Science.gov

Sample records for activity global surface

  1. Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry

    DOE PAGES

    Ogunro, Oluwaseun O.; Burrows, Susannah M.; Elliott, Scott; Frossard, Amanda A.; Hoffman, Forrest M.; Letscher, Robert T.; Moore, J. Keith; Russell, Lynn M.; Wang, Shanlin; Wingenter, Oliver W.

    2015-10-13

    Here, organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed formore » labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.« less

  2. Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry

    SciTech Connect

    Ogunro, Oluwaseun O.; Burrows, Susannah M.; Elliott, Scott; Frossard, Amanda A.; Hoffman, Forrest M.; Letscher, Robert T.; Moore, J. Keith; Russell, Lynn M.; Wang, Shanlin; Wingenter, Oliver W.

    2015-10-13

    Here, organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed for labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.

  3. Brain MR image segmentation using local and global intensity fitting active contours/surfaces.

    PubMed

    Wang, Li; Li, Chunming; Sun, Quansen; Xia, Deshen; Kao, Chiu-Yen

    2008-01-01

    In this paper, we present an improved region-based active contour/surface model for 2D/3D brain MR image segmentation. Our model combines the advantages of both local and global intensity information, which enable the model to cope with intensity inhomogeneity. We define an energy functional with a local intensity fitting term and an auxiliary global intensity fitting term. In the associated curve evolution, the motion of the contour is driven by a local intensity fitting force and a global intensity fitting force, induced by the local and global terms in the proposed energy functional, respectively. The influence of these two forces on the curve evolution is complementary. When the contour is close to object boundaries, the local intensity fitting force became dominant, which attracts the contour toward object boundaries and finally stops the contour there. The global intensity fitting force is dominant when the contour is far away from object boundaries, and it allows more flexible initialization of contours by using global image information. The proposed model has been applied to both 2D and 3D brain MR image segmentation with promising results.

  4. What Fraction of Global Fire Activity Can Be Forecast Using Sea Surface Temperatures?

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Randerson, J. T.; Morton, D. C.; Andela, N.; Giglio, L.

    2015-12-01

    Variations in sea surface temperatures (SSTs) can influence climate dynamics in local and remote land areas, and thus influence fire-climate interactions that govern burned area. SST information has been recently used in statistical models to create seasonal outlooks of fire season severity in South America and as the initial condition for dynamical model predictions of fire activity in Indonesia. However, the degree to which large-scale ocean-atmosphere interactions can influence burned area in other continental regions has not been systematically explored. Here we quantified the amount of global burned area that can be predicted using SSTs in 14 different oceans regions as statistical predictors. We first examined lagged correlations between GFED4s burned area and the 14 ocean climate indices (OCIs) individually. The maximum correlations from different OCIs were used to construct a global map of fire predictability. About half of the global burned area can be forecast by this approach 3 months before the peak burning month (with a Pearson's r of 0.5 or higher), with the highest levels of predictability in Central America and Equatorial Asia. Several hotspots of predictability were identified using k-means cluster analysis. Within these regions, we tested the improvements of the forecast by using two OCIs from different oceans. Our forecast models were based on near-real-time SST data and may therefore support the development of new seasonal outlooks for fire activity that can aid the sustainable management of these fire-prone ecosystems.

  5. Diagnostics of a cause-effect relation between solar activity and the Earth's global surface temperature

    NASA Astrophysics Data System (ADS)

    Mokhov, I. I.; Smirnov, D. A.

    2008-06-01

    The influence of solar activity on the Earth’s global surface temperature (GST) was quantified. The method for estimation of the Granger causality was used, with analysis of the improvement of the prediction of one process by using data from another process as compared to autoprediction. Two versions of reconstructions of the solar flux variations associated with solar activity were used, according to Hoyt et al. [1997] for 1680 1992 (data H) and according to Lean et al. [2005] for 1610 2005 (data L). In general, the estimation results for the two reconstructions are reasonably well consistent. A significant influence of solar activity on GST with a positive sign was found for two periods, from the late 19th century to the late 1930s and from the latter half of the 1940s to the early 1990s, with no inertia or time delay. In these periods, up to 8 and 25% of the variance of the GST change, respectively, can be attributed to solar activity variations. The solar influence increased in the 1980s to the early 1990s according to data H and began to decrease in the latter half of the 1980s according to data L.

  6. Global Surface Temperature Change

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Ruedy, R.; Sato, M.; Lo, K.

    2010-12-01

    We update the Goddard Institute for Space Studies (GISS) analysis of global surface temperature change, compare alternative analyses, and address questions about perception and reality of global warming. Satellite-observed night lights are used to identify measurement stations located in extreme darkness and adjust temperature trends of urban and periurban stations for nonclimatic factors, verifying that urban effects on analyzed global change are small. Because the GISS analysis combines available sea surface temperature records with meteorological station measurements, we test alternative choices for the ocean data, showing that global temperature change is sensitive to estimated temperature change in polar regions where observations are limited. We use simple 12 month (and n × 12) running means to improve the information content in our temperature graphs. Contrary to a popular misconception, the rate of warming has not declined. Global temperature is rising as fast in the past decade as in the prior 2 decades, despite year-to-year fluctuations associated with the El Niño-La Niña cycle of tropical ocean temperature. Record high global 12 month running mean temperature for the period with instrumental data was reached in 2010.

  7. AQUARIUS: A Passive/Active Microwave Sensor to Monitor Sea Surface Salinity Globally from Space

    NASA Technical Reports Server (NTRS)

    LeVine, David; Lagerloef, Gary S. E.; Colomb, F. Raul; Chao, Yi

    2004-01-01

    Salinity is important for understanding ocean dynamics, energy exchange with the atmosphere and the global water cycle. Existing data is limited and much of the ocean has never even been sampled. Sea surface salinity can be measured remotely by satellite and a three year mission for this purpose called AquariudSAC-D has recently been selected by NASA's Earth System Science Pathfinder (ESSP) program. The objective is to map the salinity field globally with a spatial resolution of 100 km and a monthly average accuracy of 0.2 psu. The mission, scheduled for launch in 2008, is a partnership of the United States National Aeronautics and Space Agency (NASA) and the Argentine Comision National de Actividades Epaciales (CONAE).

  8. Global suppression of mitogen-activated ovine peripheral blood mononuclear cells by surface protein activity from Mycoplasma ovipneumoniae.

    PubMed

    Shahzad, W; Ajuwape, Adebowale Titilayo Phillip; Rosenbusch, Ricardo Francisco

    2010-07-01

    Mycoplasma ovipneumoniae is associated with chronic non-progressive pneumonia of sheep and goats. As with many other mycoplasmas involved in animal diseases, protective immune responses have not been achieved with vaccines, even though antibody responses can be obtained. This study focuses on characterizing the interaction of M. ovipneumoniae with ovine PBMC using carboxy-fluorescein-succinimidyl-ester (CFSE) loading and flow cytometry to measure lymphoid cell division. M. ovipneumoniae induced a strong in vitro polyclonal suppression of CD4(+), CD8(+), and B blood lymphocyte subsets. The suppressive activity could be destroyed by heating to 60 degrees C, and partially impaired by formalin and binary ethyleneimine treatment that abolished its viability. The activity resided on the surface-exposed membrane protein fraction of the mycoplasma, since mild trypsin treatment not affecting viability was shown to reduce suppressive activity. Trypsin-treated mycoplasma regained suppressive activity once the mycoplasma was allowed to re-synthesize its surface proteins. Implications for the design of vaccines against M. ovipneumoniae are discussed.

  9. Venus: global surface radar reflectivity.

    PubMed

    Pettengill, G H; Ford, P G; Nozette, S

    1982-08-13

    Observations of the surface of Venus, carried out by the Pioneer Venus radar mapper at a wavelength of 17 centimeters, reveal a global mean reflectivity at normal incidence of 0.13 +/- 0.03. Over the surface, variations from a low of 0.03 +/- 0.01 to a high of 0.4 +/- 0.1 are found, with Theia Mons, previously identified as possibly volcanic, showing a value of 0.28 +/- 0.07. Regions of high reflectivity may consist of rocks with substantial inclusions of highly conductive sulfides. PMID:17817535

  10. Global surface temperatures and the atmospheric electrical circuit

    NASA Technical Reports Server (NTRS)

    Price, Colin

    1993-01-01

    To monitor future global temperature trends, it would be extremely useful if parameters nonlinearly related to surface temperature could be found, thereby amplifying any warming signal that may exist. Evidence that global thunderstorm activity is nonlinearly related to diurnal, seasonal and interannual temperature variations is presented. Since global thunderstorm activity is also well correlated with the earth's ionospheric potential, it appears that variations of ionospheric potential, that can be measured at a single location, may be able to supply valuable information regarding global surface temperature fluctuations. The observations presented enable a prediction that a 1 percent increase in global surface temperatures may result in a 20 percent increase in ionospheric potential.

  11. MODIS Global Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Every day the Moderate-resolution Imaging Spectroradiometer (MODIS) measures sea surface temperature over the entire globe with high accuracy. This false-color image shows a one-month composite for May 2001. Red and yellow indicates warmer temperatures, green is an intermediate value, while blues and then purples are progressively colder values. The new MODIS sea surface temperature product will be particularly useful in studies of temperature anomalies, such as El Nino, as well as research into how air-sea interactions drive changes in weather and climate patterns. In the high resolution image, notice the amazing detail in some of the regional current patterns. For instance, notice the cold water currents that move from Antarctica northward along South America's west coast. These cold, deep waters upwell along an equatorial swath around and to the west of the Galapagos Islands. Note the warm, wide currents of the Gulf Stream moving up the United States' east coast, carrying Caribbean warmth toward Newfoundland and across the Atlantic toward Western Europe. Note the warm tongue of water extending from Africa's east coast to well south of the Cape of Good Hope. MODIS was launched in December 1999 aboard NASA's Terra satellite. For more details on this and other MODIS data products, please see NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Ocean Group, NASA GSFC, and the University of Miami

  12. Venus - Global surface radio emissivity

    NASA Technical Reports Server (NTRS)

    Ford, P. G.; Pettengill, G. H.

    1983-01-01

    Observations of thermal radio emission from the surface of Venus, made by the Pioneer Venus radar mapper at a wavelength of 17 cm, show variations that are dominated by changes in surface emissivity. The regions of lowest emissivity (0.54 + or - 0.05 for the highland areas of Aphrodite Terra and Theia Mons) correspond closely to regions of high radar reflectivity reported earlier. These results support the inference of inclusions of material with high electrical conductivity in the surface rock of these areas.

  13. Joint variability of global runoff and global sea surface temperatures

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    2008-01-01

    Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.

  14. Global lightning activity and climate change

    SciTech Connect

    Price, C.G.

    1993-12-31

    The relationship between global lightning frequencies and global climate change is examined in this thesis. In order to study global impacts of climate change, global climate models or General Circulations Models (GCMs) need to be utilized. Since these models have coarse resolutions many atmospheric phenomena that occur at subgrid scales, such as lightning, need to be parameterized whenever possible. We begin with a simple parameterization used to Simulate total (intracloud and cloud-to-ground) lightning frequencies. The parameterization uses convective cloud top height to approximate lightning frequencies. Then we consider a parameterization for simulating cloud-to-ground (CG) lightning around the globe. This parameterization uses the thickness of the cold cloud sector in thunderstorms (0{degrees}C to cloud top) to calculate the proportion of CG flashes in a particular thunderstorm. We model lightning in the Goddard Institute for Space Studies (GISS) GCM. We present two climate change scenarios. One for a climate where the solar constant is reduced by 2% (5.9{degrees}C global cooling), and one for a climate with twice the present concentration of CO{sub 2} in the atmosphere (4.2{degrees}C global warming). The results imply a 24%/30% decrease/increase in global lightning frequencies for the cooler/warmer climate. The possibility of using the above findings to monitor future global warming is discussed. The earth`s ionospheric potential, which is regulated by global thunderstorm activity, could supply valuable information regarding global surface temperature fluctuations. Finally, we look at the implications of changes in both lightning frequencies and the hydrological cycle, as a result of global warming, on natural forest fires. In the U.S. the annual mean number of lightning fires could increase by 40% while the area burned may increase by 65% in a 2{times}CO{sub 2} climate. On a global scale the largest increase in lightning fires can be expected in the tropics.

  15. Global modelling of Cryptosporidium in surface water

    NASA Astrophysics Data System (ADS)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  16. Global cloud climatology from surface observations

    SciTech Connect

    Warren, S.

    1995-09-01

    Surface weather observations from stations on land and ships in the ocean are used to obtain the global distribution, at 5{sup o}x5{sup o} latitude-longitude resolution, of total cloud cover and the average amounts of the different cloud types: cumulus, cumulonimbus, stratus, stratocumulus, nimbostratus, altostratus, altocumulus, cirrus, cirrostratus, cirrocumulus, and fog. Diurnal and seasonal variations are derived, as well as interannual variations and multi-year trends. 3 refs., 3 figs.

  17. Global patterns in lake surface temperature trends

    NASA Astrophysics Data System (ADS)

    O'Reilly, C.; Sharma, S.; Gray, D.; Hampton, S. E.; Read, J. S.; Rowley, R.; McIntyre, P. B.; Lenters, J. D.; Schneider, P.; Hook, S. J.

    2014-12-01

    Temperature profoundly affects dynamics in the water bodieson which human societies depend worldwide. Even relatively small water temperature changes can alter lake thermal structure with implications for water level, nutrient cycling, ecosystem productivity, and food web dynamics. As air temperature increases with climate change and human land use transforms watersheds, rising water temperatures have been reported for individual lakes or regions, but a global synthesis is lacking; such a synthesis is foundational for understanding the state of freshwater resources. We investigated global patterns in lake surface water temperatures between 1985 and 2009 using in-situ and satellite data from 236 lakes. We demonstrate that lakes are warming significantly around the globe, at an average rate of 0.34 °C per decade. The breadth of lakes in this study allowed examination of the diversity of drivers across global lakes, and highlighted the importance of ice cover in determining the suite of morphological and climate drivers for lake temperature dynamics. These empirical results are consistent with modeled predictions of climate change, taking into account the extent to which water warming can be modulated by local environmental conditions and thus defy simple correlations with air temperature. The water temperature changes we report have fundamental importance for thermal structure and ecosystem functioning in global water resources; recognition of the extent to which lakes are currently in transition should have broad implications for regional and global models as well as for management.

  18. Global thunderstorm activity research survey

    NASA Technical Reports Server (NTRS)

    Coroniti, S. C.

    1982-01-01

    The published literature on the subject of the monitoring of global thunderstorm activity by instrumented satellites was reviewed. A survey of the properties of selected physical parameters of the thunderstorm is presented. The concepts used by satellites to identify and to measure terrestrial lightning pulses are described. The experimental data acquired by satellites are discussed. The scientific achievements of the satellites are evaluated against the needs of scientists and the potential requirements of user agencies. The performances of the satellites are rated according to their scientific and operational achievements.

  19. Global modeling of fresh surface water temperature

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Eikelboom, T.; van Vliet, M. T.; Van Beek, L. P.

    2011-12-01

    Temperature determines a range of water physical properties, the solubility of oxygen and other gases and acts as a strong control on fresh water biogeochemistry, influencing chemical reaction rates, phytoplankton and zooplankton composition and the presence or absence of pathogens. Thus, in freshwater ecosystems the thermal regime affects the geographical distribution of aquatic species through their growth and metabolism, tolerance to parasites, diseases and pollution and life history. Compared to statistical approaches, physically-based models of surface water temperature have the advantage that they are robust in light of changes in flow regime, river morphology, radiation balance and upstream hydrology. Such models are therefore better suited for projecting the effects of global change on water temperature. Till now, physically-based models have only been applied to well-defined fresh water bodies of limited size (e.g., lakes or stream segments), where the numerous parameters can be measured or otherwise established, whereas attempts to model water temperature over larger scales has thus far been limited to regression type of models. Here, we present a first attempt to apply a physically-based model of global fresh surface water temperature. The model adds a surface water energy balance to river discharge modelled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by short and long-wave radiation and sensible and latent heat fluxes. Also included are ice-formation and its effect on heat storage and river hydraulics. We used the coupled surface water and energy balance model to simulate global fresh surface water temperature at daily time steps on a 0.5x0.5 degree grid for the period 1970-2000. Meteorological forcing was obtained from the CRU data set, downscaled to daily values with ECMWF

  20. Active frequency selective surfaces

    NASA Astrophysics Data System (ADS)

    Buchwald, Walter R.; Hendrickson, Joshua; Cleary, Justin W.; Guo, Junpeng

    2013-05-01

    Split ring resonator arrays are investigated for use as active elements for the realization of voltage controllable frequency selective surfaces. Finite difference time domain simulations suggest the absorptive and reflective properties of such surfaces can be externally controlled through modifications of the split ring resonator gap impedance. In this work, such voltage-controlled resonance tuning is obtained through the addition of an appropriately designed high electron mobility transistor positioned across the split ring resonator gap. It is shown that a 0.5μm gate length high electron mobility transistor allows voltage controllable switching between the two resonant conditions associated with a split ring resonator and that of a closed loop geometry when the surface is illuminated with THz radiation. Partial switching between these two resonant conditions is observed at larger gate lengths. Such active frequency selective surfaces are proposed, for example, for use as modulators in THz detection schemes and as RF filters in radar applications when scaled to operate at GHz frequencies.

  1. A global monthly sea surface temperature climatology

    SciTech Connect

    Shea, D.J.; Trenberth, K.E.; Reynolds, R.W. NOAA, Climate Analysis Center, Washington, DC )

    1992-09-01

    The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S. 22 refs.

  2. Global Surface Temperatures of the Moon

    NASA Astrophysics Data System (ADS)

    Williams, J. P.; Paige, D. A.; Greenhagen, B. T.; Sefton-Nash, E.

    2015-12-01

    The Diviner instrument aboard the Lunar Reconnaissance Orbiter (LRO) is providing the most comprehensive view of how regoliths on airless body store and exchange thermal energy with the space environment. Approximately a quarter trillion calibrated radiance measurements of the Moon, acquired over 5.5 years by Diviner, have been compiled into a 0.5° resolution global dataset with a 0.25 hour local time resolution. Maps generated with this dataset provide a global perspective of the surface energy balance of the Moon and reveal the complex and extreme nature of the lunar surface thermal environment. Daytime maximum temperatures are sensitive to the radiative properties of the surface and are ~387-397 K at the equator, dropping to ~95 K before sunrise. Asymmetry between the morning and afternoon temperatures is observed due to the thermal inertia of the regolith with the dusk terminator ~30 K warmer than the dawn terminator at the equator. An increase in albedo with incidence angle is required to explain the observed temperatures with latitude. At incidence angles >40° topography and surface roughness result in increasing anisothermality between spectral passbands and scatter in temperatures. Minimum temperatures reflect variations in thermophysical properties (Figure). Impact craters are found to modify regolith properties over large distances. The thermal signature of Tycho is asymmetric consistent with an oblique impact coming from the west. Some prominent crater rays are visible in the thermal data and require material with a higher thermal inertial than nominal regolith. The influence of the formation of the Orientale basin on the regolith properties is observable over a substantial portion of the western hemisphere despite its age (~3.8 Gyr), and may have contributed to mixing of highland and mare material on the southwest margin of Oceanus Procellarum where the gradient in radiative properties at the mare-highland contact are observed to be broad (~200 km).

  3. Global surface wave tomography using seismic hum.

    PubMed

    Nishida, Kiwamu; Montagner, Jean-Paul; Kawakatsu, Hitoshi

    2009-10-01

    The development of global surface wave tomography using earthquakes has been crucial to exploration of the dynamic status of Earth's deep. It is naturally believed that only large earthquakes can generate long-period seismic waves that penetrate deep enough into Earth for such exploration. The discovery of seismic hum, Earth's background free oscillations, which are randomly generated by oceanic and/or atmospheric disturbances, now provides an alternative approach. We present results of global upper-mantle seismic tomography using seismic hum and without referring to earthquakes. At periods of 100 to 400 seconds, the phase-velocity anomalies of Rayleigh waves are measured by modeling the observed cross-correlation functions between every pair of stations from among 54 globally distributed seismic stations. The anomalies are then inverted to obtain the three-dimensional S-wave velocity structure in the upper mantle. Our technique provides a new means for exploring the three-dimensional structure of the interior of terrestrial planets with an atmosphere and/or oceans, particularly Mars. PMID:19797654

  4. Global surface wave tomography using seismic hum.

    PubMed

    Nishida, Kiwamu; Montagner, Jean-Paul; Kawakatsu, Hitoshi

    2009-10-01

    The development of global surface wave tomography using earthquakes has been crucial to exploration of the dynamic status of Earth's deep. It is naturally believed that only large earthquakes can generate long-period seismic waves that penetrate deep enough into Earth for such exploration. The discovery of seismic hum, Earth's background free oscillations, which are randomly generated by oceanic and/or atmospheric disturbances, now provides an alternative approach. We present results of global upper-mantle seismic tomography using seismic hum and without referring to earthquakes. At periods of 100 to 400 seconds, the phase-velocity anomalies of Rayleigh waves are measured by modeling the observed cross-correlation functions between every pair of stations from among 54 globally distributed seismic stations. The anomalies are then inverted to obtain the three-dimensional S-wave velocity structure in the upper mantle. Our technique provides a new means for exploring the three-dimensional structure of the interior of terrestrial planets with an atmosphere and/or oceans, particularly Mars.

  5. Estimates of the global electric circuit from global thunderstorm activity

    NASA Astrophysics Data System (ADS)

    Hutchins, M. L.; Holzworth, R. H.; Brundell, J. B.

    2013-12-01

    The World Wide Lightning Location Network (WWLLN) has a global detection efficiency around 10%, however the network has been shown to identify 99% of thunderstorms (Jacobson, et al 2006, using WWLLN data from 2005). To create an estimate of the global electric circuit activity a clustering algorithm is applied to the WWLLN dataset to identify global thunderstorms from 2009 - 2013. The annual, seasonal, and regional thunderstorm activity is investigated with this new WWLLN thunderstorm dataset in order to examine the source behavior of the global electric circuit. From the clustering algorithm the total number of active thunderstorms is found every 30 minutes to create a measure of the global electric circuit source function. The clustering algorithm used is shown to be robust over parameter ranges related to real physical storm sizes and times. The thunderstorm groupings are verified with case study comparisons using satellite and radar data. It is found that there are on average 714 × 81 thunderstorms active at any given time. Similarly the highest average number of thunderstorms occurs in July (783 × 69) with the lowest in January (599 × 76). The annual and diurnal thunderstorm activity seen with the WWLLN thunderstorms is in contrast with the bimodal stroke activity seen by WWLLN. Through utilizing the global coverage and high time resolution of WWLLN, it is shown that the total active thunderstorm count is less than previous estimates based on compiled climatologies.

  6. Global mean sea surface based upon SEASAT altimeter data

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.

    1984-01-01

    A global mean sea surface based upon the SEASAT altimeter data was derived. A combination of crossing arc techniques, accurate SEASAT reference orbits, and a previously computed GOES-3/SEASAT mean sea surface were used in the computation process. This mean sea surface provides a basis for the determination of global ocean circulation patterns and for detailed analysis of the Earth's internal structure. A contour map of the global mean sea surface is presented.

  7. First global WCRP shortwave surface radiation budget dataset

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Ohmura, A.; Gilgen, H.; Konzelman, T.; DiPasquale, R. C.; Moats, C. D.

    1995-01-01

    Shortwave radiative fluxes that reach the Earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and rms values are around 25 W/sq m. There are specific regions with much larger uncertainties however.

  8. First global WCRP shortwave surface radiation budget dataset

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Ohmura, A.; Gilgen, H.; Konzelman, T.; Dipasquale, R. C.; Moats, C. D.

    1995-01-01

    Shortwave radiative fluxes that reach the earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and root mean square (rms) values are around 25 W/sq m. There are specific regions with much larger uncertainties however.

  9. Active Volcanism on Io: Global Distribution and Variations in Activity

    USGS Publications Warehouse

    Lopes-Gautier, R.; McEwen, A.S.; Smythe, W.B.; Geissler, P.E.; Kamp, L.; Davies, A.G.; Spencer, J.R.; Keszthelyi, L.; Carlson, R.; Leader, F.E.; Mehlman, R.; Soderblom, L.

    1999-01-01

    Io's volcanic activity has been monitored by instruments aboard the Galileo spacecraft since June 28, 1996. We present results from observations by the near-infrared mapping spectrometer (NIMS) for the first 10 orbits of Galileo, correlate them with results from the Solid State Imaging System (SSI) and from groundbased observations, and compare them to what was known about Io's volcanic activity from observations made during the two Voyager flybys in 1979. A total of 61 active volcanic centers have been identified from Voyager, groundbased, and Galileo observations. Of these, 41 are hot spots detected by NIMS and/or SSI. Another 25 locations were identified as possible active volcanic centers, mostly on the basis of observed surface changes. Hot spots are correlated with surface colors, particularly dark and red deposits, and generally anti-correlated with white, SO2-rich areas. Surface features corresponding to the hot spots, mostly calderas or flows, were identified from Galileo and Voyager images. Hot spot temperatures obtained from both NIMS and SSI are consistent with silicate volcanism, which appears to be widespread on Io. Two types of hot spot activity are present: persistent-type activity, lasting from months to years, and sporadic events, which may represent either short-lived activity or low-level activity that occasionally flares up. Sporadic events are not often detected, but may make an important contribution to Io's heat flow and resurfacing. The distribution of active volcanic centers on the surface does not show any clear correlation with latitude, longitude, Voyager-derived global topography, or heat flow patterns predicted by the asthenosphere and deep mantle tidal dissipation models. However, persistent hot spots and active plumes are concentrated toward lower latitudes, and this distribution favors the asthenosphere rather than the deep mantle tidal dissipation model. ?? 1999 Academic Press.

  10. Monitoring Global Monthly Mean Surface Temperatures.

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Christy, John R.; Hurrell, James W.

    1992-12-01

    An assessment is made of how well the monthly mean surface temperatures for the decade of the 1980s are known. The sources of noise in the data, the numbers of observations, and the spatial coverage are appraised for comparison with the climate signal, and different analyzed results are compared to see how reproducible they are. The data are further evaluated by comparing anomalies of near-global monthly mean surface temperatures with those of global satellite channel 2 microwave sounding unit (MSU) temperatures for 144 months from 1979 to 1990. Very distinctive patterns are seen in the correlation coefficients, which range from high (>0.8) over the extratropical continents of the Northern Hemisphere, to moderate (0,5) over tropical and subtropical land areas, to very low over the southern oceans and tropical western Pacific. The physical difference between the two temperature measurements is one factor in these patterns. The correlation coefficient is a measure of the signal-to-noise ratio, and largest values are found where the climate signal is largest, but the spatial variation in the inherent noise in the surface observations over the oceans is the other major factor in accounting for the pattern.Over the oceans, sea surface temperatures (SSTS) are used in the surface dataset in place of surface air temperature and the Comprehensive Ocean-Atmosphere Data Set (COADS) has been used to show that 80% of the monthly mean air temperature variance is accounted for in regions of good data coverage. A detailed analysis of the sources of errors in in situ SSTs and an overall estimate of the noise are obtained from the COADS by assessing the variability within 2° longitude by 2° latitude boxes within each month for 1979. In regions of small spatial gradient of mean SST, individual SST measurements are representative of the monthly mean in a 2° box to within a standard error of 1.0°C in the tropics and 1.2° to 1.4°C in the extratropics. The standard error is larger

  11. Modern average global sea-surface temperature

    USGS Publications Warehouse

    Schweitzer, Peter N.

    1993-01-01

    The data contained in this data set are derived from the NOAA Advanced Very High Resolution Radiometer Multichannel Sea Surface Temperature data (AVHRR MCSST), which are obtainable from the Distributed Active Archive Center at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif. The JPL tapes contain weekly images of SST from October 1981 through December 1990 in nine regions of the world ocean: North Atlantic, Eastern North Atlantic, South Atlantic, Agulhas, Indian, Southeast Pacific, Southwest Pacific, Northeast Pacific, and Northwest Pacific. This data set represents the results of calculations carried out on the NOAA data and also contains the source code of the programs that made the calculations. The objective was to derive the average sea-surface temperature of each month and week throughout the whole 10-year series, meaning, for example, that data from January of each year would be averaged together. The result is 12 monthly and 52 weekly images for each of the oceanic regions. Averaging the images in this way tends to reduce the number of grid cells that lack valid data and to suppress interannual variability.

  12. Liquid Water on the Surface of Mars Today: Present Gully Activity Observed by the Mars Reconnaissance Orbiter (MRO) and Mars Global Surveyor (MGS) and Direction for Future Missions

    NASA Astrophysics Data System (ADS)

    Harrison, T. N.; Malin, M. C.; Edgett, K. S.

    2009-12-01

    Eight new flows in martian mid-latitude gullies have been found using the MRO Context Camera and MGS Mars Orbiter Camera. Each formed during 1999-2009. Using MRO HiRISE images, we find that the morphology and inferred emplacement behavior of these features is consistent with those of debris flows fluidized by a liquid medium and not by dry, granular flows. Evidence comes from the patterns of flow around obstacles, ponding in and subsequent overtopping of topographic depressions, and super-elevation of deposits on channel banks where the channels change direction, attributes consistent with a liquid but not with fluid-like granular flow. Additional evidence includes anastomoses in distal reaches and lobate terminations. Of the 8 flows, 3 have formation dates constrained to within a single Mars year (although not the same year); these 3 formed during autumn to early spring, demonstrating that summer warming is not participating in creating the liquid (i.e., that would melt snow or ice). The new gully deposits indicate that some gullies are currently active, suggesting that Mars has liquid water today and it occasionally appears on the planet’s surface. NASA’s Mars Exploration Program has focused on the “follow the water” theme and is now shifting toward “habitability” and life detection. Places where liquid water comes to the Martian surface today warrant detailed investigation. Martian astrobiology involves the search for evidence of extinct and extant life. Discovery of ancient sedimentary rocks shifted emphasis from the Viking-era pursuit of present-day microbial life to MSL’s focus on habitable environments. Recent descriptions of contemporary methane production have renewed interest in searching for extant life. Missions to locations of potential present day life, whether indicated by methane or liquid water, must deal with the associated planetary protection issues (they are “special regions”). More information about such locations is critical

  13. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    PubMed

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  14. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming

    PubMed Central

    Lin, Yong; Franzke, Christian L. E.

    2015-01-01

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary. PMID:26259555

  15. Magellan's global view of the Venusian surface

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Phillips, R. J.; Izenberg, N.

    1992-03-01

    Observations of the Venusian surface from mapping cycles 1 and 2 of the Magellan mission are summarized. The observations have revealed a planet with a wide variety of volcanic and tectonic landforms. The average surface age is 500 million years, but the total span of ages may range from near 0 to 1 billion years. There is good evidence that tectonism and volcanism are ongoing. The surface has been modified by weathering, wind erosion, and deposition but only to meters in depth, preserving an excellent record of tectonic and volcanic processes. Plans for the next mapping cycles are discussed.

  16. A global optimization algorithm for protein surface alignment

    PubMed Central

    2010-01-01

    Background A relevant problem in drug design is the comparison and recognition of protein binding sites. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved. Results In this paper we propose a new method for local structural alignment of protein surfaces based on continuous global optimization techniques. Given the three-dimensional structures of two proteins, the method finds the isometric transformation (rotation plus translation) that best superimposes active regions of two structures. We draw our inspiration from the well-known Iterative Closest Point (ICP) method for three-dimensional (3D) shapes registration. Our main contribution is in the adoption of a controlled random search as a more efficient global optimization approach along with a new dissimilarity measure. The reported computational experience and comparison show viability of the proposed approach. Conclusions Our method performs well to detect similarity in binding sites when this in fact exists. In the future we plan to do a more comprehensive evaluation of the method by considering large datasets of non-redundant proteins and applying a clustering technique to the results of all comparisons to classify binding sites. PMID:20920230

  17. Europa's Active Surface

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A newly discovered impact crater can be seen just right of the center of this image of Jupiter's moon Europa returned by NASA's Galileo spacecraft camera. The crater is about 30 kilometers (18.5 miles) in diameter. The impact excavated into Europa's icy crust, throwing debris (seen as whitish material) across the surrounding terrain. Also visible is a dark band, named Belus Linea, extending east-west across the image. This type of feature, which scientists call a 'triple band,' is characterized by a bright stripe down the middle. The outer margins of this and other triple bands are diffuse, suggesting that the dark material was put there as a result of possible geyser-like activity which shot gas and rocky debris from Europa's interior. The curving 'X' pattern seen in the lower left corner of the image appears to represent fracturing of the icy crust and infilling by slush which froze in place. The crater is centered at about 2 degrees north latitude by 239 degrees west longitude. The image was taken from a distance of 156,000 kilometers (about 96,300 miles) on June 27, 1996, during Galileo's first orbit around Jupiter. The area shown is 860 by 700 kilometers (530 by 430 miles), or about the size of Oregon and Washington combined. The Galileo mission is managed by NASA's Jet Propulsion Laboratory.

  18. An Analysis of Solar Global Activity

    NASA Astrophysics Data System (ADS)

    Mouradian, Zadig

    2013-02-01

    This article proposes a unified observational model of solar activity based on sunspot number and the solar global activity in the rotation of the structures, both per 11-year cycle. The rotation rates show a variation of a half-century period and the same period is also associated to the sunspot amplitude variation. The global solar rotation interweaves with the observed global organisation of solar activity. An important role for this assembly is played by the Grand Cycle formed by the merging of five sunspot cycles: a forgotten discovery by R. Wolf. On the basis of these elements, the nature of the Dalton Minimum, the Maunder Minimum, the Gleissberg Cycle, and the Grand Minima are presented.

  19. Vesta surface mineralogy: Global and regional properties

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. C.; Coradini, A.; Ammannito, E.; Capria, M. T.; Capaccioni, F.; Filacchione, G.; Magni, G.; Marchi, S.; Palomba, E.; Tosi, F.; Turrini, D.; Blewett, D. T.; Combe, J.; McCord, T. B.; McSween, H. Y.; Mittlefehldt, D. W.; Le Corre, L.; Li, J.; Nathues, A.; Pieters, C. M.; Reddy, V.; Sunshine, J. M.; Toplis, M. J.; Raymond, C. A.; Russell, C. T.

    2011-12-01

    The Dawn spacecraft is mapping Vesta's surface composition with VIR, the visible and infrared mapping spectrometer devoted to the study of the mineralogy and thermophysical properties of Vesta. The instrument performs imaging spectroscopy in the range from the near-UV through the IR (0.25-5 μm) and has high spectral resolution combined with imaging capabilities. One of the main goals of Dawn is to determine the mineralogical composition of the surface and to place it in a geological context. Vesta's surface composition is characterized by highly diagnostic spectral features in the visual and infrared range covered by VIR. Moreover, the imaging capability of the instrument allows to map regional and local mineralogical units. VIR's imaging quality allows to resolve surface details at scales of less than 1 km from the higher orbit (Survey) and down to 100 m from the lower orbit (Low Altitude Mapping Orbit), in 864 spectral bands. Pyroxene compositions comparable to HED meteorites are readily identified and a search for olivine presence, and possibly abundance, is underway. Vesta's colors reveal a strong contrast among units, more than previously seen on other asteroids. The diversity and distribution of spectral variations will allow us to understand the crust composition and to infer the evolution of the materials exposed on the asteroid's surface providing new insights into formation of the solar system's primordial bodies. VIR data will constrain the processes affecting materials exposed on the asteroid's surface through the spectral identification of alteration products. Dawn's VIR, Visible and Infrared Mapping Spectrometer is provided by ASI, the Italian Space Agency and is managed by INAF, Italy's National Institute for Astrophysics, in collaboration with Selex Galileo, where it was designed and built. This research is supported by an ASI (Italian Space Agency) grant.

  20. Global scale hydrology - Advances in land surface modeling

    SciTech Connect

    Wood, E.F. )

    1991-01-01

    Research into global scale hydrology is an expanding area that includes researchers from the meteorology, climatology, ecology and hydrology communities. This paper reviews research in this area carried out in the United States during the last IUGG quadrennial period of 1987-1990. The review covers the representation of land-surface hydrologic processes for general circulation models (GCMs), sensitivity analysis of these representations on global hydrologic fields like precipitation, regional studies of climate that have global hydrologic implications, recent field studies and experiments whose aims are the improved understanding of land surface-atmospheric interactions, and the use of remotely sensed data for the further understanding of the spatial variability of surface hydrologic processes that are important at regional and global climate scales. 76 refs.

  1. Global, long-term surface reflectance records from Landsat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global, long-term monitoring of changes in Earth’s land surface requires quantitative comparisons of satellite images acquired under widely varying atmospheric conditions. Although physically based estimates of surface reflectance (SR) ultimately provide the most accurate representation of Earth’s s...

  2. Global lightning activity and climate change. Ph.D. Thesis

    SciTech Connect

    Price, C.G.

    1993-01-01

    The relationship between global lightning frequencies and global climate change is examined in this thesis. In order to study global impacts of climate change, global climate models or General Circulations Models (GCM`s) need to be utilized. Since these models have coarse resolutions many atmospheric phenomena that occur at subgrid scales, such as lightning, need to be parameterized whenever possible. The first chapter introduces a simple parameterization used to simulate total (intracloud and cloud-to-ground) lightning frequencies. The parameterization uses convective cloud top height to approximate lightning frequencies. The second chapter deals with a parameterization for simulating cloud-to-ground (CG) lightning around the globe. This parameterization uses the thickness of the cold cloud sector in thunderstorms (0 C to cloud top) to calculate the proportion of CG flashes in a particular thunderstorm. The third chapter deals with the modelling of lightning in the Goddard Institute for Space Studies (GISS) GCM. This chapter presents results from the model`s control run. The fourth chapter presents two climate change scenarios. One for a climate where the solar constant is reduced by 2% (5.9 C global cooling), and one for a climate with twice the present concentration of CO2 in the atmosphere (4.2 C global warming). The results imply a 24% / 30% decrease/increase in global lightning frequencies for the cooler/warmer climate. The fifth chapter considers the possibility of using the above findings to monitor future global warming. The results show that the earth`s ionospheric potential, which is regulated by global thunderstorm activity, could possibly supply valuable information regarding global surface temperature fluctuations. The sixth and final chapter looks at the implications of changes in both lightning frequencies and the hydrological cycle, as a result of global warming, on natural forest fires.

  3. Space activities and global popular music culture

    NASA Astrophysics Data System (ADS)

    Wessels, Allison Rae; Collins, Patrick

    During the "space age" era, space activities appear increasingly as a theme in Western popular music, as they do in popular culture generally. In combination with the electronics and tele-communications revolution, "pop/rock" music has grown explosively during the space age to become an effectively global culture. From this base a number of trends are emerging in the pattern of influences that space activities have on pop music. The paper looks at the use of themes and imagery in pop music; the role of space technology in the modern "globalization" of pop music; and current and future links between space activities and pop music culture, including how public space programmes are affected by its influence on popular attitudes.

  4. Global color variations on the Martian surface

    USGS Publications Warehouse

    Soderblom, L.A.; Edwards, K.; Eliason, E.M.; Sanchez, E.M.; Charette, M.P.

    1978-01-01

    Surface materials exposed throughout the equatorial region of Mars have been classified and mapped on the basis of spectral reflectance properties determined by the Viking II Orbiter vidicon cameras. Frames acquired at each of three wavelengths (0.45 ?? 0.03 ??m, 0.53 ?? 0.05 ??m, and 0.59 ?? 0.05 ??m) during the approach of Viking Orbiter II in Martian summer (Ls = 105??) were mosaicked by computer. The mosaics cover latitudes 30??N to 63??S for 360?? of longitude and have resolutions between 10 and 20 km per line pair. Image processing included Mercator transformation and removal of an average Martian photometric function to produce albedo maps at three wavelengths. The classical dark region between the equator and ???30??S in the Martian highlands is composed of two units: (i) and ancient unit consisting of topographic highs (ridges, crater rims, and rugged plateaus riddled with small dendritic channels) which is among the reddest on the planet (0.59/0.45 ??m {reversed tilde equals} 3); and (ii) intermediate age, smooth, intercrater volcanic plains displaying numerous mare ridges which are among the least red on Mars (0.59/0.45 ??m {reversed tilde equals} 2). The relatively young shield volcanoes are, like the oldest unit, dark and very red. Two probable eolian deposits are recognized in the intermediate and high albedo regions. The stratigraphically lower unit is intermediate in both color (0.59/ 0.45 ??m {reversed tilde equals} 2.5) and albedo. The upper unit has the highest albedo, is very red (0.59/0.45 ??m {reversed tilde equals} 3), and is apparently the major constituent of the annual dust storms as its areal extent changes from year to year. The south polar ice cap and condensate clouds dominate the southernmost part of the mosaics. ?? 1978.

  5. Global Surface Temperature Change and Uncertainties Since 1861

    NASA Technical Reports Server (NTRS)

    Shen, Samuel S. P.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The objective of this talk is to analyze the warming trend and its uncertainties of the global and hemi-spheric surface temperatures. By the method of statistical optimal averaging scheme, the land surface air temperature and sea surface temperature observational data are used to compute the spatial average annual mean surface air temperature. The optimal averaging method is derived from the minimization of the mean square error between the true and estimated averages and uses the empirical orthogonal functions. The method can accurately estimate the errors of the spatial average due to observational gaps and random measurement errors. In addition, quantified are three independent uncertainty factors: urbanization, change of the in situ observational practices and sea surface temperature data corrections. Based on these uncertainties, the best linear fit to annual global surface temperature gives an increase of 0.61 +/- 0.16 C between 1861 and 2000. This lecture will also touch the topics on the impact of global change on nature and environment. as well as the latest assessment methods for the attributions of global change.

  6. A global assessment of accelerations in surface mass transport

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Heflin, Michael B.

    2015-08-01

    Water mass transport in the Earth's dynamic surface layer of atmosphere, cryosphere, and hydrosphere driven by various global change processes has complex spatiotemporal patterns. Here we determine global patterns and regional mean values of accelerations in surface mass variations during the Gravity Recovery and Climate Experiment (GRACE) mission's data span from 2002.2 to 2015.0. GRACE gravity data are supplemented by surface deformation from 607 Global Navigation Satellite System stations, an ocean bottom pressure model, satellite laser ranging, and loose a priori knowledge on mass variation regimes incorporating high-resolution geographic boundaries. While Greenland and West Antarctica have strong negative accelerations, Alaska and the Arctic Ocean show significant positive accelerations. In addition, the accelerations are not constant in time with some regions showing considerable variability due to irregular interannual changes. No evidence of significant nonsteric mean sea level acceleration has been found, but the uncertainty is quite large.

  7. A physically based model of global freshwater surface temperature

    NASA Astrophysics Data System (ADS)

    Beek, Ludovicus P. H.; Eikelboom, Tessa; Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  8. Plans and Activities for NASA's Global Water Cycle Research

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.

    2002-05-01

    Strictly speaking, the water (or hydrologic) cycle is by definition a global phenomenon. To observe, analyze, characterize, understand, and predict its structure and variations requires a coordinated, global effort of observations as well as global prediction systems which can assimilate and predict key fluxes and quantities. The National Aeronautics and Space Administration (NASA) has the unique capability of space-based experimental and research measurements that observe the Earth's system as well as core modelling activities to exploit these space-based observations for assimilation in diagnostic studies and initialization in weather and climate predictions. A summary of NASA's current water-cycle activities and implementation plans will be presented. Currently, NASA's Global Water and Energy Cycle and Terrestrial Hydrology (formally known as the Land Surface Hydrology) Programs are the key funding sources which support relevant scientific research. These programs not only fund individual scientists, but also support large-scale field missions (for example the Cold Land Processes Experiment, CLPX, and the Soil Moisture Experiment, SMEx) which are critical for calibration/validation of space instruments and retrievals as well as gaining fundamental understanding of local-scale processes which comprise the global system. In addition, a new initiative for Water and Energy cycle Research (WatER) is being formulated which responds to the recent charge of USGCRP and NRC scientific panels calling for focused and prioritized research plans that serve to make significant strides in our understanding and prediction of the global water cycle. Following NASA's unique vocation, the WatER initative sets priorities for science/research support for key observable quantities of the water cycle (precipitation and surface wetness) whose instrument technology is tactable and scientfic end-returns not only benefit water-cycle predictions, but also serve to benefit other critical

  9. Mapping the global land surface using 1 km AVHRR data

    USGS Publications Warehouse

    Lauer, D.T.; Eidenshink, J.C.

    1998-01-01

    The scientific requirements for mapping the global land surface using 1 km advanced very high resolution radiometer (AVHRR) data have been set forth by the U.S. Global Change Research Program; the International Geosphere Biosphere Programme (IGBP); The United Nations; the National Oceanic and Atmospheric Administration (NOAA); the Committee on Earth Observations Satellites; and the National Aeronautics and Space Administration (NASA) mission to planet Earth (MTPE) program. Mapping the global land surface using 1 km AVHRR data is an international effort to acquire, archive, process, and distribute 1 km AVHRR data to meet the needs of the international science community. A network of AVHRR receiving stations, along with data recorded by NOAA, has been acquiring daily global land coverage since April 1, 1992. A data set of over 70,000 AVHRR images is archived and distributed by the United States Geological Survey (USGS) EROS Data Center, and the European Space Agency. Under the guidance of the IGBP, processing standards have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are for the study of surface vegetation condition, mapping land cover, and deriving biophysical characteristics of terrestrial ecosystems. A time-series of 54 10-day global vegetation index composites for the period of April 1, 1992 through September 1993 has been produced. The production of a time-series of 33 10-day global vegetation index composites using NOAA-14 data for the period of February 1, 1995 through December 31, 1995 is underway. The data products are available from the USGS, in cooperation with NASA's MTPE program and other international organizations.

  10. Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Smith, W. L.; Strow, L. L.; Yang, Ping; Schlussel, P.; Calbet, X.

    2011-01-01

    Ultraspectral resolution infrared (IR) radiances obtained from nadir observations provide information about the atmosphere, surface, aerosols, and clouds. Surface spectral emissivity (SSE) and surface skin temperature from current and future operational satellites can and will reveal critical information about the Earth s ecosystem and land-surface-type properties, which might be utilized as a means of long-term monitoring of the Earth s environment and global climate change. In this study, fast radiative transfer models applied to the atmosphere under all weather conditions are used for atmospheric profile and surface or cloud parameter retrieval from ultraspectral and/or hyperspectral spaceborne IR soundings. An inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral IR sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface or cloud microphysical parameters. This inversion scheme has been applied to the Infrared Atmospheric Sounding Interferometer (IASI). Rapidly produced SSE is initially evaluated through quality control checks on the retrievals of other impacted surface and atmospheric parameters. Initial validation of retrieved emissivity spectra is conducted with Namib and Kalahari desert laboratory measurements. Seasonal products of global land SSE and surface skin temperature retrieved with IASI are presented to demonstrate seasonal variation of SSE.

  11. Results from Global Land-Surface Data Assimilation Methods

    NASA Technical Reports Server (NTRS)

    Radakovich, Jon D.; Houser, Paul R.; daSilva, Arlindo; Bosilovich, Michael G.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Realistic representation of the land surface is crucial in global climate modeling (GCM). Recently, the Mosaic land-surface Model (LSM) has been driven off-line using GEOS DAS (Goddard Earth Observing System Data Assimilation System) atmospheric forcing, forming the Off-line Land-surface Global Assimilation (OLGA) system. This system provides a computationally efficient test bed for land surface data assimilation. Here, we validate the OLGA simulation of surface processes and the assimilation of ISCCP surface temperatures. Another component of this study as the incorporation of the Physical-space Statistical Analysis System (PSAS) into OLGA, in order to assimilate surface temperature observations from the International Satellite Cloud Climatology Project (ISCCP). To counteract the subsequent forcing of the analyzed skin temperature back to the initial state following the analysis. incremental bias correction (IBC) was included in the assimilation. The IBC scheme effectively removed the time mean bias, but did not remove him in the mean diurnal cycle. Therefore, a diurnal him correction (DBC) scheme was developed, where the time-dependent bias was modeled with a sine wave parameterization. In addition, quality control of the ISCCP data and anisotropic temperature correction were implemented in PSAS. Preliminary results showed a substantial impact from the inclusion of PSAS and DBC that was visible in the surface meteorology fields and energy budget. Also, the monthly mean diurnal cycle from the experiment closely matched the diurnal cycle from the observations.

  12. Global ocean wind power sensitivity to surface layer stability

    NASA Astrophysics Data System (ADS)

    Capps, Scott B.; Zender, Charles S.

    2009-05-01

    Global ocean wind power has recently been assessed (W. T. Liu et al., 2008) using scatterometry-based 10 m winds. We characterize, for the first time, wind power at 80 m (typical wind turbine hub height) above the global ocean surface, and account for the effects of surface layer stability. Accounting for realistic turbine height and atmospheric stability increases mean global ocean wind power by +58% and -4%, respectively. Our best estimate of mean global ocean wind power is 731 W m-2, about 50% greater than the 487 W m-2 based on previous methods. 80 m wind power is 1.2-1.5 times 10 m power equatorward of 30° latitude, between 1.4 and 1.7 times 10 m power in wintertime storm track regions and >6 times 10 m power in stable regimes east of continents. These results are relatively insensitive to methodology as wind power calculated using a fitted Weibull probability density function is within 10% of power calculated from discrete wind speed measurements over most of the global oceans.

  13. The Exploration of Mars: Crew Surface Activities

    NASA Astrophysics Data System (ADS)

    Bhosri, Wisuwat; Cojanis, Philip; Gupta, Madhu; Khopkar, Manasi; Kiely, Aaron; Myers, Michael; Oxnevad, Knut; Sengupta, Anita; Sexton, Adam; Shaw, Don

    1999-01-01

    Surface activities of the first Mars mission crew, as suggested in phase I of the NASA HEDS reference mission, are discussed in this paper. The HEDS reference mission calls for a two phased approach. In phase I, humans supported by robotic systems will explore the Martian surface, collect and analyze geologic, geophysical, and meteorological data, search for potential permanent base sites, and conduct technology verification experiments. In phase II, a Mars base site will be selected, and the building of a permanent human base will be initiated. In this report two complementary architectures are portrayed. First, a permanent base for 3-6 people consisting of an ISRU unit, two nuclear power systems, a green house, and inflatable habitats and laboratories, built inside adobe structures. Second, a reusable, and resupplyable methane propelled very long range type traverse vehicle capable of collecting and analyzing data, and repairing and deploying scientific payloads during its planned 150 days 4800 km traverse. The very long range traverse vehicle will carry smaller rovers, crawlers, blimps, and an air drill capable of quickly reaching depths beyond 100m. The report presents a global vision of human activities on the surface of Mars at a programmatic level. It consists of several vignettes called "concept architectures" We speculate that these activities will facilitate a phase I Mars exploration architecture.

  14. Global Surface Ultraviolet Radiation Climatology from TOMS and ERBE Data

    NASA Technical Reports Server (NTRS)

    Lubin, Dan

    1998-01-01

    The overall goal of this project has been to develop a method for calculating the distribution of solar ultraviolet radiation (UVR) over most of the earth's surface using NASA's Total Ozone Mapping Spectrometer (TOMS) and Earth Radiation Budget Experiment (ERBE) data, and to use this method to develop a UVR climatology that is useful in the context of the global ozone depletion issue. The research carried out with this support has resulted the following accomplishments: (1) a radioactive transfer method. based on the delta-Eddington approximation, was successfully developed; (2) the method was applied to the five years of overlapping TOMS and ERBE Monthly-Hourly data to examine the impact of global variability in cloud cover on trends in surface UVR; (3) a presentation was made on effects of stratospheric ozone depletion; (4) the radioactive transfer model was finally applied to all daylight hours to make a through study of the global effect of cloud cover;and (6) a five-year global climatology of surface UVR based on all of the research has been prepared for general distribution.

  15. The atmospheric electric global circuit. [thunderstorm activity

    NASA Technical Reports Server (NTRS)

    Kasemir, H. W.

    1979-01-01

    The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.

  16. Global Occurrence and Emission of Rotaviruses to Surface Waters

    PubMed Central

    Kiulia, Nicholas M.; Hofstra, Nynke; Vermeulen, Lucie C.; Obara, Maureen A.; Medema, Gertjan; Rose, Joan B.

    2015-01-01

    Group A rotaviruses (RV) are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model) to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management. PMID:25984911

  17. The timescales of global surface-ocean connectivity

    NASA Astrophysics Data System (ADS)

    Jönsson, Bror F.; Watson, James R.

    2016-04-01

    Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches--each randomly located anywhere in the surface ocean--is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change--increasing temperatures, ocean acidification and changes in stratification over decadal timescales--through the advection of resilient types.

  18. Middle Pliocene sea surface temperatures: A global reconstruction

    USGS Publications Warehouse

    Dowsett, H.; Barron, J.; Poore, R.

    1996-01-01

    Identification and analyses of Pliocene marine microfossils from 64 globally distributed stratigraphic sequences have been used to produce a middle Pliocene sea surface temperature reconstruction of the Earth. This reconstruction shows little or no change from current conditions in low latitude regions and significant warming of the ocean surface at mid and higher latitudes of both hemispheres. This pattern of warming is consistent with terrestrial records and suggests a combination of enhanced meridional ocean heat transport and enhanced greenhouse effect were responsible for the middle Pliocene warmth.

  19. Uncertainty estimates in global ocean surface heat fluxes

    SciTech Connect

    Gleckler, P.J.

    1992-11-01

    To date the only practical means of estimating large scale ocean surface heat fluxes is with bulk parameterization formulae. It is well known that there are many sources of uncertainties in such estimates due to sampling deficiencies, uncertainties in the field measurements and uncertainties in the parameterizations themselves. This report presents global estimates of the total uncertainties in the climatological annual mean net shortwave (SW), net longwave (LW), latent heat (LH) and sensible heat (SH) ocean surface heat fluxes. The flux estimates used here were compiled by Oberhuber (1988), which utilize the Monthly Summed Trimmed COADS 1950--1979 data.

  20. Predictability of global surface temperature by means of nonlinear analysis

    NASA Astrophysics Data System (ADS)

    Gimeno, L.; García, R.; Pacheco, J. M.; Hernández, E.; Ribera, P.

    2001-01-01

    The time series of annually averaged global surface temperature anomalies for the years 1856-1998 is studied through nonlinear time series analysis with the aim of estimating the predictability time. Detection of chaotic behaviour in the data indicates that there is some internal structure in the data; the data may be considered to be governed by a deterministic process and some predictability is expected. Several tests are performed on the series, with results indicating possible chaotic behaviour.

  1. Surface measurements of global warming causing atmospheric constituents in Korea.

    PubMed

    Oh, S N; Youn, Y H; Park, K J; Min, H K; Schnell, R C

    2001-07-01

    The expansion of the industrial economy and the increase of population in Northeast Asian countries have caused much interest in climate monitoring related to global warming. However, new techniques and better platforms for the measurement of global warming and regional databases are still old-fashioned and are not being developed sufficiently. With respect to this agenda, since 1993, at the request of the World Meteorological Organization (WMO), to monitor functions of global warming, the Korea Meteorological Administration (KMA) has set up a Global Atmospheric Watch (GAW) Station on the western coast of Korea (Anmyun-do) and has been actively monitoring global warming over Northeast Asia. In addition, atmospheric carbon dioxide (CO2) has been measured for a similar KMA global warming program at Kosan, Cheju Island since 1990. Aerosol and radiation have also been measured at both sites as well as in Seoul. The observations have been analyzed using diagnostics of climate change in Northeast Asia and also have been internationally compared. Results indicate that greenhouse gases are in good statistic agreement with the NOAA/Climate Monitoring and Diagnostics Laboratory (CMDL) long-term trends of monthly mean concentrations and seasonal cycles. Atmospheric particulate matter has also been analyzed for particular Asian types in terms of optical depth, number concentration and size distribution.

  2. Pacific sea level rise patterns and global surface temperature variability

    NASA Astrophysics Data System (ADS)

    Peyser, Cheryl E.; Yin, Jianjun; Landerer, Felix W.; Cole, Julia E.

    2016-08-01

    During 1998-2012, climate change and sea level rise (SLR) exhibit two notable features: a slowdown of global surface warming (hiatus) and a rapid SLR in the tropical western Pacific. To quantify their relationship, we analyze the long-term control simulations of 38 climate models. We find a significant and robust correlation between the east-west contrast of dynamic sea level (DSL) in the Pacific and global mean surface temperature (GST) variability on both interannual and decadal time scales. Based on linear regression of the multimodel ensemble mean, the anomalously fast SLR in the western tropical Pacific observed during 1998-2012 indicates suppression of a potential global surface warming of 0.16° ± 0.06°C. In contrast, the Pacific contributed 0.29° ± 0.10°C to the significant interannual GST increase in 1997/1998. The Pacific DSL anomalies observed in 2015 suggest that the strong El Niño in 2015/2016 could lead to a 0.21° ± 0.07°C GST jump.

  3. Unabated global surface temperature warming: evaluating the evidence

    NASA Astrophysics Data System (ADS)

    Karl, T. R.; Arguez, A.

    2015-12-01

    New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.

  4. Stellar activity: Astrophysics relevant to global change

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.

    1994-01-01

    FRESIP will obtain a great deal of data on stellar activity and flares on F, G and K dwarfs. Rotation periods, flare distributions and possibly stellar cycles will emerge. This apparently curiosity-driven research actually has implications for our understanding of global climate change. Significant climate change during the seventeenth-century Maunder Minimum is thought to be related to a change in the solar condition. Recently acquired data from the Greenland Ice-core Project suggest that far greater climate changes on decade time scales may have occurred during the previous interglacial. It is possible that a yet more drastic change in state of the Sun was responsible. We have no relevant solar data, but can begin to explore this possibility by observing an ensemble of solar-like stars.

  5. Mapping Impervious Surfaces Globally at 30m Resolution Using Global Land Survey Data

    NASA Technical Reports Server (NTRS)

    DeColstoun, Eric Brown; Huang, Chengquan; Tan, Bin; Smith, Sarah Elizabeth; Phillips, Jacqueline; Wang, Panshi; Ling, Pui-Yu; Zhan, James; Li, Sike; Taylor, Michael P.; Wolfe, Robert E.; Tilton, James C.

    2013-01-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (approx. 2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified

  6. Mapping Impervious Surfaces Globally at 30m Resolution Using Landsat Global Land Survey Data

    NASA Astrophysics Data System (ADS)

    Brown de Colstoun, E.; Huang, C.; Wolfe, R. E.; Tan, B.; Tilton, J.; Smith, S.; Phillips, J.; Wang, P.; Ling, P.; Zhan, J.; Xu, X.; Taylor, M. P.

    2013-12-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (~2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified

  7. Mapping global land surface albedo from NOAA AVHRR

    NASA Astrophysics Data System (ADS)

    Csiszar, I.; Gutman, G.

