 to 570 kb. S. cerevisiae, B. hirta and tobacco also yielded a linear mtDNA fraction containing molecules > 1000 kb in size. About half the mtDNA remained in the well of the gel after PFGE. Moving pictures revealed that this well-bound (wb) mtDNA contained molecules larger than the genome size in linear form for all species (except N. crassa) and in multi-fibered, comet-like forms for most of the wb mtDNA of N. crassa and Sc. pombe. A minor amount of the wb mtDNA with visually interpretable structure was circular: circle sizes were both larger and smaller than the 80-kb genome of S. cerevisiae, larger than the 19-kb genome of Sc. pombe and smaller than the 208-kb and 570-kb genomes of B. hirta and maize, respectively. About 25 to 75% of the wb mtDNA from cultured tobacco cells was found in circles smaller than its genome size. Partial digestion of Sc. pombe mtDNA with restriction endonucleases that cleave once per genome revealed gel bands at about 38 kb and 19 kb with a smear of sizes between the bands and below the 19-kb band, suggesting a head-to-tail genomic concatemer as the most prominent form in extracted mtDNA. A pattern of bands with smears was also found for complete digests (with multiply cleaving enzymes) of mtDNA from Sc. pombe, S. cerevisiae and N. crassa, but bands without smears were found for

  7. Microbubble tunneling in gel phantoms

    PubMed Central

    Caskey, Charles F.; Qin, Shengping; Dayton, Paul A.; Ferrara, Katherine W.

    2009-01-01

    Insonified microbubbles were observed in vessels within a gel with a Young’s modulus similar to that of tissue, demonstrating shape instabilities, liquid jets, and the formation of small tunnels. In this study, tunnel formulation occurred in the direction of the propagating ultrasound wave, where radiation pressure directed the contact of the bubble and gel, facilitating the activity of the liquid jets. Combinations of ultrasonic parameters and microbubble concentrations that are relevant for diagnostic imaging and drug delivery and that lead to tunnel formation were applied and the resulting tunnel formation was quantified. PMID:19425620

  8. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Poongodi, G.; Anandan, P.; Kumar, R. Mohan; Jayavel, R.

    2015-09-01

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO.

  9. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method.

    PubMed

    Poongodi, G; Anandan, P; Kumar, R Mohan; Jayavel, R

    2015-09-05

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO.

  10. Sol-gel low-temperature synthesis of stable anatase-type TiO2 nanoparticles under different conditions and its photocatalytic activity.

    PubMed

    Behnajady, Mohammad A; Eskandarloo, Hamed; Modirshahla, Nasser; Shokri, Mohammad

    2011-01-01

    In this work, TiO(2) nanoparticles in anatase phase was prepared by sol-gel low temperature method from titanium tetra-isopropoxide (TTIP) as titanium precursor in the presence of acetic acid (AcOH). The effects of synthesis parameters such as AcOH and water ratios, sol formation time, synthesis and calcination temperature on the photocatalytic activity of TiO(2) nanoparticles were evaluated. The resulting nanoparticles were characterized by X-ray diffraction, UV-Vis reflectance spectroscopy, transmission electron microscopy and Brunauer-Emmett-Teller techniques. Photocatalytic activity of anatase TiO(2) nanoparticles determined in the removal of C. I. Acid Red 27 (AR27) under UV light irradiation. Results indicate that with increasing AcOH/TTIP molar ratio from 1 to 10, sol formation time from 1 to 3 h and synthesis temperature from 0 to 25°C, increases crystallite size of synthesized nanoparticles. It was found that optimal conditions for low temperature preparation of anatase-type TiO(2) nanoparticles with high photocatalytic activity were as follows: TTIP:AcOH:water molar ratio 1:1:200, sol formation time 1 h, synthesis temperature 0°C and calcination temperature 450°C.

  11. Supramolecular gel-assisted synthesis of double shelled Co@CoO@N-C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wu, Zexing; Wang, Jie; Han, Lili; Lin, Ruoqian; Liu, Hongfang; Xin, Huolin L.; Wang, Deli

    2016-02-01

    Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N-C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N-C/C core-shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N-C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement over the commercial Pt/C catalyst. The progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications.Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N-C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N-C/C core-shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N-C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement over the commercial Pt/C catalyst. The progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07929b

  12. Analysis of bacteriophage N protein and peptide binding to boxB RNA using polyacrylamide gel coelectrophoresis (PACE).

    PubMed Central

    Cilley, C D; Williamson, J R

    1997-01-01

    The antitermination protein N from bacteriophage lambda (Nlambda) interacts with the nut site in its own mRNA, as well as host factors, to facilitate formation of a termination-resistant transcription complex. The conserved, amino-terminal arginine-rich domain of Nlambda protein is known to interact with a small RNA hairpin (boxB) derived from the nut site RNA. We have examined the binding of Nlambda protein, peptides derived from the amino terminus of Nlambda, and the related phage P22 N protein to lambda boxB RNAs. To facilitate the study of complexes that are not amenable to gel retardation assays, a new polyacrylamide affinity coelectrophoresis technique (PACE) was developed. Using the PACE assay, we have demonstrated that a 19-amino acid peptide from the amino terminus of Nlambda protein binds lambda boxB RNA with a Kd,app of 5.2 nM. PACE was also used to study the binding affinity of a number of Nlambda peptide and lambda boxB RNA mutants. The PACE technique is complementary to the traditional gel retardation assay for direct measurement of binding interactions, and will be useful for any procedure that requires a pool of RNAs to be resolved based on their relative affinities for proteins or peptides. PMID:8990399

  13. Mutation analysis of fragile X syndrome by Southern blot, radioactive PCR, silver-stained polyacrylamide gel and DIG DNA

    SciTech Connect

    Lee, Sook-Hwan; Kim, Un-Kyung; Chung-Woong, M.S.

    1994-09-01

    Fragile X syndrome is the most common inherited form of mental retardation. In fragile X syndrome, the underlying mutation is caused by an expansion of the CTG triplet in the 5{prime} untranslated region of the FMR-1 gene located at Xq27.3 and diagnosed by methylation of the associated CpG island. This disorder becomes clinically manifested when the mutation is caused by an expansion of (CGG)n reaching a threshold of about 600bp (200 repeats). The number of inserted repeats increases through the generation. We have analyzed fragile X syndrome by 4 different methods: Southern blot, radioactive PCR, polyacrylamide gel and DIG DNA labeling/detection techniques. Southern blot and DIG DNA labeling/detection by double DNA digestion with EcoRI and EagI reveals both the presence of the mutation and the methylation status. Radioactive PCR and silver-stained polyacrylamide gel is a rapid and sensitive technique to define the unaffected carriers and NTMs, but it is difficult to amplify such a highly GC-rich sequence. Further testing in other fragile X patients is currently in progress.

  14. Mechanical stability analysis of carrageenan-based polymer gel for magnetic resonance imaging liver phantom with lesion particles

    PubMed Central

    In, Eunji; Naguib, Hani; Haider, Masoom

    2014-01-01

    Abstract. Medical imaging is an effective technique used to detect and prevent disease in cancer research. To optimize medical imaging, a calibration medium or phantom with tissue-mimicking properties is required. Although the feasibility of various polymer gel materials has previously been studied, the stability of the gels’ properties has not been investigated. In this study, we fabricated carrageenan-based polymer gel to examine the stability of its properties such as density, conductivity, permittivity, elastic modulus, and T1 and T2 relaxation times over six weeks. We fabricated eight samples with different carrageenan and agar concentrations and found that the density, elastic modulus, and compressive strength fluctuated with no specific pattern. The elastic modulus in sample 4 with 3 wt. % carrageenan and 1.5 wt. % agar fluctuated from 0.51 to 0.64 MPa in five weeks. The T1 and T2 relaxation times also varied by 23% to 29%. We believe that the fluctuation of these properties is related to the change in water content of the sample due to cycles of water expulsion and absorption in their containers. The fluctuation of the properties should be minimized to achieve accurate calibration over the shelf life of the phantom and to serve as the standard for quality assurance. Furthermore, a full liver phantom with spherical lesion particles was fabricated to demonstrate the potential for phantom production. PMID:26158073

  15. Structural and thermo-rheological analysis of solutions and gels of a β-lactoglobulin fraction isolated from bovine whey.

    PubMed

    Estévez, Natalia; Fuciños, Pablo; Bargiela, Verónica; Pastrana, Lorenzo; Tovar, Clara Asunción; Luisa Rúa, M

    2016-05-01

    A β-Lactoglobulin fraction (r-βLg) was isolated from milk whey hydrolysates produced with cardosins from Cynara cardunculus. The impact of the technological process on the r-βLg structure and how in turn this determined its heat-induced gelation was investigated. Results were analysed taking pure β-Lg (p-βLg) as control sample. The process induced changes in the r-βLg native conformation causing exposure of hydrophobic groups, lower thermal stability and also, shorter thermal treatments needed to give rise to non-native and aggregated species. At pH 3.2, r-βLg and p-βLg solutions exhibited two gelation steps, with the advantage that r-βLg protein may form stable gels at lower temperature than p-βLg. At pH 7.2, a specific thermo-viscoelastic stability to 73 °C was found, which corresponded to the gel point in both protein solutions. The difference was that while for p-βLg solution in sol state δ<45° (solid-like), however for r-βLg solution δ>45° (fluid-like).

  16. Differential single nucleotide polymorphism-based analysis of an outbreak caused by Salmonella enterica serovar Manhattan reveals epidemiological details missed by standard pulsed-field gel electrophoresis.

    PubMed

    Scaltriti, Erika; Sassera, Davide; Comandatore, Francesco; Morganti, Marina; Mandalari, Carmen; Gaiarsa, Stefano; Bandi, Claudio; Zehender, Gianguglielmo; Bolzoni, Luca; Casadei, Gabriele; Pongolini, Stefano

    2015-04-01

    We retrospectively analyzed a rare Salmonella enterica serovar Manhattan outbreak that occurred in Italy in 2009 to evaluate the potential of new genomic tools based on differential single nucleotide polymorphism (SNP) analysis in comparison with the gold standard genotyping method, pulsed-field gel electrophoresis. A total of 39 isolates were analyzed from patients (n=15) and food, feed, animal, and environmental sources (n=24), resulting in five different pulsed-field gel electrophoresis (PFGE) profiles. Isolates epidemiologically related to the outbreak clustered within the same pulsotype, SXB_BS.0003, without any further differentiation. Thirty-three isolates were considered for genomic analysis based on different sets of SNPs, core, synonymous, nonsynonymous, as well as SNPs in different codon positions, by Bayesian and maximum likelihood algorithms. Trees generated from core and nonsynonymous SNPs, as well as SNPs at the second and first plus second codon positions detailed four distinct groups of isolates within the outbreak pulsotype, discriminating outbreak-related isolates of human and food origins. Conversely, the trees derived from synonymous and third-codon-position SNPs clustered food and human isolates together, indicating that all outbreak-related isolates constituted a single clone, which was in line with the epidemiological evidence. Further experiments are in place to extend this approach within our regional enteropathogen surveillance system.

  17. Effect of pH, water activity and gel micro-structure, including oxygen profiles and rheological characterization, on the growth kinetics of Salmonella Typhimurium.

    PubMed

    Theys, T E; Geeraerd, A H; Verhulst, A; Poot, K; Van Bree, I; Devlieghere, F; Moldenaers, P; Wilson, D; Brocklehurst, T; Van Impe, J F

    2008-11-30

    In this study, the growth of Salmonella Typhimurium in Tryptic Soy Broth was examined at different pH (4.50-5.50), water activity a(w) (0.970-0.992) and gelatin concentration (0%, 1% and 5% ) at 20 degrees C. Experiments in TSB with 0% gelatin were carried out in shaken erlenmeyers, in the weak 1% gelatin media in petri plates and in the firm 5% gelatin media in gel cassettes. A quantification of gel strength was performed by rheological measurements and the influence of oxygen supply on the growth of S. Typhimurium was investigated. pH, as well as a(w) as well as gelatin concentration had an influence on the growth rate. Both in broth and in gelatinized media, lowering pH or water activity caused a decrease of growth rate. In media with 1% gelatin a reduction of growth rate and maximal cell density was observed compared to broth at all conditions. However, the effects of decreasing pH and a(w) were less pronounced. A further increase in gelatin concentration to 5% gelatin caused a small or no additional drop of growth rate. The final oxygen concentration dropped from 5.5 ppm in stirred broth to anoxic values in petri plates, also when 0% and 5% gelatin media were tested in this recipient. Probably, not stirring the medium, which leads to anoxic conditions, has a more pronounced effect on the growth rate of S. Typhimurium then medium solidness. Finally, growth data were fitted with the primary model of Baranyi and Roberts [Baranyi, J. and Roberts, T. A., 1994. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology 23, 277-294]. An additional factor was introduced into the secondary model of Ross et al. [Ross, T. and Ratkowsky, D. A. and Mellefont, L. A. and McMeekin, T. A., 2003. Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. International Journal of Food Microbiology 82, 33-43.] to incorporate the effect of gelatin concentration, next to

  18. Double-stranded cucumovirus associated RNA 5: experimental analysis of necrogenic and non-necrogenic variants by temperature-gradient gel electrophoresis.

    PubMed Central

    Po, T; Steger, G; Rosenbaum, V; Kaper, J; Riesner, D

    1987-01-01

    Cucumber mosaic virus (CMV) and peanut stunt virus (PSV) each contain a fifth major RNA in the size range of 334 to 393 nucleotides. This fifth RNA is a satellite capable of modulating the expression of viral disease symptoms. It is present in infected tissue in single-stranded and double-stranded form. Nucleotide sequence variants of the double-stranded CMV-associated RNA 5 (dsCARNA 5) and PSV-associated RNA 5 (dsPARNA 5) were analysed by temperature-gradient gel electrophoresis. Gels were 5% polyacrylamide, containing 8 M urea in 8.9 mM Tris-borate buffer, with temperature differences of 25-40 degrees C establishing gradients either perpendicular or parallel to the direction of the electric field. For dsCARNA 5 two characteristic transitions were detected with increasing temperature: at temperatures between 40 degrees C and 46 degrees C a drastic retardation in electrophoretic mobility induced by partial dissociation of the duplex structure from the ends and at temperatures above 52 degrees C an abrupt increase in mobility due to complete strand dissociation. dsPARNA 5 exhibited both transitions at up to 10 degrees C higher temperatures and an additional retardation between the transitions mentioned. Seven different variants of dsCARNA 5, 4 necrogenic and 3 non-necrogenic, were analysed. Some showed only one single band, others gave rise to up to six well separated bands corresponding to six molecular species. From all experimental results a correlation between the temperature of the retardation transition and the necrogenicity of CARNA 5 was derived. The diagnostic application of the temperature-gradient gel analysis in agriculture, particularly for the use of non-necrogenic variants as biological control agents to impede CMV-infections, is discussed. Images PMID:3601667

  19. Electrophoretic analysis of liver glycogen phosphorylase activation in the freeze-tolerant wood frog.

    PubMed

    Crerar, M M; David, E S; Storey, K B

    1988-08-19

    As an adaptation for overwinter survival, the wood frog, Rana sylvatica is able to tolerate the freezing of extracellular body fluids. Tolerance is made possible by the production of very high amounts of glucose in liver which is then sent to other organs where it acts as a cryoprotectant. Cryoprotectant synthesis is under the control of glycogen phosphorylase which in turn is activated in response to ice formation. To determine the mechanism of phosphorylase activation, a quantitative analysis of phosphorylase protein concentration and enzymatic activity in liver was carried out following separation of the phosphorylated a and nonphosphorylated b forms of the enzyme on native polyacrylamide gels. The results suggest that in gels, the b form is completely inactive, even in the presence of AMP and sodium sulfate, whereas the a form is active and stimulated 3-fold by these substances. Further, phosphorylase activation appears to arise solely from conversion of the b to a form of the enzyme without an increase in phosphorylase concentration or activation of a second isozyme. The quantitative analysis presented here should prove generally useful as a simple and rapid method for examining the physiological and genetic regulation of phosphorylase in animal cells.

  20. Supramolecular gel-assisted synthesis of double shelled Co@CoO@N-C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction

    SciTech Connect

    Wu, Zexing; Wang, Jie; Han, Lili; Lin, Ruogian; Liu, Hongfang; Xin, Huolin L.; Wang, Deli

    2016-01-19

    Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N–C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N–C/C core–shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N–C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement over the commercial Pt/C catalyst. As a result, the progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications.

  1. Floating photocatalyst of B–N–TiO2/expanded perlite: a sol–gel synthesis with optimized mesoporous and high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xue, Hongbo; Jiang, Ya; Yuan, Kechun; Yang, Tingting; Hou, Jianhua; Cao, Chuanbao; Feng, Ke; Wang, Xiaozhi

    2016-07-01

    Optimized mesoporous photocatalyst endowed with high specific surface area and large pore size was synthesized by sol–gel method. These large pore mesoporous materials (33.39 nm) were conducive to the movement of larger molecules or groups in pore path and for effective use of active sites. The high specific surface area (SBET, 99.23 m2 g‑1) was beneficial to catalytic oxidation on the surface. Moreover, B and N co-doped anatase TiO2 in the presence of Ti–O–B–N and O–Ti–B–N contributed to the pore structure optimization and enhanced photoresponse capacity with a narrow band gap and red shift of absorption. The obtained materials with floating characteristics based on expanded perlite (EP) showed favorable features for photocatalytic activity. The best RhB photodegration rate of B–N–TiO2/EP (6 mg/g, 24 wt% TiO2) reached 99.1% after 5 h in the visible region and 99.8% after 1 h in the UV region. The findings can provide insights to obtain floatable photocatalysts with simple preparation method, optimized mesoporous, co-doping agents, as well as good photocatalytic performance, coverable and reusability. B–N–TiO2/EP has potential applications for practical environmental purification.

