Science.gov

Sample records for activity ground deformation

  1. Space-based monitoring of ground deformation

    NASA Astrophysics Data System (ADS)

    Nobakht Ersi, Fereydoun; Safari, Abdolreza; Gamse, Sonja

    2016-07-01

    Ground deformation monitoring is valuable to understanding of the behaviour of natural phenomena. Space-Based measurement systems such as Global Positioning System are useful tools for continuous monitoring of ground deformation. Ground deformation analysis based on space geodetic techniques have provided a new, more accurate, and reliable source of information for geodetic positioning which is used to detect deformations of the Ground surface. This type of studies using displacement fields derived from repeated measurments of space-based geodetic networks indicates how crucial role the space geodetic methods play in geodynamics. The main scope of this contribution is to monitor of ground deformation by obtained measurements from GPS sites. We present ground deformation analysis in three steps: a global congruency test on daily coordinates of permanent GPS stations to specify in which epochs deformations occur, the localization of the deformed GPS sites and the determination of deformations.

  2. Preliminary results of ESA Category-1 Project 5834 "Application of DInSAR technique to areas of active ground deformations"

    NASA Astrophysics Data System (ADS)

    Massa, B.; D'Auria, L.

    2009-04-01

    We have established a processing chain of Synthetic Aperture Radar (SAR) data for identification and parametrisation of deformation sources in areas of active ground deformation (e.g. seismogenic areas, volcanic districts). SAR data from European Space Agency (ESA) satellites ERS-2 and ENVISAT are used. SAR and InSAR data processing LEVEL 0 SAR data are focussed to Single Look Complex (SLC) through ROI_PAC (Copyright 2002-2008, Caltech/Jet Propulsion Laboratory). We perform an advanced data processing using Doris (Kampes and Usai, 1999) a single program that can do most common steps of the interferometric radar processing starting from SLC data to generation of interferometric products and geocoding. Unwrapping of interferometric phase is performed using the public domain software snaphu (Chen and Zebker, 2001). Modeling of deformation sources We propose a novel inversion approach base on non-linear inversion. The forward modeling is provided by the semi-analytic deformation model for point sources and finite faults. The parameters of the fault (center position, width, height, rake and seismic moment) are inverted using a combination of non-linear optimization algorithms (as Monte-Carlo, Nelder&Mead Simplex and Simulated Annealing). The misfit function defined for the optimization is based on the L2 norm of the error weighted by the coherence of the considered spatial point. Test datasets To test our modeling procedure we chose three different study areas, refer to mainly strike-slip seismogenic sources with different orientation to respect satellite Line Of Sight (LOS): December 26 2003 Iranian earthquake (Bam e.), data from both ascending and descending passes of ENVISAT ASAR narrow swath IS2 (RAW and SLCs); August 17 1999 Turkey earthquake (Izmit e.), data from both ascending and descending passes of ERS-2 AMI SAR (SLCs); June 17-21 2000 Iceland earthquakes, data from both ascending and descending passes of ERS-2 AMI SAR (SLCs). Tests carried over real

  3. Regional ground deformation and its controlling measures in China

    NASA Astrophysics Data System (ADS)

    Zhou, Zhifang; Zhu, Haisheng; Huang, Yong

    2006-12-01

    With the development of construction of China Cities, there exist a lot of environmental geological problems involved in the geofracture, land subsidence, collapse, landslide, devolution, mudrock flow, floating sand, piping and soft ground deformation. Of big cities whose population is over one million in China, about 30 cities appears the land subsidence region. Other cities locate in the regions of collapse yellow earth or expand soil of strong swell-shrink charasteristic, soft ground and karst. In the paper, the cause and hazard of regionality ground deformation is summed up. The causes of regional land deformation caused by the natural geological effect and activities of human being are analyzed. According to the length of deformation course and endanger of society, economy and life, land deformation involves three types, that is, the delay, rapid and break land deformation. And the concrete countermeasure and method are provided.

  4. Ground Deformation Associated With Post-Mining Activity at the French-German Border Revealed by Multidimensional Time Series Analysis of SAR Data Acquired in Various Orbital Geometries

    NASA Astrophysics Data System (ADS)

    Smets, B.; Samsonov, S. V.; d'Oreye, N.

    2012-12-01

    We present the application of an innovative methodology for producing multidimensional time series of ground deformation from satellite radar data acquired by sensors with various acquisition geometry, ground resolution, and wave band (Samsonov and d'Oreye, Resubmitted). This technique is based on the Small Baseline Subset (SBAS) method that is modified to produce horizontal and vertical time series of ground deformation. Produced time series have combined coverage, improved temporal resolution and lower noise level. We apply this methodology for mapping coal mining related ground subsidence and heave in the Greater Region of Luxembourg along the French-German border. For this we processed 167 Synthetic Aperture Radar ERS-1/2 and ENVISAT images acquired between 1995 and 2009 from one ascending (track 29) and one descending (track 337) tracks and created over five hundred interferograms that were used for time series analysis. Produced vertical and east-west linear deformation rates show with remarkable precision region of localized ground deformation located above and caused by mining and post-mining activities. Time series of ground de- formation display temporal variability: reversal from subsidence to uplift and acceleration of subsidence on the vertical component and horizontal motion towards the center of the subsidence on the east-west component. InSAR results are successfully validated by leveling measurements performed by the French Geological Survey (BRGM) during 2006-2008. We determined that deformation rate changes are mainly caused by water level variations in the mines. Due to higher temporal and spatial resolution the proposed space-born method detected a larger number of subsidence and uplift areas in comparison to leveling measurements restricted to annual monitoring of benchmark points along roads. We also identified deformation regions that are not precisely located above the mining sites. Comparison of InSAR measurements with the water levels

  5. Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method

    NASA Astrophysics Data System (ADS)

    Samsonov, Sergey; d'Oreye, Nicolas; Smets, Benoît

    2013-08-01

    We present a novel methodology for integration of multiple InSAR data sets for computation of two dimensional time series of ground deformation. The proposed approach allows combination of SAR data acquired with different acquisition parameters, temporal and spatial sampling and resolution, wavelength and polarization. Produced time series have combined coverage, improved temporal resolution and lower noise level. We apply this methodology for mapping coal mining related ground subsidence and uplift in the Greater Region of Luxembourg along the French-German border. For this we processed 167 Synthetic Aperture Radar ERS-1/2 and ENVISAT images acquired between 1995 and 2009 from one ascending (track 29) and one descending (track 337) tracks and created over five hundred interferograms that were used for time series analysis. Derived vertical and east-west linear deformation rates show with remarkable precision a region of localized ground deformation located above and caused by mining and post-mining activities. Time series of ground deformation display temporal variability: reversal from subsidence to uplift and acceleration of subsidence in the vertical component, and horizontal motion toward the center of the subsidence on the east-west component. InSAR results are validated by leveling measurements collected by the French Geological Survey (BRGM) during 2006-2008. We determined that deformation rate changes are mainly caused by water level variations in the mines. Due to higher temporal and spatial resolution the proposed space-borne method detected a larger number of subsidence and uplift areas in comparison to leveling measurements restricted to annual monitoring of benchmark points along roads. We also identified one deformation region that is not precisely located above the mining sites. Comparison of InSAR measurements with the water levels measured in the mining pits suggest that part of the water that filled the galleries after termination of the

  6. Ground deformation from ground-based SAR interferometry

    NASA Astrophysics Data System (ADS)

    Tarchi, Dario; Casagli, Nicola; Fortuny-Guasch, Joaquim; Guerri, Letizia; Antonello, Giuseppe; Leva, Davide

    An in-depth analysis of the last two images acquired by the ground-based interferometric synthetic aperture radar system installed on Stromboli before the 5 April 2003 explosion allowed us to detect the precursory signals of the explosion related to ground deformation. In particular, it was possible to estimate the exact time of the explosion through the time domain analysis of raw data from the radar acquisition. This was interrupted by a blackout that occurred a few seconds after the event. The explosion onset time corresponds to a clear change in the intensity of the backscattered energy, related to the dense volcanic plume emission from the Crater. In addiction, the use of a particular interferometric processing technique for the last two acquisitions, consisting of the selection of synthetic sub-apertures from the main ones and creating with these a sequence of interferograms with a higher temporal resolution, detected precursory deformations starting 2 min before the explosion. These observations indicate the occurrence of an elastic deformation of a centimeter amplitude that affected the volcanic edifice progressively from the Crater down to the Sciara del Fuoco depression.

  7. Study of the deformation mechanism of the Gaoliying ground fissure

    NASA Astrophysics Data System (ADS)

    Cheng, G.; Wang, H.; Luo, Y.; Guo, H.

    2015-11-01

    The Gaoliying ground fissure in Beijing has caused building cracking and road damage, and has seriously influenced city construction. Based on investigations and trenching, the influences of the fault and the variation of groundwater levels on the formation mechanism of the Gaoliying ground fissure were investigated by using FLAC3D. The results indicated that (1) the surface location of Gaoliying fissure is controlled by the underlying normal fault activity, and over pumping further exacerbates development of the ground fissure; (2) when the groundwater level declines, obvious differential settlement occurs at both sides of the ground fissure, in which greater settlement occurs in the vicinity of the hanging wall, the greater the distance from the hanging wall, the smaller the ground subsidence, however smaller ground subsidence occurs in the vicinity of the footwall, the greater the distance from the footwall, the greater the ground subsidence; (3) the vertical velocity of the ground fissure triggered by the fault activity and groundwater decline ranges from 15.5 to 18.3 mm a-1, which is basically in line with the monitoring data. The fault activity contributes about 28-39 %, and the groundwater contributes about 61-72 % to the deformation of the ground fissure, respectively.

  8. Correlation Between Landforms And Ground Deformation At Nisyros Volcano (Greece)

    NASA Astrophysics Data System (ADS)

    Camiz, S.; Papageorgiou, E.; Poscollieri, M.; Parcharidis, Is.

    2013-12-01

    Relief represents a major element in the characterization of a landscape that can be affected even by slight modifications on its shape, often due to ground deformation. These terrain characteristics are both linked to the topography of a given area, through a Digital Elevation Model (DEM). Topographical attributes, such as slope, aspect, elevation gradients, and others, can be provided by DEM analysis and used further as input to classification methods for defining terrain units. In this study, we explore the relationship between ground deformation and landforms in Nisyros volcano, as ground deformation seems to follow existing geomorphological patterns. Possible correlations between morphological information, collected by classifying landforms on the basis of the ~30 m spatial resolution ASTER Global Digital Elevation Model, and deformation observations resulting from Differential Synthetic Aperture Radar Interferometry (DInSAR) are performed, taking also into consideration the geostructural setting of the study area. Nisyros volcano, located at the eastern part of the active Hellenic Volcanic Arc, was investigated for the time period 2002-2010, during a dormant phase where the topography is mostly described by the geological/tectonic structure. In terms of DInSAR technique, the entire archive of ENVISAT images was used, in both ascending and descending mode, to derive the deformation rates. For the geomorphic consideration Tandem Analysis was implemented through a mixed classification procedure following a principal component analysis applied to local elevation gradients, extracted considering each pixel of the DEM and its nearest neighbours. The projection of the DInSAR results on the obtained factor spaces allows evaluating the homogeneity of the deformation in the pixels belonging to the same classes.

  9. Experimental modelling of ground deformation associated with shallow magma intrusions

    NASA Astrophysics Data System (ADS)

    Galland, Olivier

    2012-02-01

    Active volcanoes experience ground deformation as a response to the dynamics of underground magmatic systems. The analysis of ground deformation patterns may provide important constraints on the dynamics and shape of the underlying volcanic plumbing systems. Nevertheless, these analyses usually take into account simplistic shapes (sphere, dykes, sills) and the results cannot be verified as the modelled systems are buried. In this paper, I present new results from experimental models of magma intrusion, in which both the evolution of ground deformation during intrusion and the shape of the underlying intrusion are monitored. The models consisted of a molten vegetable oil, simulating low viscosity magma, injected into cohesive fine-grained silica flour, simulating the brittle upper crust; oil injection resulted is sheet intrusions (dykes, sills and cone sheets). The initial topography in the models was flat. While the oil was intruding, the surface of the models slightly lifted up to form a smooth relief, which was mapped through time. After an initial symmetrical development, the uplifted area developed asymmetrically; at the end of the experiments, the oil always erupted at the steepest edge of the uplifted area. After the experiment, the oil solidified, the intrusion was excavated and the shape of its top surface mapped. The comparison between the uplifted zone and the underlying intrusions showed that (1) the complex shapes of the uplifted areas reflected the complex shapes of the underlying intrusions, (2) the time evolution of the uplifted zone was correlated with the evolution of the underlying intrusion, and (3) the early asymmetrical evolution of the uplifted areas can be used to predict the location of the eruption of the oil. The experimental results also suggest that complex intrusion shapes (inclined sheet, cone sheet, complex sill) may have to be considered more systematically in the analyses of ground deformation patterns on volcanoes.

  10. Experimental modelling of ground deformation associated with shallow magma intrusions

    NASA Astrophysics Data System (ADS)

    Galland, O.

    2012-04-01

    Active volcanoes experience ground deformation as a response to the dynamics of underground magmatic systems. The analysis of ground deformation patterns may provide important constraints on the dynamics and shape of the underlying volcanic plumbing systems. Nevertheless, these analyses usually take into account simplistic shapes (sphere, dykes, sills) and the results cannot be verified as the modelled systems are buried. In this contribution, I will present new results from experimental models of magma intrusion, in which both the evolution of ground deformation during intrusion and the shape of the underlying intrusion are monitored in 3D. The models consisted of a molten vegetable oil, simulating low viscosity magma, injected into cohesive fine-grained silica flour, simulating the brittle upper crust; oil injection resulted is sheet intrusions (dykes, sills and cone sheets). The initial topography in the models was flat. While the oil was intruding, the surface of the models slightly lifted up to form a smooth relief, which was mapped through time. After an initial symmetrical development, the uplifted area developed asymmetrically; at the end of the experiments, the oil always erupted at the steepest edge of the uplifted area. After the experiment, the oil solidified, the intrusion was excavated and the shape of its top surface mapped. The comparison between the uplifted zone and the underlying intrusions showed that (1) the complex shapes of the uplifted areas reflected the complex shapes of the underlying intrusions, (2) the time evolution of the uplifted zone was correlated with the evolution of the underlying intrusion, and (3) the early asymmetrical evolution of the uplifted areas can be used to predict the location of the eruption of the oil. The experimental results also suggest that complex intrusion shapes (inclined sheet, cone sheet, complex sill) may have to be considered more systematically in analyses of ground deformation patterns on volcanoes.

  11. Influence of soil conditioning on ground deformation during longitudinal tunneling

    NASA Astrophysics Data System (ADS)

    Jiang, Mingjing; Yin, Zhen-Yu

    2014-03-01

    Soil conditioning is often adopted to facilitate EPB shield tunneling. However, the resulting improvement of soil fluidity and the reduction of friction forces will also raise the ground deformation problem. This paper aims to investigate the influence of soil conditioning on the ground deformation during longitudinal tunneling. DEM is employed for this study due to its advantages in analyzing large deformations and discontinuous processes. Soil conditioning is modeled by reducing the interparticle friction of soils in a specific zone around the cutterhead of the tunnel. The tunnel advance with different soil-conditioning treatments is thus modeled. Comparisons are carried out on the ground deformation, i.e. ground surface settlement, vertical and horizontal displacements. The influence of soil conditioning on the ground deformation is clarified, and is associated with the fluidity from poor to favorite, and the mechanical properties from dilative to contractive are associated with the increase of soil conditioning. The results are helpful to determine the conditioned soils and control ground deformation for real constructions.

  12. Ground Deformation Extraction Using Visible Images and LIDAR Data in Mining Area

    NASA Astrophysics Data System (ADS)

    Hu, Wenmin; Wu, Lixin

    2016-06-01

    Recognition and extraction of mining ground deformation can help us understand the deformation process and space distribution, and estimate the deformation laws and trends. This study focuses on the application of ground deformation detection and extraction combining with high resolution visible stereo imagery, LiDAR observation point cloud data and historical data. The DEM in large mining area is generated using high-resolution satellite stereo images, and ground deformation is obtained through time series analysis combined with historical DEM data. Ground deformation caused by mining activities are detected and analyzed to explain the link between the regional ground deformation and local deformation. A district of covering 200 km2 around the West Open Pit Mine in Fushun of Liaoning province, a city located in the Northeast China is chosen as the test area for example. Regional and local ground deformation from 2010 to 2015 time series are detected and extracted with DEMs derived from ZY-3 images and LiDAR point DEMs in the case study. Results show that the mean regional deformation is 7.1 m of rising elevation with RMS 9.6 m. Deformation of rising elevation and deformation of declining elevation couple together in local area. The area of higher elevation variation is 16.3 km2 and the mean rising value is 35.8 m with RMS 15.7 m, while the deformation area of lower elevation variation is 6.8 km2 and the mean declining value is 17.6 m with RMS 9.3 m. Moreover, local large deformation and regional slow deformation couple together, the deformation in local mining activities has expanded to the surrounding area, a large ground fracture with declining elevation has been detected and extracted in the south of West Open Pit Mine, the mean declining elevation of which is 23.1 m and covering about 2.3 km2 till 2015. The results in this paper are preliminary currently; we are making efforts to improve more precision results with invariant ground control data for validation.

  13. Possible ground-state octupole deformation in /sup 229/Pa

    SciTech Connect

    Ahmad, I.; Gindler, J.E.; Betts, R.R.; Chasman, R.R.; Friedman, A.M.

    1982-12-13

    Evidence is presented for the occurrence of a (5/2)/sup + -/ parity doublet as the ground state of /sup 229/Pa, in agreement with a previous theoretical prediction. The doublet splitting energy is measured to be 0.22 +- 0.05 keV. The relation of this doublet to ground-state octupole deformation is discussed. .ID LV2109 .PG 1762 1764

  14. Stressed and Deformed Condition of the Grounds Around Driven Piles

    NASA Astrophysics Data System (ADS)

    Zhusupbekov, A. Zh.; Zhusupbekov, A. A.; Zhakulin, A. S.; Tanaka, T.; Okajima, K.; Belovitch, A. J.; Sultanov, G. A.

    The paper highlights the soil characteristics on the territory of the Republic of Kazakhstan along with the basic theses of the elastic and plastic soil models elaborated by the authors through solving the physical non-linear mixed problem of the elasticity and plasticity theory to describe the initial stressed and deformed condition of water saturated grounds with consideration of the pore pressure.

  15. A Study of Ground Deformation in the Guangzhou Urban Area with Persistent Scatterer Interferometry

    PubMed Central

    Zhao, Qing; Lin, Hui; Jiang, Liming; Chen, Fulong; Cheng, Shilai

    2009-01-01

    The Interferometric Point Target Analysis (IPTA) technique and Advanced Synthetic Aperture Radar (ASAR) images acquired over Hong Kong from 2007–2008 were used to detect ground deformation in the urban area of Guangzhou city in South China. A ground deformation rate map with scattered distribution of point targets shows the maximum subsidence (rise) rate as high as -26 to -20 mma-1 (16–21 mma-1), implying that the study area is an active zone for ground deformation. Based on the point target map, a contour ground deformation rate map is generated. The map shows three major subsidence zones located in the middle-west, the east, and the southwest of the study area, respectively. All the six ground collapse accidents that occurred in 2007–2008 fall within the subsidence zones, qualitatively validating the IPTA results. Ground subsidence and geological conditions on Datansha Island are examined. The results indicate that the local geological conditions, such as limestone Karst geomorphology as well as silt layers characterized by high water content, high void ratio, high compressibility, low bearing capacity and low shear strength, and underground engineering projects are responsible for ground subsidence and ground collapse accidents occurred there. PMID:22389613

  16. Nuclear ground-state masses and deformations: FRDM(2012)

    DOE PAGESBeta

    Moller, P.; Sierk, A. J.; Ichikawa, T.; Sagawa, H.

    2016-03-25

    Here, we tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A=339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensivemore » and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient LL, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses.« less

  17. Long-lived large-scale ground deformation caused by a buoyantly rising magma resevoir

    NASA Astrophysics Data System (ADS)

    Del Potro, R.; Diez, M.; Muller, C.; Perkins, J. P.; Finnegan, N. J.; Gottsmann, J.

    2013-12-01

    Recent InSAR studies have identified a constant, long-wavelength ground deformation pattern, comprising a central uplift and peripheral subsidence, centred on Uturuncu volcano in the Altiplano Puna Volcanic Complex of the Central Andes. This so-called 'sombrero uplift' has been consistent over the time scales of InSAR observations (1992-2010); however, it is unclear how long this deformation has persisted over the history of Uturuncu. Here we constrain the duration and causes of the ground deformation through a combination of available geodetic data, geomorphological studies and numerical modelling. GPS data from re-occupation of a nearby levelling line show that the observed ground deformation from 1965 to 2012 is compatible with the extent and the rate observed with InSAR, and thus suggests that the 'sombrero uplift' may have been constant for at least 50 years. In addition, from geomorphological measurements using shorelines from nearby lakes as inclinometers, we conclude that the total uplift of Uturuncu has not been more than 30 m, or that the constant ongoing uplift cannot have been active for more than 3000 years. Following our recent geophysical studies in the area, we explore the possibility that the observed ground deformation is caused by a rising felsic diapir and test this hypothesis numerically to show that the process is viable under these specific conditions, and accounts for the observed uplift rate. Our findings have significant implications for volcanologists inferring the characteristics of magma reservoirs from ground deformation data as it offers an alternative explanation of the causes driving ground deformation, and the growth and failure of magma reservoirs in a hot multiphase viscous crust.