    1999-03-01

    A set of algorithms is combined for a simple derivation of land surface albedo from measurements of reflected visible and near-infrared radiation made by the advanced very high resolution radiometer (AVHRR) onboard the National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites. The system consists of a narrowband-to-broadband conversion and bidirectional correction at the top of the atmosphere and an atmospheric correction. We demonstrate the results with 1 month worth of data from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS) global vegetation index (GVI) weekly data set and the NOAA/NASA Pathfinder Atmosphere (PATMOS) project daily data. Error analysis of the methodology indicates that the surface albedo can be retrieved with 10-15% relative accuracy. Monthly albedo maps derived from September 1989 GVI and PATMOS data agree well except for small discrepancies attributed mainly to different preprocessing and residual atmospheric effects. A 5-year mean September map derived from the GVI multiannual time series is consistent with that derived from low-resolution Earth Radiation Budget Experiment data as well as with a September map compiled from ground observations and used in many numerical weather and climate models. Instantaneous GVI-derived albedos were found to be consistent with surface albedo measurements over various surface types. The discrepancies found can be attributed to differences in areal coverage and representativeness of the satellite and ground data. The present pilot study is a prototype for a routine real-time production of high-resolution global surface albedo maps from NOAA AVHRR Global Area Coverage (GAC) data.

  8. Specification and prediction of global surface temperature and precipitation from global SST using CCA

    SciTech Connect

    Barnston, A.G.; Smith, T.M.

    1996-11-01

    A reconstructed sea surface temperature (SST) dataset is used to examine relationships between SST and seasonal mean surface temperature (T) and total precipitation (P) over most of the global continents for the 1950-92 period. Both specification (i.e., simultaneous) and predictive relations are studied. Canonical correlation analysis (CCA) is used to describe the relationships and to provide information aiding in physical interpretation. A sequence of four consecutive 3-month periods of global SST anomalies is related to T and P anomalies during the fourth period for the specification analyses, and to 3-month periods ranging from one to four seasons later for the predictive analyses. Dynamical specifications of the National Centers for Environmental Prediction (NCEP) atmospheric model, using observed SST anomalies as boundary conditions are also examined for confirmation of and comparison with the statistical specification relationships suggested by the CCA. 70 refs., 32 figs., 4 tabs.

  9. Global structual optimizations of surface systems with a genetic algorithm

    SciTech Connect

    Chuang, Feng-Chuan

    2005-01-01

    Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Aln algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems.

  10. Global biogeography of Prochlorococcus genome diversity in the surface ocean.

    PubMed

    Kent, Alyssa G; Dupont, Chris L; Yooseph, Shibu; Martiny, Adam C

    2016-08-01

    Prochlorococcus, the smallest known photosynthetic bacterium, is abundant in the ocean's surface layer despite large variation in environmental conditions. There are several genetically divergent lineages within Prochlorococcus and superimposed on this phylogenetic diversity is extensive gene gain and loss. The environmental role in shaping the global ocean distribution of genome diversity in Prochlorococcus is largely unknown, particularly in a framework that considers the vertical and lateral mechanisms of evolution. Here we show that Prochlorococcus field populations from a global circumnavigation harbor extensive genome diversity across the surface ocean, but this diversity is not randomly distributed. We observed a significant correspondence between phylogenetic and gene content diversity, including regional differences in both phylogenetic composition and gene content that were related to environmental factors. Several gene families were strongly associated with specific regions and environmental factors, including the identification of a set of genes related to lower nutrient and temperature regions. Metagenomic assemblies of natural Prochlorococcus genomes reinforced this association by providing linkage of genes across genomic backbones. Overall, our results show that the phylogeography in Prochlorococcus taxonomy is echoed in its genome content. Thus environmental variation shapes the functional capabilities and associated ecosystem role of the globally abundant Prochlorococcus.

  11. Global biogeography of Prochlorococcus genome diversity in the surface ocean.

    PubMed

    Kent, Alyssa G; Dupont, Chris L; Yooseph, Shibu; Martiny, Adam C

    2016-08-01

    Prochlorococcus, the smallest known photosynthetic bacterium, is abundant in the ocean's surface layer despite large variation in environmental conditions. There are several genetically divergent lineages within Prochlorococcus and superimposed on this phylogenetic diversity is extensive gene gain and loss. The environmental role in shaping the global ocean distribution of genome diversity in Prochlorococcus is largely unknown, particularly in a framework that considers the vertical and lateral mechanisms of evolution. Here we show that Prochlorococcus field populations from a global circumnavigation harbor extensive genome diversity across the surface ocean, but this diversity is not randomly distributed. We observed a significant correspondence between phylogenetic and gene content diversity, including regional differences in both phylogenetic composition and gene content that were related to environmental factors. Several gene families were strongly associated with specific regions and environmental factors, including the identification of a set of genes related to lower nutrient and temperature regions. Metagenomic assemblies of natural Prochlorococcus genomes reinforced this association by providing linkage of genes across genomic backbones. Overall, our results show that the phylogeography in Prochlorococcus taxonomy is echoed in its genome content. Thus environmental variation shapes the functional capabilities and associated ecosystem role of the globally abundant Prochlorococcus. PMID:26836261

  12. Global Aerosol Radiative Forcing using Satellite and Surface Measurements

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Christopher, S. A.

    2007-12-01

    Over the industrial period, aerosols have increased due to human activities and their effects on climate are the largest source of uncertainty in the current IPCC estimates of global climate forcing due to human activities. Inhomogeneous distribution of aerosols in space and time poses a challenge in their characterization and requires global measurements to assess their effects and reduce the associated uncertainties. In this paper we use global measurements from both satellite and ground based observations for one year time period to estimate the shortwave aerosol radiative forcing (SWARF) at the top-of-atmosphere (TOA) and discuss the associated uncertainties. For this, aerosol properties (optical depth) derived from AErosol RObotic NETwork (AERONET), a federation of ground-based remote sensing instruments, are used in this paper in conjunction with measurements of the TOA shortwave flux from CERES instrument (onboard Terra satellite). High spectral and spatial resolution observations from Imager (MODIS) will be used to identify clear sky conditions within CERES foot print and GOCART results will also be used for separating aerosol types. Global aerosol forcing and corresponding radiative forcing efficiencies will be presented as a function of major aerosol types [including anthropogenic (sulfate, soot, black carbon) and natural (dust) aerosols], region and season. This study should serve as a useful constraint for both numerical modeling simulations and satellite based estimates of SWARF.

  13. Global Aerosol Radiative Forcing Using Satellite and Surface Measurements

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Christopher, S. A.

    2008-05-01

    Over the industrial period, aerosols have increased due to human activities and their effects on climate are the largest source of uncertainty in the current IPCC estimates of global climate forcing due to human activities. Inhomogeneous distribution of aerosols in space and time poses a challenge in characterizing their properties and requires global measurements to assess their effects and reduce the associated uncertainties. In this paper we use global measurements from both satellite and ground based observations for one year time period to estimate the shortwave aerosol radiative forcing (SWARF) at the top-of-atmosphere (TOA) and discuss the associated uncertainties. For this, aerosol properties (optical depth) derived from AErosol RObotic NETwork (AERONET), a federation of ground-based remote sensing instruments, are used in this paper in conjunction with measurements of the TOA shortwave flux from CERES instrument (onboard Terra satellite). High spectral and spatial resolution observations from Imager (MODIS) is used to identify clear sky conditions within CERES foot print and GOCART results will also be used for separating aerosol types. Global aerosol forcing and corresponding radiative forcing efficiencies will be presented as a function of major aerosol types [including anthropogenic (sulfate, soot, black carbon) and natural (dust) aerosols], region and season. This study should serve as a useful constraint for both numerical modeling simulations and satellite based estimates of SWARF.

  14. Vegetation controls on the biophysical surface properties at global scale

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Cescatti, Alessandro

    2016-04-01

    Leaf area index (LAI) plays an important role in determining resistances to heat, moisture and momentum exchanges between the land surface and atmosphere. Exploring how variations in LAI may induce changes in the surface energy balance is a key to understanding vegetation-climate interactions and for predicting biophysical climate impacts associated to changes in land cover. To this end, we analyzed remote sensing-observed dynamics in LAI, surface energy fluxes and climate drivers at global scale. We investigated the link between interannual variability of LAI and the components of the surface energy budget under diverse climate gradients. Results show that a 25% increase in annual LAI may induce up to 2% increase in available surface energy, as consequence of higher short wave absorption due to reduced albedos, up to 20% increase and 10% decrease in latent and sensible heat, respectively, leading to a decrease of the Bowen ratio in densely vegetated canopies. Opposite patterns are found for a reduction in LAI of similar magnitude. Such changes are strongly modulated by concurrent year-to-year variations and climatological means of air temperature, precipitation and snow cover as well as by land cover-specific physiological processes. Boreal and semi-arid regions appear to be mostly exposed to large changes in biophysical surface processes induced by interannual fluctuations in LAI. The combination of the emergent patters translates into variations in the long-wave outgoing radiation that reflect the surface warming/cooling associated to LAI changes. These findings provide a deeper understanding of the vegetation control on biophysical surface properties and define a set of observational-based diagnostics of LAI-dependent land surface-atmosphere interactions.

  15. Reconstructions of global near-surface temperature change since the mid 19th century

    NASA Astrophysics Data System (ADS)

    Morice, Colin; Rayner, Nick; Kennedy, John

    2016-04-01

    Incomplete and non-uniform global observational coverage is a prominent source of uncertainty in instrumental records of global near-surface temperature change. In this study statistical methods are applied to the HadCRUT4 near-surface temperature data set to obtain improved estimates of global near-surface temperature change since the mid 19th century. Methods applied include those that interpolate according to local correlation structure (kriging) and reduced space methods that learn large-scale temperature patterns. The performance of each statistical reconstruction method has been benchmarked in application to a subset of CMIP5 simulations. Model fields are sub-sampled and simulated observational errors added to emulate observational data, permitting assessment of temperature field reconstruction algorithms in controlled tests in which globally complete temperature fields are known. In application to HadCRUT4 data the statistical reconstructions show relatively increased warming in the global average over the 21st century owing to reconstruction of temperatures in high northern latitudes, supporting the findings of Cowtan & Way (2014) and Karl et al. (2015). There is broad agreement between estimates of global and hemispheric changes throughout much of the 20th and 21st century. Agreement is reduced in data sparse periods and regions, notably in the 19th century and in the southern hemisphere. This finding is supported by the results of the climate model based benchmarks and highlights the importance of continued data rescue activities, such as those of the International Surface Temperature Initiative and ACRE. The results of this study will form an addition to the HadCRUT4 global near-surface temperature data set.

  16. Global Intercomparison of 12 Land Surface Heat Flux Estimates

    NASA Technical Reports Server (NTRS)

    Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S. I.; McCabe, M. F.; Wood, E. F.; Rossow, W. B.; Balsamo, G.; Betts, A. K.; Dirmeyer, P. A.; Fisher, J. B.; Jung, M.; Kanamitsu, M.; Reichle, R. H.; Reichstein, M.; Rodell, M.; Sheffield, J.; Tu, K.; Wang, K.

    2011-01-01

    A global intercomparison of 12 monthly mean land surface heat flux products for the period 1993-1995 is presented. The intercomparison includes some of the first emerging global satellite-based products (developed at Paris Observatory, Max Planck Institute for Biogeochemistry, University of California Berkeley, University of Maryland, and Princeton University) and examples of fluxes produced by reanalyses (ERA-Interim, MERRA, NCEP-DOE) and off-line land surface models (GSWP-2, GLDAS CLM/ Mosaic/Noah). An intercomparison of the global latent heat flux (Q(sub le)) annual means shows a spread of approx 20 W/sq m (all-product global average of approx 45 W/sq m). A similar spread is observed for the sensible (Q(sub h)) and net radiative (R(sub n)) fluxes. In general, the products correlate well with each other, helped by the large seasonal variability and common forcing data for some of the products. Expected spatial distributions related to the major climatic regimes and geographical features are reproduced by all products. Nevertheless, large Q(sub le)and Q(sub h) absolute differences are also observed. The fluxes were spatially averaged for 10 vegetation classes. The larger Q(sub le) differences were observed for the rain forest but, when normalized by mean fluxes, the differences were comparable to other classes. In general, the correlations between Q(sub le) and R(sub n) were higher for the satellite-based products compared with the reanalyses and off-line models. The fluxes were also averaged for 10 selected basins. The seasonality was generally well captured by all products, but large differences in the flux partitioning were observed for some products and basins.

  17. Revisit of the Global Surface Energy Balance Using the MEP Model of Surface Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Wang, J.; Park, T. W.; Ming, Y.

    2015-12-01

    The recently proposed model of surface heat fluxes, based on the theory of maximum entropy production (MEP), was used to estimate the global evapotranspiration (ET) and heat fluxes. Compared to bulk transfer models, the MEP model has several remote-sensing-friendly features including fewer input variables, automatic closure of surface energy budget, being independent of bulk gradients of temperature and water vapor, not using wind speed and surface roughness as model parameters, and being less sensitive to uncertainties of input variables and model parameters. The MEP model is formulated for the entire range of soil moisture from dryness to saturation over the land surfaces and has even more advantages over water-snow-ice surfaces compared to traditional methods due to its independence of surface humidity data. The MEP model provides the first global maps of water heat fluxes at ocean surfaces as well as conductive heat fluxes at snow/ice covered polar regions. Ten years of Clouds and the Earth's Radiant Energy System (CERES) earth surface radiation fluxes, surface temperature data products supplemented (when needed) by the Modern-Era Retrospective analysis for Research and Applications (MERRA) surface specific humidity data are used to test the MEP model by comparing the MEP based global annual ET and heat fluxes with existing products. The MEP based fluxes over land surfaces agree closely with previous studies. Over the oceans, the MEP modeled ET tends to be lower than previous estimates while those of sensible heat fluxes are in close agreement with previous studies. A counterpart, "off-line" analysis is also carried out using the NOAA GFDL climate model output from a control experiment and a "warming" experiment. Substantial differences in the warming-related changes of ET and Bowen ratio are found over regions such as North Africa and the southwestern U.S. The implications of these differences for understanding trends and variability in regional energy and

  18. Prediction Activities at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2010-01-01

    The Global Modeling and Assimilation Office (GMAO) is a core NASA resource for the development and use of satellite observations through the integrating tools of models and assimilation systems. Global ocean, atmosphere and land surface models are developed as components of assimilation and forecast systems that are used for addressing the weather and climate research questions identified in NASA's science mission. In fact, the GMAO is actively engaged in addressing one of NASA's science mission s key questions concerning how well transient climate variations can be understood and predicted. At weather time scales the GMAO is developing ultra-high resolution global climate models capable of resolving high impact weather systems such as hurricanes. The ability to resolve the detailed characteristics of weather systems within a global framework greatly facilitates addressing fundamental questions concerning the link between weather and climate variability. At sub-seasonal time scales, the GMAO is engaged in research and development to improve the use of land information (especially soil moisture), and in the improved representation and initialization of various sub-seasonal atmospheric variability (such as the MJO) that evolves on time scales longer than weather and involves exchanges with both the land and ocean The GMAO has a long history of development for advancing the seasonal-to-interannual (S-I) prediction problem using an older version of the coupled atmosphere-ocean general circulation model (AOGCM). This includes the development of an Ensemble Kalman Filter (EnKF) to facilitate the multivariate assimilation of ocean surface altimetry, and an EnKF developed for the highly inhomogeneous nature of the errors in land surface models, as well as the multivariate assimilation needed to take advantage of surface soil moisture and snow observations. The importance of decadal variability, especially that associated with long-term droughts is well recognized by the

  19. A global surface drifter data set at hourly resolution

    NASA Astrophysics Data System (ADS)

    Elipot, Shane; Lumpkin, Rick; Perez, Renellys C.; Lilly, Jonathan M.; Early, Jeffrey J.; Sykulski, Adam M.

    2016-05-01

    The surface drifting buoys, or drifters, of the Global Drifter Program (GDP) are predominantly tracked by the Argos positioning system, providing drifter locations with O(100 m) errors at nonuniform temporal intervals, with an average interval of 1.2 h since January 2005. This data set is thus a rich and global source of information on high-frequency and small-scale oceanic processes, yet is still relatively understudied because of the challenges associated with its large size and sampling characteristics. A methodology is described to produce a new high-resolution global data set since 2005, consisting of drifter locations and velocities estimated at hourly intervals, along with their respective errors. Locations and velocities are obtained by modeling locally in time trajectories as a first-order polynomial with coefficients obtained by maximizing a likelihood function. This function is derived by modeling the Argos location errors with t location-scale probability distribution functions. The methodology is motivated by analyzing 82 drifters tracked contemporaneously by Argos and by the Global Positioning System, where the latter is assumed to provide true locations. A global spectral analysis of the velocity variance from the new data set reveals a sharply defined ridge of energy closely following the inertial frequency as a function of latitude, distinct energy peaks near diurnal and semidiurnal frequencies, as well as higher-frequency peaks located near tidal harmonics as well as near replicates of the inertial frequency. Compared to the spectra that can be obtained using the standard 6-hourly GDP product, the new data set contains up to 100% more spectral energy at some latitudes.

  20. Agricultural insecticides threaten surface waters at the global scale

    PubMed Central

    Stehle, Sebastian; Schulz, Ralf

    2015-01-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  1. Agricultural insecticides threaten surface waters at the global scale.

    PubMed

    Stehle, Sebastian; Schulz, Ralf

    2015-05-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions.

  2. Global Monitoring of Martian Surface Albedo Changes from Orbital Observations

    NASA Astrophysics Data System (ADS)

    Geissler, P.; Enga, M.; Mukherjee, P.

    2013-12-01

    Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place

  3. Global Distribution and Density of Constructed Impervious Surfaces

    PubMed Central

    Elvidge, Christopher D.; Tuttle, Benjamin T.; Sutton, Paul S.; Baugh, Kimberly E.; Howard, Ara T.; Milesi, Cristina; Bhaduri, Budhendra L.; Nemani, Ramakrishna

    2007-01-01

    We present the first global inventory of the spatial distribution and density of constructed impervious surface area (ISA). Examples of ISA include roads, parking lots, buildings, driveways, sidewalks and other manmade surfaces. While high spatial resolution is required to observe these features, the new product reports the estimated density of ISA on a one-km2 grid based on two coarse resolution indicators of ISA – the brightness of satellite observed nighttime lights and population count. The model was calibrated using 30-meter resolution ISA of the USA from the U.S. Geological Survey. Nominally the product is for the years 2000-01 since both the nighttime lights and reference data are from those two years. We found that 1.05% of the United States land area is impervious surface (83,337 km2) and 0.43 % of the world's land surface (579,703 km2) is constructed impervious surface. China has more ISA than any other country (87,182 km2), but has only 67 m2 of ISA per person, compared to 297 m2 per person in the USA. The distribution of ISA in the world's primary drainage basins indicates that watersheds damaged by ISA are primarily concentrated in the USA, Europe, Japan, China and India. The authors believe the next step for improving the product is to include reference ISA data from many more areas around the world.

  4. The Global Emissions Inventory Activity (GEIA)

    NASA Astrophysics Data System (ADS)

    Middleton, P.; Guenther, A. B.; Granier, C.; Mieville, A.

    2010-12-01

    GEIA aims to bring together people, analyses, data, and tools to quantify the anthropogenic emissions and natural exchanges of trace gases and aerosols that drive earth system changes and to facilitate use of this information by the research, assessment and policy communities. This presentation provides an overview of the current activities of GEIA. The GEIA network currently includes over 1000 people around the globe, and the plan is to extend this network to different communities working on environmental changes issues. The GEIA Center (www.geiacenter.org) hosts a comprehensive set of emissions related information, and plans to maintain a new database of scientific papers as well as national and international reports dealing with emissions issues. Conclusions from the recent GEIA conference, held in October 2009, also are summarized. Given the differences often found among data sets, the formation of a GEIA working group composed of emission developers and modelers who will compare data sets and implications for modeling is discussed. It has been recognized that consistent information on emissions at the global and regional scale is required, as well as an accurate quantification of emissions in the different megacities of the world. In order to develop these perspectives, GEIA plans to begin strengthening links with different key regions through creation of regional centers in corporation with other entities and individuals working in these regions.

  5. Global Energetic Neutral Atom Map of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Vorburger, Audrey; Wurz, Peter; Barabash, Stas; Wieser, Martin; Futaana, Yoshifumi; Lue, Charles; Holmström, Mats; Bhardwaj, Anil; Dhanya, Mb; Asamura, Kazushi

    2013-04-01

    Until recently, it was tacitly assumed that the solar wind ions that impinge onto the lunar surface are almost completely absorbed ( < 1% reflection). This assumption has been invalidated by recent observations made by IBEX and SARA/Chandrayaan-1, which showed an average global energetic neutral atom (ENA) albedo of 10% - 20% (e.g. McComas et al. [GRL 2009] and Wieser et al. [PSS, 2009]). Having analysed all available measurements from the Chandrayaan-1 Energetic Neutral Analyzer (SARA/CENA), we present two global ENA maps of the lunar surface. The low energy map contains ENAs in the energy range (7 eV - 169 eV) and the high energy map contains ENAs in the energy range (169 eV - 3.5 keV). Together, the maps contain all ENAs within SARA/CENA's complete energy range (7 eV - 3.5 keV). The maps cover ~82% of the lunar surface, with almost complete coverage of the lunar farside. In the high energy part of the lunar ENA map several magnetic anomalies can be identified, whereas in the low energy part only the large magnetic anomaly associated with the South Pole-Aitken basin is clearly observed. By comparing SARA/CENA ENA maps to different lunar magnetic field maps, we found that they correlate better with the surface crustal magnetic field map than with the map showing the magnetic field at an altitude of 30 km. This implies that the main interaction between the solar wind plasma and the Moon occurs close to surface. Our high energy ENA map exhibits a strong anti-correlation with the map showing the flux of lunar deflected protons (Lue et al. [GRL 2011]) and appears to be an inverted image thereof. In addition, features in the ENA maps correlate with albedo features of swirls in the South Pole-Aitken basin. No obvious correlation with either the lunar topography or lunar geology map was found. The strength of ENA imaging together with ion reflection imaging lies in the fact that details of solar wind interaction with surfaces in the presence of electric and magnetic

  6. The timescales of global surface-ocean connectivity.

    PubMed

    Jönsson, Bror F; Watson, James R

    2016-01-01

    Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches--each randomly located anywhere in the surface ocean--is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change--increasing temperatures, ocean acidification and changes in stratification over decadal timescales--through the advection of resilient types. PMID:27093522

  7. The timescales of global surface-ocean connectivity

    PubMed Central

    Jönsson, Bror F.; Watson, James R.

    2016-01-01

    Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches—each randomly located anywhere in the surface ocean—is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change—increasing temperatures, ocean acidification and changes in stratification over decadal timescales—through the advection of resilient types. PMID:27093522

  8. Mixed quantum-classical equilibrium in global flux surface hopping

    SciTech Connect

    Sifain, Andrew E.; Wang, Linjun; Prezhdo, Oleg V.

    2015-06-14

    Global flux surface hopping (GFSH) generalizes fewest switches surface hopping (FSSH)—one of the most popular approaches to nonadiabatic molecular dynamics—for processes exhibiting superexchange. We show that GFSH satisfies detailed balance and leads to thermodynamic equilibrium with accuracy similar to FSSH. This feature is particularly important when studying electron-vibrational relaxation and phonon-assisted transport. By studying the dynamics in a three-level quantum system coupled to a classical atom in contact with a classical bath, we demonstrate that both FSSH and GFSH achieve the Boltzmann state populations. Thermal equilibrium is attained significantly faster with GFSH, since it accurately represents the superexchange process. GFSH converges closer to the Boltzmann averages than FSSH and exhibits significantly smaller statistical errors.

  9. The long-term Global LAnd Surface Satellite (GLASS) product suite and applications

    NASA Astrophysics Data System (ADS)

    Liang, S.

    2015-12-01

    Our Earth's environment is experiencing rapid changes due to natural variability and human activities. To monitor, understand and predict environment changes to meet the economic, social and environmental needs, use of long-term high-quality satellite data products is critical. The Global LAnd Surface Satellite (GLASS) product suite, generated at Beijing Normal University, currently includes 12 products, including leaf area index (LAI), broadband shortwave albedo, broadband longwave emissivity, downwelling shortwave radiation and photosynthetically active radiation, land surface skin temperature, longwave net radiation, daytime all-wave net radiation, fraction of absorbed photosynetically active radiation absorbed by green vegetation (FAPAR), fraction of green vegetation coverage, gross primary productivity (GPP), and evapotranspiration (ET). Most products span from 1981-2014. The algorithms for producing these products have been published in the top remote sensing related journals and books. More and more applications have being reported in the scientific literature. The GLASS products are freely available at the Center for Global Change Data Processing and Analysis of Beijing Normal University (http://www.bnu-datacenter.com/), and the University of Maryland Global Land Cover Facility (http://glcf.umd.edu). After briefly introducing the basic characteristics of GLASS products, we will present some applications on the long-term environmental changes detected from GLASS products at both global and local scales. Detailed analysis of regional hotspots, such as Greenland, Tibetan plateau, and northern China, will be emphasized, where environmental changes have been mainly associated with climate warming, drought, land-atmosphere interactions, and human activities.

  10. Global Distribution and Density of Constructed Impervious Surfaces

    SciTech Connect

    Elvidge, Christopher D.; Tuttle, Benjamin T.; Sutton, Paul S.; Baugh, Kimberly E.; Howard, Ara T.; Milesi, Christina; Bhaduri, Budhendra L; Nemani, Ramakrishna R

    2007-01-01

    We present the first global inventory of the spatial distribution and density of constructed impervious surface area (ISA). Examples of ISA include roads, parking lots, buildings, driveways, sidewalks and other manmade surfaces. While high spatial resolution is required to observe these features, the product we made is at one km2 resolution and is based on two coarse resolution indicators of ISA. Inputs into the product include the brightness of satellite observed nighttime lights and population count. The reference data used in the calibration were derived from 30 meter resolution ISA estimates of the USA from the U.S. Geological Survey. Nominally the product is for the years 2000-01 since both the nighttime lights and reference data are from those two years. We found that 1.05% of the United States land area is impervious surface (83,337 km2) and 0.43 % of the world's land surface (579,703 km2) is constructed impervious surface. China has more ISA than any other country (87,182 km2), but has only 67 m2 of ISA per person, compared to 297 m2 per person in the USA. Hyrdologic and environmental impacts of ISA begin to be exhibited when the density of ISA reaches 10% of the land surface. An examination of the areas with 10% or more ISA in watersheds finds that with the exception of Europe, the majority of watershed areas have less than 0.4% of their area at or above the 10% ISA threshold. The authors believe the next step for improving the product is to include reference ISA data from many more areas around the world.

  11. Asymmetrical hemisphere activation enhances global-local processing.

    PubMed

    Gable, Philip A; Poole, Bryan D; Cook, Mary S

    2013-12-01

    Decades of research focusing on the neurophysiological underpinnings related to global-local processing of hierarchical stimuli have associated global processing with the right hemisphere and local processing with the left hemisphere. The current experiment sought to expand this research by testing the causal contributions of hemisphere activation to global-local processing. To manipulate hemisphere activation, participants engaged in contralateral hand contractions. Then, EEG activity and attentional scope were measured. Right-hand contractions caused greater relative left-cortical activity than left-hand contractions. Participants were more narrowly focused after left-hemisphere activation than after right-hemisphere activation. Moreover, N1 amplitudes to local targets in the left hemisphere were larger after left-hemisphere activation than after right-hemisphere activation. Consistent with past research investigating hemispheric asymmetry and attentional scope, the current results suggest that manipulating left (right) hemisphere activity enhanced local (global) attentional processing.

  12. Global Surface Photosynthetic Biosignatures Prior to the Rise of Oxygen

    NASA Astrophysics Data System (ADS)

    Parenteau, M. N.; Kiang, N. Y.; Blankenship, R. E.; Sanromá, E.; Palle Bago, E.; Hoehler, T. M.; Pierson, B. K.; Meadows, V. S.

    2015-12-01

    The study of potential exoplanet biosignatures -- the global impact of life on a planetary environment -- has been informed primarily by the modern Earth, with little yet explored beyond atmospheric O2 from oxygenic photosynthesis out of chemical equilibrium, and its accompanying planetary surface reflectance feature, the vegetation "red edge" reflectance. However, these biosignatures have only been present for less than half the Earth's history, and recent geochemical evidence suggests that atmospheric O2 may have been at very low - likely undetectable - levels, until 0.8 Ga (Planavsky et al., 2014, Science 346:635-638). Given that our planet was inhabited for very long periods prior to the rise of oxygen, and that a similar period of anoxygenic life may occur on exoplanets, more studies are needed to characterize remotely detectable biosignatures associated with more evolutionarily ancient anoxygenic phototrophs. Our measurements of the surface reflectance spectra of pure cultures of anoxygenic phototrophs revealed "NIR edge(s)" due to absorption of light by bacteriochlorophyll (Bchl) pigments. We used the pure culture spectra to deconvolve complex spectra of environmental samples of microbial mats. We observed multiple NIR edges associated with multiple pigments in the mats. We initially expected only to detect the absorption of light by the pigments in the surface layer of the mat. Surprisingly, we detected cyanobacterial Chl a in the surface layer, as well as Bchl c and Bchl a in the anoxygenic underlayers. This suggests that it does not matter "who's on top," as we were able to observe pigments through all mat layers due to their different absorption maxima. The presence of multiple pigments and thus multiple "NIR edges" could signify layered phototrophic communities and possibly strengthen support for the detection of a surface exoplanet biosignature. In general, the proposed work will inform the search for life on exoplanets at a similar stage of evolution

  13. History of Martian Surface Changes Observed by Mars Global Surveyor

    NASA Astrophysics Data System (ADS)

    Geissler, P. E.; Enga, M.; Mukherjee, P.

    2009-12-01

    The changing appearance of Mars has fascinated observers for centuries, yet much is still unknown about the winds and sediments that alter the albedo of vast areas of the planet’s surface. A variety of aeolian processes contribute to the deposition and erosion of dust on Mars, with distinct causes and timescales that vary with season and location. Over decadal timescales, these processes act to alter the planetary albedo distribution enough to significantly impact the climate and global circulation of winds on Mars (Geissler, JGR 110, E02001, 2005; Fenton et al., Nature 446, 646, 2007). We are documenting the extent and frequency of Martian surface changes by analyzing the rich record of observations made by the Mars Global Surveyor mission. We are currently completing a time-series of global mosaics produced from wide angle MOC images showing in detail how the planet’s surface changed in appearance between early 1999 and late 2006, a period of 4 Martian years. The MOC mosaics reveal a surprising range of temporal behavior among variable features in different regions of Mars. Episodic dust deposition followed by episodic clearing can be seen in Syrtis Major. Gradual erosion by persistent seasonal winds can be seen in many equatorial areas such as southern Alcyonius. Gradual erosion by dust-devils is prevalent at higher latitudes and notably in Nilosyrtis, where the albedo boundary dividing the high albedo tropics from the dark terrain to the north is slowly advancing southwards onto brighter terrain. Solis Planum, a high plateau south of the Valles Marineris, changes on a nearly continuous basis. Many of the moving albedo boundaries (such as those at Oxia Palus and the Southern tropical dark band) display high albedo margins that may be aprons of dust swept away by the advancing erosion. The data also show clear evidence for dust deposition onto already dust-covered regions, a phenomenon that was suspected but not demonstrated by Geissler (2005). The final MOC

  14. Europa: Characterization and interpretation of global spectral surface units

    USGS Publications Warehouse

    Nelson, M.L.; McCord, T.B.; Clark, R.N.; Johnson, T.V.; Matson, D.L.; Mosher, J.A.; Soderblom, L.A.

    1986-01-01

    The Voyager global multispectral mosaic of the Galilean satellite Europa (T. V. Johnson, L. A. Soderblom, J. A. Mosher, G. E. Danielson, A. F. Cook, and P. Kupferman, 1983, J. Geophys. Res. 88, 5789-5805) was analyzed to map surface units with similar optical properties (T. B. McCord, M. L. Nelson, R. N. Clark, A. Meloy, W. Harrison, T. V. Johnson, D. L. Matson, J. A. Mosher, and L. Soderblom, 1982, Bull Amer. Astron. Soc. 14, 737). Color assignments in the unit map are indicative of the spectral nature of the unit. The unit maps make it possible to infer extensions of the geologic units mapped by B. K. Lucchitta and L. A. Soderblom (1982, in Satellites of Jupiter, pp. 521-555, Univ. of Arizona Press, Tucson) beyond the region covered in the high-resolution imagery. The most striking feature in the unit maps is a strong hemispheric asymmetry. It is seen most clearly in the ultraviolet/violet albedo ratio image, because the asymmetry becomes more intense as the wavelength decreases. It appears as if the surface has been darkened, most intensely in the center of the trailing hemisphere and decreasing gradually, essentially as the cosine of the angle from the antapex of motion, to a minimum in the center of the leading hemisphere. The cosine pattern suggests that the darkening is exogenic in origin and is interpreted as evidence of alteration of the surface by ion bombardment from the Jovian magnetosphere. ?? 1986.

  15. Joint spatiotemporal variability of global sea surface temperatures and global Palmer drought severity index values

    USGS Publications Warehouse

    Apipattanavis, S.; McCabe, G.J.; Rajagopalan, B.; Gangopadhyay, S.

    2009-01-01

    Dominant modes of individual and joint variability in global sea surface temperatures (SST) and global Palmer drought severity index (PDSI) values for the twentieth century are identified through a multivariate frequency domain singular value decomposition. This analysis indicates that a secular trend and variability related to the El Niño–Southern Oscillation (ENSO) are the dominant modes of variance shared among the global datasets. For the SST data the secular trend corresponds to a positive trend in Indian Ocean and South Atlantic SSTs, and a negative trend in North Pacific and North Atlantic SSTs. The ENSO reconstruction shows a strong signal in the tropical Pacific, North Pacific, and Indian Ocean regions. For the PDSI data, the secular trend reconstruction shows high amplitudes over central Africa including the Sahel, whereas the regions with strong ENSO amplitudes in PDSI are the southwestern and northwestern United States, South Africa, northeastern Brazil, central Africa, the Indian subcontinent, and Australia. An additional significant frequency, multidecadal variability, is identified for the Northern Hemisphere. This multidecadal frequency appears to be related to the Atlantic multidecadal oscillation (AMO). The multidecadal frequency is statistically significant in the Northern Hemisphere SST data, but is statistically nonsignificant in the PDSI data.

  16. The global distribution of near-surface hydrogen on Mars

    SciTech Connect

    Feldman, W. C.; Prettyman, T. H.; Maurice, S.; Bish, D. L.; Vaniman, D. T.; Squyres, Steven W.; Boynton, W. V.; Elphic, R. C.; Funsten, H. O.; Lawrence, David J. ,; Tokar, R. L.; Moore, K. R.

    2004-01-01

    Prime objectives of the neutron spectrometer (NS) component of the Gamma-Ray Spectrometer suite of instruments aboard Mars Odyssey are to identify the major reservoirs of hydrogen on Mars, determine their relative contributions to its total water inventory, and estimate the portion of the current inventory that is near the surface. Although more information is required than is currently available, epithermal neutron currents alone can provide a significant lower bound of hydrogen abundances on Mars. Observations from Viking 1, Viking 2, and Mars Pathfinder positively identified two of these reservoirs. By far the largest near-surface reservoir is comprised of the two residual polar caps, which together are sufficient to cover Mars with a global ocean about 30 m deep. The second is contained in the atmosphere, which if deposited on the surface, would cover Mars with a thin film of water about 10{sup -5} m deep. Although negligible in comparison, the fact that an atmospheric reservoir exists shows that it can provide a conduit that couples transient reservoirs of near-surface water ice. It has long been speculated that Mars has had, and may still retain, a far larger reservoir of water. Topographic features such as rampart craters, collapsed chaotic terrain, massive outflow channels, and valley networks provide strong support for the past existence of large bodies of surface water. Measurements of the areal size and depth of all paleo-water and volcanic features led to an estimate of a total water inventory equivalent to a global ocean that was between 100 and 500 m thick. Measurements of the D/H ratio have allowed predictions that between 5 and 50 m of this inventory was lost to space. Altogether, these estimates lead to between 20 and 465 m of water from the juvenile Martian inventory that is not accounted for. First analyses of Mars Odyssey neutron and gamma-ray data showed that reservoirs of hydrogen do indeed exist poleward of about {+-}50{sup o} latitude. Mars

  17. Evaluating soil moisture constraints on surface fluxes in land surface models globally

    NASA Astrophysics Data System (ADS)

    Harris, Phil; Gallego-Elvira, Belen; Taylor, Christopher; Folwell, Sonja; Ghent, Darren; Veal, Karen; Hagemann, Stefan

    2016-04-01

    Soil moisture availability exerts a strong control over land evaporation in many regions. However, global climate models (GCMs) disagree on when and where evaporation is limited by soil moisture. Evaluation of the relevant modelled processes has suffered from a lack of reliable, global observations of land evaporation at the GCM grid box scale. Satellite observations of land surface temperature (LST) offer spatially extensive but indirect information about the surface energy partition and, under certain conditions, about soil moisture availability on evaporation. Specifically, as soil moisture decreases during rain-free dry spells, evaporation may become limited leading to increases in LST and sensible heat flux. We use MODIS Terra and Aqua observations of LST at 1 km from 2000 to 2012 to assess changes in the surface energy partition during dry spells lasting 10 days or longer. The clear-sky LST data are aggregated to a global 0.5° grid before being composited as a function dry spell day across many events in a particular region and season. These composites are then used to calculate a Relative Warming Rate (RWR) between the land surface and near-surface air. This RWR can diagnose the typical strength of short term changes in surface heat fluxes and, by extension, changes in soil moisture limitation on evaporation. Offline land surface model (LSM) simulations offer a relatively inexpensive way to evaluate the surface processes of GCMs. They have the benefits that multiple models, and versions of models, can be compared on a common grid and using unbiased forcing. Here, we use the RWR diagnostic to assess global, offline simulations of several LSMs (e.g., JULES and JSBACH) driven by the WATCH Forcing Data-ERA Interim. Both the observed RWR and the LSMs use the same 0.5° grid, which allows the observed clear-sky sampling inherent in the underlying MODIS LST to be applied to the model outputs directly. This approach avoids some of the difficulties in analysing free

  18. Long-Range Correlations of Global Sea Surface Temperature

    PubMed Central

    Jiang, Lei; Zhao, Xia; Wang, Lu

    2016-01-01

    Scaling behaviors of the global monthly sea surface temperature (SST) derived from 1870–2009 average monthly data sets of Hadley Centre Sea Ice and SST (HadISST) are investigated employing detrended fluctuation analysis (DFA). The global SST fluctuations are found to be strong positively long-range correlated at all pertinent time-intervals. The value of scaling exponent is larger in the tropics than those in the intermediate latitudes of the northern and southern hemispheres. DFA leads to the scaling exponent α = 0.87 over the globe (60°S~60°N), northern hemisphere (0°N~60°N), and southern hemisphere (0°S~60°S), α = 0.84 over the intermediate latitude of southern hemisphere (30°S~60°S), α = 0.81 over the intermediate latitude of northern hemisphere (30°N~60°N) and α = 0.90 over the tropics 30°S~30°N [fluctuation F(s) ~ sα], which the fluctuations of monthly SST anomaly display long-term correlated behaviors. Furthermore, the larger the standard deviation is, the smaller long-range correlations (LRCs) of SST in the corresponding regions, especially in three distinct upwelling areas. After the standard deviation is taken into account, an index χ = α * σ is introduced to obtain the spatial distributions of χ. There exists an obvious change of global SST in central east and northern Pacific and the northwest Atlantic. This may be as a clue on predictability of climate and ocean variabilities. PMID:27100397

  19. Generating Ground Reference Data for a Global Impervious Surface Survey

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; De Colstoun, Eric Brown; Wolfe, Robert E.; Tan, Bin; Huang, Chengquan

    2012-01-01

    We are developing an approach for generating ground reference data in support of a project to produce a 30m impervious cover data set of the entire Earth for the years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. Since sufficient ground reference data for training and validation is not available from ground surveys, we are developing an interactive tool, called HSegLearn, to facilitate the photo-interpretation of 1 to 2 m spatial resolution imagery data, which we will use to generate the needed ground reference data at 30m. Through the submission of selected region objects and positive or negative examples of impervious surfaces, HSegLearn enables an analyst to automatically select groups of spectrally similar objects from a hierarchical set of image segmentations produced by the HSeg image segmentation program at an appropriate level of segmentation detail, and label these region objects as either impervious or nonimpervious.

  20. Accurate global potential energy surface for the H + OH+ collision

    NASA Astrophysics Data System (ADS)

    Gannouni, M. A.; Jaidane, N. E.; Halvick, P.; Stoecklin, T.; Hochlaf, M.

    2014-05-01

    We mapped the global three-dimensional potential energy surface (3D-PES) of the water cation at the MRCI/aug-cc-pV5Z including the basis set superposition (BSSE) correction. This PES covers the molecular region and the long ranges close to the H + OH+(X3Σ-), the O + H2+(X2Σg+), and the hydrogen exchange channels. The quality of the PES is checked after comparison to previous experimental and theoretical results of the spectroscopic constants of H2O+(tilde X2B1) and of the diatomic fragments, the vibronic spectrum, the dissociation energy, and the barrier to linearity for H2O+(tilde X2B1). Our data nicely approach those measured and computed previously. The long range parts reproduce quite well the diatomic potentials. In whole, a good agreement is found, which validates our 3D-PES.

  1. Global surface-based cloud observation for ISCCP

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Visual observations of cloud cover are hindered at night due to inadequate illumination of the clouds. This usually leads to an underestimation of the average cloud cover at night, especially for the amounts of middle and high clouds, in climatologies on surface observations. The diurnal cycles of cloud amounts, if based on all the surface observations, are therefore in error, but they can be obtained more accurately if the nighttime observations are screened to select those made under sufficient moonlight. Ten years of nighttime weather observations from the northern hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 degrees or from a partial moon at higher elevation, or twilight from the sun less than 9 degrees below the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. Cloud cover is greater at night than during the day over the open oceans far from the continents, particularly in summer. However, near noon maxima are still evident in the coastal regions, so that the global annual average oceanic cloud cover is still slightly greater during the day than at night, by 0.3%. Over land, where daytime maxima are still obtained but with reduced amplitude, average cloud cover is 3.3% greater during the daytime. The diurnal cycles of total cloud cover we obtain are compared with those of ISCCP for a

  2. Global Hydrographic Overview of Ocean Near Surface Variability

    NASA Astrophysics Data System (ADS)

    von Schuckmann, K.; Gaillard, F.; Le Traon, P.

    2007-12-01

    Estimates of hydrographic variability as measured by ARGO drifters in the near surface layer of the world ocean are discussed here. A gridded global field of these hydrographic measurements is used which is disposed by the CORIOLIS Analysis System (CAS). The estimates explicitly include the description of the seasonal cycle of temperature as well as of the salinity field, depict large-scale variability patterns in the different oceanic basins and its main purpose is to provide an insight into what can be measured and resolved in the upper layer while using the CAS gridded field. Amplitudes of total variance are generally higher in the northern hemisphere compared to its southern counterpart. The distribution of standard deviations of temperature including the seasonal cycle as well as from temperature anomalies highly differs from corresponding salinity variability which can be predominantly lead back to ocean atmosphere dynamics. Large-scale and well known oceanic features such as ocean's response to NAO and PDO fluctuations and ENSO dynamics can be resolved in CAS temperatures. A substantial advance using the CAS gridded field is that its signatures in global salinity can also be discussed.

  3. An Open and Transparent Databank of Global Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Rennie, J.; Thorne, P.; Lawrimore, J. H.; Gleason, B.; Menne, M. J.; Williams, C.

    2013-12-01

    The International Surface Temperature Initiative (ISTI) consists of an effort to create an end-to-end process for land surface air temperature analyses. The foundation of this process is the establishment of a global land surface databank. The databank builds upon the groundbreaking efforts of scientists who led efforts to construct global land surface datasets in the 1980's and 1990's. A primary aim of the databank is to improve aspects including data provenance, version control, temporal and spatial coverage, and improved methods for bringing dozens of source data together into an integrated dataset. The databank consists of multiple stages, with each successive stage providing a higher level of processing, quality and integration. Currently more than 50 sources of data have been added to the databank. An automated algorithm has been developed that merges these sources into one complete dataset by removing duplicate station records, identifying two or more station records that can be merged into a single record, and incorporating new and unique stations. The program runs iteratively through all the sources which are ordered based upon criteria established by the ISTI. The highest preferred source, known as the target, runs through all the candidate sources, calculating station comparisons that are acceptable for merging. The process is probabilistic in approach, and the final fate of a candidate station is based upon metadata matching and data equivalence criteria. If there is not enough information, the station is withheld for further investigation. The algorithm has been validated using a pseudo-source of stations with a known time of observation bias, and correct matches have been made nearly 95% of the time. The final product, endorsed and recommended by ISTI, contains over 30,000 stations, however slight changes in the algorithm can perturb results. Subjective decisions, such as the ordering of the sources, or changing metadata and data matching thresholds

  4. A high-resolution global sea surface temperature climatology

    SciTech Connect

    Reynolds, R.W.; Smith, T.M.

    1995-06-01

    In response to the development of a new higher-resolution sea surface temperature (SST) analysis at the National Meteorological Center (NMC), a new monthly 1{degrees} global sea surface temperature climatology was constructed from two intermediate climatologies: the 2{degrees} SST climatology used a 30-yr 1950-1979 base period between roughly 40{degrees}S and 60{degrees}N based on in situ (ship and buoy) SST data supplemented by four years (1982-1985) of satellite SST retrievals, and sea-ice coverage data over a 12-yr period (1982-1993). The final climatology was combined from these two products so that a 1{degrees} resolution was maintained and the base period was adjusted to the 1950-1979 period wherever possible (approximately between 40{degrees}S and 60{degrees}N). Compared to the 2{degrees} climatology, the 1{degrees} climatology resolves equatorial upwelling and fronts much better. This leads to a better matching of the scales of the new analysis and climatology. In addition, because the magnitudes of large-scale features are consistently maintained in both the older 2{degrees} and the new 1{degrees} climatologies, climate monitoring of large-scale anomalies will be minimally affected by the analysis change. The use of 12 years of satellite SST retrievals makes this new climatology useful for many additional purposes because its effective resolution actually approaches 1{degrees} everywhere over the global ocean and because the mean SST values are more accurate south of 40{degrees}S than climatologies without these data. 12 refs., 16 figs.

  5. Perfluoroalkylated substances in the global tropical and subtropical surface oceans.

    PubMed

    González-Gaya, Belén; Dachs, Jordi; Roscales, Jose L; Caballero, Gemma; Jiménez, Begoña

    2014-11-18

    In this study, perfluoroalkylated substances (PFASs) were analyzed in 92 surface seawater samples taken during the Malaspina 2010 expedition which covered all the tropical and subtropical Atlantic, Pacific and Indian oceans. Nine ionic PFASs including C6-C10 perfluoroalkyl carboxylic acids (PFCAs), C4 and C6-C8 perfluoroalkyl sulfonic acids (PFSAs) and two neutral precursors perfluoroalkyl sulfonamides (PFASAs), were identified and quantified. The Atlantic Ocean presented the broader range in concentrations of total PFASs (131-10900 pg/L, median 645 pg/L, n = 45) compared to the other oceanic basins, probably due to a better spatial coverage. Total concentrations in the Pacific ranged from 344 to 2500 pg/L (median = 527 pg/L, n = 27) and in the Indian Ocean from 176 to 1976 pg/L (median = 329, n = 18). Perfluorooctanesulfonic acid (PFOS) was the most abundant compound, accounting for 33% of the total PFASs globally, followed by perfluorodecanoic acid (PFDA, 22%) and perfluorohexanoic acid (PFHxA, 12%), being the rest of the individual congeners under 10% of total PFASs, even for perfluorooctane carboxylic acid (PFOA, 6%). PFASAs accounted for less than 1% of the total PFASs concentration. This study reports the ubiquitous occurrence of PFCAs, PFSAs, and PFASAs in the global ocean, being the first attempt, to our knowledge, to show a comprehensive assessment in surface water samples collected in a single oceanic expedition covering tropical and subtropical oceans. The potential factors affecting their distribution patterns were assessed including the distance to coastal regions, oceanic subtropical gyres, currents and biogeochemical processes. Field evidence of biogeochemical controls on the occurrence of PFASs was tentatively assessed considering environmental variables (solar radiation, temperature, chlorophyll a concentrations among others), and these showed significant correlations with some PFASs, but explaining small to moderate percentages of variability

  6. The influence of global sea surface temperature variability on the large-scale land surface temperature

    NASA Astrophysics Data System (ADS)

    Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike

    2015-04-01

    In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.

  7. Miniaturization and globalization of clinical laboratory activities.

    PubMed

    Melo, Murilo R; Clark, Samantha; Barrio, Daniel

    2011-04-01

    Clinical laboratories provide an invaluable service to millions of people around the world in the form of quality diagnostic care. Within the clinical laboratory industry the impetus for change has come from technological development (miniaturization, nanotechnology, and their collective effect on point-of-care testing; POCT) and the increasingly global nature of laboratory services. Potential technological gains in POCT include: the development of bio-sensors, microarrays, genetics and proteomics testing, and enhanced web connectivity. In globalization, prospective opportunities lie in: medical tourism, the migration of healthcare workers, cross-border delivery of testing, and the establishment of accredited laboratories in previously unexplored markets. Accompanying these impressive opportunities are equally imposing challenges. Difficulty transitioning from research to clinical use, poor infrastructure in developing countries, cultural differences and national barriers to global trade are only a few examples. Dealing with the issues presented by globalization and the impact of developing technology on POCT, and on the clinical laboratory services industry in general, will be a daunting task. Despite such concerns, with appropriate countermeasures it will be possible to address the challenges posed. Future laboratory success will be largely dependent on one's ability to adapt in this perpetually shifting landscape.

  8. The Global Space Geodesy Network: Activities Underway

    NASA Astrophysics Data System (ADS)

    Pearlman, Michael R.; Ipatov, Alexander; Long, James; Ma, Chopo; Merkowitz, Stephen; Neilan, Ruth; Noll, Carey; Pavlis, Erricos; Shargorodsky, Victor; Stowers, David; Wetzel, Scott

    2014-05-01

    Several initiatives are underway that should make substantial improvement over the next decade to the international space geodesy network as the international community works toward the GGOS 2020 goal of 32 globally distributed Core Sites with co-located VLBI, SLR, GNSS and DORIS. The Russian Space Agency and the Russian Academy of Sciences are moving forward with an implementation of six additional SLR systems and a number of GNSS receivers to sites outside Russia to expand GNSS tracking and support GGOS. The NASA Space Geodesy program has completed its prototype development phase and is now embarking on an implementation phase that is planning for deployment of 6 - 10 core sites in key geographic locations to support the global network. Additional sites are in the process of implementation in Europe and Asia. Site evaluation studies are in progress, looking at some new potential sites and there are ongoing discussions for partnership arrangements with interested agencies for new sites in South America and Africa. Work continues on the site layout design to avoid RF interference issues among co-located instruments and with external communications and media system. The placement of new and upgraded sites is guided by appropriate Observing System Simulation Experiments (OSSEs) conducted under the support of the interested international agencies. The results will help optimize the global distribution of core geodetic observatories and they will lead to the improvement of the data products from the future network. During this effort it is also recognized that co-located sites with less than the full core complement will continue to play an important and critical role in filling out the global network and strengthening the connection among the techniques. This talk will give an update on the current state of expansion of the global network and the projection for the network configuration that we forecast over the next 10 years.

  9. Satellite monitoring of the global ocean surface during 1987-1989

    NASA Technical Reports Server (NTRS)

    Halpern, David

    1992-01-01

    Long-term simultaneous global coverage of AVHRR sea surface temperature, SSMI surface wind speed, GEOSAT sea surface height, and ARGOS buoy drift began in 1987. Methodology to create annual atlases of monthly mean distributions is described.

  10. Long-range persistence in the global mean surface temperature and the global warming "time bomb"

    NASA Astrophysics Data System (ADS)

    Rypdal, M.; Rypdal, K.

    2012-04-01

    Detrended Fluctuation Analysis (DFA) and Maximum Likelihood Estimations (MLE) based on instrumental data over the last 160 years indicate that there is Long-Range Persistence (LRP) in Global Mean Surface Temperature (GMST) on time scales of months to decades. The persistence is much higher in sea surface temperature than in land temperatures. Power spectral analysis of multi-model, multi-ensemble runs of global climate models indicate further that this persistence may extend to centennial and maybe even millennial time-scales. We also support these conclusions by wavelet variogram analysis, DFA, and MLE of Northern hemisphere mean surface temperature reconstructions over the last two millennia. These analyses indicate that the GMST is a strongly persistent noise with Hurst exponent H>0.9 on time scales from decades up to at least 500 years. We show that such LRP can be very important for long-term climate prediction and for the establishment of a "time bomb" in the climate system due to a growing energy imbalance caused by the slow relaxation to radiative equilibrium under rising anthropogenic forcing. We do this by the construction of a multi-parameter dynamic-stochastic model for the GMST response to deterministic and stochastic forcing, where LRP is represented by a power-law response function. Reconstructed data for total forcing and GMST over the last millennium are used with this model to estimate trend coefficients and Hurst exponent for the GMST on multi-century time scale by means of MLE. Ensembles of solutions generated from the stochastic model also allow us to estimate confidence intervals for these estimates.

  11. Fitting the observed changes of global surface temperatures

    NASA Astrophysics Data System (ADS)

    Courtillot, V.; Le Mouël, J.; Kossobokov, V. G.; Gibert, D.; Lopes, F.

    2012-12-01

    The quality of the fit of a trivial or, conversely, delicately-designed model to the observed natural phenomena is the fundamental pillar stone of any forecasting, including forecasting of the Earth's Climate. Using precise mathematical and logical systems outside their range of applicability can be scientifically groundless, unwise, and even dangerous. The temperature data sets are naturally in the basis of any hypothesizing on variability and forecasting the Earth's Climate. Leaving open the question of the global temperature definitions and their determination (T), we have analyzed hemispheric and global monthly temperature anomaly series produced by the Climate Research Unit of the University of East Anglia (CRUTEM4 database) and more recently by the Berkeley Earth Surface Temperature consortium (BEST database). We first fit the data in 1850-2010 with polynomials of degrees 1 to 9 and compare it with exponential fit by the adjusted R-squared criterion that takes into consideration the number of free parameters of the model. In all the cases considered, the adjusted R-squared values for polynomials are larger than for the exponential as soon as the degree exceeds 1 or 2. The polynomial fits become even more satisfactory as soon as degree 5 or 6 is reached. Extrapolations of these trends outside of the data domain show quick divergence. For example, the CRUTEM4vNH fit in the decade 2010-2020, for degrees 2 to 5, rises steeply then, for degrees 6 to 9, reverses to steep decreasing: the reversal in extrapolated trends arises from improved ability to fit the observed "~60-yr" wave in 150 years of data prior to 2010. The extrapolations prior to 1850 are even more erratic, linked with the increased dispersion of the early data. When focusing the analysis of fits on 1900-2010 we find that the apparent oscillations of T can be modeled by a series of linear segments: An optimal fit suggests 4 slope breaks indicating two clear transitions in 1940 and 1975, and two that

  12. Global Modeling of Withdrawal, Allocation and Consumptive Use of Surface Water and Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Wisser, D.; Bierkens, M. F.

    2014-12-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive global reservoir data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  13. Madden Julian Oscillation impacts on global ocean surface waves

    NASA Astrophysics Data System (ADS)

    Marshall, Andrew G.; Hendon, Harry H.; Durrant, Tom H.; Hemer, Mark A.

    2015-12-01

    We assess the impact of the tropical Madden Julian Oscillation (MJO) on global ocean wind waves using 30 years of wave data from a wave model hindcast that is forced with high resolution surface winds from the NCEP-CFSR reanalysis. We concentrate on the boreal winter season when the MJO has its greatest amplitude and is potentially a source of predictable wave impacts at intra-seasonal lead times. Statistically significant anomalies in significant wave height (Hs), peak wave period (Tp) and zonal wave energy flux (CgE) are found to covary with the intra-seasonal variation of surface zonal wind induced by the MJO as it traverses eastward from the western tropical Indian Ocean to the eastern tropical Pacific. Tp varies generally out of phase with Hs over the life cycle of the MJO, indicating that these MJO-wave anomalies are locally wind-generated rather than remotely generated by ocean swell. Pronounced Hs anomalies develop on the northwest shelf of Australia, where the MJO is known to influence sea level and surface temperatures, and in the western Caribbean Sea and Guatemalan-Panama Seas with enhanced wave anomalies apparent in the vicinity of the Tehuantepec and Papagayo gaps. Significant wave anomalies are also detected in the North Pacific and North Atlantic oceans in connection with the MJO teleconnection to the extratropics via atmospheric wave propagation. The impact in the north Atlantic stems from induction of the high phase of the North Atlantic Oscillation (NAO) about 1 week after MJO convection traverses the Indian Ocean, and the low phase of the NAO about one week after suppressed convection traverses the Indian Ocean. Strong positive Hs anomalies maximize on the Northern European coast in the positive NAO phase and vice versa for the negative NAO phase. The MJO also influences the occurrence of daily low (below the 5th percentile) and high (above the 95th percentile) wave conditions across the tropics and in the North Pacific and North Atlantic

  14. Titanium surface hydrophilicity enhances platelet activation.

    PubMed

    Alfarsi, Mohammed A; Hamlet, Stephen M; Ivanovski, Saso

    2014-01-01

    Titanium implant surface modification is a key strategy used to enhance osseointegration. Platelets are the first cells that interact with the implant surface whereupon they release a wide array of proteins that influence the subsequent healing process. This study therefore investigated the effect of titanium surface modification on the attachment and activation of human platelets. The surface characteristics of three titanium surfaces: smooth (SMO), micro-rough (SLA) and hydrophilic micro-rough (SLActive) and the subsequent attachment and activation of platelets following exposure to these surfaces were determined. The SLActive surface showed the presence of significant nanoscale topographical features. While attached platelets appeared to be morphologically similar, significantly fewer platelets attached to the SLActive surface compared to both the SMO and SLA surfaces. The SLActive surface however induced the release of the higher levels of chemokines β-thromboglobulin and platelet factor 4 from platelets. This study shows that titanium surface topography and chemistry have a significant effect on platelet activation and chemokine release.

  15. International Global Atmospheric Chemistry Programme global emissions inventory activity: Sulfur emissions from volcanoes, current status

    SciTech Connect

    Benkovitz, C.M.