  2. Floating photocatalyst of B–N–TiO2/expanded perlite: a sol–gel synthesis with optimized mesoporous and high photocatalytic activity

    PubMed Central

    Xue, Hongbo; Jiang, Ya; Yuan, Kechun; Yang, Tingting; Hou, Jianhua; Cao, Chuanbao; Feng, Ke; Wang, Xiaozhi

    2016-01-01

    Optimized mesoporous photocatalyst endowed with high specific surface area and large pore size was synthesized by sol–gel method. These large pore mesoporous materials (33.39 nm) were conducive to the movement of larger molecules or groups in pore path and for effective use of active sites. The high specific surface area (SBET, 99.23 m2 g−1) was beneficial to catalytic oxidation on the surface. Moreover, B and N co-doped anatase TiO2 in the presence of Ti–O–B–N and O–Ti–B–N contributed to the pore structure optimization and enhanced photoresponse capacity with a narrow band gap and red shift of absorption. The obtained materials with floating characteristics based on expanded perlite (EP) showed favorable features for photocatalytic activity. The best RhB photodegration rate of B–N–TiO2/EP (6 mg/g, 24 wt% TiO2) reached 99.1% after 5 h in the visible region and 99.8% after 1 h in the UV region. The findings can provide insights to obtain floatable photocatalysts with simple preparation method, optimized mesoporous, co-doping agents, as well as good photocatalytic performance, coverable and reusability. B–N–TiO2/EP has potential applications for practical environmental purification. PMID:27432460

  3. Effective visible light-active boron and europium co-doped BiVO4 synthesized by sol-gel method for photodegradion of methyl orange.

    PubMed

    Wang, Min; Che, Yinsheng; Niu, Chao; Dang, Mingyan; Dong, Duo

    2013-11-15

    Eu-B co-doped BiVO4 visible-light-driven photocatalysts have been synthesized using the sol-gel method. The resulting materials were characterized by a series of joint techniques, including XPS, XRD, SEM, BET, and UV-vis DRS analyses. Compared with BiVO4 and B-BiVO4 photocatalysts, the Eu-B-BiVO4 photocatalysts exhibited much higher photocatalytic activity for methyl orange (MO) degradation under visible light irradiation. The optimal Eu doping content is 0.8 mol%. It was revealed that boron and europium were doped into the lattice of BiVO4 and this led to more surface oxygen vacancies, high specific surface areas, small crystallite size, a narrower band gap and intense light absorbance in the visible region. The doped Eu(III) cations can help in the separation of photogenerated electrons. The synergistic effects of boron and europium in doped BiVO4 were the main reason for improving visible light photocatalytic activity.

  4. Supramolecular gel-assisted synthesis of double shelled Co@CoO@N-C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction

    DOE PAGES

    Wu, Zexing; Wang, Jie; Han, Lili; ...

    2016-01-19

    Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N–C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N–C/C core–shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N–C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement overmore » the commercial Pt/C catalyst. As a result, the progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications.« less

  5. Preparation and photocatalytic activity of MgxZn1-xO thin films on silicon substrate through sol-gel process

    NASA Astrophysics Data System (ADS)

    Liu, Changlong; Shang, Fengjiao; Pan, Guangcai; Wang, Feng; Zhou, Zhitao; Gong, Wanbing; Zi, Zhenfa; Wei, Yiyong; Chen, Xiaoshuang; Lv, Jianguo; He, Gang; Zhang, Miao; Song, Xueping; Sun, Zhaoqi

    2014-06-01

    Magnesium doped zinc oxide (MgxZn1-xO) thin films were synthesized on silicon substrate through sol-gel process. Mg0.15Zn0.85O thin films were annealed at 500-800 °C and ZnO, Mg0.1Zn0.9O, Mg0.05Zn0.95O thin films were annealed at 600 °C for 60 min, respectively. The results show that all the samples are of a hexagonal wurtzite structure of ZnO. The surface morphology is strongly dependent on mean grain size and surface fluctuation. Fourier transform infrared spectra reveal that the vibration peak at 420 cm-1 is of the intrinsic lattice absorption of ZnO. The peak at 1083 cm-1 belongs to Sisbnd Osbnd Si asymmetric stretching vibration. Photoluminescence spectra show that the ultraviolet emission (365-400 nm) and the broad visible emission (469-569 nm) are observed. In particular, Mg0.05Zn0.95O thin film annealed at 600 °C exhibits the highest photocatalytic activity, degrading MO by almost 85.8% after 180 min illumination. The photocatalytic activity of the thin film is a synergistic effect defined by grain size, roughness factor, oxygen defects and amorphous MgO.

  6. Floating photocatalyst of B-N-TiO2/expanded perlite: a sol-gel synthesis with optimized mesoporous and high photocatalytic activity.

    PubMed

    Xue, Hongbo; Jiang, Ya; Yuan, Kechun; Yang, Tingting; Hou, Jianhua; Cao, Chuanbao; Feng, Ke; Wang, Xiaozhi

    2016-07-19

    Optimized mesoporous photocatalyst endowed with high specific surface area and large pore size was synthesized by sol-gel method. These large pore mesoporous materials (33.39 nm) were conducive to the movement of larger molecules or groups in pore path and for effective use of active sites. The high specific surface area (SBET, 99.23 m(2) g(-1)) was beneficial to catalytic oxidation on the surface. Moreover, B and N co-doped anatase TiO2 in the presence of Ti-O-B-N and O-Ti-B-N contributed to the pore structure optimization and enhanced photoresponse capacity with a narrow band gap and red shift of absorption. The obtained materials with floating characteristics based on expanded perlite (EP) showed favorable features for photocatalytic activity. The best RhB photodegration rate of B-N-TiO2/EP (6 mg/g, 24 wt% TiO2) reached 99.1% after 5 h in the visible region and 99.8% after 1 h in the UV region. The findings can provide insights to obtain floatable photocatalysts with simple preparation method, optimized mesoporous, co-doping agents, as well as good photocatalytic performance, coverable and reusability. B-N-TiO2/EP has potential applications for practical environmental purification.

  7. DLTS analysis of amphoteric interface defects in high-TiO{sub 2} MOS structures prepared by sol-gel spin-coating

    SciTech Connect

    Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara E-mail: raoksrk@gmail.com

    2015-11-15

    High-κ TiO{sub 2} thin films have been fabricated from a facile, combined sol – gel spin – coating technique on p and n type silicon substrate. XRD and Raman studies headed the existence of anatase phase of TiO{sub 2} with a small grain size of 18 nm. The refractive index ‘n’ quantified from ellipsometry is 2.41. AFM studies suggest a high quality, pore free films with a fairly small surface roughness of 6 Å. The presence of Ti in its tetravalent state is confirmed by XPS analysis. The defect parameters observed at the interface of Si/TiO{sub 2} were studied by capacitance – voltage (C – V) and deep level transient spectroscopy (DLTS). The flat – band voltage (V{sub FB}) and the density of slow interface states estimated are – 0.9, – 0.44 V and 5.24×10{sup 10}, 1.03×10{sup 11} cm{sup −2}; for the NMOS and PMOS capacitors, respectively. The activation energies, interface state densities and capture cross – sections measured by DLTS are E{sub V} + 0.30, E{sub C} – 0.21 eV; 8.73×10{sup 11}, 6.41×10{sup 11} eV{sup −1} cm{sup −2} and 5.8×10{sup −23}, 8.11×10{sup −23} cm{sup 2} for the NMOS and PMOS structures, respectively. A low value of interface state density in both P- and N-MOS structures makes it a suitable alternate dielectric layer for CMOS applications. And also very low value of capture cross section for both the carriers due to the amphoteric nature of defect indicates that the traps are not aggressive recombination centers and possibly can not contribute to the device operation to a large extent.

  8. A subgroup analysis to evaluate the efficacy and safety of adapalene-benzoyl peroxide topical gel in black subjects with moderate acne.

    PubMed

    Alexis, Andrew F; Johnson, Lori A; Kerrouche, Nabil; Callender, Valerie D

    2014-02-01

    Three multicenter, randomized, double blind, parallel-group, placebo controlled studies involving 3,855 subjects established the safety and efficacy of an adapalene benzoyl peroxide topical gel in the treatment of acne for all skin types. The data from these 3 studies were pooled and the subgroup of self-identified black subjects was analyzed separately. Significantly more black subjects had IGA success with adapalene-BPO than with vehicle at week 12. Significantly more black subjects also had decreased total, inflammatory, and noninflammatory lesion counts with adapalene-BPO that were seen as early as week 1. Adapalene-BPO was well tolerated in the black subjects included in this analysis and no cases of treatment-related PIH were observed. Similar results were obtained for this subgroup as the overall population from the 3 studies. Based on the results from this analysis, adapalene-BPO is a safe and effective treatment for acne in black skin.

  9. Analysis of Genomic Diversity among Helicobacter pylori Strains Isolated from Iranian Children by Pulsed Field Gel Electrophoresis

    PubMed Central

    Falsafi, Tahereh; Sotoudeh, Nazli; Feizabadi, Mohammad-Mehdi; Mahjoub, Fatemeh

    2014-01-01

    Objective: Presence of genomic diversity among Helicobacter pylori (H. pylori) strains have been suggested by numerous investigators. Little is known about diversity of H. pylori strains isolated from Iranian children and their association with virulence of the strains. Our purpose was to assess the degree of genomic diversity among H. pylori strains isolated from Iranian-children, on the basis of vacA genotype, cagA status of the strains, sex, age as well as the pathological status of the patients. Methods: Genomic DNA from 44 unrelated H. pylori strains isolated during 1997–2009, was examined by pulse-field gel electrophoresis (PFGE). Pathological status of the patients was performed according to the modified Sydney-system and genotype/status of vacA/cagA genes was determined by PCR. PFGE was performed using XbaI restriction-endonuclease and the field inversion-gel electrophoresis system. Findings: No significant relationship was observed between the patterns of PFGE and the cagA/vacA status/genotype. Also no relationship was observed between age, sex, and pathological status of the children and the PFGE patterns of their isolates. Similar conclusion was obtained by Total Lab software. However, more relationship was observed between the strains isolated in the close period (1997–2009, 2001–2003, 2005–2007, and 2007–2009) and more difference was observed among those obtained in the distant periods (1997 and 2009). Conclusion: H. pylori strains isolated from children in Iran are extremely diverse and this diversity is not related to their virulence characteristics. Occurrence of this extreme diversity may be related to adaptation of H. pylori strains to variable living conditions during transmission between various host individuals. PMID:26019775

  10. Protein identification from two-dimensional gel electrophoresis analysis of Klebsiella pneumoniae by combined use of mass spectrometry data and raw genome sequences

    PubMed Central

    Wang, Wei; Sun, Jibin; Nimtz, Manfred; Deckwer, Wolf-Dieter; Zeng, An-Ping

    2003-01-01

    Separation of proteins by two-dimensional gel electrophoresis (2-DE) coupled with identification of proteins through peptide mass fingerprinting (PMF) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is the widely used technique for proteomic analysis. This approach relies, however, on the presence of the proteins studied in public-accessible protein databases or the availability of annotated genome sequences of an organism. In this work, we investigated the reliability of using raw genome sequences for identifying proteins by PMF without the need of additional information such as amino acid sequences. The method is demonstrated for proteomic analysis of Klebsiella pneumoniae grown anaerobically on glycerol. For 197 spots excised from 2-DE gels and submitted for mass spectrometric analysis 164 spots were clearly identified as 122 individual proteins. 95% of the 164 spots can be successfully identified merely by using peptide mass fingerprints and a strain-specific protein database (ProtKpn) constructed from the raw genome sequences of K. pneumoniae. Cross-species protein searching in the public databases mainly resulted in the identification of 57% of the 66 high expressed protein spots in comparison to 97% by using the ProtKpn database. 10 dha regulon related proteins that are essential for the initial enzymatic steps of anaerobic glycerol metabolism were successfully identified using the ProtKpn database, whereas none of them could be identified by cross-species searching. In conclusion, the use of strain-specific protein database constructed from raw genome sequences makes it possible to reliably identify most of the proteins from 2-DE analysis simply through peptide mass fingerprinting. PMID:14653859

  11. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  12. A proteomics strategy to discover beta-glucosidases from Aspergillus fumigatus with two-dimensional page in-gel activity assay and tandem mass spectrometry.

    PubMed

    Kim, Kee-Hong; Brown, Kimberly M; Harris, Paul V; Langston, James A; Cherry, Joel R

    2007-12-01

    Economically competitive production of ethanol from lignocellulosic biomass by enzymatic hydrolysis and fermentation is currently limited, in part, by the relatively high cost and low efficiency of the enzymes required to hydrolyze cellulose to fermentable sugars. Discovery of novel cellulases with greater activity could be a critical step in overcoming this cost barrier. beta-Glucosidase catalyzes the final step in conversion of glucose polymers to glucose. Despite the importance, only a few beta-glucosidases are commercially available, and more efficient ones are clearly needed. We developed a proteomics strategy aiming to discover beta-glucosidases present in the secreted proteome of the cellulose-degrading fungus Aspergillus fumigatus. With the use of partial or complete protein denaturing conditions, the secretory proteome was fractionated in a 2DGE format and beta-glucosidase activity was detected in the gel after infusion with a substrate analogue that fluoresces upon hydrolysis. Fluorescing spots were subjected to tryptic-digestion, and identification as beta-glucosidases was confirmed by tandem mass spectrometry. Two novel beta-glucosidases of A. fumigatus were identified by this in situ activity staining method, and the gene coding for a novel beta-glucosidase ( EAL88289 ) was cloned and heterologously expressed. The expressed beta-glucosidase showed far superior heat stability to the previously characterized beta-glucosidases of Aspergillus niger and Aspergillus oryzae. Improved heat stability is important for development of the next generation of saccharifying enzymes capable of performing fast cellulose hydrolysis reactions at elevated temperatures, thereby lowering the cost of bioethanol production. The in situ activity staining approach described here would be a useful tool for cataloguing and assessing the efficiency of beta-glucosidases in a high throughput fashion.

  13. Ultrastructural and biochemical analysis of fibrinogen receptors on activated thrombocytes

    SciTech Connect

    O'Toole, E.T.

    1989-01-01

    The present studies have been concerned with the role of fibrinogen and its receptor, GP IIb/IIIa, during the activation and early aggregation of pigeon thrombocytes. Thrombocytes were surface labeled with {sup 125}I then separated on SDS-PAGE. Analysis by gel autoradiography revealed major bands at MW 145 kd and 98 kd, which corresponded to human GPIIb and GPIIIa. Immunologic similarity of the pigeon and human receptor components was established by dot blot analysis using polyclonal antibodies directed against human GPIIb and GPIIIa. Pigeon fibrinogen, isolated by plasma precipitation with PEG-1000 and purified over Sepharose 4B, was used to study receptor-ligand interaction. Separation of pigeon fibrinogen on SDS-PAGE resulted in three peptides having apparent MW of 62kd, 55kd, and 47kd which are comparable to human fibrinogen. Further similarity of human and pigeon fibrinogen was verified by immonodiffusion against an antibody specific for the human protein. The role of fibrinogen and its receptor in thrombocyte function was established by turbidimetric aggregation using thrombin as an agonist under conditions requiring Ca++ and fibrinogen.

  14. Absorption, luminescent and lasing properties of laser dyes in silica gel matrices and thin gel films

    SciTech Connect

    Shaposhnikov, A A; Kuznetsova, Rimma T; Kopylova, T N; Maier, G V; Tel'minov, E N; Pavich, T A; Arabei, S M

    2004-08-31

    The absorption and emission properties of eight organic compounds in silica gel matrices of different chemical compositions and different types (bulk samples and thin films) are studied upon excitation by a XeCl laser and the second harmonic of a Nd:YAG laser. The mechanisms of the laser-induced changes in the spectral parameters of molecules in silica gel matrices are discussed and the photostability of the laser dyes in silica gel films is estimated. (active media)

  15. Semi-quantitative analysis of cytokine mRNA expression induced by the herbal medicine Sho-saiko-to (TJ-9) using a Gel Doc system.

    PubMed

    Huang, X X; Yamashiki, M; Nakatani, K; Nobori, T; Mase, A

    2001-01-01

    The RT-PCR method was employed to determine the cytokine mRNA expression of human peripheral lymphocytes induced by the Japanese herbal medicine Sho-saiko-to (TJ-9). The results showed that the mRNA expression of IL-12, IL-1beta, IL-10, TNF-alpha, G-CSF, and IFN-gamma increased after 6 hr in culture. This is the first reported finding that TJ-9 is an IFN-gamma inducer. Next, cytokine mRNA expression was semi-quantitatively measured using the Gel Doc system with a CCD camera and then statistically analyzed in order to determine which component of TJ-9 was the true cytokine inducer. The results showed that the scutellaria root is the main component inducing the cytokines, while the glycyrrhiza root is the secondary component. When the cytokine concentrations in the supernatants of cell cultures were measured by ELISA, the levels of IL-12, IL-1beta, IL-10, TNF-alpha, and G-CSF reflected mRNA expression levels in the cell fraction. However, the level of IFN-gamma was below the detectable limit. The effects of various reagents on many different kinds of cytokine mRNA expression could be analyzed objectively in a short time using the Gel Doc system. Many important findings could be demonstrated by this simple, easy, sensitive, and cheap method. After the clinical significance of cytokine analysis is confirmed, this method may become a useful clinical examination tool.