  18. Evidence of active ground deformation on the mid-ocean ridge: Axial seamount, Juan de Fuca Ridge, April-June 1988

    SciTech Connect

    Fox, C.G. )

    1990-08-10

    Since September 1987 a precision bottom pressure recorder (BPR) has been deployed within the summit caldera of Axial seamount. The instrument is capable of measuring pressure of 1 mbar resolution and recording these measurements at 64 samples per hour for up to 15 months. Any significant change in the pressure record should indicate a change of depth associated with vertical ground movement, commonly indicative of active inflation or deflation of underlying magma bodies. Results from the first 9 months of the BPR deployment revealed a significant change in pressure, which is interpreted to represent a 15-cm subsidence of the caldera floor during two 2- to 3-week periods in April-June 1988. Also during these periods, an anomalous decline in temperature at the site was recorded that is correlated with an apparent increase in current velocity at the Axial Seamount Hydrothermal Emissions Study (ASHES) vent field, suggesting vigorous advection of cold water into the caldera. Concurrent oceanographic data from Geosat and from current meter arrays do not indicate any large-scale oceanographic phenomena capable of generating these simultaneous events. One mechanism to explain simultaneous ground subsidence and temperature decline at the caldera center and increased bottom current at the caldera margin is the generation of a buoyant parcel of heated water in response to the intrusion or the eruption of magma associated with volcanic deflation. Similar volcanic events also may have generated large midwater plumes that have been described previously along the southern Juan de Fuca Ridge.

  19. GPS and EDM monitoring of Unzen volcano ground deformation

    NASA Astrophysics Data System (ADS)

    Matsushima, Takeshi; Takagi, Akimichi

    2000-11-01

    Following 198 years of dormancy, an eruption started at Mt. Fugen, the main peak of Unzen volcano, in Kyushu, Japan, in November 1990. A dacite lava dome began to grow in May 1991. We installed the surveying points of GPS in 1992 around the lava dome in order to observe the ground deformation that accompanied the growth of the lava dome. In the winters of 1993 and 1994, we observed swift ground deformations that radiated from the vent of the volcano. It was presumed that rising magma accumulated and expanded the volcano body. After the lava effusion stopped in 1995, we also installed surveying points on the lava dome. EDM mirrors were permanently fixed to the large rocks with bolts. A GPS survey was carried out 2 or 3 times each year to estimate the 3-dimensional displacement. The result of the EDM survey showed that the baselines from the flank of the volcano were shortening 5 mm per day, and the result of the GPS survey showed that the displacement vector of the dome was parallel to the direction of the steepest slope of the old volcano body. This indicates that the inside of the lava dome is still very hot, and that deformation of the dome is viscous.

  20. InSAR Detection of Ground Deformation in Megalopolises of Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zhao, Qing

    Megalopolises in the Pearl River Delta, including Guangzhou and Hong Kong, have experienced various degree of ground subsidence. The causes can be divided into two categories: natural subsidence and the human-induced subsidence. Monitoring the ground subsidence can not only help people to find out the distributions in both spatial and temporal fields, but also guide people to minimize the hazard ahead. Thus, it is significant to monitor the ground subsidence accurately, timely and frequently. This dissertation research uses the Environmental Satellite Advanced Synthetic Aperture Radar (ENVISAT ASAR) data received at the Chinese University of Hong Kong Satellite Remote Sensing Receiving Station and SAR Interferometry (InSAR) technology as a powerful tool for large-scale ground deformation monitoring in Guangzhou and Hong Kong areas. Persistent Scatterer Interferometry (PSI) method is used to detect ground deformation in the urban area of Guangzhou city. A ground deformation rate map with scattered distribution of point targets shows the maximum subsidence (rise) rate as high as -26 to -20 mma-1 (16-21 mma-1 ), implying that the study area is an active zone for ground deformation. Based on the point target map, a contour ground deformation rate map is generated. All the six ground collapse accidents that occurred in 2007-2008 fall within the subsidence zones, qualitatively validating the IPTA results. Ground subsidence and geological conditions on Datansha Island are examined. The results indicate that the local geological conditions and underground engineering projects are responsible for ground subsidence and ground collapse accidents occurred there. To interpret the distribution of active ground subsidence zones, a local geological map is used as a reference for generating a series of thematic maps. The results show that geological faults, rock distribution, over-development, and underground engineering projects may be four factors leading to the distribution of

  1. Comparative Analyses Of Multi-Frequency PSI Ground Deformation Measurements

    NASA Astrophysics Data System (ADS)

    Duro, Javier; Sabater, Jose R.; Albiol, David; Koudogbo, Fifame N.; Arnaud, Alain

    2012-01-01

    In recent years many new developments have been made in the field of SAR image analysis. The wider diversity of available SAR imagery gives the possibility of covering wide ranges of applications in the domain of ground motion monitoring for risk management and damage assessment. The work proposed is based on the evaluation of differences in ground deformation measurements derived from multi-frequency PSI analyses. The objectives of the project are the derivation of rules and the definition of criteria for the selection of the appropriate SAR sensor for a particular type of region of interest. Key selection factors are the satellite characteristics (operating frequency, spatial resolution, and revisit time), the geographic localization of AOI, the land cover type and the extension of the monitoring period. All presented InSAR analyses have been performed using the Stable Point Network (SPN) PSI software developed by Altamira Information [1].

  2. Nuclear ground-state masses and deformations: FRDM(2012)

    NASA Astrophysics Data System (ADS)

    Möller, P.; Sierk, A. J.; Ichikawa, T.; Sagawa, H.

    2016-05-01

    We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A = 339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient L, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses. The values of ten constants are determined directly from an optimization to fit ground-state masses of 2149 nuclei ranging from 16O to 106265Sg and 108264Hs. The error of the mass model is 0.5595 MeV for the entire region of nuclei included in the adjustment, but is only 0.3549 MeV for the region N ≥ 65. We also provide masses in the FRLDM, which in the more accurate treatments now has an error of 0.6618 MeV, with 0.5181 MeV for nuclei with N ≥ 65, both somewhat larger than in the FRDM. But in contrast to the FRDM, it is suitable for studies of fission and has been extensively so applied elsewhere, with FRLDM(2002) constants. The FRLDM(2012) fits 31 fission-barrier heights from 70Se to 252Cf with a root-mean-square deviation of 1.052 MeV.

  3. Ground Deformation Mapping of Houston-Galveston, Texas Using InSAR Time-Series Analysis

    NASA Astrophysics Data System (ADS)

    QU, F.; Lu, Z.; Bawden, G. W.; Kim, J. W.

    2014-12-01

    Houston-Galveston region in Texas has been subsiding due to the combined effects of groundwater withdrawal, hydrocarbon extraction, soil compaction, and active faulting. This human- and partially nature-induced ground deformation has gradually threatened the stability of urban infrastructure and caused the loss of wetland habitat along the Gulf of Mexico. Interferometric synthetic aperture radar (InSAR) exploiting multiple SAR images has the capability of obtaining ground motions in high spatial resolution over large coverage. In this study, ERS-1/2 (1993-2000), ENVISAT (2004-2010), and ALOS (2007-2011) datasets are used to unravel the characteristics of ground deformation from 1993 to 2011 over the Houston-Galveston area. The persistent scatterer InSAR (PSInSAR) time-series analysis technique is employed to estimate the spatial and temporal variations of ground motions during 20 years. The ERS-1/2 PSInSAR products have measured subsidence (up to 5 cm/yr) in the northwest Houston area as well as a slight uplift (1 cm/yr) in the southeast region from 1993 to 2000. The subsidence rate (up to 2 cm/yr) between 2004 and 2011 has been obtained from ENVISAT and ALOS data. Our results indicate that the pattern of ground deformation was nearly concentric around the location of intense groundwater withdrawal and the subsiding area has been shrinking and migrating toward the northeast after 2000. In addition, an approximately 2 cm of differential subsidence across faults are observed. Presence of faults can induce localized surface displacements, aggravate localized subsidence, discontinue the integrity of ground water flow, and limit the horizontal spread of subsidence funnels. Finally, our long-term measurement of ground deformation has also been validated by GPS observations in study area.

  4. Polarimetric Ground Based Interferometric Radar for Surface Deformation Mapping

    NASA Astrophysics Data System (ADS)

    Legarsky, J. J.; Gomez, F. G.; Rosenblad, B.; Loehr, E.; Deng, H.; Held, B.; Jenkins, W.

    2011-12-01

    Ground based interferometric radar (GBIR) measurements of surface deformation at sub-millimeter sensitivity may be desirable for a number of earth science applications including terrain mapping and monitoring of landslide movements. Through University of Missouri (MU) led efforts, a portable polarimetric GBIR has been developed for surface deformation mapping. Fully polarimetric capabilities allow the application of polarimetric interferometry, scatterer decomposition, and other advanced polarimetric methods. Using open literature techniques, polarimetric calibration and absolute radiometric calibration using known targets may be performed. The MU GBIR radiates electromagnetic waves at a number of free space wavelengths including C-band approximately 5.7 cm and Ku-band about 1.8 cm. The initial mechanical deployment setup time is typically about 10 minutes. For image formation, the MU GBIR employs azimuth scanning, which may collect data for a single pass interferogram in 20 seconds for a 180 degree azimuth sweep. Initial inteferograms may be formed at the deployment site in near real time. Moreover, the MU GBIR can be removed and re-positioned at the same point with relatively high (geodetic-grade) precision. A number of field experiments have been performed at various sites using the system. Demonstration of millimeter and better sensitivity to deformation over the course of a day of data collects has been performed at a test site using the MU GBIR. Study results and further development progress will be presented. This project is sponsored by a grant from the National Science Foundation.

  5. Precursory acoustic signals and ground deformation in volcanic explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Kim, K.; Anderson, J.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2013-12-01

    We investigate precursory acoustic signals that appear prior to volcanic explosions in real and experimental settings. Acoustic records of a series of experimental blasts designed to mimic maar explosions show precursory energy 0.02 to 0.05 seconds before the high amplitude overpressure arrival. These blasts consisted of 1 to 1/3 lb charges detonated in unconsolidated granular material at depths between 0.5 and 1 m, and were performed during the Buffalo Man Made Maars experiment in Springville, New York, USA. The preliminary acoustic arrival is 1 to 2 orders of magnitude lower in amplitude compared to the main blast wave. The waveforms vary from blast to blast, perhaps reflecting the different explosive yields and burial depths of each shot. Similar arrivals are present in some infrasound records at Santiaguito volcano, Guatemala, where they precede the main blast signal by about 2 seconds and are about 1 order of magnitude weaker. Precursory infrasound has also been described at Sakurajima volcano, Japan (Yokoo et al, 2013; Bull. Volc. Soc. Japan, 58, 163-181) and Suwanosejima volcano, Japan (Yokoo and Iguchi, 2010; JVGR, 196, 287-294), where it is attributed to rapid deformation of the vent region. Vent deformation has not been directly observed at these volcanoes because of the difficulty of visually observing the crater floor. However, particle image velocimetry of video records at Santiaguito has revealed rapid and widespread ground motion just prior to eruptions (Johnson et al, 2008; Nature, 456, 377-381) and may be the cause of much of the infrasound recorded at that volcano (Johnson and Lees, 2010; GRL, 37, L22305). High speed video records of the blasts during the Man Made Maars experiment also show rapid deformation of the ground immediately before the explosion plume breaches the surface. We examine the connection between source yield, burial depths, ground deformation, and the production of initial acoustic phases for each simulated maar explosion. We

  6. Holocene intracontinental deformation of the northern North China Plain: Evidence of tectonic ground fissures

    NASA Astrophysics Data System (ADS)

    Xu, Liqing; Li, Sanzhong; Cao, Xianzhi; Somerville, I. D.; Suo, Yanhui; Liu, Xin; Dai, Liming; Zhao, Shujuan; Guo, Lingli; Wang, Pengcheng; Cao, Huahua

    2016-04-01

    Following the collecting and analyzing of field data on the geometry and kinematics characteristics of ground fissures in the northern North China Plain (NNCP), this paper shows that en échelon ground fissures or tectonic ground fissures with a length of several meters to tens of kilometers extending along active faults are possibly controlled by underlying active faults. There are two groups of tectonic ground fissures developed in the NNCP. One group consists of ENE-trending "right-stepping" ground fissures, some of which have a component of sinistral motion. The other group is NNE-trending "left-stepping" ground fissures with dextral motion. A large amount of data from trenches, boreholes and seismic exploration reflect that they are active-faulting-related. The NNW-trending regional extensional stress field and the reactivation of pre-existing faults are the major factors controlling ground fissures. Data from the Quaternary sedimentary records, deep incised valleys, the distribution of earthquakes and ground fissures, and our field work show that the Holocene intracontinental deformation of the NNCP is characterized by intense faulting and northwestward tilting, which may be related to a NNW-SSE-oriented tensional stress field in the shallow crust and asthenospheric upwelling in the mantle.

  7. Monitoring on Xi'an ground fissures deformation with TerraSAR-X data

    USGS Publications Warehouse

    Zhao, C.; Zhang, Q.; Zhu, W.; Lu, Zhiming

    2012-01-01

    Owing to the fine resolution of TerraSAR-X data provided since 2007, this paper applied 6 TerraSAR data (strip mode) during 3rd Dec. 2009 to 23rd Mar. 2010 to detect and monitor the active fissures over Xi'an region. Three themes have been designed for high precision detection and monitoring of Xi'an-Chang'an fissures, as small baseline subsets (SBAS) to test the atmospheric effects of differential interferograms pair stepwise, 2-pass differential interferogram with very short baseline perpendicular to generate the whole deformation map with 44 days interval, and finally, corner reflector (CR) technique was used to closely monitor the relative deformation time series between two CRs settled crossing two ground fissures. Results showed that TerraSAR data are a good choice for small-scale ground fissures detection and monitoring, while special considerations should be taken for their great temporal and baseline decorrelation. Secondly, ground fissures in Xi'an were mostly detected at the joint section of stable and deformable regions. Lastly, CR-InSAR had potential ability to monitor relative deformation crossing fissures with millimeter precision.

  8. Localized Surface Deformation Monitoring Applications using Ground Based Interferometric Radar

    NASA Astrophysics Data System (ADS)

    Legarsky, J. J.; Gomez, F. G.; Rosenblad, B.; Loehr, E.; Gurnani, G.; Fallert, Z.; Gilliam, J.

    2014-12-01

    Ground based interferometric radar (GBIR) measurements of localized surface deformation may be sought-after in various geosciences applications. The University of Missouri (MU) GBIR system is highly portable; moreover, it can be removed and re-positioned at the same point with geodetic-grade precision for long-term and repeat surveys. Initial quick-look imagery at C-band and Ku-band may be viewed in near real-time at the study site. Polarimetric calibration, radiometric calibration, and time-series analysis may further enhance the imagery. The MU GBIR has demonstrated millimeter and better sensitivity to localized surface deformation. Using real-aperture imaging and precision rotation, the MU GBIR acquires data by deploying three antennas that may be mounted parallel to one another on a 1-meter high tower. During typical operation, images are acquired by azimuthally rotating the GBIR antennas about its vertical axis. During deployment, the fast imaging capabilities allow a data collect scan in about 20 seconds for a 180 degree field of view. During the 2013 and 2014 field seasons using the MU GBIR, several locations were studied. The study sites include a rockfall experiment in Colorado, several dams in Kansas and Missouri, and a rock glacier in southern Colorado. Study results and additional progress will be presented. These projects are sponsored by grants from the University of Missouri Research Board and the National Science Foundation.

  9. A preliminary study on surface ground deformation near shallow foundation induced by strike-slip faulting

    NASA Astrophysics Data System (ADS)

    Wong, Pei-Syuan; Lin, Ming-Lang

    2016-04-01

    According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation

  10. Ground Deformation of Krakatau Volcano, Indonesia, Detected by InSAR: June 2007 to February 2009

    NASA Astrophysics Data System (ADS)

    Agustan, A.; Kimata, F.; Pamitro, Y. E.; Abidin, H. Z.

    2009-12-01

    The catastrophic eruption on 27th August 1883 of Krakatau, a volcano island in Sunda Strait, destroyed two thirds of the island and collapsing its caldera. However, after reposed for 43 years, Krakatau produced a newly born active volcano named Anak Krakatau in 1929. This study aims to detect the ground deformation of Anak Krakatau Volcano using InSAR technique utilizing PALSAR data ranging from June 2007 to February 2009. In this period, the volcanic activity increased, including the eruption stage that started at the end of October 2007 and ended on August 2008. The eruption was characterized by Strombolian activity; 500 m ash column height; pyroclastic flows and lava flows. Differential InSAR was applied by removing topographic artifacts utilizing the enhanced SRTM data. A linear dependent atmospheric phase was utilized to reduce the atmospheric phase. To obtain ground deformation pattern, range change along line of sight was mapped into vertical component in grid format and filtered by median filter algorithm. Uplift of 20 cm and subsidence of 10 cm were detected in the northeast and southwest part of the cone respectively for one year and seven months until February 2009. The ground deformation pattern can be explained by a dipping rectangular tensile dislocation buried in an elastic half-space. Observed surface deformation from InSAR was used to fit the source model and it was found that the source was located in shallow region, just approximately 400 m below sea level with maximum opening tensile of 90 cm. There was inflation pattern before the eruption, whereas after the eruption started, subsidence occurred on the southwestern flank of the summit. On the other hand, the northeastern flank continued to uplift. In this observation period, it was found that Anak Krakatau uplifted 12 cm/year in average. The volume source before and after the eruption was increased approximately 2.9 x 104 m3.

  11. The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.; Reuschlé, T.

    2014-01-01

    The accuracy of ground deformation modelling at active volcanoes is a principal requirement in volcanic hazard mitigation. However, the reliability of such models relies on the accuracy of the rock physical property (permeability and elastic moduli) input parameters. Unfortunately, laboratory-derived values on representative rocks are usually rare. To this end we have performed a systematic laboratory study on the influence of pressure and temperature on the permeability and elastic moduli of samples from the two most widespread lithified pyroclastic deposits at the Campi Flegrei volcanic district, Italy. Our data show that the water permeability of Neapolitan Yellow Tuff and a tuff from the Campanian Ignimbrite differ by about 1.5 orders of magnitude. As pressure (depth) increases beyond the critical point for inelastic pore collapse (at an effective pressure of 10-15 MPa, or a depth of about 750 m), permeability and porosity decrease significantly, and ultrasonic wave velocities and dynamic elastic moduli increase significantly. Increasing the thermal stressing temperature increases the permeability and decreases the ultrasonic wave velocities and dynamic elastic moduli of the Neapolitan Yellow Tuff; whereas the tuff from the Campanian Ignimbrite remains unaffected. This difference is due to the presence of thermally unstable zeolites within the Neapolitan Yellow Tuff. For both rocks we also find, under the same pressure conditions, that the dynamic (calculated from ultrasonic wave velocities) and static (calculated from triaxial stress-strain data) elastic moduli differ significantly. The choice of elastic moduli in ground deformation modelling is therefore an important consideration. While we urge that these new laboratory data should be considered in routine ground deformation modelling, we highlight the challenges for ground deformation modelling based on the heterogeneous nature (vertically and laterally) of the rocks that comprise the caldera at Campi

  12. Comparative analyses of multifrequency PSI ground deformation measurements

    NASA Astrophysics Data System (ADS)

    Sabater, José R.; Duro, Javier; Arnaud, Alain; Albiol, David; Koudogbo, Fifamè N.

    2011-11-01

    In recent years many new developments have been made in the field of SAR image analysis. The diversity of available SAR imagery allows a wider range of applications to be covered in the domain of risk management and hazard mapping. The work that we propose is based on the analysis of differences in ground deformation measurements extracted from the processing of data stacks acquired at different frequencies. The aim of the project is the definition of criteria that could assist in the selection of the most appropriate SAR mission according to the type of regions of interest. Key factors are geographic localization and land cover. The study is organized in two main parts. First, the impact of sensitivity to motion, land cover characteristics, spatial resolution and atmospheric artifacts is investigated at different wavelengths. Second, the PS density achieved and the capacity to detect and monitor fast and slow motions over urban and rural areas with different frequencies is analyzed. The presented InSAR analyses have been performed using the Stable Point Network (SPN) PSI software developed by Altamira Information.

  13. Spatio-temporal evolution of aseismic ground deformation in the Mexicali Valley (Baja California, Mexico) from 1993 to 2010, using differential SAR interferometry

    NASA Astrophysics Data System (ADS)

    Sarychikhina, O.; Glowacka, E.

    2015-11-01

    Ground deformation in Mexicali Valley, Baja California, Mexico, the southern part of the Mexicali-Imperial valley, is influenced by active tectonics and human activity, mainly that of geothermal fluid extraction in the Cerro Prieto Geothermal Field. Significant ground deformation, mainly subsidence (~ 18 cm yr-1), and related ground fissures cause severe damage to local infrastructure. The technique of Differential Synthetic Aperture Radar Interferometry (DInSAR) has been demonstrated to be a very effective remote sensing tool for accurately measuring the spatial and temporal evolution of ground displacements over broad areas. In present study ERS-1/2 SAR and ENVISAT ASAR images acquired between 1993 and 2010 were used to perform a historical analysis of aseismic ground deformation in Mexicali Valley, in an attempt to evaluate its spatio-temporal evolution and improve the understanding of its dynamic. For this purpose, the conventional 2-pass DInSAR was used to generate interferograms which were used in stacking procedure to produce maps of annual aseismic ground deformation rates for different periods. Differential interferograms that included strong co-seismic deformation signals were not included in the stacking and analysis. The changes in the ground deformation pattern and rate were identified. The main changes occur between 2000 and 2005 and include increasing deformation rate in the recharge zone and decreasing deformation rate in the western part of the CPGF production zone. We suggested that these changes are mainly caused by production development in the Cerro Prieto Geothermal Field.