    1995-07-01

    Sulfur emissions from volcanoes are located in areas of volcanic activity, are extremely variable in time, and can be released anywhere from ground level to the stratosphere. Previous estimates of global sulfur emissions from all sources by various authors have included estimates for emissions from volcanic activity. In general, these global estimates of sulfur emissions from volcanoes are given as global totals for an ``average`` year. A project has been initiated at Brookhaven National Laboratory to compile inventories of sulfur emissions from volcanoes. In order to complement the GEIA inventories of anthropogenic sulfur emissions, which represent conditions circa specific years, sulfur emissions from volcanoes are being estimated for the years 1985 and 1990.

  16. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  17. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.; Wmo Gaw, Epa Aqs, Epa Castnet, Capmon, Naps, Airbase, Emep, Eanet Ozone Datasets, All Other Contributors To

    2015-07-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8), SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  18. Optimizing human activity patterns using global sensitivity analysis

    PubMed Central

    Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2014-01-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080

  19. Optimizing human activity patterns using global sensitivity analysis

    SciTech Connect

    Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2013-12-10

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  20. Optimizing human activity patterns using global sensitivity analysis

    DOE PAGES

    Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2013-12-10

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less

  1. Extracting the Global Sea Surface Temperature Evolutions of Different Timescales

    NASA Astrophysics Data System (ADS)

    Feng, J.; Wu, Z.

    2012-12-01

    A new data analysis procedure, involving empirical orthogonal functions (EOF) analysis and ensemble empirical mode decomposition (EEMD), is employed to extract the evolutions of global Sea Surface Temperature (SST) of different timescales spanning the period from 1880 to 2009 (130 yr). Specifically, EOF analysis serves as a means of lossy data compression to eliminate the spatial-temporally incoherent, noise-like part of the data; and EEMD decomposes SST time series into different time scales, which facilitates research on SST-related weather and climate phenomena that have various timescales. Through validation, it is shown that the difference between the results and the original SST time series are mostly white noises, both spatially and temporally incoherent. We apply the results to study El Niño-Southern Oscillation (ENSO) events. Each ENSO event is examined and we find an oceanic region off Baja California coast ( ) that is instrumental to some ENSO events, especially those recently called ENSO Modoki, whose initial warming may be traced back to earlier warming signals from Baja California.

  2. Protein surface matching by combining local and global geometric information.

    PubMed

    Ellingson, Leif; Zhang, Jinfeng

    2012-01-01

    Comparison of the binding sites of proteins is an effective means for predicting protein functions based on their structure information. Despite the importance of this problem and much research in the past, it is still very challenging to predict the binding ligands from the atomic structures of protein binding sites. Here, we designed a new algorithm, TIPSA (Triangulation-based Iterative-closest-point for Protein Surface Alignment), based on the iterative closest point (ICP) algorithm. TIPSA aims to find the maximum number of atoms that can be superposed between two protein binding sites, where any pair of superposed atoms has a distance smaller than a given threshold. The search starts from similar tetrahedra between two binding sites obtained from 3D Delaunay triangulation and uses the Hungarian algorithm to find additional matched atoms. We found that, due to the plasticity of protein binding sites, matching the rigid body of point clouds of protein binding sites is not adequate for satisfactory binding ligand prediction. We further incorporated global geometric information, the radius of gyration of binding site atoms, and used nearest neighbor classification for binding site prediction. Tested on benchmark data, our method achieved a performance comparable to the best methods in the literature, while simultaneously providing the common atom set and atom correspondences.

  3. Communication: Global flux surface hopping in Liouville space

    NASA Astrophysics Data System (ADS)

    Wang, Linjun; Sifain, Andrew E.; Prezhdo, Oleg V.

    2015-11-01

    Recent years have witnessed substantial progress in the surface hopping (SH) formulation of non-adiabatic molecular dynamics. A generalization of the traditional fewest switches SH (FSSH), global flux SH (GFSH) utilizes the gross population flow between states to derive SH probabilities. The Liouville space formulation of FSSH puts state populations and coherences on equal footing, by shifting the hopping dynamics from Hilbert to Liouville space. Both ideas have shown superior results relative to the standard FSSH in Hilbert space, which has been the most popular approach over the past two and a half decades. By merging the two ideas, we develop GFSH in Liouville space. The new method is nearly as straightforward as the standard FSSH, and carries comparable computational expense. Tested with a representative super-exchange model, it gives the best performance among all existing techniques in the FSSH series. The obtained numerical results match almost perfectly the exact quantum mechanical solutions. Moreover, the results are nearly invariant under the choice of a basis state representation for SH, in contrast to the earlier techniques which exhibit notable basis set dependence. Unique to the developed approach, this property is particularly encouraging, because exact quantum dynamics is representation independent. GFSH in Liouville space significantly improves accuracy and applicability of SH for a broad range of chemical and physical processes.

  4. Communication: Global flux surface hopping in Liouville space

    SciTech Connect

    Wang, Linjun E-mail: prezhdo@usc.edu; Prezhdo, Oleg V. E-mail: prezhdo@usc.edu; Sifain, Andrew E.

    2015-11-21

    Recent years have witnessed substantial progress in the surface hopping (SH) formulation of non-adiabatic molecular dynamics. A generalization of the traditional fewest switches SH (FSSH), global flux SH (GFSH) utilizes the gross population flow between states to derive SH probabilities. The Liouville space formulation of FSSH puts state populations and coherences on equal footing, by shifting the hopping dynamics from Hilbert to Liouville space. Both ideas have shown superior results relative to the standard FSSH in Hilbert space, which has been the most popular approach over the past two and a half decades. By merging the two ideas, we develop GFSH in Liouville space. The new method is nearly as straightforward as the standard FSSH, and carries comparable computational expense. Tested with a representative super-exchange model, it gives the best performance among all existing techniques in the FSSH series. The obtained numerical results match almost perfectly the exact quantum mechanical solutions. Moreover, the results are nearly invariant under the choice of a basis state representation for SH, in contrast to the earlier techniques which exhibit notable basis set dependence. Unique to the developed approach, this property is particularly encouraging, because exact quantum dynamics is representation independent. GFSH in Liouville space significantly improves accuracy and applicability of SH for a broad range of chemical and physical processes.

  5. Global monitoring of Sea Surface Salinity with Aquarius

    NASA Technical Reports Server (NTRS)

    Lagerloef, G. S. E.; LeVine, D. M.; Chao, Yi; Colomb, R.; Nollmann, I.

    2005-01-01

    Aquarius is a microwave remote sensing system designed to obtain global maps of the surface salinity field of the oceans from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for late in 2008. The objective of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This will provide data to address scientific questions associated with ocean circulation and its impact on climate. For example, salinity is needed to understand the large scale thermohaline circulation, driven by buoyancy, which moves large masses of water and heat around the globe. Of the two variables that determine buoyancy (salinity and temperature), temperature is already being monitored. Salinity is the missing variable needed to understand this circulation. Salinity also has an important role in energy exchange between the ocean and atmosphere, for example in the development of fresh water lenses (buoyant water that forms stable layers and insulates water below from the atmosphere) which alter the air-sea coupling. Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument,for measuring salinity is the radiometer which is able to detect salinity because of the modulation salinity produces on the thermal emission from sea water. This change is detectable at the long wavelength end of the microwave spectrum. The scatterometer will provide a correction for surface roughness (waves) which is one of the greatest unknowns in the retrieval. The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6am/6pm. The antenna for these two instruments is a 3 meter offset fed reflector with three feeds arranged in pushbroom fashion looking away from the sun toward the shadow side of the orbit to

  6. How to most effectively expand the global surface ozone observing network

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.

    2016-02-01

    Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12-17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under-observed. The current network is unlikely to see the impact of the El Niño-Southern Oscillation (ENSO) but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which

  7. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.

    PubMed

    Wang, Chanchan; Sauvageau, Dominic; Elias, Anastasia

    2016-01-20

    A rapid, efficient technique for the attachment of bacteriophages (phages) onto polyhydroxyalkanoate (PHA) surfaces has been developed and compared to three reported methods for phage immobilization. Polymer surfaces were modified to facilitate phage attachment using (1) plasma treatment alone, (2) plasma treatment followed by activation by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), (3) plasma-initiated acrylic acid grafting, or (4) plasma-initiated acrylic acid grafting with activation by EDC and sulfo-NHS. The impact of each method on the surface chemistry of PHA was investigated using contact angle analysis and X-ray photoelectron spectroscopy. Each of the four treatments was shown to result in both increased hydrophilicity and in the modification of the surface functional groups. Modified surfaces were immersed in suspensions of phage T4 for immobilization. The highest level of phage binding was observed for the surfaces modified by plasma treatment alone. The change in chemical bond states observed for surfaces that underwent plasma treatment is suspected to be the cause of the increased binding of active phages. Plasma-treated surfaces were further analyzed through phage-staining and fluorescence microscopy to assess the surface density of immobilized phages and their capacity to capture hosts. The infective capability of attached phages was confirmed by exposing the phage-immobilized surfaces to the host bacteria Escherichia coli in both plaque and infection dynamic assays. Plasma-treated surfaces with immobilized phages displayed higher infectivity than surfaces treated with other methods; in fact, the equivalent initial multiplicity of infection was 2 orders of magnitude greater than with other methods. Control samples - prepared by immersing polymer surfaces in phage suspensions (without prior plasma treatment) - did not show any bacterial growth inhibition, suggesting they did not bind

  8. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stockli, Martin P.; Welton, R. F.

    2011-09-26

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H{sup -} ion generation was increased by up to a factor of 5 by plasma electrode 'activation', without supplying additional Cs, by heating the collar to high temperature for several hours using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, optimum cesiation was produced (without additional Cs) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces. Such activation by accumulation of impurities on electrode surfaces can be a reason for H{sup -} emission enhancement in other so-called 'volume' negative ion sources.

  9. Generating Ground Reference Data for a Global Impervious Surface Survey

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; deColstoun, Eric Brown; Wolfe, Robert E.; Tan, Bin; Huang, Chengquan

    2012-01-01

    We are engaged in a project to produce a 30m impervious cover data set of the entire Earth for the years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. The GLS data from Landsat provide an unprecedented opportunity to map global urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such as buildings, roads and parking lots. Finally, with GLS data available for the 1975, 1990, 2000, and 2005 time periods, and soon for the 2010 period, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. Our approach works across spatial scales using very high spatial resolution commercial satellite data to both produce and evaluate continental scale products at the 30m spatial resolution of Landsat data. We are developing continental scale training data at 1m or so resolution and aggregating these to 30m for training a regression tree algorithm. Because the quality of the input training data are critical, we have developed an interactive software tool, called HSegLearn, to facilitate the photo-interpretation of high resolution imagery data, such as Quickbird or Ikonos data, into an impervious versus non-impervious map. Previous work has shown that photo-interpretation of high resolution data at 1 meter resolution will generate an accurate 30m resolution ground reference when coarsened to that resolution. Since this process can be very time consuming when using standard clustering classification algorithms, we are looking at image segmentation as a potential avenue to not only improve the training process but also provide a semi-automated approach for generating the ground reference data. HSegLearn takes as its input a hierarchical set of image segmentations produced by the HSeg image segmentation program [1, 2]. HSegLearn lets an analyst specify pixel locations as being

  10. Chemical activity induces dynamical force with global structure in a reaction-diffusion-convection system.

    PubMed

    Mahara, Hitoshi; Okada, Koichi; Nomura, Atsushi; Miike, Hidetoshi; Sakurai, Tatsunari

    2009-07-01

    We found a rotating global structure induced by the dynamical force of local chemical activity in a thin solution layer of excitable Belousov-Zhabotinsky reaction coupled with diffusion. The surface flow and deformation associated with chemical spiral waves (wavelength about 1 mm) represents a global unidirectional structure and a global tilt in the entire Petri dish (100 mm in diameter), respectively. For these observations, we scanned the condition of hierarchal pattern selection. From this result, the bromomalonic acid has an important role to induce the rotating global structure. An interaction between a reaction-diffusion process and a surface-tension-driven effect leads to such hierarchal pattern with different scales. PMID:19658764

  11. GLOBAL DYNAMICS OF SUBSURFACE SOLAR ACTIVE REGIONS

    SciTech Connect

    Jouve, L.; Brun, A. S.

    2013-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced into the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an {Omega}-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to those of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We further emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call 'magnetic necklace' and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also find that the asymmetry between the two legs of the loop is crucially dependent on the initial magnetic field strength. The tilt angle of the emerging regions is also studied in the stable and unstable cases and seems to be affected both by the convective motions and the presence of a differential rotation in the convective cases.

  12. Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Lin, Che-Jen; Wang, Xun; Sommar, Jonas; Fu, Xuewu; Feng, Xinbin

    2016-04-01

    Reliable quantification of air-surface fluxes of elemental Hg vapor (Hg0) is crucial for understanding mercury (Hg) global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc.) in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere-surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air-surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.). However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann-Whitney U test). The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia). The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0 flux observations in East

  13. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Han, Baoxi; Johnson, Rolland P.; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P; Welton, Robert F

    2011-01-01

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H- ion generation was increased by up to a factor of 5 by long time plasma electrode activation, without adding Cs from Cs supply, by heating the collar to high temperature using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, perfect cesiation was produced (without additional Cs supply) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces.

  14. Active micromixer using surface acoustic wave streaming

    SciTech Connect

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  15. Local and global contributions to hemodynamic activity in mouse cortex

    PubMed Central

    Pisauro, M. Andrea; Benucci, Andrea

    2016-01-01

    Imaging techniques such as functional magnetic resonance imaging seek to estimate neural signals in local brain regions through measurements of hemodynamic activity. However, hemodynamic activity is accompanied by large vascular fluctuations of unclear significance. To characterize these fluctuations and their impact on estimates of neural signals, we used optical imaging in visual cortex of awake mice. We found that hemodynamic activity can be expressed as the sum of two components, one local and one global. The local component reflected presumed neural signals driven by visual stimuli in the appropriate retinotopic region. The global component constituted large fluctuations shared by larger cortical regions, which extend beyond visual cortex. These fluctuations varied from trial to trial, but they did not constitute noise; they correlated with pupil diameter, suggesting that they reflect variations in arousal or alertness. Distinguishing local and global contributions to hemodynamic activity may help understand neurovascular coupling and interpret measurements of hemodynamic responses. PMID:26984421

  16. Subnano Pt Particles from a First-Principles Stochastic Surface Walking Global Search.

    PubMed

    Wei, Guang-Feng; Liu, Zhi-Pan

    2016-09-13

    Subnano transition metal particles have wide applications in chemistry. For the complexity of their potential energy surface, it has long been a great challenge for both theory and experiment to determine the structure of subnano clusters and thus predict their physiochemical properties. Here we explore the structure configurations for 35 subnano PtN (N = 12-46) clusters using a first-principles Stochastic Surface Walking (SSW) global search. For each cluster, thousands of structure candidates are collected from a parallel SSW search. This leads to the finding of 20 new global minima in 35 clusters, which reflects the essence of a first-principles global search for revealing the structure of subnano transition metal clusters. PtN subnano clusters with N being 14, 18, 22, 27, 36, and 44 have higher stability than their neighboring size clusters and are characterized as magic number clusters. These PtN subnano clusters exhibit metallic characteristics with a diminishing HOMO-LUMO gap, much poorer binding energy (by 1-1.7 eV), and a much higher Fermi level (by 1-1.5 eV) than bulk metal, implying their high chemical activity. By analyzing their structures, we observe the presence of a rigid core and a soft shell for PtN clusters and find that the core-shell 3-D architecture evolves as early as N > 22. For these core-shell clusters, a good core-shell lattice match is the key to achieve the high stability.

  17. Monitoring the state of global terrestrial surfaces using FAPAR derived from SeaWiFS, MERIS and MODIS TIP

    NASA Astrophysics Data System (ADS)

    Gobron, Nadine; Robustelli, Monica

    Monitoring the state of global terrestrial surfaces using FAPAR derived from SeaWiFS, MERIS and MODIS TIP. This paper presents the analysis of a 15-year record of global FAPAR observation showing that significant spatio-temporal variations in vegetation dynamics occurred on regional and continental scales. The state of vegetation is examined using estimates of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) from 1998 to 2013 using SeaWiFS, MERIS and JRC MODIS-TIP products. We propose a procedure taking advantage of the JRC MODIS TIP products, after the loss of ENVISAT for monitoring the state of terrestrial surfaces at global scale: This methodology helps to bridge the gap between MERIS and OLCI land products. Then the global anomalies derived from the analysis of this time series highlight geographical regions subject to changes in 2013 with respect to previous years.

  18. Boltzmann active walkers and rough surfaces

    NASA Astrophysics Data System (ADS)

    Pochy, R. D.; Kayser, D. R.; Aberle, L. K.; Lam, L.

    1993-06-01

    An active walker model (AWM) was recently proposed by Freimuth and Lam for the generation of various filamentary patterns. In an AWM, the walker changes the landscape as it walks, and its steps are in turn influenced by the changing landscape. The landscape so obtained is a rough surface. In this paper, the properties of such a rough surface (with average height conserved) generated by a Boltzmann active walker in 1 + 1 dimensions is investigated in detail. The scaling properties of the surface thickness σ T is found to belong to a new class quite different from other types of fractal surfaces. For example, σ T is independent of the system size L, but is a function of the “temperature” T. Soliton propagation is found when T = 0.

  19. A global tectonic activity map with orbital photographic supplement

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  20. Global tectonic activity map with orbital photographic supplement

    SciTech Connect

    Lowman, P.D. Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  1. Global CO2 simulation using GOSAT-based surface CO2 flux estimates

    NASA Astrophysics Data System (ADS)

    Takagi, H.; Oda, T.; Saito, M.; Valsala, V.; Belikov, D.; Saeki, T.; Saito, R.; Morino, I.; Uchino, O.; Yoshida, Y.; Yokota, Y.; Bril, A.; Oshchepkov, S.; Andres, R. J.; Maksyutov, S.

    2012-04-01

    Investigating the distribution and temporal variability of surface CO2 fluxes is an active research topic in the field of contemporary carbon cycle dynamics. The technique central to this effort is atmospheric inverse modeling with which surface CO2 fluxes are estimated by making corrections to a priori flux estimates such that mismatches between model-predicted and observed CO2 concentrations are minimized. Past investigations were carried out by utilizing CO2 measurements collected in global networks of surface-based monitoring sites. Now, datasets of column-averaged CO2 dry air mole fraction (XCO2) retrieved from spectral soundings collected by GOSAT are available for complementing the surface-based CO2 observations. These space-based XCO2 data are expected to enhance the spatiotemporal coverage of the existing surface observation network and thus reduce uncertainty associated with the surface flux estimates. We estimated monthly CO2 fluxes in 64 sub-continental regions from a subset of the surface-based GLOBALVIEW CO2 data and the GOSAT FTS SWIR Level 2 XCO2 retrievals. We further simulated CO2 concentrations in 3-D model space using the surface flux estimates obtained. In this presentation, we report the result of a comparison between the simulated CO2 concentrations and independent surface observations. As part of an effort in inter-comparing GOSAT-based surface CO2 flux estimates, we also look at results yielded with XCO2 data retrieved with the PPDF-DOAS algorithm and those made available by the NASA Atmospheric CO2 Observations from Space team. For this study, we used version 08.1 of the National Institute for Environmental Studies atmospheric transport model, which was driven by the Japan Meteorological Agency's JCDAS wind analysis data. The CO2 forward simulations were performed on 2.5° × 2.5° horizontal grids at 32 vertical levels between the surface and the top of the atmosphere. The a priori flux dataset used was comprised of the sum of four

  2. Active Flow Control Stator With Coanda Surface

    NASA Technical Reports Server (NTRS)

    Guendogdu; Vorreiter; Seume

    2010-01-01

    Active Flow Control increases the permissible aerodynamic loading. Curved surface near the trailing edge ("Coanda surface"): a) increases turning -> higher pressure ratio. b) controls boundary layer separation -> increased surge margin. Objective: Reduce the number of vanes or compressor stages. Constraints: 1. In a real compressor, the vane must still function entirely without blowing. 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.

  3. Optical Activity of Anisotropic Achiral Surfaces

    SciTech Connect

    Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoons, A. |

    1996-08-01

    Anisotropic achiral surfaces respond differently to left- and right-hand circularly polarized light. This occurs when the orientation of the surface with respect to an otherwise achiral experimental setup makes the total geometry chiral. Such optical activity is demonstrated in second-harmonic generation from an anisotropic thin molecular film. The circular-difference response reverses sign as the handedness of the geometry is reversed and vanishes when the setup possesses a mirror plane. The results are explained within the electric-dipole-allowed second-order surface nonlinearity. {copyright} {ital 1996 The American Physical Society.}

  4. Active Surfaces and Interfaces of Soft Materials

    NASA Astrophysics Data System (ADS)

    Wang, Qiming

    A variety of intriguing surface patterns have been observed on developing natural systems, ranging from corrugated surface of white blood cells at nanometer scales to wrinkled dog skins at millimeter scales. To mimetically harness functionalities of natural morphologies, artificial transformative skin systems by using soft active materials have been rationally designed to generate versatile patterns for a variety of engineering applications. The study of the mechanics and design of these dynamic surface patterns on soft active materials are both physically interesting and technologically important. This dissertation starts with studying abundant surface patterns in Nature by constructing a unified phase diagram of surface instabilities on soft materials with minimum numbers of physical parameters. Guided by this integrated phase diagram, an electroactive system is designed to investigate a variety of electrically-induced surface instabilities of elastomers, including electro-creasing, electro-cratering, electro-wrinkling and electro-cavitation. Combing experimental, theoretical and computational methods, the initiation, evolution and transition of these instabilities are analyzed. To apply these dynamic surface instabilities to serving engineering and biology, new techniques of Dynamic Electrostatic Lithography and electroactive anti-biofouling are demonstrated.

  5. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  6. Green Bank Telescope active surface system

    NASA Astrophysics Data System (ADS)

    Lacasse, Richard J.

    1998-05-01

    During the design phase of the Green Bank Telescope (GBT), various means of providing an accurate surface on a large aperture paraboloid, were considered. Automated jacks supporting the primary reflector were selected as the appropriate technology since they promised greater performance and potentially lower costs than a homologous or carbon fiber design, and had certain advantages over an active secondary. The design of the active surface has presented many challenges. Since the actuators are mounted on a tipping structure, it was required that they support a significant side-load. Such devices were not readily available commercially so they had to be developed. Additional actuator requirements include low backlash, repeatable positioning, and an operational life of at least 230 years. Similarly, no control system capable of controlling the 2209 actuators was commercially available. Again a prime requirement was reliability. Maintaining was also a very important consideration. The system architecture is tree-like. An active surface 'master-computer' controls interaction with the telescope control system, and controls ancillary equipment such as power supplies and temperature monitors. Two slave computers interface with the master- computer, and each closes approximately 1100 position loops. For simplicity, the servo is an 'on/off' type, yet achieves a positioning resolution of 25 microns. Each slave computer interfaces with 4 VME I/O cards, which in turn communicate with 140 control modules. The control modules read out the positions of the actuators every 0.1 sec and control the actuators' DC motors. Initial control of the active surface will be based on an elevation dependant structural model. Later, the model will be improved by holographic observations.Surface accuracy will be improved further by using laser ranging system which will actively measure the surface figure. Several tests have been conducted to assure that the system will perform as desired when

  7. Global Change. Teaching Activities on Global Change for Grades 4-6.

    ERIC Educational Resources Information Center

    Geological Survey (Dept. of Interior), Reston, VA.

    This packet contains a series of teaching guides on global change. The series includes lessons on dendrochronology; land, air, and water; and island living. Included is information such as : laws of straws; where land, air, and water meet; and Earth as home. Each section provides an introductory description of the activity, the purpose of the…

  8. Spectropolarimetry of Photosynthetic Pigments as Global Surface Biosignatures

    NASA Astrophysics Data System (ADS)

    Sparks, W. B.; Parenteau, M. N.; Blankenship, R. E.; Germer, T. A.; Meadows, V. S.; Telesco, C. M.

    2015-12-01

    Photosynthesis is an ancient metabolic process on the early Earth. The most primitive phototrophs used reductants such as H2, H2S, and Fe(II) and were widespread in marine, intertidal, and likely continental habitats. These anoxygenic phototrophs were the key primary producers for the first ~1 billion years before the evolution of oxygenic photosynthesis at 2.7 Ga. The potential clearly exists for this type of primitive photosynthesis to operate on habitable exoplanets. Anoxygenic phototrophs are not known to emit gases that are uniquely biogenic in origin, so we focus on surface pigments signatures as having the strongest promise to offer identifiable biosignatures for a pre-oxygenic habitable exoplanet. Following our earlier work that showed photosynthetic cyanobacteria yield a polarization signature potentially useful in remote sensing, here we seek to characterize the remotely detectable polarization biosignatures associated with anoxygenic phototrophs. The six major pigments of anoxygenic phototrophs (bacteriochlorophylls [Bchls]) absorb in the near-infrared (NIR) from ~705 - 1040 nm. The lower symmetry of the pigment structure relative to chlorophylls shifts the energy absorption bands to longer wavelengths. As a result, Bchls are well suited to absorbing the relatively higher flux of red and NIR radiation of M dwarf stars, the most abundant type of star in the Galaxy, as well as the plentiful flux of typical main sequence stars. Homochirality is a powerful biosignature, and because of the optical activity of biological molecules, it can, in principle, be remotely observed on macroscopic scales using circular polarization spectroscopy. Bchls and Chls are optically active molecules with several chiral centers, strongly interacting with the incident light. We measured the reflectance and transmission full Stokes polarization spectra of pure cultures of anoxygenic phototrophs and environmental samples of microbial mats, and found strong correlations between

  9. Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts

    NASA Astrophysics Data System (ADS)

    Pokhrel, Yadu N.; Koirala, Sujan; Yeh, Pat J.-F.; Hanasaki, Naota; Longuevergne, Laurent; Kanae, Shinjiro; Oki, Taikan

    2015-01-01

    Observations indicate that groundwater levels are declining in many regions around the world. Simulating such depletion of groundwater at the global scale still remains a challenge because most global Land Surface Models (LSMs) lack the physical representation of groundwater dynamics in general and well pumping in particular. Here we present an integrated hydrologic model, which explicitly simulates groundwater dynamics and pumping within a global LSM that also accounts for human activities such as irrigation and reservoir operation. The model is used to simulate global water fluxes and storages with a particular focus on groundwater withdrawal and depletion in the High Plains Aquifer (HPA) and Central Valley Aquifer (CVA). Simulated global groundwater withdrawal and depletion for the year 2000 are 570 and 330 km3 yr-1, respectively; the depletion agrees better with observations than our previous model result without groundwater representation, but may still contain certain uncertainties and is on the higher side of other estimates. Groundwater withdrawals from the HPA and CVA are ˜22 and ˜9 km3 yr-1, respectively, which are also consistent with the observations of ˜24 and ˜13 km3 yr-1. The model simulates a significant decline in total terrestrial water storage in both regions as caused mainly by groundwater storage depletion. Groundwater table declined by ˜14 cm yr-1 in the HPA during 2003-2010; the rate is even higher (˜71 cm yr-1) in the CVA. These results demonstrate the potential of the developed model to study the dynamic relationship between human water use, groundwater storage, and the entire hydrologic cycle.

  10. Surface-active organics in atmospheric aerosols.

    PubMed

    McNeill, V Faye; Sareen, Neha; Schwier, Allison N

    2014-01-01

    Surface-active organic material is a key component of atmospheric aerosols. The presence of surfactants can influence aerosol heterogeneous chemistry, cloud formation, and ice nucleation. We review the current state of the science on the sources, properties, and impacts of surfactants in atmospheric aerosols. PMID:23408277

  11. Bactericidal activity of biomimetic diamond nanocone surfaces.

    PubMed

    Fisher, Leanne E; Yang, Yang; Yuen, Muk-Fung; Zhang, Wenjun; Nobbs, Angela H; Su, Bo

    2016-03-17

    The formation of biofilms on implant surfaces and the subsequent development of medical device-associated infections are difficult to resolve and can cause considerable morbidity to the patient. Over the past decade, there has been growing recognition that physical cues, such as surface topography, can regulate biological responses and possess bactericidal activity. In this study, diamond nanocone-patterned surfaces, representing biomimetic analogs of the naturally bactericidal cicada fly wing, were fabricated using microwave plasma chemical vapor deposition, followed by bias-assisted reactive ion etching. Two structurally distinct nanocone surfaces were produced, characterized, and the bactericidal ability examined. The sharp diamond nanocone features were found to have bactericidal capabilities with the surface possessing the more varying cone dimension, nonuniform array, and decreased density, showing enhanced bactericidal ability over the more uniform, highly dense nanocone surface. Future research will focus on using the fabrication process to tailor surface nanotopographies on clinically relevant materials that promote both effective killing of a broader range of microorganisms and the desired mammalian cell response. This study serves to introduce a technology that may launch a new and innovative direction in the design of biomaterials with capacity to reduce the risk of medical device-associated infections.

  12. Bactericidal activity of biomimetic diamond nanocone surfaces.

    PubMed

    Fisher, Leanne E; Yang, Yang; Yuen, Muk-Fung; Zhang, Wenjun; Nobbs, Angela H; Su, Bo

    2016-03-01

    The formation of biofilms on implant surfaces and the subsequent development of medical device-associated infections are difficult to resolve and can cause considerable morbidity to the patient. Over the past decade, there has been growing recognition that physical cues, such as surface topography, can regulate biological responses and possess bactericidal activity. In this study, diamond nanocone-patterned surfaces, representing biomimetic analogs of the naturally bactericidal cicada fly wing, were fabricated using microwave plasma chemical vapor deposition, followed by bias-assisted reactive ion etching. Two structurally distinct nanocone surfaces were produced, characterized, and the bactericidal ability examined. The sharp diamond nanocone features were found to have bactericidal capabilities with the surface possessing the more varying cone dimension, nonuniform array, and decreased density, showing enhanced bactericidal ability over the more uniform, highly dense nanocone surface. Future research will focus on using the fabrication process to tailor surface nanotopographies on clinically relevant materials that promote both effective killing of a broader range of microorganisms and the desired mammalian cell response. This study serves to introduce a technology that may launch a new and innovative direction in the design of biomaterials with capacity to reduce the risk of medical device-associated infections. PMID:26992656

  13. Modeling the Global Distribution of Plasma Parameters on Coronal Source Surface for Different Solar Phases Using 1AU Observations

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Shen, F.; Feng, X.

    2015-10-01

    In this paper, we have developed an empirical model of the global distribution of plasma parameters on the coronal source surface (at 2.5 solar radii (Rs) in our study) by analyzing observations from Ulysses and OMNI data. We use this model to construct the global map of source surface plasma for four typical Carrington Rotations (CRs) during different phases of solar activity, and analyze the basic characteristics of the distribution. A simple validation of the model is made by comparing the density and velocity distribution with the pB-inversed density and Wang-Sheeley-Arge (WSA) model velocity. The preliminary results show that our model gives reasonable large scale distribution of source surface plasma parameters at different phases of solar activity.

  14. Global data collection and the surveillance of active volcanoes

    USGS Publications Warehouse

    Ward, P.L.

    1990-01-01

    Data relay systems on existing earth-orbiting satellites provide an inexpensive way to collect environmental data from numerous remote sites around the world. This technology could be used effectively for fundamental monitoring of most of the world's active volcanoes. Such global monitoring would focus attention on the most dangerous volcanoes that are likely to significantly impact the geosphere and the biosphere. ?? 1990.

  15. Active Volcanism on IO: Global Distribution and Variations in Activity

    NASA Technical Reports Server (NTRS)

    Lopes-Gautier, R.; McEwen, A.; Smythe, W.; Geissler, P.; Kamp, L.; Davies, A.; Spencer, J.; Keszthelyi, L.; Carlson, R.; Leader, F.; Mehlman, R.; Soderblom, L.

    1999-01-01

    Io's volcanic activity has been monitored by instruments aboard the Galileo spacecraft since June 28, 1996. We present results from observations by the Near-Infrared Mapping Spectrometer (NIM) for the first ten orbits of Galileo, correlate them with results from the Solid State Imaging System (SSI)and from ground-based observations, and compare them to what was known about Io's volcanic activity from observations made during the two Voyager fly-bys in 1979.

  16. Dual Active Surface Heat Flux Gage Probe

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-01-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  17. LOW-LATITUDE CORONAL HOLES, DECAYING ACTIVE REGIONS, AND GLOBAL CORONAL MAGNETIC STRUCTURE

    SciTech Connect

    Petrie, G. J. D.; Haislmaier, K. J.

    2013-10-01

    We study the relationship between decaying active-region magnetic fields, coronal holes, and the global coronal magnetic structure using Global Oscillations Network Group synoptic magnetograms, Solar TErrestrial RElations Observatory extreme-ultraviolet synoptic maps, and coronal potential-field source-surface models. We analyze 14 decaying regions and associated coronal holes occurring between early 2007 and late 2010, 4 from cycle 23 and 10 from cycle 24. We investigate the relationship between asymmetries in active regions' positive and negative magnetic intensities, asymmetric magnetic decay rates, flux imbalances, global field structure, and coronal hole formation. Whereas new emerging active regions caused changes in the large-scale coronal field, the coronal fields of the 14 decaying active regions only opened under the condition that the global coronal structure remained almost unchanged. This was because the dominant slowly varying, low-order multipoles prevented opposing-polarity fields from opening and the remnant active-region flux preserved the regions' low-order multipole moments long after the regions had decayed. Thus, the polarity of each coronal hole necessarily matched the polar field on the side of the streamer belt where the corresponding active region decayed. For magnetically isolated active regions initially located within the streamer belt, the more intense polarity generally survived to form the hole. For non-isolated regions, flux imbalance and topological asymmetry prompted the opposite to occur in some cases.

  18. CLIMATE CHANGE. Possible artifacts of data biases in the recent global surface warming hiatus.

    PubMed

    Karl, Thomas R; Arguez, Anthony; Huang, Boyin; Lawrimore, Jay H; McMahon, James R; Menne, Matthew J; Peterson, Thomas C; Vose, Russell S; Zhang, Huai-Min

    2015-06-26

    Much study has been devoted to the possible causes of an apparent decrease in the upward trend of global surface temperatures since 1998, a phenomenon that has been dubbed the global warming "hiatus." Here, we present an updated global surface temperature analysis that reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a "slowdown" in the increase of global surface temperature.

  19. Possible artifacts of data biases in the recent global surface warming hiatus

    NASA Astrophysics Data System (ADS)

    Karl, Thomas R.; Arguez, Anthony; Huang, Boyin; Lawrimore, Jay H.; McMahon, James R.; Menne, Matthew J.; Peterson, Thomas C.; Vose, Russell S.; Zhang, Huai-Min

    2015-06-01

    Much study has been devoted to the possible causes of an apparent decrease in the upward trend of global surface temperatures since 1998, a phenomenon that has been dubbed the global warming “hiatus.” Here, we present an updated global surface temperature analysis that reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a “slowdown” in the increase of global surface temperature.

  20. Magnitudes and sources of dissolved inorganic phosphorus inputs to surface fresh waters and the coastal zone: A new global model

    NASA Astrophysics Data System (ADS)

    Harrison, John A.; Bouwman, A. F.; Mayorga, Emilio; Seitzinger, Sybil

    2010-03-01

    by the year 2000, human activities such as dam construction and consumptive water use have somewhat moderated the effect of humans on P transport by preventing (conservatively) 0.35 Tg P yr-1 (˜20% of P inputs to surface waters) from reaching coastal zones globally.

  1. Antiviral activity of alcohol for surface disinfection.

    PubMed

    Moorer, W R

    2003-08-01

    Bacteria and viruses from the patient's mouth travel with dental splatter and spills. A surface disinfectant should possess antiviral activity as well as antibacterial action. Because of frequent and 'open' application in the dental office, such a disinfectant should be non-toxic, non-allergenic and safe for the hygienist. It now appears that high-concentration alcohol mixtures (i.e. 80% ethanol + 5% isopropanol) are not only excellent antibacterials, but quickly inactivate HIV as well as hepatitis B and hepatitis C viruses. Compared to alternative surface disinfectants, use of high-concentration alcohol for the spray-wipe-spray method of surface disinfection in dentistry appears safe and efficient. However, dried matter should be wiped and hydrated first.

  2. Landsat Imagery Enables Global Studies of Surface Trends

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Landsat 8 is the latest in the NASA-developed series of satellites that have provided a continuous picture of Earth for more than 40 years. Mountain View, California-based Google has incorporated Landsat data into several products, most recently generating a cloud-free view of Earth. Google has also teamed up with researchers at the University of Maryland and Goddard Space Flight Center to create a global survey showing changes in forest cover over many years-the first of its kind.

  3. Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature

    NASA Technical Reports Server (NTRS)

    Mintz, Y.; Walker, G. K.

    1993-01-01

    The global fields of normal monthly soil moisture and land surface evapotranspiration are derived with a simple water budget model that has precipitation and potential evapotranspiration as inputs. The precipitation is observed and the potential evapotranspiration is derived from the observed surface air temperature with the empirical regression equation of Thornthwaite (1954). It is shown that at locations where the net surface radiation flux has been measured, the potential evapotranspiration given by the Thornthwaite equation is in good agreement with those obtained with the radiation-based formulations of Priestley and Taylor (1972), Penman (1948), and Budyko (1956-1974), and this provides the justification for the use of the Thornthwaite equation. After deriving the global fields of soil moisture and evapotranspiration, the assumption is made that the potential evapotranspiration given by the Thornthwaite equation and by the Priestley-Taylor equation will everywhere be about the same; the inverse of the Priestley-Taylor equation is used to obtain the normal monthly global fields of net surface radiation flux minus ground heat storage. This and the derived evapotranspiration are then used in the equation for energy conservation at the surface of the earth to obtain the global fields of normal monthly sensible heat flux from the land surface to the atmosphere.

  4. Subnano Pt Particles from a First-Principles Stochastic Surface Walking Global Search.

    PubMed

    Wei, Guang-Feng; Liu, Zhi-Pan

    2016-09-13

    Subnano transition metal particles have wide applications in chemistry. For the complexity of their potential energy surface, it has long been a great challenge for both theory and experiment to determine the structure of subnano clusters and thus predict their physiochemical properties. Here we explore the structure configurations for 35 subnano PtN (N = 12-46) clusters using a first-principles Stochastic Surface Walking (SSW) global search. For each cluster, thousands of structure candidates are collected from a parallel SSW search. This leads to the finding of 20 new global minima in 35 clusters, which reflects the essence of a first-principles global search for revealing the structure of subnano transition metal clusters. PtN subnano clusters with N being 14, 18, 22, 27, 36, and 44 have higher stability than their neighboring size clusters and are characterized as magic number clusters. These PtN subnano clusters exhibit metallic characteristics with a diminishing HOMO-LUMO gap, much poorer binding energy (by 1-1.7 eV), and a much higher Fermi level (by 1-1.5 eV) than bulk metal, implying their high chemical activity. By analyzing their structures, we observe the presence of a rigid core and a soft shell for PtN clusters and find that the core-shell 3-D architecture evolves as early as N > 22. For these core-shell clusters, a good core-shell lattice match is the key to achieve the high stability. PMID:27482921

  5. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets

    NASA Astrophysics Data System (ADS)

    Khalil, Karim; Mahmoudi, Seyed Reza; Abu-Dheir, Numan; Varanasi, Kripa

    2014-11-01

    Droplet manipulation and mobility on non-wetting surfaces is of practical importance for diverse applications ranging from micro-fluidic devices, anti-icing, dropwise condensation, and biomedical devices. The use of active external fields has been explored via electric, acoustic, and vibrational, yet moving highly conductive and viscous fluids remains a challenge. Magnetic fields have been used for droplet manipulation; however, usually, the fluid is functionalized to be magnetic, and requires enormous fields of superconducting magnets when transitioning to diamagnetic materials such as water. Here we present a class of active surfaces by stably impregnating active fluids such as ferrofluids into a textured surface. Droplets on such ferrofluid-impregnated surfaces have extremely low hysteresis and high mobility such that they can be propelled by applying relatively low magnetic fields. Our surface is able to manipulate a variety of materials including diamagnetic, conductive and highly viscous fluids, and additionally solid particles.

  6. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets

    NASA Astrophysics Data System (ADS)

    Khalil, Karim S.; Mahmoudi, Seyed Reza; Abu-dheir, Numan; Varanasi, Kripa K.

    2014-07-01

    Droplet manipulation and mobility on non-wetting surfaces is of practical importance for diverse applications ranging from micro-fluidic devices, anti-icing, dropwise condensation, and biomedical devices. The use of active external fields has been explored via electric, acoustic, and vibrational, yet moving highly conductive and viscous fluids remains a challenge. Magnetic fields have been used for droplet manipulation; however, usually, the fluid is functionalized to be magnetic, and requires enormous fields of superconducting magnets when transitioning to diamagnetic materials such as water. Here we present a class of active surfaces by stably impregnating active fluids such as ferrofluids into a textured surface. Droplets on such ferrofluid-impregnated surfaces have extremely low hysteresis and high mobility such that they can be propelled by applying relatively low magnetic fields. Our surface is able to manipulate a variety of materials including diamagnetic, conductive and highly viscous fluids, and additionally solid particles.

  7. Surface Hydrology in Global River Basins in the Off-Line Land-Surface GEOS Assimilation (OLGA) System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Yang, Runhua; Houser, Paul R.

    1998-01-01

    Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.

  8. Assessment of dissolved Pb concentration and isotopic composition in surface waters of the modern global ocean

    NASA Astrophysics Data System (ADS)

    Pinedo-Gonzalez, P.; West, A. J.; Sanudo-Wilhelmy, S. A.

    2015-12-01

    Lead (Pb) produced by human activities, mainly from leaded gasoline combustion and high-temperature industries, dominates Pb in our present-day oceans. Previous studies have shown that surface ocean Pb concentrations and isotope ratios have varied in time and space, reflecting the changes in the amount of inputs and sources of anthropogenic Pb. However, data on surface ocean Pb is quite limited, especially for some basins like the Indian Ocean. In the present study, Pb concentrations and stable isotopes (208, 207, and 206) have been analyzed in surface water samples (3m depth) collected during the Malaspina Circumnavigation Expedition, 2010. Our results are compared with data from the literature to i) evaluate the changing status of metal contamination in surface waters of the global ocean over the last 30 years, and ii) propose potential sources of modern Pb to the oceans. Our results show that Pb concentrations in surface waters of the North Atlantic Ocean have decreased ~ 40% since 1975, attributable to the phase-out of leaded gasoline in North America. This result is corroborated by stable Pb isotope measurements. Furthermore, the isotopic gradient observed in surface waters of the studied transects in the north tropical and subtropical Atlantic Ocean can be attributed to simple mixing of European and African aerosols and Saharan Holocene loess. Results from an understudied transect in the Southern Indian Ocean give an indication of the source region of Pb delivered to this region. Although comparison with literature data is limited, mixing of Australian ores and African and Australian coals could potentially explain the measured Pb isotope composition. This study provides an opportunity to build on the work of previous oceanographic campaigns, enabling us to assess the impact of anthropogenic Pb inputs to the ocean and the relative importance of various Pb sources, providing new insights into the transport and fate of Pb in the oceans.

  9. Global Surface Solar Energy Anomalies Including El Nino and La Nina Years

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Brown, D. E.; Chandler, W. S.; DiPasquale, R. C.; Ritchey, Nancy A.; Gupta, Shashi K.; Wilber, Anne C.; Kratz, David P.; Stackhouse, Paul W.

    2001-01-01

    This paper synthesizes past events in an attempt to define the general magnitude, duration, and location of large surface solar anomalies over the globe. Surface solar energy values are mostly a function of solar zenith angle, cloud conditions, column atmospheric water vapor, aerosols, and surface albedo. For this study, solar and meteorological parameters for the 10-yr period July 1983 through June 1993 are used. These data were generated as part of the Release 3 Surface meteorology and Solar Energy (SSE) activity under the NASA Earth Science Enterprise (ESE) effort. Release 3 SSE uses upgraded input data and methods relative to previous releases. Cloud conditions are based on recent NASA Version-D International Satellite Cloud Climatology Project (ISCCP) global satellite radiation and cloud data. Meteorological inputs are from Version-I Goddard Earth Observing System (GEOS) reanalysis data that uses both weather station and satellite information. Aerosol transmission for different regions and seasons are for an 'average' year based on historic solar energy data from over 1000 ground sites courtesy of Natural Resources Canada (NRCan). These data are input to a new Langley Parameterized Shortwave Algorithm (LPSA) that calculates surface albedo and surface solar energy. That algorithm is an upgraded version of the 'Staylor' algorithm. Calculations are performed for a 280X280 km equal-area grid system over the globe based on 3-hourly input data. A bi-linear interpolation process is used to estimate data output values on a 1 X 1 degree grid system over the globe. Maximum anomalies are examined relative to El Nino and La Nina events in the tropical Pacific Ocean. Maximum year-to-year anomalies over the globe are provided for a 10-year period. The data may assist in the design of systems with increased reliability. It may also allow for better planning for emergency assistance during some atypical events.

  10. A Multiyear Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Evaporation is a key component of the hydrological cycle and the surface heat budget, while the wind stress is the major forcing for driving the oceanic circulation. The global air-sea fluxes of momentum, latent and sensible heat, radiation, and freshwater (precipitation-evaporation) are the forcing for driving oceanic circulation and, hence, are essential for understanding the general circulation of global oceans. The global air-sea fluxes are required for driving ocean models and validating coupled ocean-atmosphere global models. We have produced a 7.5-year (July 1987-December 1994) dataset of daily surface turbulent fluxes over the global oceans from the Special Sensor microwave/Imager (SSM/I) data. Daily turbulent fluxes were derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) validated well with that of the collocated radiosonde observations over the global oceans. Furthermore, the retrieved daily wind stresses and latent heat fluxes were found to agree well with that of the in situ measurements (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE intensive observing period (November 1992-February 1993). The global distributions of 1988-94 seasonal-mean turbulent fluxes will be presented. In addition, the global distributions of 1990-93 annual-means turbulent fluxes and input variables will be compared with those of UWM/COADS covering the same period. The latter is based on the COADS (comprehensive ocean-atmosphere data set) and is recognized to be one of the best

  11. Assessment of the global monthly mean surface insolation estimated from satellite measurements using global energy balance archive data

    NASA Technical Reports Server (NTRS)

    Li, Zhanqing; Whitlock, Charles H.; Charlock, Thomas P.

    1995-01-01

    Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.

  12. Global Surface Thermal Inertia Derived from Dawn VIR Observations

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Becker, K. J.; Anderson, J.; Capria, M.; Tosi, F.; Prettyman, T. H.; De Sanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.; McCord, T. B.; Li, J. Y.; Russell, C. T.; Raymond, C. A.

    2012-12-01

    Comparisons of surface temperatures, derived from Dawn [1] Visible and Infrared Mapping Spectrometer (VIR-MS) [2] observations , to thermal models suggest that Vesta generally has a low-thermal-inertia surface, between 25 and 35 J m^-2 K^-1 s^-½, consistent with a thick layer of fine-grain material [3]. Temperatures were calculated using a Bayesian approach to nonlinear inversion as described by Tosi et al. [4]. In order to compare observed temperatures of Vesta to model calculations, several geometric and photometric parameters must be known or estimated. These include local mean solar time, latitude, local slope, bond bolometric albedo, and the effective emissivity at 5μm. Local time, latitude, and local slope are calculated using the USGS ISIS software system [5]. We employ a multi-layered thermal-diffusion model called 'KRC' [6], which has been used extensively in the study of Martian thermophysical properties. This thermal model is easily modified for use with Vesta by replacing the Martian ephemeris input with the Vesta ephemeris and disabling the atmosphere. This model calculates surface temperatures throughout an entire Vesta year for specific sets of slope, azimuth, latitude and elevation, and a range of albedo and thermal-inertia values. The ranges of albedo and thermal inertia values create temperature indices that are closely matched to the dates and times observed by VIR. Based on observed temperatures and best-fit KRC thermal models, estimates of the annual mean surface temperatures were found to range from 176 K - 188 K for flat zenith-facing equatorial surfaces, but these temperatures can drop as low as 112 K for polar-facing slopes at mid-latitudes. [7] In this work, we will compare observed temperatures of the surface of Vesta (using data acquired by Dawn VIR-MS [2] during the approach, survey, high-altitude mapping and departure phases) to model temperature results using the KRC thermal model [5]. Where possible, temperature observations from

  13. Surface visualization of electromagnetic brain activity.

    PubMed

    Badea, Alexandra; Kostopoulos, George K; Ioannides, Andreas A

    2003-08-15

    Advances in hardware and software have made possible the reconstruction of brain activity from non-invasive electrophysiological measurements over a large part of the brain. The appreciation of the information content in the data is enhanced when relevant anatomical detail is also available for visualization. Different neuroscientific questions give rise to different requirements for optimal superposition of structure and function. Most available software deal with scalar measures of activity, especially hemodynamic changes. In contrast, the electrophysiological observables are generated by electrical activity, which depends on the synchrony of neuronal assemblies and the geometry of the local cortical surface. We describe methods for segmentation and visualization of spatio-temporal brain activity, which allow the interplay of geometry and scalar as well as vector properties of the current density directly in the representations. The utility of these methods is demonstrated through displays of tomographic reconstructions of early sensory processing in the somatosensory and visual modality extracted from magnetoencephalography (MEG) data. The activation course characteristic to a specific area could be observed as current density or statistical maps independently and/or contrasted to the activity in other areas or the whole brain. MEG and functional magnetic resonance imaging (fMRI) activations were simultaneously visualized. Integrating and visualizing complementary functional data into a single environment helps evaluating analysis and understanding structure/function relationships in normal and diseased brain.

  14. A modeling study of irrigation effects on global surface- and groundwater resources under a changing climate

    NASA Astrophysics Data System (ADS)

    Leng, G.; Huang, M.; Tang, Q.; Leung, L. R.

    2014-12-01

    In this study, we investigate the effects of irrigation on global surface water (SW) and groundwater (GW) resources by performing simulations of the Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical climate simulations and future projections from five General Circulation Models (GCMs) from 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumping scheme coupled with the irrigation module is activated. The parameters associated with irrigation and groundwater pumping were calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects on SW/GW: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions of SW, suggesting that intensive irrigation water use has the potential to further exacerbate low-flow conditions, increasing vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand in the regions equipped for irrigation across the world. The increase in demand combined with the increased temporal-spatial variability of water supply will cause more severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate climate-induced changes of SW/GW although the effects are negligible when averaged globally. Our results emphasize the importance of accounting for

  15. Comparison of Different Global Information Sources Used in Surface Radiative Flux Calculation: Radiative Properties of the Surface

    NASA Technical Reports Server (NTRS)

    Zhang, Yuanchong; Rossow, William B.; Stackhouse, Paul W., Jr.

    2007-01-01

    Direct estimates of surface radiative fluxes that resolve regional and weather-scale variabilty over the whole globe with reasonable accuracy have only become possible with the advent of extensive global, mostly satellite, datasets within the past couple of decades. The accuracy of these fluxes, estimated to be about 10-15 W per square meter is largely limited by the accuracy of the input datasets. The leading uncertainties in the surface fluxes are no longer predominantly induced by clouds but are now as much associated with uncertainties in the surface and near-surface atmospheric properties. This study presents a fuller, more quantitative evaluation of the uncertainties for the surface albedo and emissivity and surface skin temperatures by comparing the main available global datasets from the Moderate-Resolution Imaging Spectroradiometer product, the NASA Global Energy and Water Cycle Experiment Surface Radiation Budget project, the European Centre for Medium-Range Weather Forecasts, the National Aeronautics and Space Administration, the National Centers for Environmental Prediction, the International Satellite Cloud Climatology Project (ISCCP), the Laboratoire de Meteorologie Dynamique, NOAA/NASA Pathfinder Advanced Very High Resolution Radiometer project, NOAA Optimum Interpolation Sea Surface Temperature Analysis and the Tropical Rainfall Measuring Mission (TRMM) Microwave Image project. The datasets are, in practice, treated as an ensemble of realizations of the actual climate such that their differences represent an estimate of the uncertainty in their measurements because we do not possess global truth datasets for these quantities. The results are globally representative and may be taken as a generalization of our previous ISCCP-based uncertainty estimates for the input datasets. Surface properties have the primary role in determining the surface upward shortwave (SW) and longwave (LW) flux. From this study, the following conclusions are obtained

  16. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?

    NASA Astrophysics Data System (ADS)

    Hartmann, Jens; Jansen, Nils; Dürr, Hans H.; Kempe, Stephan; Köhler, Peter

    2010-05-01

    is important to distinguish among the various types of sedimentary rocks and their diagenetic history to evaluate the spatial distribution of rock weathering and thus lateral inorganic carbon fluxes. Results highlight the role of hotspots (>10 times global average weathering rates) and hyperactive areas (5 to 10 times global average rates). Only 9% of the global exorheic area is responsible for about 50% of CO2- consumption by chemical weathering (or if hotspots and hyperactive areas are considered: 3.4% of exorheic surface area corresponds to 28% of global CO2-consumption). The contribution of endorheic areas to the global CO2-consumption is with 3.7 Mt C a-1 only minor. A significant impact on the global CO2-consumption rate can be expected if identified highly active areas are affected by changes in the overall spatial patterns of the hydrological cycle due to ongoing global climate change. Specifically if comparing the Last Glacial Maximum with present conditions it is probable that also the global carbon cycle has been affected by those changes. It is expected that results will contribute to improve global carbon and global circulation models. In addition, recognizing chemical weathering rates and geochemical composition of certain lithological classes may be of value for studies focusing on biological aspects of the carbon cycles (e.g. studies needing information on the abundance of phosphorus or silica in the soil or aquatic system). Reference: Hartmann, J., Kempe, S, Dürr, H.H., Jansen, N. (2009) Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?. Global and Planetary Change, 69, 185-194. doi:10.1016/j.gloplacha.2009.07.007

  17. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH3

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2008-12-01

    A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.

  18. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1992-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  19. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1993-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  20. Ozone measurements from a global network of surface sites

    NASA Technical Reports Server (NTRS)

    Oltmans, Samuel J.; Levy, Hiram, II

    1994-01-01

    From a network of surface ozone monitoring sites distributed primarily over the Atlantic and Pacific Oceans, the seasonal, day-to-day, and diurnal patterns are delineated. At most of the NH (Northern Hemisphere) sites there is a spring maximum and late summer or autumn minimum. At Barrow, AK (70 deg N) and Barbados (14 deg N), however, there is a winter maximum, but the mechanisms producing the maximum are quite different. All the sites in the SH (Southern Hemisphere) show winter maxima and summer minima. At the subtropical and tropical sites, there are large day-to-day variations that reflect the changes in flow patterns. Air of tropical origin has much lower ozone concentrations than air from higher latitudes. At the two tropical sites (Barbados and Samoa), there is a marked diurnal ozone variation with highest amounts in the early morning and lowest values in the afternoon. At four of the locations (Barrow, AK; Mauna Loa, HI; American Samoa; and South Pole), there are 15- through 20-year records which allow us to look at longer term changes. At Barrow there has been a large summer increase over the 20 years of measurements. At South Pole, on the other hand, summer decreases have led to an overall decline in surface ozone amounts.

  1. Are secular correlations between sunspots, geomagnetic activity, and global temperature significant?

    USGS Publications Warehouse

    Love, J.J.; Mursula, K.; Tsai, V.C.; Perkins, D.M.

    2011-01-01

    Recent studies have led to speculation that solar-terrestrial interaction, measured by sunspot number and geomagnetic activity, has played an important role in global temperature change over the past century or so. We treat this possibility as an hypothesis for testing. We examine the statistical significance of cross-correlations between sunspot number, geomagnetic activity, and global surface temperature for the years 1868-2008, solar cycles 11-23. The data contain substantial autocorrelation and nonstationarity, properties that are incompatible with standard measures of cross-correlational significance, but which can be largely removed by averaging over solar cycles and first-difference detrending. Treated data show an expected statistically- significant correlation between sunspot number and geomagnetic activity, Pearson p < 10-4, but correlations between global temperature and sunspot number (geomagnetic activity) are not significant, p = 0.9954, (p = 0.8171). In other words, straightforward analysis does not support widely-cited suggestions that these data record a prominent role for solar-terrestrial interaction in global climate change. With respect to the sunspot-number, geomagnetic-activity, and global-temperature data, three alternative hypotheses remain difficult to reject: (1) the role of solar-terrestrial interaction in recent climate change is contained wholly in long-term trends and not in any shorter-term secular variation, or, (2) an anthropogenic signal is hiding correlation between solar-terrestrial variables and global temperature, or, (3) the null hypothesis, recent climate change has not been influenced by solar-terrestrial interaction. ?? 2011 by the American Geophysical Union.

  2. A global ab initio dipole moment surface for methyl chloride

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-11-01

    A new dipole moment surface (DMS) for methyl chloride has been generated at the CCSD(T)/aug-cc-pVQZ(+d for Cl) level of theory. To represent the DMS, a symmetry-adapted analytic representation in terms of nine vibrational coordinates has been developed and implemented. Variational calculations of the infrared spectrum of CH3Cl show good agreement with a range of experimental results. This includes vibrational transition moments, absolute line intensities of the ν1, ν4, ν5 and 3ν6 bands, and a rotation-vibration line list for both CH335Cl and CH337Cl including states up to J=85 and vibrational band origins up to 4400 cm-1. Across the spectrum band shape and structure are well reproduced and computed absolute line intensities are comparable with highly accurate experimental measurements for certain fundamental bands. We thus recommend the DMS for future use.