  16. Influence of gel/LED-laser application on cervical microleakage of two barrier materials used for endodontically treated teeth whitening

    NASA Astrophysics Data System (ADS)

    Marchesan, Melissa Andréia; Barros, Felipe; Porto, Saulo; Zaitter, Suellen; Brugnera, Aldo, Jr.; Sousa-Neto, Manoel D.

    2007-02-01

    This study evaluated ex vivo the influence of the number of gel/LED-laser applications/activations on cervical microleakage of two different barrier materials used for protection during whitening of endodontically treated teeth. Eighty-four canines were instrumented and obturated with epoxy resin sealer. The seal was removed 2 mm beyond the cemento-enamel junction for barrier placement and the teeth were divided into two groups of 40 teeth each: G1, zinc phosphate cement; G2, glass ionomer cement. The two groups were subdivided into 4 subgroups (n=10 each): I) no gel or LED-laser application; II) one gel application and two LED-laser activations; III) two gel applications and four LED-laser activations; IV) three gel applications and six LED-laser activations. The teeth were immersed in India ink for 7 days, decalcified and cleared. Cervical microleakage was quantified with a measurement microscope. Statistical analysis showed that zinc phosphate caused significantly lower microleakage than glass ionomer cement (presented microleakage in all subgroups). However, after two (p<0.01) and three (p<0.001) applications of gel, there was statistially significant microleakage in zinc phosphate barriers. Based on the present results, it can be concluded that cervical barriers with zinc phosphate cement show less cervical microleakage and that two or more applications/activations of gel/LED-laser significantly increase microleakage.

  17. Antibiotic-containing hyaluronic acid gel as an antibacterial carrier: Usefulness of sponge and film-formed HA gel in deep infection.

    PubMed

    Matsuno, Hiroaki; Yudoh, Kazuo; Hashimoto, Masamichi; Himeda, Yasukazu; Miyoshi, Teruzo; Yoshida, Kaoru; Kano, Syogo

    2006-03-01

    We have developed a novel bioabsorbable antibacterial carrier using hyaluronic acid (HA) gel for prevention and treatment of orthopedic infections. In this study, we investigated the in vivo antibacterial effects of two forms of this new material, an HA gel sponge and an HA gel film. A titanium cylinder was inserted into the intramedullary cavity of each rabbit femur, along with an HA gel sponge or HA gel film containing antibiotics. The HA gel sponge contained gentamycin, vancomycin, tobramycin, or minomycin. The HA gel film contained gentamycin or vancomycin. After 0, 7, and 14 days, the rabbit bone marrow was collected, and the antibacterial activity of the HA gel was determined by agar diffusion test. As a control, we used Septocoll, a commercially available antibacterial carrier. Both the HA gel sponge and HA gel film exhibited antibacterial activity. The present results indicate that HA gel containing antibiotics is a clinically useful bioabsorbable antibacterial carrier.

  18. Neutron Activation Analysis of Water - A Review

    NASA Technical Reports Server (NTRS)

    Buchanan, John D.

    1971-01-01

    Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.

  19. The synthesis of active biomaterials through nanofabrication and sol-gel encapsulation of liposomes and membrane proteins

    NASA Astrophysics Data System (ADS)

    Soong, Ricky Kai

    The following dissertation reveals the latest advancements in developing self-sustaining hybrid nano-systems. Three areas of research were initiated: (1) Dielectrophoretic (DEP) mediation of hybrid assembly, (2) Solar powered proton pumping films, and (3) Silica materials with biochemical output for integration with nano-devices. The first topic of research was devoted to creating reliable hybridization platforms. This was achieved by implementing AC electric-field forces. One of the primary considerations in utilizing DEP is buffer conductivity. The initial medium used to preserve biomotor functionality was too conductive and AC field effects were significantly reduced. Subsequent testing with lower ionic strength indicated that the biomolecules were repelled from field intense regions. Hence, nano-electrode arrays were reconfigured to trap device components. Initial results showed promising potential but current lithographic limitations require new nanofabrication methodologies to obtain the desired electrode design. The second research project was focused on creating solar powered biomaterials. Liposomes containing bR proton pumping proteins and pyranine fluorescent dye into phospholipid vesicles were encapsulated within a silica matrix. The characteristic 402/456 nm pyranine peaks blue shifted upon acidification by bR. The proteoliposomes were mixed in a 3:1 ratio with tetramethyl orthosilicate (TMOS) sol respectively to provide a solar powered thin proteogel films. Ultimately, the ability to prepare these proteogels enabled the establishment of a proton gradient, and therefore opportunities to use these materials for biologically based power generation. The third research project involved engineering nanobiochemical reaction environments within a three-dimensional construct. The goal here was to recruit encapsulated enzymes to actively synthesize biochemical compounds. These compounds were subsequently collected and used as a fuel source for integrated nano

  20. Reduction of V2O5 thin films deposited by aqueous sol-gel method to VO2(B) and investigation of its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Monfort, Olivier; Roch, Tomas; Satrapinskyy, Leonid; Gregor, Maros; Plecenik, Tomas; Plecenik, Andrej; Plesch, Gustav

    2014-12-01

    A way of preparation of VO2(B) thin films by reduction of V2O5 films synthesized from an aqueous sol-gel system has been developed and photocatalytic properties of the obtained films were studied. The reduction was performed by annealing of the V2O5 film in vacuum as well as in H2/Ar atmosphere, which was followed by temperature dependent XRD. It has been shown that the reduction is influenced by the layered-structure of the vanadium oxides. It is a two-step process, where the mixed-valence vanadium oxide V4O9 is first formed before reaching the VO2(B) phase. The film microstructure was characterized by SEM and AFM and the valence states of vanadium in VO2(B) films were evaluated by XPS. The VO2(B) polymorph shows an energy band-gap around 2.8 eV and it exhibits photocatalytic properties. It was measured by following the degradation of rhodamine B under UVA as well as metalhalogenide lamp irradiation, which has similar spectral distribution as natural sunlight. The VO2(B) films show distinct photoactivities under both lamps, although they were found to be more active under the UVA irradiation. The film annealed under reducing hydrogen atmosphere, which exhibits higher granularity and surface roughness, shows higher photoactivity than the vacuum-annealed film.

  1. Photocatalytic activity of La, Y Co-doped TiO2 nanoparticles synthesized by ultrasonic assisted sol-gel method.

    PubMed

    Gao, Hongtao; Liu, Wenchao; Lu, Bing; Liu, Fangfang

    2012-05-01

    Bare TiO2 (T), La-doped TiO2 (LT), Y-doped TiO2 (YT), La, Y co-doped TiO2 (LYT) were successfully prepared by facile ultrasonic assisted sol-gel synthesis using Ti(OC4H9)4 as the precursor. The products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectra (DRS), and X-ray photoelectron spectroscopy (XPS), respectively. The photocatalytic activities of anatase samples, with the average particle diameters ranging from 14 nm to 21 nm, were evaluated for photodegradation of methyl orange (MO). The XPS results indicated that Y atoms were incorporated into titania lattice, while La atoms existed on the crystal surface. Due to doping, the optical absorption edges of LT, YT, and LYT shifted to the visible light region by 21 nm, 29 nm and 35 nm, respectively. The photocatalytic performances of the doped samples, such as LT, YT and LYT, were much higher than that of bare TiO2 under UV-visible light irradiation. And the photoreactivity efficiency of the LYT was the highest. It indicated that a strong La-Y synergistic interaction appeared to play a decisive role in driving the excellent photocatalytic performance of titania.

  2. Differential effects of DEAE negative mode chromatography and gel-filtration chromatography on the charge status of Helicobacter pylori neutrophil-activating protein.

    PubMed

    Hong, Zhi-Wei; Yang, Yu-Chi; Pan, Timothy; Tzeng, Huey-Fen; Fu, Hua-Wen

    2017-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification.

  3. Differential effects of DEAE negative mode chromatography and gel-filtration chromatography on the charge status of Helicobacter pylori neutrophil-activating protein

    PubMed Central

    Pan, Timothy; Tzeng, Huey-Fen

    2017-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification. PMID:28328957

  4. Statistical physics of polymer gels

    NASA Astrophysics Data System (ADS)

    Panyukov, Sergei; Rabin, Yitzhak

    1996-05-01

    This work presents a comprehensive analysis of the statistical mechanics of randomly cross-linked polymer gels, starting from a microscopic model of a network made of instantaneously cross-linked Gaussian chains with excluded volume, and ending with the derivation of explicit expressions for the thermodynamic functions and for the density correlation functions which can be tested by experiments. Using replica field theory we calculate the mean field density in replica space and show that this solution contains statistical information about the behavior of individual chains in the network. The average monomer positions change affinely with macroscopic deformation and fluctuations about these positions are limited to length scales of the order of the mesh size. We prove that a given gel has a unique state of microscopic equilibrium which depends on the temperature, the solvent, the average monomer density and the imposed deformation. This state is characterized by the set of the average positions of all the monomers or, equivalently, by a unique inhomogeneous monomer density profile. Gels are thus the only known example of equilibrium solids with no long-range order. We calculate the RPA density correlation functions that describe the statistical properties of small deviations from the average density, due to both static spatial heterogeneities (which characterize the inhomogeneous equilibrium state) and thermal fluctuations (about this equilibrium). We explain how the deformation-induced anisotropy of the inhomogeneous equilibrium density profile is revealed by small angle neutron scattering and light scattering experiments, through the observation of the butterfly effect. We show that all the statistical information about the structure of polymer networks is contained in two parameters whose values are determined by the conditions of synthesis: the density of cross-links and the heterogeneity parameter. We find that the structure of instantaneously cross

  5. Methanotrophic diversity in high arctic wetlands on the islands of Svalbard (Norway)--denaturing gradient gel electrophoresis analysis of soil DNA and enrichment cultures.

    PubMed

    Wartiainen, Ingvild; Hestnes, Anne Grethe; Svenning, Mette M

    2003-10-01

    The methanotrophic community in arctic soil from the islands of Svalbard, Norway (78 degrees N) was analysed by combining group-specific PCR with PCR of the highly variable V3 region of the 16S rRNA gene and then by denaturing gradient gel electrophoresis (DGGE). Selected bands were sequenced for identification. The analyses were performed with DNA extracted directly from soil and from enrichment cultures at 10 and 20 degrees C. The two genera Methylobacter and Methylosinus were found in all localities studied. The DGGE band patterns were simple, and DNA fragments with single base differences were separated. The arctic tundra is a potential source of extensive methane emission due to climatic warming because of its large reservoirs of stored organic carbon. Higher temperatures due to climatic warming can cause increased methane production, and the abundance and activity of methane-oxidizing bacteria in the arctic soil may be important regulators for methane emission to the atmosphere.

  6. Incidence and molecular epidemiology of Pseudomonas aeruginosa bacteremias in patients with acute leukemia: analysis by pulsed-field gel electrophoresis.

    PubMed

    Fanci, R; Paci, C; Anichini, P; Pecile, P; Marra, G; Casini, C; Nicoletti, P

    2003-10-01

    The incidence and molecular epidemiology of P. aeruginosa bacteremias, were monitored in patients with acute leukemia to define mechanisms of possible nosocomial transmission. From September 1997 to March 2001 febrile episodes were examined and blood isolates of P. aeruginosa were studied employing Pulsed-Field gel Electrophoresis (PFGE). Evaluation of DNA correlation was performed according to Tenover criteria. A total of 309 febrile episodes occurred in 187 patients. Of 139 organisms isolated in 116 bacteremias, 48% were gram negative bacilli (GNB); P. aeruginosa bacteremias were recorded in 34 (51%) of GNB sepsis. Evaluation of DNA correlation showed 2 related in 1997, 7 related in 1998, 10 related in 1999, 6 related in 2000-2001 (mainly closely and possibly related); therefore isolates closely related among themselves were also possibly related with other strains. About 60% of patients with related strains were hospitalized in the same room or in different rooms but became infected in the same period. Our data suggest a horizontal spread among the patients even if other sources were possible. The study assessed the usefulness of PFGE in bacteriological epidemiology.

  7. Nitrogen-doped porous carbon derived from metal-organic gel for electrochemical analysis of heavy-metal ion.

    PubMed

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2014-09-24

    A nitrogen-doped porous carbon material (N@MOG-C) was prepared by simple pyrolysis of polypyrrole-doped Al-based metal-organic gel (PPy@MOG) at 800 °C. The N@MOG-C possessed a uniform three-dimensional (3-D) interconnected mesoporous structure with a high surface area of 1542.6 m(2) g(-1) and a large pore volume of 0.76 cm(3) g(-1). By using an ionic liquid (IL) to immobilize N@MOG-C on electrode surface, the N@MOG-C was further used for sensitive detection of heavy metal ion. The doping of nitrogen-endowed N@MOG-C with faster electron transfer kinetics than other carbon materials such as MOG-C, multiwalled carbon nanotubes, and graphene. The N@MOG-C-modified electrode showed a high effective area, because of the porous structure. Under optimized conditions, the N@MOG-C-based sensor could detect Cd ions present in concentrations of 0.025-5 μM, with a detection limit of 2.2 nM. The mesoporous structure, fast electron transfer ability, and simple and green synthesis of N@MOG-C made it a promising electrode material for practical applications in heavy-metal-ion sensing.

  8. Porcine salivary analysis by 2-dimensional gel electrophoresis in 3 models of acute stress: A pilot study

    PubMed Central

    Fuentes-Rubio, María; Cerón, José J.; de Torre, Carlos; Escribano, Damián; Gutiérrez, Ana M.; Tecles, Fernando

    2014-01-01

    The purpose of this research was to study changes in the salivary proteome of healthy pigs in stressful situations to identify any potential new salivary biomarker of stress. Three groups of animals were subjected to 3 stress models: snaring restraint followed by simulated sampling of vena cava blood; brief transport by road; and restriction of movement in a digestibility cage. Saliva was obtained from each animal before and 15 and 30 min after the induction of stress. The samples from the animals that showed the greatest increase in salivary cortisol concentration were pooled and run on 2-dimensional gels. Coomassie Brilliant Blue R-250 was used for spot detection and mass spectrometry for spot identification. Statistical analyses showed that 2 proteins had significant differences in expression before and after the induction of stress. These proteins were identified as odorant-binding protein and fragments of albumin. Further studies will be necessary to confirm the value of using these proteins as salivary biomarkers of stress in pigs. PMID:24688174

  9. Design and Evaluation of PCR Primers for Analysis of Bacterial Populations in Wine by Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Lopez, Isabel; Ruiz-Larrea, Fernanda; Cocolin, Luca; Orr, Erica; Phister, Trevor; Marshall, Megan; VanderGheynst, Jean; Mills, David A.

    2003-01-01

    Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial populations in DGGE profiles. To surmount this problem, we developed two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA. One primer set, termed WLAB1 and WLAB2, amplified lactic acid bacteria, while another, termed WBAC1 and WBAC2, amplified both lactic acid bacterial and acetic acid bacterial populations found in wine. Primer specificity and efficacy were examined with DNA isolated from numerous bacterial, yeast, and fungal species commonly found in wine and must samples. Importantly, both primer sets effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria. PMID:14602643

  10. Analysis of Ah receptor pathway activation by brominated flame retardants.

    PubMed

    Brown, David J; Van Overmeire, Ilse; Goeyens, Leo; Denison, Michael S; De Vito, Michael J; Clark, George C

    2004-06-01

    Brominated flame-retardants (BFRs) are used as additives in plastics to decrease the rate of combustion of these materials, leading to greater consumer safety. As the use of plastics has increased, the production and use of flame-retardants has also grown. Many BFRs are persistent and have been detected in environmental samples, raising concerns about the biological/toxicological risk associated with their use. Most BFRs appear to be non-toxic, however there is still some concern that these compounds, or possible contaminants in BFRs mixtures could interact with cellular receptors. In this study we have examined the interaction of decabromodiphenyl ether, Firemaster BP4A (tetrabromobisphenol A), Firemaster PHT4 (tetrabromophthalic anhydride), hexabromobenzene, pentabromotoluene, decabromobiphenyl, Firemaster BP-6 (2,2',4,4',5,5'-hexabromobiphenyl) and possible contaminants of BFR mixtures with the Ah receptor. Receptor binding and activation was examined using the Gel Retardation Assay and increased expression of dioxin responsive genes was detected using the reporter gene based CALUX assay. The results demonstrate the ability of BFRs to activate the AhR signal transduction pathway at moderate to high concentrations as assessed using both assays. AhR-dependent activation by BFRs may be due in part to contaminants present in commercial/technical mixtures. This was suggested by our comparative analysis of Firemaster BP-6 versus its primary component 2,2',4,4',5,5'-hexabromobiphenyl. Some technical mixtures of brominated flame-retardants contain brominated biphenyls, dioxins or dibenzofurans as contaminants. When tested in the CALUX assay these compounds were found to be equivalent to, or more active than their chlorinated analogues. Relative effective potency values were determined from dose response curves for these brominated HAHs.

  11. 3D-printed polylactic acid supports for enhanced ionization efficiency in desorption electrospray mass spectrometry analysis of liquid and gel samples.