  14. Coupling of Activity at Neighbouring Volcanoes in Iceland: Ground Deformation and Activity at the Bárðarbunga-Tungnafellsjökull and Eyjafjallajökull-Katla Volcano Pairs

    NASA Astrophysics Data System (ADS)

    Parks, M.; Heimisson, E. R.; Sigmundsson, F.; Hooper, A. J.; Ofeigsson, B.; Vogfjord, K. S.; Arnadottir, T.; Dumont, S.; Drouin, V.; Bagnardi, M.; Spaans, K.; Hreinsdottir, S.; Friðriksdóttir, H. M.; Jonsdottir, K.; Guðmundsson, G.; Hensch, M.; Hjaltadottir, S.; Hjartardottir, A. R.; Einarsson, P.; Gudmundsson, M. T.; Hognadottir, T.; Lafemina, P.; Geirsson, H.; Sturkell, E.; Magnússon, E.

    2015-12-01

    Interferometric Synthetic Aperture Radar (InSAR) techniques are used to generate a time series of high-resolution deformation measurements, in the vicinity of two pairs of closely spaced volcanoes in Iceland: Bárðarbunga and Tungnafellsjökull, as well as Eyjafjallajökull and Katla. Following the declaration of Icelandic Volcanoes as a Permanent Geohazard Supersite in 2013, a considerable amount of SAR data was made available for both past and future satellite acquisitions, including new X-band images and historic C-band images. InSAR time series have been formed using these data and compared to other geodetic and microseismic measurements to determine the most likely processes responsible for recently observed deformation and/or seismicity. A comprehensive network of seismometers and continuous GPS stations are already deployed at these volcanoes and a series of campaign GPS measurements have been undertaken since 2010. We present an overview of the temporal variation in InSAR observations and these complementary field based measurements at Bárðarbunga and Tungnafellsjökull from 2014-2015 (covering the recent eruption at Holuhraun and contemporaneous slow collapse of the Bárðarbunga caldera), and Eyjafjallajökull and Katla volcanoes from 2010 onwards, after the 2010 explosive eruption of Eyjafjallajökull. We undertake a joint InSAR-GPS inversion using a Markov-chain Monte Carlo approach. The best-fit source geometries responsible for both the inflation of a 50 km long dyke and simultaneous deflation of the Bárðarbunga central volcano during the 2014-2015 unrest and eruption are found. Using these we calculate the stress changes associated with the Bárðarbunga deformation events and compare our results to the location of earthquake swarms in the vicinity of neighbouring Tungnafellsjökull, where seismic activity increased significantly following the onset of unrest at Bárðarbunga in August 2014. We also determine the optimal source parameters for

  15. Lightweight deformable mirrors for ground- and space-based imaging systems

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah

    2006-08-01

    The next generation of ground- and space-based astronomical observatories will generate an increased requirement for lightweight and robust deformable optics. In space ultra-lightweight actively controlled mirrors will enable a continuing increase of aperture sizes, whilst large adaptive mirrors will become increasingly standard features in the optical design of adaptive optics-optimised Extremely Large Telescopes on the ground. This thesis presents results from a project to design, manufacture and test a prototype active mirror in a nickel-carbon fibre reinforced polymer (CFRP), which has been suggested in the literature to be a promising candidate material for such applications. Extensive finite element analysis results from gravitational sag and thermal models, as well as finite element-based predictions of the central actuator influence function profile, are presented. The main problems were encountered as a result of the in-mold nickel coating process, which resulted in residual form errors, and poor design of the support structures, leading to deterioration of the mirror surface quality. No fundamental reason ruling this material out for the use of precision deformable optics was identified. The finite element analysis results show significant promise for increased use of the method in optical design, as well as in integrated optical simulations for Extremely Large Telescopes.

  16. PSP SAR interferometry monitoring of ground and structure deformations in the archeological site of Pompeii

    NASA Astrophysics Data System (ADS)

    Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno

    2016-04-01

    The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the

  17. Reciprocating motion of active deformable particles

    NASA Astrophysics Data System (ADS)

    Tarama, M.; Ohta, T.

    2016-05-01

    Reciprocating motion of an active deformable particle in a homogeneous medium is studied theoretically. For generality, we employ a simple model derived from symmetry considerations for the center-of-mass velocity and elliptical and triangular deformations in two dimensions. We carry out, for the first time, a systematic investigation of the reciprocating motion of a self-propelled particle. It is clarified that spontaneous breaking of the front-rear asymmetry is essential for the reciprocating motion. Moreover, two routes are found for the formation of the reciprocating motion. One is a bifurcation from a motionless stationary state. The other is destabilisation of an oscillatory rectilinear motion.

  18. Inferring field-scale properties of a fractured aquifer from ground surface deformation during a well test

    NASA Astrophysics Data System (ADS)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane; Lavenant, Nicolas

    2015-12-01

    Fractured aquifers which bear valuable water resources are often difficult to characterize with classical hydrogeological tools due to their intrinsic heterogeneities. Here we implement ground surface deformation tools (tiltmetry and optical leveling) to monitor groundwater pressure changes induced by a classical hydraulic test at the Ploemeur observatory. By jointly analyzing complementary time constraining data (tilt) and spatially constraining data (vertical displacement), our results strongly suggest that the use of these surface deformation observations allows for estimating storativity and structural properties (dip, root depth, and lateral extension) of a large hydraulically active fracture, in good agreement with previous studies. Hence, we demonstrate that ground surface deformation is a useful addition to traditional hydrogeological techniques and opens possibilities for characterizing important large-scale properties of fractured aquifers with short-term well tests as a controlled forcing.

  19. IESID: Automatic system for monitoring ground deformation on the Deception Island volcano (Antarctica)

    NASA Astrophysics Data System (ADS)

    Peci, Luis Miguel; Berrocoso, Manuel; Páez, Raúl; Fernández-Ros, Alberto; de Gil, Amós

    2012-11-01

    When establishing the relative distance between two GNSS-GPS stations with sub-centimeter accuracy, it is necessary to have auxiliary data, some of which can only be collected some time after the moment of measurement. However, for monitoring highly-active geodynamic areas, such as volcanoes and landslides, data precision is not as essential as rapid availability, processing of data in real-time, and fast interpretation of the results. This paper describes the development of an integrated automatic system for monitoring volcanic deformation in quasi real-time, applied to the Deception volcano (Antarctica). This experimental system integrates two independent modules that enable researchers to monitor and control the status of the GNSS-GPS stations, and to determine a surface deformation parameter. It comprises three permanent stations, one of which serves as the reference for assessing the relative distance in relation to the other two. The availability of GNSS-GPS data in quasi real-time is achieved by means of a WiFi infrastructure and automated data processing. This system provides, in quasi real-time, a time series of varying distances that tells us the extent to which any ground deformation is taking place.

  20. Ground and Structure Deformation 3d Modelling with a Tin Based Property Model

    NASA Astrophysics Data System (ADS)

    TIAN, T.; Zhang, J.; Jiang, W.

    2013-12-01

    With the development of 3D( three-dimensional) modeling and visualization, more and more 3D tectonics are used to assist the daily work in Engineering Survey, in which the prediction of deformation field in strata and structure induced by underground construction is an essential part. In this research we developed a TIN (Triangulated Irregular Network) based property model for the 3D (three dimensional) visualization of ground deformation filed. By record deformation vector for each nodes, the new model can express the deformation with geometric-deformation-style by drawing each node in its new position and deformation-attribute-distribution-style by drawing each node in the color correspond with its deformation attribute at the same time. Comparing with the volume model based property model, this new property model can provide a more precise geometrical shape for structure objects. Furthermore, by recording only the deformation data of the user-interested 3d surface- such as the ground surface or the underground digging surface, the new property model can save a lot of space, which makes it possible to build the deformation filed model of a much more large scale. To construct the models of deformation filed based on TIN model, the refinement of the network is needed to increase the nodes number, which is necessary to express the deformation filed with a certain resolution. The TIN model refinement is a process of sampling the 3D deformation field values on points on the TIN surface, for which we developed a self-adapting TIN refinement method. By set the parameter of the attribute resolution, this self-adapting method refines the input geometric-expressing TIN model by adding more vertexes and triangles where the 3D deformation filed changing faster. Comparing with the even refinement method, the self-adapting method can generate a refined TIN model with nodes counted less by two thirds. Efficiency Comparison between Self-adapting Refinement Method and Even

  1. Ground deformation model for Tenerife (Canary Islands, Spain) from TEGETEIDE GNSS stations observation

    NASA Astrophysics Data System (ADS)

    García, A.; Carmona, J.; Fernández-Ros, A.; Pérez-Peña, A.; Ortiz, R.; Berrocoso, M.

    2009-04-01

    TEGETEIDE GNSS network is composed of seven benchmarks distributed over Tenerife Island, two of them are permanent stations. The whole network has been observed periodically from 2005 at least twice a year. Processed data using Bernese 5.0 software indicates different vector displacement pattern, as in magnitude as in direction, which expected from the African plate movement, suggesting the activity of other geodynamic process in the Island. The TEGETEIDE ground deformation model suggest the action not only the tectonics, but also the volcanic activity in an island where during 2004 a reawakening of the Teide volcano was detected. In this sense, the use of precise space-geodetic techniques to study the present-day dynamics of Tenerife is essential for a better knowledge and forecasting of the volcanic evolution during periods of crises, in an island of one million inhabitants and 5 million tourists a year.

  2. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

    USGS Publications Warehouse

    Zhang, L.; Lu, Zhiming; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.

    2012-01-01

    Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach - temporarily coherent point (TCP) InSAR (TCPInSAR) - to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6. mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms. ?? 2011.

  3. Integrated monitoring system for ground deformation hazard assessment in Telese Terme (Benevento province, Italy)

    NASA Astrophysics Data System (ADS)

    Tessitore, S.; Castiello, G.; Fedi, M.; Florio, G.; Fuschini, V.; Ramondini, M.; Calcaterra, D.

    2012-04-01

    TeleseTerme plain is characterized by a very articulated stratigraphy (levels of travertine, fluvial-marshy and pyroclastic deposits), that allows the occurrence of underground water circulation with overlapping aquifers. These aquifers are locally in pressure and, because of chemical characteristics and physical properties of the water, they may activate processes of accelerated travertine's corrosion; the consequence is the formation of cavity along the ground water's preferential flow paths, and the activation of subsidence and sinkholes phenomena. In particular test area includes two zones, where in 2002 and 2006 occurred two sinkholes events, classified as "piping sinkholes". The hazard evaluation was carried out trhought an integrated monitoring system, based on "traditional" techniques conduced "in situ", as geological-geomorphological and geophysical (microgravity) surveys, integrated by the most innovative techniques of Remote sensing interferometry(Advanced DInSAR Interferometry Techniques). The last allow to evaluate the ground deformation, characterized by a predominantvertical component (typical deformation of sinkholes and subsidence phenomena), and are well suited to operate a continuous and long monitoring ofvery extended areas. Through an initial analysis of the Permanent Scatterers available in the Telese municipality, we found the envelopes of the areal that contain PS with negative and positive mean velocities; these velocities showed the presence of a possible phenomenon of subsidence detected by ERS and ENVISAT satellites. Through interferometric processing of ENVISAT images, the soil deformations of 2002-2010 year sare evaluated and compared with the data obtainedby survey took "in situ" during the same period. The knowledge of the deformation's evolution of the area made it possible to organize a more focused future monitoring through traditional techniques of relief (with the help of geophysical methodologies). Since the zone affected by

  4. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  5. Ground Deformation Measurement with SAR Interferometry - Exupéry Project WP2 Space Based Observations

    NASA Astrophysics Data System (ADS)

    Cong, Xiaoying; Eineder, Michael; Minet, Christian

    2010-05-01

    As one of major natural hazards volcanic unrest and volcanic eruption are gaining more attention nowadays. The Exupéry project aimed at setting-up an Early Response System (VFRS) for volcanic activity was funded by the German Federal Ministry of Education and Research. Within Work Package 2 'Space Based Observations' SAR interferometry is used for monitoring the ground deformation. In comparison with conventional monitoring techniques like GPS the surface changes can be directly detected by using 2 SAR images from different acquisition times and an external DEM. Persistent scatterer SAR interferometry (PSI) method is applied by using a stack of interferograms with common master image. Instead of whole SAR scene only the coherent scatterers during whole acquisition duration are selected and its phase measurements are used to estimate modelled parameters such as deformation velocity, DEM error and atmospheric distortions. In mountainous area backscatterers are decorrelated during the time because of vegetation. To ensure the coherence corner reflector (CR) is used to get stable backscattering. To test the whole system a campaign was carried out during April to August 2009. Two CRs were installed for TerraSAR-X satellite on the test site Lagoa do Fogo volcano. During the campaign 11 strip-map scenes were gathered consequently. Post-processed interferograms as well as the coherence maps were delivered to database center in Hannover and would be published in project website. Time series analysis with coherent scatterers from the stacking was applied in order to detect complex deformation from mountainous area. The CRs were successfully detected in SAR image and will be used as reference points in PSI processing. At the end the interferograms computed from different wavelengths will be compared in this area.

  6. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    NASA Astrophysics Data System (ADS)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher; Normand, Jonathan; Dermond, Jeffrey; Fang, Yilin; Sullivan, Charlotte

    2015-08-01

    One important issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine the resulting field-scale-induced displacements and consequences of overpressures on the mechanical integrity of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated for the first time on an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3 year-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells are accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area shows sub- centimetric deformation in the western part of the city and close to the injection locations associated with ASR cycle. Deformations are found to be temporally out phased with the injection and recovery events due to complex groundwater flow. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections.

  7. The Boumerdes (Algeria) earthquake of May 21, 2003 (Mw = 6.8): Ground deformation and intensity

    NASA Astrophysics Data System (ADS)

    Bouhadad, Y.; Nour, A.; Slimani, A.; Laouami, N.; Belhai, D.

    A destructive earthquake of magnitude Mw = 6.8 hit the region of Boumerdes and Algiers (Algeria) on May 21, 2003. This is among the strongest seismic events of the mediterranean region and the most important event in the capital Algiers since 1716. It caused a widespread damage in the epicentral region, claimed 2271 human lives, injured 10000, about 20000 housing units affected and left about 160000 homeless. The main shock was felt about 250 km far from the epicenter and triggered sea waves of 1-3 m in amplitude in Balearic islands (Spain). Based on field observations and press report an intensity IX (MSK scale) is attributed to the epicentral area. The main shock was followed by many aftershocks among them several are of magnitude greater than 5.0, which added panic to inhabitants. The main shock triggered ground deformation, particularly liquefaction whose features are in different forms and sizes and caused damage and collapse of roads. The focal mechanism determined by worldwide institutions yield a pure reverse faulting with a compressional axis striking NE-SW. The epicenter is located offshore about 7 km from the Boumerdes-Dellys coast. Field observations show 0.7 m of coseismic uplift of shoreline between Boudouaou and Dellys. This uplift is about a half of the extracted coseismic slip from the seismic moment. On the other hand there is no clear surface break onshore, confirming hence, that the causative active fault is offshore. However, the rupture may propagate onshore to the SE near the Boudouaou region where ground cracks showing reverse faulting are observed a long a corridor of about 1 km wide. These fissures may correspond to a diffuse coseismic deformation.

  8. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  9. Evolution of Deformation Studies on Active Hawaiian Volcanoes

    USGS Publications Warehouse

    Decker, Robert; Okamura, Arnold; Miklius, Asta; Poland, Michael

    2008-01-01

    Everything responds to pressure, even rocks. Deformation studies involve measuring and interpreting the changes in elevations and horizontal positions of the land surface or sea floor. These studies are variously referred to as geodetic changes or ground-surface deformations and are sometimes indexed under the general heading of geodesy. Deformation studies have been particularly useful on active volcanoes and in active tectonic areas. A great amount of time and energy has been spent on measuring geodetic changes on Kilauea and Mauna Loa Volcanoes in Hawai`i. These changes include the build-up of the surface by the piling up and ponding of lava flows, the changes in the surface caused by erosion, and the uplift, subsidence, and horizontal displacements of the surface caused by internal processes acting beneath the surface. It is these latter changes that are the principal concern of this review. A complete and objective review of deformation studies on active Hawaiian volcanoes would take many volumes. Instead, we attempt to follow the evolution of the most significant observations and interpretations in a roughly chronological way. It is correct to say that this is a subjective review. We have spent years measuring and recording deformation changes on these great volcanoes and more years trying to understand what makes these changes occur. We attempt to make this a balanced as well as a subjective review; the references are also selective rather than exhaustive. Geodetic changes caused by internal geologic processes vary in magnitude from the nearly infinitesimal - one micron or less, to the very large - hundreds of meters. Their apparent causes also are varied and include changes in material properties and composition, atmospheric pressure, tidal stress, thermal stress, subsurface-fluid pressure (including magma pressure, magma intrusion, or magma removal), gravity, and tectonic stress. Deformation is measured in units of strain or displacement. For example, tilt

  10. Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR)

    NASA Astrophysics Data System (ADS)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Righini, Gaia; Sani, Federico; Luzi, Guido; Feyzullayev, Akper A.; Aliyev, Chingiz S.

    2014-12-01

    Mud volcanism is a process that leads to the extrusion of subsurface mud, fragments of country rocks, saline waters and gases. This mechanism is typically linked to hydrocarbon traps, and the extrusion of this material builds up a variety of conical edifices with a similar morphology to those of magmatic volcanoes, though smaller in size. The Differential Interferometry Synthetic Aperture Radar (DInSAR) technique has been used to investigate the ground deformation related to the activity of the mud volcanoes of Azerbaijan. The analysis of a set of wrapped and unwrapped interferograms, selected according to their coherence, allowed the detection of significant superficial deformation related to the activity of four mud volcanoes. The ground displacement patterns observed during the period spanning from October 2003 to November 2005 are dominated by uplift, which reach a cumulative value of up to 20 and 10 cm at the Ayaz-Akhtarma and Khara-Zira Island mud volcanoes, respectively. However, some sectors of the mud volcano edifices are affected by subsidence, which might correspond to deflation zones that coexist with the inflation zones characterized by the dominant uplift. Important deformation events, caused by fluid pressure and volume variations, have been observed both (1) in connection with main eruptive events in the form of pre-eruptive uplift, and (2) in the form of short-lived deformation pulses that interrupt a period of quiescence. Both deformation patterns show important similarities to those identified in some magmatic systems. The pre-eruptive uplift has been observed in many magmatic volcanoes as a consequence of magma intrusion or hydrothermal fluid injection. Moreover, discrete short-duration pulses of deformation are also experienced by magmatic volcanoes and are repeated over time as multiple inflation and deflation events.

  11. Versatile Membrane Deformation Potential of Activated Pacsin

    PubMed Central

    Byrnes, Laura J.; Sondermann, Holger

    2012-01-01

    Endocytosis is a fundamental process in signaling and membrane trafficking. The formation of vesicles at the plasma membrane is mediated by the G protein dynamin that catalyzes the final fission step, the actin cytoskeleton, and proteins that sense or induce membrane curvature. One such protein, the F-BAR domain-containing protein pacsin, contributes to this process and has been shown to induce a spectrum of membrane morphologies, including tubules and tube constrictions in vitro. Full-length pacsin isoform 1 (pacsin-1) has reduced activity compared to its isolated F-BAR domain, implicating an inhibitory role for its C-terminal Src homology 3 (SH3) domain. Here we show that the autoinhibitory, intramolecular interactions in pacsin-1 can be released upon binding to the entire proline-rich domain (PRD) of dynamin-1, resulting in potent membrane deformation activity that is distinct from the isolated F-BAR domain. Most strikingly, we observe the generation of small, homogenous vesicles with the activated protein complex under certain experimental conditions. In addition, liposomes prepared with different methods yield distinct membrane deformation morphologies of BAR domain proteins and apparent activation barriers to pacsin-1's activity. Theoretical free energy calculations suggest bimodality of the protein-membrane system as a possible source for the different outcomes, which could account for the coexistence of energetically equivalent membrane structures induced by BAR domain-containing proteins in vitro. Taken together, our results suggest a versatile role for pacsin-1 in sculpting cellular membranes that is likely dependent both on protein structure and membrane properties. PMID:23236520

  12. Evolution of Ground Deformation Zone on Normal Fault Using Distinct Element Method and Centrifuge Modeling

    NASA Astrophysics Data System (ADS)

    Lyu, Jhen-Yi; Chang, Yu-Yi; Lee, Chung-Jung; Lin, Ming-Lang

    2015-04-01

    The depth and character of the overlying earth deposit contribute to fault rupture path. For cohesive soil, for instance, clay, tension cracks on the ground happen during faulting, limiting the propagation of fracture in soil mass. The cracks propagate downwards while the fracture induced by initial displacement of faulting propagates upwards. The connection of cracks and fracture will form a plane that is related to tri-shear zone. However the mechanism of the connection has not been discussed thoroughly. By obtaining the evolution of ground deformation zone we can understand mechanism of fault propagation and crack-fracture connection. A series of centrifuge tests and numerical modeling are conducted at this study with acceleration conditions of 40g, 50g, 80g and dip angle of 60° on normal faulting. The model is with total overburden thick, H, 0.2m, vertical displacement of moving wall, ∆H. At the beginning, hanging wall and the left-boundary wall moves along the plane of fault. When ∆H/H equals to 25%, both of the walls stop moving. We then can calculate the width of ground deformation in different depth of each model by a logic method. Models of this study consist of two different type overburden material to simulate sand and clay in situ. Different from finite element method, with application of distinct element method the mechanism of fault propagation in soil mass and the development of ground deformation zone can be observed directly in numerical analysis of faulting. The information of force and deformation in the numerical model are also easier to be obtained than centrifuge modeling. Therefore, we take the results of centrifuge modeling as the field outcrop then modify the micro-parameter of numerical analysis to make sure both of them have the same attitude. The results show that in centrifuge modeling narrower ground deformation zone appears in clayey overburden model as that of sandy overburden model is wider on footwall. Increasing the strength

  13. A persistent scatterer method for retrieving accurate InSAR ground deformation map over vegetation-decorrelated areas

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zebker, H. A.; Knight, R. J.