  3. Analysis of 50-y record of surface (137)Cs concentrations in the global ocean using the HAM-global database.

    PubMed

    Inomata, Yayoi; Aoyama, Michio; Hirose, Katsumi

    2009-01-01

    We investigated spatial and temporal variations in (137)Cs concentrations in the surface waters of the global ocean for the period from 1957 to 2005 using the "HAM database - a global version". Based on the 0.5-y average value of (137)Cs concentrations in the surface water in each sea area, we classified the temporal variations into four types. (1) In the North Pacific Ocean where there was high fallout from atmospheric nuclear weapons tests, the rates of decrease in the (137)Cs concentrations changed over the five decades: the rate of decrease from the 1950s to the 1970s was much faster than that after the 1970s, and the (137)Cs concentrations were almost constant after the 1990s. Latitudinal differences in (137)Cs concentrations in the North Pacific Ocean became small with time. (2) In the equatorial Pacific and Indian Oceans, the (137)Cs concentrations varied within a constant range in the 1970s and 1980s, suggesting the advection of (137)Cs from areas of high global fallout in the mid-latitudes of the North Pacific Ocean. (3) In the eastern South Pacific and Atlantic Oceans (south of 40 degrees S), the concentrations decreased exponentially over the five decades. (4) In the Arctic and North Atlantic Oceans, including marginal seas, (137)Cs concentrations were strongly controlled by discharge from nuclear reprocessing plants after the late 1970s. The apparent half-residence times of (137)Cs in the surface waters of the global ocean from 1970 to 2005 ranged from 4.5 to 36.8 years. The apparent half-residence times were longer in the equatorial region and shorter in the higher latitudes. There was no notable difference between the latitudinal distributions of the apparent half-residence times in the Pacific and Indian Oceans. These results suggest that (137)Cs in the North Pacific Ocean is transported to the equatorial, South Pacific, and Indian Oceans by the oceanic circulation. PMID:19137147

  4. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  5. Global climate impacts of bioenergy from forests: implications from biogenic CO2 fluxes and surface albedo

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Bright, Ryan; Strømman, Anders

    2013-04-01

    Production of biomass for bioenergy can alter biogeochemical and biogeophysical mechanisms, thus affecting local and global climate. Recent scientific developments mainly embraced impacts from land use changes resulting from area-expanded biomass production, with several extensive insights available. Comparably less attention, however, is given to the assessment of direct land surface-atmosphere climate impacts of bioenergy systems under rotation such as in plantations and forested ecosystems, whereby land use disturbances are only temporary. In this work, we assess bioenergy systems representative of various biomass species (spruce, pine, aspen, etc.) and climatic regions (US, Canada, Norway, etc.), for both stationary and vehicle applications. In addition to conventional greenhouse gas (GHG) emissions through life cycle activities (harvest, transport, processing, etc.), we evaluate the contributions to global warming of temporary effects resulting from the perturbation in atmospheric carbon dioxide (CO2) concentration caused by the timing of biogenic CO2 fluxes and in surface reflectivity (albedo). Biogenic CO2 fluxes on site after harvest are directly measured through Net Ecosystem Productivity (NEP) chronosequences from flux towers established at the interface between the forest canopy and the atmosphere and are inclusive of all CO2 exchanges occurring in the forest (e.g., sequestration of CO2 in growing trees, emissions from soil respiration and decomposition of dead organic materials). These primary data based on empirical measurements provide an accurate representation of the forest carbon sink behavior over time, and they are used in the elaboration of high-resolution IRFs for biogenic CO2 emissions. Chronosequence of albedo values from clear-cut to pre-harvest levels are gathered from satellite data (MODIS black-sky shortwave broadband, Collection 5, MCD43A). Following the cause-effect chain from emissions to damages, through radiative forcing and changes

  6. Reconstructing Variations of Global Sea-Surface Temperature during the Last Interglaciation

    NASA Astrophysics Data System (ADS)

    Hoffman, J. S.; Clark, P. U.; He, F.; Parnell, A. C.

    2015-12-01

    The last interglaciation (LIG; ~130-116 ka) was the most recent period in Earth history with higher-than-present global sea level (≥6 m) under similar-to-preindustrial concentrations of atmospheric CO2, suggesting additional feedbacks related to albedo, insolation, and ocean circulation in generating the apparent climatic differences between the LIG and present Holocene. However, our understanding of how much warmer the LIG sea surface was relative to the present interglaciation remains uncertain, with current estimates suggesting from 0°C to 2°C warmer than late-20thcentury average global temperatures. Moreover, the timing, spatial expression, and amplitude of regional and global sea surface temperature variability related to other climate forcing during the LIG are poorly constrained, largely due to uncertainties in age control and proxy temperature reconstructions. An accurate characterization of global and regional temperature change during the LIG can serve as a benchmark for paleoclimate modeling intercomparison projects and help improve understanding of sea-level sensitivity to temperature change. We will present a global compilation (~100 published records) of sea surface temperature (SST) and other climate reconstructions spanning the LIG. Using a Monte Carlo-enabled cross-correlation maximization algorithm to climatostratigraphically align proxy records and then account for both the resulting chronologic and proxy calibration uncertainties with Bayesian statistical inference, our results quantify the spatial timing, amplitude, and uncertainty in estimates of global and regional sea surface temperature change during the LIG and its relation to potential forcings.

  7. Global projects and Astronomy awareness activities in Nepal

    NASA Astrophysics Data System (ADS)

    Gautam, Suman

    2015-08-01

    Modern astronomy is a crowning achievement of human civilization which inspires teenagers to choose career in science and technology and is a stable of adult education. It is a unique and cost effective tool for furthering sustainable global development because of its technological, scientific and cultural dimensions which allow us to reach with the large portion of the community interact with children and inspire with our wonderful cosmos.Using astronomy to stimulate quality and inspiring education for disadvantaged children is an important goal of Nepal Astronomical Society (NASO) since its inception. NASO is carrying out various awareness activities on its own and in collaboration with national and international organizations like Central Department of Physics Tribhuvan University (TU), International astronomical Union (IAU), Department of Physics Prithvi Narayan Campus Pokhara, Nepal academy of science and technology (NAST), Global Hands on Universe (GHOU), EU- UNAWE and Pokhara Astronomical Society (PAS) to disseminate those activities for the school children and teachers in Nepal. Our experiences working with kids, students, teachers and public in the field of universe Awareness Activities for the school children to minimize the abstruse concept of astronomy through some practical approach and the project like Astronomy for the visually impaired students, Galileo Teacher Training program and International School for young astronomers (ISYA) outskirts will be explained which is believed to play vital role in promoting astronomy and space science activities in Nepal.

  8. Global Seismic Event Detection Using Surface Waves: 15 Possible Antarctic Glacial Sliding Events

    NASA Astrophysics Data System (ADS)

    Chen, X.; Shearer, P. M.; Walker, K. T.; Fricker, H. A.

    2008-12-01

    To identify overlooked or anomalous seismic events not listed in standard catalogs, we have developed an algorithm to detect and locate global seismic events using intermediate-period (35-70s) surface waves. We apply our method to continuous vertical-component seismograms from the global seismic networks as archived in the IRIS UV FARM database from 1997 to 2007. We first bandpass filter the seismograms, apply automatic gain control, and compute envelope functions. We then examine 1654 target event locations defined at 5 degree intervals and stack the seismogram envelopes along the predicted Rayleigh-wave travel times. The resulting function has spatial and temporal peaks that indicate possible seismic events. We visually check these peaks using a graphical user interface to eliminate artifacts and assign an overall reliability grade (A, B or C) to the new events. We detect 78% of events in the Global Centroid Moment Tensor (CMT) catalog. However, we also find 840 new events not listed in the PDE, ISC and REB catalogs. Many of these new events were previously identified by Ekstrom (2006) using a different Rayleigh-wave detection scheme. Most of these new events are located along oceanic ridges and transform faults. Some new events can be associated with volcanic eruptions such as the 2000 Miyakejima sequence near Japan and others with apparent glacial sliding events in Greenland (Ekstrom et al., 2003). We focus our attention on 15 events detected from near the Antarctic coastline and relocate them using a cross-correlation approach. The events occur in 3 groups which are well-separated from areas of cataloged earthquake activity. We speculate that these are iceberg calving and/or glacial sliding events, and hope to test this by inverting for their source mechanisms and examining remote sensing data from their source regions.

  9. Compilation of Global Surface Ozone Observations for Earth System Model Trend Evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Evans, M. J.

    2014-12-01

    Tropospheric ozone is detrimental to human health and ecosystems, is a greenhouse gas, and plays a role in removing pollutants from the atmosphere. Since the first observations of its concentration in the late 19th century, it has been measured by a range of different approaches (surface instrumental, sondes, satellites). In the last 40 years, global (WMO GAW) and regional networks (EMEP, CASTNET, ...) have been initiated to measure its surface concentration. For data analysis and model comparisons a synthesis of all of this data needs to be undertaken. In this work we collate these observations into a single dataset with some initial quality control and handling of meta-data. We can then generate a range of products (means, medians, percentiles, standard deviations, AOT40, SUMO35, etc.) over a range of timescales (hourly, daily, monthly, annual) on user specified grids suitable for data analysis and model evaluation. We apply objective statistical techniques developed by the paleoclimate reconstruction community to interpolate the data spatially to reconstruct a global map and time series of surface ozone. Novelly, we use global chemical transport model output to infer each measurement's spatial representativeness to account for lifetime and meteorology. We present results of the global interpolation and global and regional averages in surface ozone over the past 40 years and compare them to models. We find that the observational coverage peaked around the year 2002 with good coverage over the northern midlatitudes and Antarctica but poor coverage over the tropics and Southern Hemisphere subtropics due to both the lack of observations and the short lifetime of tropical ozone. Significantly more ozone observations are made globally than are reported to the international datasets reducing the usefulness of these individual observations and making understanding ozone on both regional and global scale more difficult. New observations of surface ozone through the

  10. Evidence for a link between global lightning activity and upper tropospheric water vapour

    PubMed

    Price

    2000-07-20

    Tropospheric water vapour is a key element of the Earth's climate, which has direct effects as a greenhouse gas, as well as indirect effects through interaction with clouds, aerosols and tropospheric chemistry. Small changes in upper-tropospheric water vapour have a much larger impact on the greenhouse effect than small changes in water vapour in the lower atmosphere, but whether this impact is a positive or negative feedback remains uncertain. The main challenge in addressing this question is the difficulty in monitoring upper-tropospheric water vapour globally over long timescales. Here I show that upper-tropospheric water-vapour variability and global lightning activity are closely linked, suggesting that upper-tropospheric water-vapour changes can be inferred from records of global lightning activity, readily obtained from observations at a single location on the Earth's surface. This correlation reflects the fact that continental deep-convective thunderstorms transport large amounts of water vapour into the upper troposphere and thereby dominate the variations of global upper-tropospheric water vapour while producing most of the lightning on Earth. As global lightning induces Schumann resonances, an electromagnetic phenomenon in the atmosphere that can be observed easily at low cost, monitoring of these resonances might provide a convenient method for tracking upper-tropospheric water-vapour variability and hence contribute to a better understanding of the processes affecting climate change.

  11. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Broxton, Patrick D.; Hazenberg, Pieter; Zeng, Xubin; Troch, Peter A.; Niu, Guo-Yue; Williams, Zachary; Brunke, Michael A.; Gochis, David

    2016-03-01

    Earth's terrestrial near-subsurface environment can be divided into relatively porous layers of soil, intact regolith, and sedimentary deposits above unweathered bedrock. Variations in the thicknesses of these layers control the hydrologic and biogeochemical responses of landscapes. Currently, Earth System Models approximate the thickness of these relatively permeable layers above bedrock as uniform globally, despite the fact that their thicknesses vary systematically with topography, climate, and geology. To meet the need for more realistic input data for models, we developed a high-resolution gridded global data set of the average thicknesses of soil, intact regolith, and sedimentary deposits within each 30 arcsec (˜1 km) pixel using the best available data for topography, climate, and geology as input. Our data set partitions the global land surface into upland hillslope, upland valley bottom, and lowland landscape components and uses models optimized for each landform type to estimate the thicknesses of each subsurface layer. On hillslopes, the data set is calibrated and validated using independent data sets of measured soil thicknesses from the U.S. and Europe and on lowlands using depth to bedrock observations from groundwater wells in the U.S. We anticipate that the data set will prove useful as an input to regional and global hydrological and ecosystems models. This article was corrected on 2 FEB 2016. See the end of the full text for details.

  12. Does Titan have an Active Surface?

    NASA Astrophysics Data System (ADS)

    Nelson, R.

    2009-12-01

    ammonia, a compound expected in Titan’s interior. This, combined with the previous evidence from VIMS and RADAR images, creates a strong case for Titan having a presently active surface, possibly due to cryovolcanism. Cassini encountered Titan at very close range on 2008-11-19-13:58 and again on 2008-12-05-12:38. These epochs are called T47 and T48. Comparison of earlier lower resolution data (T5) with the recent T47 and T48 data reveal changes of the surface reflectance and morphology in the Hotei region. This is the first evidence from VIMS that confirms the RADAR report that Hotei Reggio has morphology consistent with volcanic terrain. It has not escaped our attention that ammonia, in association with methane and nitrogen, the principal species of Titan’s atmosphere, closely replicates the environment at the time that live first emerged on earth. If Titan is currently active then these results raise the following questions: What is the full extent of current geologic activity? What are the ongoing processes? Are Titan’s chemical processes today supporting a prebiotic chemistry similar to that under which life evolved on Earth? This work done at JPL under contract with NASA. Refs: [1]R. M. Nelson et al., Icarus 199 (2009) 429-441. [2]R. M. Nelson et al., GRL, VOL. 36, L04202, doi:10.1029/2008GL036206, 2009. [3]S. D. Wall GRL, VOL. 36, L04203, doi:10.1029/2008GL036415, 2009

  13. Variations of terrestrial geomagnetic activity correlated to M6+ global seismic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2013-04-01

    From the surface of the Sun, as a result of a solar flare, are expelled a coronal mass (CME or Coronal Mass Ejection) that can be observed from the Earth through a coronagraph in white light. This ejected material can be compared to an electrically charged cloud (plasma) mainly composed of electrons, protons and other small quantities of heavier elements such as helium, oxygen and iron that run radially from the Sun along the lines of the solar magnetic field and pushing into interplanetary space. Sometimes the CME able to reach the Earth causing major disruptions of its magnetosphere: mashed in the region illuminated by the Sun and expanding in the region not illuminated. This interaction creates extensive disruption of the Earth's geomagnetic field that can be detected by a radio receiver tuned to the ELF band (Extreme Low Frequency 0-30 Hz). The Radio Emissions Project (scientific research project founded in February 2009 by Gabriele Cataldi and Daniele Cataldi), analyzing the change in the Earth's geomagnetic field through an induction magnetometer tuned between 0.001 and 5 Hz (bandwidth in which possible to observe the geomagnetic pulsations) was able to detect the existence of a close relationship between this geomagnetic perturbations and the global seismic activity M6+. During the arrival of the CME on Earth, in the Earth's geomagnetic field are generated sudden and intensive emissions that have a bandwidth including between 0 and 15 Hz, an average duration of 2-8 hours, that preceding of 0-12 hours M6+ earthquakes. Between 1 January 2012 and 31 December 2012, all M6+ earthquakes recorded on a global scale were preceded by this type of signals which, due to their characteristics, have been called "Seismic Geomagnetic Precursors" (S.G.P.). The main feature of Seismic Geomagnetic Precursors is represented by the close relationship that they have with the solar activity. In fact, because the S.G.P. are geomagnetic emissions, their temporal modulation depends

  14. Geometric effects of global lateral heterogeneity on long-period surface wave propagation

    NASA Technical Reports Server (NTRS)

    Lay, T.; Kanamori, H.

    1985-01-01

    The present investigation has the objective to document examples of anomalous long-period surface wave amplitude behavior and to provide a preliminary appraisal of the effects of global lateral heterogeneity on surface wave propagation from a ray theory perspective. Attention is given to remarkable long-period surface wave anomalies described in literature, an equidistance azimuthal plot centered on the Iranian source region, Rayleigh wave and Love wave spectra for the 256-s period arrivals for the Tabas earthquake, constrained moment tensor and fault model inversion solutions ofr Iranian earthquakes, aspects of surface wave ray tracing, and a table of Rayleigh wave amplitude anomalies for Iranian earthquakes. Surface wave ray-tracing calculations for models of global phase velocity variations proposed by Nakanishi and Anderson (1984) are found to show that large-amplitude anomalies will be observed for Love and Rayleigh waves with periods of 100-250 s.

  15. The global land surface energy balance and its representation in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris; Hakuba, Maria; Schär, Christoph; Seneviratne, Sonia; Kato, Seiji; Rutan, David; Ammann, Christof; Wood, Eric; König-Langlo, Gert

    2015-04-01

    The energy budget over terrestrial surfaces is a key determinant of the land surface climate and governs a variety of physical, chemical and biological surface processes. The purpose of the present study is to establish new reference estimates for the different components of the energy balance over global land surfaces. Thanks to the impressive progress in space-based observation systems in the past decade, we now know the energy exchanges between our planet and the surrounding space with unprecedented accuracy. However, the energy flows at the Earth's surface have not been established with the same accuracy, since they cannot be directly measured from satellites. Accordingly, estimates on the magnitude of the fluxes at terrestrial surfaces largely vary, and latest climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) still show significant differences in their simulated energy budgets on a land mean basis, which prevents a consistent simulation of the land surface processes in these models. In the present study we use to the extent possible direct observations of surface radiative fluxes from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) to better constrain the simulated fluxes over global land surfaces. These model-calculated fluxes stem from the comprehensive set of more than 40 global climate from CMIP5 used in the latest IPCC report AR5. The CMIP5 models overall still show a tendency to overestimate the downward solar and underestimate the downward thermal radiation at terrestrial surfaces, a long standing problem in climate modelling. Based on the direct radiation observations and the bias structure of the CMIP5 models we infer best estimates for the downward solar and thermal radiation averaged over global land surfaces. They amount to 184 Wm-2 and 306 Wm-2, respectively. These values closely agree with the respective quantities independently derived by recent state-of-the-art reanalyses

  16. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Bell, Joseph L. (Inventor)

    1996-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprising at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  17. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard (Inventor)

    1994-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprises at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  18. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Astrophysics Data System (ADS)

    Howard, Richard

    1994-08-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprises at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  19. Sensitivity of Surface Air Quality and Global Mortality to Global, Regional, and Sectoral Black Carbon Emission Reductions

    NASA Astrophysics Data System (ADS)

    Anenberg, S.; Talgo, K.; Dolwick, P.; Jang, C.; Arunachalam, S.; West, J.

    2010-12-01

    Black carbon (BC), a component of fine particulate matter (PM2.5) released during incomplete combustion, is associated with atmospheric warming and deleterious health impacts, including premature cardiopulmonary and lung cancer mortality. A growing body of literature suggests that controlling emissions may therefore have dual benefits for climate and health. Several studies have focused on quantifying the potential impacts of reducing BC emissions from various world regions and economic sectors on radiative forcing. However, the impacts of these reductions on human health have been less well studied. Here, we use a global chemical transport model (MOZART-4) and a health impact function to quantify the surface air quality and human health benefits of controlling BC emissions. We simulate a base case and several emission control scenarios, where anthropogenic BC emissions are reduced by half globally, individually in each of eight world regions, and individually from the residential, industrial, and transportation sectors. We also simulate a global 50% reduction of both BC and organic carbon (OC) together, since they are co-emitted and both are likely to be impacted by actual control measures. Meteorology and biomass burning emissions are for the year 2002 with anthropogenic BC and OC emissions for 2000 from the IPCC AR5 inventory. Model performance is evaluated by comparing to global surface measurements of PM2.5 components. Avoided premature mortalities are calculated using the change in PM2.5 concentration between the base case and emission control scenarios and a concentration-response factor for chronic mortality from the epidemiology literature.

  20. Global changes in biogeochemical cycles in response to human activities

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Melillo, Jerry

    1994-01-01

    The main objective of our research was to characterize biogeochemical cycles at continental and global scales in both terrestrial and aquatic ecosystems. This characterization applied to both natural ecosystems and those disturbed by human activity. The primary elements of interest were carbon and nitrogen and the analysis sought to quantify standing stocks and dynamic cycling processes. The translocation of major nutrients from the terrestrial landscape to the atmosphere (via trace gases) and to fluvial systems (via leaching, erosional losses, and point source pollution) were of particular importance to this study. Our aim was to develop the first generation of Earth System Models. Our research was organized around the construction and testing of component biogeochemical models which treated terrestrial ecosystem processes, aquatic nutrient transport through drainage basins, and trace gas exchanges at the continental and global scale. A suite of three complementary models were defined within this construct. The models were organized to operate at a 1/2 degree latitude by longitude level of spatial resolution and to execute at a monthly time step. This discretization afforded us the opportunity to understand the dynamics of the biosphere down to subregional scales, while simultaneously placing these dynamics into a global context.

  1. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    PubMed

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

  2. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    PubMed

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase. PMID:23995690

  3. Solar total irradiance variations and the global sea surface temperature record

    SciTech Connect

    Reid, G.C. Univ. of Colorado, Boulder )

    1991-02-20

    The record of globally averaged sea surface temperature (SST) over the past 130 years shows a highly significant correlation with the envelope of the 11-year cycle of solar activity over the same period. This correlation could be explained by a variation in the sun's total irradiance (the solar constant) that is in phase with the solar-cycle envelope, supporting and updating an earlier conclusion by Eddy (1976) that such variations could have played a major role in climate change over the past millennium. Measurements of the total irradiance from spacecraft, rockets, and balloons over the past 25 years have provided evidence of long-term variations and have been used to develop a simple linear relationship between irradiance and the envelope of the sunspot cycle. This relationship has been used to force a one-dimensional model of the thermal structure of the ocean, consisting of a 100-m mixed layer coupled to a deep ocean and including a thermohaline circulation. The model was started in the mid-seventeenth century, at the time of the Maunder Minimum of solar activity, and mixed-layer temperatures were calculated at 6-month intervals up to the present. The total range of irradiance values during the period was about 1%, and the total range of SST was about 1C. Cool periods, when temperatures were about 0.5C below present-day values, were found in the early decades of both the nineteenth and twentieth centuries. The results can be taken as indicating that solar variability has been an important contributor to global climate variations in recent decades. The growing atmospheric burden of greenhouse gases may well have played an important role in the immediate past.

  4. Surface Dust Redistribution on Mars as Observed by the Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Szwast, M. A.; Richardson, M. I.; Vasavada, A. R.

    2005-01-01

    The global redistribution of dust by the atmosphere is geologically and climatologically important. Dust deposition and removal at the surface represents ongoing sedimentary geology: a vestige of aeolian processes responsible for the concentration of vast dustsheets and potentially for ancient layered units at various locations on Mars. The varying amount of dust on the surface has also long been hypothesized as a factor in determining whether regional or global dust storms occur in a given year. Indeed, the atmosphere has a very short, sub-seasonal time-scale (or memory) and as such, any inter-annual variability in the climate system that is not simply ascribable to stochastic processes, must involve changing conditions on the surface. An excellent, multi-year dataset is provided by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Mars Orbiter Camera Wide Angle imager (MOC-WA). This dataset allows investigation into the degree to which surface dust deposits on Mars really change: over decadal time scales, over the course of the annual cycle, and as a result of global and regional dust storms. The MGS mapping orbit data set extends over almost 3 Martian years at the time of writing. These data sets include one global dust storm and smaller regional storms (one in the first TES mapping year and two in the third).

  5. THE CLIMATE-AIR QUALITY SCALE CONTINUUM AND THE GLOBAL EMISSION INVENTORY ACTIVITY

    EPA Science Inventory

    The Global Emissions Inventory Activity (GEIA), a core program activity of the International Global Atmospheric Chemistry (IGAC) Project of the International Geosphere-Biosphere Program, develops data and other related information on key chemical emissions to the atmosphere and...

  6. Surface activation of Concorde by Be-7

    NASA Technical Reports Server (NTRS)

    Truscott, P. R.; Dyer, C. S.; Flatman, J. C.

    1992-01-01

    Activation analysis of two airframe components from the Concorde aircraft has identified the presence of Be-7, a nuclide found by other investigators that was deposited on the forward edge of the Long Duration Exposure Facility (LDEF) structure. The results of the Concorde analysis indicate that this phenomenon is very much a surface effect, and that the areal densities of the Be-7 are comparable to those found for LDEF. The collection of Be-7 by the aircraft must be greater than in the case of LDEF (since duration for which Concorde is accumulating the nuclide is shorter) and is of the order of 1.2 to 41 nuclei/sq cm(-)s(exp -1) depending upon assumptions made regarding the altitude at which collection becomes appreciable, and the efficiency of the process which removes the radionuclide.

  7. Global Citizenship Instruction through Active Participation: What Is Being Learned about Global Citizenship?

    ERIC Educational Resources Information Center

    Leduc, Rhonda

    2013-01-01

    If the definitions of global citizenship are varied and contestable, how do teachers conceptualize and make meaning of global citizenship when required to teach global citizenship in the classroom? For this study, twenty-nine grade six social studies teachers in British Columbia, Canada, were surveyed on their definitions of global citizenship…

  8. Global Earthquake Activity Rate models based on version 2 of the Global Strain Rate Map

    NASA Astrophysics Data System (ADS)

    Bird, P.; Kreemer, C.; Kagan, Y. Y.; Jackson, D. D.

    2013-12-01

    Global Earthquake Activity Rate (GEAR) models have usually been based on either relative tectonic motion (fault slip rates and/or distributed strain rates), or on smoothing of seismic catalogs. However, a hybrid approach appears to perform better than either parent, at least in some retrospective tests. First, we construct a Tectonic ('T') forecast of shallow (≤ 70 km) seismicity based on global plate-boundary strain rates from version 2 of the Global Strain Rate Map. Our approach is the SHIFT (Seismic Hazard Inferred From Tectonics) method described by Bird et al. [2010, SRL], in which the character of the strain rate tensor (thrusting and/or strike-slip and/or normal) is used to select the most comparable type of plate boundary for calibration of the coupled seismogenic lithosphere thickness and corner magnitude. One difference is that activity of offshore plate boundaries is spatially smoothed using empirical half-widths [Bird & Kagan, 2004, BSSA] before conversion to seismicity. Another is that the velocity-dependence of coupling in subduction and continental-convergent boundaries [Bird et al., 2009, BSSA] is incorporated. Another forecast component is the smoothed-seismicity ('S') forecast model of [Kagan & Jackson, 1994, JGR; Kagan & Jackson, 2010, GJI], which was based on optimized smoothing of the shallow part of the GCMT catalog, years 1977-2004. Both forecasts were prepared for threshold magnitude 5.767. Then, we create hybrid forecasts by one of 3 methods: (a) taking the greater of S or T; (b) simple weighted-average of S and T; or (c) log of the forecast rate is a weighted average of the logs of S and T. In methods (b) and (c) there is one free parameter, which is the fractional contribution from S. All hybrid forecasts are normalized to the same global rate. Pseudo-prospective tests for 2005-2012 (using versions of S and T calibrated on years 1977-2004) show that many hybrid models outperform both parents (S and T), and that the optimal weight on S

  9. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  10. Global Changes in the Sea Ice Cover and Associated Surface Temperature Changes

    NASA Astrophysics Data System (ADS)

    Comiso, Josefino C.

    2016-06-01

    The trends in the sea ice cover in the two hemispheres have been observed to be asymmetric with the rate of change in the Arctic being negative at -3.8 % per decade while that of the Antarctic is positive at 1.7 % per decade. These observations are confirmed in this study through analyses of a more robust data set that has been enhanced for better consistency and updated for improved statistics. With reports of anthropogenic global warming such phenomenon appears physically counter intuitive but trend studies of surface temperature over the same time period show the occurrence of a similar asymmetry. Satellite surface temperature data show that while global warming is strong and dominant in the Arctic, it is relatively minor in the Antarctic with the trends in sea ice covered areas and surrounding ice free regions observed to be even negative. A strong correlation of ice extent with surface temperature is observed, especially during the growth season, and the observed trends in the sea ice cover are coherent with the trends in surface temperature. The trend of global averages of the ice cover is negative but modest and is consistent and compatible with the positive but modest trend in global surface temperature. A continuation of the trend would mean the disappearance of summer ice by the end of the century but modelling projections indicate that the summer ice could be salvaged if anthropogenic greenhouse gases in the atmosphere are kept constant at the current level.

  11. Surface active properties of chitosan and its derivatives.

    PubMed

    Elsabee, Maher Z; Morsi, Rania Elsayed; Al-Sabagh, A M

    2009-11-01

    This review discusses the definition of surface active agents and specifically natural polymeric surface active agents. Chitosan by itself was found to have weak surface activity since it has no hydrophobic segments. Chemical modifications of chitosan could improve such surface activity. This is achieved by introducing hydrophobic substituents in its glucosidic group. Several examples of chitosan derivatives with surfactant activity have been surveyed. The surface active polymers form micelles and aggregates which have enormous importance in the entrapment of water-insoluble drugs and consequently applications in the controlled drug delivery and many biomedical fields. Chitosan also interacts with several substrates by electrostatic and hydrophobic interactions with considerable biomedical applications.

  12. An authoritative global database for active submarine hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  13. Global structure search for molecules on surfaces: Efficient sampling with curvilinear coordinates.

    PubMed

    Krautgasser, Konstantin; Panosetti, Chiara; Palagin, Dennis; Reuter, Karsten; Maurer, Reinhard J

    2016-08-28

    Efficient structure search is a major challenge in computational materials science. We present a modification of the basin hopping global geometry optimization approach that uses a curvilinear coordinate system to describe global trial moves. This approach has recently been shown to be efficient in structure determination of clusters [C. Panosetti et al., Nano Lett. 15, 8044-8048 (2015)] and is here extended for its application to covalent, complex molecules and large adsorbates on surfaces. The employed automatically constructed delocalized internal coordinates are similar to molecular vibrations, which enhances the generation of chemically meaningful trial structures. By introducing flexible constraints and local translation and rotation of independent geometrical subunits, we enable the use of this method for molecules adsorbed on surfaces and interfaces. For two test systems, trans-β-ionylideneacetic acid adsorbed on a Au(111) surface and methane adsorbed on a Ag(111) surface, we obtain superior performance of the method compared to standard optimization moves based on Cartesian coordinates.

  14. Global structure search for molecules on surfaces: Efficient sampling with curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Krautgasser, Konstantin; Panosetti, Chiara; Palagin, Dennis; Reuter, Karsten; Maurer, Reinhard J.

    2016-08-01

    Efficient structure search is a major challenge in computational materials science. We present a modification of the basin hopping global geometry optimization approach that uses a curvilinear coordinate system to describe global trial moves. This approach has recently been shown to be efficient in structure determination of clusters [C. Panosetti et al., Nano Lett. 15, 8044-8048 (2015)] and is here extended for its application to covalent, complex molecules and large adsorbates on surfaces. The employed automatically constructed delocalized internal coordinates are similar to molecular vibrations, which enhances the generation of chemically meaningful trial structures. By introducing flexible constraints and local translation and rotation of independent geometrical subunits, we enable the use of this method for molecules adsorbed on surfaces and interfaces. For two test systems, trans-β-ionylideneacetic acid adsorbed on a Au(111) surface and methane adsorbed on a Ag(111) surface, we obtain superior performance of the method compared to standard optimization moves based on Cartesian coordinates.

  15. The Global Surface Roughness of 433 Eros from the NEAR-Shoemaker Laser Altimeter (NLR)

    NASA Astrophysics Data System (ADS)

    Meyer Susorney, Hannah Celine; Barnouin, Olivier S.

    2016-10-01

    Surface roughness is the quantitative measure of the change in topography at a given scale. Previous studies have used surface roughness to map geologic units, choose landing sites, and understand the relative contribution of different geologic processes to topography. In this study we focus on understanding how surface roughness is linked to the geologic processes acting on asteroids, with a case study of 433 Eros through the generation of global surface roughness maps. The scale that surface roughness is measured at will dictate the geologic processes studied; the majority of studies of the surface roughness of asteroids have focused on centimeter scale roughness (derived from radar measurements). Spacecraft that rendezvous with asteroids and carry laser altimeters on board provide topographic data that allows surface roughness to be measured at the scale of meters to hundreds of meters.To calculate surface roughness on 433 Eros from 1 m to 300 m, we use the Near Earth Asteroid Rendezvous (NEAR)-Shoemaker's laser altimeter (NLR). We measure surface roughness as Root-Mean Square (RMS) deviation, which is simply the RMS difference in height over a given scale. RMS deviation is then used to calculate the Hurst exponent, which quantifies the fractal behavior of the surface and is indicative of the type of geologic processes controlling topography at that scale. The surface roughness on 433 Eros varies regionally, with smaller roughness values where regolith has accumulated, and more elevated roughness values along the walls of large craters or near linear grooves. The roughness seen in crater walls may be evidence for subsurface structures (visible as aligned blocks protruding from the crater walls). The surface roughness of 433 Eros is also remarkably fractal relative to other asteroids and planets. To understand in greater detail the geological origin of the surface roughness and fractal nature of Eros, this study presents the first global maps of surface roughness

  16. Global monthly sea surface nitrate fields estimated from remotely sensed sea surface temperature, chlorophyll, and modeled mixed layer depth

    NASA Astrophysics Data System (ADS)

    Arteaga, Lionel; Pahlow, Markus; Oschlies, Andreas

    2015-02-01

    Information about oceanic nitrate is crucial for making inferences about marine biological production and the efficiency of the biological carbon pump. While there are no optical properties that allow direct estimation of inorganic nitrogen, its correlation with other biogeochemical variables may permit its inference from satellite data. Here we report a new method for estimating monthly mean surface nitrate concentrations employing local multiple linear regressions on a global 1° by 1° resolution grid, using satellite-derived sea surface temperature, chlorophyll, and modeled mixed layer depth. Our method is able to reproduce the interannual variability of independent in situ nitrate observations at the Bermuda Atlantic Time Series, the Hawaii Ocean Time series, the California coast, and the southern New Zealand region. Our new method is shown to be more accurate than previous algorithms and thus can provide improved information on temporal and spatial nutrient variations beyond the climatological mean at regional and global scales.

  17. Vessels as 4-D curves: global minimal 4-D paths to extract 3-D tubular surfaces and centerlines.

    PubMed

    Li, Hua; Yezzi, Anthony

    2007-09-01

    In this paper, we propose an innovative approach to the segmentation of tubular structures. This approach combines all of the benefits of minimal path techniques such as global minimizers, fast computation, and powerful incorporation of user input, while also having the capability to represent and detect vessel surfaces directly which so far has been a feature restricted to active contour and surface techniques. The key is to represent the trajectory of a tubular structure not as a 3-D curve but to go up a dimension and represent the entire structure as a 4-D curve. Then we are able to fully exploit minimal path techniques to obtain global minimizing trajectories between two user supplied endpoints in order to reconstruct tubular structures from noisy or low contrast 3-D data without the sensitivity to local minima inherent in most active surface techniques. In contrast to standard purely spatial 3-D minimal path techniques, however, we are able to represent a full tubular surface rather than just a curve which runs through its interior. Our representation also yields a natural notion of a tube's "central curve." We demonstrate and validate the utility of this approach on magnetic resonance (MR) angiography and computed tomography (CT) images of coronary arteries. PMID:17896594

  18. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support

  19. A Data Gap Analysis and Efforts Towards Improving NOAA's Global Surface Temperature

    NASA Astrophysics Data System (ADS)

    Zhang, H. M.; Wuertz, D.; Nickl, E.; Banzon, P. V. F.; Gleason, B.; Huang, B.; Lawrimore, J. H.; Menne, M. J.; Rennie, J.; Thorne, P.; Williams, C. N., Jr.

    2014-12-01

    Estimates of global surface temperature trends from some sources have indicated slowing in the rate of warming over the last decade compared to the long-term warming trend since the industrial revolution. It has been debated whether this recent slowdown is due to natural variability or a missed signal due to gaps in the global observation networks, particularly over the Arctic Region. To examine this more closely, we quantify the impact of data gaps on the global surface temperature trends in several regions of the world (e.g. Polar Regions and the Continents of African and South America), using major global datasets including NOAA's Merged Land-Ocean Temperature dataset (NOAATemp). We also study the impact of the greater observational coverage in a recently released global temperature data set as part of the International Surface Temperature Initiative (ISTI), and analyze the spatial-temporal variation patterns of the homogenization effect on NOAATemp. A summary of the progress and challenges in filling in grid boxes where observations are sparse over large areas are presented.

  20. Effect of Surface-Active Pseudomonas spp. on Leaf Wettability

    PubMed Central

    Bunster, Lillian; Fokkema, Nyckle J.; Schippers, Bob

    1989-01-01

    Different strains of Pseudomonas putida and P. fluorescens isolated from the rhizosphere and phyllosphere were tested for surface activity in droplet cultures on polystyrene. Droplets of 6 of the 12 wild types tested spread over the surface during incubation, and these strains were considered surface active; strains not showing this reaction were considered non-surface active. Similar reactions were observed on pieces of wheat leaves. Supernatants from centrifuged broth cultures behaved like droplets of suspensions in broth; exposure to 100°C destroyed the activity. Average contact angles of the supernatants of surface-active and non-surface-active strains on polystyrene were 24° and 72°, respectively. The minimal surface tension of supernatants of the surface-active strains was about 46 mN/m, whereas that of the non-surface-active strains was 64 mN/m (estimations from Zisman plots). After 6 days of incubation, wheat flag leaves sprayed with a dilute suspension of a surface-active strain of P. putida (WCS 358RR) showed a significant increase in leaf wettability, which was determined by contact angle measurements. Increasing the initial concentration of bacteria and the amount of nutrients in the inoculum sprayed on leaves reduced the contact angles from 138° on leaves treated with antibiotics (control) to 43° on leaves treated with surface-active bacteria. A closely related strain with no surface activity on polystyrene did not affect leaf wettability, although it was present in densities similar to those of the surface-active strain. Nutrients alone could occasionally also increase leaf wettability, apparently by stimulating naturally occurring surface-active bacteria. When estimating densities of Pseudomonas spp. underneath droplets with low contact angles, it appeared that populations on leaves treated with a surface-active strain could vary from about 104 to 106 CFU cm−2, suggesting that the surface effect may be prolonged after a decline of the

  1. A framework for global diurnally-resolved observations of Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Ghent, Darren; Remedios, John

    2014-05-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Being a key boundary condition in land surface models, which determine the surface to atmosphere fluxes of heat, water and carbon; thus influencing cloud cover, precipitation and atmospheric chemistry predictions within Global models, the requirement for global diurnal observations of LST is well founded. Earth Observation satellites offer an opportunity to obtain global coverage of LST, with the appropriate exploitation of data from multiple instruments providing a capacity to resolve the diurnal cycle on a global scale. Here we present a framework for the production of global, diurnally resolved, data sets for LST which is a key request from users of LST data. We will show how the sampling of both geostationary and low earth orbit data sets could conceptually be employed to build combined, multi-sensor, pole-to-pole data sets. Although global averages already exist for individual instruments and merging of geostationary based LST is already being addressed operationally (Freitas, et al., 2013), there are still a number of important challenges to overcome. In this presentation, we will consider three of the issues still open in LST remote sensing: 1) the consistency amongst retrievals; 2) the clear-sky bias and its quantification; and 3) merging methods and the propagation of uncertainties. For example, the combined use of both geostationary earth orbit (GEO) and low earth orbit (LEO) data, and both infra-red and microwave data are relatively unexplored but are necessary to make the most progress. Hence this study will suggest what is state-of-the-art and how considerable advances can be made, accounting also for recent improvements in techniques and data quality. The GlobTemperature initiative under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013

  2. A framework for global diurnally-resolved observations of Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Remedios, J.; Pinnock, S.

    2013-12-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Being a key boundary condition in land surface models, which determine the surface to atmosphere fluxes of heat, water and carbon; thus influencing cloud cover, precipitation and atmospheric chemistry predictions within Global models, the requirement for global diurnal observations of LST is well founded. Earth Observation satellites offer an opportunity to obtain global coverage of LST, with the appropriate exploitation of data from multiple instruments providing a capacity to resolve the diurnal cycle on a global scale. Here we present a framework for the production of global, diurnally resolved, data sets for LST which is a key request from users of LST data. We will show how the sampling of both geostationary and low earth orbit data sets could conceptually be employed to build combined, multi-sensor, pole-to-pole data sets. Although global averages already exist for individual instruments and merging of geostationary based LST is already being addressed operationally (Freitas, et al., 2013), there are still a number of important challenges to overcome. In this presentation, we will consider three of the issues still open in LST remote sensing: 1) the consistency amongst retrievals; 2) the clear-sky bias and its quantification; and 3) merging methods and the propagation of uncertainties. For example, the combined use of both geostationary earth orbit (GEO) and low earth orbit (LEO) data, and both infra-red and microwave data are relatively unexplored but are necessary to make the most progress. Hence this study will suggest what is state-of-the-art and how considerable advances can be made, accounting also for recent improvements in techniques and data quality. The GlobTemperature initiative under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013

  3. How best to optimize a global process-based carbon land surface model ?

    NASA Astrophysics Data System (ADS)

    Peylin, Philippe; Bacour, Cedric; MacBean, Natasha; Leonard, Sebastien; Maignan, Fabienne; Thum, Tea; Chevallier, Frederic; Ciais, Philippe; Cadule, Patricia; Santaren, Diego

    2014-05-01

    Global process-based land surface models are used to predict the response of the Earth's ecosystems to environmental changes. However, the estimated water and carbon fluxes remain subject to large uncertainties, partly because of unknown or poorly calibrated parameters. Assimilation of in situ data, remote sensing products, and/or atmospheric trace gas concentrations, into these models is a promising approach to optimize key parameters, providing that all major processes are well represented. So far, most of the studies have focused on using one single data stream, either remotely sensed estimates of the vegetation activity (fAPAR or NDVI) to constrain the modeled plant phenology, in situ measurements of net CO2 and latent heat fluxes (NEE, LE at FluxNet sites) or atmospheric CO2 concentrations (through the use of a transport model) to provide constraint on the net carbon fluxes at hourly to inter-annual time-scales. However, the combination of these data streams is expected to provide a much larger constraint on ecosystem carbon, water and energy dynamics. At LSCE we have constructed a global Carbon Cycle Multi-Data Assimilation System (CCDAS) to assimilate i) MODIS-NDVI observations at around 15 points for each plant functional type (PFT) in the model, ii) in situ NEE and LE fluxes at around 70 FluxNet sites and iii) atmospheric CO2 measurements at more than 80 sites. We used different methods of data assimilation (including a 4D-Var approach), depending on the number and type of data streams that are considered in order to optimize the main parameters of the global vegetation model ORCHIDEE (around 15 parameters per PFT). Using such a CCDAS, we investigated several methodological to scientific questions: How does a variational scheme perform compared to a "Monte Carlo" approach (the genetic algorithm) to minimize an objective function (using FluxNet data)? What is the additional information brought by the measurements of above ground biomass data on the top of

  4. Summary of activities. [Mars surface sampling

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Four space projects' activities are summarized. Design work on the Mars Penetrator Project, in cooperation with the NASA Ames Research Center, is being continued. Efforts are focused on the drilling mechanism which must penetrate the martian subsurface soil to collect and retrieve an uncontaminated sample. The new design consists of a rotary-percussive drill mechanism. This mechanism is optimum for dry drilling, necessary to avoid contamination of the soil sample, in many different soil types. The need for a small, relatively inexpensive device to study the chemical structure of this martian soil was also established. The egg design was chosen for its low cost compared to other systems and potential for a large number of eggs to be deployed on the martian surface. The design process included analysis of the dynamics of reentry, dissipation of heat during reentry, impact with the surface, access to undisturbed soil samples, and ability to gather samples from the soil at three depths. The egg consists of the reentry systems, soil probe lifting system, soil probe package, gas chromatograph, transmitter, and battery power supply. The egg must function only once, but is designed to withstand one martian year. The Mars Mole is designed as a rover-based device which penetrates the martian soil to a depth of up to 10 m, obtains a sample of soil, and returns it to the surface for analysis. The mole was designed to meet the following specifications: (1) weight less than 10 kg; (2) size less than 20 x 20 x 30 cm; (3) power less than 100 W; (4) ability to obtain a sample of at least 5 cc; (5) ability to penetrate fine, loose sand; and (6) need to obtain at least one sample. The space station umbilical connector project is a device which provides the translational motion of the connectors on the Space Station Freedom to allow engagement for power and data transfer. The design is capable of delivering a 20 lb force within the necessary tolerances and will operate reliably in the

  5. A global, 30-m resolution land-surface water body dataset for 2000

    NASA Astrophysics Data System (ADS)

    Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.

    2014-12-01

    Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large

  6. Inverse modeling of atmospheric mercury emissions using a global chemical transport model and surface observations

    NASA Astrophysics Data System (ADS)

    Song, S.; Selin, N. E.

    2012-12-01

    We use inverse modeling in combination with worldwide observational data to constrain atmospheric mercury fluxes and associated uncertainties from anthropogenic and natural sources. Though atmospheric transport is a critical pathway of global mercury transport, large uncertainties exist in estimating the magnitudes and temporal variabilities of mercury emissions to the atmosphere from both natural and anthropogenic processes. Previous estimations have primarily used a so-called "bottom-up" approach, which extrapolates the few direct measurements to larger regions or uses simplified process models to estimate fluxes. Here, we apply a "top-down" or inverse modeling approach. Worldwide surface observations of total gaseous mercury (TGM) and simulations from a global chemical transport model (GEOS-Chem version 9-01-02 with a 2 by 2.5 degree horizontal resolution) are combined to estimate mercury fluxes. Time-invariant anthropogenic emission and seasonally varying fluxes (e.g., ocean evasion, biomass burning, and soil volatilization) are optimally estimated by Kalman filter between 2005 and 2009 at a monthly time resolution. The reference source spatial distributions are shown in Figure 1. We collected data from 16 measurement sites with high precision and frequency, covering most active stations during our period of study. The observations and reference model outputs at 4 representative sites are compared in Figure 2. We test the inverse model by comparing model-measurement fits between the reference model and optimized emissions.igure 1. Mercury reference source spatial distributions. Annually averaged patterns are shown in log scale. igure 2. Comparison of TGM monthly mean observations between observations (black, shown with standard deviations) and reference model results (red) at 4 representative sites.

  7. Method for using global optimization to the estimation of surface-consistent residual statics

    DOEpatents

    Reister, David B.; Barhen, Jacob; Oblow, Edward M.

    2001-01-01

    An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.

  8. Aerosol effects on global land surface energy fluxes during 2003-2010

    NASA Astrophysics Data System (ADS)

    Liu, Shaoqing; Chen, Min; Zhuang, Qianlai

    2014-11-01

    Aerosols affect downward solar radiation, impacting the terrestrial ecosystem carbon dynamics and energy budget. Here we apply a coupled modeling framework of a terrestrial ecosystem model and an atmospheric radiative transfer model to evaluate aerosol direct radiative effects on the surface heat fluxes of global terrestrial ecosystems during 2003-2010. We find that aerosol loadings decrease the mean latent heat flux by 2.4 Wm-2 (or evapotranspiration by 28 mm) and sensible heat flux by 16 Wm-2. As a result, global mean soil moisture and water evaporative fraction have increased by 0.5% and 4%, respectively. Spatially, aerosol effects are significant in tropical forests and temperate broadleaf evergreen forests. This study is among the first quantifications of aerosols' effects on the heat fluxes of the global terrestrial ecosystems. The study further suggests that both direct and indirect aerosol radiative effects through aerosol-cloud interactions should be considered to quantify the energy budget of the global terrestrial ecosystems.

  9. VIRTIS on Venus Express: retrieval of real surface emissivity on global scales

    NASA Astrophysics Data System (ADS)

    Arnold, Gabriele E.; Kappel, David; Haus, Rainer; Telléz Pedroza, Laura; Piccioni, Giuseppe; Drossart, Pierre

    2015-09-01

    The extraction of surface emissivity data provides the data base for surface composition analyses and enables to evaluate Venus' geology. The Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA's Venus Express mission measured, inter alia, the nightside thermal emission of Venus in the near infrared atmospheric windows between 1.0 and 1.2 μm. These data can be used to determine information about surface properties on global scales. This requires a sophisticated approach to understand and consider the effects and interferences of different atmospheric and surface parameters influencing the retrieved values. In the present work, results of a new technique for retrieval of the 1.0 - 1.2 μm - surface emissivity are summarized. It includes a Multi-Window Retrieval Technique, a Multi-Spectrum Retrieval technique (MSR), and a detailed reliability analysis. The MWT bases on a detailed radiative transfer model making simultaneous use of information from different atmospheric windows of an individual spectrum. MSR regularizes the retrieval by incorporating available a priori mean values, standard deviations as well as spatial-temporal correlations of parameters to be retrieved. The capability of this method is shown for a selected surface target area. Implications for geologic investigations are discussed. Based on these results, the work draws conclusions for future Venus surface composition analyses on global scales using spectral remote sensing techniques. In that context, requirements for observational scenarios and instrumental performances are investigated, and recommendations are derived to optimize spectral measurements for Venus' surface studies.

  10. Thai Youths and Global Warming: Media Information, Awareness, and Lifestyle Activities

    ERIC Educational Resources Information Center

    Chokriensukchai, Kanchana; Tamang, Ritendra

    2010-01-01

    This study examines the exposure of Thai youths to media information on global warming, the relationship between exposure to global warming information and awareness of global warming, and the relationship between that awareness and lifestyle activities that contribute to global warming. A focus group of eight Thai youths provided information that…

  11. World Energy Projection System Plus (WEPS ): Global Activity Module

    EIA Publications

    2016-01-01

    The World Energy Projection System Plus (WEPS ) is a comprehensive, mid?term energy forecasting and policy analysis tool used by EIA. WEPS projects energy supply, demand, and prices by country or region, given assumptions about the state of various economies, international energy markets, and energy policies. The Global Activity Module (GLAM) provides projections of economic driver variables for use by the supply, demand, and conversion modules of WEPS . GLAM’s baseline economic projection contains the economic assumptions used in WEPS to help determine energy demand and supply. GLAM can also provide WEPS with alternative economic assumptions representing a range of uncertainty about economic growth. The resulting economic impacts of such assumptions are inputs to the remaining supply and demand modules of WEPS .

  12. Sustainability of global groundwater and surface water use: past reconstruction and future projections

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Bierkens, M. F.

    2014-12-01

    Overuse of surface water and an increasing reliance on nonrenewable groundwater resources have been reported over various regions of the world, casting significant doubt on the sustainable water supply and food production met by irrigation. To assess the limitations of global water resources, numerous indicators have been developed, but they rarely consider nonrenewable water use. In addition, surface water over-abstraction is rarely assessed in the context of human and environmental water needs. Here, we perform a transient assessment of global groundwater and surface water use over the historical period 1960-2010 as well as the future projections of 2011-2099, using a newly developed indicator: the Blue Water Sustainability Index (BlWSI). The BlWSI incorporates both nonrenewable groundwater use and nonsustainable water use that compromises environmental flow requirements. Our results reveal an increasing trend of water consumed from nonsustainable surface water and groundwater resources over the historical period (~30%), and this increase is projected to continue further towards the end of this century (~40%). The global amount of nonsustainable water consumption has been increasing especially since the late 1990s, despite a wetter climate and increasing water availability during this period. The BlWSI is the first tool suitable for consistently evaluating the renewability and degradation of surface water and groundwater resources as a result of human water over-abstraction.

  13. Global segregation of cortical activity and metastable dynamics

    PubMed Central

    Stratton, Peter; Wiles, Janet

    2015-01-01

    Cortical activity exhibits persistent metastable dynamics. Assemblies of neurons transiently couple (integrate) and decouple (segregate) at multiple spatiotemporal scales; both integration and segregation are required to support metastability. Integration of distant brain regions can be achieved through long range excitatory projections, but the mechanism supporting long range segregation is not clear. We argue that the thalamocortical matrix connections, which project diffusely from the thalamus to the cortex and have long been thought to support cortical gain control, play an equally-important role in cortical segregation. We present a computational model of the diffuse thalamocortical loop, called the competitive cross-coupling (CXC) spiking network. Simulations of the model show how different levels of tonic input from the brainstem to the thalamus could control dynamical complexity in the cortex, directing transitions between sleep, wakefulness and high attention or vigilance. The model also explains how mutually-exclusive activity could arise across large portions of the cortex, such as between the default-mode and task-positive networks. It is robust to noise but does not require noise to autonomously generate metastability. We conclude that the long range segregation observed in brain activity and required for global metastable dynamics could be provided by the thalamocortical matrix, and is strongly modulated by brainstem input to the thalamus. PMID:26379514

  14. Global segregation of cortical activity and metastable dynamics.

    PubMed

    Stratton, Peter; Wiles, Janet

    2015-01-01

    Cortical activity exhibits persistent metastable dynamics. Assemblies of neurons transiently couple (integrate) and decouple (segregate) at multiple spatiotemporal scales; both integration and segregation are required to support metastability. Integration of distant brain regions can be achieved through long range excitatory projections, but the mechanism supporting long range segregation is not clear. We argue that the thalamocortical matrix connections, which project diffusely from the thalamus to the cortex and have long been thought to support cortical gain control, play an equally-important role in cortical segregation. We present a computational model of the diffuse thalamocortical loop, called the competitive cross-coupling (CXC) spiking network. Simulations of the model show how different levels of tonic input from the brainstem to the thalamus could control dynamical complexity in the cortex, directing transitions between sleep, wakefulness and high attention or vigilance. The model also explains how mutually-exclusive activity could arise across large portions of the cortex, such as between the default-mode and task-positive networks. It is robust to noise but does not require noise to autonomously generate metastability. We conclude that the long range segregation observed in brain activity and required for global metastable dynamics could be provided by the thalamocortical matrix, and is strongly modulated by brainstem input to the thalamus.

  15. Global emissions and models of photochemically active compounds

    SciTech Connect

    Penner, J.E.; Atherton, C.S.; Graedel, T.E.

    1993-05-20

    Anthropogenic emissions from industrial activity, fossil fuel combustion, and biomass burning are now known to be large enough (relative to natural sources) to perturb the chemistry of vast regions of the troposphere. A goal of the IGAC Global Emissions Inventory Activity (GEIA) is to provide authoritative and reliable emissions inventories on a 1{degree} {times} 1{degree} grid. When combined with atmospheric photochemical models, these high quality emissions inventories may be used to predict the concentrations of major photochemical products. Comparison of model results with measurements of pertinent species allows us to understand whether there are major shortcomings in our understanding of tropospheric photochemistry, the budgets and transport of trace species, and their effects in the atmosphere. Through this activity, we are building the capability to make confident predictions of the future consequences of anthropogenic emissions. This paper compares IGAC recommended emissions inventories for reactive nitrogen and sulfur dioxide to those that have been in use previously. We also present results from the three-dimensional LLNL atmospheric chemistry model that show how emissions of anthropogenic nitrogen oxides might potentially affect tropospheric ozone and OH concentrations and how emissions of anthropogenic sulfur increase sulfate aerosol loadings.

  16. Quantum Dynamics of Vinylidene Photodetachment on an Accurate Global Acetylene-Vinylidene Potential Energy Surface.

    PubMed

    Guo, Lifen; Han, Huixian; Ma, Jianyi; Guo, Hua

    2015-08-01

    Vinylidene is a high-energy isomer of acetylene, and the rearrangement of bonds in the two species serves as a prototype for isomerization reactions. Here, a full-dimensional quantum mechanical study of the vinylidene vibration is carried out on a recently developed global acetylene-vinylidene potential energy surface by simulating the photodetachment dynamics of the vinylidene anion. Several low-lying vibrational levels of the anion were first determined on a new ab initio based potential energy surface, and their photoelectron spectra were obtained within the Condon approximation. The vibrational features of the vinylidene isomer are found to agree well with the experiment in both positions and intensities, validating the global acetylene-vinylidene potential energy surface.

  17. Variability in the coupling between sea surface temperature and wind stress in the global coastal ocean

    NASA Astrophysics Data System (ADS)

    Wang, Yuntao; Castelao, Renato M.

    2016-08-01

    Mesoscale ocean-atmosphere interaction between sea surface temperature (SST) and wind stress throughout the global coastal ocean was investigated using 7 years of satellite observations. Coupling coefficients between crosswind SST gradients and wind stress curl and between downwind SST gradients and wind stress divergence were used to quantify spatial and temporal variability in the strength of the interaction. The use of a consistent data set and standardized methods allow for direct comparisons between coupling coefficients in the different coastal regions. The analysis reveals that strong coupling is observed in many mid-latitude regions throughout the world, especially in regions with strong fronts like Eastern and Western Boundary Currents. Most upwelling regions in Eastern Boundary Currents are characterized by strong seasonal variability in the strength of the coupling, which generally peaks during summer in mid latitudes and during winter at low latitudes. Seasonal variability in coastal regions along Western Boundary Currents is comparatively smaller. Intraseasonal variability is especially important in regions of strong eddy activity (e.g., Western Boundary Currents), being particularly relevant for the coupling between crosswind SST gradients and wind stress curl. Results from the analysis can be used to guide modeling studies, since it allows for the a priori identification of regions in which regional models need to properly represent the ocean-atmosphere interaction to accurately represent local variability.

  18. A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Wind stress is the major forcing for driving the oceanic circulation, while Evaporation is a key component of hydrological cycle and surface heat budget. We have produced a 7.5-year (July 1987-December 1994) dataset of daily, individual monthly-mean and climatological (1988-94) monthly-mean surface turbulent fluxes over the global oceans from measurements of the Special Sensor Microwave/Imager (SSM/I) on board the US Defense Meteorological Satellite Program F8, F10, and F11 satellites. It has a spatial resolution of 2.0x2.5 latitude-longitude. Daily turbulent fluxes are derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) IS found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The surface wind speed and specific humidity (latent heat flux) derived from the F10 SSM/I are found to be -encrally smaller (larger) than those retrieved from the F11 SSM/I. The F11 SSM/I appears to have slightly better retrieval accuracy for surface wind speed and humidity as compared to the F10 SSM/I. This difference may be due to the orbital drift of the F10 satellite. The daily wind stresses and latent heat fluxes retrieved from F10 and F11 SSM/Is show useful accuracy as verified against the research quality in si -neasurerrients (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE Intensive observing period (November 1992-February 1993). The 1988-94 seasonal-mean turbulent fluxes and input variables derived from FS and F11 SSM/Is show reasonable

  19. Implications of increased surface melt under global warming scenarios: Greenland ice-sheet simulations

    NASA Astrophysics Data System (ADS)

    Parizek, B. R.; Alley, R. B.

    2003-04-01

    The Greenland Ice Sheet represents ~10% (by volume) of the cryosphere and ~7 meters of sea-level equivalence. Citing the inherent stability offered by the long glaciological timescales involved in classical ice-sheet dynamics, the elevation of the bedrock on which the ice sheet is perched, and the extremely cold inland surface temperatures, numerical studies on the future of this ice sheet under various global-warming scenarios have all but dismissed the potential for substantial dynamic changes in the next millennium. Unlike for the setting of the West Antarctic Ice Sheet, there were simply no foreseen mechanisms for rapid switches in Greenland's prevailing ice-flow regime. Recently, field observations near the Swiss Camp in west-central Greenland may have offered the essential link between surface temperatures and ice dynamics at and below the equilibrium line that may require the ice sheet to ``listen'' to climate far more closely than previously envisioned by model parameterizations. Zwally et al. (2002) documented correlation between increased ice velocity and increased surface melt (as parameterized by positive degree days (PDD)). They argued that surface water is piped directly to the bed with little delay, causing increased basal-water pressures and basal-sliding velocities. Using the PSU/UofC thermomechanical flowline model, numerous simulations are being conducted to test a wide variety of parameter spaces that link surface melt with a new sliding law under several global warming scenarios. Initial comparisons to the EISMINT Level 3 global-warming benchmark illustrate an enhanced sensitivity of the ice sheet to surface warming resulting in higher ablation rates, thinning of the margin, and a reduction in ice volume that all lead to a positive contribution to global sea-level rise.

  20. Data Assimilation of Satellite-Derived Surface Water Extent into a Global Rainfall-Runoff Model

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Revilla-Romero, B.; Burek, P.; Salamon, P.; De Roo, A. P. J.