    PubMed

    Elviri, Lisa; Foresti, Ruben; Bianchera, Annalisa; Silvestri, Marco; Bettini, Ruggero

    2016-08-01

    The potential of 3D printing technology was here exploited to prepare tailored polylactic acid (PLA) supports for desorption electrospray ionization (DESI) experiments. PLA rough solid supports presenting wells of different shape (i.e. cylindrical, cubic and hemispherical cavities) were designed to accommodate samples of different physical state. The potentials of such supports in terms of sample loading capacity, sensitivity, signal stability were tested by analysing a peptide (i.e. insulin) and an aminoglycoside antibiotic (i.e. gentamicin sulphate) from solution and a chitosan-based gel. The results obtained were compared with those obtained by using a traditional polytetrafluoroethylene (PTFE) support and discussed. By using PLA support on the flat side, signal intensity improved almost twice with respect to PTFE support, whereas with spherical wells a five times improved signal sensitivity and good stability (RSD<6%) were obtained for the analysis of two model molecules. Limits of detection were in the 3-10nM range and linearity was demonstrated for both analytes in the 0.05-0.5μM range for semi-quantitative or quantitative purposes. The use of a well and the set-up of optimal source parameters allowed the analysis of samples in a gel state with good precision (RSD<10%) and accuracy (86±6-102±9%), otherwise difficult to analyse on a flat smooth surface. These findings are of great interest and stimulus to exploit the advantages of 3D printing technology for the development of devices for a DESI source, presenting different shapes or configuration as a function of the sample types.

  12. On the correlation between continuum mechanics entities and cell activity in biological soft tissues: assessment of three possible criteria for cell-controlled fibre reorientation in collagen gels and collagenous tissues.

    PubMed

    Kroon, Martin

    2010-05-07

    The biomechanical behaviour of biological cells is of great importance in many physiological processes. One such process is the maintenance of fibrous networks, such as collagenous tissues. The activity of the fibre-producing cells in this type of tissue is very important, and a comprehensive material description needs to incorporate the activity of the cells. In biomechanics, continuum mechanics is often employed to describe deforming solids, and modelling can be much simplified if continuum mechanics entities, such as stress and strain, can be correlated with cell activity. To investigate this, a continuum mechanics framework is employed in which remodelling of a collagen gel is modelled. The remodelling is accomplished by fibroblasts, and the activity of the fibroblasts is linked to the continuum mechanics theory. The constitutive model for the collagen fabric is formulated in terms of a strain energy function, which includes a density function describing the distribution of the collagen fibre orientation. This density function evolves according to an evolution law, where fibroblasts reorient fibres towards the direction of increasing Cauchy stress, elastic deformation, or stiffness. The theoretical framework is applied to experimental results from collagen gels, where gels have undergone remodelling under both biaxial and uniaxial constraint. The analyses indicated that criteria 1 and 2 (Cauchy stress and elastic deformations) are able to predict the collagen fibre distribution after remodelling, whereas criterion 3 (current stiffness) is not. This conclusion is, however, tentative and pertains, strictly speaking, only to fibre remodelling processes, and may not be valid for other types of cell activities.

  13. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry.

    PubMed

    Mears, Rainy; Craven, Rachel A; Hanrahan, Sarah; Totty, Nick; Upton, Carol; Young, Sarah L; Patel, Poulam; Selby, Peter J; Banks, Rosamonde E

    2004-12-01

    Exosomes are 40-100 nm vesicles released by numerous cell types and are thought to have a variety of roles depending on their origin. Exosomes derived from antigen presenting cells have been shown to be capable of initiating immune responses in vivo and eradicating established tumours in murine models. Tumour-derived exosomes can be utilised as a source of tumour antigen for cross-priming to T-cells and are thus of interest for use in anti-tumour immunotherapy. Further exploration into the protein composition of exosomes may increase our understanding of their potential roles in vivo and this study has examined the proteome of exosomes purified from cell supernatants of the melanoma cell lines MeWo and SK-MEL-28. The vesicular nature and size (30-100 nm) of the purified exosomes was confirmed by electron microscopy and sucrose density gradient centrifugation. Western blotting demonstrated the absence of calnexin and cytochrome c, verifying the purity of the exosome preparations, as well as enrichment of MHC class I and the tumour-associated antigens Mart-1 and Mel-CAM. The two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) protein profiles of exosomes from the two cell lines were highly comparable and strikingly different from the profiles of the total cell lysates. Mass spectrometric sequencing identified proteins present in 49 protein spots in the exosome lysates. Several of these have been identified previously in exosomes but some are novel, including p120 catenin, radixin, and immunoglobulin superfamily member 8 (PGRL). Proteins present in whole-cell lysates that were significantly reduced or excluded from exosomes were also identified and included several mitochondrial and lysosomal proteins, again confirming the proposed endosomal origin of exosomes. This study presents a starting point for future more in-depth protein studies of tumour-derived exosomes which will aid the understanding of their biogenesis and targeting for use in anti

  14. In-Office Application of Fluoride Gel or Varnish: Cost-Effectiveness and Expected Value of Perfect Information Analysis.

    PubMed

    Schwendicke, Falk; Stolpe, Michael

    2017-04-08

    Application of fluoride gel/varnish (FG/FV) reduces caries increments but generates costs. Avoiding restorative treatments by preventing caries might compensate for these costs. We assessed the cost-effectiveness of dentists applying FG/FV in office and the expected value of perfect information (EVPI). EVPI analyses estimate the economic value of having perfect knowledge, assisting research resource allocation. A mixed public-private-payer perspective in Germany was adopted. A population of 12-year-olds was followed over their lifetime, with caries increments modelled using wide intervals to reflect the uncertainty of caries risk. Biannual application of FV/FG until age 18 years was compared to no fluoride application. Effectiveness parameters and their uncertainty were derived from systematic reviews. The health outcome was caries increment (decayed, missing, or filled teeth; DMFT). Cost calculations were based on fee catalogs or microcosting, including costs for individual-prophylactic fluoridation and, for FG, an individualized tray, plus material costs. Microsimulations, sensitivity, and EVPI analyses were performed. On average and applied to a largely low-risk population, no application of fluoride was least costly but also least effective (EUR 230; 11 DMFT). FV was more costly and effective (EUR 357; 7 DMFT). FG was less effective than FV and also more costly when using individualized trays. FV was the best choice for payers willing to invest EUR 39 or more per avoided DMFT. This cost-effectiveness will differ in different settings/countries or if FG/FV is applied by other care professionals. The EVPI was mainly driven by the individual's caries risk, as FV/FG were significantly more cost-effective in high-risk populations than in low-risk ones. Future studies should focus on caries risk prediction.

  15. Analysis of Genetic Diversity of Streptococcus suis Clinical Isolates from Pigs in Spain by Pulsed-Field Gel Electrophoresis

    PubMed Central

    Vela, Ana I.; Goyache, Joaquin; Tarradas, Carmen; Luque, Inmaculada; Mateos, Ana; Moreno, Miguel A.; Borge, Carmen; Perea, J. Anselmo; Domínguez, Lucas; Fernández-Garayzábal, José F.

    2003-01-01

    Pulsed-field gel electrophoresis (PFGE) was used to investigate the diversity of Streptococcus suis isolates of various serotypes recovered from swine clinical samples in Spain. Capsular types 9 (64.9%) and 2 (14.8%) were the most frequently isolated serotypes followed by serotype 7 (5.9%) and serotype 8 (4.3%). The PFGE results of this study with 60 different pulsotypes indicate a great genetic diversity among the S. suis isolates, which is consistent with the broad distribution of S. suis in the swine population. Forty-five percent of the pulsotypes corresponded to single isolates, no pulsotype was common to all farms, and at least 3 different pulsotypes were isolated in 56% of herds in which more than 3 clinical isolates were analyzed. These results reveal a great diversity both between and within herds throughout the strains of S. suis studied, demonstrating that different strains of S. suis are associated with infection in pigs. Some pulsotypes were more frequently isolated and exhibited a wider distribution over herds than others, and were the unique or predominant strains in several herds, suggesting the existence of a prevalent or a few prevalent clones responsible for a large proportion of clinical cases. Overall, the great genetic heterogeneity of the clinical strains of S. suis, the isolation of different strains within the same herd, and the predominance of particular strains in some herds are evidence that infection by S. suis is a dynamic process and reinforce the idea that the epidemiology of S. suis infection is very complex. PMID:12791872

  16. Analysis of genetic diversity of Streptococcus suis clinical isolates from pigs in Spain by pulsed-field gel electrophoresis.

    PubMed

    Vela, Ana I; Goyache, Joaquin; Tarradas, Carmen; Luque, Inmaculada; Mateos, Ana; Moreno, Miguel A; Borge, Carmen; Perea, J Anselmo; Domínguez, Lucas; Fernández-Garayzábal, José F

    2003-06-01

    Pulsed-field gel electrophoresis (PFGE) was used to investigate the diversity of Streptococcus suis isolates of various serotypes recovered from swine clinical samples in Spain. Capsular types 9 (64.9%) and 2 (14.8%) were the most frequently isolated serotypes followed by serotype 7 (5.9%) and serotype 8 (4.3%). The PFGE results of this study with 60 different pulsotypes indicate a great genetic diversity among the S. suis isolates, which is consistent with the broad distribution of S. suis in the swine population. Forty-five percent of the pulsotypes corresponded to single isolates, no pulsotype was common to all farms, and at least 3 different pulsotypes were isolated in 56% of herds in which more than 3 clinical isolates were analyzed. These results reveal a great diversity both between and within herds throughout the strains of S. suis studied, demonstrating that different strains of S. suis are associated with infection in pigs. Some pulsotypes were more frequently isolated and exhibited a wider distribution over herds than others, and were the unique or predominant strains in several herds, suggesting the existence of a prevalent or a few prevalent clones responsible for a large proportion of clinical cases. Overall, the great genetic heterogeneity of the clinical strains of S. suis, the isolation of different strains within the same herd, and the predominance of particular strains in some herds are evidence that infection by S. suis is a dynamic process and reinforce the idea that the epidemiology of S. suis infection is very complex.

  17. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-03-01

    This technical progress report describes work performed from September 1, 2003, through February 29, 2004, for the project, ''Conformance Improvement Using Gels.'' We examined the properties of several ''partially formed'' gels that were formulated with a combination of high and low molecular weight HPAM polymers. After placement in 4-mm-wide fractures, these gels required about 25 psi/ft for brine to breach the gel (the best performance to date in fractures this wide). After this breach, stabilized residual resistance factors decreased significantly with increased flow rate. Also, residual resistance factors were up to 9 times greater for water than for oil. Nevertheless, permeability reduction factors were substantial for both water and oil flow. Gel with 2.5% chopped fiberglass effectively plugged 4-mm-wide fractures if a 0.5-mm-wide constriction was present. The ability to screen-out at a constriction appears crucial for particulate incorporation to be useful in plugging fractures. In addition to fiberglass, we examined incorporation of polypropylene fibers into gels. Once dispersed in brine or gelant, the polypropylene fibers exhibited the least gravity segregation of any particulate that we have tested to date. In fractures with widths of at least 2 mm, 24-hr-old gels (0.5% high molecular weight HPAM) with 0.5% fiber did not exhibit progressive plugging during placement and showed extrusion pressure gradients similar to those of gels without the fiber. The presence of the fiber roughly doubled the gel's resistance to first breach by brine flow. The breaching pressure gradients were not as large as for gels made with high and low molecular weight polymers (mentioned above). However, their material requirements and costs (i.e., polymer and/or particulate concentrations) were substantially lower than for those gels. A partially formed gel made with 0.5% HPAM did not enter a 0.052-mm-wide fracture when applying a pressure gradient of 65 psi/ft. This result

  18. Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes.

    PubMed

    Krause, Frank

    2006-07-01

    It is an essential and challenging task to unravel protein-protein interactions in their actual in vivo context. Native gel systems provide a separation platform allowing the analysis of protein complexes on a rather proteome-wide scale in a single experiment. This review focus on blue-native (BN)-PAGE as the most versatile and successful gel-based approach to separate soluble and membrane protein complexes of intricate protein mixtures derived from all biological sources. BN-PAGE is a charge-shift method with a running pH of 7.5 relying on the gentle binding of anionic CBB dye to all membrane and many soluble protein complexes, leading to separation of protein species essentially according to their size and superior resolution than other fractionation techniques can offer. The closely related colorless-native (CN)-PAGE, whose applicability is restricted to protein species with intrinsic negative net charge, proved to provide an especially mild separation capable of preserving weak protein-protein interactions better than BN-PAGE. The essential conditions determining the success of detecting protein-protein interactions are the sample preparations, e.g. the efficiency/mildness of the detergent solubilization of membrane protein complexes. A broad overview about the achievements of BN- and CN-PAGE studies to elucidate protein-protein interactions in organelles and prokaryotes is presented, e.g. the mitochondrial protein import machinery and oxidative phosphorylation supercomplexes. In many cases, solubilization with digitonin was demonstrated to facilitate an efficient and particularly gentle extraction of membrane protein complexes prone to dissociation by treatment with other detergents. In general, analyses of protein interactomes should be carried out by both BN- and CN-PAGE.

  19. Three percent diclofenac in 2.5% hyaluronan gel in the treatment of actinic keratoses: a meta-analysis of the recent studies.

    PubMed

    Pirard, D; Vereecken, P; Mélot, C; Heenen, M

    2005-11-01

    Three percent diclofenac in 2.5% hyaluronan gel (DHA) is approved by the Food and Drug Administration (FDA) in the treatment of actinic keratoses (AK). We conducted a meta-analysis of the few prospective studies that evaluated the effect of DHA on the target lesion number score TLNS0 (indicating complete resolution of all target lesions in the treatment area) and/or the cumulative target lesion number score CLNS0 (indicating resolution of the target and new lesions in the treatment area) with assessment 30 days after the end of treatment. A comprehensive search of the 1966-2005 MEDLINE database and review of the reference lists of relevant articles identified the published randomised trials. Three studies were included, with a total of 364 patients. The placebo was the hyaluronan vehicle gel (HAV). The intention-to-treat analyses show that DHA significantly improve the TLNS0 (OR= 3.72; 95% CI=2.05-6.74) and the CLNS0 (OR=4.09; 95% CI=2.55-6.56) compare to HAV. Overall, 42/106 (39.6% CI: 30.8- 49.1%) had a TLNS0 with mean treatment duration of 75 days +/- 21 [mean+/-standard deviation (SD)], and 70/179 (39.1% CI:32.3-46.4%) patients had a CLNS0 with a mean 78 days+/-16 treatment duration. DHA is effective compared to HAV in the treatment of AK. Further studies should establish subgroup analyses according to sites and severity of the AK lesions in order to determine if more patients could be improved in restricted indications. Biopsies, a longer follow-up evaluation, and comparisons with the other treatments of AK will also be helpful in the future to define the place of this treatment in the management of AK.

  20. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients.

    PubMed Central

    Heuer, H; Krsek, M; Baker, P; Smalla, K; Wellington, E M

    1997-01-01

    A group-specific primer, F243 (positions 226 to 243, Escherichia coli numbering), was developed by comparison of sequences of genes encoding 16S rRNA (16S rDNA) for the detection of actinomycetes in the environment with PCR and temperature or denaturing gradient gel electrophoresis (TGGE or DGGE, respectively). The specificity of the forward primer in combination with different reverse ones was tested with genomic DNA from a variety of bacterial strains. Most actinomycetes investigated could be separated by TGGE and DGGE, with both techniques giving similar results. Two strategies were employed to study natural microbial communities. First, we used the selective amplification of actinomycete sequences (E. coli positions 226 to 528) for direct analysis of the products in denaturing gradients. Second, a nested PCR providing actinomycete-specific fragments (E. coli positions 226 to 1401) was used which served as template for a PCR when conserved primers were used. The products (E. coli positions 968 to 1401) of this indirect approach were then separated by use of gradient gels. Both approaches allowed detection of actinomycete communities in soil. The second strategy allowed the estimation of the relative abundance of actinomycetes within the bacterial community. Mixtures of PCR-derived 16S rDNA fragments were used as model communities consisting of five actinomycetes and five other bacterial species. Actinomycete products were obtained over a 100-fold dilution range of the actinomycete DNA in the model community by specific PCR; detection of the diluted actinomycete DNA was not possible when conserved primers were used. The methods tested for detection were applied to monitor actinomycete community changes in potato rhizosphere and to investigate actinomycete diversity in different soils. PMID:9251210

  1. Drying SDS-Polyacrylamide Gels.

    PubMed

    Sambrook, Joseph; Russell, David W

    2006-09-01

    INTRODUCTIONThis protocol describes a method for drying SDS-polyacrylamide gels. Gels containing proteins radiolabeled with (35)S-labeled amino acids must be dried before autoradiographic images can be obtained. Nonradioactive gels can also be preserved by drying.

  2. Surface enhanced Raman scattering activity of TiN thin film prepared via nitridation of sol-gel derived TiO2 film

    NASA Astrophysics Data System (ADS)

    Dong, Zhanliang; Wei, Hengyong; Chen, Ying; Wang, Ruisheng; Zhao, Junhong; Lin, Jian; Bu, Jinglong; Wei, Yingna; Cui, Yi; Yu, Yun

    2015-10-01

    Surface-enhanced Raman scattering (SERS) is a powerful and non-destructive analytical technique tool for chemical and biological sensing applications. Metal-free SERS substrates have recently been developed by using semiconductor nanostructures. The optical property of TiN film is similar to that of gold. Besides that, its good chemical inertness and thermodynamic stability make TiN thin film an excellent candidate for SERS. In order to investigate its SERS activity, the TiN thin film was successfully prepared via direct nitridation of the sol-gel derived TiO2 thin film on the quartz substrate using ammonia gas as reducing agent. The crystallite structures and morphology of TiN thin film were determined by XRD, RAMAN and FE-SEM. The results show that the thin film obtained is cubic titanium nitride with a lattice parameter of 4.2349 Å. The surface of TiN thin film is rough and with the particles of 50 nm in average sizes. The thickness of TiN thin film is about 130 nm. The TiN thin film displays a surface Plasmon resonance absorption peak at around 476 nm, which can lead to a strong enhancement of the EM field on the interface. The Raman signal of the probe molecule R6G was greatly enhanced through TiN thin film substrates. The enhancement factor is about 4.1×103 and the detection limit achieves 10-6 M for R6G. The TiN thin film substrate also shows a good reproducibility of SERS performance. The results indicate that TiN thin film is an attractive material with potential application in SERS substrates.