    2015-12-01

    InSAR is commonly used to measure surface deformation between different radar passes at cm-scale accuracy and m-scale resolution. However, InSAR measurements are often decorrelated due to vegetation growth, which greatly limits high quality InSAR data coverage. Here we present an algorithm for retrieving InSAR deformation measurements over areas with significant vegetation decorrelation through the use of adaptive interpolation between persistent scatterer (PS) pixels, those points at which surface scattering properties do not change much over time and thus decorrelation artifacts are minimal. The interpolation filter restores phase continuity in space and greatly reduces errors in phase unwrapping. We apply this algorithm to process L-band ALOS interferograms acquired over the San Luis Valley, Colorado and the Tulare Basin, California. In both areas, groundwater extraction for irrigation results in land deformation that can be detected using InSAR. We show that the PS-based algorithm reduces the artifacts from vegetation decorrelation while preserving the deformation signature. The spatial sampling resolution achieved over agricultural fields is on the order of hundreds of meters, usually sufficient for groundwater studies. The improved InSAR data allow us further to reconstruct the SBAS ground deformation time series and transform the measured deformation to head levels using the skeletal storage coefficient and time delay constant inferred from a joint InSAR-well data analysis. The resulting InSAR-head and well-head measurements in the San Luis valley show good agreement with primary confined aquifer pumping activities. This case study demonstrates that high quality InSAR deformation data can be obtained over vegetation-decorrrelated region if processed correctly.

  14. Signature of magmatic processes in ground deformation signals from Phlegraean Fields (Italy)

    NASA Astrophysics Data System (ADS)

    Bagagli, Matteo; Montagna, Chiara Paola; Longo, Antonella; Papale, Paolo

    2016-04-01

    Ground deformation signals such as dilatometric and tiltmetric ones, are nowadays well studied from the vulcanological community all over the world. These signals can be used to retrieve information on volcanoes state and to study the magma dynamics in their plumbing system. We compared synthetic signals in the Very Long Period (VLP, 10‑2 ‑ 10‑1 Hz) and Ultra Long Period (ULP, 10‑4 ‑ 10‑2 Hz) bands obtained from the simulation of magma mixing in shallow reservoirs ([3],[4]) with real data obtained from the dilatometers and tiltmeters network situated in the Phlegraean Fields near Naples (Italy), in order to define and constrain the relationships between them. Analyses of data from the October 2006 seismic swarm in the area show that the frequency spectrum of the synthetics is remarkably similar to the transient present in the real signals. In depth studies with accurated techniques for spectral analysis (i.e wavelet transform) and application of this method to other time windows have identified in the bandwidth around 10‑4Hz (between 1h30m and 2h45m) peaks that are fairly stable and independent from the processing carried out on the full-band signal. These peaks could be the signature of ongoing convection at depth. It is well known that re-injection of juvenile magmas can reactivate the eruption dynamics ([1],[2]), thus being able to define mixing markers and detect them in the ground deformation signals is a relevant topic in order to understand the dynamics of active and quiescent vulcanoes and to eventually improve early-warning methods for impending eruptions. [1] Arienzo, I. et al. (2010). "The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios". In: Chemical Geology 270.1, pp. 135-147. [2] Bachmann, Olivier and George Bergantz (2008). "The magma reservoirs that feed supereruptions". In: Elements 4.1, pp. 17-21. [3] Longo, Antonella et al. (2012). "Magma convection

  15. Deformation of subglacial till near ice-sheet grounding zones: theory and experiments

    NASA Astrophysics Data System (ADS)

    Kowal, K. N.; Worster, G.

    2015-12-01

    Large-scale ice-sheet dynamics pivot on the deformation and transport of subglacial sediment through changes in the basal sliding velocities of glaciers. Such unconsolidated, water-saturated glacigenic sediment, or till, is found to accumulate into sedimentary wedges, or till-deltas, in grounding zones separating floating ice shelves from grounded ice streams. In addition to affecting glacial slip, such sedimentation may serve to stabilise ice sheets against grounding-line retreat in response to rising sea levels. We present a fluid-mechanical explanation of the formation of these wedges in terms of the jump in hydrostatic loading and unloading of till across the grounding zone, and we compare our findings with geophysical data of sedimentary wedge formation at the modern-day grounding zone of Whillans Ice Stream, West Antarctica. We develop a theoretical model of wedge formation in which we treat both ice and till as viscous fluids spreading under gravity into an inviscid ocean and find that a similar wedge of underlying fluid accumulates around the grounding line in our series of fluid-mechanical laboratory experiments. The experiments were performed in a confined channel geometry. We extend our theory to unconfined geometries in which till deformation is resisted dominantly by vertical shear stresses and the flow of the overlying ice is resisted dominantly either by vertical shear stresses between the ice and till or by extensional stresses characteristic of floating ice shelves and shelfy streams. The former is relevant to less-lubricated, grounded ice sheets whereas the latter is relevant to well-lubricated ice streams, sliding over soft, deformable till of low viscosity and appreciable thickness. We formulate a local condition relating wedge slopes in each of the three scenarios and find a reasonable agreement with geophysical data.

  16. Ground deformation in the Rio-Antirio area, Corinth Gulf, Greece, based on PS images interferometry and potential related geo-hazards

    NASA Astrophysics Data System (ADS)

    Diakogianni, G.; Foumelis, M.; Papadopoulos, G. A.; Parcharidis, I.

    2009-04-01

    Ground deformation is the surface expression of various physical processes such as landslides, ground subsidence and earthquakes. Construction and operation of engineering structures in urban or in rural areas can be affected seriously by ground conditions leading to casualties and economic losses. We focus at the example of the new bridge Rio-Antirrio, an important infrastructure which is the longest cable stayed bridge all over the world. Being of a length of 2,250 m it is located in the strait at the northwest edge of Peloponnese, connecting the Gulf of Corinth and the Gulf of Patras, in central Greece. This important bridge facilitates the transportation between Greece and the Western Europe through the Patra's harbor. The area of the strait is characterized by a variety of natural hazards like the absence of stiff seabed, strong seismic activity, tectonic movements, which make the area highly susceptible to ground deformation and the bridge an element at risk. The aim of this paper is to study the observed ground deformation in the area of Rio-Antirrio and interpret the potential causes of the deformation. We combine results of the PS interferometry (IPTA method) covering the period from 1992 to the present using ERS1 & 2 scenes and ENVISAT with seismicity data, active tectonics, slope failure, coastal sediment compaction, hydrology and seabed stability. Hazard assessment, prevention and mitigation are discussed under the light of the results in a scheme which includes the exposure item (bridge), hazard (multi-source induced ground stability) and risk (possible impact).

  17. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    SciTech Connect

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.

  18. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria

    SciTech Connect

    Rutqvist, J.; Vasco, D.W.; Myer, L.

    2009-11-01

    In Salah Gas Project in Algeria has been injecting 0.5-1 million tonnes CO{sub 2} per year over the past five years into a water-filled strata at a depth of about 1,800 to 1,900 m. Unlike most CO{sub 2} storage sites, the permeability of the storage formation is relatively low and comparatively thin with a thickness of about 20 m. To ensure adequate CO{sub 2} flow-rates across the low-permeability sand-face, the In Salah Gas Project decided to use long-reach (about 1 to 1.5 km) horizontal injection wells. In an ongoing research project we use field data and coupled reservoir-geomechanical numerical modeling to assess the effectiveness of this approach and to investigate monitoring techniques to evaluate the performance of a CO{sub 2}-injection operation in relatively low permeability formations. Among the field data used are ground surface deformations evaluated from recently acquired satellite-based inferrometry (InSAR). The InSAR data shows a surface uplift on the order of 5 mm per year above active CO{sub 2} injection wells and the uplift pattern extends several km from the injection wells. In this paper we use the observed surface uplift to constrain our coupled reservoir-geomechanical model and conduct sensitivity studies to investigate potential causes and mechanisms of the observed uplift. The results of our analysis indicates that most of the observed uplift magnitude can be explained by pressure-induced, poro-elastic expansion of the 20 m thick injection zone, but there could also be a significant contribution from pressure-induced deformations within a 100 m thick zone of shaly sands immediately above the injection zone.

  19. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    DOE PAGESBeta

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1more » into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.« less

  20. GDM: a ForM@Ter service for ground deformation monitoring

    NASA Astrophysics Data System (ADS)

    Ostanciaux, Emilie; Diament, Michel; Jamet, Olivier; Mandea, Mioara

    2015-04-01

    ForM@Ter is a French solid Earth thematic data pole project. It was launched in 2012 by the French national space agency (CNES) and the National Centre for Scientific Research (CNRS), with the active participation of the National institute for geographical and forestry information (IGN). Currently, it relies on the contributions of scientists from more than 20 French Earth science laboratories. Its perimeter, designed with the scientific community, focus on the determination of the shape and movements of the Earth surface (ForM@Ter: Formes et Mouvements de la Terre) with the objective to federate a wide variety of scientific areas (earthquake cycle, tectonics, morphogenesis, volcanism, erosion dynamics, mantle rheology, geodesy) and to offer many interfaces with other thematics, such as glaciology or snow evolution. The project aims at providing a national cooperative platform to facilitate data access, provide processing tools and value-added products with support for non-expert users. However its challenge in the evolving context of the current and forthcoming national and international e-infrastructures, is to design a non-redundant service based on interoperations with existing services, and to cope with highly complex data flows due to the granularity of the data and its associated knowledge. For this purpose, the services offer by the pole will be built based on the needs expressed by the scientific community. This is the case of Ground Deformation Monitoring (GDM) service which we will present here. This service will be based on a CNES computing infrastructure hosting Sentinels products, and will offer catalogue access, HPC facilities and thematic computation services on inSAR and optical imagery. Computation services will give scientists access to DTM, displacement map times series, quality indicators and modelling tools. GDM is aimed at serving a wide panel of scientific fields, such as earthquake cycle studies, tectonics, volcanism, erosion dynamics, or

  1. The mechanics of ground deformation precursory to dome-building extrusions at Mount St. Helens 1981-1982.

    USGS Publications Warehouse

    Chadwick, W.W., Jr.; Archuleta, R.J.; Swanson, D.A.

    1988-01-01

    Detailed monitoring at Mount St. Helens since 1980 has enabled prediction of the intermittent eruptive activity (mostly dome growth) with unprecedented success. During 1981 and 1982, accelerating deformation of the crater floor around the vent (including radial cracks, thrust faults, and ground tilt) was the earliest indicator of impending activity. The magnitude of the shear stress required to match observed dipslacements (1-7 MPa) is inversely proportional to the conduit diameter (estimated to be 25-100 m). The most probable source of this shear stress is the flow of viscous magma up to the conduit and into the lava dome. A model is proposed in which the accelerating deformation, beginning as much as 4 weeks before extrusions, is caused by the increasing velocity of ascending magma in the conduit. This model is examined by using deformation data of the dome before four extrusions in 1981 and 1982 to estimate the volumetric flow rate through the conduit. This flow rate and an estimate of the effective viscosity of the magma enable calculation of an ascent velocity and an applied shear stress that, again, depend on the conduit diameter. The results of these calculations are consistent with the finite element experiments and show that the proposed model is feasible. Precursory deformation like that measured at Mount St. Helens should be observable at similar volcanoes elsewhere because it is caused by the fundamental process of magma ascent.-from Authors

  2. Accelerated Ground Deformation of the Yellowstone Caldera, 2004-2008: Update from GPS and InSAR Observations

    NASA Astrophysics Data System (ADS)

    Chang, W.; Smith, R. B.; Wicks, C.; Puskas, C.

    2008-12-01

    The Yellowstone volcanic system is characterized by decadal-scale episodes of ground deformation, extensive seismicity, extraordinarily high heat flow exceeding ~2,000 mW/m2, and widespread hydrothermal activity. In mid-2004, ground motion of the 640,000 year-old, 40-km-wide by 60-km-long Yellowstone caldera unexpectedly changed from subsidence to uplift at rates of up to 7 cm/yr based upon GPS and InSAR measurements. This pronounced uplift, three to four times faster than earlier historic deformation episodes, was also accompanied by a subsidence of up to 4 cm/yr across the northwest caldera rim near the Norris Geyser Basin. Source modeling of the deformation data indicated magmatic injection of a volcanic sill 10 km beneath the caldera that coincides with the top of a tomographically imaged magma body. As an update to the initial observations it shows that the uplift rate has diminished to ~5 cm/yr since mid-2006 and continued to fall 2008, whereas the Norris subsidence episode ceased near the middle of 2006. To better assess these spatial and temporal variations of the deformation field, we conducted a GPS survey of 17 sites, originally observed beginning in 1987, in the summer of 2008 to supplement data from the 13 permanent GPS stations of the Yellowstone GPS network. Updated 3D source modeling based on these data and 2008 InSAR observations provides key information on the temporal variations and volcanic properties of this important episode of Yellowstone deformation.

  3. InSAR Assessment of Ground Deformations in Shoreline Urban Areas Associated to Hydraulic Head Variations

    NASA Astrophysics Data System (ADS)

    Normand, J.; Heggy, E.

    2014-12-01

    Monitoring ground deformations in highly dense populated shoreline and lowlands areas such as Montreal is crucial for the sustainable development of urban infrastructures. Montreal already undergoes house foundations damages with a density of 8 repairs per square kilometer, especially over clay deposits such as in the Plateau neighborhood with a density of 89 repairs/km2. Using Radarsat-2 C-Band SAR interferometry, we observe a 3-5 mm ground LOS displacement variation temporally out-phased by three months relative to the 2 meter subartesian aquifer hydraulic head and river level variations, over a 60 km2 zone located in the central part of the Montreal Island in eastern Canada, from 2008 to 2010. Using ascending and descending SAR acquisition mode we extract the vertical component of the LOS velocities and observe secular displacements relative to a unconfined aquifer. These displacements are 2 mm/year subsidence on the minor topographic high, associated with evapotranspiration. We also observe ground water recharge and ~1 mm/year uplift downhill related to ground water discharge from deep regional aquifer enhanced with a faults system and shallow local aquifer arising from transmissivity. Displacements observed during this two year study are small but they are significant if integrated over the average lifetime of a house. We conclude that hydraulic head is related to the observed ground deformation in most of the areas of Montreal. Moreover, wetter climate conditions forecast for this area will definitely increase the aquifer dynamics; thus, more ground deformations are foreseen and have to be considered in future infrastructure design standards.

  4. Characterization of Ground Deformation above AN Urban Tunnel by Means of Insar Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Ferretti, A.; Iannacone, J.; Falorni, G.; Berti, M.; Corsini, A.

    2013-12-01

    Ground deformation produced by tunnel excavation in urban areas can cause damage to buildings and infrastructure. In these contexts, monitoring systems are required to determine the surface area affected by displacement and the rates of movement. Advanced multi-image satellite-based InSAR approaches are uniquely suited for this purpose as they provide an overview of the entire affected area and can measure movement rates with millimeter precision. Persistent scatterer approaches such as SqueeSAR™ use reflections off buildings, lampposts, roads, etc to produce a high-density point cloud in which each point has a time series of deformation spanning the period covered by the imagery. We investigated an area of about 10 km2 in North Vancouver, (Canada) where the shaft excavation of the Seymour-Capilano water filtration plant was started in 2004. As part of the project, twin tunnels in bedrock were excavated to transfer water from the Capilano Reservoir to the treatment plant. A radar dataset comprising 58 images (spanning March 2001 - June 2008) acquired by the Radarsat-1 satellite and covering the period of excavation was processed with the SqueeSAR™ algorithm (Ferretti et al., 2011) to assess the ground deformation caused by the tunnel excavation. To better characterize the deformation in the time and space domains and correlate ground movement with excavation, an in-depth time series analysis was carried out. Berti et al. (2013) developed an automatic procedure for the analysis of InSAR time series based on a sequence of statistical tests. The tool classifies time series into six distinctive types (uncorrelated; linear; quadratic; bilinear; discontinuous without constant velocity; discontinuous with change in velocity) which can be linked to different physical phenomena. It also provides a series of descriptive parameters which can be used to characterize the temporal changes of ground motion. We processed the movement time series with PSTime to determine the

  5. Ground deformation associated with volcanic tremor at Izu-Oshima volcano

    SciTech Connect

    Oikawa, Jun; Ida, Yoshiaki; Yamaoka, Koshun; Watanabe, Hidefumi ); Sato, Kaoru ); Fukuyama, Eiichi

    1991-03-01

    Izu-Oshima volcano had summit and fissure eruptions in November, 1986 after 12 years of dormancy, and three small eruptions followed these events within one year. Episodic and continuous volcanic tremors were observed for the period containing these eruptions. It is a remarkable discovery that the episodic volcanic tremor was accompanied by a small but sharp ground deformation, the polarity of which was variable. The distribution of tilt vectors reveals that the source of ground deformation was always located beneath the northwestern flank of the volcano, where a magma reservoir was predicted by other studies. On the other hand, the seismologically detected tremor source was determined to be at a shallow depth below the central pit crater, a few kilometers away from the predicted magma reservoir. It is thus inferred that the tremor source near the crater generated pressure increases or decreases that were simultaneously transmitted through the vent to the magma reservoir and lead to its expansion or contraction.

  6. Implications of ground-deformation measurements across earth fissures in subsidence areas in the southwestern USA

    USGS Publications Warehouse

    Holzer, Thomas L.

    2010-01-01

    Ground deformation was monitored at earth fissures in areas of land subsidence induced by groundwater extraction in the southwestern United States. The ground deformation is consistent with the mechanism that fissures are caused by horizontal strains generated by bending of overburden in response to localized differential compaction. Subsidence profiles indicated that localized differential subsidence occurred across the fissures and that maximum convex-upward curvature was at the fissure. The overall shape of the profile stayed similar with time, and maximum curvature remained stationary at the fissure. Horizontal displacements were largest near the fissure, and generally were small to negligible away from the fissure. Maximum tensile horizontal strains were at the fissure and coincided with maximum curvature in the subsidence profiles. Horizontal tensile strain continued to accumulate at fissures after they formed with rates of opening ranging from 30 to 120 microstrain/year at fissures in Arizona.

  7. Deformation Behaviors of Geosynthetic Reinforced Soil Walls on Shallow Weak Ground

    NASA Astrophysics Data System (ADS)

    Kim, You-Seong; Won, Myoung-Soo

    In this study, the fifteen-month behavior of two geosynthetic reinforced soil walls, which was constructed on the shallow weak ground, was measured and analyzed. The walls were backfilled with clayey soil obtained from the construction site nearby, and the safety factors obtained from general limit equilibrium analysis were less than 1.3 in both wall. To compare with the measured data from the real GRS walls and unreinforced soil mass, a series of finite element method (FEM) analyses on two field GRS walls and unreinforced soil mass were conducted. The FEM analysis results showed that failure plane of unreinforced soil mass was consistent with the Rankine active state, but failure plane did not occur in GRS walls. In addition, maximum horizontal displacements and shear strains in GRS walls were 50% smaller than those found in unreinforced soil mass. Modeling results such as the maximum horizontal displacements, horizontal pressure, and geosynthetic tensile strengths in GRS wall have a god agreement with the measured data. Based on this study, it could be concluded that geosynthetic reinforcement are effective to reduce the displacement of the wall face and/or the deformation of the backfill soil even if the mobilized tensile stress after construction is very small.

  8. Ground deformation tracking over Mt. Baekdu with DInSAR time series analysis and atmospheric correction

    NASA Astrophysics Data System (ADS)

    Hong, S.; Kim, J.; Lin, S.; yun, H.; Seo, H.; Choi, Y.