    2015-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground observational data is one of the main challenges for real-time applications such as global flood forecasting models. Remote sensing has been recognised as a valuable alternative source of observations of land surface hydrological fluxes and state variables due to its global coverage, open data policy and the advantage of being available at frequent temporal intervals and shortly after the satellite image retrieval. In this study, we present the impact of assimilating remotely sensed surface water extent into the global hydrological LISFLOOD model using Ensemble Kalman Filter (EnFK) and its potential to improve the timing of the flood peak. We use the merged product from Global Flood Detection System (GFDS) that employs both AMSR-E (Advance Microwave Scanning Radiometer - Earth Observing System) and TRMM (Tropical Rainfall Measuring Mission) to derive water extent as used in the GFDS. This satellite-derived water extent signal is assimilated into LISFLOOD for selected catchments and results are compared to baseline initial conditions (without data assimilation). Validation is done based on ground-based discharge observations. Furthermore, we discuss the post-processing and data assimilation strategies of satellite data within a global hydrological model.

  1. Has Natural Variability Masked the Expected Increase in Antarctic Surface Mass Balance with Global Warming?

    NASA Astrophysics Data System (ADS)

    Previdi, M. J.; Polvani, L. M.

    2015-12-01

    One of the expected and rather paradoxical consequences of anthropogenic global warming is an increase in Antarctic surface mass balance (or net snow accumulation), as robustly simulated by both global and regional climate models. This surface mass balance (SMB) increase occurs because the higher moisture content of a warmer atmosphere leads to increases in precipitation, with this precipitation falling in the form of snow over Antarctica. Despite these robust model projections, however, observations indicate that there has been no significant change in Antarctic SMB during the past several decades. Here, we show that this apparent discrepancy between models and observations can be explained by the fact that the anthropogenic climate change signal is still relatively small compared to the noise associated with natural climate variability. Using an ensemble of 35 global coupled climate models to separate signal and noise, we find that the forced SMB increase due to global warming in recent decades is unlikely to be detectable in a statistical sense as a result of large natural SMB variability on interannual-to-multidecadal timescales. However, our analysis reveals that if the world continues to follow the present trajectory of greenhouse gas emissions, the anthropogenic impact on Antarctic SMB will emerge from natural variability by the middle of the current century. With this, SMB increases over Antarctica will begin to mitigate global sea-level rise, partially offsetting the effects of dynamic ice loss.

  2. Has Natural Variability Masked the Expected Increase in Antarctic Surface Mass Balance with Global Warming?

    NASA Astrophysics Data System (ADS)

    Previdi, Michael; Polvani, Lorenzo M.

    2016-04-01

    One of the expected and rather paradoxical consequences of anthropogenic global warming is an increase in Antarctic surface mass balance (or net snow accumulation), as robustly simulated by both global and regional climate models. This surface mass balance (SMB) increase occurs because the higher moisture content of a warmer atmosphere leads to increases in precipitation, with this precipitation falling in the form of snow over Antarctica. Despite these robust model projections, however, observations indicate that there has been no significant change in Antarctic SMB during the past several decades. Here, we show that this apparent discrepancy between models and observations can be explained by the fact that the anthropogenic climate change signal is still relatively small compared to the noise associated with natural climate variability. Using an ensemble of 35 global coupled climate models to separate signal and noise, we find that the forced SMB increase due to global warming in recent decades is unlikely to be detectable in a statistical sense as a result of large natural SMB variability on interannual-to-multidecadal timescales. However, our analysis reveals that if the world continues to follow the present trajectory of greenhouse gas emissions, the anthropogenic impact on Antarctic SMB will emerge from natural variability by the middle of the current century. With this, SMB increases over Antarctica will begin to mitigate global sea-level rise, partially offsetting the effects of dynamic ice loss.

  3. Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint.

    PubMed

    Appia, Vikram; Yezzi, Anthony

    2011-11-01

    We present an active geodesic contour model in which we constrain the evolving active contour to be a geodesic with respect to a weighted edge-based energy through its entire evolution rather than just at its final state (as in the traditional geodesic active contour models). Since the contour is always a geodesic throughout the evolution, we automatically get local optimality with respect to an edge fitting criterion. This enables us to construct a purely region-based energy minimization model without having to devise arbitrary weights in the combination of our energy function to balance edge-based terms with the region-based terms. We show that this novel approach of combining edge information as the geodesic constraint in optimizing a purely region-based energy yields a new class of active contours which exhibit both local and global behaviors that are naturally responsive to intuitive types of user interaction. We also show the relationship of this new class of globally constrained active contours with traditional minimal path methods, which seek global minimizers of purely edge-based energies without incorporating region-based criteria. Finally, we present some numerical examples to illustrate the benefits of this approach over traditional active contour models.

  4. Modes of variability of global sea surface temperature, free atmosphere temperature and oceanic surface energy flux

    SciTech Connect

    Hu, Wenjie; Newell, R.E.; Wu, Zhong-Xiang

    1994-11-01

    Monthly mean sea surface temperature (SST), free air temperature from satellite microwave sounding units (MSU) and oceanic surface energy fluxes are subjected to empirical orthogonal function (EOF) analysis for a common decade to investigate the physical relationships involved. The first seasonal modes of surface solar energy flux and SST show similar inter-hemispheric patterns with an annual cycle. Solar flux appears to control this pattern of SST. The first seasonal mode of MSU is similar with, additionally, land-sea differences; MSU is apparently partly controlled by absorption of solar near-infrared radiation and partly by sensible heat from from the land surface. The second and third seasonal eigenvector of SST and solar flux exhibit semi-annual oscillations associated with a pattern of cloudiness in the subtropics accompanying the translation of the Hadley cell rising motion between the hemispheres. The second seasonal mode of MSU is dominated by an El Nino Signal. The first nonseasonal EOFs of SST and solar flux exhibit El Nino characteristics with solar pattern being governed by west-to-east translation of a Walker cell type pattern. The first non-seasonal EOF of MSU shows a tropical strip pattern for the El Nino mode, which is well correlated with the latent heat fluxes in the tropical east Pacific but not in the tropical west Pacific. Two possible explanations are: an increase in subsidence throughout the tropical strip driven by extra evaporation in the tropical east Pacific and consequent additional latent heat liberation; a decrease of meridional heat flux out of the tropics. 56 refs., 12 figs., 5 tabs.

  5. Experimental evidence that microbial activity lowers the albedo of glacier surfaces: the cryoconite casserole experiment.

    NASA Astrophysics Data System (ADS)

    Musilova, M.; Tranter, M.; Takeuchi, N.; Anesio, A. M.

    2014-12-01

    Darkened glacier and ice sheet surfaces have lower albedos, absorb more solar radiation and consequently melt more rapidly. The increase in glacier surface darkening is an important positive feedback to warming global temperatures, leading to ever growing world-wide ice mass loss. Most studies focus primarily on glacial albedo darkening caused by the physical properties of snow and ice surfaces, and the deposition of dark impurities on glaciers. To date, however, the important effects of biological activity have not been included in most albedo reduction models. This study provides the first experimental evidence that microbial activity can significantly decrease the albedo of glacier surfaces. An original laboratory experiment, the cryoconite casserole, was designed to test the microbial darkening of glacier surface debris (cryoconite) under simulated Greenlandic summer conditions. It was found that minor fertilisation of the cryoconite (at nutrient concentrations typical of glacial ice melt) stimulated extensive microbial activity. Microbes intensified their organic carbon fixation and even mined phosphorous out of the glacier surface sediment. Furthermore, the microbial organic carbon production, accumulation and transformation caused the glacial debris to darken further by 17.3% reflectivity (albedo analogue). These experiments are consistent with the hypothesis that enhanced fertilisation by anthropogenic inputs results in substantial amounts of organic carbon fixation, debris darkening and ultimately to a considerable decrease in the ice albedo of glacier surfaces on global scales. The sizeable amounts of microbially produced glacier surface organic matter and nutrients can thus be a vital source of bioavailable nutrients for subglacial and downstream environments.

  6. Global observation-based diagnosis of soil moisture control on land surface flux partition

    NASA Astrophysics Data System (ADS)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  7. Data Information for Global Change Studies: NASA's Distributed Active Archive Centers and Cooperating Data Centers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Earth Observing System (EOS) is an integral part of the National Aeronautics and Space Administration's (NASA's) Earth Science Enterprise (ESE). ESE is a long-term global change research program designed to improve our understanding of the Earth's interrelated processes involving the atmosphere, oceans, land surfaces, and polar regions. Data from EOS instruments and other Earth science measurement systems are useful in understanding the causes and processes of global climate change and the consequences of human activities. The EOS Data and Information System (EOSDIS) provides a structure for data management and user services for products derived from EOS satellite instruments and other NASA Earth science data. Within the EOSDIS framework, the Distributed Active Archive Centers (DAACs) have been established to provide expertise in one or more Earth science disciplines. The DAACs and cooperating data centers provide data and information services to support the global change research community. Much of the development of the DAACs has been in anticipation of the enormous amount of data expected from EOS instruments to be launched within the next two decades. Terra, the EOS flagship launched in December 1999, is the first of a series of EOS satellites to carry several instruments with multispectral capabilities. Some data products from these instruments are now available from several of the DAACs. These and other data products can be ordered through the EOS Data Gateway (EDG) and DAAC-specific online ordering systems.

  8. A global potential energy surface and dipole moment surface for silane

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Thiel, Walter

    2015-12-28

    A new nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) for silane have been generated using high-level ab initio theory. The PES, CBS-F12{sup HL}, reproduces all four fundamental term values for {sup 28}SiH{sub 4} with sub-wavenumber accuracy, resulting in an overall root-mean-square error of 0.63 cm{sup −1}. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit, and incorporates a range of higher-level additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, and scalar relativistic effects. Systematic errors in computed intra-band rotational energy levels are reduced by empirically refining the equilibrium geometry. The resultant Si–H bond length is in excellent agreement with previous experimental and theoretical values. Vibrational transition moments, absolute line intensities of the ν{sub 3} band, and the infrared spectrum for {sup 28}SiH{sub 4} including states up to J = 20 and vibrational band origins up to 5000 cm{sup −1} are calculated and compared with available experimental results. The DMS tends to marginally overestimate the strength of line intensities. Despite this, band shape and structure across the spectrum are well reproduced and show good agreement with experiment. We thus recommend the PES and DMS for future use.

  9. A global potential energy surface and dipole moment surface for silane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Thiel, Walter

    2015-12-01

    A new nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) for silane have been generated using high-level ab initio theory. The PES, CBS-F12HL, reproduces all four fundamental term values for 28SiH4 with sub-wavenumber accuracy, resulting in an overall root-mean-square error of 0.63 cm-1. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit, and incorporates a range of higher-level additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, and scalar relativistic effects. Systematic errors in computed intra-band rotational energy levels are reduced by empirically refining the equilibrium geometry. The resultant Si-H bond length is in excellent agreement with previous experimental and theoretical values. Vibrational transition moments, absolute line intensities of the ν3 band, and the infrared spectrum for 28SiH4 including states up to J = 20 and vibrational band origins up to 5000 cm-1 are calculated and compared with available experimental results. The DMS tends to marginally overestimate the strength of line intensities. Despite this, band shape and structure across the spectrum are well reproduced and show good agreement with experiment. We thus recommend the PES and DMS for future use.

  10. A global potential energy surface and dipole moment surface for silane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Thiel, Walter

    2015-12-28

    A new nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) for silane have been generated using high-level ab initio theory. The PES, CBS-F12(HL), reproduces all four fundamental term values for (28)SiH4 with sub-wavenumber accuracy, resulting in an overall root-mean-square error of 0.63 cm(-1). The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit, and incorporates a range of higher-level additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, and scalar relativistic effects. Systematic errors in computed intra-band rotational energy levels are reduced by empirically refining the equilibrium geometry. The resultant Si-H bond length is in excellent agreement with previous experimental and theoretical values. Vibrational transition moments, absolute line intensities of the ν3 band, and the infrared spectrum for (28)SiH4 including states up to J = 20 and vibrational band origins up to 5000 cm(-1) are calculated and compared with available experimental results. The DMS tends to marginally overestimate the strength of line intensities. Despite this, band shape and structure across the spectrum are well reproduced and show good agreement with experiment. We thus recommend the PES and DMS for future use.

  11. Global and regional surface cooling in a warming climate: a multi-model analysis

    NASA Astrophysics Data System (ADS)

    Medhaug, Iselin; Drange, Helge

    2016-06-01

    Instrumental temperature records show that the global climate may experience decadal-scale periods without warming despite a long-term warming trend. We analysed 17 global climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5), identifying the likelihood and duration of periods without warming in the four Representative Concentration Pathway (RCP) scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5, together with the preindustrial control and historical simulations. We find that non-warming periods may last 10, 15 and 30 years for RCP8.5, RCP6.0 and RCP4.5, respectively. In the models, anomalous ocean heat uptake and storage are the main factors explaining the decadal-scale surface temperature hiatus periods. The low-latitude East Pacific Ocean is a key region for these variations, acting in tandem with basin-scale anomalies in the sea level pressure. During anomalously cold decades, roughly 35-50 % of the heat anomalies in the upper 700 m of the ocean are located in the Pacific Ocean, and 25 % in the Atlantic Ocean. Decadal-scale ocean heat anomalies, integrated over the upper 700 m, have a magnitude of about 7.5 × 1021 J. This is comparable to the ocean heat uptake needed to maintain a 10 year period without increasing surface temperature under global warming. On sub-decadal time scales the Atlantic, Pacific and Southern Oceans all have the ability to store large amounts of heat, contributing to variations in global surface temperature. The likelihood of decadal-scale non-warming periods decrease with global warming, firstly at the low latitude region stretching eastward from the tropical Atlantic towards the western Pacific. The North Atlantic and Southern Oceans have largest likelihood of non-warming decades in a warming world.

  12. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffe, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivpalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  13. Global Visions. Teaching Suggestions and Activity Masters for Unit 1: The Global Marketplace.

    ERIC Educational Resources Information Center

    Procter and Gamble Educational Services, Cincinnati, OH.

    This is a classroom-ready program about the U.S. economy's number one challenge: globalization. Few historical forces have more power to shape students' lives than globalization, the gradual economic integration of all the world's nations. This program is designed to supplement social studies courses in economics, government, U.S. and world…

  14. Global scale climate trends associated with variable Atlantic thermohaline transport as inferred from changes in intense hurricane activity

    SciTech Connect

    Gray, W.M.; Sheaffer, J.D.

    1996-12-31

    This paper presents a review of the most recent 100 years of data of hurricane activity in the tropical Atlantic, and proposes that decadal variations of hurricane activity are but one of a host of observed concurrent global climate trends which may all link to multi-decadal scale variations of the Atlantic thermohaline circulation. The data reviews shows that long term multi-decadal variations in hurricane activity appear to be linked (1) to mode-like variations of regional and global sea surface temperatures (SSTs) and (2) to concurrent trends in global air temperature, pressure anomalies, and atmospheric circulations. Many of these effects extend well beyond the tropical Atlantic. The pre-eminent effect which seems to dominate all others as a unifying process for these multi-decadal changes is variations in the Atlantic thermohaline circulation. A synthesis process is suggested for specifying physically consistent global interactions linking the Atlantic conveyor and decadal trend associations in global climate data. In this way, some of the global data may yield factors which are useful for forecasting the onset and termination of new decadal trends of hurricane activity. 30 refs., 4 figs.

  15. Global surface air temperature in 1995: Return to pre-Pinatubo level

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Ruedy, R.; Sato, M.; Reynolds, R.

    Global surface air temperature has increased about 0.5°C from the minimum of mid-1992, a year after the Mt. Pinatubo eruption. Both a land-based surface air temperature record and a land-marine temperature index place the meteorological year 1995 at approximately the same level as 1990, previously the warmest year in the period of instrumental data. As El Niño warming was small in 1995, the solar cycle near a minimum, and ozone depletion near record levels, the observed high temperature supports the contention of an underlying global warming trend. The pattern of Northern Hemisphere temperature change in recent decades appears to reflect a change of atmospheric dynamics.

  16. Pressure oscillations on the surface of Gale Crater and coincident observations of global circulation patterns.

    NASA Astrophysics Data System (ADS)

    De La Torre Juarez, M.; Kass, D. M.; Haberle, R. M.; Gómez-Elvira, J.; Harri, A. M.; Kleinboehl, A.; Kahanpää, H.; Kahre, M. A.; Lemmon, M. T.; Martín-Torres, J.; Newman, C. E.; Rafkin, S. C.; Rodriguez-Manfredi, J. A.; Peinado, V.; Vasavada, A. R.; Zorzano, M. P.

    2014-12-01

    The annual cycle of mean diurnal surface pressures observed by Curiosity's Rover Environmental Monitoring Station (REMS) has shown oscillations after two Southern Hemispheric storms that occurred before the annual pressure maxima and minima of the dusty season (Ls~250 and 330). The oscillations had a period of ~7 sols and were less visible or absent during the dust free seasons (Ls ~ 0). Martian airborne dust alters the atmosphere's response to solar radiation and the resulting heating profiles. Since the atmospheric circulation responds to thermal forcing by the Sun, atmospheric dust can alter the large-scale circulation. We use coincident global observations by the Mars Climate Sounder (MCS) to examine the global circulation. We find that the observed surface pressure oscillations relate to oscillations of the Hadley cell. We also analyze the potential impacts of these coupled oscillations especially as related to traveling waves and thermal tides.

  17. Coral reef bleaching and sea surface temperature anomalies: 1991-1996 global patterns

    SciTech Connect

    Goreau, T.J.; Hayes, R.L.; Strong, A.

    1997-12-31

    Global spatio-temporal patterns of mass coral reef bleaching during the first half of the 1990s continued to show the strong temperature correlations which first became established in the 1980s. Satellite sea surface temperature data and field observations were used to track thermal bleaching events in real time. Most bleaching events followed warm season sea surface temperature anomalies of around +1 degree celsius above historical means. Global bleaching patterns appear to have been strongly affected by worldwide cooling which followed eruption of Mount Pinatubo in June 1991. High water temperatures and mass coral reef bleaching took place in the Caribbean, Indian Ocean, and South Pacific in 1991, but there were few thermal anomalies or bleaching events in 1992 and 1993, years which were markedly cooler worldwide. Following the settling of Mount Pinatubo aerosols and resumption of global warming trends, extensive ocean thermal hot spots and bleaching events resumed in the South Pacific, South Atlantic, and Indian Oceans in 1994. Bleaching again took place in hot spots in the Indian Ocean and Caribbean in 1995, and in the South Atlantic, Caribbean, South Pacific, North Pacific, and Persian Gulf in 1996. Coral reefs worldwide are now very close to their upper temperature tolerance limits. This sensitivity, and the fact that the warmest ecosystems have no source of immigrant species pre-adapted to warmer conditions, may make coral reef ecosystems the first to be severely impacted if global temperatures and sea levels remain at current values or increase further.

  18. Impact of Asian Dust on Global Surface Air Quality and Radiation Budget

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Ginoux, Paul

    2006-01-01

    Dust originating from Asian deserts and desertification areas can be transported regionally and globally to affect surface air quality, visibility, and radiation budget not only at immediate downwind locations (e.g., eastern Asia) but also regions far away from the sources (e.g., North America). Deposition of Asian dust to the North Pacific Ocean basin influences the ocean productivity. In this study, we will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, remote sensing data form satellite and from the ground-based network, and in-situ data from aircraft and surface observations to address the following questions: - What are the effects of Asian dust on the surface air quality and visibility over Asia and North America? - What are the seasonal and spatial variations of dust deposition to the North Pacific Ocean? How does the Asian dust affect surface radiation budget?

  19. The PyPES library of high quality semi-global potential energy surfaces.

    PubMed

    Sibaev, Marat; Crittenden, Deborah L

    2015-11-01

    In this article, we present a Python-based library of high quality semi-global potential energy surfaces for 50 polyatomic molecules with up to six atoms. We anticipate that these surfaces will find widespread application in the testing of new potential energy surface construction algorithms and nuclear ro-vibrational structure theories. To this end, we provide the ability to generate the energy derivatives required for Taylor series expansions to sixth order about any point on the potential energy surface in a range of common coordinate systems, including curvilinear internal, Cartesian, and normal mode coordinates. The PyPES package, along with FORTRAN, C, MATLAB and Mathematica wrappers, is available at http://sourceforge.net/projects/pypes-lib.

  20. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    NASA Technical Reports Server (NTRS)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  1. The PyPES library of high quality semi-global potential energy surfaces.

    PubMed

    Sibaev, Marat; Crittenden, Deborah L

    2015-11-01

    In this article, we present a Python-based library of high quality semi-global potential energy surfaces for 50 polyatomic molecules with up to six atoms. We anticipate that these surfaces will find widespread application in the testing of new potential energy surface construction algorithms and nuclear ro-vibrational structure theories. To this end, we provide the ability to generate the energy derivatives required for Taylor series expansions to sixth order about any point on the potential energy surface in a range of common coordinate systems, including curvilinear internal, Cartesian, and normal mode coordinates. The PyPES package, along with FORTRAN, C, MATLAB and Mathematica wrappers, is available at http://sourceforge.net/projects/pypes-lib. PMID:26407838

  2. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  3. Global geologic context for rock types and surface alteration on Mars

    USGS Publications Warehouse

    Wyatt, M.B.; McSween, H.Y.; Tanaka, K.L.; Head, J. W.

    2004-01-01

    Petrologic interpretations of thermal emission spectra from Mars orbiting spacecraft indicate the widespread occurrence of surfaces having basaltic and either andesitic or partly altered basalt compositions. Global concentration of ice-rich mantle deposits and near-surface ice at middle to high latitudes and their spatial correlation with andesitic or partly altered basalt materials favor the alteration hypothesis. We propose the formation of these units through limited chemical weathering from basalt interactions with icy mantles deposited during periods of high obliquity. Alteration of sediments in the northern lowlands depocenter may have been enhanced by temporary standing bodies of water and ice. ?? 2004 Geological Society of America.

  4. Uncertainties in global ocean surface flux climatologies derived from ship observations

    SciTech Connect

    Gleckler, P.J.; Weare, B.C.

    1997-11-01

    A methodology to define uncertainties associated with ocean surface heat flux calculations has been developed and applied to a global climatology that utilizes a summary of the Comprehensive Ocean-Atmosphere Data Set surface observations. Systematic and random uncertainties in the net oceanic heat flux and each of its four components at individual grid points and for zonal averages have been estimated for each calendar month and for the annual mean. The most important uncertainties of the 2{degrees} x 2{degrees} grid cell values of each of the heat fluxes are described. 61 refs., 15 figs., 2 tabs.

  5. Production of global sea surface temperature fields for the Jet Propulsion Laboratory workshop comparisons

    NASA Technical Reports Server (NTRS)

    Hilland, J. E.; Njoku, E. G.; Chelton, D. B.

    1985-01-01

    Sea surface temperature (SST) is measured from space by the advanced very high resolution radiometer (AVHRR), scanning multichannel microwave radiometer (SMMR), high resolution infrared sounder (HIRS) and VISSR atmospheric sounder (VAS). Typical accuracies have been reported from 0.5 C regionally to 2.0 C on a global basis. To evaluate the accuracy of the satellite-derived sea surface temperatures, a series of three workshops was organized to provide uniform data reduction and analysis. The analytical techniques used to intercompare satellite and in situ measurements are described in detail. Selected results showed the overall average rms errors were in the range 0.5-1.0 C.

  6. Linkages Between Multiscale Global Sea Surface Temperature Change and Precipitation Variabilities in the US

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Weng, Heng-Yi

    1999-01-01

    A growing number of evidence indicates that there are coherent patterns of variability in sea surface temperature (SST) anomaly not only at interannual timescales, but also at decadal-to-inter-decadal timescale and beyond. The multi-scale variabilities of SST anomaly have shown great impacts on climate. In this work, we analyze multiple timescales contained in the globally averaged SST anomaly with and their possible relationship with the summer and winter rainfall in the United States over the past four decades.

  7. The Need for Global, Satellite-based Observations of Terrestrial Surface Waters

    NASA Astrophysics Data System (ADS)

    NASA Surface Water Working Group; Alsdorf, Doug; Lettenmaier, Dennis; Vörösmarty, Charles

    River discharge as well as lake and wetland storage of water are critical terms in the surface water balance, yet they are poorly observed globally and the prospects for improvement from in-situ networks are bleak [e.g., Shiklomanov et al., 2002; IAHS, 2001; Stokstad, 1999]. Indeed, given our basic need for fresh water, perhaps the most important hydrologic observations that can be made in a basin are of the temporal and spatial variations in discharge. Gauges measuring discharge rely on flow converging from the upstream catchment to a singular in-channel cross-section. This approach has successfully monitored many of the world's densely inhabited and typically heavily engineered basins for well over a century. However, much of the globally significant discharge occurs in sparsely gauged basins, many with vast wetlands that lack flow convergence (e.g., Figures 1 and 2), thus leading to poorly defined values of runoff at local, regional, and continental scales. The Surface Water Working Group is funded by NASA's Terrestrial Hydrology Program and is an outgrowth of a mission planning process summarized in a July 1999 white paper [Vörösmarty et al., 1999]. Based on the white paper and discussions at working group meetings over the last 2 years, we are focused on the following critical hydrologic questions. (1) What are the observational and data assimilation requirements for measuring surface storage and river discharge that will allow us to understand the dynamics of the land surface branch of the global hydrologic cycle, and in particular, to predict the consequences of global change on water resources? (2) What are the roles of wetlands, lakes, and rivers as regulators of biogeochemical cycles (e.g., carbon and nutrients) and in creating or ameliorating water-related hazards of relevance to society?

  8. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.

    PubMed

    Leonardi, Stefano; Magnani, Federico; Nolè, Angelo; Van Noije, Twan; Borghetti, Marco

    2015-01-01

    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select 'pure' pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models. PMID:25044609

  9. Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model

    USGS Publications Warehouse

    Swain, Eric; Stefanova, Lydia; Smith, Thomas

    2014-01-01

    Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.

  10. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.

    PubMed

    Leonardi, Stefano; Magnani, Federico; Nolè, Angelo; Van Noije, Twan; Borghetti, Marco

    2015-01-01

    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select 'pure' pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models.

  11. Deriving New Topography-based Global Datasets for Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Tesfa, T. K.; Leung, L. R.

    2015-12-01

    Topography exerts a major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Land surface spatial structure that captures spatial heterogeneity influenced by topography is expected to improve representation of land surface processes in land surface models. For example, land surface modeling using subbasins instead of regular grids as computational units has demonstrated improved scalability of simulated runoff and streamflow processes. In this study, a local classification method is applied to derive a new land surface spatial structure defined by further dividing subbasins into subgrid units based on elevation, topographic slope and aspect to take advantage of the emergent patterns and scaling properties of atmospheric, hydrologic, and vegetation processes in land surface models. For this purpose, a more consistent 90 meter resolution global surface elevation data has been developed by blending elevation data obtained from various sources. Taking the advantage of natural hydrologic connectivity of watersheds, new subbasin-based river routing and reservoir dependency datasets are being developed to improve representation of the managed hydrologic systems in the Community Land Model.

  12. The effects of land surface process perturbations in a global ensemble forecast system

    NASA Astrophysics Data System (ADS)

    Deng, Guo; Zhu, Yuejian; Gong, Jiandong; Chen, Dehui; Wobus, Richard; Zhang, Zhe

    2016-10-01

    Atmospheric variability is driven not only by internal dynamics, but also by external forcing, such as soil states, SST, snow, sea-ice cover, and so on. To investigate the forecast uncertainties and effects of land surface processes on numerical weather prediction, we added modules to perturb soil moisture and soil temperature into NCEP's Global Ensemble Forecast System (GEFS), and compared the results of a set of experiments involving different configurations of land surface and atmospheric perturbation. It was found that uncertainties in different soil layers varied due to the multiple timescales of interactions between land surface and atmospheric processes. Perturbations of the soil moisture and soil temperature at the land surface changed sensible and latent heat flux obviously, as compared to the less or indirect land surface perturbation experiment from the day-to-day forecasts. Soil state perturbations led to greater variation in surface heat fluxes that transferred to the upper troposphere, thus reflecting interactions and the response to atmospheric external forcing. Various verification scores were calculated in this study. The results indicated that taking the uncertainties of land surface processes into account in GEFS could contribute a slight improvement in forecast skill in terms of resolution and reliability, a noticeable reduction in forecast error, as well as an increase in ensemble spread in an under-dispersive system. This paper provides a preliminary evaluation of the effects of land surface processes on predictability. Further research using more complex and suitable methods is needed to fully explore our understanding in this area.

  13. Total Human-Caused Global Ocean Heat Uptake Nearly Doubles During Recent Surface Warming Hiatus

    NASA Astrophysics Data System (ADS)

    Gleckler, P. J.; Durack, P. J.; Stouffer, R. J.; Johnson, G. C.; Forest, C. E.

    2015-12-01

    Formal detection and attribution studies have used observations and climate models to identify an anthropogenic warming signature in the upper (0­-700 m) ocean. Recently, as a result of the so-called surface warming hiatus, there has been considerable interest in global ocean heat content (OHC) changes in the deeper ocean, including natural and anthropogenically forced changes evidenced in observational, modelling, and data re-analysis studies. We rely on OHC change estimates from a diverse collection of measurement systems including data from the 19th Century Challenger expedition, a multi-decadal record of ship-based in-situ mostly upper ocean measurements, the more recent near-global Argo floats profiling to intermediate (2000m) depths, and full-depth repeated transoceanic sections. By diagnosing simulated global OHC changes in historically-forced climate models in three depth layers, we show that the current generation of climate models is broadly consistent with multi-decadal estimates of upper, intermediate (700­-2000m) and deep (2000m - ­bottom) global OHC changes as well as with Argo-based estimates over the most recent period. Our results suggest that nearly half of the 1860-­present human-caused increases in global ocean heat content may have occurred since 1998.

  14. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change

    NASA Astrophysics Data System (ADS)

    He, Feng; Vavrus, Steve J.; Kutzbach, John E.; Ruddiman, William F.; Kaplan, Jed O.; Krumhardt, Kristen M.

    2014-01-01

    Surface albedo changes from anthropogenic land cover change (ALCC) represent the second largest negative radiative forcing behind aerosol during the industrial era. Using a new reconstruction of ALCC during the Holocene era by Kaplan et al. (2011), we quantify the local and global temperature response induced by Holocene ALCC in the Community Climate System Model, version 4. We find that Holocene ALCC causes a global cooling of 0.17°C due to the biogeophysical effects of land-atmosphere exchange of momentum, moisture, and radiative and heat fluxes. On the global scale, the biogeochemical effects of Holocene ALCC from carbon emissions dominate the biogeophysical effects by causing 0.9°C global warming. The net effects of Holocene ALCC amount to a global warming of 0.73°C during the preindustrial era, which is comparable to the ~0.8°C warming during industrial times. On local to regional scales, such as parts of Europe, North America, and Asia, the biogeophysical effects of Holocene ALCC are significant and comparable to the biogeochemical effect.

  15. Generation of the 30 M-Mesh Global Digital Surface Model by Alos Prism

    NASA Astrophysics Data System (ADS)

    Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H.

    2016-06-01

    Topographical information is fundamental to many geo-spatial related information and applications on Earth. Remote sensing satellites have the advantage in such fields because they are capable of global observation and repeatedly. Several satellite-based digital elevation datasets were provided to examine global terrains with medium resolutions e.g. the Shuttle Radar Topography Mission (SRTM), the global digital elevation model by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM). A new global digital surface model (DSM) dataset using the archived data of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed "Daichi") has been completed on March 2016 by Japan Aerospace Exploration Agency (JAXA) collaborating with NTT DATA Corp. and Remote Sensing Technology Center, Japan. This project is called "ALOS World 3D" (AW3D), and its dataset consists of the global DSM dataset with 0.15 arcsec. pixel spacing (approx. 5 m mesh) and ortho-rectified PRISM image with 2.5 m resolution. JAXA is also processing the global DSM with 1 arcsec. spacing (approx. 30 m mesh) based on the AW3D DSM dataset, and partially releasing it free of charge, which calls "ALOS World 3D 30 m mesh" (AW3D30). The global AW3D30 dataset will be released on May 2016. This paper describes the processing status, a preliminary validation result of the AW3D30 DSM dataset, and its public release status. As a summary of the preliminary validation of AW3D30 DSM, 4.40 m (RMSE) of the height accuracy of the dataset was confirmed using 5,121 independent check points distributed in the world.

  16. Roots shaping their microbiome: global hotspots for microbial activity.

    PubMed

    Reinhold-Hurek, Barbara; Bünger, Wiebke; Burbano, Claudia Sofía; Sabale, Mugdha; Hurek, Thomas

    2015-01-01

    Land plants interact with microbes primarily at roots. Despite the importance of root microbial communities for health and nutrient uptake, the current understanding of the complex plant-microbe interactions in the rhizosphere is still in its infancy. Roots provide different microhabitats at the soil-root interface: rhizosphere soil, rhizoplane, and endorhizosphere. We discuss technical aspects of their differentiation that are relevant for the functional analysis of their different microbiomes, and we assess PCR (polymerase chain reaction)-based methods to analyze plant-associated bacterial communities. Development of novel primers will allow a less biased and more quantitative view of these global hotspots of microbial activity. Based on comparison of microbiome data for the different root-soil compartments and on knowledge of bacterial functions, a three-step enrichment model for shifts in community structure from bulk soil toward roots is presented. To unravel how plants shape their microbiome, a major research field is likely to be the coupling of reductionist and molecular ecological approaches, particularly for specific plant genotypes and mutants, to clarify causal relationships in complex root communities. PMID:26243728

  17. Torrential activity facing global change in Southern French Alps

    NASA Astrophysics Data System (ADS)

    Lissak, Candide; Cossart, Etienne; Viel, Vincent; Fort, Monique; Arnaud-Fassetta, Gilles; Carlier, Benoit

    2016-04-01

    Geomorphic activity in a torrential catchment may be highly sporadic, erratic, especially because it depends on the sediment transfers. For a better flood risk management in large river catchments, where torrential tributaries provide significant sediment supply, it is essential to assess the amount of sediment transfers and deposition of such tributaries so that hazard assessment can be apprehended globally. This is one major issue of the SAMCO project (ANR 12 SENV-0004 SAMCO), which was designed for mountain hazard mitigation in a context of Global Change. Here, our objective is to understand how sediment cascades are coupled (or not) with climatic parameters. Here we focus on the Guil River catchment (Queyras, Southern French Alps - 317 km²). This catchment is prone to devastating summer floods (19 events since 1918: June 1957 (> R.I. 100 yr), June 2000 (R.I. 30 yr)...) characterized by considerable sediment transport from tributaries down to the Guil valley, highly facilitated by strong hillslope-channel coupling (≈ 12,000 m3 volume of sediment aggraded during the June 2000 flood event). During the last flood events several infrastructures and buildings were seriously damaged because the Guil River was carrying a large volume of sediments. For risk mitigation some protection equipments were built after the 1957 flood event, but most of them are now poorly maintained and might be not very effective in case of forthcoming flood events, especially if tributaries provide large volumes of sediment. Geomorphic data acquired through fieldwork and archives investigations were carried out to formalize the overall functioning of the sediment cascade. The initial phase of our study consists in identifying sediment sources and storage grounded on geomorphological analysis and mapping. The volumes of the sediment stores were then estimated and sedimentary transfers assessed using Terrestrial Laser Scanning survey (fine grained sediment inputs in the cascade), and the

  18. Modality of semiannual to multidecadal oscillations in global sea surface temperature variability

    NASA Astrophysics Data System (ADS)

    Chen, Ge; Shao, Baomin; Han, Yong; Ma, Jun; Chapron, Bertrand

    2010-03-01

    Repeating the history of study on El Niño-Southern Oscillation (ENSO) in the 1980s, interdecadal oscillation (IDO) in climate variability is currently an area of active research and debate, following the recognition of its emerging significance in nature and science. In this work, a two-dimensional propagating modal extraction technique is applied to a reconstructed global monthly sea surface temperature (SST) data set spanning 1854 through 2007, to examine the spatiotemporal structure of SST variability with an emphasis on the fine modal pattern of IDOs. In the time domain, it is revealed that a canonical modal spectrum of decadal-to-centennial SST variability constitutes four most distinct oscillations with periodicities at 9.0, 13.0, 21.2, and 62.2 years, which are naturally defined as primary modes and are, respectively, termed as the subdecadal mode, the quasidecadal mode, the interdecadal mode, and the multidecadal mode (modes S, Q, I, and M). They join the energetic annual mode (mode A) and two major ENSO modes at 3.7 and 5.8 years (modes B and C), as well as a dozen of secondary modes ranging from semiannual to multidecadal, in determining the key pattern of SST-related climate variability. In the space domain, seven modally dynamic areas, analogous to the Niño regions for ENSO, are clearly identified and are named as IDO zones. Contrary to ENSO, dominant IDO zones are most visible in the extratropical oceans, especially in the North Atlantic/North Pacific sectors, while secondary signatures are observed in the tropical oceans. The array of (four) primary modes with respect to (seven) major zones yields a sophisticated yet canonical pattern of IDOs, leading to a basic conclusion that multimodality (for a given region) and multiregionality (for a given mode) are fundamental features of the IDO system.

  19. Correlation between pedometer and the Global Physical Activity Questionnaire on physical activity measurement in office workers

    PubMed Central

    2014-01-01

    Background This study aimed to examine the correlation of physical activity levels assessed by pedometer and those by the Global Physical Activity Questionnaire (GPAQ) in a population of office workers. Methods A cross-sectional study was conducted on 320 office workers. A self-administered questionnaire was distributed to each office worker by hand. Physical activity level was objectively assessed by a pedometer for 7 consecutive days and subjectively assessed by the GPAQ. Based on the pedometer and GPAQ outcomes, participants were classified into 3 groups: inactive, moderately active, and highly active. Results No correlation in the physical activity level assessed by the pedometer and GPAQ was found (rs = .08, P = 0.15). When considering the pedometer as the criterion for comparison, 65.3% of participants had underestimated their physical activity level using the GPAQ, whereas 9.3% of participants overestimated their physical activity level. Conclusions Physical activity level in office workers assessed by a subjective measure was greatly different from assessed by an objective tool. Consequently, research on physical activity level, especially in those with sedentary lifestyle, should consider using an objective measure to ensure that it closely reflects a person’s physical activity level. PMID:24886593

  20. An application of active surface heating for augmenting lift and reducing drag of an airfoil

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; Badavi, Forooz F.; Noonan, Kevin W.

    1988-01-01

    Application of active control to separated flow on the RC(6)-08 airfoil at high angle of attack by localized surface heating is numerically simulated by integrating the compressible 2-D nonlinear Navier-Stokes equation solver. Active control is simulated by local modification of the temperature boundary condition over a narrow strip of the upper surface of the airfoil. Both mean and perturbed profiles are favorably altered when excited with the same natural frequency of the shear layer by moderate surface heating for both laminar and turbulent separation. The shear layer is found to be very sensitive to localized surface heating in the vicinity of the separation point. The excitation field at the surface sufficiently altered both the local as well as the global circulation to cause a significant increase in lift and reduction in drag.

  1. CLARA-SAL: a global 28-yr timeseries of Earth's black-sky surface albedo

    NASA Astrophysics Data System (ADS)

    Riihelä, A.; Manninen, T.; Laine, V.; Andersson, K.; Kaspar, F.

    2012-09-01

    We present a novel 28-yr dataset of Earth's black-sky surface albedo, derived from AVHRR instruments. The dataset is created using algorithms to separately derive the surface albedo for different land use areas globally. Snow, sea ice, open water and vegetation are all treated independently. The product features corrections for the atmospheric effect in satellite-observed surface radiances, a BRDF correction for the anisotropic reflectance properties of natural surfaces, and a novel topography correction of geolocation and radiometric accuracy of surface reflectance observations over mountainous areas. The dataset is based on a homogenized AVHRR radiance timeseries. The product is validated against quality-controlled in situ observations of clear-sky surface albedo at various BSRN sites around the world. Snow and ice albedo retrieval validation is given particular attention using BSRN sites over Antarctica, Greenland Climate Network stations on the Greenland Ice Sheet (GrIS), as well as sea ice albedo data from the SHEBA and Tara expeditions. The product quality is found to be comparable to other previous long-term surface albedo datasets from AVHRR.

  2. CLARA-SAL: a global 28 yr timeseries of Earth's black-sky surface albedo

    NASA Astrophysics Data System (ADS)

    Riihelä, A.; Manninen, T.; Laine, V.; Andersson, K.; Kaspar, F.

    2013-04-01

    We present a novel 28 yr dataset of Earth's black-sky surface albedo, derived from AVHRR instruments. The dataset is created using algorithms to separately derive the surface albedo for different land use areas globally. Snow, sea ice, open water and vegetation are all treated independently. The product features corrections for the atmospheric effect in satellite-observed surface radiances, a BRDF correction for the anisotropic reflectance properties of natural surfaces, and a novel topography correction of geolocation and radiometric accuracy of surface reflectance observations over mountainous areas. The dataset is based on a homogenized AVHRR radiance timeseries. The product is validated against quality-controlled in situ observations of clear-sky surface albedo at various BSRN sites around the world. Snow and ice albedo retrieval validation is given particular attention using BSRN sites over Antarctica, Greenland Climate Network stations on the Greenland Ice Sheet (GrIS), as well as sea ice albedo data from the SHEBA and Tara expeditions. The product quality is found to be comparable to other previous long-term surface albedo datasets from AVHRR.

  3. A prototype Global Drought Information System based on multiple land surface models

    NASA Astrophysics Data System (ADS)

    Nijssen, Bart; Shukla, Shrad; Lin, Chi-Yu; Lettenmaier, Dennis

    2013-04-01

    Droughts are pervasive natural hazards, which cause large economic losses and human suffering. While the absolute magnitude of these losses is greatest in the developed world, the relative impact is much higher in the developing world. Nonetheless, our ability to monitor and predict the development and occurrence of droughts at a global scale in near real-time is limited. This ability is of particular importance in estimating regional crop production and thus current and future prices of agricultural commodities, as well as the implementation of emergency measures in areas where the effects of drought threaten lives and livelihoods. We describe the implementation of a multi-model drought monitoring system, which provides near real-time estimates of soil moisture conditions for the global land areas between 50S and 50N with a latency of about one day. The system is an extension of similar systems developed by both the University of Washington and the National Centers for Environmental Prediction for use in the U.S. Drought Monitor. Global application of the protocols used in the U.S. systems poses new challenges, particularly with respect to the generation of meteorological forcings with which to drive the land surface models used in such a system. The global system we describe uses satellite-based precipitation (as contrasted with gridded station data in the U.S. systems) as well as temperature estimates based on global weather model analysis fields to track the evolution of soil moisture in near real-time at a spatial resolution of 0.5 degree using multiple land surface models. By comparing the modeled, near real-time soil moisture values with the results from long-term retrospective simulations, the model estimates can be placed in historic context (as soil moisture percentiles) and used to monitor the development of droughts around the world. We evaluate the performance of our system for historic droughts, and compare with other drought analyses and analytical

  4. Codominant water control on global interannual variability and trends in land surface phenology and greenness.

    PubMed

    Forkel, Matthias; Migliavacca, Mirco; Thonicke, Kirsten; Reichstein, Markus; Schaphoff, Sibyll; Weber, Ulrich; Carvalhais, Nuno

    2015-09-01

    Identifying the relative importance of climatic and other environmental controls on the interannual variability and trends in global land surface phenology and greenness is challenging. Firstly, quantifications of land surface phenology and greenness dynamics are impaired by differences between satellite data sets and phenology detection methods. Secondly, dynamic global vegetation models (DGVMs) that can be used to diagnose controls still reveal structural limitations and contrasting sensitivities to environmental drivers. Thus, we assessed the performance of a new developed phenology module within the LPJmL (Lund-Potsdam-Jena managed Lands) DGVM with a comprehensive ensemble of three satellite data sets of vegetation greenness and ten phenology detection methods, thereby thoroughly accounting for observational uncertainties. The improved and tested model allows us quantifying the relative importance of environmental controls on interannual variability and trends of land surface phenology and greenness at regional and global scales. We found that start of growing season interannual variability and trends are in addition to cold temperature mainly controlled by incoming radiation and water availability in temperate and boreal forests. Warming-induced prolongations of the growing season in high latitudes are dampened by a limited availability of light. For peak greenness, interannual variability and trends are dominantly controlled by water availability and land-use and land-cover change (LULCC) in all regions. Stronger greening trends in boreal forests of Siberia than in North America are associated with a stronger increase in water availability from melting permafrost soils. Our findings emphasize that in addition to cold temperatures, water availability is a codominant control for start of growing season and peak greenness trends at the global scale. PMID:25882036

  5. Seven-Year SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe

    2000-01-01

    A 7.5-year (July 1987-December 1994) dataset of daily surface specific humidity and turbulent fluxes (momentum, latent heat, and sensible heat) over global oceans has been retrieved from the Special Sensor Microwave/Imager (SSM/I) data and other data. It has a spatial resolution of 2.0 deg.x 2.5 deg. latitude-longitude. The retrieved surface specific humidity is generally accurate over global oceans as validated against the collocated radiosonde observations. The retrieved daily wind stresses and latent heat fluxes show useful accuracy as verified by those measured by the RV Moana Wave and IMET buoy in the western equatorial Pacific. The derived turbulent fluxes and input variables are also found to agree generally with the global distributions of annual-and seasonal-means of those based on 4-year (1990-93) comprehensive ocean-atmosphere data set (COADS) with adjustment in wind speeds and other climatological studies. The COADS has collected the most complete surface marine observations, mainly from merchant ships. However, ship measurements generally have poor accuracy, and variable spatial coverages. Significant differences between the retrieved and COADS-based are found in some areas of the tropical and southern extratropical oceans, reflecting the paucity of ship observations outside the northern extratropical oceans. Averaged over the global oceans, the retrieved wind stress is smaller but the latent heat flux is larger than those based on COADS. The former is suggested to be mainly due to overestimation of the adjusted ship-estimated wind speeds (depending on sea states), while the latter is suggested to be mainly due to overestimation of ship-measured dew point temperatures. The study suggests that the SSM/I-derived turbulent fluxes can be used for climate studies and coupled model validations.

  6. Global surface solar irradiance product derived from SCIAMACHY FRESCO cloud fraction

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Stammes, Piet; Müller, Richard

    The FRESCO cloud retrieval algorithm has been developed as a simple but fast and efficient algorithm for GOME and SCIAMACHY (Koelemeijer et al., 2001; Fournier et al., 2006; Wang et al., 2008). FRESCO employs the O2 A band at 760 nm to retrieve the effective cloud fraction and cloud pressure using a simple Lambertian cloud model. The effective cloud fraction is a combination of geometric cloud fraction and cloud optical thickness, which yield the same reflectance at the top of the atmosphere as the cloud in the scene. It is well-known that clouds reduce the surface solar irradiance. Therefore the all-sky irradiance can be derived from the clear-sky irradiance with a scaling factor related to the cloud index. The cloud index is very similar to the effective cloud fraction by definition. The MAGIC (Mesoscale Atmospheric Global Irradiance Code) software converts the cloud index to the surface solar irradiance using the Heliosat method (Mueller et al. 2009). The MAGIC algorithm is also used by the CM-SAF surface solar irradiance product for clear sky cases. We applied the MAGIC software to FRESCO effective cloud fraction with slight modifications. In this presentation we will show the FRESCO-SSI monthly mean product and the comparison with the BSRN global irradiance data at Cabauw, the Netherlands and surface solar irradiance measurement at Tibetan plateau in China.

  7. Global structure search for molecules on surfaces: Efficient sampling with curvilinear coordinates.

    PubMed

    Krautgasser, Konstantin; Panosetti, Chiara; Palagin, Dennis; Reuter, Karsten; Maurer, Reinhard J

    2016-08-28

    Efficient structure search is a major challenge in computational materials science. We present a modification of the basin hopping global geometry optimization approach that uses a curvilinear coordinate system to describe global trial moves. This approach has recently been shown to be efficient in structure determination of clusters [C. Panosetti et al., Nano Lett. 15, 8044-8048 (2015)] and is here extended for its application to covalent, complex molecules and large adsorbates on surfaces. The employed automatically constructed delocalized internal coordinates are similar to molecular vibrations, which enhances the generation of chemically meaningful trial structures. By introducing flexible constraints and local translation and rotation of independent geometrical subunits, we enable the use of this method for molecules adsorbed on surfaces and interfaces. For two test systems, trans-β-ionylideneacetic acid adsorbed on a Au(111) surface and methane adsorbed on a Ag(111) surface, we obtain superior performance of the method compared to standard optimization moves based on Cartesian coordinates. PMID:27586914

  8. Requirements for extravehicular activities on the lunar and Martian surfaces

    NASA Technical Reports Server (NTRS)

    Brown, Mariann F.; Schentrup, Susan M.

    1990-01-01

    Basic design reference requirements pertinent to EVA equipment on lunar and martian surfaces are provided. Environmental factors affecting surface EVA are analyzed including gravity, dust, atmospheric conditions, thermal gradients, lightning conditions, and radiation effects, and activities associated with surface EVA are outlined. Environmental and activity effects on EVA equipment are assessed, and emphasis is placed on planetary surface portable life support systems (PLSS), suit development, protection from micrometeoroids, dust, and radiation, food and water supplies, and the extravehicular mobility-unit thermal-control system. Environmental and activity impacts on PLSS design are studied, with focus on base self-sufficiency and reduction in resupply logistics.

  9. Global-scale surface spectral variations on Titan seen from Cassini/VIMS

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Soderblom, L.; Buratti, B.J.; Sotin, C.; Rodriguez, S.; Le, Mouelic S.; Baines, K.H.; Clark, R.; Nicholson, P.

    2007-01-01

    We present global-scale maps of Titan from the Visual and Infrared Mapping Spectrometer (VIMS) instrument on Cassini. We map at 64 near-infrared wavelengths simultaneously, covering the atmospheric windows at 0.94, 1.08, 1.28, 1.6, 2.0, 2.8, and 5 ??m with a typical resolution of 50 km/pixel or a typical total integration time of 1 s. Our maps have five to ten times the resolution of ground-based maps, better spectral resolution across most windows, coverage in multiple atmospheric windows, and represent the first spatially resolved maps of Titan at 5 ??m. The VIMS maps provide context and surface spectral information in support of other Cassini instruments. We note a strong latitudinal dependence in the spectral character of Titan's surface, and partition the surface into 9 spectral units that we describe in terms of spectral and spatial characteristics. ?? 2006 Elsevier Inc. All rights reserved.

  10. A technique for global monitoring of net solar irradiance at the ocean surface. II - Validation

    NASA Technical Reports Server (NTRS)

    Chertock, Beth; Frouin, Robert; Gautier, Catherine

    1992-01-01

    The generation and validation of the first satellite-based long-term record of surface solar irradiance over the global oceans are addressed. The record is generated using Nimbus-7 earth radiation budget (ERB) wide-field-of-view plentary-albedo data as input to a numerical algorithm designed and implemented based on radiative transfer theory. The mean monthly values of net surface solar irradiance are computed on a 9-deg latitude-longitude spatial grid for November 1978-October 1985. The new data set is validated in comparisons with short-term, regional, high-resolution, satellite-based records. The ERB-based values of net surface solar irradiance are compared with corresponding values based on radiance measurements taken by the Visible-Infrared Spin Scan Radiometer aboard GOES series satellites. Errors in the new data set are estimated to lie between 10 and 20 W/sq m on monthly time scales.

  11. Global surface displacement data for assessing variability of displacement at a point on a fault

    USGS Publications Warehouse

    Hecker, Suzanne; Sickler, Robert; Feigelson, Leah; Abrahamson, Norman; Hassett, Will; Rosa, Carla; Sanquini, Ann

    2014-01-01

    This report presents a global dataset of site-specific surface-displacement data on faults. We have compiled estimates of successive displacements attributed to individual earthquakes, mainly paleoearthquakes, at sites where two or more events have been documented, as a basis for analyzing inter-event variability in surface displacement on continental faults. An earlier version of this composite dataset was used in a recent study relating the variability of surface displacement at a point to the magnitude-frequency distribution of earthquakes on faults, and to hazard from fault rupture (Hecker and others, 2013). The purpose of this follow-on report is to provide potential data users with an updated comprehensive dataset, largely complete through 2010 for studies in English-language publications, as well as in some unpublished reports and abstract volumes.

  12. Improved Prediction of Quasi-Global Vegetation Conditions Using Remotely-Sensed Surface Soil Moisture

    NASA Technical Reports Server (NTRS)

    Bolten, John; Crow, Wade

    2012-01-01

    The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.

  13. Globally optimal rotation alignment of spherical surfaces with associated scalar values

    NASA Astrophysics Data System (ADS)

    Pan, Rongjiang; Skala, Vaclav; Müller, Rolf

    2013-09-01

    We propose a new approach to global optimization algorithm based on controlled random search techniques for rotational alignment of spherical surfaces with associated scalar values. To reduce the distortion in correspondence and increase efficiency, the spherical surface is first re-sampled using a geodesic sphere. The rotation in space is represented using the modified Rodrigues parameters. Correspondence between two spherical surfaces is implemented in the parametric domain. We applied the methods to the alignment of beam patterns computed from the outer ear shapes of bats. The proposed method is compared with other approaches such as principal component analysis (PCA), exhaustive search in the discrete space of rotations defined by Euler angles and direct search using uniform samples over the special orthogonal group of rotations in 3D space. Experimental results demonstrate that the rotation alignment obtained using the proposed algorithm has a high degree of precision and gives the best results among the four approaches. [Figure not available: see fulltext.

  14. An Update on Global Observations of Intense Surface Plankton Blooms and Floating Vegetation Using MERIS

    NASA Astrophysics Data System (ADS)

    King, Stephanie A.; Gower, Jim

    2010-12-01

    We continue to use MERIS data to compute MCI (Maximum Chlorophyll Index), which measures the radiance peak at 709 nm in water-leaving radiance, indicating the presence of a high surface concentration of chlorophyll a against a scattering background. The index is high in "red tide" conditions (intense, visible, surface, plankton blooms) and also when the blooms give rise to buoyant slicks, or when aquatic vegetation is present, leading to a "red edge" step increase in radiance. As presently configured the G-POD system provides daily global composites of MCI values at 5 km spatial resolution. We have used the global MCI composites to study the location, extent and interannual variability of several types of high chlorophyll events including plankton blooms, pelagic Sargassum, Antarctic superblooms and Trichodesmium. We are able to validate many events with the help of local observers, but in other cases the sporadic and short time scales make confirmation and identification difficult. This paper gives a summary of some recent global MERIS MCI results.

  15. KMS2002 Global Marine Gravity Field, Bathymetry And Mean Sea Surface

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.

    2003-12-01

    During the last three years the KMS global marine gravity field has been improved in corporation with National Imaginary and Mapping Agency (NIMA). These improvements have resulted in a release of KMS99 and KMS2001 gravity fields. Especially, the KMS99 gravity field presented a significant improvement in comparisons with marine observations, as well as global coverage within the 82 degree parallels by adding the ERS-ERM data. The subsequent, KMS2001 only resulted in minor improved gravity field modelling. A new revised global high resolution marine gravity field KMS2002 is presented in this Combining this fine- tuning with careful edition of data are expected to improve the KMS2002 gravity field, in particularly coastal regions. Improved resolution and data coverage in particularly ice-covered regions are other improvements, which is currently under investigation. The KMS gravity field modelling approach uses the observed sea surface height anomalies relative to EGM96 and converts these into gravity using FFT techniques. For the KMS2002 focus has been on improved mapping of the intermediate wavelength (100-250 km) of the gravity field using the exact repeat mission data from the TOPEX/POSEIDON and ERS-2 satellite missions. The KMS2002 gravity field is accompanied with a high-resolution bathymetry model and a high resolution mean sea surface.

  16. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate

    NASA Astrophysics Data System (ADS)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Leung, L. Ruby

    2015-09-01

    This study investigates the effects of irrigation on global water resources by performing and analyzing Community Land Model 4.0 (CLM4) simulations driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs). For each climate scenario, three sets of numerical experiments were performed: (1) a CTRL experiment in which all crops are assumed to be rainfed; (2) an IRRIG experiment in which the irrigation module is activated using surface water (SW) to feed irrigation; and (3) a PUMP experiment in which a groundwater pumping scheme coupled with the irrigation module is activated for conjunctive use of surface water and groundwater (GW) for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based water use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major effects: SW (GW) depletion in regions with irrigation primarily fed by SW (GW), respectively. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting increased vulnerability to drought. By the end of the 21st century, combined effect of increased irrigation water demand and amplified temporal-spatial variability of water supply may lead to severe local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our study highlights the need to account for irrigation effects and sources in assessing regional climate change impacts.

  17. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    USGS Publications Warehouse

    Sharma, Sapna; Gray, Derek; Read, Jordan S.; O'Reilly, Catherine; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie; Hook, Simon; Lenters, John; Livingstone, David M.; McIntyre, Peter B.; Adrian, Rita; Allan, Mathew; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John E.; Baron, Jill S.; Brookes, Justin D; Chen, Yuwei; Daly, Robert; Ewing, Kye; de Eyto, Elvira; Dokulil, Martin; Hamilton, David B.; Havens, Karl; Haydon, Shane; Hetzenaeur, Harald; Heneberry, Jocelyn; Hetherington, Amy; Higgins, Scott; Hixson, Eric; Izmest'eva, Lyubov; Jones, Benjamin M.; Kangur, Kulli; Kasprzak, Peter; Kraemer, Benjamin; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Dörthe Müller-Navarra,; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Pius Niederhauser,; North, Ryan P.; Andrew Paterson,; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Lars Rudstam,; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Daniel E. Schindler,; Geoffrey Schladow,; Schmidt, Silke R.; Tracey Schultz,; Silow, Eugene A.; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A.; Craig E. Williamson,; Kara H. Woo,

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

  18. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    PubMed Central

    Sharma, Sapna; Gray, Derek K; Read, Jordan S; O’Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest’eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues. PMID:25977814

  19. A global database of lake surface temperatures collected by in situ and satellite methods from 1985-2009.

    PubMed

    Sharma, Sapna; Gray, Derek K; Read, Jordan S; O'Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest'eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

  20. A global database of lake surface temperatures collected by in situ and satellite methods from 1985-2009.

    PubMed

    Sharma, Sapna; Gray, Derek K; Read, Jordan S; O'Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest'eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues. PMID:25977814

  1. Drought analysis of 21st century global and land surface hydrological models

    NASA Astrophysics Data System (ADS)

    Corzo, G.; VanLanen, H.