  3. Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: Bio-template assisted sol-gel synthesis and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamad Azuwa; Wan Salleh, Wan Norharyati; Jaafar, Juhana; Rosmi, Mohamad Saufi; Mohd. Hir, Zul Adlan; Abd Mutalib, Muhazri; Ismail, Ahmad Fauzi; Tanemura, Masaki

    2017-01-01

    Regenerated cellulose membrane was used as bio-template nanoreactor for the formation of rutile TiO2 mesoporous, as well as in-situ carbon dopant in acidified sol-gel system. The effects of calcination temperature on the physicochemical characteristic of core-shell nanostructured of bio-templated C-doped mesoporous TiO2 are highlighted in this study. By varying the calcination temperature, the thickness of the carbon shell coating on TiO2, crystallinity, surface area, and optical properties could be tuned as confirmed by HRTEM, nitrogen adsorption/desorption measurement, XRD and UV-vis-NIR spectroscopy. The results suggested that increment in the calcination temperature would lead to the band gap narrowing from 2.95 to 2.80 eV and the thickness of carbon shell increased from 0.40 to 1.20 nm. The x-ray photoelectron spectroscopy showed that the visible light absorption capability was mainly due to the incorporation of carbon dopant at interstitial position in the TiO2 to form Osbnd Tisbnd C or Tisbnd Osbnd C bond. In addition, the formation of the carbon core-shell nanostructured was due to carbonaceous layer grafted onto the surface of TiO2 via Tisbnd Osbnd C and Tisbnd OCO bonds. The result indicated that bio-templated C-doped core-shell mesoporous TiO2 prepared at 300 °C exhibited the highest photocatalytic activity. It is worthy to note that, the calcination temperature provided a huge impact towards improving the physicochemical and photocatalytic properties of the prepared bio-templated C-doped core-shell mesoporous TiO2.

  4. Development of an SDS-gel electrophoresis method on SU-8 microchips for protein separation with LIF detection: Application to the analysis of whey proteins.

    PubMed

    Del Mar Barrios-Romero, Maria; Crevillén, Agustín G; Diez-Masa, José Carlos

    2013-08-01

    This work describes the development of an SDS-gel electrophoresis method for the analysis of major whey proteins (α-lactalbumin, β-lactoglobulin, and BSA) carried out in SU-8 microchips. The method uses a low-viscosity solution of dextran as a sieving polymer. A commercial coating agent (EOTrol LN) was added to the separation buffer to control the EOF of the chips. The potential of this coating agent to prevent protein adsorption on the walls of the SU-8 channels was also evaluated. Additionally, the fluorescence background of the SU-8 material was studied to improve the sensitivity of the method. By selecting an excitation wavelength of 532 nm at which the background fluorescence remains low and by replacing the mercury arc lamp by a laser in the detection system, an LOD in the nanomolar range was achieved for proteins derivatized with the fluorogenic reagent Chromeo P540. Finally, the method was applied to the analysis of milk samples, demonstrating the potential of SU-8 microchips for the analysis of proteins in complex food samples.

  5. Molecular characterization, expression patterns, and polymorphism of a differentially expressed porcine gene (PYGM) isolated by suppression subtractive hybridization and two-dimensional gel electrophoresis analysis.

    PubMed

    Xu, Yongjie; Yu, Wenmin; Feng, Xiaoting; Xie, Hongtao; Xiong, Yuanzhu

    2012-01-01

    Suppression subtractive hybridization was performed to detect the differences in gene expression of porcine longissimus dorsi muscles between Large White and Chinese Meishan pigs. An upregulated gene in Large White that shared high homology with human muscle glycogen phosphorylase (PYGM) was identified. The porcine PYGM gene contains an open reading frame encoding 842 amino acid residues with 26 and 283 nucleotides in the 5' and 3' untranslated regions, respectively. Tissue distribution analysis indicated that porcine PYGM mRNAs are highly expressed in all tissues. Expression pattern of PYGM was similar in the two breeds. Both breeds had the highest expression levels when 120 days old (p<0.01), and PYGM was upregulated during skeletal muscle development. A similar expression pattern of PYGM in protein level was also observed by differential proteome analysis of skeletal muscle development using two-dimensional gel electrophoresis and mass spectroscopy. The mRNA abundance of PYGM in Large White was higher than Meishan at all four stages (p<0.05). Moreover, a G/T mutation in exon 8 was identified and association analysis with meat quality traits showed that it was significantly associated with lean meat percentage (p<0.05). Our data may provide further insight into the molecular mechanisms responsible for breed-specific differences in porcine growth and meat quality.

  6. Proteomic analysis of breast cancer tissues to identify biomarker candidates by gel-assisted digestion and label-free quantification methods using LC-MS/MS.

    PubMed

    Song, Mi-Na; Moon, Pyong-Gon; Lee, Jeong-Eun; Na, MinKyun; Kang, Wonku; Chae, Yee Soo; Park, Ji-Young; Park, Hoyong; Baek, Moon-Chang

    2012-10-01

    This study presents a proteomic method that differentiates between matched normal and breast tumor tissues from ductal carcinoma in situ (DCIS) and invasive carcinoma from Korean women, to identify biomarker candidates and to understand pathogenesis of breast cancer in protein level. Proteins from tissues obtained by biopsy were extracted by RIPA buffer, digested by the gel-assisted method, and analyzed by nano-UPLC-MS/MS. From proteomic analysis based on label-free quantitation strategy, a non-redundant list of 298 proteins was identified from the normal and tumor tissues, and 244 proteins were quantified using IDEAL-Q software. Hierarchical clustering analysis showed two patterns classified as two groups, invasive carcinoma and DCIS, suggesting a difference between two carcinoma at the protein expression level as expected. Differentially expressed proteins in tumor tissues compared to the corresponding normal tissues were related to three biological pathways: antigen-processing and presentation, glycolysis/gluconeogenesis, and complement and coagulation cascades. Among them, the up-regulation of calreticulin (CRT) and protein disulfide isomerase A3 (PDIA3) was confirmed by Western blot analysis. In conclusion, this study showed the possibility of identifying biomarker candidates for breast cancer using tissues and might help to understand the pathophysiology of this cancer at the protein level.

  7. Prevalence and molecular characterization of Escherichia coli O157:H7 by multiple locus variable number tandem repeat analysis and pulsed field gel electrophoresis in three sheep farming operations in California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A yearlong study was conducted to determine the fecal prevalence of Escherichia coli O157:H7 in three sheep ranches. Strain diversity and persistence was compared using multiple locus variable number tandem repeat analysis and pulsed field gel electrophoresis. Ranch C, a feedlot, consisted of young ...

  8. Longitudinal prevalence and molecular typing of Escherichia coli O157:H7 using multiple-locus variable-number tandem-repeats analysis and pulsed field gel electrophoresis in a range cattle herd in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives –(1) Identify the seasonal pattern and risk factors for Escherichia coli O157:H7 in feces in range cattle in California, (2) Determine strain diversity and transition over time using Multi-Locus Variable-Number Tandem Repeat Analysis (MLVA) and Pulsed Field Gel Electrophoresis (PFGE) Samp...

  9. Agarose gel electrophoresis.

    PubMed

    Smith, D R

    1993-01-01

    After digestion of DNA with a restriction enzyme (Chapter 50), it is usually necessary, for both preparative and analytical purposes, to separate and visualize the products. In most cases, where the products are between 200 and 20,000 bp long, this is achieved by agarose gel electrophoresis. Agarose is a linear polymer that is extracted from seaweed and sold as a white powder. The powder is melted in buffer and allowed to cool, whereby the agarose forms a gel by hydrogen bonding. The hardened matrix contains pores, the size of which depends on the concentration of agarose. The concentration of agarose is referred to as a percentage of agarose to volume of buffer (w/v), and agarose gels are normally in the range of 0.3 to 3%. Many different apparatus arrangements have been devised to run agarose gels; for example, they can be run horizontally or vertically, and the current can be conducted by wicks or the buffer solution. However, today, the "submarine" gel system is almost universally used. In this method, the agarose gel is formed on a supporting plate, and then the plate is submerged into a tank containing a suitable electrophoresis buffer. Wells are preformed in the agarose gel with the aid of a "comb" that is inserted into the cooling agarose before the agarose has gelled. Into these wells are loaded the sample to be analyzed, which has been mixed with a dense solution (a loading buffer) to ensure that the sample sinks into the wells.

  10. Effective role of trifluoroacetic acid (TFA) to enhance the photocatalytic activity of F-doped TiO2 prepared by modified sol-gel method

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Hamid, Sharifah Bee Abd; Juan, Joon Ching; Basirun, Wan Jefrey; Kandjani, Ahmad Esmaielzadeh; Bhargava, Suresh K.

    2016-03-01

    Highly photoactive mesoporous F-doped TiO2 with improved physico-chemical characteristics is achieved using modified sol-gel method. The usage of trifluoroacetic as fluorine precursor significantly modifies the morphology, size, pore shape, crystal phase, crystal structure, surface chemical state and to a lesser extent, {1 0 1} and {0 0 1} facets. The accessibility of fluoride ions on Tisbnd Osbnd Ti polymer chains during crystal growth during the sol-gel process remarkably influences the properties of catalyst. To the best of our knowledge, preparation of F-doped TiO2 using modified sol-gel and trifluoroacetic acid are limited, and still not enough. Thus this work provides additional insight by using an approach which is less hazardous, less costly and practical for large scale agile development in the photocatalysis industry.

  11. Content Analysis in Systems Engineering Acquisition Activities

    DTIC Science & Technology

    2016-04-30

    shape requirements definitions for system upgrade or modification contracts and new baseline contracts. Finally, content analysis training and skill...back to the system designers, this information can then be used to shape requirements definition for system upgrade or modification contracts and new...Activity System Requirements Definition Ensuring the system requirements adequately reflect the stakeholder requirements Negotiating modifications to

  12. Accession Medical Standards Analysis and Research Activity

    DTIC Science & Technology

    2010-01-01

    Chief, Accession Medical Standards Analysis & Research Activity Li Yuanzhang, PhD Senior Statistician Department of Epidemiology David N...ORGANIZATION NAME(S) AND ADDRESS(ES) AMSARA, Department of Epidemiology , Division of Preventive Medicine Walter Reed Army Institute of Research 503... Epidemiology of Injury form the Assessment of Recruit Strength and Motivation study ARMS) and Program

  13. Molecular thermodynamic analysis for assessing the relationship between reentrant swelling behavior and ternary liquid-liquid equilibrium for poly(N-isopropylacrylamide) nanometer-sized gel particles in a water-tetrahydrofuran cosolvent system.

    PubMed

    Jung, Sang Chul; Bae, Young Chan

    2012-02-23

    The influence of phase separation on swelling behavior was investigated based on the thermodynamic framework of reswelling phenomena. The cloud-point for a ternary system of water(1)-tetrahydrofuran (THF)(2)-poly(N-isopropylacrylamide)(3) was examined by thermo-optical analysis (TOA). Nanometer-sized N-isopropylacrylamide (NIPA) gel particles were prepared by precipitation polymerization, and their swelling behaviors were determined using photon correlation spectroscopy (PCS). NIPA gel particles underwent reswelling when the ratio of water to THF was varied. First, the modified double lattice model (MDL) was employed to determine ternary interaction energy parameters for the liquid-liquid equilibrium (LLE) of linear poly-NIPA in a water-THF cosolvent system. The reentrant swelling equilibria of the NIPA gel in the water-THF system were then calculated using the interaction energy parameters.

  14. Design and evaluation of PCR primers for denaturing gradient gel electrophoresis analysis of plant parasitic and fungivorous nematode communities.

    PubMed

    Kushida, Atsuhiko

    2013-01-01

    A PCR-DGGE primer pair, Tyl2F-Tyl4R, specific to plant parasitic and fungivorous nematodes was designed based on the 18S rRNA gene. The results of community analysis using the primers showed that they are specific to the order Tylenchida. This primer pair detected species belonging to Tylenchida with high sensitivity and high resolution. The number of detected species of plant parasitic and fungivorous nematodes and their band intensity were much improved compared with PCR-DGGE analysis using the SSU18A-SSU9R primer, which is commonly used for nematode community analysis. It was confirmed that using a group-specific primer was effective for nematode community analysis with PCR-DGGE.

  15. Simple Protocol for Secondary School Hands-On Activity: Electrophoresis of Pre-Stained Nucleic Acids on Agar-Agar Borate Gels

    ERIC Educational Resources Information Center

    Britos, Leticia; Goyenola, Guillermo; Orono, Silvia Umpierrez

    2004-01-01

    An extremely simple, inexpensive, and safe method is presented, which emulates nucleic acids isolation and electrophoretic analysis as performed in a research environment, in the context of a secondary school hands-on activity. The protocol is amenable to an interdisciplinary approach, taking into consideration the electrical and chemical…

  16. Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction.

    PubMed

    Seyyal, Emre; Malik, Abdul

    2017-04-29

    Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C12) and phenethyl (PhE) ligands. Here, the ability of the PF-C12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L(-1) limit of detections (LOD

  17. Antimicrobial efficacy of alcohol-based hand gels.

    PubMed

    Guilhermetti, M; Marques Wiirzler, L A; Castanheira Facio, B; da Silva Furlan, M; Campo Meschial, W; Bronharo Tognim, M C; Botelho Garcia, L; Luiz Cardoso, C

    2010-03-01

    In recent years, several commercial alcohol-based hand gels have appeared on the market to improve the hand-cleansing compliance of healthcare workers. Although the antimicrobial efficacy of these products has been reported in different countries, few studies have investigated this subject in Brazil. In this study, we assessed the antimicrobial efficacy of 12 alcohol-based hand gels produced in Brazil, containing 70% w/w or v/v ethyl alcohol as the active ingredient, according to the European Standard EN 1500 (EN 1500). The following alcohol gels were tested: Hand Gel, Voga Gel, Solumax Solugel, Doctor Clean, Rio Gel, Clear Gel, Sevengel, Hand CHC, Gel Bac, WBL-50 Gel, Sanigel and Soft Care Gel. In addition, 70% w/w ethyl alcohol and three alcohol-based hand rubs (Sterillium, Sterillium Gel, and Spitaderm), commonly used in Europe and effective according to EN 1500, were also tested. All the products tested, except for two, were approved by the EN 1500 test protocol with a 60s application. The results confirmed the antimicrobial efficacy of the majority of the alcohol gels produced in Brazil for hand hygiene of healthcare workers.

  18. High pH reversed-phase chromatography as a superior fractionation scheme compared to off-gel isoelectric focusing for complex proteome analysis.

    PubMed

    Stein, Derek R; Hu, Xiaojie; McCorrister, Stuart J; Westmacott, Garrett R; Plummer, Francis A; Ball, Terry B; Carpenter, Michael S

    2013-10-01

    MS/MS is the technology of choice for analyzing complex protein mixtures. However, due to the intrinsic complexity and dynamic range present in higher eukaryotic proteomes, prefractionation is an important step to maximize the number of proteins identified. Off-gel IEF (OG-IEF) and high pH RP (Hp-RP) column chromatography have both been successfully utilized as a first-dimension peptide separation technique in shotgun proteomic experiments. Here, a direct comparison of the two methodologies was performed on ex vivo peripheral blood mononuclear cell lysate. In 12-fraction replicate analysis, Hp-RP resulted in more peptides and proteins identified than OG-IEF fractionation. Distributions of peptide pIs and hydropathy did not reveal any appreciable bias in either technique. Resolution, defined here as the ability to limit a specific peptide to one particular fraction, was significantly better for Hp-RP. This leads to a more uniform distribution of total and unique peptides for Hp-RP across all fractions collected. These results suggest that fractionation by Hp-RP over OG-IEF is the better choice for typical complex proteome analysis.

  19. Preparation and application of sol-gel acrylate and methacrylate solid-phase microextraction fibres for gas chromatographic analysis of organoarsenic compounds.

    PubMed

    Popiel, Stanisław; Nawała, Jakub; Czupryński, Krzysztof

    2014-07-21

    Novel solid-phase microextraction (SPME) fibres containing methyl, ethyl, butyl acrylate and methacrylate were first prepared by a sol-gel technique and investigated for determination of selected organoarsenic compounds (lewisite, methyldichloroarsine, phenyldichloroarsine, diphenylchloroarsine and triphenylarsine) from water samples. The influence of sorption and desorption temperature and time for extraction efficiency were examined. The best new fibre coatings (methyl acrylate (MA), methyl methacrylate (MMA) and combination of methyl acrylate and methacrylate (MA/MMA)) for analysis of organoarsenic compounds were selected and compared with commercial fibres. The distribution coefficients Kfs were determined for the best novel fibres and for absorption commercial fibres. The highest Kfs value were obtained for MA/MMA and MMA fibres and were respectively 9458 and 6561 for lewisite and 6458 and 5884 for triphenylarsine. The limit of detection and quantification were determined for the three laboratory obtained fibres (MA, MMA and MA/MMA). LODs for tested fibres, at a signal-to-noise of 3, were 0.03-0.3 ng mL(-1). LOQs for selected coatings, at signal-to-noise of 10, were 0.1-0.8 ng mL(-1). The relative standard deviations (RSD) for all measurements were 4.3-6.5% (n=9) and relative errors were 2.5-5%. The laboratory obtained fibres were used for environmental analysis of pore water samples from the Baltic Sea.