    2013-12-01

    Mt. Baekdu (also known as Changbai in Chinese) is a volcanic mountain located on the border between North Korea and China. It made one of the most destructive eruptions in the recorded history around 1000 A.D. This eruption was estimated to produce explosive Volcanic Explosivity Index (VEI) 7 eruption (Yin et al., 2012) which was comparable to Mt. Tambora's eruption. Since making minor eruption in 1702 A.D. as clearly stated in the Korean history, the Mt. Baekdu has been dormant. With continuous monitoring over Mt. Baekdu (Xu et al., 2012), it is evident that the frequencies of earthquakes and gas emission were increasing. The results showed important precursors of volcanic activation, including: (1) Strong seismic activities especially from 2002 to 2006; (2) Abnormal gas emissions in three hot springs around the summit from 2002 to 2006; (3) Strong vertical uplift during 2002 to 2005 and horizontal displacement away from Caldera Lake observed using GPS data; (4) A number of abnormal thermal activities in hot springs; (5) Surface deflation indicating new magma activities at the western and northern slopes from 2009. Therefore, it is realized that periodic magma activities are underway beneath Mt. Baekdu from the ground observations. In addition to such short-term campaigns applied on discrete observation stations, a comprehensive monitoring covering overall extent of Mt. Baekdu was further proposed. The Differential Interferometric Synthetic Aperture Radar (DInSAR) technique employing a series of remote sensed SAR phase angle difference was applied to address the difficulty for direct access to the border area due to political situation in this study. In order to deal with the harsh environmental conditions which might limit a successful D-InSAR processing over Mt. Baekdu, e.g. water vapor, vegetation canopy and steep slope around summit, StaMPS/MTI (Stanford Method for Persistent Scatterers/Multi-Temporal InSAR) approach for detecting time series deformation

  9. Ground deformation across the Corinth rift from 22 years of GPS observations

    NASA Astrophysics Data System (ADS)

    Briole, Pierre

    2013-04-01

    shows a co-seismic displacement in January 2010. The extension rate at all stations except Efpalio is steady over the ten years period. The velocities determined at approximately a hundred network points (1st order and 2nd order observed twice or more) show no temporal variation during the sampled period except the co-seismic of the large 1995 Aigion earthquake. The southern side of the rift behaves as a rigid body with less than 1mm/yr internal deformation except around the Psathopirgos fault. Most of the extension, more than 12 mm/yr at the longitude of Trizonia, occurs offshore in the centre of the rift. The northern side of the rift is less rigid, with 3 mm/yr accommodated between Trizonia and Lidoriki. The points located along the northern shore between Nafpaktos and Itea show a westward (or clockwise) component with respect to the overall velocity field. No significant deformation is observed in the area located between Nafpaktos and the eastern termination of the Trichonis lake and the block located between Etoliko, Thermo, Lidoriki and Nafpaktos has less than 1mm/yr internal deformation. At the western termination of the Psathopirgos fault both GPS and SAR interferometry show the existence of localized deformation in the first few kilometres inland that becomes progressively dominated by right lateral strike slip corresponding probably to the northern termination of the crustal discontinuity activated more to the southwest during the M=6.4 June 8, 2008 Andravida earthquake. No vertical motion is detected at campaign points except at the Drepano lighthouse northwest of the Psathopirgos fault. Further steps forward in the knowledge of the deformation of this exceptional area during the next few decades require among others the deployment of a few ten of permanent GPS stations across the main actives structures on both sides of the rift and at its western termination around Patras, a complete analysis of the available and future InSAR data and fusion with the GPS

  10. Ground reaction forces in horses, assessed from hoof wall deformation using artificial neural networks.

    PubMed

    Savelberg, H H; Van Loon, T; Schamhardt, H C

    1997-05-01

    An artificial neural network (ANN) was developed to investigate whether hoof wall deformation could be used to determine ground reaction forces (GRF) in horses. The ANN was taught this relationship under certain conditions and was able to generalise this knowledge to conditions for which it was not trained before. To acquire data to train and test the ANN, a horse was equipped with strain gauges attached to the dorsal, lateral and medial parts of the hoof to assess hoof wall deformation. A force plate was used to measure the GRFs. Both hoof wall deformation and GRF were recorded simultaneously at different speeds, gaits, surfaces and loads. An ANN was trained with some of these data, and subsequently provided with strain gauge recordings of strides, not used for training. By comparing the GRF calculated by the ANN based on the hoof wall deformation with that recorded simultaneously by the force plate, the generalisability of the ANN was determined. It was found that an ANN is capable of 'learning' the relationship between hoof wall deformation and GRF, and to generalise it to a wide range of new conditions. This technique enables assessment of GRF under difficult conditions, such as on a treadmill or on surfaces where a force plate cannot be employed. PMID:9354277

  11. Unrest at Askja Caldera; Evidence from gravity and ground-deformation data

    NASA Astrophysics Data System (ADS)

    van Dalfsen, E.; Rymer, H.

    2003-04-01

    The combination of a divergent plate boundary and a mantle plume makes Iceland a unique place to study active volcanism. Askja caldera, situated in the northeast of Iceland, has been in a state of unrest for decades. This unrest occurs as a result of processes in a deep-lying magma chamber. Simultaneous measurements of ground deformation and gravity change at a few key stations may be used to identify magma chamber processes before conventional eruption precursors become apparent. Microgravity measurements have been made at Askja since 1988 using LaCoste &Romberg meters. By multiplying the elevation change by the observed free air gravity gradient, the predicted gravity changes can be calculated. These are then compared with the observed height-corrected gravity changes and any residual gravity change is interpreted in terms of sub-surface mass changes. Previous results (1988-1991) were interpreted with the use of a (g/(h diagram. Steep gradients for stations in the south-east of the caldera indicated a dyke intrusion, while data in other areas plotted below the Bouguer Corrected Free Air Gradient, corresponding to magma drainage. Preliminary results from 2002 suggest a net microgravity increase at Askja from 1988 to 2002. The observed microgravity change is less than the predicted gravity change. This implies an on-going sub-surface mass decrease. This could be explained by magma drainage from the chamber. Drainage removes magma, resulting in mass decrease and thus gravity decrease. Evolution of the (g/(h gradients at different locations can give considerable information about future activity. All areas measured at Askja show a change from a steeper gradient to a less steep gradient. This would suggest enhanced sub-surface mass decrease with time, which can be interpreted in terms of an increasing rate of magma drainage. Possible implications of this include renewed activity along other parts of the rift system.

  12. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    NASA Astrophysics Data System (ADS)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  13. Potentials and Limits of Sar Permanent Scatterers In Ground Deformation Monitoring

    NASA Astrophysics Data System (ADS)

    Rocca, F.; Colesanti, C.; Ferretti, A.; Prati, C.

    The Permanent Scatterers (PS) technique allows the identification of individual radar targets particularly suitable for SAR interferometric measurements. In fact, despite its remarkable potential, spaceborne SAR Differential Interferometry (DInSAR) has not been fully exploited as a reference tool for ground deformation mapping, due to the presence of atmospheric artefacts as well as geometrical and temporal phase decorrelation. Both drawbacks are overcome in a multi-image framework of interfer- ometric data (>25-30 images) jointly used in order to properly identify and exploit the subset of image pixels corresponding to privileged reflectors, the so-called Per- manent Scatterers. Provided that at least 3-4 PS/sqkm are available, accurate phase measurements carried out on the sparse PS grid allow one to compensate data for the atmospheric phase contributions. Average ground deformation rate as well as full dis- placement time series (both along the satellite Line of Sight, LOS) are estimated with millimetric accuracy on individual PS locations. The PS subset of image pixels can be thought of as a high density (100-400 PS/sqkm, in urban areas) "natural" geode- tic network. This study aims at discussing in detail potentials and limits of the PS approach in monitoring ground deformation phenomena characterised by a complex time non-uniform evolution (Non-Linear Motion, NLM). PS results highlighting sea- sonal displacement effects beneath San Jose (Santa Clara Valley, California) are going to be discussed. The deformation occurring there is related to the seasonal variation of the ground water level in the area delimited by the Silver Creek and the San Jose fault. The San Jose PS analysis is exploited as a significant case study to assess the main requirements for a successful detection of NLM phenomena (by means of PS), and to analyse their impact on the quality of results. Particular attention will be de- voted to the effect of irregularly sampled data and missing

  14. Liquefaction, ground oscillation, and soil deformation at the Wildlife Array, California

    USGS Publications Warehouse

    Holzer, T.L.; Youd, T.L.

    2007-01-01

    Excess pore-water pressure and liquefaction at the Wildlife Liquefaction Array in 1987 were caused by deformation associated with both high-frequency strong ground motion and 5.5-second-period Love waves. The Love waves produced large (???1.5%) cyclic shear strains well after the stronger high-frequency ground motion abated. These cyclic strains generated approximately from 13 to 35% of the excess pore-water pressure in the liquefied layer and caused excess pore-water pressures ultimately to reach effective overburden stress. The deformation associated with the Love waves explains the "postearthquake" increase of pore-water pressure that was recorded at the array. This explanation suggests that conventional methods for predicting liquefaction based on peak ground acceleration are incomplete and may need to consider cyclic strains associated with long-period surface waves. A post-earthquake survey of an inclinometer casing indicated permanent shear strain associated with lateral spreading primarily occurred in the upper part of the liquefied layer. Comparison of cone penetration test soundings conducted after the earthquake with pre-earthquake soundings suggests sleeve friction increased. Natural lateral variability of the liquefied layer obscured changes in tip resistance despite a ???1% reduction in volume. The large oscillatory motion associated with surface waves explains ground oscillation that has been reported at some liquefaction sites during earthquakes.

  15. SqueeSAR™ and GPS ground deformation monitoring of Santorini Volcano (1992-2012): Tectonic implications

    NASA Astrophysics Data System (ADS)

    Lagios, E.; Sakkas, V.; Novali, F.; Bellotti, F.; Ferretti, A.; Vlachou, K.; Dietrich, V.

    2013-05-01

    The Santorini Volcanic Complex (SVC) has been in a dormant state for the last 60 years until January 2011 when upward influx of magma reawakened the volcano with intense radial ground deformation and inter-caldera seismicity that lasted until January 2012 but declined afterwards. This paper aims to study the ground deformation and the inferred tectonic implications of the SVC for the period 1992-2012 mainly based on the SqueeSAR™ technique and DGPS campaign results of our local network which incorporates available data on Internet from several continuous GPS stations established on the island. The spatial deformation of the SVC during the quiet period 1992-2010 was deduced by joint analysis of ERS1 and 2 and ENVISAT. It was found that the intra caldera Palaea Kammeni shield volcano was being uplifted (2-3 mm/yr) with increasing rate, whilst the adjacent Nea Kammeni shield volcano was being subsided (up to 6 mm/yr) with increasing rate. The rest of the SVC showed a velocity field varying from - 1 to + 2 mm/yr, indicating a rather linear deformation during that period. The results from the GPS network are in full agreement with the SqueeSAR results. Based on the results of SqueeSAR analysis of 12 ENVISAT images, and DGPS/CGPS data to end 2012, the deformation for the unrest period 2011-2012 was non-linear being characterized by strong radial deformation in the northern part of the caldera (50-120 mm/yr), and accelerating values (> 130 mm/yr2). Combined GPS/SqueeSAR Mogi modeling indicated a source located north of Nea Kammeni at a shallow depth. However, a progressively decreasing rate in deformation was noted at most GPS/CGPS station components after January 2012, indicating magma settlement consistent with the constantly decreasing rate of the inter-caldera seismicity. The faulting features seem to have a key role in the evolution of the deformation, which continues up the end 2012, but at a very low level.

  16. Long-range ground deformation monitoring by InSAR analysis

    NASA Astrophysics Data System (ADS)

    Rokugawa, S.; Nakamura, T.

    2015-11-01

    InSAR (Interferometric Synthetic Aperture Radar) analysis is an effective technique to map 3-dimensional surface deformation with high spatial resolution. The aim of this study was to evaluate the capability of InSAR analysis when applied to ground monitoring of an environmental disaster. We performed a time series InSAR analysis using ENVISAT/ASAR and ALOS/PALSAR data and commercial software to investigate subsidence around the Kanto District of Japan. We also investigated techniques for efficient early detection of landslides in Kyushu using time series analysis that incorporated synthetic aperture radar (SAR) images. ENVISAT/ASAR data acquired from 2003-2010 and ALOS/PALSAR data acquired from 2006-2011 were used to detect poorly expressed geomorphological deformation by conducting time series analyses of periodically acquired SAR data. In addition, to remove noise caused by geographical feature stripes or phase retardation, we applied median filtering, histogram extraction processing, and clarification of the displacement with a Laplacian filter. The main functions of the InSAR time series analysis are the calculation of phase differences between two images and the inversion with smoothness constraint for the estimation of deformation along the line of sight. The results enabled us to establish criteria for the selection of suitable InSAR data pairs, and provided the final error estimation of the derived surface deformation. The results of the analysis in the Kanto District suggested that localized areas of uplift and subsidence have occurred at irregular intervals in this area. Furthermore, the method offers the possibility of early warning of environmental disasters such as landslide and abrupt subsidence. Our results confirm the effectiveness of InSAR analysis for the monitoring of ground deformation over wide areas via the detection of localized subsidence and landslides.

  17. Magnificent Ground Water Connection. [Sample Activities].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  18. Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Zhiming; Wicks, C., Jr.; Power, J.A.; Dzurisin, D.

    2000-01-01

    In March 1996 an intense swarm of volcano-tectonic earthquakes (???3000 felt by local residents, Mmax = 5.1, cumulative moment of 2.7 ??1018 N m) beneath Akutan Island in the Aleutian volcanic arc, Alaska, produced extensive ground cracks but no eruption of Akutan volcano. Synthetic aperture radar interferograms that span the time of the swarm reveal complex island-wide deformation: the western part of the island including Akutan volcano moved upward, while the eastern part moved downward. The axis of the deformation approximately aligns with new ground cracks on the western part of the island and with Holocene normal faults that were reactivated during the swarm on the eastern part of the island. The axis is also roughly parallel to the direction of greatest compressional stress in the region. No ground movements greater than 2.83 cm were observed outside the volcano's summit caldera for periods of 4 years before or 2 years after the swarm. We modeled the deformation primarily as the emplacement of a shallow, east-west trending, north dipping dike plus inflation of a deep, Mogi-type magma body beneath the volcano. The pattern of subsidence on the eastern part of the island is poorly constrained. It might have been produced by extensional tectonic strain that both reactivated preexisting faults on the eastern part of the island and facilitated magma movement beneath the western part. Alternatively, magma intrusion beneath the volcano might have been the cause of extension and subsidence in the eastern part of the island. We attribute localized subsidence in an area of active fumaroles within the Akutan caldera, by as much as 10 cm during 1992-1993 and 1996-1998, to fluid withdrawal or depressurization of the shallow hydrothermal system. Copyright 2000 by the American Geophysical Union.

  19. Evaluating Topographic Effects on Ground Deformation: Insights from Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Ronchin, Erika; Geyer, Adelina; Martí, Joan

    2015-07-01

    Ground deformation has been demonstrated to be one of the most common signals of volcanic unrest. Although volcanoes are commonly associated with significant topographic relief, most analytical models assume the Earth's surface as flat. However, it has been confirmed that this approximation can lead to important misinterpretations of the recorded surface deformation data. Here we perform a systematic and quantitative analysis of how topography may influence ground deformation signals generated by a spherical pressure source embedded in an elastic homogeneous media and how these variations correlate with the different topographic parameters characterizing the terrain form (e.g., slope, aspect, curvature). For this, we bring together the results presented in previous published papers and complement them with new axisymmetric and 3D finite element (FE) model results. First, we study, in a parametric way, the influence of a volcanic edifice centered above the pressure source axis. Second, we carry out new 3D FE models simulating the real topography of three different volcanic areas representative of topographic scenarios common in volcanic regions: Rabaul caldera (Papua New Guinea) and the volcanic islands of Tenerife and El Hierro (Canary Islands). The calculated differences are then correlated with a series of topographic parameters. The final aim is to investigate the artifacts that might arise from the use of half-space models at volcanic areas due to diverse topographic features (e.g., collapse caldera structures, prominent central edifices, large landslide scars).

  20. Deformation-induced changes in hydraulic head during ground-water withdrawal

    USGS Publications Warehouse

    Hsieh, Paul A.

    1996-01-01

    Ground-water withdrawal from a confined or semiconfined aquifer causes three-dimensional deformation in the pumped aquifer and in adjacent layers (overlying and underlying aquifers and aquitards). In response to the deformation, hydraulic head in the adjacent layers could rise or fall almost immediately after the start of pumping. This deformation-induced effect suggest that an adjacent layer undergoes horizontal compression and vertical extension when pumping begins. Hydraulic head initially drops in a region near the well and close to the pumped aquifer, but rises outside this region. Magnitude of head change varies from a few centimeters to more than 10 centimeters. Factors that influence the development of deformation-induced effects includes matrix rigidity (shear modulus), the arrangement of aquifer and aquitards, their thicknesses, and proximity to land surface. Induced rise in hydraulic head is prominent in an aquitard that extends from land surface to a shallow pumped aquifer. Induced drop in hydraulic head is likely observed close to the well in an aquifer that is separated from the pumped aquifer by a relatively thin aquitard. Induced effects might last for hours in an aquifer, but could persist for many days in an aquitard. Induced effects are eventually dissipated by fluid flow from regions of higher head to regions of lower head, and by propagation of drawdown from the pumped aquifer into adjacent layers.

  1. Ground deformation near Gada ‘Ale Volcano, Afar, observed by radar interferometry

    NASA Astrophysics Data System (ADS)

    Amelung, Falk; Oppenheimer, Clive; Segall, P.; Zebker, H.

    2000-10-01

    Radar interferometric measurements of ground-surface displacement using ERS data show a change in radar range, corresponding to up to 12 cm of subsidence near Gada ‘Ale volcano in northern Afar, Ethiopia, that occurred between June 1993 and May 1996. This is the area of lowest topography within the Danakil Depression (-126 m). Geodetic inverse modeling and geological evidence suggest a volcanic origin of the observed deformation; it was probably caused by a combined process of magma withdrawal from a larger reservoir and normal faulting. There is no evidence of subaerial eruption. This is the only identifiable deformation event during June 1993-October 1997 in the 80 km long Erta ‘Ale volcanic range, indicating surprising inactivity elsewhere in the range.

  2. Small scale ground deformations observed in the western rift of Corinth by exploiting multitemporal interferometry and GPS measurements

    NASA Astrophysics Data System (ADS)

    Elias, Panagiotis; Briole, Pierre

    2014-05-01

    The rift of Corinth has been long identified as a site of major importance in Europe due to its intense tectonic activity. It is one of the world's most rapidly extending continental regions and it has one of the highest seismicity rates in the Euro-Mediterranean region. The GPS studies conducted since 1990 indicate a north-south extension rate across the rift of about 1.5 cm/yr around its western termination. The western termination of the rift in the Patras broader area presents a major scientific and socio-economic importance, with the Psathopyrgos and the Rion-Patras faults being located very close to the city of Patras. We processed ascending and descending acquisitions of ASAR/ENVISAT in the period between 2002-2010, to produce Persistent Scatterers and Small Baseline Subsets deformation rates maps. We have combined and constrained them with a number of GPS observations in order to extract the precise Up-Down and East-West deformation components. We verified the results and compared them with other independent studies. We present and discuss the deformation rates along cross sections inside the city of Patras, around the Rion-Antirion Bridge, around the areas or creeping faulting and river deltas. Significant complex ground deformations are observed and interpreted. The Aigion fault seems very active with uplift rate of about 2mm/yr. The Movri, 2008 and Efpalio, 2010, seismic events are modeled, constrained by the seismic, the GPS and the SAR interferometry data. The studied tectonic features are pieces of a diffused triple junction at the junction of the Corinth rift and the northwestern termination of the Hellenic arc, which are investigated and discussed. This research is performed as part of the ANR-SISCOR project in close connection to the CRL working group and with the support of CNRS-INSU.

  3. Investigating ground deformation and subsidence in northern Metro Manila, Philippines using Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR)

    NASA Astrophysics Data System (ADS)

    Eco, R. C.; Lagmay, A. A.; Bato, M. P.

    2011-12-01

    The extent of ground deformation and subsidence in northern Metro Manila was examined using Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) technique. Using the Stanford Method for Persistent Scatterers/Multi-Temporal InSAR (StaMPS/MTI) software, we processed 21 descending ENVISAT radar imageries taken from 2003 to 2006. The processed interferograms show high coherence due to the high density of PS points in the region of interest. The PSInSAR processing reveals several areas in northern Metro Manila, specifically in Caloocan, Malabon, Navotas and Valenzuela-collectively known as CAMANAVA-that exhibit deformation characteristics similar to that of ground subsidence. Results show that the areas manifesting apparent subsidence are moving with a maximum rate of 4.38 cm/year relative to the satellite. This is consistent with the geodetic surveying results from 1979 to 2009 showing subsidence of approximately 1 meter or 3.33 cm/year per year. Government data also identify these areas as among those with the highest rates of groundwater extraction in Metro Manila, suggesting the possibility of anthropogenic activities as the major cause of subsidence. With this study, we hope to get a better understanding of the nature of subsidence affecting parts of northern Metro Manila. Doing so would help mitigate the effects of potential flood disasters.

  4. A Ground Deformation Monitoring Approach to Understanding Magma Chamber Systems and Eruptive Cycles of Mount Cameroon

    NASA Astrophysics Data System (ADS)

    Riley, S.; Clarke, A.