    2011-12-01

    Uncertainty and reliability of global hydrological and land surface models (GHMs & LSMs) in detection of hydrological drought are some of the most common questions for the analysis of the extremes of future climate. The fact that one unique model cannot capture the whole physics related to the global change is commonly reflected in the differences between global circulation models and global hydrological models and the use of multi-model ensemble means. Hydrological droughts are one of the main concerns in the analysis of future water resources scenarios. This study explores how future drought characteristics change through a multi-model drought analysis. Runoff simulations of seven models (GHMs & LSMs) were used to determine the overall changes in number of drought events and average drought durations. Results from monthly forcing variables from 3 GCMs (all A2 scenario and some B1 scenario) were inter-compared. The analysis covered three periods of time; late 20th century (1971-2000, control period), middle 21st century (2021-2050) and late 21th century (2071-2100). All drought events have been determined by using a monthly variable threshold analysis with 80th percentile. The results point to important differences between models for the cold arid regions in the northern hemisphere. Increase of drought events is more notorious in tropical humid regions. Analysis of differences between models in number and distribution of arid regions as well as variation of spatial drought events for specific regions is an important step ahead.

  2. Limited potential of crop management for mitigating surface ozone impacts on global food supply

    NASA Astrophysics Data System (ADS)

    Teixeira, Edmar; Fischer, Guenther; van Velthuizen, Harrij; van Dingenen, Rita; Dentener, Frank; Mills, Gina; Walter, Christof; Ewert, Frank

    2011-05-01

    Surface ozone (O 3) is a potent phytotoxic air pollutant that reduces the productivity of agricultural crops. Growing use of fossil fuel and climate change are increasing O 3 concentrations to levels that threaten food supply. Historically, farmers have successfully adapted agricultural practices to cope with changing environments. However, high O 3 concentrations are a new threat to food production and possibilities for adaptation are not well understood. We simulate the impact of ozone damage on four key crops (wheat, maize, rice and soybean) on a global scale and assess the effectiveness of adaptation of agricultural practices to minimize ozone damage. As O 3 concentrations have a strong seasonal and regional pattern, the adaptation options assessed refer to shifting crop calendars through changing sowing dates, applying irrigation and using crop varieties with different growth cycles. Results show that China, India and the United States are currently by far the most affected countries, bearing more than half of all global losses and threatened areas. Irrigation largely affects ozone exposure but local impacts depend on the seasonality of emissions and climate. Shifting crop calendars can reduce regional O 3 damage for specific crop-location combinations (e.g. up to 25% for rain-fed soybean in India) but has little implication at the global level. Considering the limited benefits of adaptation, mitigation of O 3 precursors remains the main option to secure regional and global food production.

  3. APOLLO 10: Training for Lunar Surface Activities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Astronauts train on a mock-up lunar surface, practicing the procedures they will follow on the real thing, and adjusting to the demands of the workload. From the film documentary 'APOLLO 10: 'Green Light for a Lunar Landing''. Part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) APOLLO 10: Manned lunar orbital flight with Thomas P Stafford, John W. Young, and Eugene A. Cernan to test all aspects of an actual manned lunar landing except the landing. Mission Duration 192hrs 3mins 23 sec

  4. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change

    NASA Astrophysics Data System (ADS)

    He, F.; Vavrus, S. J.; Kutzbach, J. E.; Ruddiman, W. F.; Kaplan, J. O.; Krumhardt, K. M.

    2015-12-01

    Surface albedo changes from anthropogenic land cover change (ALCC) represent the second-largest negative radiative forcing behind aerosol during the industrial era. Using a new reconstruction of ALCC during the Holocene era by Kaplan et al. [2011], we quantify the local and global temperature response induced by Holocene ALCC in the Community Climate System Model, version 4 (CCSM4). With 1-degree resolution of the CCSM4 slab-ocean model,we find that Holocene ALCC cause a global cooling of 0.17 °C due to the biogeophysical effects of land-atmosphere exchange of momentum, moisture, radiative and heat fluxes. On the global scale, the biogeochemical effects of Holocene ALCC from carbon emissions dominate the biogeophysical effects by causing 0.9 °C global warming. The net effects of Holocene ALCC amount to a global warming of 0.73 °C during the pre-industrial era, which is comparable to the ~0.8 °C warming during industrial times. On local to regional scales, such as parts of Europe, North America and Asia, the biogeophysical effects of Holocene ALCC are significant and comparable to the biogeochemical effect. The lack of ocean dynamics in the 1° CCSM4 slab-ocean simulations could underestimate the climate sensitivity because of the lack of feedbacks from ocean heat transport [Kutzbach et al., 2013; Manabe and Bryan, 1985]. In 1° CCSM4 fully coupled simulations, the climate sensitivity is ~65% larger than the 1° CCSM4 slab-ocean simulations during the Holocene (5.3 °C versus 3.2 °C) [Kutzbach et al., 2013]. With this greater climate sensitivity, the biogeochemical effects of Holocene ALCC could have caused a global warming of ~1.5 °C, and the net biogeophysical and biogeochemical effects of Holocene ALCC could cause a global warming of 1.2 °C during the preindustrial era in our simulations, which is 50% higher than the global warming of ~0.8 °C during industrial times.

  5. AMP-Activated Protein Kinase Regulates the Cell Surface Proteome and Integrin Membrane Traffic

    PubMed Central

    Thavarajah, Thanusi; Medvedev, Sergei; Bowden, Peter; Marshall, John G.; Antonescu, Costin N.

    2015-01-01

    The cell surface proteome controls numerous cellular functions including cell migration and adhesion, intercellular communication and nutrient uptake. Cell surface proteins are controlled by acute changes in protein abundance at the plasma membrane through regulation of endocytosis and recycling (endomembrane traffic). Many cellular signals regulate endomembrane traffic, including metabolic signaling; however, the extent to which the cell surface proteome is controlled by acute regulation of endomembrane traffic under various conditions remains incompletely understood. AMP-activated protein kinase (AMPK) is a key metabolic sensor that is activated upon reduced cellular energy availability. AMPK activation alters the endomembrane traffic of a few specific proteins, as part of an adaptive response to increase energy intake and reduce energy expenditure. How increased AMPK activity during energy stress may globally regulate the cell surface proteome is not well understood. To study how AMPK may regulate the cell surface proteome, we used cell-impermeable biotinylation to selectively purify cell surface proteins under various conditions. Using ESI-MS/MS, we found that acute (90 min) treatment with the AMPK activator A-769662 elicits broad control of the cell surface abundance of diverse proteins. In particular, A-769662 treatment depleted from the cell surface proteins with functions in cell migration and adhesion. To complement our mass spectrometry results, we used other methods to show that A-769662 treatment results in impaired cell migration. Further, A-769662 treatment reduced the cell surface abundance of β1-integrin, a key cell migration protein, and AMPK gene silencing prevented this effect. While the control of the cell surface abundance of various proteins by A-769662 treatment was broad, it was also selective, as this treatment did not change the cell surface abundance of the transferrin receptor. Hence, the cell surface proteome is subject to acute

  6. Global Minimum Determination of the Born-Oppenheimer Surface within Density Functional Theory

    SciTech Connect

    Goedecker, Stefan; Hellmann, Waldemar; Lenosky, Thomas

    2005-07-29

    We present a novel method, which we refer to as the dual minima hopping method, that allows us to find the global minimum of the potential energy surface (PES) within density functional theory for systems where a fast but less accurate calculation of the PES is possible. This method can rapidly find the ground state configuration of clusters and other complex systems with present day computer power by performing a systematic search. We apply the new method to silicon clusters. Even though these systems have already been extensively studied by other methods, we find new global minimum candidates for Si{sub 16} and Si{sub 19}, as well as new low-lying isomers for Si{sub 16}, Si{sub 17}, and Si{sub 18}.

  7. Global surface water quality hotspots under climate change and anthropogenic developments

    NASA Astrophysics Data System (ADS)

    van Vliet, Michelle T. H.; Yearsley, John R.

    2016-04-01

    In recent decades, freshwater usage for various sectors (e.g. agriculture, industry, energy and domestic) has more than doubled. A growing global population will place further demands on water supplies, whereas the availability and quality of water resources will be affected by climate change and human impacts. These developments will increase imbalances between fresh water demand and supply in terms of both water quantity and water quality. Here we discuss a methodology to identify regions of the world where surface water quality is expected to deteriorate under climate change and anthropogenic developments. Our approach integrates global hydrological-water quality modelling, climate and socio-economic scenarios and relations of water quality with physical and socio-economic drivers.

  8. Active sensor tags for global visibility of asset readiness

    NASA Astrophysics Data System (ADS)

    Burghard, B. J.; Silvers, K. L.; Skorpik, J. R.

    2005-05-01

    The era of wireless communication and discrete, autonomous sensors platforms is upon us. Advances in radio-frequency (RF) technology from simple two-way personal communications to smart, independent, sensor command, and control units has greatly expanded the applications domain. In the past four years, Pacific Northwest National Laboratory (PNNL) scientists and engineers have developed smart sensor tags (health tags) for the Army to monitor environmental conditions of high value assets over their lifetime (10 yrs). These field tested health tags uniquely identify individual assets, record and store data, run diagnostic and prognostic protocols, identify asset performance status (GO, CAUTION, NO-GO), and provide all this information over a wireless RF link to a portable, hand held reader. Leveraging the innovation achieved for health monitoring tags, the next generation active sensor tag has been developed (FlexiTag) providing reduced tag size and manufacturing cost, greater sensor interface capabilities, and a flexible substrate for surface mount conformity. The design has a greatly reduced part count due to the use of newly available, highly integrated RF chip sets. In addition to asset health monitoring, the new tag platform opens up additional application areas such as TTL (tagging, tracking, and locating), real-time machine fault monitoring, and ad-hoc sensor networking. This paper will compare and contrast the FlexiTag to its predecessors and discuss the current application areas it is being applied to.

  9. A closer look at United States and global surface temperature change

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Ruedy, R.; Sato, M.; Imhoff, M.; Lawrence, W.; Easterling, D.; Peterson, T.; Karl, T.

    2001-10-01

    We compare the United States and global surface air temperature changes of the past century using the current Goddard Institute for Space Studies (GISS) analysis and the U.S. Historical Climatology Network (USHCN) record [Karl et al., 1990]. Changes in the GISS analysis subsequent to the documentation by Hansen et al. [1999] are as follows: (1) incorporation of corrections for time-of-observation bias and station history adjustments in the United States based on Easterling et al. [1996a], (2) reclassification of rural, small-town, and urban stations in the United States, southern Canada, and northern Mexico based on satellite measurements of night light intensity [Imhoff et al., 1997], and (3) a more flexible urban adjustment than that employed by Hansen et al. [1999], including reliance on only unlit stations in the United States and rural stations in the rest of the world for determining long-term trends. We find evidence of local human effects ("urban warming") even in suburban and small-town surface air temperature records, but the effect is modest in magnitude and conceivably could be an artifact of inhomogeneities in the station records. We suggest further studies, including more complete satellite night light analyses, which may clarify the potential urban effect. There are inherent uncertainties in the long-term temperature change at least of the order of 0.1°C for both the U.S. mean and the global mean. Nevertheless, it is clear that the post-1930s cooling was much larger in the United States than in the global mean. The U.S. mean temperature has now reached a level comparable to that of the 1930s, while the global temperature is now far above the levels earlier in the century. The successive periods of global warming (1900-1940), cooling (1940-1965), and warming (1965-2000) in the 20th century show distinctive patterns of temperature change suggestive of roles for both climate forcings and dynamical variability. The U.S. was warm in 2000 but cooler than

  10. Surface Wind Stresses and Triggering of Global Dust Storms on Mars

    NASA Astrophysics Data System (ADS)

    Mischna, Michael A.; Shirley, James H.

    2016-10-01

    Global dust storms on Mars occur during summer in the southern hemisphere, but their occurrence in some years and not in others has stubbornly eluded explanation. Shirley (2016, in review, and at arxiv.org/abs/1605.02707) and Mischna and Shirley (2016, in revision, and at arxiv.org/abs/1602.09137) have demonstrated the role of a so-called "coupling term acceleration" (CTA) in modifying the Mars global circulation through potential exchange of Mars' orbital and rotational momenta. The CTA has been incorporated into the MarsWRF general circulation model (GCM), which reveals distinct changes to the circulation due to the CTA, leading to conditions favorable to GDS formation in all years in which perihelion season GDS were observed, and conditions unfavorable in nearly all other years. These circulation changes reveal themselves, in part, through changes in surface wind stress, which is a strong function of near-surface wind speed. We present additional analysis of these results for the past years with perihelion season GDS (7 in total) showing commonalities in the evolution of surface stresses in the season leading up to GDS initiation. Specifically, the enhancement of surface stress during this pre-storm season, arising from the orbit-spin coupling in years with perihelion season storms, presents some common patterns. Among these are the rate and duration of increase of wind stress, and the minimum level of enhancement from the CTA that is apparently required in these years prior to initiation of a GDS. Previously we assessed changes in surface stress using a simple, dust-free model atmosphere. Here, further, we perform parallel simulations for MY 24-27 using realistic dust profiles from TES limb observations. The inclusion of dust in the GCM modifies atmospheric opacity and will alter global atmospheric temperatures leading to a markedly different atmospheric state. We find that the inclusion of dust in the atmosphere reduces the magnitude of surface stresses as

  11. Global circulation as the main source of cloud activity on Titan.

    PubMed

    Rodriguez, Sébastien; Le Mouélic, Stéphane; Rannou, Pascal; Tobie, Gabriel; Baines, Kevin H; Barnes, Jason W; Griffith, Caitlin A; Hirtzig, Mathieu; Pitman, Karly M; Sotin, Christophe; Brown, Robert H; Buratti, Bonnie J; Clark, Roger N; Nicholson, Phil D

    2009-06-01

    Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes ( approximately 40 degrees ) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at latitude approximately 40 degrees N and the persistence of the southern clouds while the southern summer is ending are, however, both contrary to predictions. This suggests that Titan's equator-to-pole thermal contrast is overestimated in the models and that its atmosphere responds to the seasonal forcing with a greater inertia than expected.

  12. Global circulation as the main source of cloud activity on Titan

    USGS Publications Warehouse

    Rodriguez, S.; Le, Mouelic S.; Rannou, P.; Tobie, G.; Baines, K.H.; Barnes, J.W.; Griffith, C.A.; Hirtzig, M.; Pitman, K.M.; Sotin, C.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes (40??) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at latitude 40??N and the persistence of the southern clouds while the southern summer is ending are, however, both contrary to predictions. This suggests that Titans equator-to-pole thermal contrast is overestimated in the models and that its atmosphere responds to the seasonal forcing with a greater inertia than expected. ?? 2009 Macmillan Publishers Limited. All rights reserved.

  13. Surfaces of Fluorinated Pyridinium Block Copolymers with Enhanced Antibacterial Activity

    SciTech Connect

    Krishnan,S.; Ward, R.; Hexemer, A.; Sohn, K.; Lee, K.; Angert, E.; Fischer, D.; Kramer, E.; Ober, C.

    2006-01-01

    Polystyrene-b-poly(4-vinylpyridine) copolymers were quaternized with 1-bromohexane and 6-perfluorooctyl-1-bromohexane. Surfaces prepared from these polymers were characterized by contact angle measurements, near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy. The fluorinated pyridinium surfaces showed enhanced antibacterial activity compared to their nonfluorinated counterparts. Even a polymer with a relatively low molecular weight pyridinium block showed high antimicrobial activity. The bactericidal effect was found to be related to the molecular composition and organization in the top 2-3 nm of the surface and increased with increasing hydrophilicity and pyridinium concentration of the surface.

  14. Surface diffusion activation energy determination using ion beam microtexturing

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    The activation energy for impurity atom (adatom) surface diffusion can be determined from the temperature dependence of the spacing of sputter cones. These cones are formed on the surface during sputtering while simultaneously adding impurities. The impurities form clusters by means of surface diffusion, and these clusters in turn initiate cone formation. Values are given for the surface diffusion activation energies for various materials on polycrystalline Cu, Al, Pb, Au, and Ni. The values for different impurity species on each of these substrates are approximately independent of impurity species within the experimental uncertainty, suggesting the absence of strong chemical bonding effects on the diffusion.

  15. Nimbus 7 SMMR Derived Seasonal Variations in the Water Vapor, Liquid Water and Surface Winds over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Short, D. A.

    1984-01-01

    Monthly mean distributions of water vapor and liquid water contained in a vertical column of the atmosphere and the surface wind speed were derived from Nimbus Scanning Multichannel Microwave Radiometer (SMMR) observations over the global oceans for the period November 1978 to November 1979. The remote sensing techniques used to estimate these parameters from SMMR are presented to reveal the limitations, accuracies, and applicability of the satellite-derived information for climate studies. On a time scale of the order of a month, the distribution of atmospheric water vapor over the oceans is controlled by the sea surface temperature and the large scale atmospheric circulation. The monthly mean distribution of liquid water content in the atmosphere over the oceans closely reflects the precipitation patterns associated with the convectively and baroclinically active regions. Together with the remotely sensed surface wind speed that is causing the sea surface stress, the data collected reveal the manner in which the ocean-atmosphere system is operating. Prominent differences in the water vapor patterns from one year to the next, or from month to month, are associated with anomalies in the wind and geopotential height fields. In association with such circulation anomalies the precipitation patterns deduced from the meteorological network over adjacent continents also reveal anomalous distributions.

  16. Development of a Pressure Sensitive Paint System for Measuring Global Surface Pressures on Rotorcraft Blades

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Wong, Oliver D.; Oglesby, Donald M.; Ingram, JoAnne L.

    2007-01-01

    This paper will describe the results from a proof of concept test to examine the feasibility of using Pressure Sensitive Paint (PSP) to measure global surface pressures on rotorcraft blades in hover. The test was performed using the U.S. Army 2-meter Rotor Test Stand (2MRTS) and 15% scale swept rotor blades. Data were collected from five blades using both the intensity- and lifetime-based approaches. This paper will also outline several modifications and improvements that are underway to develop a system capable of measuring pressure distributions on up to four blades simultaneously at hover and forward flight conditions.

  17. Think Locally, Act Globally! Linking Local and Global Communities through Democracy and Environment. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Dowler, Lorraine

    Designed so that it can be adapted to a wide range of student abilities and institutional settings, this learning module on the human dimensions of global change seeks to: actively engage students in problem solving, challenge them to think critically, invite them to participate in the process of scientific inquiry, and involve them in cooperative…

  18. The Potential Radiative Forcing of Global Land Use and Land Cover Change Activities

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2014-12-01

    Given the expected increase in pressure on land resources over the next century, there is a need to understand the total impacts of activities associated with land use and land cover change (LULCC). Here we quantify these impacts using the radiative forcing metric, including forcings from changes in long-lived greenhouse gases, tropospheric ozone, aerosol effects, and land surface albedo. We estimate radiative forcings from the different agents for historical LULCC and for six future projections using simulations from the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. When all forcing agents are considered together we show that 45% (+30%, -20%) of the present-day (2010) anthropogenic radiative forcing can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC radiative forcing by a factor of 2 to 3 with respect to the forcing from CO2 alone. In contrast, the non-CO2 forcings from fossil fuel burning are roughly neutral, due largely to the negative (cooling) impact of aerosols from these sources. We partition the global LULCC radiative forcing into three major sources: direct modification of land cover (e.g. deforestation), agricultural activities, and fire regime changes. Contributions from deforestation and agriculture are roughly equal in the present day, while changes to wildfire activity impose a small negative forcing globally. In 2100, deforestation activities comprise the majority of the LULCC radiative forcing for all projections except one (Representative Concentration Pathway (RCP) 4.5). This suggests that realistic scenarios of future forest area change are essential for projecting the contribution of LULCC to climate change. However, the commonly used RCP land cover change projections all include decreases in global deforestation rates over the next 85 years. To place an upper bound on the potential

  19. Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of global hydrologic cycles, carbon cycles and climate change are greatly facilitated when global estimates of evapotranspiration (E) are available. We have developed an air-relative-humidity-based two-source (ARTS) E model that simulates the surface energy balance, soil water balance, and e...

  20. A technique for global monitoring of net solar irradiance at the ocean surface. I - Model

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Chertock, Beth

    1992-01-01

    An accurate long-term (84-month) climatology of net surface solar irradiance over the global oceans from Nimbus-7 earth radiation budget (ERB) wide-field-of-view planetary-albedo data is generated via an algorithm based on radiative transfer theory. Net surface solar irradiance is computed as the difference between the top-of-atmosphere incident solar irradiance (known) and the sum of the solar irradiance reflected back to space by the earth-atmosphere system (observed) and the solar irradiance absorbed by atmospheric constituents (modeled). It is shown that the effects of clouds and clear-atmosphere constituents can be decoupled on a monthly time scale, which makes it possible to directly apply the algorithm with monthly averages of ERB planetary-albedo data. Compared theoretically with the algorithm of Gautier et al. (1980), the present algorithm yields higher solar irradiance values in clear and thin cloud conditions and lower values in thick cloud conditions.

  1. Global data on land surface parameters from NOAA AVHRR for use in numerical climate models

    SciTech Connect

    Gutman, G.G. )

    1994-05-01

    This paper reviews satellite datasets from the NOAA Advanced Very High Resolution Radiometer that could be employed in support of numerical climate modeling at regional and global scales. Presently available NOAA operational and research datasets of different resolutions as well as the NASA-NOAA Pathfinder dataset, available in the near future, are briefly described. Specific problems in deriving surface characteristics in the context of their potential use of models are discussed. Possible ways of solving these problems are briefly described, based on the state-of-the-art level of understanding in this area of research. Some examples of seasonal variability of AVHRR-derived surface parameters, such as albedo, greenness, and clear-sky midafternoon temperature, for different climatic regions are presented. Validation issues and potential operational production of such land climate parameters are discussed.

  2. Going Global Activity Guide: A Project To Educate and Involve American Students in Global Hunger Issues.

    ERIC Educational Resources Information Center

    White, Gene; Balakshin, Maria

    Global hunger is one of the most urgent health and social problems the world faces at the beginning of the new millennium. In a world that produces enough food to feed every human being on the planet, there are still some 830 million people who do not get enough food on a daily basis. About 24,000 people die each day from the effects of hunger;…

  3. Saline Snow Surfaces and Arctic Bromine Activation

    NASA Astrophysics Data System (ADS)

    Pratt, K. A.; Custard, K. D.; Shepson, P.; Douglas, T. A.; Pöhler, D.; General, S.; Zielcke, J.; Platt, U.; Carlsen, M. S.; Tanner, D.; Huey, L. G.; Stirm, B.

    2012-12-01

    Following polar sunrise, tropospheric ozone levels often decrease rapidly to near zero, concurrent with mercury depletion and deposition. Despite our increasing understanding of the spatial variability of BrO and possible mechanisms based on laboratory studies, important questions remain regarding the most efficient sources of and mechanisms for Arctic halogen activation, leading to tropospheric ozone depletion. Rapid sea ice decline in the Arctic is expected to influence halogen activation and corresponding ozone and mercury depletion events. Therefore, an improved understanding of halogen activation is necessary to predict future changes in atmospheric chemical composition. During the March-April 2012 BRomine, Ozone, and Mercury EXperiment (BROMEX) in Barrow, Alaska, outdoor chamber experiments with snow and ice samples were conducted. Ozone was added as the precursor oxidant, and the samples were investigated with and without ambient sunlight. Samples included first-year sea ice, brine icicles, several layers of snow above first-year sea ice, and seasonal snow above the tundra. Chemical ionization mass spectrometry was utilized to monitor Br2 production, and ion chromatography was utilized to measure the bromide, chloride, nitrate, and sulfate content of the melted snow/ice samples. Surprisingly, tundra snow and drifting snow above sea ice produced the most Br2, with no production resulting from sea ice and basal snow directly above sea ice, suggesting more efficient production from samples characterized by greater acidity and lower chloride/bromide ratios. In addition, Br2 was only observed in the presence of sunlight, indicating the role of snowpack photolysis and the hydroxyl radical in its production. The observed trends in Br2 production may also help explain observations of inland hotspots in measured BrO by aircraft-based nadir MAX-DOAS (Multi Axis-Differential Optical Absorption Spectroscopy) measurements, conducted during the same field campaign. The

  4. Activating Digital-Media-Global Literacies and Learning

    ERIC Educational Resources Information Center

    Jacobs, Heidi Hayes

    2014-01-01

    In this article, the author states: "It doesn't matter how many computer-related devices we have in school, what matters is how we employ technology toward a large learning goal, toward a new vision of education." She continues, "When I suggest the cultivation and integration of digital, media, and global literacies, I do so…

  5. Globalization, Democracy, and Social Movements: The Educational Potential of Activism

    ERIC Educational Resources Information Center

    Hytten, Kathy

    2016-01-01

    In this essay, I explore the contemporary value of John Dewey's conception of democracy to addressing the challenges of neoliberal globalization. I begin by describing his vision of democracy as a way of life that requires habits of experimentalism, pluralism, and hope. I then suggest that contemporary forms of mobilization, resistance, and…

  6. Sensitivity of global tropical climate to land surface processes: Mean state and interannual variability

    SciTech Connect

    Ma, Hsi-Yen; Xiao, Heng; Mechoso, C. R.; Xue, Yongkang

    2013-03-01

    This study examines the sensitivity of global tropical climate to land surface processes (LSP) using an atmospheric general circulation model both uncoupled (with prescribed SSTs) and coupled to an oceanic general circulation model. The emphasis is on the interactive soil moisture and vegetation biophysical processes, which have first order influence on the surface energy and water budgets. The sensitivity to those processes is represented by the differences between model simulations, in which two land surface schemes are considered: 1) a simple land scheme that specifies surface albedo and soil moisture availability, and 2) the Simplified Simple Biosphere Model (SSiB), which allows for consideration of interactive soil moisture and vegetation biophysical process. Observational datasets are also employed to assess the reality of model-revealed sensitivity. The mean state sensitivity to different LSP is stronger in the coupled mode, especially in the tropical Pacific. Furthermore, seasonal cycle of SSTs in the equatorial Pacific, as well as ENSO frequency, amplitude, and locking to the seasonal cycle of SSTs are significantly modified and more realistic with SSiB. This outstanding sensitivity of the atmosphere-ocean system develops through changes in the intensity of equatorial Pacific trades modified by convection over land. Our results further demonstrate that the direct impact of land-atmosphere interactions on the tropical climate is modified by feedbacks associated with perturbed oceanic conditions ("indirect effect" of LSP). The magnitude of such indirect effect is strong enough to suggest that comprehensive studies on the importance of LSP on the global climate have to be made in a system that allows for atmosphere-ocean interactions.

  7. Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario

    NASA Astrophysics Data System (ADS)

    Hemer, Mark A.; Katzfey, Jack; Trenham, Claire E.

    2013-10-01

    A global 1° implementation of the spectral wave model, WaveWatch III, was forced with surface winds from two atmosphere-ocean general circulation models (AOGCMs: ECHAM5 and CSIRO Mk3.5), dynamically downscaled to 60 km using the Cubic Conformal Atmospheric Model. Two 30-yr time slices were simulated: 1979-2009 representing current climate, and 2070-2099 representing a future climate scenario under a high greenhouse gas emission scenario (SRES A2). A further wave model simulation with forcing from the NCEP Climate Forecast System Reanalysis for 1979-2009, using the same model settings as the climate model forced runs, serves as a benchmark hindcast to assess skill of climate-model-derived wave fields. Climate model forced wave simulations for the 1979-2009 time-slice display biases relative to the benchmark wave climate - notably an overestimation of wave generation in the Southern Ocean, which influences broad regions of the Pacific which receive these waves as swell. Wave model runs were repeated following bias-adjustment of the climate model forcing winds with the aim to reduce biases, but model skill to simulate the monthly 99th percentile of significant wave heights deteriorates severely. Projected future changes in wave climate (between 1979-2009 and 2070-2099) under the SRES A2 greenhouse gas emission scenario are relatively insensitive to whether bias-adjustment of winds has been applied. Two robust features of projected change are observed from the two climate model sets which are qualitatively consistent with previous studies: a projected increase of Southern Ocean wave generation leading to approximately 10% increase in Southern Ocean mean significant wave heights (HSm), and a projected decrease in wave generation in the North Atlantic, with changes in HSm of similar magnitude. Interannual anomalies of monthly mean significant wave height, HSm, were regressed against climate indices (Southern Oscillation Index - SOI; North Atlantic Oscillation - NAO and

  8. A Global Assessment of Accelerations in Mass Transport of Surface Geophysical Fluid

    NASA Astrophysics Data System (ADS)

    Wu, X.; Heflin, M. B.

    2015-12-01

    Mass transport in the Earth's surface geophysical fluid layer has complex spatiotemporal patterns. The GRACE gravity mission provides an unprecedented global capability to monitor this important process with high accuracy and resolution. Accurate assessments of global mass transport patterns and budget also depend critically on changes in degree-1 coefficients (geocenter motion) and in Earth's dynamic oblateness coefficient J2. We combine GRACE measurements, time series of GNSS data, JPL's ECCO ocean bottom pressure model, and high-resolution loose a priori models of mass variation regimes to derive complete spherical harmonic spectra of detrended mass variations up to degree and order 180. Mass accelerations are estimated along with linear, annual, semiannual, and the 161-day tidal aliasing components from coefficient time series. The appropriateness of a priori information and estimate uncertainties are further evaluated by variance component estimation and residual statistics of fitting the time series. During the GRACE data period of 2002.2-2015.0, accelerations in mass transport are geographically uneven with significant positive or negative accelerations in various parts of the world. While Greenland and West Antarctica show strong accelerated mass losses, Alaska and the Arctic Ocean have significant positive accelerations with reversals of earlier mass loss trends. No evidence of non-Arctic global mean sea level acceleration due to mass has been found. Depending on region, some estimated accelerations are also not steady over time due to large irregular and interannual variations.

  9. Differential evolution: Global search problem in LEED-IV surface structural analysis

    SciTech Connect

    Nascimento, V.B.; Plummer, E.W.

    2015-02-15

    The search process associated with the quantitative theory–experiment comparison in Low Energy Electron Diffraction surface structural analysis can be very time consuming, especially in the case of complex materials with many atoms in the unit cell. Global search algorithms need to be employed to locate the global minimum of the reliability factor in the multi-dimensional structural parameter space. In this study we investigate the use of the Differential Evolution algorithm in Low Energy Electron Diffraction structural analysis. Despite the simplicity of its mechanism the Differential Evolution algorithm presents an impressive performance when applied to ultra-thin films of BaTiO{sub 3}(001) in a theory–theory comparison. A scaling relation of N{sup (1.47} {sup ±} {sup 0.08)} was obtained, where N is the total number of parameters to be optimized. - Highlights: • We investigated the use of the Differential Evolution algorithm (DE) for the LEED search problem. • The DE method was applied to the optimization of the surface structure of the BaTiO{sub 3}(001) ultra-thin films. • A very favorable scaling relation of N{sup 1.47} was obtained, where N is the total number of parameters to be optimized.

  10. Global Assessment of Land Surface Temperature From Geostationary Satellites and Model Estimates

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Liu, Q.; Minnis, P.; daSilva, A. M., Jr.; Palikonda, R.; Yost, C. R.

    2012-01-01

    Land surface (or 'skin') temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. In this research we compare two global and independent data sets: (i) LST retrievals from five geostationary satellites generated at the NASA Langley Research Center (LaRC) and (ii) LST estimates from the quasi-operational NASA GEOS-5 global modeling and assimilation system. The objective is to thoroughly understand both data sets and their systematic differences in preparation for the assimilation of the LaRC LST retrievals into GEOS-5. As expected, mean differences (MD) and root-mean-square differences (RMSD) between modeled and retrieved LST vary tremendously by region and time of day. Typical (absolute) MD values range from 1-3 K in Northern Hemisphere mid-latitude regions to near 10 K in regions where modeled clouds are unrealistic, for example in north-eastern Argentina, Uruguay, Paraguay, and southern Brazil. Typically, model estimates of LST are higher than satellite retrievals during the night and lower during the day. RMSD values range from 1-3 K during the night to 2-5 K during the day, but are larger over the 50-120 W longitude band where the LST retrievals are derived from the FY2E platform

  11. The complementary role of SMOS sea surface salinity observations for estimating global ocean salinity state

    NASA Astrophysics Data System (ADS)

    Lu, Zeting; Cheng, Lijing; Zhu, Jiang; Lin, Renping

    2016-06-01

    Salinity is a key ocean state property, changes in which reveal the variation of the water cycle and the ocean thermohaline circulation. However, prior to this century, in situ salinity observations were extremely sparse, which decreased the reliability of simulations of ocean general circulation by ocean and climate models. In 2009, sea surface salinity (SSS) observations covered the global ocean via the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission, and several versions of global SSS products were subsequently released. How can these data benefit model performance? Previous studies found contradictory results. In this work, we assimilated SMOS-SSS data into the LASG/IAP Climate system Ocean Model (LICOM) using the Ensemble Optimum Interpolation (EnOI) assimilation scheme. To assess and quantify the contribution of SMOS-SSS data to model performance, several tests were conducted. The results indicate that the CECOS/CATDS 2010.V02 SMOS-SSS product can significantly improve model simulations of sea surface/subsurface salinity fields. This study provides the basis for the future assimilation of SMOS-SSS data for short-range climate forecasting.

  12. Recovery of Global Surface Weather Observations for Historical Reanalyses and International Users

    NASA Astrophysics Data System (ADS)

    Allan, Rob; Compo, Gil; Carton, Jim

    2011-05-01

    Third International Atmospheric Circulation Reconstructions Over the Earth Initiative Workshop: Reanalysis and Applications; Baltimore, Maryland, 3-5 November 2010 ; The third Atmospheric Circulation Reconstructions over the Earth (ACRE) workshop advanced the goals of the international ACRE initiative (http://www.met-acre.org/) to undertake and facilitate the recovery of instrumental terrestrial and marine global surface weather observations underpinning global weather reconstructions and reanalyses spanning the past 200-250 years (http://reanalyses.org). The workshop improved integration of the 35-40 ACRE-linked international scientific projects, institutions, and organizations working toward these ends. The meeting highlighted the broad array and international usage of ACRE-facilitated data sets and reanalysis: the International Surface Pressure Databank (ISPD; http://dss.ucar.edu/datasets/ds132.0/), the International Comprehensive Ocean-Atmosphere Data Set (http:/icoads.noaa.gov/ICOADS;), and the 20th Century Reanalysis (20CR; http://www.esrl.noaa.gov/psd/data/20thC_Rean/). The need for more data recovery for all regions of the globe during the nineteenth and early twentieth centuries was emphasized. Many regional efforts for such recovery are under way. The Arctic and maritime regions were highlighted as particular areas needing attention. As a result of the meeting, connections with existing projects were made and new efforts were started to address these needs.

  13. An updated global grid point surface air temperature anomaly data set: 1851--1990

    SciTech Connect

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

  14. How well-connected is the surface of the global ocean?

    PubMed

    Froyland, Gary; Stuart, Robyn M; van Sebille, Erik

    2014-09-01

    The Ekman dynamics of the ocean surface circulation is known to contain attracting regions such as the great oceanic gyres and the associated garbage patches. Less well-known are the extents of the basins of attractions of these regions and how strongly attracting they are. Understanding the shape and extent of the basins of attraction sheds light on the question of the strength of connectivity of different regions of the ocean, which helps in understanding the flow of buoyant material like plastic litter. Using short flow time trajectory data from a global ocean model, we create a Markov chain model of the surface ocean dynamics. The surface ocean is not a conservative dynamical system as water in the ocean follows three-dimensional pathways, with upwelling and downwelling in certain regions. Using our Markov chain model, we easily compute net surface upwelling and downwelling, and verify that it matches observed patterns of upwelling and downwelling in the real ocean. We analyze the Markov chain to determine multiple attracting regions. Finally, using an eigenvector approach, we (i) identify the five major ocean garbage patches, (ii) partition the ocean into basins of attraction for each of the garbage patches, and (iii) partition the ocean into regions that demonstrate transient dynamics modulo the attracting garbage patches. PMID:25273206

  15. How well-connected is the surface of the global ocean?

    PubMed

    Froyland, Gary; Stuart, Robyn M; van Sebille, Erik

    2014-09-01

    The Ekman dynamics of the ocean surface circulation is known to contain attracting regions such as the great oceanic gyres and the associated garbage patches. Less well-known are the extents of the basins of attractions of these regions and how strongly attracting they are. Understanding the shape and extent of the basins of attraction sheds light on the question of the strength of connectivity of different regions of the ocean, which helps in understanding the flow of buoyant material like plastic litter. Using short flow time trajectory data from a global ocean model, we create a Markov chain model of the surface ocean dynamics. The surface ocean is not a conservative dynamical system as water in the ocean follows three-dimensional pathways, with upwelling and downwelling in certain regions. Using our Markov chain model, we easily compute net surface upwelling and downwelling, and verify that it matches observed patterns of upwelling and downwelling in the real ocean. We analyze the Markov chain to determine multiple attracting regions. Finally, using an eigenvector approach, we (i) identify the five major ocean garbage patches, (ii) partition the ocean into basins of attraction for each of the garbage patches, and (iii) partition the ocean into regions that demonstrate transient dynamics modulo the attracting garbage patches.

  16. Insights about Stomatal Behavior and Surface Conductance from Globally Distributed Ecosystem Scale Observations (FLUXNET)

    NASA Astrophysics Data System (ADS)

    Williams, C. A.

    2014-12-01

    Surface conductance acts as a key linkage between terrestrial water and carbon balances and strongly influences land surface response to and feedback on the near surface environment (temperature and humidity). Theory suggests optimal stomatal behavior that maximizes carbon gain while minimizing water loss. This is often examined by analysis of Water Use Efficiency (CO2 uptake / H2O loss) from observations of assimilation and transpiration, though is more formally tested with examination of the marginal water cost of plant carbon gain (dE/dA). Plant species and forms are known to vary in their water use habits, with some forms being relatively conservative (e.g trees) and others exhibiting more profligate behavior (e.g. grasses, crops), likely relating to plant hydraulics. Under drought conditions such relations remain little studied though one might expect profligate users to transition toward a more conservative strategy. Globally-distributed observations of ecosystem scale water and carbon fluxes and associated environmental conditions from FLUXNET provide an emerging opportunity to examine the above relationships and theory in hopes of improving ability to characterize surface conductance. This presentation will seek to review recent findings and offer new analysis and synthesis perspectives on plant water use strategies and carbon gain with implications for energy balance, runoff, the Budyko hypothesis.

  17. High-Altitude Laser Altimetry from the Global Hawk UAV for Regional Mapping of Surface Topography

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Rabine, D.; Wake, S.; Hofton, M. A.; Michell, S.

    2012-12-01

    NASA's Land, Vegetation, and Ice Sensor (LVIS) is a high-altitude, full-waveform, geodetic-imaging laser altimeter system of which a UAV-based version (LVIS-GH) is currently being tested. From 20 km above the surface in the Global Hawk UAV, LVIS-GH images surface topography and roughness (including forest height) across a 4 km wide swath using 15 m diameter footprints. In recent years, the LVIS has been flown at altitudes of up to 14 km over Greenland and Antarctica on flights up to 12 hours in duration, enabling the efficient and precise mapping of large areas from the air. The Global Hawk will extend this capability to up to 32 hours and altitudes approaching 20 km. In order to achieve decimeter level vertical precision and accuracy from high altitude, advanced parameter estimation techniques, based on those implemented in NASA's GEODYN software, are used to estimate the angular, spatial, and temporal biases required to accurately georeference the component lidar data sets. Data from specific in-air maneuvers are utilized in order to isolate the effects of different error sources and to break correlations between biases. Examples of high-altitude data and airborne/spaceborne sensor intercomparison and fusion will be shown. For example, the comparison of data from NASA's ICESat-1 mission with coincident LVIS data collected around 86S (the maximum extent of data collected during ICESat) to quantify inter-campaign biases in Icesat-1 elevation measurements and improve estimates of long -term elevation change rates of ice sheets will be shown. These results illustrate the utility of high-altitude wide swath imaging, particularly from platforms such as the Global-Hawk, for enhancing spacebased data sets.

  18. Characterization of surface active materials derived from farm products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface active materials obtained by chemical modification of plant protein isolates (lupin, barley, oat), corn starches (dextrin, normal, high amylose, and waxy) and soybean oil (soybean oil based polysoaps, SOPS) were investigated for their surface and interfacial properties using axisymmetric dro...

  19. Surface-active properties of humic and sulfochlorohumic acids

    SciTech Connect

    Ryabova, I.N.; Mustafina, G.A.; Akkulova, Z.G.; Satymbaeva, A.S.

    2009-10-15

    The surface tension of alkaline solutions of humic acids and their sulfochloroderivatives, which are synthesized by sulfonation of chlorohumic acids isolated from coal chlorinated by the electrochemical method, is investigated. It is established that humic compounds possess weak surface activity. Basic adsorption parameters are calculated.

  20. An Automated Algorithm to Screen Massive Training Samples for a Global Impervious Surface Classification

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Brown de Colstoun, Eric; Wolfe, Robert E.; Tilton, James C.; Huang, Chengquan; Smith, Sarah E.

    2012-01-01

    An algorithm is developed to automatically screen the outliers from massive training samples for Global Land Survey - Imperviousness Mapping Project (GLS-IMP). GLS-IMP is to produce a global 30 m spatial resolution impervious cover data set for years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. This unprecedented high resolution impervious cover data set is not only significant to the urbanization studies but also desired by the global carbon, hydrology, and energy balance researches. A supervised classification method, regression tree, is applied in this project. A set of accurate training samples is the key to the supervised classifications. Here we developed the global scale training samples from 1 m or so resolution fine resolution satellite data (Quickbird and Worldview2), and then aggregate the fine resolution impervious cover map to 30 m resolution. In order to improve the classification accuracy, the training samples should be screened before used to train the regression tree. It is impossible to manually screen 30 m resolution training samples collected globally. For example, in Europe only, there are 174 training sites. The size of the sites ranges from 4.5 km by 4.5 km to 8.1 km by 3.6 km. The amount training samples are over six millions. Therefore, we develop this automated statistic based algorithm to screen the training samples in two levels: site and scene level. At the site level, all the training samples are divided to 10 groups according to the percentage of the impervious surface within a sample pixel. The samples following in each 10% forms one group. For each group, both univariate and multivariate outliers are detected and removed. Then the screen process escalates to the scene level. A similar screen process but with a looser threshold is applied on the scene level considering the possible variance due to the site difference. We do not perform the screen process across the scenes because the scenes might vary due to

  1. Synchronized dipole-like oscillations in global Sea Surface Temperature Anomaly (SSTA)

    NASA Astrophysics Data System (ADS)

    Oh, J.; Rial, J. A.

    2013-12-01

    This study investigates dipole-like oscillations in the sea surface temperature anomaly (SSTA), using reconstructed datasets from 1900 to 2011. Previous studies have explored the existence of dipole modes and their effects on local climate in their respective ocean basins. We have found seventeen, globally distributed, dipole-like, coupled oscillations (including four with Niño 3.4, and distinct from previously suggested dipoles), This founding is based on the direct comparison of global ocean SSTA, implemented by cross correlation coefficients in a 2 degree by 2 degree grid - 10988 points over global ocean - at annual, seasonal, and monthly scales. The dipole modes exist persistently at various time domains, though a few of them show a seasonally-dependent coupling strength. We discuss the specifics of these variations of modes, on both a seasonal and monthly scale. The dipole locations identified by this study are partially compatible with the results from Empirical orthogonal function (EOF) analysis. However, in most cases, EOF analysis fails to find the exact anomaly centers of the dipoles, which are synchronized by a Π/2 phase difference, and show maximum correlation coefficients there. It is necessary to look at the actual time series over the dipole regions to filter out any artifact generated by the EOF analysis. From the detected dipole modes, a dipole mode index (DMI) is defined as the difference between the first principal components of SSTA over 9 grid points around the detected anomaly centers. We investigate possible causes and effects of the dipoles, comparing the defined DMI with sea level pressure (SLP), wind, and other climate indices such as ENSO, PDO, AMO, NAO, and NPI. The DMI is also used to define the characteristics of each dipole, including whether they are synchronized to each other or oscillating independently. This study's goal is to create a better understanding and definition of the globally distributed teleconnections of the SSTA

  2. Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations

    NASA Astrophysics Data System (ADS)

    Reddington, Carly L.; Spracklen, Dominick V.; Artaxo, Paulo; Ridley, David A.; Rizzo, Luciana V.; Arana, Andrea

    2016-09-01

    We use the GLOMAP global aerosol model evaluated against observations of surface particulate matter (PM2.5) and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol over the period 2003 to 2011. Previous studies report a large underestimation of AOD over regions impacted by tropical biomass burning, scaling particulate emissions from fire by up to a factor of 6 to enable the models to simulate observed AOD. To explore the uncertainty in emissions we use three satellite-derived fire emission datasets (GFED3, GFAS1 and FINN1). In these datasets the tropics account for 66-84 % of global particulate emissions from fire. With all emission datasets GLOMAP underestimates dry season PM2.5 concentrations in regions of high fire activity in South America and underestimates AOD over South America, Africa and Southeast Asia. When we assume an upper estimate of aerosol hygroscopicity, underestimation of AOD over tropical regions impacted by biomass burning is reduced relative to previous studies. Where coincident observations of surface PM2.5 and AOD are available we find a greater model underestimation of AOD than PM2.5, even when we assume an upper estimate of aerosol hygroscopicity. Increasing particulate emissions to improve simulation of AOD can therefore lead to overestimation of surface PM2.5 concentrations. We find that scaling FINN1 emissions by a factor of 1.5 prevents underestimation of AOD and surface PM2.5 in most tropical locations except Africa. GFAS1 requires emission scaling factor of 3.4 in most locations with the exception of equatorial Asia where a scaling factor of 1.5 is adequate. Scaling GFED3 emissions by a factor of 1.5 is sufficient in active deforestation regions of South America and equatorial Asia, but a larger scaling factor is required elsewhere. The model with GFED3 emissions poorly simulates observed seasonal variability in surface PM2.5 and AOD in regions where small fires dominate, providing

  3. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  4. Global Night-Time Lights for Observing Human Activity

    NASA Technical Reports Server (NTRS)

    Hipskind, Stephen R.; Elvidge, Chris; Gurney, K.; Imhoff, Mark; Bounoua, Lahouari; Sheffner, Edwin; Nemani, Ramakrishna R.; Pettit, Donald R.; Fischer, Marc

    2011-01-01

    We present a concept for a small satellite mission to make systematic, global observations of night-time lights with spatial resolution suitable for discerning the extent, type and density of human settlements. The observations will also allow better understanding of fine scale fossil fuel CO2 emission distribution. The NASA Earth Science Decadal Survey recommends more focus on direct observations of human influence on the Earth system. The most dramatic and compelling observations of human presence on the Earth are the night light observations taken by the Defence Meteorological System Program (DMSP) Operational Linescan System (OLS). Beyond delineating the footprint of human presence, night light data, when assembled and evaluated with complementary data sets, can determine the fine scale spatial distribution of global fossil fuel CO2 emissions. Understanding fossil fuel carbon emissions is critical to understanding the entire carbon cycle, and especially the carbon exchange between terrestrial and oceanic systems.

  5. Land Surface Phenology from MODIS: Characterization of the Collection 5 Global Land Cover Dynamics Product

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Friedl, Mark A.; Tan, Bin; Zhang, Xiaoyang; Verma, Manish

    2010-01-01

    Information related to land surface phenology is important for a variety of applications. For example, phenology is widely used as a diagnostic of ecosystem response to global change. In addition, phenology influences seasonal scale fluxes of water, energy, and carbon between the land surface and atmosphere. Increasingly, the importance of phenology for studies of habitat and biodiversity is also being recognized. While many data sets related to plant phenology have been collected at specific sites or in networks focused on individual plants or plant species, remote sensing provides the only way to observe and monitor phenology over large scales and at regular intervals. The MODIS Global Land Cover Dynamics Product was developed to support investigations that require regional to global scale information related to spatiotemporal dynamics in land surface phenology. Here we describe the Collection 5 version of this product, which represents a substantial refinement relative to the Collection 4 product. This new version provides information related to land surface phenology at higher spatial resolution than Collection 4 (500-m vs. 1-km), and is based on 8-day instead of 16-day input data. The paper presents a brief overview of the algorithm, followed by an assessment of the product. To this end, we present (1) a comparison of results from Collection 5 versus Collection 4 for selected MODIS tiles that span a range of climate and ecological conditions, (2) a characterization of interannual variation in Collections 4 and 5 data for North America from 2001 to 2006, and (3) a comparison of Collection 5 results against ground observations for two forest sites in the northeastern United States. Results show that the Collection 5 product is qualitatively similar to Collection 4. However, Collection 5 has fewer missing values outside of regions with persistent cloud cover and atmospheric aerosols. Interannual variability in Collection 5 is consistent with expected ranges of

  6. Global land surface albedo maps from MODIS using the Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Mitraka, Zina; Benas, Nikolaos; Gorelick, Noel; Chrysoulakis, Nektarios

    2016-04-01

    The land surface albedo (LSA) is a critical physical variable, which influences the Earth's climate by affecting the energy budget and distribution in the Earth-atmosphere system. Its role is highly significant in both global and local scales; hence, LSA measurements provide a quantitative means for better constraining global and regional scale climate modelling efforts. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, on board NASA's Terra and Aqua platforms, provides the parameters needed for the computation of LSA on an 8-day temporal scale and a variety of spatial scales (ranging between 0.5 - 5 km). This dataset was used here for the LSA estimation and its changes over the study area at 0.5 km spatial resolution. More specifically, the MODIS albedo product was used, which includes both the directional-hemispherical surface reflectance (black-sky albedo) and the bi-hemispherical surface reflectance (white-sky albedo). The LSA was estimated for the whole globe on an 8-day basis for the whole time period covered by MODIS acquisitions (i.e. 2000 until today). To estimate LSA from black-sky and white-sky albedos, the fraction of the diffused radiation is needed, a function of the Aerosol Optical Thickness (AOT). Required AOT information was acquired from the MODIS AOT product at 1̊ × 1̊ spatial resolution. Since LSA also depends on solar zenith angle (SZA), 8-day mean LSA values were computed as averages of corresponding LSA values for representative SZAs covering the 24-hour day. The estimated LSA was analysed in terms of both spatial and seasonal characteristics, while LSA changes during the period examined were assessed. All computation were performed using the Google Earth Engine (GEE). The GEE provided access to all the MODIS products needed for the analysis without the need of searching or downloading. Moreover, the combination of MODIS products in both temporal and spatial terms was fast and effecting using the GEE API (Application

  7. Sequential Reinstatement of Neocortical Activity during Slow Oscillations Depends on Cells’ Global Activity

    PubMed Central

    Peyrache, Adrien; Benchenane, Karim; Khamassi, Mehdi; Wiener, Sidney I.; Battaglia, Francesco P.

    2009-01-01

    During Slow Wave Sleep (SWS), cortical activity is dominated by endogenous processes modulated by slow oscillations (0.1–1 Hz): cell ensembles fluctuate between states of sustained activity (UP states) and silent epochs (DOWN states). We investigate here the temporal structure of ensemble activity during UP states by means of multiple single unit recordings in the prefrontal cortex of naturally sleeping rats. As previously shown, the firing rate of each PFC cell peaks at a distinct time lag after the DOWN/UP transition in a consistent order. We show here that, conversely, the latency of the first spike after the UP state onset depends primarily on the session-averaged firing rates of cells (which can be considered as an indirect measure of their intrinsic excitability). This latency can be explained by a simple homogeneous process (Poisson model) of cell firing, with sleep averaged firing rates employed as parameters. Thus, at DOWN/UP transitions, neurons are affected both by a slow process, possibly originating in the cortical network, modulating the time course of firing for each cell, and by a fast, relatively stereotyped reinstatement of activity, related mostly to global activity levels. PMID:20130754

  8. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    NASA Astrophysics Data System (ADS)

    Tang, G.; Bartlein, P. J.

    2012-08-01

    Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM) simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i) modify a DGVM for simulating land surface water balances; (ii) evaluate the modified model in simulating actual evapotranspiration (ET), soil moisture, and surface runoff at regional or watershed scales; and (iii) gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH) model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ) DGVM. To evaluate the model we ran LH using historical (1981-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981-2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52). The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15%) with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt enabled LH to better simulate monthly

  9. Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect

    NASA Technical Reports Server (NTRS)

    Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan

    2013-01-01

    Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.

  10. How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?

    NASA Astrophysics Data System (ADS)

    Solander, Kurt C.; Reager, John T.; Famiglietti, James S.

    2016-03-01

    Accurate observations of global reservoir storage are critical to understand the availability of managed water resources. By enabling estimates of surface water area and height for reservoir sizes exceeding 250 m2 at a maximum repeat orbit of up to 21 days, the NASA Surface Water and Ocean Topography (SWOT) satellite mission (anticipated launch date 2020) is expected to greatly improve upon existing reservoir monitoring capabilities. It is thus essential that spatial and temporal measurement uncertainty for water bodies is known a priori to maximize the utility of SWOT observations as the data are acquired. In this study, we evaluate SWOT reservoir observations using a three-pronged approach that assesses temporal aliasing, errors due to specific reservoir spatial properties, and SWOT performance over actual reservoirs using a combination of in situ and simulated reservoir observations from the SWOTsim instrument simulator. Results indicate temporal errors to be less than 5% for the smallest reservoir sizes (< 10 km2) with errors less than 0.1% for larger sizes (>100 km2). Surface area and height errors were found to be minimal (area <5%, height <15 cm) above 1 km2 unless the reservoir exhibited a strong elliptical shape with high aspect ratio oriented parallel to orbit, was set in mountainous terrain, or swath coverage fell below 30%. Experiments from six real reservoir test cases generally support these results. By providing a comprehensive blueprint on the observability of reservoirs from SWOT, this study will be have important implications for future applications of SWOT reservoir measurements in global monitoring systems and models.

  11. Living in a Global Environment. Classroom Activities in Development Education.

    ERIC Educational Resources Information Center

    Fien, John, Ed.

    Forty classroom activities selected from New Internationalist Calendars published between 1984-1989 were collected. Each activity is presented in the form of a short story about a real-life person and a graphic spread of data consisting of maps, tables, photographs, diagrams, text, and student exercises. These activities have been written to…

  12. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  13. A Multilayer Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaud, Franco (Technical Monitor)

    2001-01-01

    A dataset including daily- and monthly-mean turbulent fluxes (momentum, latent heat, and sensible heat) and some relevant parameters over global oceans, derived from the Special Sensor Microwave/Imager (SSM/I) data, for the period July 1987-December 1994 and the 1988-94 annual and monthly-mean climatologies of the same variables is created. It has a spatial resolution of 2.0deg x 2.5deg latitude-longitude. The retrieved surface air humidity is found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The retrieved wind stress and latent heat flux show useful accuracy as verified against research quality measurements of ship and buoy in the western equatorial Pacific. The 1988-94 seasonal-mean wind stress and latent heat flux show reasonable patterns related to seasonal variations of the atmospheric general circulation. The patterns of 1990-93 annual-mean turbulent fluxes and input variables are generally in good agreement with one of the best global analyzed flux datasets that based on COADS (comprehensive ocean-atmosphere data set) with corrections on wind speeds and covered the same period. The retrieved wind speed is generally within +/-1 m/s of the COADS-based, but is stronger by approx. 1-2 m/s in the northern extratropical oceans. The discrepancy is suggested to be mainly due to higher COADS-modified wind speeds resulting from underestimation of anemometer heights. Compared to the COADS-based, the retrieved latent heat flux and sea-air humidity difference are generally larger with significant differences in the trade wind zones and the ocean south of 40degS (up to approx. 40-60 W/sq m and approx. 1-1.5 g/kg). The discrepancy is believed to be mainly caused by higher COADS-based surface air humidity arising from the overestimation of dew point temperatures and from the extrapolation of observed high humidity southward into data-void regions south of 40degS. The retrieved sensible heat flux is generally within +/-5

  14. VEM on VERITAS - Retrieval of global infrared surface emissivity maps of Venus and expectable retrieval uncertainties

    NASA Astrophysics Data System (ADS)

    Kappel, David; Arnold, Gabriele; Haus, Rainer; Helbert, Jörn; Smrekar, Suzanne; Hensley, Scott

    2016-04-01

    ('Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy') comprises two instruments, VEM ('Venus Emissivity Mapper') and VISAR ('Venus Interferometric Synthetic Aperture Radar'). This mission will yield a vastly improved data basis with respect to both high SNR Venus nightside radiance measurements at all transparency windows around 1 μm as well as topography maps. The new data will enable the derivation of much more complete and reliable global surface emissivity maps that are required to answer fundamental geologic questions. Here, we discuss the selection of the wavelength ranges covered by the spectral filters of VEM as well as improved estimates of expectable emissivity retrieval errors based on this selection. For this purpose, the locations of the relevant spectral transparency windows are studied with detailed line-by-line radiative transfer simulations in dependence on different spectral line databases. Recent work on VIRTIS-M-IR/VEX measurements indicated the presence of interferences due to ever-varying atmospheric parameters that cannot be derived from radiance measurements with limited spectral information content to be a dominant source of surface emissivity retrieval errors. This work is carried over to the configuration of VEM, and the retrieval pipeline is optimized to minimize such errors. A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  15. The Activity of Antimicrobial Surfaces Varies by Testing Protocol Utilized

    PubMed Central

    Campos, Matias D.; Zucchi, Paola C.; Phung, Ann; Leonard, Steven N.; Hirsch, Elizabeth B.

    2016-01-01

    Background Contaminated hospital surfaces are an important source of nosocomial infections. A major obstacle in marketing antimicrobial surfaces is a lack of efficacy data based on standardized testing protocols. Aim We compared the efficacy of multiple testing protocols against several “antimicrobial” film surfaces. Methods Four clinical isolates were used: one Escherichia coli, one Klebsiella pneumoniae, and two Staphylococcus aureus strains. Two industry methods (modified ISO 22196 and ASTM E2149), a “dried droplet”, and a “transfer” method were tested against two commercially available antimicrobial films, one film in development, an untreated control, and a positive (silver) control film. At 2 (only ISO) and 24 hours following inoculation, bacteria were collected from film surfaces and enumerated. Results Compared to untreated films in all protocols, there were no significant differences in recovery on either commercial brand at 2 or 24 hours after inoculation. The silver surface demonstrated significant microbicidal activity (mean loss 4.9 Log10 CFU/ml) in all methods and time points with the exception of 2 hours in the ISO protocol and the transfer method. Using our novel droplet method, no differences between placebo and active surfaces were detected. The surface in development demonstrated variable activity depending on method, organism, and time point. The ISO demonstrated minimal activity at 2 hours but significant activity at 24 hours (mean 4.5 Log10 CFU/ml difference versus placebo). The ASTEM protocol exhibited significant differences in recovery of staphylococci (mean 5 Log10 CFU/ml) but not Gram-negative isolates (10 fold decrease). Minimal activity was observed with this film in the transfer method. Conclusions Varying results between protocols suggested that efficacy of antimicrobial surfaces cannot be easily and reproducibly compared. Clinical use should be considered and further development of representative methods is needed. PMID

  16. Characteristics of surface cyclone forecasts in the Aviation Run of the Global Spectral Model

    SciTech Connect

    Grumm, R.H. )

    1993-03-01

    Results are presented of an evaluation of the performance of the Aviation Run (AVN) of the NMC Global Spectral Model (GSM) in predicting surface cyclones, which was conducted during the autumn of 1990 through the winter of 1992. The results indicated that the finer-resolution T126 GSM produces stronger and deeper cyclones than the old T80 GSM. The errors in AVN position forecasts of surface cyclones were smaller than those found in the NMC Nested Grid Model (NGM). The geographical distribution of the pressure errors were similar to those found in the NGM over eastern North America and the adjacent western Atlantic Ocean. The AVN tended to underpredict the 1000-500-mb thickness over surface cyclones, especially during the first 36 h of the forecast cycle. The T126 AVN forecasts are accurate enough to provide guidance for basic weather forecasts to three days, as has been done for the two-day forecasts for the past 25-30 yr. 19 refs.