  20. Conformance Improvement Using Gels

    SciTech Connect

    Seright, Randall S.; Schrader, Richard; II Hagstrom, John; Wang, Ying; Al-Dahfeeri, Abdullah; Gary, Raven; Marin; Amaury; Lindquist, Brent

    2002-09-26

    This research project had two objectives. The first objective was to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective was to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil.

  1. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  2. Activity Analysis and Cost Analysis in Medical Schools.

    ERIC Educational Resources Information Center

    Koehler, John E.; Slighton, Robert L.

    There is no unique answer to the question of what an ongoing program costs in medical schools. The estimates of program costs generated by classical methods of cost accounting are unsatisfactory because such accounting cannot deal with the joint production or joint cost problem. Activity analysis models aim at calculating the impact of alternative…

  3. Preparation and photocatalytic activity of Sb{sub 2}S{sub 3}/Bi{sub 2}S{sub 3} doped TiO{sub 2} from complex precursor via gel-hydrothermal treatment

    SciTech Connect

    Huang, Yan; Xie, Gang; Chen, Sanping; Gao, Shengli

    2011-03-15

    Sb{sub 2}S{sub 3}/Bi{sub 2}S{sub 3} doped TiO{sub 2} were prepared with the coordination compounds [M(S{sub 2}CNEt){sub 3}] (M=Sb, Bi; S{sub 2}CNEt=pyrrolidinedithiocarbamate) as precursors via gel-hydrothermal techniques. The doped TiO{sub 2} were characterized by XRD, SEM, XPS and UV-vis diffuse reflectance means. The photocatalyst based on doped TiO{sub 2} for photodecolorization of 4-nitrophenol (4-NP) was examined. The optimal Bi{sub 2}S{sub 3}/Sb{sub 2}S{sub 3} content, pH and different doped techniques have been investigated. Photocatalytic tests reveal that M{sub 2}S{sub 3} doped TiO{sub 2} via the gel-hydrothermal route performs better photocatalytic activity for photodegradation reaction of 4-nitrophenol (4-NP). -- Graphical abstract: Sb{sub 2}S{sub 3}/Bi{sub 2}S{sub 3} doped TiO{sub 2} were prepared using [M(S{sub 2}COEt){sub 3}] (M=Sb, Bi; S{sub 2}COEt=pyrrdidine-1-dithiocarbamaate) as precursors via gel-hydrothermal techniques. M{sub 2}S{sub 3} doped TiO{sub 2} performs better photocatalytic activity for photodegradation reaction of 4-nitrophenol. Display Omitted Highlights: {yields} The coordination compounds [M(S{sub 2}CNEt){sub 3}] (M=Sb, Bi; S{sub 2}CNEt=pyrrolidinedithiocarbamate) as precursors to prepare Sb{sub 2}S{sub 3}/Bi{sub 2}S{sub 3} doped TiO{sub 2}. {yields} The sol-hydrothermal, sol-gel and gel-hydrothermal processes for photocatalysis fabrication were employed and compared. {yields} Sb{sub 2}S{sub 3}/Bi{sub 2}S{sub 3} doped TiO{sub 2} obtained via the gel-hydrothermal process showed better performance for photodecolorization test of 4-nitrophenol (4-NP).

  4. Microstructural and compositional change of NaOH-activated high calcium fly ash by incorporating Na-aluminate and co-existence of geopolymeric gel and C-S-H(I)

    SciTech Connect

    Oh, Jae Eun; Moon, Juhyuk; Oh, Sang-Gyun; Clark, Simon M.; Monteiro, Paulo J.M.

    2012-05-15

    This study explores the reaction products of alkali-activated Class C fly ash-based aluminosilicate samples by means of high-resolution synchrotron X-ray diffraction (HSXRD), scanning electron microscope (SEM), and compressive strength tests to investigate how the readily available aluminum affects the reaction. Class C fly ash-based aluminosilicate raw materials were prepared by incorporating Na-aluminate into the original fly ashes, then alkali-activated by 10 M NaOH solution. Incorporating Na-aluminate reduced the compressive strength of samples, with the reduction magnitude relatively constant regardless of length of curing period. The HSXRD provides evidence of the co-existence of C-S-H with geopolymeric gels and strongly suggests that the C-S-H formed in the current system is C-S-H(I). The back-scattered electron images suggest that the C-S-H(I) phase exists as small grains in a finely intermixed form with geopolymeric gels. Despite providing extra source of aluminum, adding Na-aluminate to the mixes did not decrease the Si/Al ratio of the geopolymeric gel.

  5. Sample collection system for gel electrophoresis

    SciTech Connect

    Olivares, Jose A.; Stark, Peter C.; Dunbar, John M.; Hill, Karen K.; Kuske, Cheryl R.; Roybal, Gustavo

    2004-09-21

    An automatic sample collection system for use with an electrophoretic slab gel system is presented. The collection system can be used with a slab gel have one or more lanes. A detector is used to detect particle bands on the slab gel within a detection zone. Such detectors may use a laser to excite fluorescently labeled particles. The fluorescent light emitted from the excited particles is transmitted to low-level light detection electronics. Upon the detection of a particle of interest within the detection zone, a syringe pump is activated, sending a stream of buffer solution across the lane of the slab gel. The buffer solution collects the sample of interest and carries it through a collection port into a sample collection vial.

  6. Evaluation of single-cell gel electrophoresis data: combination of variance analysis with sum of ranking differences.

    PubMed

    Héberger, Károly; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Sunjog, Karolina; Gačić, Zoran; Kljajić, Zoran; Mitrić, Milena; Vuković-Gačić, Branka

    2014-09-01

    Specimens of the mussel Mytilus galloprovincialis were collected from five sites in the Boka Kotorska Bay (Adriatic Sea, Montenegro) during the period summer 2011-autumn 2012. Three types of tissue, haemolymph, digestive gland were used for assessment of DNA damage. Images of randomly selected cells were analyzed with a fluorescence microscope and image analysis by the Comet Assay IV Image-analysis system. Three parameters, viz. tail length, tail intensity and Olive tail moment were analyzed on 4200 nuclei per cell type. We observed variations in the level of DNA damage in mussels collected at different sites, as well as seasonal variations in response. Sum of ranking differences (SRD) was implemented to compare use of different types of cell and different measure of comet tail per nucleus. Numerical scales were transferred into ranks, range scaling between 0 and 1; standardization and normalization were carried out. SRD selected the best (and worst) combinations: tail moment is the best for all data treatment and for all organs; second best is tail length, and intensity ranks third (except for digestive gland). The differences were significant at the 5% level. Whereas gills and haemolymph cells do not differ significantly, cells of the digestive gland are much more suitable to estimate genotoxicity. Variance analysis decomposed the effect of different factors on the SRD values. This unique combination has provided not only the relative importance of factors, but also an overall evaluation: the best evaluation method, the best data pre-treatment, etc., were chosen even for partially contradictory data. The rank transformation is superior to any other way of scaling, which is proven by ordering the SRD values by SRD again, and by cross validation.

  7. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    PubMed

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform).

  8. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2002-02-28

    This technical progress report describes work performed from June 20 through December 19, 2001, for the project, ''Conformance Improvement Using Gels''. Interest has increased in some new polymeric products that purport to substantially reduce permeability to water while causing minimum permeability reduction to oil. In view of this interest, we are currently studying BJ's Aqua Con. Results from six corefloods revealed that the Aqua Con gelant consistently reduced permeability to water more than that to oil. However, the magnitude of the disproportionate permeability reduction varied significantly for the various experiments. Thus, as with most materials tested to date, the issue of reproducibility and control of the disproportionate permeability remains to be resolved. Concern exists about the ability of gels to resist washout after placement in fractures. We examined whether a width constriction in the middle of a fracture would cause different gel washout behavior upstream versus downstream of the constriction. Tests were performed using a formed Cr(III)-acetate-HPAM gel in a 48-in.-long fracture with three sections of equal length, but with widths of 0.08-, 0.02-, and 0.08-in., respectively. The pressure gradients during gel extrusion (i.e., placement) were similar in the two 0.08-in.-wide fracture sections, even though they were separated by a 0.02-in.-wide fracture section. The constriction associated with the middle fracture section may have inhibited gel washout during the first pulse of brine injection after gel placement. However, during subsequent phases of brine injection, the constriction did not inhibit washout in the upstream fracture section any more than in the downstream section.

  9. Multiresidue analysis of 30 organochlorine pesticides in milk and milk powder by gel permeation chromatography-solid phase extraction-gas chromatography-tandem mass spectrometry.

    PubMed

    Zheng, Guocan; Han, Chao; Liu, Yi; Wang, Jing; Zhu, Meiwen; Wang, Chengjun; Shen, Yan

    2014-10-01

    A method for simultaneous determination of the 30 organochlorine pesticides (OCP) in milk and milk powder samples has been developed. Prior to the gas chromatography-tandem mass spectrometric analysis, the residual OCP in samples were extracted with n-hexane and acetone mixture (1/1, vol/vol) and cleaned up by gel permeation chromatography and solid phase extraction. Selected reaction monitoring mode was used for gas chromatography-tandem mass spectrometric data acquisition to identify and quantify the OCP. To avoid the matrix effects, matrix-matched calibration solutions ranging from 2 to 50 ng/mL were used to record the calibration curve. Limits of quantification of all OCP were 0.8 μg/kg. With the exception of endrin, limits of quantification are significantly lower than maximum residue limits set by the European Union and China. The average recoveries were in the range of 70.1 to 114.7% at 3 spiked concentration levels (0.8, 2.0, and 10.0 μg/kg) with residual standard deviation lower than 12.9%. The developed method was successfully applied to analyze the OCP in commercial milk products.

  10. PCR-denaturing gradient gel electrophoresis analysis of microbial community in soy-daddawa, a Nigerian fermented soybean (Glycine max (L.) Merr.) condiment.

    PubMed

    Ezeokoli, Obinna T; Gupta, Arvind K; Mienie, Charlotte; Popoola, Temitope O S; Bezuidenhout, Cornelius C

    2016-03-02

    Soy-daddawa, a fermented soybean (Glycine max (L.) Merr.) condiment, plays a significant role in the culinary practice of West Africa. It is essential to understand the microbial community of soy-daddawa for a successful starter culture application. This study investigated the microbial community structure of soy-daddawa samples collected from Nigerian markets, by PCR-denaturing gradient gel electrophoresis (DGGE) targeting the V3-V5 region of the 16S rRNA gene of bacteria and internal transcribed spacer 2 (ITS2) region of fungi. Six bacterial and 16 fungal (nine yeasts and seven molds) operational taxonomic units (OTUs)/species were obtained at 97% sequence similarity. Taxonomic assignments revealed that bacterial OTUs belonged to the phyla Firmicutes and Actinobacteria, and included species from the genera Atopostipes, Bacillus, Brevibacterium and Nosocomiicoccus. Densitometric analysis of DGGE image/bands revealed that Bacillus spp. were the dominant OTU/species in terms of population numbers. Fungal OTUs belonged to the phyla Ascomycota and Zygomycota, and included species from the genera, Alternaria, Aspergillus, Candida, Cladosporium, Dokmaia, Issatchenkia, Kodamaea, Lecythophora, Phoma, Pichia, Rhizopus, Saccharomyces and Starmerella. The majority of fungal species have not been previously reported in soy-daddawa. Potential opportunistic human pathogens such as Atopostipes suicloacalis, Candida rugosa, Candida tropicalis, and Kodamaea ohmeri were detected. Variation in soy-daddawa microbial communities amongst samples and presence of potential opportunistic pathogens emphasises the need for starter culture employment and good handling practices in soy-daddawa processing.

  11. A dual-ion imprinted polymer embedded in sol-gel matrix for the ultra trace simultaneous analysis of cadmium and copper.

    PubMed

    Bali Prasad, Bhim; Jauhari, Darshika; Verma, Archana

    2014-03-01

    In simultaneous determination of group of elements, there are inter-metallic interactions which result in a non-linear relationship between the peak current and ionic concentration for each of the element, at bare (unmodified) electrode. To resolve this problem, we have resorted, for the first time, to develop a modified pencil graphite electrode using a typical ion imprinted polymer network (dual-ion imprinted polymer embedded in sol-gel matrix (inorganic-organic hybrid nano-material)) for the simultaneous analysis of a binary mixture of Cd(II) and Cu(II) ions, without any complication of inter-metallic interactions and competitive bindings, in real samples. The adequate resolution of differential pulse anodic stripping voltammetry peaks by 725 mV (cf, 615 mV with unmodified electrode), without any cross-reactivity and the stringent detection limits as low as, 0.050 and 0.034 ng mL(-1) (S/N=3) for Cd(II) and Cu(II) ions, respectively by the proposed sensor can be considered useful for the primitive diagnosis of several chronic diseases in clinical settings.

  12. Effect of SiO2 addition on photocatalytic activity, water contact angle and mechanical stability of visible light activated TiO2 thin films applied on stainless steel by a sol gel method

    NASA Astrophysics Data System (ADS)

    Momeni, Mansour; Saghafian, Hasan; Golestani-Fard, Farhad; Barati, Nastaran; Khanahmadi, Amirhossein

    2017-01-01

    Nanostructured N doped TiO2/20%SiO2 thin films were developed on steel surface via sol gel method using a painting airbrush. Thin films then were calcined at various temperatures in a range of 400-600 °C. The effect of SiO2 addition on phase composition and microstructural evolution of N doped TiO2 films were studied using XRD and FESEM. Optical properties, visible light photocatalytic activity, hydrophilic behavior, and mechanical behavior of the films were also investigated by DRS, methylene blue degradation, water contact angle measurements, and nanoscratch testing. Results indicated that the band gap energy of N doped TiO2/SiO2 was increased from 2.93 to 3.09 eV. Crack formation during calcination was also significantly promoted in the composite films. All composite films demonstrated weaker visible light photocatalytic activities and lower mechanical stability in comparison with N doped TiO2 films. Moreover, the N doped TiO2/SiO2 film calcined at 600 °C showed undesirable hydrophilic behavior with a water contact angle of 57° after 31 h of visible light irradiation. Outcomes of the present study reveal some different results to previous reports on TiO2/SiO2 films. In general, we believe the differences in substrate material as well as application in visible light are the main reasons for the above mentioned contradiction.

  13. The effect of divalent vs. monovalent ions on the swelling of Mucin-like polyelectrolyte gels: Governing equations and equilibrium analysis

    NASA Astrophysics Data System (ADS)

    Sircar, S.; Keener, J. P.; Fogelson, A. L.

    2013-01-01

    We introduce a comprehensive model of a mucin-like polyelectrolyte gel swelling-deswelling which includes the ion-mediated crosslinking of polymer strands and the exchange of divalent and monovalent ions in the gel. The gel is modeled as a multi-phase mixture which accounts for the polymer and solvent volume fractions and velocities as well as ionic species concentrations. Motion is determined by force balances involving viscous, drag, and chemical forces. The chemical forces are derived from a free energy which includes entropic contributions as well as the chemical and electrostatic interactions among the crosslinked polymer, uncrosslinked polymer, and the ionic solvent. The unified derivation produces all the classical effects (van't Hoff osmotic pressure, Donnan equilibrium potential, Nernst-Planck motion of ions) as well as expressions for Flory interaction parameter and the standard free energy parameters that explicitly depend on the gel chemistry and crosslink structure. For this model, we show how the interplay between ionic bath concentrations, ionic binding, and transient divalent crosslinking leads to a variety of swelled and deswelled phases/phase transitions. In particular, we show how the absorption of divalent ions can lead to a massive deswelling of the gel. We conclude that the unique properties of mucin-like gels can be explained by their ionic binding affinities and transient divalent crosslinking.

  14. Gel Electrophoresis--The Easy Way for Students

    ERIC Educational Resources Information Center

    VanRooy, Wilhelmina; Sultana, Khalida

    2010-01-01

    This article describes a simple, inexpensive, easy to conduct gel-electrophoresis activity using food dyes. It is an alternative to the more expensive counterparts which require agarose gel, DNA samples, purchased chamber and Tris-borate-EDTA buffer. We suggest some learning activities for senior biology students along with comments on several…

  15. Gel-Free/Label-Free Proteomic Analysis of Endoplasmic Reticulum Proteins in Soybean Root Tips under Flooding and Drought Stresses.

    PubMed

    Wang, Xin; Komatsu, Setsuko

    2016-07-01

    Soybean is a widely cultivated crop; however, it is sensitive to flooding and drought stresses. The adverse environmental cues cause the endoplasmic reticulum (ER) stress due to accumulation of unfolded or misfolded proteins. To investigate the mechanisms in response to flooding and drought stresses, ER proteomics was performed in soybean root tips. The enzyme activity of NADH cytochrome c reductase was two-fold higher in the ER than other fractions, indicating that the ER was isolated with high purity. Protein abundance of ribosomal proteins was decreased under both stresses compared to control condition; however, the percentage of increased ribosomes was two-fold higher in flooding compared to drought. The ER proteins related to protein glycosylation and signaling were in response to both stresses. Compared to control condition, calnexin was decreased under both stresses; however, protein disulfide isomerase-like proteins and heat shock proteins were markedly decreased under flooding and drought conditions, respectively. Furthermore, fewer glycoproteins and higher levels of cytosolic calcium were identified under both stresses compared to control condition. These results suggest that reduced accumulation of glycoproteins in response to both stresses might be due to dysfunction of protein folding through calnexin/calreticulin cycle. Additionally, the increased cytosolic calcium levels induced by flooding and drought stresses might disturb the ER environment for proper protein folding in soybean root tips.

  16. The proteomic analysis of an adipocyte differentiated from human mesenchymal stem cells using two-dimensional gel electrophoresis.