    2005-05-01

    Mount Cameroon is a 13,400ft basanite volcano on the passive margin of West Africa. It has erupted seven times in the past century making it one of the most active volcanoes in Africa. Most recently Mount Cameroon erupted in 1999 and 2000 first issuing strombolian explosions from vents near the summit, and later erupting effusively from a fissure running southwest from the summit (Suh et al., 2003). Prior to 2004, the only monitoring equipment on Mount Cameroon was a small seismometer network installed following the 1982 eruption. By 1999 only a single seismometer in the network was functional. Seismic activity did not rise above background levels until the few days immediately preceding the eruption. In an effort to raise awareness of the volcano's condition and provide a more efficient warning of impending eruptions we have begun constructing a ground deformation network on Mount Cameroon. The new network currently consists of two Applied Geomechanics 711-2A(4X) biaxial tiltmeters capable of resolving 0.1 microradians of tilt. One station is located approximately 500 m from the 2000 summit vent, and the other is approximately 1km away from the central fissure approximately 5km southwest of the 2000 summit vent. Three primary processes could precede eruptions at Mt. Cameroon, offering the opportunity for detection and prediction by our network. These processes are magma chamber pressurization, magma ascent via a central conduit, and/or propagation of magma along the central fissure. Magma chamber location, if a significant chamber exists, is poorly constrained, however, previous petrologic studies on Mount Cameroon (Suh et al., 2003; Fitton et al., 1983) suggest Mount Cameroon magmas originate at a depth less than 40km. Published seismic data (Ambeh, 1989) contains evidence of magmatic activity and possible chambers at depths ranging from 10km to 70km. Preliminary calculations using a simple Mogi model suggest deformation caused by pressurization of a large

  5. Long term and seasonal ground deformation monitoring of Larissa Plain (Central Greece) by persistent scattering interferometry

    NASA Astrophysics Data System (ADS)

    Vassilopoulou, Spyridoula; Sakkas, Vasileios; Wegmuller, Urs; Capes, Ren

    2013-03-01

    The land subsidence which occurs at the Larissa Basin (Thessaly Plain, Central Greece) is due to various causes including aquifer system compaction. Deformation maps of high spatial resolution deduced by the Persistent Scattering Interferometry (PSI) technique (using radar scenes from ERS and ENVISAT satellites) for the period 1992-2006 were produced to study the spatial and temporal ground deformation. A developed GIS database (including geological, tectonic, morphological, hydrological, meteorological and watertable variation from wells in the area) offered the possibility of studying in detail the intense subsidence. The PSI based average deformation image clearly shows that subsidence generally takes place inside the Larissa Plain ranging from 5-250 mm. The largest amplitude rates (-25 mm/yr) are observed around the urban area of Larissa City (especially at Gianouli and Nikea villages), while the Larissa City center appears to be relatively stable with a tendency to subside. The rest of the plain regions seem to subside at moderate rates (about 5-10 mm/yr). The surrounding mountainous area is stable, or has slightly been uplifted with respect to the NE located reference point. It was found that there is a correlation between the seasonal water-table variation (deduced from wells data), the seasonal water demand for irrigation associated with specific types of cultivation (cotton fields), the monthly rainfall, and the observed subsidence rate in the rural regions of the Thessaly Plain.

  6. Mt. Etna ground deformation detected by SISTEM approach using GPS data and multiple SAR sensor

    NASA Astrophysics Data System (ADS)

    Guglielmino, Francesco; Puglisi, Giuseppe; Bonforte, Alessandro; Cocorullo, Chiara; Sansosti, Eugenio; Pepe, Susi; Solaro, Giuseppe; Casu, Francesco; Acocella, Valerio; Ruch, Joel; Nobile, Adriano; Zoffoli, Simona

    2014-05-01

    The availability of both multiple SAR datasets and GPS stations over Mt. Etna during the 2009-2010 time span, allowed us to apply the SISTEM integration in order to capture a more complete figure of the ground deformation affecting the volcano. In particular we use both ascending and descending views of C-band ENVISAT and X-band COSMO-SkyMed sensors, and the ascending view of L-band ALOS sensors. The SAR data have been analyzed by using a time series approach, based on the SBAS technique. Moreover, thanks to the availability of dense (105 benchmarks) geodetic in situ data collected on Mt. Etna, it was possible to validate and integrate the SAR data with the GPS ground deformation data applying the SISTEM approach. The SISTEM approach simultaneously integrates all the available datasets (i.e. GPS displacement vectors on sparse benchmarks and SAR displacement maps), providing a high-resolution 3D displacement map by taking advantage of the positive features of each datasets, i.e. the availability of multiple view geometries of COSMO-SkyMed and ENVISAT data, together with the high temporal and spatial resolution of the COSMO-SkyMed data, the good coherence of ALOS L-band interferometric data, and the full 3D displacement components provided by GPS with sub-cm accuracy level. The preliminary results are consistent with the geophysical and volcanological background knowledge of the Mt. Etna dynamic during the 2009-2010 period, showing a general inflation of the entire volcanic edifice coupled with the ESE sliding of the eastern and southeastern flank. The displacement pattern, resulting by applying the SISTEM integration method, provides an accurate spatial characterization of ground deformation, well constrained by the multiple SAR data and ground GPS measurements. ALOS and COSMO-SkyMed SAR data were acquired in the framework of SAR4Volcanoes research project under Italian Space Agency agreement n. I/034/11/0. The ENVISAT data were acquired in the framework ESA CAT.1

  7. Fiber-Reinforced Rocks Akin to Roman Concrete Help Explain Ground Deformation at Campi Flegrei Caldera

    NASA Astrophysics Data System (ADS)

    Vanorio, Tiziana; Kanitpanyacharoen, Waruntorn

    2016-04-01

    The caldera of Campi Flegrei is one of the active hydrothermal systems of the Mediterranean region experiencing notable unrest episodes in a densely populated area. During the last crisis of 1982-1984, nearly 40,000 people were evacuated for almost two years from the main town of Pozzuoli, the Roman Puteoli, due to the large uplifts (~2 m over two years) and the persistent seismic activity. The evacuation severely hampered the economy and the social make-up of the community, which included the relocation of schools and commercial shops as well as the harbor being rendered useless for docking. Despite the large uplifts, the release of strain appears delayed. Seismicity begins and reaches a magnitude of 4.0 only upon relatively large uplifts (~ 70-80 cm) contrary to what is generally observed for calderas exhibiting much lower deformation levels. Over and above the specific mechanism causing the unrest and the lack of identification of a shallow magmatic reservoir (< 4 km) by seismic data, there is a core question of how the subsurface rocks of Campi Flegrei withstand a large strain and have high strength. We performed a series of direct measurements on deep well cores by combining high-resolution microstructural and mineralogical analyses with the elastic and mechanical properties of well cores from the deep wells drilled in the area right before the unrest of 1982-1984 - San Vito (SV1 and SV2) and Mofete (MF1, MF2, MF5). The rock physics analysis of the well cores provides evidence for the existence of two horizons, above and below the seismogenic area, underlying a natural, coupled process. The basement is a calc-silicate rock housing hydrothermal decarbonation reactions, which provide lime-rich fluids. The caprock above the seismogenic area has a pozzolanic composition and a fibril-rich matrix made of intertwining filaments of ettringite and tobemorite, resulting from lime-pozzolanic reactions. These findings provide evidence for a natural process reflecting that

  8. New design deforming controlling system of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  9. InSAR analysis of ground deformation over the Istanbul Area in the framework of the FP7 MARsite Project

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano; Bonano, Manuela; Nobile, Adriano; Merryman Boncori, John Peter; Manzo, Mariarosaria; Solaro, Giuseppe; Moro, Marco; Saroli, Michele

    2015-04-01

    , showing a mainly linear deformation trend with a velocity of about 1 cm/yr. We started a detailed investigation of the causes of the detected local deformation. We used a stereo pair of very high resolution (0.6 m) satellite images (Pleiades satellite) to carry out a photogeological interpretation which allowed us to identify and characterize various gravitational phenomena in the Avcilar peninsula. The identified gravitational elements are represented by flows, complex landslides, translations and paleolandslides. They have been classified in certain, inferred and quiescent. We identified linear elements associated with landslides, as escarpments and paleo-escarpments over a trench associated to a deep-seated gravitational slope deformation. Terraces, paleo-terraces, counterslope terraces, solifluctions and unmapped landslides were also identified. The comparison of the identified morphological features with the present ground deformation rates allowed to identify and characterise the active gravitational movements.

  10. Numerical models for ground deformation and gravity changes during volcanic unrest: simulating the hydrothermal system dynamics of a restless caldera

    NASA Astrophysics Data System (ADS)

    Coco, A.; Gottsmann, J.; Whitaker, F.; Rust, A.; Currenti, G.; Jasim, A.; Bunney, S.

    2016-04-01

    Ground deformation and gravity changes in restless calderas during periods of unrest can signal an impending eruption and thus must be correctly interpreted for hazard evaluation. It is critical to differentiate variation of geophysical observables related to volume and pressure changes induced by magma migration from shallow hydrothermal activity associated with hot fluids of magmatic origin rising from depth. In this paper we present a numerical model to evaluate the thermo-poroelastic response of the hydrothermal system in a caldera setting by simulating pore pressure and thermal expansion associated with deep injection of hot fluids (water and carbon dioxide). Hydrothermal fluid circulation is simulated using TOUGH2, a multicomponent multiphase simulator of fluid flows in porous media. Changes in pore pressure and temperature are then evaluated and fed into a thermo-poroelastic model (one-way coupling), which is based on a finite-difference numerical method designed for axi-symmetric problems in unbounded domains.

    Informed by constraints available for the Campi Flegrei caldera (Italy), a series of simulations assess the influence of fluid injection rates and mechanical properties on the hydrothermal system, uplift and gravity. Heterogeneities in hydrological and mechanical properties associated with the presence of ring faults are a key determinant of the fluid flow pattern and consequently the geophysical observables. Peaks (in absolute value) of uplift and gravity change profiles computed at the ground surface are located close to injection points (namely at the centre of the model and fault areas). Temporal evolution of the ground deformation indicates that the contribution of thermal effects to the total uplift is almost negligible with respect to the pore pressure contribution during the first years of the unrest, but increases in time and becomes dominant after a long period of the simulation. After a transient increase over the first years of

  11. Active compressive intraoceanic deformation: early stages of ophiolites emplacement?

    NASA Astrophysics Data System (ADS)

    Chamot-Rooke, Nicolas; Delescluse, Matthias; Montési, Laurent

    2010-05-01

    Oceanic lithosphere is strong and continental lithosphere is weak. As a result, there is relatively little deformation in the oceanic domain away from plate boundaries. However, the interior of oceanic lithosphere does deform when highly stressed. We review here places where intraoceanic compression is at work. In the more than 30 years since the first observations of active compressive intraplate deformation in the Central Indian Ocean through seismic profiling (Eittreim et al., 1972), compressive deformation has been identified in a variety of other oceanic tectonic settings: as a result of small differential motion between large plates (between North America and South America in the Central Atlantic; between Eurasia and Nubia offshore Gibraltar; between Macquarie and Australia plates in the Southern Ocean), within back-arcs (northwest Celebes Sea, Okushiri Ridge in the Japan Sea, on the eastern border of the Caroline plate), and ahead of subduction (Zenisu Ridge off Nankai Trough). Deformation appears to be more diffuse when larger plates are involved, and more localized for younger plates, perhaps in relation with the increasing rigidity of oceanic plates with age. The best example of diffuse deformation studied so far remains the Central Indian Ocean. Numerous marine data have been collected in this area, including shallow and deep seismic, heat flow measurements, multibeam bathymetry. The present-day deformation field has been modeled using GPS and earthquakes as far field and near field constraints respectively. Reactivation of the oceanic fabric (including for portions of the Indo-Australian plate which are now in subduction as evidenced by the September 2009 Padang earthquake), selective fault abandonment (Delescluse et al., 2008) and serpentinization (Delescluse and Chamot-Rooke, 2008) are some of the important processes that shape the present-day pattern of deformation. These rare intraplate deformation areas constitute excellent natural laboratories to

  12. Application of terrestrial laser scanning for detection of ground surface deformation in small mud volcano (Murono, Japan)

    NASA Astrophysics Data System (ADS)

    Hayakawa, Yuichi S.; Kusumoto, Shigekazu; Matta, Nobuhisa

    2016-07-01

    We perform terrestrial laser scanning (TLS) to detect changes in surface morphology of a mud volcano in Murono, north-central Japan. The study site underwent significant deformation by a strong earthquake in 2011, and the surface deformation has continued in the following years. The point cloud datasets were obtained by TLS at three different times in 2011, 2013 and 2014. Those point clouds were aligned by cloud-based registration, which minimizes the closest point distance of point clouds of unchanged ground features, and the TLS-based point cloud data appear to be suitable for detecting centimeter-order deformations in the central domain of the mud volcano, as well as for measurements of topographic features including cracks of paved ground surface. The spatial patterns and accumulative amount of the vertical deformation during 2011-2014 captured by TLS correspond well with those previously reported based on point-based leveling surveys, supporting the validity of TLS survey.

  13. Ground deformation of the western rift of Corinth observed by means of PSI, SBAS and DInSAR methodologies

    NASA Astrophysics Data System (ADS)

    Elias, Panagiotis; Briole, Pierre

    2013-04-01

    The rift of Corinth has been long identified as a site of major importance in Europe due to its intense tectonic activity. It is one of the world's most rapidly extending continental regions and it has one of the highest seismicity rates in the Euro-Mediterranean region. It produces in average, an earthquake of magnitude 6 per century. The GPS studies conducted since 1990 indicate a north-south extension rate across the rift of ~1.5 cm year-1 around its western termination. Geological evidences show that the south coast of the rift is uplifting whereas the north part is subsiding. The western termination of the rift in the Patras broader area presents a major scientific and socio-economic importance, with the Psathopyrgos and the Rion-Patras faults being located very close to the city of Patras. The first DInSAR studies were carried out using SAR/ERS data after the Ms= 6.2 June 15, 1995 Aigion earthquake and contributed to its characterization. More recently the ground deformation of the area has been measured using a series of ASAR/ENVISAT, PALSAR/ALOS and RASARSAT-2 acquisitions. All datasets were processed by means of PSI (Persistent Scatterers Interferometry), SBAS (Small Baseline SubSet) and DInSAR (Differential Interferometry with SAR) methodologies. In addition to widely used tools (DIAPASON, ROI-PAC, STAMPS e.t.c.) in-house procedures and tools have been developed in order to exploit of the synergy of multiple characteristics/properties (frequency, viewing angles, sides, etc) of the SAR acquisitions aiming to the minimisation of the noise components. We verified the agreement between GPS and PSI/SBAS velocities at the location of the five permanent GPS stations operated in the rift since ten years. Ground deformations are visible at various scales and at various places in the produced PSI/SBAS maps and several known faults exhibit ground deformation around them with no earthquake occurred during the observations period: (a) On 18th and 22nd of January 2010

  14. Ground deformation associated with the 2008 Sichuan Earthquake in China, estimated using a SAR offset-tracking method

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Takada, Y.; Furuya, M.; Murakami, M.

    2008-12-01

    Introduction: A catastrophic earthquake struck China"fs Sichuan area on May 12, 2008, with the moment magnitude of 7.9 (USGS). The hypocenter and their aftershocks are distributed along the western edge of the Sichuan Basin, suggesting that this seismic event occurred at the Longmeng Shan fault zone which is constituted of major three active faults (Wenchuan-Maowen, Beichuan, and Pengguan faults). However, it is unclear whether these faults were directly involved in the mainshock rupture. An interferometry SAR (InSAR) analysis generally has a merit that we can detect ground deformation in a vast region with high precision, however, for the Sichuan event, the surface deformation near the fault zone has not been satisfactorily detected from the InSAR analyses due to a low coherency. An offset-tracking method is less precise but more robust for detecting large ground deformation than the interferometric approach. Our purpose is to detect the detail ground deformation immediately near the faults involved in the Sichuan event with applying the offset-tracking method. Analysis Method: We analyzed ALOS/PALSAR images, which have been taken from Path 471 to 476 of ascending track, acquired before and after the mainshock. We processed SAR data from the level-1.0 product, using a software package from Gamma Remote Sensing. For offset-tracking analysis we adopt intensity tracking method which is performed by cross-correlating samples of backscatter intensity of a master SAR image with samples from the corresponding search area of a slave image in order to estimate range and azimuth offset fields. We reduce stereoscopic effects that produce apparent offsets, using SRTM3 DEM data. Results: We have successfully obtained the surface deformation in range (radar look direction) component, while in azimuth (flight direction) no significant deformation can be detected in some orbits due to "gazimuth streaks"h that are errors caused by ionospheric effects. Some concluding remarks are

  15. Monocytic Cells Become Less Compressible but More Deformable upon Activation

    PubMed Central

    Ravetto, Agnese; Wyss, Hans M.; Anderson, Patrick D.; den Toonder, Jaap M. J.; Bouten, Carlijn V. C.

    2014-01-01

    Aims Monocytes play a significant role in the development of atherosclerosis. During the process of inflammation, circulating monocytes become activated in the blood stream. The consequent interactions of the activated monocytes with the blood flow and endothelial cells result in reorganization of cytoskeletal proteins, in particular of the microfilament structure, and concomitant changes in cell shape and mechanical behavior. Here we investigate the full elastic behavior of activated monocytes in relation to their cytoskeletal structure to obtain a better understanding of cell behavior during the progression of inflammatory diseases such as atherosclerosis. Methods and Results The recently developed Capillary Micromechanics technique, based on exposing a cell to a pressure difference in a tapered glass microcapillary, was used to measure the deformation of activated and non-activated monocytic cells. Monitoring the elastic response of individual cells up to large deformations allowed us to obtain both the compressive and the shear modulus of a cell from a single experiment. Activation by inflammatory chemokines affected the cytoskeletal organization and increased the elastic compressive modulus of monocytes with 73–340%, while their resistance to shape deformation decreased, as indicated by a 25–88% drop in the cell’s shear modulus. This decrease in deformability is particularly pronounced at high strains, such as those that occur during diapedesis through the vascular wall. Conclusion Overall, monocytic cells become less compressible but more deformable upon activation. This change in mechanical response under different modes of deformation could be important in understanding the interplay between the mechanics and function of these cells. In addition, our data are of direct relevance for computational modeling and analysis of the distinct monocytic behavior in the circulation and the extravascular space. Lastly, an understanding of the changes of monocyte

  16. The interplay between deformation and volcanic activity: new data from the central sector of the Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Isaia, Roberto; Sabatino, Ciarcia; Enrico, Iannuzzi; Ernesto, Prinzi; D'Assisi, Tramparulo Francesco; Stefano, Vitale

    2016-04-01

    The new excavation of a tunnel in the central sector of the Campi Flegrei caldera allowed us to collect new stratigraphic and structural data shedding light on the volcano-tectonic evolution of the last 10 ka. The analyzed sequences are composed by an alternation of volcanic, lacustrine, fluvial and marine sediments hosting several deformation structures such as faults, sedimentary dykes and fractures. A review of available well log togheter with the new data were used to perform a 3D reconstruction of paleo-surfaces resulted after the main volcanic and deformation episodes. Results show as the paleo-morphology was strictly controlled by faults and fractures that formed meso-scale channels and depressions subsequently filled by tephra and volcanoclastic sediments. The measured structures indicate an extensional deformation accompanying the ground uplift occurred in various stages of the caldera evolution. Stratigraphic relationships between structures and volcanic deposits further constrain the timing of the deformation phases. Presently an unrest phase of the Campi Flegrei caldera is marked by variations of different parameters such as ground deformation activities well recorded by GPS data, topographic leveling and satellite surveys. The results of this study provide further insight into the long term deformation pattern of the caldera and provide a key to interpret the ground deformation scenarios accompanying a possible resumption of volcanism.

  17. Sequential data assimilation strategies for utilizing ground deformation data to assess rapidly evolving magma reservoirs

    NASA Astrophysics Data System (ADS)

    Gregg, P. M.; Pettijohn, J. C.; Zhan, Y.

    2015-12-01

    Classic inversion and joint inversion schemes for analyzing ground deformation data are limited in their ability to provide model forecasts and track the temporal dynamics of a volcano experiencing unrest. Sequential data assimilation techniques, such as the Ensemble Kalman Filter (EnKF; Evensen, 1994), estimate the instantaneous state of a dynamic system in a time-forward fashion by updating the model of a system whenever observations become available. The EnKF method uses a Markov Chain Monte Carlo approach to estimate the covariance matrix in the Kalman filter and also tracks model parameters concurrently at a fraction of the computational cost of the Kalman filter (Kalman, 1960) and Extended Kalman Filter (Schmidt, 1966). In this investigation, we build upon Gregg and Pettijohn (2015) to test the performance of the EnKF for assimilating multiple, disparate ground deformation datasets (InSAR, GPS, leveling, and EDM) to provide model forecasts of a volcano exhibiting rapid variations in surface deformation. Specifically, the EnKF is applied to a hypothetical volcano experiencing both inflation and deflation to determine how quickly the EnKF is able to respond to changes in the magma chamber source given a particular set of surface observations. Of interest is how the EnKF responds to limitations imposed by the spatial and temporal resolution of the observations as well as data uncertainties. A series of synthetic tests is run to compare EnKF functionality with individual and multiple dataset assimilation. As the EnKF is model-independent, we test the performance of the EnKF with both time-forward viscoelastic finite element models as well as classic elastic analytical models. References: Evensen, G. (1994), Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, JGR, doi:10.1029/94jc00572. Gregg, P. M., and Pettijohn, J. C. (2015), A multi-data stream assimilation framework for the assessment

  18. An Upper Limit to Ground Deformation in the Island of Tenerife, Canary Islands, for the Period 1997 2006

    NASA Astrophysics Data System (ADS)

    Eff-Darwich, Antonio; Grassin, Olivier; Fernández, José

    2008-06-01

    Continuous monitoring of ground deformation in the volcanic island of Tenerife, Canary Islands, is based on GPS networks, since there are as yet no tiltmeter stations installed on the island. However, there is a world-class astronomical observatory on the island, the El Teide Observatory, where four tiltmeters, two aligned in the North-South and the other two in the East-West, are monitoring the movements of the solar telescope THEMIS. THEMIS (Heliographic Telescope for the Study of Solar Magnetism and Instabilites) is among the three largest solar telescopes in the world. Since THEMIS is located a few kilometers from the main volcanic structures of the island, in particular the El Teide-Pico Viejo stratovolcano, and the precision of the inclinometers is comparable to those used in geophysical studies, we carried out the analysis of the tilt measurements for the period 1997 2006. The tiltmeters at THEMIS are placed in the seventh floor of a tower, hence their sensitivity to geological processes is reduced compared to geophysical installations. However, THEMIS measurements are the only terrestrial data available in Tenerife for such a long period of observations, which include the sustained increase in seismic activity that started in 2001. In this sense, a significant change was found in the East-West tilt of approximately 35 μ-radians between the years 2000 and 2002. Some theoretical models were calculated and it was concluded that such tilt variation could not be due to dike intrusions, nor a volcanic reactivation below the El Teide-Pico Viejo volcano. The most likely explanation comes from dislocations produced by a secondary fault associated to a major submarine fault off the eastern coast of Tenerife. In any case, taking into account the nearly permanent data recording at THEMIS, they could be considered as a complement for any ground deformation monitoring system in the island.