  17. Infusing a Global Perspective into the Study of Agriculture: Student Activities Volume II.

    ERIC Educational Resources Information Center

    Martin, Robert A., Ed.

    These student activities are designed to be used in a variety of places in the curriculum to provide a global perspective for students as they study agriculture. This document is not a unit of instruction; rather, teachers are encouraged to study the materials and decide which will be helpful in adding a global perspective to the learning…

  18. Global Precipitation Measurement (GPM) Mission Applications: Activities, Challenges, and Vision

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Hou, Arthur

    2012-01-01

    Global Precipitation Measurement (GPM) is an international satellite mission to provide nextgeneration observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Building upon the successful legacy of the Tropical Rainfall Measuring Mission (TRMM), GPM's next-generation global precipitation data will lead to scientific advances and societal benefits within a range of hydrologic fields including natural hazards, ecology, public health and water resources. This talk will highlight some examples from TRMM's IS-year history within these applications areas as well as discuss some existing challenges and present a look forward for GPM's contribution to applications in hydrology.

  19. Global Precipitation Measurement (GPM) Mission Applications: Activities, challenges, and vision

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D. B.; Hou, A. Y.

    2012-12-01

    Global Precipitation Measurement (GPM) is an international satellite mission to provide next-generation observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Building upon the successful legacy of the Tropical Rainfall Measuring Mission (TRMM), GPM's next-generation global precipitation data will lead to scientific advances and societal benefits within a range of hydrologic fields including natural hazards, ecology, public health and water resources. This talk will highlight some examples from TRMM's 15-year history within these applications areas as well as discuss some existing challenges and present a look forward for GPM's contribution to applications in hydrology.

  20. Active Acetylcholinesterase Immobilization on a Functionalized Silicon Surface.

    PubMed

    Khaldi, K; Sam, S; Gouget-Laemmel, A C; Henry de Villeneuve, C; Moraillon, A; Ozanam, F; Yang, J; Kermad, A; Ghellai, N; Gabouze, N

    2015-08-01

    In this work, we studied the attachment of active acetylcholinesterase (AChE) enzyme on a silicon substrate as a potential biomarker for the detection of organophosphorous (OP) pesticides. A multistep functionalization strategy was developed on a crystalline silicon surface: a carboxylic acid-terminated monolayer was grafted onto a hydrogen-terminated silicon surface by photochemical hydrosilylation, and then AChE was covalently attached through amide bonds using an activation EDC/NHS process. Each step of the modification was quantitatively characterized by ex-situ Fourier transform infrared spectroscopy in attenuated-total-reflection geometry (ATR-FTIR) and atomic force microscopy (AFM). The kinetics of enzyme immobilization was investigated using in situ real-time infrared spectroscopy. The enzymatic activity of immobilized acetylcholinesterase enzymes was determined with a colorimetric test. The surface concentration of active AChE was estimated to be Γ = 1.72 × 10(10) cm(-2).

  1. Potential Biosignificant Interest and Surface Activity of Efficient Heterocyclic Derivatives.

    PubMed

    El-Sayed, Refat; Althagafi, Ismail

    2016-01-01

    Some functionalized pyridine and fused system derivatives were synthesized using enaminonitrile derivative 5 as a starting material for the reaction, with various reagents under different conditions. Propoxylation of these compounds using different moles of propylene oxide (3, 5 and 7 moles) leads to a novel group of surface active agents. The antimicrobial and surface activities of the synthesized compounds were investigated. Most of the evaluated compounds proved to be active as antibacterial and antifungal agents and showed good surface activity, which makes them suitable for diverse applications such as the manufacturing of emulsifiers, cosmetics, drugs, pesticides, etc. Additionally, biodegradation testing exhibits significant breakdown within six to seven days, and hence, lowers the toxicity to human beings and becomes environmentally friendly.

  2. Using Three Global Climate Indices to Forecast Hurricane Activity in the Pacific and Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Giovannettone, J. P.

    2014-12-01

    Quantitative relationships between global climate indices and hurricane activity in the Pacific and Atlantic Oceans have not been widely studied. A few studies have explored qualitative relationships between hurricane activity and such climate indices as the North Atlantic Oscillation and sea-surface temperatures, among others. The current work presents the most comprehensive analysis of the potential relationships between 39 different climate indices and hurricane activity using regression and frequency analysis. Attempts are made to develop statistical relationships between any one of these indices and hurricane activity in the eastern and western Pacific as well as the Atlantic Oceans. There were three climate indices, one per region, showing significantly higher correlation in each region. They were the ENSO Precipitation Index (EPI) in the western Pacific, the Atlantic Multi-decadal Oscillation (AMO) in the eastern Pacific, and the Atlantic Meridional Mode (AMM) in the Atlantic. The linear relationships between each index and hurricane numbers resulted in Pearson-R values of near 0.65 or greater. In addition, the Madden-Julian Oscillation showed some correlation with hurricane activity in each region and therefore was included in the analysis. Several important results were found during these analyses. For instance, the relationship between the AMM index and hurricane numbers in the Atlantic Ocean revealed that the average July - October AMM index was greater than -0.5 within a range of -5.0 to 5.0 for years within the last 70 years when the number of hurricanes during that same period was greater than 7. It is also shown that the number of hurricanes expected to be exceeded or not exceeded at frequencies of 50- to 100-years, for example, varies substantially depending on the range of AMM index values being analyzed. Similar results are shown for the eastern and western Pacific Ocean as well. Such relationships provide forecasters with a simple tool using only

  3. How much global burned area can be forecast on seasonal time scales using sea surface temperatures?

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Morton, Douglas C.; Andela, Niels; Giglio, Louis; Randerson, James T.

    2016-04-01

    Large-scale sea surface temperature (SST) patterns influence the interannual variability of burned area in many regions by means of climate controls on fuel continuity, amount, and moisture content. Some of the variability in burned area is predictable on seasonal timescales because fuel characteristics respond to the cumulative effects of climate prior to the onset of the fire season. Here we systematically evaluated the degree to which annual burned area from the Global Fire Emissions Database version 4 with small fires (GFED4s) can be predicted using SSTs from 14 different ocean regions. We found that about 48% of global burned area can be forecast with a correlation coefficient that is significant at a p < 0.01 level using a single ocean climate index (OCI) 3 or more months prior to the month of peak burning. Continental regions where burned area had a higher degree of predictability included equatorial Asia, where 92% of the burned area exceeded the correlation threshold, and Central America, where 86% of the burned area exceeded this threshold. Pacific Ocean indices describing the El Niño-Southern Oscillation were more important than indices from other ocean basins, accounting for about 1/3 of the total predictable global burned area. A model that combined two indices from different oceans considerably improved model performance, suggesting that fires in many regions respond to forcing from more than one ocean basin. Using OCI—burned area relationships and a clustering algorithm, we identified 12 hotspot regions in which fires had a consistent response to SST patterns. Annual burned area in these regions can be predicted with moderate confidence levels, suggesting operational forecasts may be possible with the aim of improving ecosystem management.

  4. Thinking Globally and Acting Locally: Environmental Education Teaching Activities.

    ERIC Educational Resources Information Center

    Mann, Lori D.; Stapp, William B.

    Provided are teaching activities related to: (1) food production and distribution; (2) energy; (3) transportation; (4) solid waste; (5) chemicals in the environment; (6) resource management; (7) pollution; (8) population; (9) world linkages; (10) endangered species; and (11) lifestyle and environment. The activities, designed to help learners…

  5. Transition process of abrupt climate change based on global sea surface temperature over the past century

    NASA Astrophysics Data System (ADS)

    Yan, Pengcheng; Hou, Wei; Feng, Guolin

    2016-05-01

    A new detection method has been proposed to study the transition process of abrupt climate change. With this method, the climate system transiting from one stable state to another can be verified clearly. By applying this method to the global sea surface temperature over the past century, several climate changes and their processes are detected, including the start state (moment), persist time, and end state (moment). According to the spatial distribution, the locations of climate changes mainly have occurred in the Indian Ocean and western Pacific before the middle twentieth century, in the 1970s in the equatorial middle-eastern Pacific, and in the middle and southern Pacific since the end of the twentieth century. In addition, the quantitative relationship between the transition process parameters is verified in theory and practice: (1) the relationship between the rate and stability parameters is linear, and (2) the relationship between the rate and change amplitude parameters is quadratic.

  6. Tropical Trends in Surface Radiation Budgets in the Context of Global Trends

    NASA Astrophysics Data System (ADS)

    Pinker, Rachel T.; Zhang, Banglin; Ma, Yingtao

    2016-04-01

    For assessment of variability and trends in the Earth Radiation Balance, information is needed at climatic time scales. Satellite observations have been instrumental for advancing the understanding of radiative balance at global scale, however, the length of available satellite records is limited due to the frequent changes in the observing systems. In this paper we report on an effort to synthesize satellite observations from independent sources to estimates shortwave and longwave surface radiative fluxes at climatic time scales and use them to learn about their variability and trends with a focus on the tropics. From a comparison with similar global trends an attempt will be made to learn about possible causes of what is observed. The radiative fluxes were derived in the framework of the MEaSURES and NEWS programs; they are evaluated against ground observations and compared to independent satellite and model estimates. Attention is given to updates of knowledge on the radiative balance as compared to what is known from shorter time records.

  7. A Global Map of Coherent M2 Internal Tide Surface Elevations

    NASA Astrophysics Data System (ADS)

    Ray, R. D.; Zaron, E. D.

    2014-12-01

    Satellite altimetry reveals small surface waves, with elevations of order 1 cm or smaller, associated with internal tides in the deep ocean. The global satellite data provide an unprecedented picture of such waves, potentially yielding much information about the ocean interior. Accurate knowledge of these waves is also needed for de-tiding altimetry in certain sensitive applications, including the future SWOT mission. Several approaches have been initiated recently to map these tiny waves, usually with some reliance on hydrographic information (e.g., recent work by Dushaw et al., 2011). Here we explore the feasibility of a purely empirical approach which avoids assumptions about stratification or modal wavelengths. A global elevation map is constructed based on tidal analysis of Topex/Poseidon, Jason, ERS-2, Envisat and GFO data. Small (order 5 mm) residuals, with wavelengths much longer than the baroclinic tide, appear unless now-standard along-track high-pass filters are applied, but filtering is shown to cause serious loss of information for east-west propagating waves (given typical track patterns). The technique is probably infeasible for S2 because of Envisat's and ERS's sun-synchronous orbits. Independent data from Cryosat-2 is used to validate the results. Applying our internal-tide 'correction' to Cryosat-2 data confirms a small reduction in variance in expected locations of significant internal tides.

  8. Accurate single-sequence prediction of solvent accessible surface area using local and global features.

    PubMed

    Faraggi, Eshel; Zhou, Yaoqi; Kloczkowski, Andrzej

    2014-11-01

    We present a new approach for predicting the Accessible Surface Area (ASA) using a General Neural Network (GENN). The novelty of the new approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Instead we use solely sequential window information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment-based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is tested on predicting the ASA of globular proteins and found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for GENN and ASAquick are available from Research and Information Systems at http://mamiris.com, from the SPARKS Lab at http://sparks-lab.org, and from the Battelle Center for Mathematical Medicine at http://mathmed.org. PMID:25204636

  9. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results

    USGS Publications Warehouse

    Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Ruff, S.W.; Kieffer, H.H.; Titus, T.N.; Malin, M.C.; Morris, R.V.; Lane, M.D.; Clark, R.L.; Jakosky, B.M.; Mellon, M.T.; Pearl, J.C.; Conrath, B.J.; Smith, M.D.; Clancy, R.T.; Kuzmin, R.O.; Roush, T.; Mehall, G.L.; Gorelick, N.; Bender, K.; Murray, K.; Dason, S.; Greene, E.; Silverman, S.; Greenfield, M.

    2001-01-01

    The Thermal Emission Spectrometer (TES) investigation on Mars Global Surveyor (MGS) is aimed at determining (1) the composition of surface minerals, rocks, and ices; (2) the temperature and dynamics of the atmosphere; (3) the properties of the atmospheric aerosols and clouds; (4) the nature of the polar regions; and (5) the thermophysical properties of the surface materials. These objectives are met using an infrared (5.8- to 50-??m) interferometric spectrometer, along with broadband thermal (5.1-to 150-??m) and visible/near-IR (0.3- to 2.9-??m) radiometers. The MGS TES instrument weighs 14.47 kg, consumes 10.6 W when operating, and is 23.6 ?? 35.5 ?? 40.0 cm in size. The TES data are calibrated to a 1-?? precision of 2.5-6 ?? 10-8 W cm-2 sr-1/cm-1, 1.6 ?? 10-6 W cm-2 sr-1, and ???0.5 K in the spectrometer, visible/near-IR bolometer, and IR bolometer, respectively. These instrument subsections are calibrated to an absolute accuracy of ???4 ?? 10-8 W cm-2 sr-1/cm-1 (0.5 K at 280 K), 1-2%, and ???1-2 K, respectively. Global mapping of surface mineralogy at a spatial resolution of 3 km has shown the following: (1) The mineralogic composition of dark regions varies from basaltic, primarily plagioclase feldspar and clinopyroxene, in the ancient, southern highlands to andesitic, dominated by plagioclase feldspar and volcanic glass, in the younger northern plains. (2) Aqueous mineralization has produced gray, crystalline hematite in limited regions under ambient or hydrothermal conditions; these deposits are interpreted to be in-place sedimentary rock formations and indicate that liquid water was stable near the surface for a long period of time. (3) There is no evidence for large-scale (tens of kilometers) occurrences of moderate-grained (>50-??m) carbonates exposed at the surface at a detection limit of ???10%. (4) Unweathered volcanic minerals dominate the spectral properties of dark regions, and weathering products, such as clays, have not been observed anywhere above

  10. Homogenisation algorithm skill testing with synthetic global benchmarks for the International Surface Temperature Initiative

    NASA Astrophysics Data System (ADS)

    Willett, Katharine; Venema, Victor; Williams, Claude; Aguilar, Enric; Lopardo, Giuseppina; Jolliffe, Ian; Alexander, Lisa; Vincent, Lucie; Lund, Robert; Menne, Matt; Thorne, Peter; Auchmann, Renate; Warren, Rachel; Bronnimann, Stefan; Thorarinsdottir, Thordis; Easterbrook, Steve; Gallagher, Colin

    2014-05-01

    Our surface temperature data are good enough to give us confidence that the world has warmed since 1880. However, they are not perfect - we cannot be precise in the amount of warming for the globe and especially for small regions or specific locations. Inhomogeneity (non-climate changes to the station record) is a major problem. While progress in detection of, and adjustment for inhomogeneities is continually advancing, monitoring effectiveness on large networks and gauging respective improvements in climate data quality is non-trivial. There is currently no internationally recognised means of robustly assessing the effectiveness of homogenisation methods on real data - and thus, the inhomogeneity uncertainty in those data. Here I present the work of the International Surface Temperature Initiative (ISTI; www.surfacetemperatures.org) Benchmarking working group. The aim is to quantify homogenisation algorithm skill on the global scale against realistic benchmarks. This involves the creation of synthetic worlds of surface temperature data, deliberate contamination of these with known errors and then assessment of the ability of homogenisation algorithms to detect and remove these errors. The ultimate aim is threefold: quantifying uncertainties in surface temperature data; enabling more meaningful product intercomparison; and improving homogenisation methods. There are five components work: 1) Create ~30000 synthetic benchmark stations that look and feel like the real global temperature network, but do not contain any inhomogeneities - analog-clean-worlds 2) Design a set of error models which mimic the main types of inhomogeneities found in practice, and combined them with the analog-clean-worlds to give analog-error-worlds 3) Engage with dataset creators to run their homogenisation algorithms blind on the analog-error- world stations as they have done with the real data 4) Design an assessment framework to gauge the degree to which analog-error-worlds are returned to

  11. Homogenisation algorithm skill testing with synthetic global benchmarks for the International Surface Temperature Initiative

    NASA Astrophysics Data System (ADS)

    Willet, Katherine; Venema, Victor; Williams, Claude; Aguilar, Enric; joliffe, Ian; Alexander, Lisa; Vincent, Lucie; Lund, Robert; Menne, Matt; Thorne, Peter; Auchmann, Renate; Warren, Rachel; Bronniman, Stefan; Thorarinsdotir, Thordis; Easterbrook, Steve; Gallagher, Colin; Lopardo, Giuseppina; Hausfather, Zeke; Berry, David

    2015-04-01

    Our surface temperature data are good enough to give us confidence that the world has warmed since 1880. However, they are not perfect - we cannot be precise in the amount of warming for the globe and especially for small regions or specific locations. Inhomogeneity (non-climate changes to the station record) is a major problem. While progress in detection of, and adjustment for inhomogeneities is continually advancing, monitoring effectiveness on large networks and gauging respective improvements in climate data quality is non-trivial. There is currently no internationally recognised means of robustly assessing the effectiveness of homogenisation methods on real data - and thus, the inhomogeneity uncertainty in those data. Here I present the work of the International Surface Temperature Initiative (ISTI; www.surfacetemperatures.org) Benchmarking working group. The aim is to quantify homogenisation algorithm skill on the global scale against realistic benchmarks. This involves the creation of synthetic worlds of surface temperature data, deliberate contamination of these with known errors and then assessment of the ability of homogenisation algorithms to detect and remove these errors. The ultimate aim is threefold: quantifying uncertainties in surface temperature data; enabling more meaningful product intercomparison; and improving homogenisation methods. There are five components work: 1. Create 30000 synthetic benchmark stations that look and feel like the real global temperature network, but do not contain any inhomogeneities: analog clean-worlds. 2. Design a set of error models which mimic the main types of inhomogeneities found in practice, and combined them with the analog clean-worlds to give analog error-worlds. 3. Engage with dataset creators to run their homogenisation algorithms blind on the analog error-world stations as they have done with the real data. 4. Design an assessment framework to gauge the degree to which analog error-worlds are returned to

  12. Global mapping of the surface of Titan through the haze with VIMS onboard Cassini

    NASA Astrophysics Data System (ADS)

    Le Mouélic, Stéphane; Cornet, Thomas; Rodriguez, Sébastien; Sotin, Christophe; Barnes, Jason W.; Brown, Robert H.; Lasue, Jérémie; Baines, K. H.; Buratti, Bonnie; Clark, Roger Nelson; Nicholson, Philip D.

    2016-10-01

    The Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini observes the surface of Titan through the atmosphere in seven narrow spectral windows in the infrared at 0.93, 1.08, 1.27, 1.59, 2.01, 2.68-2.78, and 4.9-5.1 microns. We have produced a global hyperspectral mosaic at 32 pixels per degrees of the complete VIMS data set of Titan between T0 (July 2004) and T120 (June 2016) flybys. We merged all the data cubes sorted by increasing spatial resolution, with the high resolution images on top of the mosaic and the low resolution images used as background. One of the main challenge in producing global spectral composition maps is to remove the seams between individual frames taken throughout the entire mission. These seams are mainly due to the widely varying viewing angles between data acquired during the different Titan flybys. These angles induce significant surface photometric effects and a strongly varying atmospheric (absorption and scattering) contribution, the scattering of the atmosphere being all the more present than the wavelength is short. We have implemented a series of empirical corrections to homogenize the maps, by correcting at first order for photometric and atmospheric scattering effects. Recently, the VIMS' IR wavelength calibration has been observed to be drifting from a total of a few nm toward longer wavelengths, the drift being almost continuously present over the course of the mission. Whereas minor at first order, this drift has implications on the homogeneity of the maps when trying to fit images taken at the beginning of the mission with images taken near the end, in particular when using channels in the narrowest atmospheric spectral windows. A correction scheme has been implemented to account for this subtle effect.

  13. Modelling the impact of global changes on European summer surface ozone levels at the 2050 horizon

    NASA Astrophysics Data System (ADS)

    Clain, Gaelle; Szopa, Sophie; Vautard, Robert; Bessagnet, Bertrand; Colette, Augustin

    2013-04-01

    As pointed by the IPCC, climate change and evolution of green house gases emissions in the coming decades are likely to affect regional pollution levels as well as the background ozone levels (Jacob et al., 1999): first, the evolution of climate due to the increase of green house gas emissions is liable to induce modifications of the meteorological parameters of crucial interest for air quality. Secondly, the emissions of air pollutants will be affected by changes in population and energy demands as well as policy aiming to reduce global warming or pollution impacts. In order to assess the relative impact of climate change and change in green house gas emissions, a set of regional simulations is conducted using CHIMERE model (Bessagnet et al., 2009). These simulations account for change in anthropogenic emissions of precursors from future scenarii, global background pollutant levels through appropriate boundary conditions from LMDz-INCA model, and future meteorological conditions reflecting AR5 scenario. For consistency, all these forcings are built on the same scenario: the RCP 8.5 (Representative Concentration Pathways, Riahi et al., 2007) developed in IPCC-AR5 framework for climate projections. The RCP8.5 scenario used in this study is defined by a rising radiative forcing pathway leading to 8.5 W.m-2 in 2100. Long term simulations of summer periods (July 1st to August 31st ) with CHIMERE model are conducted, reproducing present (1995-2005), future (2045-2055) conditions in emissions, climate, and boundary conditions. Mean summer surface ozone levels from each simulated case are compared in order to discriminate the impact of climate and the impact of RCP8.5 scenario emission progression alone on surface ozone levels.

  14. Indium phosphide negative electron affinity photocathodes: Surface cleaning and activation

    NASA Astrophysics Data System (ADS)

    Sun, Yun

    InP(100) is a very important semi-conductor for many applications. When activated by Cs and oxygen, the InP surface achieves the state of Negative Electron Affinity (NEA) making the Cs+O/InP system a very efficient electron source. Despite many years of study, the chemical cleaning and activation of InP are still not well understood. In our work, we have established an understanding of the basic physics and chemistry for the chemical cleaning and activation of the InP(100) surface. Synchrotron Radiation Photoelectron Spectroscopy is the main technique used in this study because of its high surface sensitivity and ability to identify chemical species present on the surface at each stage of our process. A clean, stoichiometric InP(100) surface is crucial for obtaining high performance of NEA photocathodes. Therefore, the first part of our study focused on the chemical cleaning of InP(100). We found that hydrogen peroxide based solutions alone, originally developed to clean GaAs(100) surfaces and widely used for InP(100), do not result in clean InP(I00) surfaces because oxide is left on the surface. A second cleaning step, which uses acid solutions like HCl or H2SO4, can remove all the oxide and leave a 0.4 ML protective layer of elemental phosphorous on the surface. The elemental phosphorous can be removed by annealing at 330°C and a clean InP(100) surface can be obtained. Cs deposition on InP(100) surface shows clear charge transfer from the Cs ad-atoms to the substrate. When the Cs/InP(100) surface is dosed with oxygen, the charge transfer from the Cs to substrate is reduced and substrate is oxidized. The activation of InP as a NEA photocathode is carried out by an alternating series of steps consisting of Cs deposition and Cs+O co-deposition. Two types of oxygen are found after activation. The first is dissociated oxygen and the other is a di-oxygen species (peroxide or superoxide). The decay of quantum-yield with time and with annealing is studied and changes in

  15. Variability of basin scale water resources indicators derived from global hydrological and land surface models

    NASA Astrophysics Data System (ADS)

    Werner, Micha; Blyth, Eleanor; Schellekens, Jaap

    2016-04-01

    Global hydrological and land-surface models are becoming increasingly available, and as the resolution of these improves, as well how hydrological processes are represented, so does their potential. These offer consistent datasets at the global scale, which can be used to establish water balances and derive policy relevant indicators in medium to large basins, including those that are poorly gauged. However, differences in model structure, model parameterisation, and model forcing may result in quite different indicator values being derived, depending on the model used. In this paper we explore indicators developed using four land surface models (LSM) and five global hydrological models (GHM). Results from these models have been made available through the Earth2Observe project, a recent research initiative funded by the European Union 7th Research Framework. All models have a resolution of 0.5 arc degrees, and are forced using the same WATCH-ERA-Interim (WFDEI) meteorological re-analysis data at a daily time step for the 32 year period from 1979 to 2012. We explore three water resources indicators; an aridity index, a simplified water exploitation index; and an indicator that calculates the frequency of occurrence of root zone stress. We compare indicators derived over selected areas/basins in Europe, Colombia, Southern Africa, the Indian Subcontinent and Australia/New Zealand. The hydrological fluxes calculated show quite significant differences between the nine models, despite the common forcing dataset, with these differences reflected in the indicators subsequently derived. The results show that the variability between models is related to the different climates types, with that variability quite logically depending largely on the availability of water. Patterns are also found in the type of models that dominate different parts of the distribution of the indicator values, with LSM models providing lower values, and GHM models providing higher values in some

  16. The generation of wear-resistant antimicrobial stainless steel surfaces by active screen plasma alloying with N and nanocrystalline Ag.

    PubMed

    Dong, Yangchun; Li, Xiaoying; Sammons, Rachel; Dong, Hanshan

    2010-04-01

    Hospital-acquired infections (HAIs), a large proportion of which are derived from contact transmission, represent a massive global challenge. In this study a novel active screen plasma (ASP) alloying technology has been developed to generate highly durable antimicrobial surfaces by combining a wear-resistant S-phase with nanocrystalline silver for medical grade stainless steel. The phase constituent, microstructure, composition and surface roughness of the alloyed surfaces were fully characterized, and the surface hardness, wear resistance and antimicrobial efficiency of the treated surfaces were evaluated. Experimental results showed that the surface hardness and sliding wear resistance of medical grade 316LVM stainless steel can be effectively improved by the ASP alloying treatment; furthermore, the Ag alloyed S-phase can achieve 93% reduction in Escherichia coli (E. coli) after 6 h contact time. Therefore, the novel ASP alloying treatment can not only improve wear resistance but also confer antibacterial activity to stainless steel surfaces.

  17. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    NASA Astrophysics Data System (ADS)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p < 0.01) in the Everglades of Florida over the years 1996-2001. The modeled monthly soil moisture for Illinois of the US agrees well (R2 = 0.79, p < 0.01) with the observed over the years 1984-2001. The modeled monthly stream flow for most 12 major rivers in the US is consistent R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficients >0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful

  18. Global Landsat Surface Reflectance Products Derived Using GLS 2000 and 2005 Images

    NASA Astrophysics Data System (ADS)

    Narasimhan, R.; Feng, M.; Sexton, J. O.; Huang, C.; Channan, S.; Vermote, E. F.; Masek, J. G.; Townshend, J. R.

    2010-12-01

    Calculated by accounting for radiometric calibration errors and atmospheric effects, Surface Reflectance (SR) is considered a more accurate representation of the spectral property of the land surface than raw satellite radiometry. While atmospheric correction algorithms have been applied to MODIS data to produce SR as a standard MODIS product, such algorithms have not been applied to Landsat images on a routine basis. As part of the Global Forest Cover Change (GFCC) project, we applied a MODIS-based atmospheric algorithm to the GLS 2000 and 2005 images, and for the first time, produced global surface reflectance products at Landsat resolution. Since MODIS SR products have been validated comprehensively through previous studies, we used them to evaluate the Landsat SR products. All GLS 2000 images are Landsat7 ETM+ (L7) images, while the GLS2005 data set consist of 7381 gap-filled L7 images and 2175 Landsat5 TM (L5) images. L7 derived SR images are validated against the MODIS Daily SR product and the L5 derived SR images are validated against the MODIS NBAR composited products covering the same period as the L5 images. On a global scale, average R2 for the GLS2000 L7 and MODIS Daily SR range from 0.77 to 0.89 with greater correlation observed in the longer wavelengths. A similar R2 range (0.76-0.88) was observed in the GLS2005 L7 and MODIS Daily SR comparison. In both cases, standard deviations of R2 for each band are less than 0.26. The averaged slope values for the L7 bands range from 0.907 to 1.007 and intercept values range from -0.087 to 0.17 percent of reflectance. When divided by the mean to reduce statistical artifacts at high reflectance, Co-efficient of deviation (CD) shows that the GLS2000 and GLS2005 L7 vs. MODIS Daily SR estimates agree best for the near-infrared band (0.07 and 0.08) and are the worst for the blue band (0.34 & 0.35) in both cases. These global trends in CD are a reflection of regional differences where for most bands, the L7 - MODIS

  19. Data-driven modeling of surface temperature anomaly and solar activity trends

    USGS Publications Warehouse

    Friedel, Michael J.

    2012-01-01

    A novel two-step modeling scheme is used to reconstruct and analyze surface temperature and solar activity data at global, hemispheric, and regional scales. First, the self-organizing map (SOM) technique is used to extend annual modern climate data from the century to millennial scale. The SOM component planes are used to identify and quantify strength of nonlinear relations among modern surface temperature anomalies (<150 years), tropical and extratropical teleconnections, and Palmer Drought Severity Indices (0–2000 years). Cross-validation of global sea and land surface temperature anomalies verifies that the SOM is an unbiased estimator with less uncertainty than the magnitude of anomalies. Second, the quantile modeling of SOM reconstructions reveal trends and periods in surface temperature anomaly and solar activity whose timing agrees with published studies. Temporal features in surface temperature anomalies, such as the Medieval Warm Period, Little Ice Age, and Modern Warming Period, appear at all spatial scales but whose magnitudes increase when moving from ocean to land, from global to regional scales, and from southern to northern regions. Some caveats that apply when interpreting these data are the high-frequency filtering of climate signals based on quantile model selection and increased uncertainty when paleoclimatic data are limited. Even so, all models find the rate and magnitude of Modern Warming Period anomalies to be greater than those during the Medieval Warm Period. Lastly, quantile trends among reconstructed equatorial Pacific temperature profiles support the recent assertion of two primary El Niño Southern Oscillation types. These results demonstrate the efficacy of this alternative modeling approach for reconstructing and interpreting scale-dependent climate variables.

  20. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period.

    PubMed

    Wilson, P A; Norris, R D

    2001-07-26

    The middle of the Cretaceous period (about 120 to 80 Myr ago) was a time of unusually warm polar temperatures, repeated reef-drowning in the tropics and a series of oceanic anoxic events (OAEs) that promoted both the widespread deposition of organic-carbon-rich marine sediments and high biological turnover. The cause of the warm temperatures is unproven but widely attributed to high levels of atmospheric greenhouse gases such as carbon dioxide. In contrast, there is no consensus on the climatic causes and effects of the OAEs, with both high biological productivity and ocean 'stagnation' being invoked as the cause of ocean anoxia. Here we show, using stable isotope records from multiple species of well-preserved foraminifera, that the thermal structure of surface waters in the western tropical Atlantic Ocean underwent pronounced variability about 100 Myr ago, with maximum sea surface temperatures 3-5 degrees C warmer than today. This variability culminated in a collapse of upper-ocean stratification during OAE-1d (the 'Breistroffer' event), a globally significant period of organic-carbon burial that we show to have fundamental, stratigraphically valuable, geochemical similarities to the main OAEs of the Mesozoic era. Our records are consistent with greenhouse forcing being responsible for the warm temperatures, but are inconsistent both with explanations for OAEs based on ocean stagnation, and with the traditional view (reviewed in ref. 12) that past warm periods were more stable than today's climate.

  1. Developing the global exploration roadmap: An example using the humans to the lunar surface theme

    NASA Astrophysics Data System (ADS)

    Neal, C. R.; Schmidt, G. K.; Ehrenfreund, P.; Carpenter, J. D.

    2014-08-01

    The development of the Global Exploration Roadmap (GER) by 12 space agencies participating in the International Space Exploration Coordination Group broadly outlines a pathway to send humans beyond low Earth orbit for the first time since Apollo. Three themes have emerged: Exploration of a Near-Earth Asteroid, Extended Duration Crew Missions, and Humans to the Lunar Surface. The lack of detail within each of these themes could mean that realizing the goals of the GER would be significantly delayed. The purpose of this paper is to demonstrate that many of the details needed to fully define and evaluate these themes in terms of scientific rationale, economic viability, and technical feasibility already exist and need to be mapped to the GER. Here, we use the Humans to the Lunar Surface theme as an example to illustrate how this process could work. By mapping documents from a variety of international stakeholders, this process can be used to cement buy-in from the current partners and attract new ones to this effort.

  2. Global Surface Water Delineation under Heterogeneous Backgrounds Based on A Fuzzy Clustering Approach

    NASA Astrophysics Data System (ADS)

    Yang, Y.

    2015-12-01

    An accurate and robust method to extract terrestrial water bodies is critical to effectively manage the fundamental resources for terrestrial life. Conventional methods are frequently limited in terms of the uncertainty related to the coarse resolution of remotely sensed images and insufficient robustness caused by regional reflectance heterogeneity. Fuzzy clustering method (FCM) with local spatial information has proven to be capable of accounting for these limitations. This technique is however susceptible to immense false noise in original optical bands. A systematic surface water extraction method by synthesizing the water index (WI) method and a modified FCM (WIMFCM) was therefore proposed to improve the water extraction accuracy, the rationale of which is a background reflectance bias correction. Applications and validations were performed to sixteen background-heterogeneous sites in different parts of the world using the Landsat-8 OLI (Operational Land Imager) images, which differed from previous research focusing on water bodies with specific morphological features (e.g., linear rivers or regular lakes). Results obtained demonstrated that the use of the proposed WIMFCM could improve the accuracy of surface water body extraction without regional or seasonal limitations in comparison to alternative methods at both pixel and sub-pixel level. Additional tests carried out on MODIS (Moderate-resolution Imaging Spectroradiometer) data proved that the WIMFCM could be extended to global scale, as well as be used in near-real time water monitoring. The findings of this study are able to improve land cover mapping accuracy when using the optical satellite images under heterogeneous environments.

  3. Polymeric surfaces exhibiting photocatalytic activity and controlled anisotropic wettability

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Papoutsakis, Lampros; Kenanakis, George; Stratakis, Emmanuel; Vamvakaki, Maria; Mountrichas, Grigoris; Pispas, Stergios

    2015-03-01

    In this work we focus on surfaces, which exhibit controlled, switchable wettability in response to one or more external stimuli as well as photocatalytic activity. For this we are inspired from nature to produce surfaces with a dual-scale hierarchical roughness and combine them with the appropriate inorganic and/or polymer coating. The combination of the hierarchical surface with a ZnO coating and a pH- or temperature-responsive polymer results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces. Furthermore, we fabricate surfaces with unidirectional wettability variation. Overall, such complex surfaces require advanced design, combining hierarchically structured surfaces with suitable polymeric materials. Acknowledgment: This research was partially supported by the European Union (European Social Fund, ESF) and Greek national funds through the ``ARISTEIA II'' Action (SMART-SURF) of the Operational Programme ``Education and Lifelong Learning,'' NSRF 2007-2013, via the General Secretariat for Research & Technology, Ministry of Education and Religious Affairs, Greece.

  4. Brachialis muscle activity can be assessed with surface electromyography.

    PubMed

    Staudenmann, Didier; Taube, Wolfgang

    2015-04-01

    The brachialis muscle (BR) represents an important elbow flexor and its activity has so far mainly been measured with intramuscular electromyography (EMG). The aim of this study was to examine whether the activity of the BR can be assessed with surface EMG without interference from the biceps brachii (BB). With eight subjects we measured surface EMG of the arm flexor synergists, BR, BB, and brachioradialis (BRR) during two isometric voluntary contraction types: (1) pure elbow flexion and (2) elbow flexion with a superimposed forearm supination. Since the BR and BB have a distinct biomechanical function, an individual activity of the BR can be expected for the second contraction type, if the BR can be assessed independently from the BB. The correlation coefficients between EMG amplitudes and flexion force (supination torque) were determined. During pure flexion the activities of all synergists were similarly correlated with the flexion force (r = 0.96 ± 0.02). During flexion+supination the activity of the BR was distinct from the activity of the BB, with a 14% higher correlation for the BR with the flexion force and a 40-64% lower correlation with the supination torque. The BB predicted supination torque substantially better than the BR and BRR (r = 0.93 ± 0.02). The current results demonstrate that the activity of the BR can be assessed with surface EMG as it was distinct from the BB during flexion+supination but predicted flexion force equally well as BB during the pure flexion contraction.

  5. Global Art: Activities, Projects, and Inventions from Around the World.

    ERIC Educational Resources Information Center

    Kohl, MaryAnn F.; Potter, Jean

    This activity book contains over 130 art ideas from around the world, combining the fun and creativity of art with the mysteries of history, the lure of geography, and the diversity of the cultures of the world. These projects allow children to explore the world through art with a process, not a product, approach to artistic outcome; the process…

  6. Grass Roots Activism in the United States: Global Implications?

    ERIC Educational Resources Information Center

    Alger, Chadwick F.; Mendlovitz, Saul

    Interviews were conducted with 35 grass roots activists from middle-sized U.S. cities and small towns to learn about their perspectives and activities. No effort was made to obtain a representative sample of activists. The five main approaches to social change encountered were represented by members of the ideological and political left, by…

  7. Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot—implications for conservation

    NASA Astrophysics Data System (ADS)

    Tulbure, Mirela G.; Kininmonth, Stuart; Broich, Mark

    2014-11-01

    The concept of habitat networks represents an important tool for landscape conservation and management at regional scales. Previous studies simulated degradation of temporally fixed networks but few quantified the change in network connectivity from disintegration of key features that undergo naturally occurring spatiotemporal dynamics. This is particularly of concern for aquatic systems, which typically show high natural spatiotemporal variability. Here we focused on the Swan Coastal Plain, a bioregion that encompasses a global biodiversity hotspot in Australia with over 1500 water bodies of high biodiversity. Using graph theory, we conducted a temporal analysis of water body connectivity over 13 years of variable climate. We derived large networks of surface water bodies using Landsat data (1999-2011). We generated an ensemble of 278 potential networks at three dispersal distances approximating the maximum dispersal distance of different water dependent organisms. We assessed network connectivity through several network topology metrics and quantified the resilience of the network topology during wet and dry phases. We identified ‘stepping stone’ water bodies across time and compared our networks with theoretical network models with known properties. Results showed a highly dynamic seasonal pattern of variability in network topology metrics. A decline in connectivity over the 13 years was noted with potential negative consequences for species with limited dispersal capacity. The networks described here resemble theoretical scale-free models, also known as ‘rich get richer’ algorithm. The ‘stepping stone’ water bodies are located in the area around the Peel-Harvey Estuary, a Ramsar listed site, and some are located in a national park. Our results describe a powerful approach that can be implemented when assessing the connectivity for a particular organism with known dispersal distance. The approach of identifying the surface water bodies that act as

  8. Surface activation of dyed fabric for cellulase treatment.

    PubMed

    Schimper, Christian B; Ibanescu, Constanta; Bechtold, Thomas

    2011-10-01

    Surface activation of fabric made from cellulose fibres, such as viscose, lyocell, modal fibres and cotton, can be achieved by printing of a concentrated NaOH-containing paste. From the concentration of reducing sugars formed in solution, an increase in intensity of the cellulase hydrolysis by a factor of six to eight was observed, which was mainly concentrated at the activated parts of the fabric surface. This method of local activation is of particular interest for modification of materials that have been dyed with special processes to attain an uneven distribution of dyestuff within the yarn cross-section, e.g., indigo ring-dyed denim yarn for jeans production. Fabrics made from regenerated cellulose fibres were used as model substrate to express the effects of surface activation on indigo-dyed material. Wash-down experiments on indigo-dyed denim demonstrated significant colour removal from the activated surface at low overall weight loss of 4-5%. The method is of relevance for a more eco-friendly processing of jeans in the garment industry.

  9. Improving HJ-1B IRS land surface temperature product using ASTER global emissivity database

    NASA Astrophysics Data System (ADS)

    Li, H.; Hu, T.; Meng, X.; Yongming, D.; Cao, B.; Liu, Q.

    2015-12-01

    Land surface temperature (LST) is a key parameter for hydrological, meteorological, climatological and environmental studies. Currently many operational LST products have been generated using European and American satellite data, i.e., the Advanced Very High Resolution Radiometer (AVHRR), Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS). However, few LST product has been produced using Chinese satellite data. Thus, the objective of this study is to generate reliable LST product using Chinese HJ-1B satellite data. The HJ-1B satellite of China, were launched on September 6, 2008, which are used for disaster and environment monitoring. IRS (Infrared Scanner) is one of the key instruments onboard HJ-1B satellite, it can scan the earth every four days, has four spectral bands ranging from the near-infrared to thermal infrared bands (band 1 0.75 - 1.10μm, band 2 1.55-1.75μm, MIR band 3 3.50 - 3.90μm, band 4 10.5-12.5μm) with 720 km swath. It scans ±29° from nadir and the spatial resolution for band1-3 is 150m and 300m for band4. In this study, a single-channel parametric model (SC-PM) algorithm were used to produce 300m LST product from HJ-1B IRS data. The NCEP atmospheric profiles and a parametric model were used for atmospheric correction. In order to improve the accuracy of the land surface emissivity (LSE), the 1km ASTER Global Emissivity Database (GED) and self-developed 5-day 1km vegetation cover product were used for estimating the LSE based on the Vegetation Cover Method. Two years of HJ-1B IRS LST product in Heihe River basin (Gansu province, China) from June 2012 to June 2014 were generated. The LST products were evaluated against ground observations in an arid area of northwest China during the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) experiment. Four barren surface sites and ten vegetated sites were chosen for the evaluation. The results show that the developed HJ-1B IRS

  10. Factor H-related proteins determine complement-activating surfaces.

    PubMed

    Józsi, Mihály; Tortajada, Agustin; Uzonyi, Barbara; Goicoechea de Jorge, Elena; Rodríguez de Córdoba, Santiago

    2015-06-01

    Complement factor H-related proteins (FHRs) are strongly associated with different diseases involving complement dysregulation, which suggests a major role for these proteins regulating complement activation. Because FHRs are evolutionarily and structurally related to complement inhibitor factor H (FH), the initial assumption was that the FHRs are also negative complement regulators. Whereas weak complement inhibiting activities were originally reported for these molecules, recent developments indicate that FHRs may enhance complement activation, with important implications for the role of these proteins in health and disease. We review these findings here, and propose that FHRs represent a complex set of surface recognition molecules that, by competing with FH, provide improved discrimination of self and non-self surfaces and play a central role in determining appropriate activation of the complement pathway.

  11. The Effects of Radiatively Active Water Ice Clouds on the Martian Global Seasonal Water Cycle

    NASA Astrophysics Data System (ADS)

    Haberle, Robert M.; Montmessin, F.; Kahre, M. A.; Hollingsworth, J. L.; Schaeffer, J.; de Brouchoven de Bergeyck, A.; Wilson, J.

    2010-10-01

    Recently, Mars General Circulation Models (MGCM) have begun implementing cloud microphysics packages to better account for their role in the water cycle. Here, we discuss the importance of their radiative effects. For the past several years we have been implementing and testing a state-of-the-art cloud microphysics package into the NASA/Ames MGCM. This package accounts for the nucleation, growth, transport, and settling of a size distribution water ice cloud particles in a self-consistent fashion. The model also has flags to activate their solar and infrared radiative effects, which depend on the size and dust content of the ice particles. We have performed two simulations of the global water cycle on Mars: one in which the clouds are radiatively inert, and one in which they are radiatively active. We find that the thermal structure of the atmosphere in the radiatively active cloud run compares better with MGS TES and MRO MCS data. However, the water cycle dries out considerably with radiatively active clouds. There are several reasons for this but the main reason appears to be related to a cooling of the North Polar Residual Cap (NPRC) in the model that is brought about by the reflective nature of the clouds that develop in the lower atmosphere immediately above the NPRC. These clouds increase the planetary albedo at these latitudes and reduce the solar flux at the surface, which is not sufficiently compensated for by an increase in downward infrared emission. Our conclusion at this point, based upon comparison with MRO MCS and MARCI data, is that the model is overpredicting the cloud fields in the vicinity of the NPRC.

  12. Space-time decomposition of global Sea Surface Temperature variability using Multichannel Empirical Orthogonal Teleconnection analysis

    NASA Astrophysics Data System (ADS)

    Parmentier, B.; Neeti, N.; Eastman, R.

    2011-12-01

    With earth observation data, one of the primary concerns is the discovery of recurrent patterns over time. For example, the ENSO phenomenon is a major climatological pattern of global significance. As a spatial/two-dimensional extension of Singular Spectrum Analysis (SSA), Multichannel Singular Spectrum Analysis (MSSA) seeks to uncover the temporal evolution of recurrent space-time patterns within a specified time frame (known as the embedding dimension) by a method of spectral decomposition equivalent to Extended Principal Components Analysis. However, it suffers from the same limitations as PCA with regard to the propensity to develop components that are mixtures of multiple dominant patterns. In this paper we introduce a novel procedure we call Multichannel Empirical Orthogonal Teleconnection (MEOT) analysis as a simple extension of the logic of Empirical Orthogonal Teleconnections (EOT). A global sea surface temperature dataset spanning the 1982-2007 time period is utilized to explore the similarities and differences between MSSA and MEOT. The techniques are applied with a 13 month embedding dimension to extract spatio-temporal patterns that exhibit clear basis vectors in quadrature. Findings indicate that MEOT is capable of detecting more patterns in quadrature than MSSA. MEOT identifies three climate events as quadratures corresponding to the El Niño Southern Oscillation (ENSO), the Atlantic Meridional Mode (AMM) and the Atlantic Niño/ Tropical Southern Atlantic (TSA) mode. All of these climate events have phase change within a year. MSSA in contrast, only identified the ENSO event. Moreover, since MEOT does not suffer from a bi-orthogonality constraint, it is capable of extracting fewer mixed modes of variability than MSSA. Thus, results suggest a better identification and representation of individual climate events by the MEOT method.

  13. The EUSTACE project: combining different components of the observing system to deliver global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Rayner, Nick

    2016-04-01

    Day-to-day variations in surface air temperature affect society in many ways and are fundamental information for many climate services; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we reflect on our experience so far within the Horizon 2020 project EUSTACE of using satellite skin temperature retrievals to help us to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types and developing new statistical models of how surface air temperature varies in a connected way from place to place. We will present plans and progress along this road in the EUSTACE project (2015-June 2018): - providing new, consistent, multi-component estimation of uncertainty in surface skin temperature retrievals from satellites; - identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; - estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; - using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  14. Segmentation of the brain from 3D MRI using a hierarchical active surface template

    NASA Astrophysics Data System (ADS)

    Snell, John W.; Merickel, Michael B.; Ortega, James M.; Goble, John C.; Brookeman, James R.; Kassell, Neal F.

    1994-05-01

    The accurate segmentation of the brain from three-dimensional medical imagery is important as the basis for visualization, morphometry, surgical planning and intraoperative navigation. The complex and variable nature of brain anatomy makes recognition of the brain boundaries a difficult problem and frustrates segmentation schemes based solely on local image features. We have developed a deformable surface model of the brain as a mechanism for utilizing a priori anatomical knowledge in the segmentation process. The active surface template uses an energy minimization scheme to find a globally consistent surface configuration given a set of potentially ambiguous image features. Solution of the entire 3D problem at once produces superior results to those achieved using a slice by slice approach. We have achieved good results with MR image volumes of both normal and abnormal subjects. Evaluation of the segmentation results has been performed using cadaver studies.

  15. Global cortical activity predicts shape of hand during grasping

    PubMed Central

    Agashe, Harshavardhan A.; Paek, Andrew Y.; Zhang, Yuhang; Contreras-Vidal, José L.

    2015-01-01

    Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural “symphony” as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs. PMID:25914616

  16. Growth exponents in surface models with non-active sites

    NASA Astrophysics Data System (ADS)

    Santos, M.; Figueiredo, W.; Aarão Reis, F. D. A.

    2006-11-01

    In this work, we studied the role played by the inactive sites present on the substrate of a growing surface. In our model, one particle sticks at the surface if the site where it falls is an active site. However, we allow the deposited particle to diffuse along the surface in accordance with some mechanism previously defined. Using Monte Carlo simulations, and some analytical results, we have investigated the model in (1+1) and (2+1) dimensions considering different relaxation mechanisms. We show that the consideration of non-active sites is a crucial point in the model. In fact, we have seen that the saturation regime is not observed for any value of the density of inactive sites. Besides, the growth exponent β turns to be one, at long times, whatever the mechanism of diffusion we consider in one and two dimensions.

  17. Active Finger Recognition from Surface EMG Signal Using Bayesian Filter

    NASA Astrophysics Data System (ADS)

    Araki, Nozomu; Hoashi, Yuki; Konishi, Yasuo; Mabuchi, Kunihiko; Ishigaki, Hiroyuki

    This paper proposed an active finger recognition method using Bayesian filter in order to control a myoelectric hand. We have previously proposed a finger joint angle estimation method based on measured surface electromyography (EMG) signals and a linear model. However, when we estimate 2 or more finger angles by this estimation method, the estimation angle of the inactive finger is not accurate. This is caused by interference of surface EMG signal. To solve this interference problem, we proposed active finger recognition method from the amplitude spectrum of surface EMG signal using Bayesian filter. To confirm the effectiveness of this recognition method, we developed a myoelectric hand simulator that implements proposed recognition algorithm and carried out real-time recognition experiment.

  18. Global Analysis of Protein Activities Using Proteome Chips

    NASA Astrophysics Data System (ADS)

    Zhu, Heng; Bilgin, Metin; Bangham, Rhonda; Hall, David; Casamayor, Antonio; Bertone, Paul; Lan, Ning; Jansen, Ronald; Bidlingmaier, Scott; Houfek, Thomas; Mitchell, Tom; Miller, Perry; Dean, Ralph A.; Gerstein, Mark; Snyder, Michael

    2001-09-01

    To facilitate studies of the yeast proteome, we cloned 5800 open reading frames and overexpressed and purified their corresponding proteins. The proteins were printed onto slides at high spatial density to form a yeast proteome microarray and screened for their ability to interact with proteins and phospholipids. We identified many new calmodulin- and phospholipid-interacting proteins; a common potential binding motif was identified for many of the calmodulin-binding proteins. Thus, microarrays of an entire eukaryotic proteome can be prepared and screened for diverse biochemical activities. The microarrays can also be used to screen protein-drug interactions and to detect posttranslational modifications.

  19. Estimating Active Layer Thickness from Remotely Sensed Surface Deformation

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K. M.; Zhang, T.; Wahr, J. M.

    2010-12-01

    We estimate active layer thickness (ALT) from remotely sensed surface subsidence during thawing seasons derived from interferometric synthetic aperture radar (InSAR) measurements. Ground ice takes up more volume than ground water, so as the soil thaws in summer and the active layer deepens, the ground subsides. The volume of melted ground water during the summer thaw determines seasonal subsidence. ALT is defined as the maximum thaw depth at the end of a thawing season. By using InSAR to measure surface subsidence between the start and end of summer season, one can estimate the depth of thaw over a large area (typically 100 km by 100 km). We developed an ALT retrieval algorithm integrating InSAR-derived surface subsidence, observed soil texture, organic matter content, and moisture content. We validated this algorithm in the continuous permafrost area on the North Slope of Alaska. Based on InSAR measurements using ERS-1/2 SAR data, our estimated values match in situ measurements of ALT within 1--10 cm at Circumpolar Active Layer Monitoring (CALM) sites within the study area. The active layer plays a key role in land surface processes in cold regions. Current measurements of ALT using mechanical probing, frost/thaw tubes, or inferred from temperature measurements are of high quality, but limited in spatial coverage. Using InSAR to estimate ALT greatly expands the spatial coverage of ALT observations.

  20. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  1. Active Flow Control Strategies Using Surface Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Kumar, Vikas; Alvi, Farrukh S.

    2010-01-01

    Evaluate the efficacy of Microjets Can we eliminate/minimize flow separation? Is the flow unsteadiness reduced? Guidelines for an active control Search for an appropriate sensor. Examine for means to develop a flow model for identifying the state of flow over the surface Guidelines toward future development of a Simple and Robust control methodology

  2. Correspondence Between Long Term Carbon Sequestration and Measurable Variables in a Global Land Surface Model

    NASA Astrophysics Data System (ADS)

    Gerber, S.; Muller, S. J.

    2014-12-01

    The response of net atmosphere-land carbon exchange under future warming and increasing CO2 is key to the projection of future climate change. However, current land-surface model differ widely in their prediction of the land carbon sink by 2100. These models are increasingly complex and entail a large array of mechanisms. Consequently, the number of "knobs"(i.e. model parameters) available to tune model results has increased drastically. In principal, objectively tuning all parameters of a model to the measurements at hand should yield a best configuration. But in practice, it is important to know structure of data that helps best to improve a model's long-term carbon sink trajectory; or alternatively whether there are variables where a model data mismatch would not necessarily compromise the model outcome. We performed a sensitivity analysis of LM3VN, a land surface model with a prognostic nitrogen cycle, by varying 60 parameters, and checked for correspondence between the sensitivity of the model's long-term (1850-2100) carbon sink and contemporary (1980-2006) calibration variables. We found, that few parameters had a strong impact on the long term carbon sequestration, showing that the model entails a number of negative feedbacks. Importantly, the parameters to which the model was most sensitive were found to vary between individual gridcells, supporting the idea of point-specific and regional model assessment. The model's prediction of the current total carbon inventory correlated well with the prediction of the long term carbon sink, indicating that evaluation of models against current carbon inventories could improve their prediction of carbon sequestration over the this century, although the aggregation of such data is challenging. A promising correspondence is that of the interannual variability of net carbon exchange, we found this the correlation to be significant in a majority of gridcells (73%) but weak if globally aggregated. Overall, such targeted

  3. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    PubMed Central

    Guo, Wei; Vlachos, Dionisios G.

    2015-01-01

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N−H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design. PMID:26443525

  4. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    SciTech Connect

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-07

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  5. Patched bimetallic surfaces are active catalysts for ammonia decomposition.

    PubMed

    Guo, Wei; Vlachos, Dionisios G

    2015-10-07

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  6. Active Contours Using Additive Local and Global Intensity Fitting Models for Intensity Inhomogeneous Image Segmentation

    PubMed Central

    Soomro, Shafiullah; Kim, Jeong Heon; Soomro, Toufique Ahmed

    2016-01-01

    This paper introduces an improved region based active contour method with a level set formulation. The proposed energy functional integrates both local and global intensity fitting terms in an additive formulation. Local intensity fitting term influences local force to pull the contour and confine it to object boundaries. In turn, the global intensity fitting term drives the movement of contour at a distance from the object boundaries. The global intensity term is based on the global division algorithm, which can better capture intensity information of an image than Chan-Vese (CV) model. Both local and global terms are mutually assimilated to construct an energy function based on a level set formulation to segment images with intensity inhomogeneity. Experimental results show that the proposed method performs better both qualitatively and quantitatively compared to other state-of-the-art-methods. PMID:27800011

  7. Near-surface ocean velocity from infrared images: Global Optimal Solution to an inverse model

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Mied, Richard P.; Shen, Colin Y.

    2008-10-01

    We address the problem of obtaining ocean surface velocities from sequences of thermal (AVHRR) space-borne images by inverting the heat conservation equation (including sources of surface heat fluxes and vertical entrainment). We demonstrate the utility of the technique by deriving surface velocities from (1) The motion of a synthetic surface tracer in a numerical model and (2) a sequence of five actual AVHRR images from 1 day. Typical formulations of this tracer inversion problem yield too few equations at each pixel, which is often remedied by imposing additional constraints (e.g., horizontal divergence, vorticity, and energy). In contrast, we propose an alternate strategy to convert the underdetermined equation set to an overdetermined one. We divide the image scene into many subarrays and define velocities and sources within each subarray using bilinear expressions in terms of the corner points (called knots). In turn, all velocities and sources on the knots can be determined by seeking an optimum solution to these linear equations over the large scale, which we call the Global Optimal Solution (GOS). We test the accuracy of the GOS by contaminating the model output with up to 10% white noise but find that filtering the data with a Gaussian convolution filter yields velocities nearly indistinguishable from those without the added noise. We compare the GOS velocity fields with those from the numerical model and from the Maximum Cross Correlation (MCC) technique. A histogram of the difference between GOS and numerical model velocities is narrower and more peaked than the similar comparison with MCC, irrespective of the time interval (Δt = 2 or 4 h) between images. The calculation of the root mean square error difference between the GOS (and MCC) results and the model velocities indicates that the GOS/model error is only half that of the MCC/model error irrespective of the time interval (Δt = 2 or 4 h) between images. Finally, the application of the technique to

  8. Global occurrence of anti-infectives in contaminated surface waters: Impact of income inequality between countries.

    PubMed

    Segura, Pedro A; Takada, Hideshige; Correa, José A; El Saadi, Karim; Koike, Tatsuya; Onwona-Agyeman, Siaw; Ofosu-Anim, John; Sabi, Edward Benjamin; Wasonga, Oliver V; Mghalu, Joseph M; dos Santos Junior, Antonio Manuel; Newman, Brent; Weerts, Steven; Yargeau, Viviane

    2015-07-01

    The presence anti-infectives in environmental waters is of interest because of their potential role in the dissemination of anti-infective resistance in bacteria and other harmful effects on non-target species such as algae and shellfish. Since no information on global trends regarding the contamination caused by these bioactive substances is yet available, we decided to investigate the impact of income inequality between countries on the occurrence of anti-infectives in surface waters. In order to perform such study, we gathered concentration values reported in the peer-reviewed literature between 1998 and 2014 and built a database. To fill the gap of knowledge on occurrence of anti-infectives in African countries, we also collected 61 surface water samples from Ghana, Kenya, Mozambique and South Africa, and measured concentrations of 19 anti-infectives. A mixed one-way analysis of covariance (ANCOVA) model, followed by Turkey-Kramer post hoc tests was used to identify potential differences in anti-infective occurrence between countries grouped by income level (high, upper-middle and lower-middle and low income) according to the classification by the World Bank. Comparison of occurrence of anti-infectives according to income level revealed that concentrations of these substances in contaminated surface waters were significantly higher in low and lower-middle income countries (p=0.0001) but not in upper-middle income countries (p=0.0515) compared to high-income countries. We explained these results as the consequence of the absence of or limited sewage treatment performed in lower income countries. Furthermore, comparison of concentrations of low cost anti-infectives (sulfonamides and trimethoprim) and the more expensive macrolides between income groups suggest that the cost of these substances may have an impact on their environmental occurrence in lower income countries. Since wastewaters are the most important source of contamination of anti-infectives and other

  9. Global occurrence of anti-infectives in contaminated surface waters: Impact of income inequality between countries.

    PubMed

    Segura, Pedro A; Takada, Hideshige; Correa, José A; El Saadi, Karim; Koike, Tatsuya; Onwona-Agyeman, Siaw; Ofosu-Anim, John; Sabi, Edward Benjamin; Wasonga, Oliver V; Mghalu, Joseph M; dos Santos Junior, Antonio Manuel; Newman, Brent; Weerts, Steven; Yargeau, Viviane

    2015-07-01

    The presence anti-infectives in environmental waters is of interest because of their potential role in the dissemination of anti-infective resistance in bacteria and other harmful effects on non-target species such as algae and shellfish. Since no information on global trends regarding the contamination caused by these bioactive substances is yet available, we decided to investigate the impact of income inequality between countries on the occurrence of anti-infectives in surface waters. In order to perform such study, we gathered concentration values reported in the peer-reviewed literature between 1998 and 2014 and built a database. To fill the gap of knowledge on occurrence of anti-infectives in African countries, we also collected 61 surface water samples from Ghana, Kenya, Mozambique and South Africa, and measured concentrations of 19 anti-infectives. A mixed one-way analysis of covariance (ANCOVA) model, followed by Turkey-Kramer post hoc tests was used to identify potential differences in anti-infective occurrence between countries grouped by income level (high, upper-middle and lower-middle and low income) according to the classification by the World Bank. Comparison of occurrence of anti-infectives according to income level revealed that concentrations of these substances in contaminated surface waters were significantly higher in low and lower-middle income countries (p=0.0001) but not in upper-middle income countries (p=0.0515) compared to high-income countries. We explained these results as the consequence of the absence of or limited sewage treatment performed in lower income countries. Furthermore, comparison of concentrations of low cost anti-infectives (sulfonamides and trimethoprim) and the more expensive macrolides between income groups suggest that the cost of these substances may have an impact on their environmental occurrence in lower income countries. Since wastewaters are the most important source of contamination of anti-infectives and other

  10. High-speed Imaging of Global Surface Temperature Distributions on Hypersonic Ballistic-Range Projectiles

    NASA Technical Reports Server (NTRS)

    Wilder, Michael C.; Reda, Daniel C.