    PubMed

    Lee, Hyun-Kyung; Lee, Byung-Hyo; Park, Seung-Ah; Kim, Chan-Wha

    2006-02-01

    Adipose tissues play a crucial endocrine role in the control of whole body glucose homeostasis and insulin sensitivity. Considering the current substantial rise in obesity and obesity-related diseases, including diabetes, it is important to understand the molecular basis of adipocyte differentiation and its control. In this study, we have analyzed the protein expression inherent to adipogenic differentiation, by 2-DE, MALDI-TOF, and RT-PCR. This study focused on proteins that were differentially expressed by the differentiation of human mesenchymal stem cells (hMSCs) to adipocytes. We conducted 2-DE for each set of proteins in the cytosol of adipocytes that had differentiated from hMSC, in a pH range from 3-10. Thirty-two protein spots were shown to have different expression levels. Among these, eight up-regulated proteins were identified by MALDI-TOF/MS, as the following: syntaxin binding protein 3, OSBP-related protein 3, phosphodiesterase, glycophorin, immunoglobulin kappa chain variable region, peroxisome proliferative activated receptor gamma (PPAR-gamma), bA528A10.3.1 (novel protein similar to KIAA01616, isoform 1), and T cell receptor V-beta 4. Four proteins: syntaxin-3, OSBP-related protein 3, PPAR-gamma and glycophorin were associated with adipogenesis.

  17. Erythromycin resistance in italian isolates of Streptococcus pyogenes and correlations with pulsed-field gel electrophoresis analysis.

    PubMed

    Zampaloni, Claudia; Vitali, Luca A; Prenna, Manuela; Toscano, Maria A; Tempera, Gianna; Ripa, Sandro

    2002-01-01

    Erythromycin resistance among Streptococcus pyogenes strains has been reported in Italy at high rates during the last few years. A total of 152 erythromycin-resistant isolates of this species from southern Italian regions were characterized for the macrolide-resistance phenotype and screened by PCR for the corresponding genetic determinant. A close correlation was found between these phenotypic/genotypic data concerning macrolide resistance and results of Sma I macrorestriction fragment patterns (PFGE) analysis. In fact, the vast majority of the isolates assigned to individual PFGE classes mostly belonged to a single phenotype of macrolide resistance. All untypeable isolates belonged to the M phenotype. Twenty-two distinct PFGE types were recognized, of which 11 were recorded in only one isolate (one-strain type); about 50% of typeable isolates fell into five type clusters and 70% in seven. The increased erythromycin resistance among Italian isolates of S. pyogenes does not appear to be due to the spread of a single clone, but results indicate that the majority of group A streptococci examined are probably spread from a limited number of clones.

  18. A needle trap device packed with a sol-gel derived, multi-walled carbon nanotubes/silica composite for sampling and analysis of volatile organohalogen compounds in air.

    PubMed

    Heidari, Mahmoud; Bahrami, Abdolrahman; Ghiasvand, Ali Reza; Shahna, Farshid Ghorbani; Soltanian, Ali Reza

    2013-06-27

    A needle trap device (NTD) packed with silica composite of multi-walled carbon nanotubes (MWCNTs) prepared based on sol-gel technique was utilized for sampling and analysis of volatile organohalogen compounds (HVOCs) in air. The performance of the NTD packed with MWCNTs/silica composite as sorbent was examined in a variety of sampling conditions and was compared with NTDs packed with PDMS as well as SPME with Carboxen/PDMS-coated fibers. The limit of detection of NTDs for the GC/MS detection system was 0.01-0.05 ng mL(-1) and the limit of quantitation was 0.04-0.18 ng mL(-1). The RSD were 1.1-7.8% for intra-NTD comparison intended for repeatability of technique. The NTD-MWCNTs/silica composite showed better analytical performances compared to the NTD-PDMS composite and had the same analytical performances when compared to the SPME-Carboxen/PDMS fibers. The results show that NTD-MWCNTs-GC/MS is a powerful technique for active sampling of occupational/environmental pollutants in air.

  19. An overlay gel method for identification and isolation of bacterial beta-lactamases.

    PubMed

    Eftekhar, Fereshteh; Rafiee, Roya

    2006-01-01

    A modification of the iodometric technique using an overlay gel was employed for fast identification and isolation of beta-lactamase types TEM, SHV and AmpC from non-denaturing gels. Osmotic shock preparations of the three beta-lactamases were run on polyacrylamide gels without SDS and ampicillin containing overlay gels were flooded with the iodine solution before being placed on polyacrylamide gel strips. Distinct clear bands appeared in dark blue backgrounds indicating beta-lactamase activity.

  20. Immunoproteomic and two-dimensional difference gel electrophoresis analysis of Arabidopsis dehydration response element-binding protein 1A (DREB1A)-transgenic potato.

    PubMed

    Nakamura, Rika; Satoh, Rie; Nakamura, Ryosuke; Shimazaki, Takayoshi; Kasuga, Mie; Yamaguchi-Shinozaki, Kazuko; Kikuchi, Akira; Watanabe, Kazuo N; Teshima, Reiko

    2010-01-01

    To produce crops that are more tolerant to stresses such as heat, cold, and salt, transgenic plants have been produced those express stress-associated proteins. In this study, we used immunoproteomic and two-dimensional difference gel electrophoresis (2D-DIGE) methods to investigate the allergenicity of transgenic potatoes expressing Arabidopsis DREB1A (dehydration responsive element-binding protein 1A), driven by the rd29A promoter or the 35S promoter. Immunoproteomic analysis using sera from potato-allergic patients revealed several immunoglobulin E (IgE)-binding protein spots. The patterns of protein binding were almost the same between transgenic and non-transgenic potatoes. The IgE-binding proteins in potato were identified as patatin precursors, a segment of serine protease inhibitor 2, and proteinase inhibitor II by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) MS/MS. 2D-DIGE analysis revealed several differences in protein expression between non-transgenic potato and transgenic potato; those showing increased expression in transgenic potatoes were identified as precursors of patatin, a major potato allergen, and those showing decreased expression in transgenic potatoes were identified as lipoxygenase and glycogen (starch) synthase. These results suggested that transgenic potatoes may express slightly higher levels of allergens, but their IgE-binding patterns were almost the same as those of control potatoes. Further research on changes in protein expressions in response to environmental factors is required to confirm whether the differences observed in this study are due to gene transfection, rather than environmental factors.

  1. Preparation of polypyrrole composite solid-phase microextraction fiber coatings by sol-gel technique for the trace analysis of polar biological volatile organic compounds.

    PubMed

    Zhang, Zhuomin; Zhu, Li; Ma, Yunjian; Huang, Yichun; Li, Gongke

    2013-02-21

    Two novel polypyrrole (PPy) composite solid-phase microextraction (SPME) fiber coatings involving polypyrrole β-naphthalenesulfonic acid (PPy/β-NSA) and polypyrrole graphene (PPy/GR) composite SPME fiber coatings were prepared by a simple sol-gel technique for selectively sampling relatively polar biological volatile organic compounds (VOCs). Crucial preparation conditions of the PPy composite SPME fiber coatings were optimized and are discussed in detail. Physical tests suggested that the PPy composite SPME fiber coatings possessed a porous surface morphology, stable chemical and thermal properties. Due to the inducing polar functional groups in the PPy molecule, the PPy composite SPME fiber coatings achieved a higher extraction capacity and special selectivity for the polar biological VOCs with conjugate structures, compared with commercial SPME fiber coatings. Enrichment factors of most of the VOCs by the PPy/β-NSA and PPy/GR SPME fibers were much higher than those achieved by common commercially available SPME fiber coatings. Finally, the PPy/β-NSA and PPy/GR SPME fiber coatings were applied for the trace analysis of typical polar VOCs from ant and coriander samples coupled with gas chromatography/mass spectrometry (GC/MS) detection, respectively. It was satisfactory that the average contents of 4-heptanone, 4-heptanol, 4-nonanone and methyl 5-methylsalicylate from ant samples were actually found to be 28.0, 58.7, 3.0 and 0.6 μg g(-1), and the average contents of nonane, decanal, undecanal and dodecanal from coriander samples were actually found to be 0.79, 0.13, 0.06 and 0.21 μg g(-1). The results suggested that PPy composite SPME coatings will be a potentially excellent sampling technique for the trace analysis of polar biological VOCs.

  2. A novel needle trap device with single wall carbon nanotubes sol-gel sorbent packed for sampling and analysis of volatile organohalogen compounds in air.

    PubMed

    Heidari, Mahmoud; Bahrami, Abdolrahman; Ghiasvand, Ali Reza; Shahna, Farshid Ghorbani; Soltanian, Ali Reza

    2012-11-15

    This paper describes a new approach that combines needle trap devices (NTDs) with a newly synthesized silanated nano material as sorbent for sampling and analysis of HVOCs in air. The sol-gel technique was used for preparation of the single wall carbon nanotube (SWCNT)/silica composite as sorbent, packed inside a 21-gauge NTD. Application of this method as an exhaustive sampler device was investigated under different laboratory conditions in this study. Predetermined concentrations of each analyte were prepared in a home-made standard chamber, and the effects of experimental parameters, such as temperature, humidity, sampling air flow rate, breakthrough volume and storage time on NTD, and the sorbent performance were investigated. The proposed NTD was used in two different modes and two different injection methods, and an NTD with a side hole, a narrow neck glass liner and syringe pump assisted injection of carrier gas were applied. The NTD packed with SWCNTs/silica composite was compared to the NTD packed with PDMS and also SPME with CAR/PDMS. For four compounds, LOD was 0.001-0.01 ng mL(-1), LOQ was 0.007-0.03 ng mL(-1), and the relative standard division for repeatability of method was 2.5-6.7%. The results show that the incorporation of NTD and SWCNTs/silica composite is a reliable and effective approach for the sampling and analysis of HVOCs in air. Coupling this system to GC-MS make it more sensitive and powerful technique.

  3. Comparative Sensitivity Analysis of Muscle Activation Dynamics

    PubMed Central

    Rockenfeller, Robert; Günther, Michael; Schmitt, Syn; Götz, Thomas

    2015-01-01

    We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379

  4. Neutron activation analysis in archaeological chemistry

    SciTech Connect

    Harbottle, G.

    1987-01-01

    Neutron activation analysis has proven to be a convenient way of performing the chemical analysis of archaeologically-excavated artifacts and materials. It is fast and does not require tedious laboratory operations. It is multielement, sensitive, and can be made nondestructive. Neutron activation analysis in its instrumental form, i.e., involving no chemical separation, is ideally suited to automation and conveniently takes the first step in data flow patterns that are appropriate for many taxonomic and statistical operations. The future will doubtless see improvements in the practice of NAA in general, but in connection with archaeological science the greatest change will be the filling, interchange and widespread use of data banks based on compilations of analytical data. Since provenience-oriented data banks deal with materials (obsidian, ceramics, metals, semiprecious stones, building materials and sculptural media) that participated in trade networks, the analytical data is certain to be of interest to a rather broad group of archaeologists. It is to meet the needs of the whole archaeological community that archaeological chemistry must now turn.

  5. Spatially resolved multicomponent gels

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.

    2015-10-01

    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  6. Patterns in shrinking gels

    NASA Astrophysics Data System (ADS)

    Matsuo, Eriko Sato; Tanaka, Toyoichi

    1992-08-01

    POLYMER gels can undergo a volume phase transition (either continuous or discontinuous) when an external condition, such as temperature or solvent composition, is altered1-3. During this transition, the volume may change by a factor of several thousand, and various patterns develop in the gel. The patterns arising from swelling and shrinking differ in both their appearance and their physical mechanisms. The mechanism for the formation and evolution of patterns on swelling gels has been established as being due to a single kind of mechanical instability4-7 in contrast, the shrinking patterns seem to be sensitive to both the initial and final states of the transition. Here we classify the various shrinking patterns in the form of a phase diagram, and explain the poly-morphism in terms of macroscopic phase separation.

  7. Intact rough- and smooth-form lipopolysaccharides from Escherichia coli separated by preparative gel electrophoresis exhibit differential biologic activity in human macrophages.

    PubMed

    Pupo, Elder; Lindner, Buko; Brade, Helmut; Schromm, Andra B

    2013-02-01

    We established a new preparative separation procedure, based on DOC/PAGE, to isolate intact lipopolysaccharide (LPS) fractions from natural LPS preparations of Escherichia coli. Analysis of the chemical integrity of LPS fractions by MS showed that no significant chemical modifications were introduced by the procedure. Contamination with toll-like receptor 2 (TLR2)-reactive cell-wall components present in the natural LPS mixture was effectively removed by the procedure, as determined by the absence of reactivity of the purified fractions in a HEK293-TLR2 cell line. Biologic analysis of LPS fractions derived from E. coli O111 in human macrophages demonstrated that the rough (R), semirough (SR) and smooth (S) LPS fractions were highly active at inducing tumor necrosis factor-alpha (TNF-α) in the presence of human serum; however, on a weight basis the R-LPS and SR-LPS fractions were more active, by a factor of 10-100, than was the S-LPS fraction. Under serum-free conditions, the natural LPS mixture, as well as the R-LPS and SR-LPS fractions, showed dose-dependent activation of macrophages, although the response was attenuated by about 10- to 100-fold. In contrast, the S-LPS fraction failed to induce TNF-α. Remarkably, the dose-response of the natural LPS mixture resembled that of the R-LPS and SR-LPS fractions, supporting that short-chain (R and SR) forms of LPS dominate the innate immune response of human macrophages to LPS in vitro. Biologic activity to the S-LPS fraction under serum-free conditions could be restored by the addition of recombinant lipopolysaccharide-binding protein (LBP). In contrast, soluble cluster of differentiation antigen 14 was not able to confer activity of the S-LPS fraction, indicating a crucial role of LBP in the recognition of S-LPS by human macrophages.

  8. A thermodynamic model of physical gels

    NASA Astrophysics Data System (ADS)

    An, Yonghao; Solis, Francisco J.; Jiang, Hanqing

    2010-12-01

    Physical gels are characterized by dynamic cross-links that are constantly created and broken, changing its state between solid and liquid under influence of environmental factors. This restructuring ability of physical gels makes them an important class of materials with many applications, such as in drug delivery. In this article, we present a thermodynamic model for physical gels that considers both the elastic properties of the network and the transient nature of the cross-links. The cross-links' reformation is captured through a connectivity tensor M at the microscopic level. The macroscopic quantities, such as the volume fraction of the monomer ϕ, number of monomers per cross-link s, and the number of cross-links per volume q, are defined by statistic averaging. A mean-field energy functional for the gel is constructed based on these variables. The equilibrium equations and the stress are obtained at the current state. We study the static thermodynamic properties of physical gels predicted by the model. We discuss the problems of un-constrained swelling and stress driven phase transitions of physical gels and describe the conditions under which these phenomena arise as functions of the bond activation energy Ea, polymer/solvent interaction parameter χ, and external stress p.

  9. Actuation and ion transportation of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Xiao

    2010-04-01

    Consisting of charged network swollen with ionic solution, polyelectrolyte gels are known for their salient characters including ion exchange and stimuli responsiveness. The active properties of polyelectrolyte gels are mostly due to the migration of solvent molecules and solute ions, and their interactions with the fixed charges on the network. In this paper, we extend the recently developed nonlinear field theory of polyelectrolyte gels by assuming that the kinetic process is limited by the rate of the transportation of mobile species. To study the coupled mechanical deformation, ion migration, and electric field, we further specialize the model to the case of a laterally constrained gel sheet. By solving the field equations in two limiting cases: the equilibrium state and the steady state, we calculate the mechanical responses of the gel to the applied electric field, and study the dependency on various parameters. The results recover the behavior observed in experiments in which polyelectrolyte gels are used as actuators, such as the ionic polymer metal composite. In addition, the model reveals the mechanism of the selectivity in ion transportation. Although by assuming specific material laws, the reduced system resembles those in most existing models in the literature, the theory can be easily generalized by using more realistic free-energy functions and kinetic laws. The adaptability of the theory makes it suitable for studying many similar material systems and phenomena.

  10. Cavitation of a Physically Associating Gel

    NASA Astrophysics Data System (ADS)

    Mishra, Satish; Kundu, Santanu

    Self-assembly of block copolymers in selective solvents form ordered structures such as micelles, vesicles, and physically crosslinked gels due to difference in their interaction with solvents. These gels have wide range of applications in tissue engineering, food science and biomedical field due to their tunable properties and responsiveness with changing environmental conditions. Pressurization of a defect inside a physically associating gel can lead to elastic instability (cavitation) leading to failure of the gel. The failure behavior involves dissociation of physical networks. A thermoreversible, physically associating gel with different volume fractions of a triblock copolymer, poly (methyl methacrylate)-poly (n-butyl acrylate)-poly (methyl methacrylate) [PMMA-PnBA-PMMA] in 2-ethyl 1-hexanol, a midblock selective solvent, is considered here. Mechanical properties were investigated using shear rheology and cavitation experiments. The experimental data is fitted with a constitutive model that captures the stiffening behavior followed by softening behavior of a physical gel. Finite element analysis has been performed on cavitation rheology geometry to capture the failure behavior and to calculate energy release rate during cavitation experiments.