  19. Phantom-based ground-truth generation for cerebral vessel segmentation and pulsatile deformation analysis

    NASA Astrophysics Data System (ADS)

    Schetelig, Daniel; Säring, Dennis; Illies, Till; Sedlacik, Jan; Kording, Fabian; Werner, René

    2016-03-01

    Hemodynamic and mechanical factors of the vascular system are assumed to play a major role in understanding, e.g., initiation, growth and rupture of cerebral aneurysms. Among those factors, cardiac cycle-related pulsatile motion and deformation of cerebral vessels currently attract much interest. However, imaging of those effects requires high spatial and temporal resolution and remains challenging { and similarly does the analysis of the acquired images: Flow velocity changes and contrast media inflow cause vessel intensity variations in related temporally resolved computed tomography and magnetic resonance angiography data over the cardiac cycle and impede application of intensity threshold-based segmentation and subsequent motion analysis. In this work, a flow phantom for generation of ground-truth images for evaluation of appropriate segmentation and motion analysis algorithms is developed. The acquired ground-truth data is used to illustrate the interplay between intensity fluctuations and (erroneous) motion quantification by standard threshold-based segmentation, and an adaptive threshold-based segmentation approach is proposed that alleviates respective issues. The results of the phantom study are further demonstrated to be transferable to patient data.

  20. The 11 March 2011 Tohoku-Oki earthquake : from GPS ground deformations to ionospheric perturbations

    NASA Astrophysics Data System (ADS)

    Rolland, L. M.; Lognonne, P.; Nocquet, J.; Sladen, A.; Astafyeva, E.; Occhipinti, G.; Kherani, A.; Coïsson, P.; Bosser, P.; Vergnolle, M.; Kobayashi, N.; Mann, M.; Munekane, H.; Cappa, F.

    2011-12-01

    The 2011 Mw=9.0 Tohoku-Oki earthquake and tsunami occurred offshore the northeast coast of Japan, in one of the best instrumented region of the world. In particular, the country is covered by a very dense network, called GEONET, made of about a thousand 1 Hz permanent GPS (Global Positioning System) stations. Those stations allow not only precise measurements of ground deformations but also radio sounding of the ionosphere through Total Electron Content (TEC) measurements. The coseismic ionospheric disturbances are now routinely observed after strong and shallow earthquakes. After the great Tohoku-Oki earthquake, preliminary results using the GPS-TEC technique and worldwide GPS receivers showed that the atmosphere resonated with an impressive variety of modes. Indeed, vertical displacements of the ground and sea surface launched acoustic-gravity waves above the epicentral region up to teleseismic distance. In turn, the vibrations of the neutral atmosphere shook the ionosphere plasma to induce changes of the TEC. Here, we propose a detailed and comprehensive description of those modes based on the analysis of the GEONET GPS data. Our study takes advantage of the 1-Hz sampling rate of the GPS stations, critical in the near-field for detecting fast propagating waves, but also to enhance the signal to noise ratio and prevents aliasing effects. In the first place, we will present a comparison of the ionospheric perturbations and the vertical ground deformation, either as it is measured on land or as it is predicted offshore. Then, we will report on our progress to model the coseismic ionospheric perturbations, and in particular, on the development of numerical methods to model the coupling mechanisms between the solid earth, the ocean, the neutral atmosphere and the ionosphere plasma. There, acoustic-gravity waves are first modeled using normal modes summation or spectral methods for solving hydrodynamic equations and subsequent ionospheric plasma fluctuations are

  1. GPS analysis of ground surface deformation in response to 2011 drought in Texas

    NASA Astrophysics Data System (ADS)

    Karegar, M. A.; Dixon, T. H.; Malservisi, R.

    2014-12-01

    A precise process and analysis of a dense network of CGPS observations are used to infer the long term and seasonal deformation patterns of ground surface over the state of Texas. The state covers 9 major aquifers which supply more than 50 percent of the water utilized in the state and spread over ~75% of the state area. Pumping of groundwater from many aquifers for irrigation, industrial and human consumption has resulted in a significant water level declines, and in many areas caused long term ground surface subsidence. While more than 70 percent of GPS sites, located on the top of aquifers, experience subsidence, the remained sites located outside the aquifers present significant uplift as a result of elastic response to the changes in loading due to soil moisture and surface water. However, a significant episodic uplift (up 6 mm/yr) from 2010 to 2012 appears in all GPS time series corresponding to 2011 extreme drought in Texas and adjacent states. Such episodic uplift is inferred as an elastic response of ground surface to reduced surface load. While most of drought indicators rely on precipitation index, soil moisture model, satellite vegetation health index and streamflow data, we suggest using regional CGPS vertical displacement as a further proxy for the indication of a drought. Inverting the vertical displacement from GPS it is possible to estimate total water storage including the portion of groundwater storage. In this abstract, the uplifts during drought period are inverted to derive total water storage loss using load Green's function. The GPS-based estimate of water loss is compared with GRACE-based and Land Surface Models estimates of total water storage (e.g. NLDAS and GLDAS). The limitations and uncertainty associated with each technique are discussed.

  2. Persistent Scatterer Interferometry analysis of ground deformation in the Po Plain (Piacenza-Reggio Emilia sector, Northern Italy): Seismo-tectonic implications

    NASA Astrophysics Data System (ADS)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Cenni, Nicola; Devanthéry, Núria; Righini, Gaia; Sani, Federico

    2016-06-01

    This work aims to explore the ongoing tectonic activity of structures in the outermost sector of the Northern Apennines, which represents the active leading-edge of the thrust belt and is dominated by compressive deformation. We have applied the Persistent Scatterer Interferometry (PSI) technique to obtain new insights into the present-day deformation pattern of the frontal area of the Northern Apennine. PSI has proved to be effective in detecting surface deformation of wide regions involved in low tectonic movements. We used 34 Envisat images in descending geometry over the period of time between 2004 and 2010, performing about 300 interferometric pairs. The analysis of the velocity maps and of the PSI time series have allowed to observe ground deformation over the sector of the Po Plain between Piacenza and Reggio Emilia. The time series of permanent GPS stations located in the study area, validated the results of the PSI technique, showing a good correlation with the PS time series. The PS analysis reveals the occurrence of a well-known subsidence area on the rear of the Ferrara arc, mostly connected to the exploitation of water resources. In some instances, the PS velocity pattern reveals ground uplift (with mean velocities ranging from 1 to 2.8 mm/yr) above active thrust-related anticlines of the Emilia and Ferrara folds, and part of the Pede-Apennine margin. We hypothesise a correlation between the observed uplift deformation pattern and the growth of the thrust-related anticlines. As the uplift pattern corresponds to known geological features, it can be used to constrain the seismo-tectonic setting, and a working hypothesis may involve that the active Emilia and Ferrara thrust folds would be characterised by inter-seismic periods possibly dominated by aseismic creep.

  3. Persistent Scatterer Interferometry analysis of ground deformation in the Po Plain (Piacenza-Reggio Emilia sector, Northern Italy): seismo-tectonic implications

    NASA Astrophysics Data System (ADS)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Cenni, Nicola; Devanthéry, Núria; Righini, Gaia; Sani, Federico

    2016-08-01

    This work aims to explore the ongoing tectonic activity of structures in the outermost sector of the Northern Apennines, which represents the active leading edge of the thrust belt and is dominated by compressive deformation. We have applied the Persistent Scatterer Interferometry (PSI) technique to obtain new insights into the present-day deformation pattern of the frontal area of the Northern Apennine. PSI has proved to be effective in detecting surface deformation of wide regions involved in low tectonic movements. We used 34 Envisat images in descending geometry over the period of time between 2004 and 2010, performing about 300 interferometric pairs. The analysis of the velocity maps and of the PSI time-series has allowed to observe ground deformation over the sector of the Po Plain between Piacenza and Reggio Emilia. The time-series of permanent GPS stations located in the study area, validated the results of the PSI technique, showing a good correlation with the PS time-series. The PS analysis reveals the occurrence of a well-known subsidence area on the rear of the Ferrara arc, mostly connected to the exploitation of water resources. In some instances, the PS velocity pattern reveals ground uplift (with mean velocities ranging from 1 to 2.8 mm yr-1) above active thrust-related anticlines of the Emilia and Ferrara folds, and part of the Pede-Apennine margin. We hypothesize a correlation between the observed uplift deformation pattern and the growth of the thrust-related anticlines. As the uplift pattern corresponds to known geological features, it can be used to constrain the seismo-tectonic setting, and a working hypothesis may involve that the active Emilia and Ferrara thrust folds would be characterized by interseismic periods possibly dominated by aseismic creep.

  4. Analysis of Ground Water Flow and Deformation in the Vicinity of DUSEL Homestake

    NASA Astrophysics Data System (ADS)

    Murdoch, L. C.; Ebenhack, J.; Germanovich, L. N.; Wang, H. F.; Boutt, D. F.; Onstott, T. C.; Kieft, T.; Moser, D. P.; Elsworth, D.

    2010-12-01

    The Deep Underground Science and Engineering Laboratory (DUSEL) is an underground facility planned for the workings of the former Homestake gold mine in the northern Black Hills, South Dakota. The mine workings cover several km2 in plan and extend to a depth 2.4 km. The area is underlain by Proterozoic metamorphic rocks that were deformed into regional-scale folds whose axes plunge approximately 40o to the SSE. A conceptual model and preliminary numerical analysis of the hydrogeology of the area indicates that permeability depends on effective stress, with values ranging from 0.1 mD at a depth of 2 km to 100 mD at depths of 100m. A deep ground water flow system is contained within a surface-truncated ellipsoid roughly 8 km by 4 km in plan view and 5.5 km deep with its short-axis aligned to the strike of the workings. The deep flow system consists of a zone of relatively rapid flow from the ground surface to the workings overlying the southern part of the mine, and a much larger ellipsoidal zone extending up to several km from the workings where water has been removed from storage. Numerical analyses of the ground water flow and poroelastic deformation in the vicinity of Homestake DUSEL have been refined by sharpening the 3-D resolution of important features. Mine workings have been resolved into three to four major regions where relatively large densities of rock were removed. These mined regions are shaped roughly like plunging ellipsoids with minor axes of several hundred m and major axes up to more than 2 km. They are treated in the simulations as highly permeable regions with an average elastic modulus significantly less than the intact rock; e.g. like soft, permeable inclusions. Recent field investigations and evaluation of the mine database indicate the presence of a relatively large fault that strikes approximately N20W, roughly parallel to the mined out regions. The Homestake fault dips 60NE, cutting the top of one mined region and extending beneath and

  5. Temporal Variations of Yellowstone Ground Deformation, 2004-2011, from Geodetic Observations and Magmatic Source Modeling

    NASA Astrophysics Data System (ADS)

    Chang, W.; Smith, R. B.; Farrell, J.; Puskas, C.

    2011-12-01

    In mid-2004, GPS and InSAR measurements of Yellowstone revealed the initiation of accelerated uplift of the Yellowstone caldera, with maximum rates of ~7 cm/yr near the Sour Creek resurgent dome in the northeastern caldera. From mid-2006 to 2010, the ground uplift rates declined in two distinct phases: in 2006-2009 from 7 to 5 cm/yr in the northeast caldera and from 4 to 2 cm/yr in the southwest, and in 2009-2010 to 2 cm/yr and 0.5 cm/yr at the same areas. Elastic dislocation modeling of the GPS and InSAR data suggest that magmatic intrusions at 7- 10 km beneath the caldera have been responsible for the uplift, and that a decreasing rate of magmatic replenishment from beneath the northeast caldera and an increase of seismic moment release can plausibly account for reduced rates of caldera uplift. Furthermore, geodetic measurements, including three campaign-mode GPS surveys from 2008 to 2010, revealed that the caldera-wide vertical motion reverted to subsidence in 2010, with an average rate of 2-3 cm/yr (see the attached figure). The initiation of the reversal in vertical deformation was coincident with the occurrence of a large earthquake swarm (a total moment of ~3×1022 dyne-cm) that occurred in January 2010 at the northwestern caldera boundary. With new geodetic measurements in 2011, we expect to present key information for decadal-scale observations and modeling of the Yellowstone caldera deformation that provide insight on temporal variations in the context of Yellowstone magma reservoir replacement and transport.

  6. Finite Element Modeling of Ground Deformation and Gravity Data Observed at Mt Etna During the 1993-1997 Inflation Phase

    NASA Astrophysics Data System (ADS)

    Ganci, G.; Currenti, G.; Del Negro, C.

    2006-12-01

    Elastic finite element models are applied to investigate the effects of topography and medium heterogeneities on the surface deformation and the gravity field produced by volcanic pressure sources. Changes in the gravity field cannot be interpreted only in terms of gain of mass disregarding the deformations of the rocks surrounding the source. Contributions to gravity variations depend also on surface and subsurface mass redistribution driven by dilation of the volcanic source. Both ground deformation and gravity changes were firstly evaluated by solving a coupled axial symmetric problem to estimate the effects of topography and medium heterogeneities. Numerical results show significant discrepancies in the ground deformation and gravity field compared to those predicted by analytical solutions, which disregard topography, elastic heterogeneities and density subsurface structures. With this in mind, we reviewed the expected gravity changes accompanying the 1993- 1997 inflation phase on Mt Etna by setting up a fully 3D finite element model in which we used the real topography of Etna volcano to include the geometry and seismic tomography data to infer crustal heterogeneities. The inflation phase was clearly detected by different geodetic techniques (EDM, GPS, SAR and leveling data) that showed a uniform expansion of the overall volcano edifice. When the gravity data are integrated with ground deformation data and a coupled modeling is solved, a mass intrusion is expected at depth to justify both ground deformation and gravity observation. Our findings highlighted two main points. Firstly, geodetic and gravity data, which independently reflect the state of volcano, need to be jointly modeled in order to obtain a reliable estimate of the depth and density of the intrusion. Secondly, the application of finite element methods allows for a more accurate modeling procedure, which might provide sensible insight into volcanic source definition.

  7. Comparison of Ground Deformation Measurements and Atmospheric Artifacts Using Insar Cosmo-Skymed and GPS Data

    NASA Astrophysics Data System (ADS)

    Zerbini, S.; Prati, C.; Errico, M.; Novali, F.; Santi, E.

    2012-12-01

    Integrating and exploiting the synergetic combination of the InSAR and GPS techniques allows overcoming the limitations inherent in the use of each technique alone. GPS-based estimates of tropospheric delays may contribute in obtaining better corrections of the wet tropospheric path delay in InSAR signals. This will enhance the coherence and will allow the application of InSAR in a wider range of applications. The test area chosen for the comparison between InSAR and GPS data is in northeastern Italy, in particular, in the city of Bologna (urbanized area) and in the surroundings of Medicina (agricultural area). In these sites, two permanent GPS stations (EUREF EPN sites) of the University of Bologna are operational since mid 1999 (BOLG) and 1996 (MSEL) respectively. The InSAR data used are the COSMO-SkyMed (CSK) images made available by the Italian Space Agency (ASI). The Permanent Scatterers (PS) technique was applied to a number of repeated CSK strip map SAR images acquired over a 40x40 square km area encompassing the two towns mentioned above. The results of this work demonstrate, on the one hand, the CSK capabilities to operate in a repeated interferometric survey mode for measuring ground deformation with millimeter accuracy in different environments. On the other, the comparison of the differential height between the two stations derived with the GPS and the InSAR data, using both acquisition geometries, is satisfactory. Elevation, ground deformation and atmospheric artifacts were estimated in correspondence of the identified PS and compared with the GPS measurements carried out at the same acquisition time by the permanent stations at Bologna and Medicina. The comparison of the differential height between the two stations shows the sensitivity of the GPS height solution to the length of the observation interval. The vertical dispersion achieved by GPS is higher than that achieved by PS InSAR, as expected; however, a similar linear trend appears in the

  8. Detection of ground deformation over Sharm El-Sheikh-Ras Nasrani coastal zone, South Sinai (Egypt), by using time series SAR interferometry

    NASA Astrophysics Data System (ADS)

    Seleem, Tarek A.; Parcharidis, Issaak; Foumelis, Michael; Kourkouli, Penelope

    2011-03-01

    The investigation area is located in the most southern part of Sinai Peninsula boarded from the west by the Gulf of Suez and from the east by the Gulf of Aqaba. The present study concerns the application of stacking and persistent scattering of SAR interferometry in order to monitor ground deformation in the southern part of Sharm El-Shiekh area. The specific techniques were applied in order to reduce the influence of atmospheric effects on the ground deformation estimates. For this purpose a total number of 26 ENVISAT ASAR scenes covering the period between 2003 and 2009 were processed and analyzed. Interferometric processing results show both patterns of uplift and downlift in the study area. Specifically an area along the coastline with a N-S direction, corresponding to the build up zone of Sharm El-Sheikh, shows annual average subsidence rates between 5 and 7 mm/yr along the line of sight (LOS). On the contrary, Sharm El-Maya, an inner zone, parallel to the above subsided area; shows maximum slant range uplift of 5 mm/yr. The obtained results of both stacking and persistent scattering indicate that the ground deformation in Sharm El-Sheikh-Ras Nasrani coastal zone is attributed to several effecting factors compromising water pumping, lithology, seismicity, and possible active fracture. The contribution of all these factors is discussed in the context.

  9. Synthetic Aperture Radar Interferometry Analysis of Ground Deformation within the Coso Geothermal Site, California

    NASA Astrophysics Data System (ADS)

    Brawner, Erik

    Earth's surface movement may cause as a potential hazard to infrastructure and people. Associated earthquake hazards pose a potential side effect of geothermal activity. Modern remote sensing techniques known as Interferometric Synthetic Aperture Radar (InSAR) can measure surface change with a high degree of precision to mm scale movements. Previous work has identified a deformation anomaly within the Coso Geothermal site in eastern California. Surface changes have not been analyzed since the 1990s, allowing a decade of geothermal production impact to occur since previously assessed. In this study, InSAR data was acquired and analyzed between the years 2005 and 2010. Acquired by the ENVISAT satellite from both ascending and descending modes. This provides an independent dataset from previous work. Incorporating data generated from a new sensor covering a more modern temporal study period. Analysis of this time period revealed a subsidence anomaly in correlation with the extents of the geothermal production area under current operation. Maximum subsidence rates in the region reached approximately 3.8 cm/yr. A similar rate assessed from previous work throughout the 1990s. The correlation of subsidence patterns suggests a linear source of deformation from measurements spanning multiple decades. Regions of subsidence branch out from the main anomaly to the North-Northeast and to the South where additional significant peaks of subsidence occurring. The extents of the deformation anomaly directly correlate with the dispersal of geothermal production well site locations. Depressurization within the geothermal system provides a leading cause to surface subsidence from excessive extraction of hydrothermal fluids. As a result of minimal reinjection of production fluids.

  10. Ground deformation at Merapi Volcano, Java, Indonesia: distance changes, June 1988-October 1995

    USGS Publications Warehouse

    Young, K.D.; Voight, B.; Subandriyo; Sajiman; Miswanto; Casadevall, T.J.

    2000-01-01

    Edifice deformations are reported here for the period 1988–1995 at Merapi volcano, one of the most active and dangerous volcanoes in Indonesia. The study period includes a major resumption in lava effusion in January 1992 and a major dome collapse in November 1994. The data comprise electronic distance measurements (EDM) on a summit trilateration network, slope distance changes measured to the upper flanks, and other data collected from 1988 to 1995. A major consequence of this study is the documentation of a significant 4-year period of deformation precursory to the 1992 eruption. Cross-crater strain rates accelerated from less than 3×10−6/day between 1988 and 1990 to more than 11×10−6/day just prior to the January 1992 activity, representing a general, asymmetric extension of the summit during high-level conduit pressurization. After the vent opened and effusion of lava resumed, strain occurred at a much-reduced rate of less than 2×10−6/day. EDM measurements between lower flank benchmarks and the upper edifice indicate displacements as great as 1 m per year over the four years before the 1992 eruption. The Gendol breach, a pronounced depression formed by the juxtaposition of old lava coulées on the southeast flank, functioned as a major displacement discontinuity. Since 1993, movements have generally not exceeded the 95% confidence limits of the summit network. Exceptions to this include 12 cm outward movement for the northwest crater rim in 1992–1993, probably from loading by newly erupted dome lava, and movements as much as 7 cm on the south flank between November 1994 and September 1995. No short-term precursors were noted before the November 1994 lava dome collapse, but long-term adjustments of crater geometry accompanied lava dome growth in 1994. Short-term 2-cm deflation of the edifice occurred following the November 1994 dome collapse.

  11. Ground deformation at Merapi Volcano, Java, Indonesia: distance changes, June 1988 October 1995

    NASA Astrophysics Data System (ADS)

    Young, K. D.; Voight, B.; Subandriyo; Sajiman; Miswanto; Casadevall, T. J.