    2004-01-01

    The NASA-Ames ballistic range provides a unique capability for aerothermodynamic testing of configurations in hypersonic, real-gas, free-flight environments. The facility can closely simulate conditions at any point along practically any trajectory of interest experienced by a spacecraft entering an atmosphere. Sub-scale models of blunt atmospheric entry vehicles are accelerated by a two-stage light-gas gun to speeds as high as 20 times the speed of sound to fly ballistic trajectories through an 24 m long vacuum-rated test section. The test-section pressure (effective altitude), the launch velocity of the model (flight Mach number), and the test-section working gas (planetary atmosphere) are independently variable. The model travels at hypersonic speeds through a quiescent test gas, creating a strong bow-shock wave and real-gas effects that closely match conditions achieved during actual atmospheric entry. The challenge with ballistic range experiments is to obtain quantitative surface measurements from a model traveling at hypersonic speeds. The models are relatively small (less than 3.8 cm in diameter), which limits the spatial resolution possible with surface mounted sensors. Furthermore, since the model is in flight, surface-mounted sensors require some form of on-board telemetry, which must survive the massive acceleration loads experienced during launch (up to 500,000 gravities). Finally, the model and any on-board instrumentation will be destroyed at the terminal wall of the range. For these reasons, optical measurement techniques are the most practical means of acquiring data. High-speed thermal imaging has been employed in the Ames ballistic range to measure global surface temperature distributions and to visualize the onset of transition to turbulent-flow on the forward regions of hypersonic blunt bodies. Both visible wavelength and infrared high-speed cameras are in use. The visible wavelength cameras are intensified CCD imagers capable of integration

  11. RAFT microemulsion polymerization with surface-active chain transfer agent

    NASA Astrophysics Data System (ADS)

    El-Hedok, Ibrahim Adnan

    The work described in this dissertation focuses on enhancing the polymer nanoparticle synthesis using RAFT (reversible-addition fragmentation chain transfer) in microemulsion polymerization in order to achieve predetermined molecular weight with narrow molecular weight polydispersity. The hypothesis is that the use of an amphiphilic chain transfer agent (surface-active CTA) will confine the CTA to the surface of the particle and thermodynamically favor partitioning of the CTA between micelles and particles throughout the polymerization. Thus, the CTA diffusion from micelles to polymer particles would be minimized and the breadth of the CTA per particle distribution would remain low. We report the successful improved synthesis of poly(butyl acrylate), poly(ethyl acrylate), and poly(styrene) nanoparticles using the RAFT microemulsion polymerization with surface-active CTA. The polymerization kinetics, polymer characteristics and latex size experimental data are presented. The data analysis indicates that the CTA remains partitioned between the micelles and particles by the end of the polymerization, as expected. We also report the synthesis of well-defined core/shell poly(styrene)/poly(butyl acrylate) nanoparticle, having polydispersity index value of 1.1, using semi-continuous microemulsion polymerization with the surface-active CTA. The surface-active CTA restricts the polymerization growth to the surface of the particle, which facilitates the formation of a shell block co-polymers with each subsequent second monomer addition instead of discrete homopolymers. This synthesis method can be used to create a wide range of core/shell polymer nanoparticles with well-defined morphology, given the right feeding conditions.

  12. Long-Term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.

    1998-01-01

    This is the first quarter's report on research to extract global gravity-wave data from satellite data and to model those observations synoptically. Preliminary analysis of global maps of extracted middle atmospheric temperature variance from the CRISTA instrument is presented, which appear to contain gravity-wave information. Corresponding simulations of global gravity-wave and mountain-wave activity during this mission period are described using global ray-tracing and mountain-wave models, and interesting similarities among simulated data and CRISTA data are noted. Climatological simulations of mesospheric gravity-wave activity using the HWM-03 wind-temperature climatology are also reported, for comparison with UARS MLS data. Preparatory work on modeling of gravity wave observations from space-based platforms and subsequent interpretation of the MLS gravity-wave product are also described. Preliminary interpretation and relation to the research objectives are provided, and further action for the next quarter's research is recommended.

  13. Global Winners: 74 Learning Activities for Inside and Outside the Classroom.

    ERIC Educational Resources Information Center

    Drum, Jan; Hughes, Steve; Otero, George

    This book provides 74 learning activities to help K-12 students, college students, and even seniors develop the global perspective needed for the 21st century. Each learning exercise is preceded by an introduction that sets the theme of the activity and states its purpose or objective. Appropriate age or grade use and gives instructions on how to…

  14. Activity Based Learning in a Freshman Global Business Course: Analyses of Preferences and Demographic Differences

    ERIC Educational Resources Information Center

    Levine, Mark F.; Guy, Paul W.

    2007-01-01

    The present study investigates pre-business students' reaction to Activity Based Learning in a lower division core required course entitled Introduction to Global Business in the business curriculum at California State University Chico. The study investigates students' preference for Activity Based Learning in comparison to a more traditional…

  15. An in situ-satellite blended analysis of global sea surface salinity

    NASA Astrophysics Data System (ADS)

    Xie, P.; Boyer, T.; Bayler, E.; Xue, Y.; Byrne, D.; Reagan, J.; Locarnini, R.; Sun, F.; Joyce, R.; Kumar, A.

    2014-09-01

    The blended monthly sea surface salinity (SSS) analysis, called the NOAA "Blended Analysis of Surface Salinity" (BASS), is constructed for the 4 year period from 2010 to 2013. Three data sets are employed as inputs to the blended analysis: in situ SSS measurements aggregated and quality controlled by NOAA/NODC, and passive microwave (PMW) retrievals from both the National Aeronautics and Space Administration's (NASA) Aquarius/SAC-D and the European Space Agency's (ESA) Soil Moisture-Ocean Salinity (SMOS) satellites. The blended analysis comprises two steps. First, the biases in the satellite retrievals are removed through probability distribution function (PDF) matching against temporally spatially colocated in situ measurements. The blended analysis is then achieved through optimal interpolation (OI), where the analysis for the previous time step is used as the first guess while the in situ measurements and bias-corrected satellite retrievals are employed as the observations to update the first guess. Cross validations illustrate improved quality of the blended analysis, with reduction in bias and random errors over most of the global oceans as compared to the individual inputs. Large uncertainty, however, remains in high-latitude oceans and coastal regions where the in situ networks are sparse and current-generation satellite retrievals have limitations. Our blended SSS analysis shows good agreements with the NODC in situ-based analysis over most of the tropical and subtropical oceans, but large differences are observed for high-latitude oceans and along coasts. In the tropical oceans, the BASS is shown to have coherent variability with precipitation and evaporation associated with the evolution of the El Niño-Southern Oscillation (ENSO).

  16. Uncertainties in global ocean surface heat flux climatologies derived from ship observations

    SciTech Connect

    Gleckler, P.J.; Weare, B.C.

    1995-08-01

    A methodology to define uncertainties associated with ocean surface heat flux calculations has been developed and applied to a revised version of the Oberhuber global climatology, which utilizes a summary of the COADS surface observations. Systematic and random uncertainties in the net oceanic heat flux and each of its four components at individual grid points and for zonal averages have been estimated for each calendar month and the annual mean. The most important uncertainties of the 2{degree} x 2{degree} grid cell values of each of the heat fluxes are described. Annual mean net shortwave flux random uncertainties associated with errors in estimating cloud cover in the tropics yield total uncertainties which are greater than 25 W m{sup {minus}2}. In the northern latitudes, where the large number of observations substantially reduce the influence of these random errors, the systematic uncertainties in the utilized parameterization are largely responsible for total uncertainties in the shortwave fluxes which usually remain greater than 10 W m{sup {minus}2}. Systematic uncertainties dominate in the zonal means because spatial averaging has led to a further reduction of the random errors. The situation for the annual mean latent heat flux is somewhat different in that even for grid point values the contributions of the systematic uncertainties tend to be larger than those of the random uncertainties at most all latitudes. Latent heat flux uncertainties are greater than 20 W m{sup {minus}2} nearly everywhere south of 40{degree}N, and in excess of 30 W m{sup {minus}2} over broad areas of the subtropics, even those with large numbers of observations. Resulting zonal mean latent heat flux uncertainties are largest ({approximately}30 W m{sup {minus}2}) in the middle latitudes and subtropics and smallest ({approximately}10--25 W m{sup {minus}2}) near the equator and over the northernmost regions.

  17. The International Atomic Energy Agency's activities in radiation medicine and cancer: promoting global health through diplomacy.

    PubMed

    Deatsch-Kratochvil, Amanda N; Pascual, Thomas Neil; Kesner, Adam; Rosenblatt, Eduardo; Chhem, Rethy K

    2013-02-01

    Global health has been an issue of seemingly low political importance in comparison with issues that have direct bearing on countries' national security. Recently, health has experienced a "political revolution" or a rise in political importance. Today, we face substantial global health challenges, from the spread of infectious disease, gaps in basic maternal and child health care, to the globalization of cancer. A recent estimate states that the "overall lifetime risk of developing cancer (both sexes) is expected to rise from more than one in three to one in two by 2015." These issues pose significant threats to international health security. To successfully combat these grave challenges, the international community must embrace and engage in global health diplomacy, defined by scholars Thomas Novotny and Vicanne Adams as a political activity aimed at improving global health, while at the same time maintaining and strengthening international relations. The IAEA (International Atomic Energy Agency) is an international organization with a unique mandate to "accelerate and enlarge the contribution of atomic energy to peace, health, and prosperity throughout the world." This article discusses global health diplomacy, reviews the IAEA's program activities in human health by focusing on radiation medicine and cancer, and the peaceful applications of atomic energy within the context of global health diplomacy. PMID:22560564

  18. The International Atomic Energy Agency's activities in radiation medicine and cancer: promoting global health through diplomacy.

    PubMed

    Deatsch-Kratochvil, Amanda N; Pascual, Thomas Neil; Kesner, Adam; Rosenblatt, Eduardo; Chhem, Rethy K

    2013-02-01

    Global health has been an issue of seemingly low political importance in comparison with issues that have direct bearing on countries' national security. Recently, health has experienced a "political revolution" or a rise in political importance. Today, we face substantial global health challenges, from the spread of infectious disease, gaps in basic maternal and child health care, to the globalization of cancer. A recent estimate states that the "overall lifetime risk of developing cancer (both sexes) is expected to rise from more than one in three to one in two by 2015." These issues pose significant threats to international health security. To successfully combat these grave challenges, the international community must embrace and engage in global health diplomacy, defined by scholars Thomas Novotny and Vicanne Adams as a political activity aimed at improving global health, while at the same time maintaining and strengthening international relations. The IAEA (International Atomic Energy Agency) is an international organization with a unique mandate to "accelerate and enlarge the contribution of atomic energy to peace, health, and prosperity throughout the world." This article discusses global health diplomacy, reviews the IAEA's program activities in human health by focusing on radiation medicine and cancer, and the peaceful applications of atomic energy within the context of global health diplomacy.

  19. Extracting extensor digitorum communis activation patterns using high-density surface electromyography

    PubMed Central

    Hu, Xiaogang; Suresh, Nina L.; Xue, Cindy; Rymer, William Z.

    2015-01-01

    The extensor digitorum communis muscle plays an important role in hand dexterity during object manipulations. This multi-tendinous muscle is believed to be controlled through separate motoneuron pools, thereby forming different compartments that control individual digits. However, due to the complex anatomical variations across individuals and the flexibility of neural control strategies, the spatial activation patterns of the extensor digitorum communis compartments during individual finger extension have not been fully tracked under different task conditions. The objective of this study was to quantify the global spatial activation patterns of the extensor digitorum communis using high-density (7 × 9) surface electromyogram (EMG) recordings. The muscle activation map (based on the root mean square of the EMG) was constructed when subjects performed individual four finger extensions at the metacarpophalangeal joint, at different effort levels and under different finger constraints (static and dynamic). Our results revealed distinct activation patterns during individual finger extensions, especially between index and middle finger extensions, although the activation between ring and little finger extensions showed strong covariance. The activation map was relatively consistent at different muscle contraction levels and for different finger constraint conditions. We also found that distinct activation patterns were more discernible in the proximal–distal direction than in the radial–ulnar direction. The global spatial activation map utilizing surface grid EMG of the extensor digitorum communis muscle provides information for localizing individual compartments of the extensor muscle during finger extensions. This is of potential value for identifying more selective control input for assistive devices. Such information can also provide a basis for understanding hand impairment in individuals with neural disorders. PMID:26500558

  20. Communication: An accurate global potential energy surface for the ground electronic state of ozone

    SciTech Connect

    Dawes, Richard E-mail: hguo@unm.edu; Lolur, Phalgun; Li, Anyang; Jiang, Bin; Guo, Hua E-mail: hguo@unm.edu

    2013-11-28

    We report a new full-dimensional and global potential energy surface (PES) for the O + O{sub 2} → O{sub 3} ozone forming reaction based on explicitly correlated multireference configuration interaction (MRCI-F12) data. It extends our previous [R. Dawes, P. Lolur, J. Ma, and H. Guo, J. Chem. Phys. 135, 081102 (2011)] dynamically weighted multistate MRCI calculations of the asymptotic region which showed the widely found submerged reef along the minimum energy path to be the spurious result of an avoided crossing with an excited state. A spin-orbit correction was added and the PES tends asymptotically to the recently developed long-range electrostatic model of Lepers et al. [J. Chem. Phys. 137, 234305 (2012)]. This PES features: (1) excellent equilibrium structural parameters, (2) good agreement with experimental vibrational levels, (3) accurate dissociation energy, and (4) most-notably, a transition region without a spurious reef. The new PES is expected to allow insight into the still unresolved issues surrounding the kinetics, dynamics, and isotope signature of ozone.

  1. Global Sea Surface Temperature and Ecosystem Change Across the Mid-Miocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Veenstra, T. J. T.; Bakker, V. B.; Sangiorgi, F.; Peterse, F.; Schouten, S.; Sluijs, A.

    2015-12-01

    The Mid-Miocene Climatic Optimum (MMCO) (ca. 17 to 14 Ma) is generally considered as the warmest episode of the Neogene based on deep marine oxygen isotope records and terrestrial plant fossils. To date, however, reasonable resolution high-quality sea surface temperature (SST) proxy records spanning its onset are scarce at best. For the remainder of the MMCO, reliable SST records are absent from the tropics and very scarce in temperate and polar regions. This leaves the question if the MMCO was truly associated with global warming and if this warming was associated with biotic change. We use organic biomarker paleothermometry (Uk'37 and TEX86) to reconstruct SST across the MMCO at four locations along a pole-to-pole transect in the Atlantic and Pacific Ocean. Additionally, we use marine palynology (mostly dinoflagellate cysts) to assess ecosystem change at these locations. This study includes the first tropical biomarker-based SST records of the MMCO. Together with new and existing SST records from higher latitudes and the corresponding palynological records, they provide new insights in the temporal and spatial development of the MMCO. Our results indicate that Mid-Miocene warming was most prominent in the Norwegian Sea, showed a more complex, perhaps upwelling-related pattern in a tropical location, and was small in the Southern Hemisphere.

  2. Satellite Stereo Based Digital Surface Model Generation Using Semi Global Matching in Object and Image Space

    NASA Astrophysics Data System (ADS)

    Ghuffar, S.

    2016-06-01

    This paper presents methodology and evaluation of Digital Surface Models (DSM) generated from satellite stereo imagery using Semi Global Matching (SGM) applied in image space and georeferenced voxel space. SGM is a well known algorithm, used widely for DSM generation from airborne and satellite imagery. SGM is typically applied in the image space to compute disparity map corresponding to a stereo image pair. As a different approach, SGM can be applied directly to the georeferenced voxel space similar to the approach of volumetric multi-view reconstruction techniques. The matching in voxel space simplifies the DSM generation pipeline because the stereo rectification and triangulation steps are not required. For a comparison, the complete pipeline for generation of DSM from satellite pushbroom sensors is also presented. The results on the ISPRS satellite stereo benchmark using Worldview stereo imagery of 0.5m resolution shows that the SGM applied in image space produce slightly better results than its object space counterpart. Furthermore, a qualitative analysis of the results on Worldview-3 stereo and Pleiades tri-stereo images are presented.

  3. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown

    NASA Astrophysics Data System (ADS)

    Smith, Doug M.; Booth, Ben B. B.; Dunstone, Nick J.; Eade, Rosie; Hermanson, Leon; Jones, Gareth S.; Scaife, Adam A.; Sheen, Katy L.; Thompson, Vikki

    2016-10-01

    The rate of global mean surface temperature (GMST) warming has slowed this century despite the increasing concentrations of greenhouse gases. Climate model experiments show that this slowdown was largely driven by a negative phase of the Pacific Decadal Oscillation (PDO), with a smaller external contribution from solar variability, and volcanic and anthropogenic aerosols. The prevailing view is that this negative PDO occurred through internal variability. However, here we show that coupled models from the Fifth Coupled Model Intercomparison Project robustly simulate a negative PDO in response to anthropogenic aerosols implying a potentially important role for external human influences. The recovery from the eruption of Mount Pinatubo in 1991 also contributed to the slowdown in GMST trends. Our results suggest that a slowdown in GMST trends could have been predicted in advance, and that future reduction of anthropogenic aerosol emissions, particularly from China, would promote a positive PDO and increased GMST trends over the coming years. Furthermore, the overestimation of the magnitude of recent warming by models is substantially reduced by using detection and attribution analysis to rescale their response to external factors, especially cooling following volcanic eruptions. Improved understanding of external influences on climate is therefore crucial to constrain near-term climate predictions.

  4. Development of an operational global ocean climatology through the use of remotely sensed sea surface temperature

    SciTech Connect

    Winter, T.M.

    1995-05-09

    Monthly mean satellite-derived sea surface temperature SST data have been derived globally using daytime and nighttime AVHRR (Advanced Very High Resolution Radiometer) multi-channel data. From a 12 year data set (1982-1993), valid monthly daytime and nighttime climatologies were created using an eight year subset (1984-1990, 1993). Based on buoy comparisons, four years were omitted due to volcanic aerosol corruption (El Chichon 1982/83, Mt. Pinatubo 1991/92). These resulting monthly climatologies provide SST fields at approximately 1/3rd degree latitude/longitude resolution. Difference fields have been created comparing the new satellite climatology with the older and coarser-resolution climatology constructed from conventional SST data. Regional and zonal climatology differences were also created to highlight the deficiencies, especially in the Southern Hemisphere, in the older climatology believed to result primarily from a lack of buoy/ship (in situ) data. Such comparisons made it clear that the satellite climatology provided a much better product. Ocean current systems, El Nino, La Nina, and other water mass characteristics all appear with better detail and accuracy within the high-resolution satellite climatology.

  5. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    SciTech Connect

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  6. Internal and Forced Low-Frequency Surface Temperature Variability at Global and Regional Scales

    NASA Astrophysics Data System (ADS)

    Mann, M. E.; Steinman, B. A.; Miller, S. K.

    2014-12-01

    There is evidence for internal models of decadal and multidecadal surface temperature variability that possess relatively narrowband spectral signatures. Among these are the so-called Atlantic Multidecadal Oscillation ("AMO") and Pacific Decadal Oscillation ("PDO"). Separating these internal variability components from long-term forced temperature changes, however, is a non-trivial task. We apply a semi-empirical approach that combines climate observations and model-simulations to estimate Atlantic- and Pacific-based internal multidecadal variability (termed 'AMO' and 'PMO', respectively). Using analyses of coupled global climate model simulations, we show that our approach correctly identifies the internal variability components, while several alternative approaches overestimate and misidentify these components and their contribution to hemispheric mean temperatures. Using our method, the AMO and PMO are found to project in nearly equal proportion onto internal multidecadal variability in Northern Hemisphere mean temperature (termed 'NMO'). A recent NMO cooling trend which contributes to the slowdown or "false pause" in warming of the past decade is seen to reflect a competition between a modest positive peak in the AMO and a substantially negative-trending PMO.

  7. Lithological and Surface Geometry Joint Inversions Using Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin

    2016-04-01

    surfaces are set to a priori values. The inversion is tasked with calculating the geometry of the contact surfaces instead of some piecewise distribution of properties in a mesh. Again, no coupling measure is required and joint inversion is simplified. Both of these inverse problems involve high nonlinearity and discontinuous or non-obtainable derivatives. They can also involve the existence of multiple minima. Hence, one can not apply the standard descent-based local minimization methods used to solve typical minimum-structure inversions. Instead, we are applying Pareto multi-objective global optimization (PMOGO) methods, which generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. While there are definite advantages to PMOGO joint inversion approaches, the methods come with significantly increased computational requirements. We are researching various strategies to ameliorate these computational issues including parallelization and problem dimension reduction.

  8. Total pollen counts do not influence active surface measurements

    NASA Astrophysics Data System (ADS)

    Moshammer, Hanns; Schinko, Herwig; Neuberger, Manfred

    We investigated the temporal association of various aerosol parameters with pollen counts in the pollen season (April 2001) in Linz, Austria. We were especially interested in the relationship between active surface (or Fuchs' surface) because we had shown previously (Atmos. Environ. 37 (2003) 1737-1744) that this parameter during the same observation period was a better predictor for acute respiratory symptoms in school children (like wheezing, shortness of breath, and cough) and reduced lung function on the same day than particle mass (PM 10). While active surface is most sensitive for fine particles with a diameter of less than 100 nm it has no strict upper cut-off regarding particle size and so could eventually be influenced also by larger particles if their numbers were high. All particle mass parameters tested (TSP, PM 10, PM 1) were weakly ( r approximately 0.2) though significantly correlated with pollen counts but neither was active surface nor total particle counts (CPC). The weak association of particle mass and pollen counts was due mainly to similar diurnal variations and a linear trend over time. Only the mass of the coarse fraction (TSP minus PM 10) remained associated with pollen counts significantly after controlling for these general temporal patterns.

  9. The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase

    NASA Astrophysics Data System (ADS)

    Filacchione, Gianrico; Capaccioni, Fabrizio; Ciarniello, Mauro; Raponi, Andrea; Tosi, Federico; De Sanctis, Maria Cristina; Erard, Stéphane; Morvan, Dominique Bockelée; Leyrat, Cedric; Arnold, Gabriele; Schmitt, Bernard; Quirico, Eric; Piccioni, Giuseppe; Migliorini, Alessandra; Capria, Maria Teresa; Palomba, Ernesto; Cerroni, Priscilla; Longobardo, Andrea; Barucci, Antonella; Fornasier, Sonia; Carlson, Robert W.; Jaumann, Ralf; Stephan, Katrin; Moroz, Lyuba V.; Kappel, David; Rousseau, Batiste; Fonti, Sergio; Mancarella, Francesca; Despan, Daniela; Faure, Mathilde

    2016-08-01

    From August to November 2014 the Rosetta orbiter has performed an extensive observation campaign aimed at the characterization of 67P/CG nucleus properties and to the selection of the Philae landing site. The campaign led to the production of a global map of the illuminated portion of 67P/CG nucleus. During this prelanding phase the comet's heliocentric distance decreased from 3.62 to 2.93 AU while Rosetta was orbiting around the nucleus at distances between 100 to 10 km. VIRTIS-M, the Visible and InfraRed Thermal Imaging Spectrometer - Mapping channel (Coradini et al., [2007] Space Sci. Rev., 128, 529-559) onboard the orbiter, has acquired 0.25-5.1 μm hyperspectral data of the entire illuminated surface, e.g. the north hemisphere and the equatorial regions, with spatial resolution between 2.5 and 25 m/pixel. I/F spectra have been corrected for thermal emission removal in the 3.5-5.1 μm range and for surface's photometric response. The resulting reflectance spectra have been used to compute several Cometary Spectral Indicators (CSI): single scattering albedo at 0.55 μm, 0.5-0.8 μm and 1.0-2.5 μm spectral slopes, 3.2 μm organic material and 2.0 μm water ice band parameters (center, depth) with the aim to map their spatial distribution on the surface and to study their temporal variability as the nucleus moved towards the Sun. Indeed, throughout the investigated period, the nucleus surface shows a significant increase of the single scattering albedo along with a decrease of the 0.5-0.8 and 1.0-2.5 μm spectral slopes, indicating a flattening of the reflectance. We attribute the origin of this effect to the partial removal of the dust layer caused by the increased contribution of water sublimation to the gaseous activity as comet crossed the frost-line. The regions more active at the time of these observations, like Hapi in the neck/north pole area, appear brighter, bluer and richer in organic material than the rest of the large and small lobe of the nucleus

  10. Vegetation Phenology as a Constraint on Global Surface-Atmosphere Exchange

    NASA Astrophysics Data System (ADS)

    Hemes, K. S.; Baker, I. T.; Parazoo, N.; Stockli, R.; Denning, A.

    2010-12-01

    Vegetation cover is a key element in the exchange of carbon and other trace gases between the land and atmosphere. An accurate understanding of the phenological behavior within our global carbon models can help us to better represent the movement of carbon and the carbon cycle. This thesis primarily aims to investigate the possibility for a prognostic phenology model to accurately represent global vegetation. Traditional diagnostic models such as MODIS and NDVI use remote sensing satellites to determine leaf area index (LAI) and fraction of photosynthetically active radiation absorbed (fPAR). These methods run into problems with cloud masking (especially in the rainy season tropics), atmospheric aerosols, water and ozone scattering, solar zenith angle geometry, and other inconsistencies. The prognostic phenology model uses statistical algorithms and, though trained on satellite data, computes vegetation from the ground up using basic temperature, humidity, and radiation data. Two hypotheses will be investigated in parallel: The first is that the prognostic phenology model is equally able to accurately simulate fluxes in warm/cold-dominated climates as wet/dry-dominated climates. This evaluates how prognostic phenology and remotely-sensed treatments simulate different ecological types and their seasonality within a year. The second hypothesis is that the prognostic phenology algorithms are able to detect vegetative responses to climate anomalies. This will evaluate the sensitivity of phenology methods to unique climactic events between years. Both of these hypotheses will use the methods of comparing prognostic phenology to the traditional top down diagnostic products (MODIS and NDVI) as well as observed data. By running prognostic phenology as well as the two diagnostic treatments through a chemical transport model, simulated carbon concentrations can be directly compared to carbon flask data from flux towers around the world. We find that global GPP using

  11. Impact of model developments on present and future simulations of permafrost in a global land-surface model

    NASA Astrophysics Data System (ADS)

    Chadburn, S. E.; Burke, E. J.; Essery, R. L. H.; Boike, J.; Langer, M.; Heikenfeld, M.; Cox, P. M.; Friedlingstein, P.

    2015-08-01

    There is a large amount of organic carbon stored in permafrost in the northern high latitudes, which may become vulnerable to microbial decomposition under future climate warming. In order to estimate this potential carbon-climate feedback it is necessary to correctly simulate the physical dynamics of permafrost within global Earth system models (ESMs) and to determine the rate at which it will thaw. Additional new processes within JULES, the land-surface scheme of the UK ESM (UKESM), include a representation of organic soils, moss and bedrock and a modification to the snow scheme; the sensitivity of permafrost to these new developments is investigated in this study. The impact of a higher vertical soil resolution and deeper soil column is also considered. Evaluation against a large group of sites shows the annual cycle of soil temperatures is approximately 25 % too large in the standard JULES version, but this error is corrected by the model improvements, in particular by deeper soil, organic soils, moss and the modified snow scheme. A comparison with active layer monitoring sites shows that the active layer is on average just over 1 m too deep in the standard model version, and this bias is reduced by 70 cm in the improved version. Increasing the soil vertical resolution allows the full range of active layer depths to be simulated; by contrast, with a poorly resolved soil at least 50 % of the permafrost area has a maximum thaw depth at the centre of the bottom soil layer. Thus all the model modifications are seen to improve the permafrost simulations. Historical permafrost area corresponds fairly well to observations in all simulations, covering an area between 14 and 19 million km2. Simulations under two future climate scenarios show a reduced sensitivity of permafrost degradation to temperature, with the near-surface permafrost loss per degree of warming reduced from 1.5 million km2 °C-1 in the standard version of JULES to between 1.1 and 1.2 million km2 °C-1

  12. Impact of model developments on present and future simulations of permafrost in a global land-surface model

    NASA Astrophysics Data System (ADS)

    Chadburn, S. E.; Burke, E. J.; Essery, R. L. H.; Boike, J.; Langer, M.; Heikenfeld, M.; Cox, P. M.; Friedlingstein, P.

    2015-03-01

    There is a large amount of organic carbon stored in permafrost in the northern high latitudes, which may become vulnerable to microbial decomposition under future climate warming. In order to estimate this potential carbon-climate feedback it is necessary to correctly simulate the physical dynamics of permafrost within global Earth System Models (ESMs) and to determine the rate at which it will thaw. Additional new processes within JULES, the land surface scheme of the UK ESM (UKESM), include a representation of organic soils, moss and bedrock, and a modification to the snow scheme. The impact of a higher vertical soil resolution and deeper soil column is also considered. Evaluation against a large group of sites shows the annual cycle of soil temperatures is approximately 25 % too large in the standard JULES version, but this error is corrected by the model improvements, in particular by deeper soil, organic soils, moss and the modified snow scheme. Comparing with active layer monitoring sites shows that the active layer is on average just over 1 m too deep in the standard model version, and this bias is reduced by 70 cm in the improved version. Increasing the soil vertical resolution allows the full range of active layer depths to be simulated, where by contrast with a poorly resolved soil, at least 50% of the permafrost area has a maximum thaw depth at the centre of the bottom soil layer. Thus all the model modifications are seen to improve the permafrost simulations. Historical permafrost area corresponds fairly well to observations in all simulations, covering an area between 14-19 million km2. Simulations under two future climate scenarios show a reduced sensitivity of permafrost degradation to temperature, with the near-surface permafrost lost per degree of warming reduced from 1.5 million km2 °C-1 in the standard version of JULES to between 1.1 and 1.2 million km2 °C-1 in the new model version. However, the near-surface permafrost area is still projected

  13. Imaging Active Surface Processes in Barnacle Adhesive Interfaces.

    PubMed

    Golden, Joel P; Burden, Daniel K; Fears, Kenan P; Barlow, Daniel E; So, Christopher R; Burns, Justin; Miltenberg, Benjamin; Orihuela, Beatriz; Rittshof, Daniel; Spillmann, Christopher M; Wahl, Kathryn J; Tender, Leonard M

    2016-01-19

    Surface plasmon resonance imaging (SPRI) and voltammetry were used simultaneously to monitor Amphibalanus (=Balanus) amphitrite barnacles reattached and grown on gold-coated glass slides in artificial seawater. Upon reattachment, SPRI revealed rapid surface adsorption of material with a higher refractive index than seawater at the barnacle/gold interface. Over longer time periods, SPRI also revealed secretory activity around the perimeter of the barnacle along the seawater/gold interface extending many millimeters beyond the barnacle and varying in shape and region with time. Ex situ experiments using attenuated total reflectance infrared (ATR-IR) spectroscopy confirmed that reattachment of barnacles was accompanied by adsorption of protein to surfaces on similar time scales as those in the SPRI experiments. Barnacles were grown through multiple molting cycles. While the initial reattachment region remained largely unchanged, SPRI revealed the formation of sets of paired concentric rings having alternately darker/lighter appearance (corresponding to lower and higher refractive indices, respectively) at the barnacle/gold interface beneath the region of new growth. Ex situ experiments coupling the SPRI imaging with optical and FTIR microscopy revealed that the paired rings coincide with molt cycles, with the brighter rings associated with regions enriched in amide moieties. The brighter rings were located just beyond orifices of cement ducts, consistent with delivery of amide-rich chemistry from the ducts. The darker rings were associated with newly expanded cuticle. In situ voltammetry using the SPRI gold substrate as the working electrode revealed presence of redox active compounds (oxidation potential approx 0.2 V vs Ag/AgCl) after barnacles were reattached on surfaces. Redox activity persisted during the reattachment period. The results reveal surface adsorption processes coupled to the complex secretory and chemical activity under barnacles as they construct

  14. Imaging Active Surface Processes in Barnacle Adhesive Interfaces.

    PubMed

    Golden, Joel P; Burden, Daniel K; Fears, Kenan P; Barlow, Daniel E; So, Christopher R; Burns, Justin; Miltenberg, Benjamin; Orihuela, Beatriz; Rittshof, Daniel; Spillmann, Christopher M; Wahl, Kathryn J; Tender, Leonard M

    2016-01-19

    Surface plasmon resonance imaging (SPRI) and voltammetry were used simultaneously to monitor Amphibalanus (=Balanus) amphitrite barnacles reattached and grown on gold-coated glass slides in artificial seawater. Upon reattachment, SPRI revealed rapid surface adsorption of material with a higher refractive index than seawater at the barnacle/gold interface. Over longer time periods, SPRI also revealed secretory activity around the perimeter of the barnacle along the seawater/gold interface extending many millimeters beyond the barnacle and varying in shape and region with time. Ex situ experiments using attenuated total reflectance infrared (ATR-IR) spectroscopy confirmed that reattachment of barnacles was accompanied by adsorption of protein to surfaces on similar time scales as those in the SPRI experiments. Barnacles were grown through multiple molting cycles. While the initial reattachment region remained largely unchanged, SPRI revealed the formation of sets of paired concentric rings having alternately darker/lighter appearance (corresponding to lower and higher refractive indices, respectively) at the barnacle/gold interface beneath the region of new growth. Ex situ experiments coupling the SPRI imaging with optical and FTIR microscopy revealed that the paired rings coincide with molt cycles, with the brighter rings associated with regions enriched in amide moieties. The brighter rings were located just beyond orifices of cement ducts, consistent with delivery of amide-rich chemistry from the ducts. The darker rings were associated with newly expanded cuticle. In situ voltammetry using the SPRI gold substrate as the working electrode revealed presence of redox active compounds (oxidation potential approx 0.2 V vs Ag/AgCl) after barnacles were reattached on surfaces. Redox activity persisted during the reattachment period. The results reveal surface adsorption processes coupled to the complex secretory and chemical activity under barnacles as they construct

  15. Towards Global Simulation of Irrigation in a Land Surface Model: Multiple Cropping and Rice Paddy in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Beaudoing, Hiroko Kato; Rodell, Matthew; Ozdogan, Mutlu

    2010-01-01

    Agricultural land use significantly influences the surface water and energy balances. Effects of irrigation on land surface states and fluxes include repartitioning of latent and sensible heat fluxes, an increase in net radiation, and an increase in soil moisture and runoff. We are working on representing irrigation practices in continental- to global-scale land surface simulation in NASA's Global Land Data Assimilation System (GLDAS). Because agricultural practices across the nations are diverse, and complex, we are attempting to capture the first-order reality of the regional practices before achieving a global implementation. This study focuses on two issues in Southeast Asia: multiple cropping and rice paddy irrigation systems. We first characterize agricultural practices in the region (i.e., crop types, growing seasons, and irrigation) using the Global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) dataset. Rice paddy extent is identified using remote sensing products. Whether irrigated or rainfed, flooded fields need to be represented and treated explicitly. By incorporating these properties and processes into a physically based land surface model, we are able to quantify the impacts on the simulated states and fluxes.

  16. A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Adizzone, Joe; Nelkin, Eric; Starr, David OC. (Technical Monitor)

    2001-01-01

    The global air-sea turbulent fluxes are needed for driving ocean models and validating coupled ocean-atmosphere global models. A method was developed to retrieve surface air humidity from the radiances measured by the Special Sensor Microwave/Imager (SSM/I) Using both SSM/I-retrieved surface wind and air humidity, they computed daily turbulent fluxes over global oceans with a stability-dependent bulk scheme. Based on this method, we have produced Version 1 of Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF) dataset from the SSM/I data and other data. It provides daily- and monthly-mean surface turbulent fluxes and some relevant parameters over global oceans for individual F8, F10, and F11 satellites covering the period July 1987-December 1994. It also provides 1988-94 annual- and monthly-mean climatologies of the same variables, using only F8 and F1 1 satellite data. It has a spatial resolution of 2.0 degrees x 2.5 degrees lat-long and is archived at the NASA/GSFC DAAC. The purpose of this paper is to present an updated assessment of the GSSTF 1.0 dataset.

  17. Implementing the Remotely Sensed Evaporative Stress Index Globally Using MODIS Day/Night Land-surface Temperatures

    NASA Astrophysics Data System (ADS)

    Anderson, M. C.; Hain, C.; Otkin, J.

    2014-12-01

    The utility and reliability of standard meteorological drought indices based on measurements of precipitation is limited by the spatial distribution and quality of currently available rainfall data. Furthermore, precipitation-based indices only reflect one component of the surface hydrologic cycle, and cannot readily capture non-precipitation based moisture inputs to the land-surface system (e.g., irrigation, shallow groundwater tables) that may temper drought impacts or variable rates of water consumption across a landscape. As global drought monitoring exercises, such as the Global Drought Information System, continue to expand, a need for tools that complement precipitation-based indicators will also grow. Here we describe a global implementation of the remotely sensed Evaporative Stress Index (ESI) based on anomalies in actual-to-reference evapotranspiration (ET) ratio. For ESI implementations to date, actual ET has been derived via energy balance using the morning land-surface temperature (LST) rise observed with geostationary satellites. In comparison with vegetation indices, LST is a fast-response variable, with the potential for providing early warning of crop stress reflected in increasing canopy temperatures. Our initial work has mainly focused on regional implementations of ESI (e.g., North America, Brazil, Africa) and a global ESI product has not been yet been evaluated. As the global constellation of geostationary sensors continue to mature, some limitations still exist which hamper an implementation of ESI using only geostationary LST. Therefore, a new regression-based methodology which uses twice-daily observations of LST from polar orbiting sensors (such as the Moderate Resolution Imaging Spectrometer - MODIS and the Visible Infrared Imaging Radiometer Suite - VIIRS) has been developed to estimate mid-morning LST needed for ESI from a single sensor. This new global ESI dataset will be evaluated over the 2000-2014 time period against currently used

  18. Microstructure and surface properties of lignocellulosic-based activated carbons

    NASA Astrophysics Data System (ADS)

    González-García, P.; Centeno, T. A.; Urones-Garrote, E.; Ávila-Brande, D.; Otero-Díaz, L. C.

    2013-01-01

    Low cost activated carbons have been produced via chemical activation, by using KOH at 700 °C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp2 content ≈ 95% and average mass density of 1.65 g/cm3 (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m2/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm2) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  19. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  20. Preparation and ozone-surface modification of activated carbon. Thermal stability of oxygen surface groups

    NASA Astrophysics Data System (ADS)

    Jaramillo, J.; Álvarez, P. M.; Gómez-Serrano, V.

    2010-06-01

    The control of the surface chemistry of activated carbon by ozone and heat treatment is investigated. Using cherry stones, activated carbons were prepared by carbonization at 900 °C and activation in CO 2 or steam at 850 °C. The obtained products were ozone-treated at room temperature. After their thermogravimetric analysis, the samples were heat-treated to 300, 500, 700 or 900 °C. The textural characterization was carried out by N 2 adsorption at 77 K, mercury porosimetry, and density measurements. The surface analysis was performed by the Bohem method and pH of the point of zero charge (pH pzc). It has been found that the treatment of activated carbon with ozone combined with heat treatment enables one to control the acidic-basic character and strength of the carbon surface. Whereas the treatment with ozone yields acidic carbons, carbon dioxide and steam activations of the carbonized product and the heat treatment of the ozone-treated products result in basic carbons; the strength of a base which increases with the increasing heat treatment temperature. pH pzc ranges between 3.6 and 10.3.

  1. Transcriptional Analysis of the Global Regulatory Networks Active in Pseudomonas syringae during Leaf Colonization

    PubMed Central

    Yu, Xilan; Lund, Steven P.; Greenwald, Jessica W.; Records, Angela H.; Scott, Russell A.; Nettleton, Dan; Lindow, Steven E.; Gross, Dennis C.

    2014-01-01

    ABSTRACT The plant pathogen Pseudomonas syringae pv. syringae B728a grows and survives on leaf surfaces and in the leaf apoplast of its host, bean (Phaseolus vulgaris). To understand the contribution of distinct regulators to B728a fitness and pathogenicity, we performed a transcriptome analysis of strain B728a and nine regulatory mutants recovered from the surfaces and interior of leaves and exposed to environmental stresses in culture. The quorum-sensing regulators AhlR and AefR influenced few genes in planta or in vitro. In contrast, GacS and a downstream regulator, SalA, formed a large regulatory network that included a branch that regulated diverse traits and was independent of plant-specific environmental signals and a plant signal-dependent branch that positively regulated secondary metabolite genes and negatively regulated the type III secretion system. SalA functioned as a central regulator of iron status based on its reciprocal regulation of pyoverdine and achromobactin genes and also sulfur uptake, suggesting a role in the iron-sulfur balance. RetS functioned almost exclusively to repress secondary metabolite genes when the cells were not on leaves. Among the sigma factors examined, AlgU influenced many more genes than RpoS, and most AlgU-regulated genes depended on RpoN. RpoN differentially impacted many AlgU- and GacS-activated genes in cells recovered from apoplastic versus epiphytic sites, suggesting differences in environmental signals or bacterial stress status in these two habitats. Collectively, our findings illustrate a central role for GacS, SalA, RpoN, and AlgU in global regulation in B728a in planta and a high level of plasticity in these regulators’ responses to distinct environmental signals. PMID:25182327

  2. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces.

    PubMed

    Saini, Seema; Yücel Falco, Çiğdem; Belgacem, Mohamed Naceur; Bras, Julien

    2016-01-01

    In the last decade, a new fiber pretreatment has been proposed to make easy cellulose fibrillation into microfibrils. In this context, different surface cationized MFC was prepared by optimizing the experimental parameters for cellulose fibers pretreatment before fibrillation. All MFCs were characterized by conductometric titration to establish degree of substitution, field emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and optical microscopy assessed the effect of pretreatment on the morphology of the ensuing MFCs. Antibacterial activities of neat and cationized MFC samples were investigated against Gram positive bacteria (Bacillus subtilis, Staphylococcus aureus) and Gram negative bacteria (Escherichia coli). The CATMFC sample at DS greater than 0.18 displayed promising results with antibacterial properties without any leaching of quaternary ammonium into the environment. This work proved the potential of cationic MFCs with specific DS for contact active antimicrobial surface applications in active food packaging, medical packaging or in health and cosmetic field. PMID:26453874

  3. Detection, evaluation, and analysis of global fire activity using MODIS data

    NASA Astrophysics Data System (ADS)

    Giglio, Louis

    Global biomass burning plays a significant role in regional and global climate change, and spaceborne sensors offer the only practical way to monitor fire activity at these scales. This dissertation primarily concerns the development, evaluation, and use of the NASA Terra and Aqua MODIS instruments for fire monitoring. MODIS is the first satellite sensor designed specifically for global monitoring of fires. An improved operational fire detection algorithm was developed for the MODIS instrument. This algorithm offers a sensitivity to small, cool fires and minimizes false alarm rates. To support the accuracy assessment of the MODIS global fire product, an operational fire detection algorithm was developed and evaluated for the ASTER instrument, which provides higher resolution observations coincident with the Terra MODIS. The unique data set of multi-year MODIS day and night fire observations was used to analyze the global distribution of biomass burning using five different temporal metrics which included, for the first time, mean fire radiative power, a measure of fire intensity. The metrics show the planetary extent, seasonality, and interannual variability of fire. Recognizing differences in fire activity between morning and afternoon overpasses, the impact of the diurnal cycle of fire activity was addressed using seven years of fire data from the VIRS sensor on-board the TRMM satellite. A strong diurnal cycle was found in all regions, with the time of peak burning varying between approximately 13:00 and 18:30 local time. Given interest in area burned among atmospheric chemical transport and carbon cycle modelers, a data set was developed utilizing the MODIS global fire and vegetation cover products to estimate monthly burned area at 1-degree spatial resolution. The methods, products and results presented in this thesis provide the global change research and fire management communities with products for global fire monitoring and are currently being used in the

  4. Comparative study of surface-active properties and antimicrobial activities of disaccharide monoesters.

    PubMed

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air-water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect.

  5. Comparative Study of Surface-Active Properties and Antimicrobial Activities of Disaccharide Monoesters

    PubMed Central

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air–water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369

  6. Climate Simulations With NCAR CCM2 Forced by Global Sea Surface Temperature, 1950-89.

    NASA Astrophysics Data System (ADS)

    Kao, C.-Y. J.; Quintanar, A.; Newman, M. J.; Eichinger, W.; Langley, D. L.; Chen, S.-C.

    1996-12-01

    A 40-yr integration is conducted using the National Center for Atmospheric Research (NCAR) Community Climate Model Version 2 (CCM2). The simulation was forced by observed monthly global sea surface temperature (SST) changes during 1950-89. The January climates of the model results are presented in the paper. The modeled means and interannual variability are analyzed and compared with observations based on different accounts. Firm, the authors concentrate on the period of 1951-79. The monthly varying SSTs of this period were used to construct the SST climatology for an earlier 20-yr simulation conducted by NCAR researchers. The difference of the model climatology between the two simulations, respectively, forced by monthly varying SST and annually repeating SST, is examined. The modeled mean fields do not significantly differ between the two simulations especially for the Northern Hemisphere. The magnitude of interannual variability is enhanced in the current simulation especially for the northern Pacific due to the tropical SST forcing. The authors then concentrate on the remaining part of the simulation-the period from 1979 to 1989. The global climate during this period analyzed by the European Centre for Medium-Range Weather Forecasts (ECMWF) has been widely used for validation purposes by various general circulation model (GCM) studies including the CCM2 simulation mentioned above. The model performance in terms of basic circulation features for the period 1979-89 is actually quite impressive. Some earlier recognized model deficiencies in the above 20-yr simulation are improved simply because they were identified based upon mismatched time periods between the ECMWF analysis and the model simulation.The model results of the entire simulation are finally compared with the multidecadal data of sea level pressure and 700-mb geopotential height analyzed by the National Meteorological Center. The decadal analysis of the model results reveals that the model has

  7. Virus activity on the surface of glaciers and ice sheets

    NASA Astrophysics Data System (ADS)

    Bellas, C. M.; Anesio, A. M.; Telling, J.; Stibal, M.; Barker, G.; Tranter, M.; Yallop, M.; Cook, J.

    2012-12-01

    Viruses are found wherever there is life. They are major components of aquatic ecosystems and through interactions with their hosts they significantly alter global biogeochemical cycles and drive evolutionary processes. Here we focus on the interactions between bacteriophages and their hosts inhabiting the microbially dominated supraglacial ecosystems known as cryoconite holes. The diversity of phages present in the sediments of cryoconites was examined for the first time by using a molecular based approach to target the T4-type bacteriophage. Through phylogenetic analysis it was determined that the phage community was diverse, consisting of strains that grouped with those from other global habitats and those that formed several completely new T4-type phage clusters. The activity of the viral community present on glaciers from Svalbard and the Greenland Ice Sheet was also addressed through a series of incubation experiments. Here new virus production was found to be capable of turning over the viral population approximately twice a day, a rate comparable to marine and freshwater sediments around the globe. This large scale viral production was found to be theoretically capable of accounting for all heterotrophic bacterial mortality in cryoconite holes. The mode of infection that viruses employ in cryoconite holes was also addressed to show that a variety of viral life strategies are likely responsible for the continued dominance of viruses in these unique habitats. The implications of viral activity are discussed in terms of carbon cycling in supraglacial ecosystems.

  8. Activation studies of NEG coatings by surface techniques

    SciTech Connect

    Sharma, R. K.; Jagannath,; Bhushan, K. G.; Gadkari, S. C.; Mukund, R.; Gupta, S. K.

    2013-02-05

    NEG (Non Evaporable Getters)materials in the form of ternary alloy coatings have many benefits compare to traditional bare surfaces such as Extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption cofficient. The extreme high vacuum (pressure > 10{sup -10} mbar) is very useful to the study of surfaces of the material, for high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc. Low secondary electron yield leads to better beam life time. In LHC the pressure in the interaction region of the two beams is something of the order of 10{sup -12} mbar. In this paper preparation of the coatings and their characterization to get the Activation temperature by using the surface techniques XPS, SEM and SIMS has been shown.

  9. A Global Model Simulation of Aerosol Effects of Surface Radiation Budget- Toward Understanding of the "Dimming to Brightening" Transition

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Bian, Huisheng; Yu, Hongbin

    2008-01-01

    We present a global model study on the role aerosols play in the change of solar radiation at Earth's surface that transitioned from a decreasing (dimming) trend to an increasing (brightening) trend. Our primary objective is to understand the relationship between the long-term trends of aerosol emission, atmospheric burden, and surface solar radiation. More specifically, we use the recently compiled comprehensive global emission datasets of aerosols and precursors from fuel combustion, biomass burning, volcanic eruptions and other sources from 1980 to 2006 to simulate long-term variations of aerosol distributions and optical properties, and then calculate the multi-decadal changes of short-wave radiative fluxes at the surface and at the top of the atmosphere by coupling the GOCART model simulated aerosols with the Goddard radiative transfer model. The model results are compared with long-term observational records from ground-based networks and satellite data. We will address the following critical questions: To what extent can the observed surface solar radiation trends, known as the transition from dimming to brightening, be explained by the changes of anthropogenic and natural aerosol loading on global and regional scales? What are the relative contributions of local emission and long-range transport to the surface radiation budget and how do these contributions change with time?

  10. Deployable Extravehiclar Activity Platform (DEVAP) for Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Merbitz, Jerad; Kennedy, Kriss; Gill, Tracy; Tri, Terry; Liolios, Sotirios; Lynch, Amanda; Walsh, Edward

    2012-01-01

    The Deployable Extra-Vehicular Activity Platform (DEVAP) is a staging platform for egress and ingress attached to a lunar, Mars, or planetary surface habitat airlock, suitlock, or port. The DEVAP folds up into a compact package for transport, and deploys manually from its attached location to provide a ramp and staging platform for extra-vehicular activities. This paper discusses the latest development of the DEVAP, from its beginnings as a portable platform attached to the Lunar Outpost Pressurized Excursion Module (PEM) in the Constellation Lunar Surface Systems scenarios, to the working prototype deployed at the2011 NASA Desert Research and Technology Studies (D-RATS) analog field tests in Arizona. The paper concludes with possible future applications and directions for the DEVAP.

  11. Activities of the COSPAR Panel on Exploration supporting the Global Exploration Roadmap

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, P.; McKay, C. P.

    2014-08-01

    The Global Exploration Roadmap (GER) is driven by several goals and objectives that include space science, the search for life as well as preparatory science activities to enable human space exploration. The Committee on Space Research (COSPAR), through its Commissions and Panels provides an international forum that supports and promotes space exploration worldwide. COSPAR's Panel on Exploration (PEX) investigates a stepwise approach of preparatory research on Earth and in Low Earth Orbit (LEO) to facilitate a future global space exploration program. We summarize recent activities and workshops of PEX in support of the GER.

  12. CA II Emission surface fluxes in active chromosphere stars

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.

    1984-01-01

    Ca II emission-line surface fluxes are derived for 14 stars from 17 A/mm photographic spectra. Most of the stars observed are active chromosphere binaries; a few are known X-ray sources or have been observed by the IUE. The status of optical information on each of the objects is reviewed, and new information on v sin i and duplicity is presented.

  13. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.

    PubMed

    Sotiriou, Georgios A; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E

    2011-06-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution. PMID:23730198

  14. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.

    PubMed

    Sotiriou, Georgios A; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E

    2011-06-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution.

  15. Changes in biologically active ultraviolet radiation reaching the Earth's surface.

    PubMed

    Madronich, S; McKenzie, R L; Björn, L O; Caldwell, M M

    1998-10-01

    being used, together with models of atmospheric transmission, to provide global coverage and long-term estimates of surface UV-B radiation. Estimates of long-term (1979-1992) trends in zonally averaged UV irradiances that include cloud effects are nearly identical to those for clear-sky estimates, providing evidence that clouds have not influenced the UV-B trends. However, the limitations of satellite-derived UV estimates should be recognized. To assess uncertainties inherent in this approach, additional validations involving comparisons with ground-based observations are required. Direct comparisons of ground-based UV-B radiation measurements between a few mid-latitude sites in the Northern and Southern Hemispheres have shown larger differences than those estimated using satellite data. Ground-based measurements show that summertime erythemal UV irradiances in the Southern Hemisphere exceed those at comparable latitudes of the Northern Hemisphere by up to 40%, whereas corresponding satellite-based estimates yield only 10-15% differences. Atmospheric pollution may be a factor in this discrepancy between ground-based measurements and satellite-derived estimates. UV-B measurements at more sites are required to determine whether the larger observed differences are globally representative. High levels of UV-B radiation continue to be observed in Antarctica during the recurrent spring-time ozone hole. For example, during ozone-hole episodes, measured biologically damaging radiation at Palmer Station, Antarctica (64 degrees S) has been found to approach and occasionally even exceed maximum summer values at San Diego, CA, USA (32 degrees N). Long-term predictions of future UV-B levels are difficult and uncertain. Nevertheless, current best estimates suggest that a slow recovery to pre-ozone depletion levels may be expected during the next half-century. (ABSTRACT TRUNCATED)

  16. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE PAGES

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  17. Toward a High-Resolution Monitoring of Continental Surface Water Extent and Dynamics, at Global Scale: from GIEMS (Global Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography)

    NASA Astrophysics Data System (ADS)

    Prigent, Catherine; Lettenmaier, Dennis P.; Aires, Filipe; Papa, Fabrice

    2016-03-01

    Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique [e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset (0.25^circ × 0.25^circ) of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.

  18. The Global Terrestrial Network for Glaciers: an overview of recent activities

    NASA Astrophysics Data System (ADS)

    Arendt, Anthony

    2015-04-01

    The Global Terrestrial Network for Glaciers (GTN-G) is an organizational framework for three operational bodies dedicated to global mapping and monitoring of glacier changes. In this talk I will provide an overview of recent progress made by the World Glacier Monitoring Service (WGMS), the National Snow and Ice Data Center (NSIDC) and the Global Land Ice Measurements from Space (GLIMS) toward distribution and analysis of global in-situ and remotely sensed glacier observations. I will highlight new initiatives aimed at database integration, modernization of internet-based tools, and enhanced community outreach. These activities are helping to generate new discoveries in cryospheric studies, which I will illustrate through several example applications. Finally, I will outline a vision for future GTN-G efforts that will enable rapid response to anticipated glacier variations resulting from climate variability.

  19. Characterization of cathode keeper wear by surface layer activation

    NASA Technical Reports Server (NTRS)

    Polk, James E.

    2003-01-01

    In this study, the erosion rates of the discharge cathode keeper in a 30 cm NSTAR configuration ion thruster were measured using a technique known as Surface Layer Activation (SLA). This diagnostic technique involves producing a radioactive tracer in a given surface by bombardment with high energy ions. The decrease in activity of the tracer material may be monitored as the surface is subjected to wear processes and correlated to a depth calibration curve, yielding the eroded depth. Analysis of the activities was achieved through a gamma spectroscopy system. The primary objectives of this investigation were to reproduce erosion data observed in previous wear studies in order to validate the technique, and to determine the effect of different engine operating parameters on erosion rate. The erosion profile at the TH 15 (23 kw) setting observed during the 8200 hour Life Demonstration Test (LDT) was reproduced. The maximum keeper erosion rate at this setting was determined to be 0.085 pm/hr. Testing at the TH 8 (1.4 kw) setting demonstrated lower erosion rates than TH 15, along with a different wear profile. Varying the keeper voltage was shown to have a significant effect on the erosion, with a positive bias with respect to cathode potential decreasing the erosion rate significantly. Accurate measurements were achieved after operating times of only 40 to 70 hours, a significant improvement over other erosion diagnostic methods.

  20. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review.

    PubMed

    Morrissey, Christy A; Mineau, Pierre; Devries, James H; Sanchez-Bayo, Francisco; Liess, Matthias; Cavallaro, Michael C; Liber, Karsten

    2015-01-01

    sensitive aquatic invertebrate taxa at concentrations at or below 1μg/L under acute exposure and 0.1μg/L for chronic exposure. Using probabilistic approaches (species sensitivity distributions), we recommend here that ecological thresholds for neonicotinoid water concentrations need to be below 0.2μg/L (short-term acute) or 0.035μg/L (long-term chronic) to avoid lasting effects on aquatic invertebrate communities. The application of safety factors may still be warranted considering potential issues of slow recovery, additive or synergistic effects and multiple stressors that can occur in the field. Our analysis revealed that 81% (22/27) and 74% (14/19) of global surface water studies reporting maximum and average individual neonicotinoid concentrations respectively, exceeded these thresholds of 0.2 and 0.035μg/L. Therefore, it appears that environmentally relevant concentrations of neonicotinoids in surface waters worldwide are well within the range where both short- and long-term impacts on aquatic invertebrate species are possible over broad spatial scales.