  11. Rheological Characterization of Ethanolamine Gel Propellants

    NASA Astrophysics Data System (ADS)

    V. S Jyoti, Botchu; Baek, Seung Wook

    2016-07-01

    Ethanolamine is considered to be an environmentally friendly propellant system because it has low toxicity and is noncarcinogenic in nature. In this article, efforts are made to formulate and prepare ethanolamine gel systems, using pure agarose and hybrids of paired gelling agents (agarose + polyvinylpyrrolidine (PVP), agarose + SiO2, and PVP + SiO2), that exhibit a measurable yield stress, thixotropic behavior under shear rate ranges of 1-1,000 s-1 and a viscoelastic nature. To achieve these goals, multiple rheological experiments (including flow and dynamic studies) are performed. In this article, results are presented from experiments measuring the apparent viscosity, yield stress, thixotropy, dynamic strain, frequency sweep, and tan δ behaviors, as well as the effects of the test temperature, in the gel systems. The results show that the formulated ethanolamine gels are thixotropic in nature with yield stress between 30 and 60 Pa. The apparent viscosity of the gel decreases as the test temperature increases, and the apparent activation energy is the lowest for the ethanolamine-(PVP + SiO2) gel system. The dynamic rheology study shows that the type of gellant, choice of hybrid gelling materials and their concentration, applied frequencies, and strain all vitally affect the viscoelastic properties of the ethanolamine gel systems. In the frequency sweep experiment, the ethanolamine gels to which agarose, agarose + PVP, and agarose + SiO2 were added behave like linear frequency-dependent viscoelastic liquids, whereas the ethanolamine gel to which PVP + SiO2 was added behaves like a nearly frequency-independent viscoelastic solid. The variation in the tan δ of these gelled propellants as a function of frequency is also discussed.

  12. Electroblotting from Polyacrylamide Gels.

    PubMed

    Goldman, Aaron; Ursitti, Jeanine A; Mozdzanowski, Jacek; Speicher, David W

    2015-11-02

    Transferring proteins from polyacrylamide gels onto retentive membranes is now primarily used for immunoblotting. A second application that was quite common up to about a decade ago was electroblotting of proteins for N-terminal and internal sequencing using Edman chemistry. This unit contains procedures for electroblotting proteins from polyacrylamide gels onto a variety of membranes, including polyvinylidene difluoride (PVDF) and nitrocellulose. In addition to the commonly used tank or wet transfer system, protocols are provided for electroblotting using semidry and dry systems. This unit also describes procedures for eluting proteins from membranes using detergents or acidic extraction with organic solvents for specialized applications.

  13. Analysis of DOE international environmental management activities

    SciTech Connect

    Ragaini, R.C.

    1995-09-01

    The Department of Energy`s (DOE) Strategic Plan (April 1994) states that DOE`s long-term vision includes world leadership in environmental restoration and waste management activities. The activities of the DOE Office of Environmental Management (EM) can play a key role in DOE`s goals of maintaining U.S. global competitiveness and ensuring the continuation of a world class science and technology community. DOE`s interest in attaining these goals stems partly from its participation in organizations like the Trade Policy Coordinating Committee (TPCC), with its National Environmental Export Promotion Strategy, which seeks to strengthen U.S. competitiveness and the building of public-private partnerships as part of U.S. industrial policy. The International Interactions Field Office task will build a communication network which will facilitate the efficient and effective communication between DOE Headquarters, Field Offices, and contractors. Under this network, Headquarters will provide the Field Offices with information on the Administration`s policies and activities (such as the DOE Strategic Plan), interagency activities, as well as relevant information from other field offices. Lawrence Livermore National Laboratory (LLNL) will, in turn, provide Headquarters with information on various international activities which, when appropriate, will be included in reports to groups like the TPCC and the EM Focus Areas. This task provides for the collection, review, and analysis of information on the more significant international environmental restoration and waste management initiatives and activities which have been used or are being considered at LLNL. Information gathering will focus on efforts and accomplishments in meeting the challenges of providing timely and cost effective cleanup of its environmentally damaged sites and facilities, especially through international technical exchanges and/or the implementation of foreign-development technologies.

  14. Formulation and in vitro and in vivo evaluation of a new osteoprotegerin-chitosan gel for bone tissue regeneration.

    PubMed

    Jayash, Soher Nagi; Hashim, Najihah Mohd; Misran, Misni; Baharuddin, N A

    2017-02-01

    The osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. The study aimed to determine the physicochemical properties and biocompatibility of a newly formulated OPG-chitosan gel. The OPG-chitosan gel was formulated using human OPG protein and water-soluble chitosan. The physicochemical properties were determined using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Gel morphology was determined using scanning electron microscopy (SEM) and then it was subjected to a protein release assay and biodegradability test. An in vitro cytotoxicity test on normal human periodontal ligament (NHPL) fibroblasts and normal human (NH) osteoblasts was carried out using the AlamarBlue assay. In vivo evaluation in a rabbit model involved creating critical-sized defects in calvarial bone, filling with the OPG-chitosan gel and sacrificing at 12 weeks. In vitro results demonstrated that the 25 kDa OPG-chitosan gel had the highest rate of protein release and achieved 90% degradation in 28 days. At 12 weeks, the defects filled with 25 kDa OPG-chitosan gel showed significant (p < 0.05) new bone formation and the highest expression of osteocalcin and osteopontin compared to controls. Thus, the 25 kDa OPG-chitosan gel could be a promising new biomaterial for tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 398-407, 2017.

  15. Novel spectrofluorimetric method for measuring the activity of the enzyme alpha-L-fucosidase using the nano composite optical sensor samarium(III)-doxycycline complex doped in sol-gel matrix.

    PubMed

    Attia, M S; Othman, A M; Aboaly, M M; Abdel-Mottaleb, M S A

    2010-07-15

    A novel, simple, sensitive, and precise spectrofluorimetric method was developed for measuring the activity of the enzyme alpha-L-fucosidase (AFU). The method was based upon measuring the quenching of the luminescence intensity of the produced yellow colored complex ion associate of 2-chloro-4-nitrophenol [2-CNP] and a nano composite optical sensor samarium(III)-doxycycline [Sm(3+)-DC](+) complex in a sol-gel matrix at 645 nm. The remarkable quenching of the luminescence intensity of the [Sm(3+)-DC](+) complex doped in a sol-gel matrix by various concentrations of the reagent [2-CNP] was successfully used as an optical sensor for the assessment of AFU activity. The calibration plot was achieved over the concentration range 3.4 x 10(-9)-1.0 x 10(-6) mol L(-1) [2-CNP] with a correlation coefficient of 0.99 and a detection limit of 6.0 x 10(-10) mol L(-1). The method was used satisfactorily for the assessment of the AFU activity in a number of serum samples collected from various patients. A significant correlation between the luminescence activity of the enzyme AFU measured by the proposed procedure and the standard method was applied to patients and controls. The method proceeds without practical artifacts compared to the standard method.

  16. Modeling the Formation of Alkali Aluminosilicate Gels at the Mesoscale Using Coarse-Grained Monte Carlo.

    PubMed

    Yang, Kengran; White, Claire E

    2016-11-08

    Alkali-activated materials (AAMs) are currently being pursued as viable alternatives to conventional ordinary Portland cement because of their lower carbon footprint and established mechanical performance. However, our understanding of the mesoscale morphology (∼1 to 100 nm) of AAMs and related amorphous aluminosilicate gels, including the development of the three-dimensional aluminosilicate network and nanoscale porosity, is severely limited. This study investigates the structural changes that occur during the formation of AAM gels at the mesoscale by utilizing a coarse-grained Monte Carlo (CGMC) modeling technique that exploits density functional theory calculations. The model is capable of simulating the reaction of an aluminosilicate particle in a highly alkaline solution (sodium hydroxide or sodium silicate). Two precursor morphologies have been investigated (layered alumina and silica sheets mimicking metakaolin and spherical aluminosilicate particles reminiscent of coal-derived fly ash) to determine if the precursor morphology has an impact on the structural evolution of the resulting alkali-activated aluminosilicate gel. The CGMC model can capture the three major stages of the alkali-activation process-dissolution, polycondensation, and reorganization-revealing that the dissolved silicate and aluminate species, ranging from monomers to nanoprecipitates (100s of monomers in size), exist in the pore solution of the hardened gel. The model also reveals that the silica concentration of the activating solution controls the extent of dissolution of the precursor particle. From the analysis of the aluminosilicate cluster size distributions, the mechanisms of AAM gel growth have been elucidated, revealing that Ostwald ripening occurs in systems containing free silica at the start of the reaction. On the other hand, growth of the hydroxide-activated systems (metakaolin and fly ash) occurs via the formation of intermediate-sized clusters in addition to continual

  17. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  18. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, A.; Yamanaka, S.A.; Kawola, J.S.; Showalter, S.K.; Loy, D.A.

    1998-09-29

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis are disclosed. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5--10 nm in diameter with a monodisperse size distribution. 1 fig.

  19. Gravitational compression of colloidal gels

    NASA Astrophysics Data System (ADS)

    Liétor-Santos, J. J.; Kim, C.; Lu, P. J.; Fernández-Nieves, A.; Weitz, D. A.

    2009-02-01

    We study the compression of depletion gels under the influence of a gravitational stress by monitoring the time evolution of the gel interface and the local volume fraction, φ , inside the gel. We find φ is not constant throughout the gel. Instead, there is a volume fraction gradient that develops and grows along the gel height as the compression process proceeds. Our results are correctly described by a non-linear poroelastic model that explicitly incorporates the φ -dependence of the gravitational, elastic and viscous stresses acting on the gel.

  20. 3,4-Dihydroxyphenylalanine gel diffusion assay for polyphenol oxidase quantification.

    PubMed

    Zocca, Federico; Lomolino, Giovanna; Lante, Anna

    2008-12-15

    We have developed a simple, inexpensive plate assay to detect and quantify polyphenol oxidase (PPO) activity from different origins. The logarithm of enzyme activity is linearly correlated with the diameter of the dark, l-3,4-dihydroxyphenylalanine (l-DOPA) oxidized circles produced in the gel, thereby allowing quantification of PPO. Moreover, precision and high reproducibility of the assay were confirmed by statistical analysis.

  1. Analysis of Fungal Diversity in the Wheat Rhizosphere by Sequencing of Cloned PCR-Amplified Genes Encoding 18S rRNA and Temperature Gradient Gel Electrophoresis

    PubMed Central

    Smit, Eric; Leeflang, Paula; Glandorf, Boet; Dirk van Elsas, Jan; Wernars, Karel

    1999-01-01

    Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1.4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic

  2. Development and Validation of a Stability Indicating RP-HPLC Method for Hydrocortisone Acetate Active Ingredient, Propyl Parahydroxybenzoate and Methyl Parahydroxybenzoate Preservatives, Butylhydroxyanisole Antioxidant, and Their Degradation Products in a Rectal Gel Formulation.

    PubMed

    Ascaso, Magda; Pérez-Lozano, Pilar; García, Mireia; García-Montoya, Encarna; Miñarro, Montse; Ticó, Josep R; Fàbregas, Anna; Carrillo, Carolina; Sarrate, Rocío; Suñé-Negre, Josep M

    2015-01-01

    A stability indicating method was established through a stress study, wherein different methods of degradation (oxidation, hydrolysis, photolysis, and temperature) were studied simultaneously to determine the active ingredient hydrocortisone acetate, preservatives propyl parahydroxybenzoate, and methyl parahydroxybenzoate, antioxidant butylhydroxyanisole (BHA), and their degradation products in a semisolid dosage gel form. The proposed method was suitably validated using a Zorbax SB-Phenyl column and gradient elution. The mobile phase consisted of a mixture of methanol, acetonitrile, and water in different proportions according to a planned program at a flow rate of 1.5 mL/min. The diode array detector was set at 240 nm for the active substance and two preservatives, and 290 nm for BHA. The validation study was conducted according to International Conference on Harmonization guidelines for specificity, linearity, repeatability, precision, and accuracy. The method was used for QC of hydrocortisone acetate gel and for the stability studies with the aim of quantifying the active substance, preservatives, antioxidant, and degradation products. It has proved to be suitable as a fast and reliable method for QC.

  3. Osteochondral Biopsy Analysis Demonstrates That BST-CarGel Treatment Improves Structural and Cellular Characteristics of Cartilage Repair Tissue Compared With Microfracture

    PubMed Central

    Méthot, Stéphane; Changoor, Adele; Tran-Khanh, Nicolas; Hoemann, Caroline D.; Stanish, William D.; Restrepo, Alberto; Shive, Matthew S.; Buschmann, Michael D.

    2016-01-01

    Objective The efficacy and safety of BST-CarGel, a chitosan-based medical device for cartilage repair, was compared with microfracture alone at 1 year during a multicenter randomized controlled trial (RCT) in the knee. The quality of repair tissue of osteochondral biopsies collected from a subset of patients was compared using blinded histological assessments. Methods The international RCT evaluated repair tissue quantity and quality by 3-dimensional quantitative magnetic resonance imaging as co-primary endpoints at 12 months. At an average of 13 months posttreatment, 21/41 BST-CarGel and 17/39 microfracture patients underwent elective second look arthroscopies as a tertiary endpoint, during which ICRS (International Cartilage Repair Society) macroscopic scoring was carried out, and osteochondral biopsies were collected. Stained histological sections were evaluated by blinded readers using ICRS I and II histological scoring systems. Collagen organization was evaluated using a polarized light microscopy score. Results BST-CarGel treatment resulted in significantly better ICRS macroscopic scores (P = 0.0002) compared with microfracture alone, indicating better filling, integration, and tissue appearance. Histologically, BST-CarGel resulted in a significant improvement of structural parameters—Surface Architecture (P = 0.007) and Surface/Superficial Assessment (P = 0.042)—as well as cellular parameters—Cell Viability (P = 0.006) and Cell Distribution (P = 0.032). No histological parameters were significantly better for the microfracture group. BST-CarGel treatment also resulted in a more organized repair tissue with collagen stratification more similar to native hyaline cartilage, as measured by polarized light microscopy scoring (P = 0.0003). Conclusion Multiple and independent analyses in this biopsy substudy demonstrated that BST-CarGel treatment results in improved structural and cellular characteristics of repair tissue at 1 year posttreatment compared with

  4. Randomized tolerability analysis of clindamycin phosphate 1.2%-tretinoin 0.025% gel used with benzoyl peroxide wash 4% for acne vulgaris.

    PubMed

    Draelos, Zoe Diana; Potts, Aaron; Alió Saenz, Alessandra B

    2010-12-01

    The multiple etiologic factors involved in acne vulgaris make the use of several medications necessary to treat the condition. Use of a fixed combination of clindamycin phosphate 1.2% and tretinoin 0.025% in conjunction with a benzoyl peroxide (BPO) wash 4% targets several pathologic factors simultaneously and mitigates the potential for clindamycin-induced Propionibacterium acnes-resistant strains. New formulations may allow such regimens to be effectively used without overly reduced tolerability resulting from the irritation potential of tretinoin and BPO. This randomized, single-blind study investigated the local tolerability, irritation potential, and safety of an aqueous-based gel (clindamycin phosphate 7.2%-tretinoin 0.025% [CT gel]) when used in conjunction with a BPO wash 4% in participants with mild to moderate acne vulgaris. Participants applied the CT gel once daily in the evening for 4 weeks in conjunction with once-daily morning use of either BPO wash 4% or nonmedicated soap-free cleanser lotion (SFC). Local tolerability and irritation potential were assessed by participants and investigators using separate 6-point scales. The frequency and severity of dryness, scaling, erythema, burning/stinging, and itching increased during the first week of treatment in both treatment arms but decreased thereafter. Local tolerability reactions were slightly more frequent in the CT gel + BPO wash group versus the CT gel + SFC group at week 1 but were generally mild and improved within 1 to 2 weeks. In conclusion, therapy with CT gel + BPO wash appears safe and well-tolerated in participants with mild to moderate acne vulgaris.

  5. Utilizing ATRP to Design Self-Regenerating Polymer Gels

    NASA Astrophysics Data System (ADS)

    Yong, Xin; Averick, Saadyah; Kuksenok, Olga; Matyjaszewski, Krzysztof; Balazs, Anna

    2014-03-01

    Using newly developed computational approaches, we design a gel system capable of re-growth after a substantial section of the material was cut away. Atom transfer radical polymerization (ATRP) is utilized to form gels with preserved ``living'' chain ends and residual unreacted cross-linking groups. When this ``living'' gel is cut, these active species are exposed to a solution containing monomer, crosslinker, initiator and catalyst. A ``repairing'' polymerization occurs from both the new initiators introduced in the outer solution and the reactive chain ends present at the cut site. This new polymerization results in a covalent linkage between the initial living gel and the new gel prepared in the outer solution, and the connection is promoted by the presence of residual cross-linking groups. By measuring the diffusion of the outer solution into the cut gel and characterizing the width and strength of the interface between the initial and new gels, we identify the optimum parameters that yield a strong interface between the gel layers. Our simulations results are in good agreement with our experimental studies. This strategy not only regenerates ``injured'' gels, but also offers a novel means to engineer multi-layered composite gels.

  6. Comparative fluorescence two-dimensional gel electrophoresis using a gel strip sandwich assembly for the simultaneous on-gel generation of a reference protein spot grid.

    PubMed

    Ackermann, Doreen; Wang, Weiqun; Streipert, Benjamin; Geib, Birgit; Grün, Lothar; König, Simone

    2012-05-01

    The comparison of proteins separated on 2DE is difficult due to gel-to-gel variability. Here, a method named comparative fluorescence gel electrophoresis (CoFGE) is presented, which allows the generation of an artificial protein grid in parallel to the separation of an analytical sample on the same gel. Different fluorescent stains are used to distinguish sample and marker on the gel. The technology combines elements of 1DE and 2DE. Special gel combs with V-shaped wells are placed in a stacking gel above the pI strip. Proteins separated on the pI strip are electrophoresed at the same time as marker proteins (commercially available purified protein of different molecular weight) placed in V-wells. In that way, grids providing approximately 100 nodes as landmarks for th