    2000-07-01

    Edifice deformations are reported here for the period 1988-1995 at Merapi volcano, one of the most active and dangerous volcanoes in Indonesia. The study period includes a major resumption in lava effusion in January 1992 and a major dome collapse in November 1994. The data comprise electronic distance measurements (EDM) on a summit trilateration network, slope distance changes measured to the upper flanks, and other data collected from 1988 to 1995. A major consequence of this study is the documentation of a significant 4-year period of deformation precursory to the 1992 eruption. Cross-crater strain rates accelerated from less than 3×10 -6/day between 1988 and 1990 to more than 11×10 -6/day just prior to the January 1992 activity, representing a general, asymmetric extension of the summit during high-level conduit pressurization. After the vent opened and effusion of lava resumed, strain occurred at a much-reduced rate of less than 2×10 -6/day. EDM measurements between lower flank benchmarks and the upper edifice indicate displacements as great as 1 m per year over the four years before the 1992 eruption. The Gendol breach, a pronounced depression formed by the juxtaposition of old lava coulées on the southeast flank, functioned as a major displacement discontinuity. Since 1993, movements have generally not exceeded the 95% confidence limits of the summit network. Exceptions to this include 12 cm outward movement for the northwest crater rim in 1992-1993, probably from loading by newly erupted dome lava, and movements as much as 7 cm on the south flank between November 1994 and September 1995. No short-term precursors were noted before the November 1994 lava dome collapse, but long-term adjustments of crater geometry accompanied lava dome growth in 1994. Short-term 2-cm deflation of the edifice occurred following the November 1994 dome collapse.

  12. Crustal deformation and volcanism at active plate boundaries

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  13. Sill emplacement and corresponding ground deformation processes at the Alu-Dalafilla volcanic centre in the Danakil Depression, Ethiopia

    NASA Astrophysics Data System (ADS)

    Magee, Craig; Bastow, Ian; Hetherington, Rachel; van Wyk de Vries, Ben; Jackson, Christopher

    2016-04-01

    evaporitic host rock sequence. Important consequences of the shift to sill-dominated magmatism in the Danakil Depression include: (i) roof uplift induced by sill intrusion may not directly relate to the emplaced magma volume if intrusion promotes ductile deformation of the host evaporitic sequence (Schofield et al. 2014), implying that InSAR studies of ground deformation, crucial to volcanic hazard assessment, may under-estimate intruded magma volumes; and (ii) sill volumes are not incorporated into total melt volume estimates, which are used to constrain lithospheric processes active during continental break-up.

  14. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  15. Unified Methodology for Detecting Trend Changes and Outliers in Time Series: application to Ground Deformation in the Virunga Volcanic Province.

    NASA Astrophysics Data System (ADS)

    Arjona, A.; d'Oreye, N.

    2014-12-01

    Detecting trend changes and outliers are common needs in applied time series analysis. Here we propose a tool combining various robust methods to perform simultaneously these two tasks. Such a unified tool is well adapted to the analysis of extensive databases. We use it to analyze ground deformations associated to volcanic activity in the Virunga Volcanic Province. Trend changes are estimated using weighted moving average filter, locally weighted scatterplot smoothers and smoothing splines. Significance of detected trend changes is estimated using parametric and non-parametric statistical tests such as Mann-Kendall, Spearmans Rho and Pearson correlation methods. Outliers are detected using both standardized residuals from best-fit model and Chebyshev's inequality. On one side observations that have a studentized residual outside the ± 2 range are considered statistically significant at the 95% a level and potential outliers. On the other hand Chebyshev's inequality gives a bound of what percentage of the data falls outside of k standard deviations from the mean calculating upper and lower outlier detection limits. When multiple components of displacements are available (such as vertical, North-South and East-West GPS time series), the outliers detection is performed on each component separately, then jointly. The effectiveness of the tool is demonstrated by analyzing 5 years of data recorded by the permanent GNSS volcano monitoring network in Goma as well as the extensive amount of MSBAS Multidimensional InSAR time series (Samsonov and dOreye, 2012) recorded in the Virunga during 2003-2013 time period.

  16. Quantitative models for magma degassing and ground deformation (bradyseism) at Campi Flegrei, Italy: Implications for future eruptions

    USGS Publications Warehouse

    Bodnar, R.J.; Cannatelli, C.; de Vivo, B.; Lima, A.; Belkin, H.E.; Milia, A.

    2007-01-01

    Campi Flegrei (Phlegrean Fields) is an active volcanic center near Naples, Italy. Numerous eruptions have occurred here during the Quaternary, and repeated episodes of slow vertical ground movement (bradyseism) have been documented since Roman times. Here, we present a quantitative model that relates deformation episodes to magma degassing and fracturing at the brittle-ductile transition in a magmatic-hydrothermal enviromnent. The model is consistent with field and laboratory observations and predicts that uplift between 1982 and 1984 was associated with crystallization of ???0.83 km3 of H2O-saturated magma at 6 km depth. During crystallization, ???6.2 ?? 1010 kg of H2O and 7.5 ?? 108 kg of CO2, exsolved from the magma and generated ???7 ?? 1015 J of mechanical (P??V) energy to drive the observed uplift. For comparison, ???1017 J of thermal energy was released during the 18 May 1980 lateral blast at Mount St. Helens. ?? 2007 The Geological Society of America.

  17. Ground deformation monitoring using small baseline DInSAR technique: A case study in Taiyuan City from 2003 to 2009

    USGS Publications Warehouse

    Wu, H.-A.; Zhang, Y.-H.; Chen, X.-Y.; Lu, T.; Du, J.; Sun, Z.-H.; Sun, G.-T.

    2011-01-01

    DInSAR technique based on time series of SAR images has been very popular to monitor ground stow deformation in recent years such as permanent scatterers (PS) method small baseline subsets (SBAS) method and coherent targets (CT) method. By taking advantage of PS method and CT method in this paper small baseline DTnSAR technique is used to investigate the ground deformation of Taiyuan City Shanxi Province from 2003 to 2009 by using 23 ENVISAT ASAR images. The experiment results demonstrate that: (1) during this period four significant subsidence centers have been developed in Taiyuan namely Xiayuan Wujiabu Xiaodian Sunjiazhai. The largest subsidence center is Sunjiazhai with an average subsidence rate of -77. 28 mm/a; (2) The subsidence of the old center Wanbolin has sHowed down. And the subsidence in the northern region has stopped and some areas even rebounded. (3) The change of subsidence centers indicates that the control measures of "closing wells and reducing exploitation" taken by the Taiyuan government has achieved initial effects. (4) The experiment results have been validated with leveling data and the acouracy is 2. 90 mm which shows that the small baseline DInSAR technique can be used to monitor urban ground deformation.

  18. A persistent scatterer interpolation for retrieving accurate ground deformation over InSAR-decorrelated agricultural fields

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Zebker, Howard A.; Knight, Rosemary

    2015-11-01

    Interferometric synthetic aperture radar (InSAR) is a radar remote sensing technique for measuring surface deformation to millimeter-level accuracy at meter-scale resolution. Obtaining accurate deformation measurements in agricultural regions is difficult because the signal is often decorrelated due to vegetation growth. We present here a new algorithm for retrieving InSAR deformation measurements over areas with severe vegetation decorrelation using adaptive phase interpolation between persistent scatterer (PS) pixels, those points at which surface scattering properties do not change much over time and thus decorrelation artifacts are minimal. We apply this algorithm to L-band ALOS interferograms acquired over the San Luis Valley, Colorado, and the Tulare Basin, California. In both areas, the pumping of groundwater for irrigation results in deformation of the land that can be detected using InSAR. We show that the PS-based algorithm can significantly reduce the artifacts due to vegetation decorrelation while preserving the deformation signature.

  19. Ground deformation of Tenerife volcano island revealed by 1992-2005 DInSAR time series:

    NASA Astrophysics Data System (ADS)

    Tizzani, P.

    2009-04-01

    We study the state of deformation of Tenerife Island using Differential Synthetic Aperture Radar Interferometry (DInSAR). We apply the Small BAseline Subset (SBAS) DInSAR algorithm to radar images acquired from 1992 to 2005 by ERS sensors to determine the deformation rate distribution and the time series for the coherent pixels identified in the island. Our analysis reveals that the summit area of the volcanic edifice is characterized by a continuous subsidence extending well beyond Las Cañadas caldera rim and corresponding to the intrusive core of the island. These results, coupled with GPS ones, structural and geological information and deformation modelling, suggest that the intrusive complex is subsiding into a weak lithosphere and that the volcanic edifice is in a state of compression. We also detect more localized deformation patterns correlated with water table changes and variations in the time deformation associated with the seismic crisis in 2004.

  20. Rapid dike intrusion into Sakurajima volcano on August 15, 2015, as detected by multi-parameter ground deformation observations

    NASA Astrophysics Data System (ADS)

    Hotta, Kohei; Iguchi, Masato; Tameguri, Takeshi

    2016-04-01

    We present observations of ground deformation at Sakurajima in August 2015 and model the deformation using a combination of GNSS, tilt and strain data in order to interpret a rapid deformation event on August 15, 2015. The pattern of horizontal displacement during the period from August 14 to 16, 2015, shows a WNW-ESE extension, which suggests the opening of a dike. Using a genetic algorithm, we obtained the position, dip, strike length, width and opening of a dislocation source based on the combined data. A nearly vertical dike with a NNE-SSW strike was found at a depth of 1.0 km below sea level beneath the Showa crater. The length and width are 2.3 and 0.6 km, respectively, and a dike opening of 1.97 m yields a volume increase of 2.7 × 106 m3. 887 volcano-tectonic (VT) earthquakes beside the dike suggest that the rapid opening of the dike caused an accumulation of strain in the surrounding rocks, and the VT earthquakes were generated to release this strain. Half of the total amount of deformation was concentrated between 10:27 and 11:54 on August 15. It is estimated that the magma intrusion rate was 1 × 106 m3/h during this period. This is 200 times larger than the magma intrusion rate prior to one of the biggest eruptions at the summit crater of Minami-dake on July 24, 2012, and 2200 times larger than the average magma intrusion rate during the period from October 2011 to March 2012. The previous Mogi-type ground deformation is considered to be a process of magma accumulation in preexisting spherical reservoirs. Conversely, the August 2015 event was a dike intrusion and occurred in a different location to the preexisting reservoirs. The direction of the opening of the dike coincides with the T-axes and direction of faults creating a graben structure.

  1. Ground deformation at Campi Flegrei caldera using long water pipe tiltmeters and sea level gauges

    NASA Astrophysics Data System (ADS)

    Scarpa, R.; Capuano, P.; Tammaro, U.; Bilham, R.

    2012-04-01

    Campi Flegrei is a caldera complex located in the Campanian plain region of southern Italy, 15 km west of the city of Naples, and forms part of the Roman co-magmatic province which is a volcanic chain that characterizes the western coast of the country. The Campi Flegrei caldera was generated by several collapses produced by strong explosive eruptions. The main caldera at Campi Flegrei is 12 - 15km across and its rim is thought to have been formed during the catastrophic eruption, occurred 39 ky ago ca. which produced a deposit referred to as the Campanian Ignimbrite. Campi Flegrei area periodically experiences significant unrest episodes which include ground deformations, the so-called "bradisismo", recorded both by marine terraces, archaeological record and harbour structures. Following the last eruption (Monte Nuovo, 1538) a general subsidence has been interrupted by episodes of uplift, the most recent of which occurred in 1970-72 and 1982-84. In the past decade subsidence has been arrested and has been replaced by intermittent episodes of inflation with short time duration and various maximum amplitude. They occurred in 1989, 1994, 2000, 2004, 2005-06, 2009 and 2011 with duration of few months and maximum amplitude ranging between 3 and 11 cm. Since 2008 an array of water-pipe tiltmeters with lengths between 28 m and 278 m in tunnels on the flanks of the region of maximum inflation has been installed to avoid problems common to the traditional tiltmeters. The tiltmeters record inflation episodes upon which are superimposed local load tides, with amplitudes roughly an order of magnitude greater than the solid Earth body tides. In addition to the tides, the tiltmeters record a line spectrum of seiches in the Bay of Naples and in the Tyrrenian sea. We use data recorded by three tide gauges in the Bay of Pozzuoli to compare water pipe data with sea level to extract astronomical tidal components and seiches periods particularly between 20 minutes and 56 minutes that

  2. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises

    NASA Astrophysics Data System (ADS)

    Cannavò, Flavio; Camacho, Antonio G.; González, Pablo J.; Mattia, Mario; Puglisi, Giuseppe; Fernández, José

    2015-06-01

    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes.

  3. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises

    PubMed Central

    Cannavò, Flavio; Camacho, Antonio G.; González, Pablo J.; Mattia, Mario; Puglisi, Giuseppe; Fernández, José

    2015-01-01

    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes. PMID:26055494

  4. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises.

    PubMed

    Cannavò, Flavio; Camacho, Antonio G; González, Pablo J; Mattia, Mario; Puglisi, Giuseppe; Fernández, José

    2015-01-01

    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes. PMID:26055494

  5. Grounds for Movement: Green School Grounds as Sites for Promoting Physical Activity

    ERIC Educational Resources Information Center

    Dyment, J. E.; Bell, A. C.

    2008-01-01

    An environmental factor of particular importance to children's physical activity levels appears to be the presence of parks and open space. Thus, in promoting children's health, school grounds merit consideration as a potential setting for intervention. This paper explores how "green" school grounds, which contain a greater diversity of…

  6. Active Printed Materials for Complex Self-Evolving Deformations

    PubMed Central

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-01-01

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053

  7. Active printed materials for complex self-evolving deformations.

    PubMed

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-01-01

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053

  8. A Blind Test Experiment in Volcano Geodesy: a Benchmark for Inverse Methods of Ground Deformation and Gravity Data

    NASA Astrophysics Data System (ADS)

    D'Auria, Luca; Fernandez, Jose; Puglisi, Giuseppe; Rivalta, Eleonora; Camacho, Antonio; Nikkhoo, Mehdi; Walter, Thomas

    2016-04-01

    The inversion of ground deformation and gravity data is affected by an intrinsic ambiguity because of the mathematical formulation of the inverse problem. Current methods for the inversion of geodetic data rely on both parametric (i.e. assuming a source geometry) and non-parametric approaches. The former are able to catch the fundamental features of the ground deformation source but, if the assumptions are wrong or oversimplified, they could provide misleading results. On the other hand, the latter class of methods, even if not relying on stringent assumptions, could suffer from artifacts, especially when dealing with poor datasets. In the framework of the EC-FP7 MED-SUV project we aim at comparing different inverse approaches to verify how they cope with basic goals of Volcano Geodesy: determining the source depth, the source shape (size and geometry), the nature of the source (magmatic/hydrothermal) and hinting the complexity of the source. Other aspects that are important in volcano monitoring are: volume/mass transfer toward shallow depths, propagation of dikes/sills, forecasting the opening of eruptive vents. On the basis of similar experiments already done in the fields of seismic tomography and geophysical imaging, we have devised a bind test experiment. Our group was divided into one model design team and several inversion teams. The model design team devised two physical models representing volcanic events at two distinct volcanoes (one stratovolcano and one caldera). They provided the inversion teams with: the topographic reliefs, the calculated deformation field (on a set of simulated GPS stations and as InSAR interferograms) and the gravity change (on a set of simulated campaign stations). The nature of the volcanic events remained unknown to the inversion teams until after the submission of the inversion results. Here we present the preliminary results of this comparison in order to determine which features of the ground deformation and gravity source

  9. A Blind Test Experiment in Volcano Geodesy: a Benchmark for Inverse Methods of Ground Deformation and Gravity Data

    NASA Astrophysics Data System (ADS)

    D'Auria, L.; Fernandez, J.; Puglisi, G.; Rivalta, E.; Camacho, A. G.; Nikkhoo, M.; Walter, T. R.

    2015-12-01

    The inversion of ground deformation and gravity data is affected by an intrinsic ambiguity because of the mathematical formulation of the inverse problem. Current methods for the inversion of geodetic data rely on both parametric (i.e. assuming a source geometry) and non-parametric approaches. The former are able to catch the fundamental features of the ground deformation source but, if the assumptions are wrong or oversimplified, they could provide misleading results. On the other hand, the latter class of methods, even if not relying on stringent assumptions, could suffer from artifacts, especially when dealing with poor datasets. In the framework of the EC-FP7 MED-SUV project we aim at comparing different inverse approaches to verify how they cope with basic goals of Volcano Geodesy: determining the source depth, the source shape (size and geometry), the nature of the source (magmatic/hydrothermal) and hinting the complexity of the source. Other aspects that are important in volcano monitoring are: volume/mass transfer toward shallow depths, propagation of dikes/sills, forecasting the opening of eruptive vents. On the basis of similar experiments already done in the fields of seismic tomography and geophysical imaging, we have devised a bind test experiment. Our group was divided into one model design team and several inversion teams. The model design team devised two physical models representing volcanic events at two distinct volcanoes (one stratovolcano and one caldera). They provided the inversion teams with: the topographic reliefs, the calculated deformation field (on a set of simulated GPS stations and as InSAR interferograms) and the gravity change (on a set of simulated campaign stations). The nature of the volcanic events remained unknown to the inversion teams until after the submission of the inversion results. Here we present the preliminary results of this comparison in order to determine which features of the ground deformation and gravity source

  10. Discontinuous fluidization transition in dense suspensions of actively deforming particles

    NASA Astrophysics Data System (ADS)

    Tjhung, Elsen; Berthier, Ludovic

    Collective dynamics of self-propelled particles at high density have been shown to display a glass-like transition with a critical slowing down of 2 to 4 orders of magnitude. In this talk, we propose a new mechanism of injecting energy or activity via volume fluctuations. We show that the behaviour of actively deforming particles is strikingly different from that of self-propelled particles. In particular, we find a discontinuous non-equilibrium phase transition from a flowing state to an arrested state. Our minimal model might also explain the collective dynamics in epithelial tissues. In particular, without needing self-propulsion or cell-cell adhesion, volume fluctuations of individual cells alone might be sufficient to give rise to an active fluidization and collective dynamics in densely packed tissues.

  11. Vertical Ground Deformation Detected by the Leveling and the Tidal Observation in Tokai Region, Central Japan in 1980 - 2002

    NASA Astrophysics Data System (ADS)

    Takano, K.; Kimata, F.; Fujii, N.

    2003-12-01

    Great earthquakes more than M8 have occurred along the Suruga-Nankai subduction zone of the Philippine Sea Plate (PHS), southeast Japan, every 100 to 150 years. The last events are 1944 M7.9 Tonankai and 1946 M8.0 Nankai earthquakes. Interseismic subsidence is detected along the subduction zone from the precise leveling and tide gauge. Discussion of the occurrence of great earthquake in near feature brought the expanding the measurements and observation of earthquake and ground deformation in Tokai region. Whereas nation-wide dense GPS network (GEONET) makes clear of the ground deformation of contraction in west-northwestward contraction and east-southeastward tilting in Tokai region, no northwestward horizontal displacements are observed since 2001 in the western Tokai region. Slow slip event (SSE) toward trough is discussed (Ozawa et al., 2002). Precise leveling and line length measurements also suggest the episodic changes with time interval of 4-5 years in the late 20 years (Kimata and Yamauchi, 1999; Kimata et al., 2001). Moreover pre-seismic ground tilt is suggested in the same area of the 2001 Tokai SSE from the leveling of the day in 1944 Tonankai Earthquake. Meanwhile pre-seismic slip is estimated in the SSE area from the numerical experiment of rock crusher (Kato, 2003). We discuss the episodic change of the ground deformation and the recurrence of the SSE in Tokai region with more detail from the vertical ground deformation detected by precise leveling and tide gauge in the period from 1980 to 2002. Geographical Survey Institute of Japan (GSI) has repeated the precise leveling in Tokai region every year since 1980. Tide gauge measurements have also been continued at more than 10 sites in Tokai region by GSI, Japan Meteorological Agency (JMA) and Aichi prefecture (AP). Time series of vertical movements at the benchmarks are analyzed by spline function and Annual relative sea levels at tide stations are corrected (Savage and Thatcher, 1992). The 2001 Tokai

  12. Deformed Shape Calculation of a Full-Scale Wing Using Fiber Optic Strain Data from a Ground Loads Test

    NASA Technical Reports Server (NTRS)

    Jutte, Christine V.; Ko, William L.; Stephens, Craig A.; Bakalyar, John A.; Richards, W. Lance

    2011-01-01

    A ground loads test of a full-scale wing (175-ft span) was conducted using a fiber optic strain-sensing system to obtain distributed surface strain data. These data were input into previously developed deformed shape equations to calculate the wing s bending and twist deformation. A photogrammetry system measured actual shape deformation. The wing deflections reached 100 percent of the positive design limit load (equivalent to 3 g) and 97 percent of the negative design limit load (equivalent to -1 g). The calculated wing bending results were in excellent agreement with the actual bending; tip deflections were within +/- 2.7 in. (out of 155-in. max deflection) for 91 percent of the load steps. Experimental testing revealed valuable opportunities for improving the deformed shape equations robustness to real world (not perfect) strain data, which previous analytical testing did not detect. These improvements, which include filtering methods developed in this work, minimize errors due to numerical anomalies discovered in the remaining 9 percent of the load steps. As a result, all load steps attained +/- 2.7 in. accuracy. Wing twist results were very sensitive to errors in bending and require further development. A sensitivity analysis and recommendations for fiber implementation practices, along with, effective filtering methods are included

  13. The 2011 volcanic crisis at El Hierro (Canary Islands): monitoring ground deformation through tiltmeter and gravimetric observations

    NASA Astrophysics Data System (ADS)

    Arnoso, J.; Montesinos, F. G.; Benavent, M.; Vélez, E. J.

    2012-04-01

    and shallow earthquakes happened, producing in some cases large tilt variations of tens of µrad. By other side, in 2003 we established a control gravity network that was measured again in 2004 and 2008. After the beginning of the eruption on October 2011, we have carried out gravity measurements in various points of the network as well as other new points to attain more accurate control of the possible variations of gravity or/and altitude. Gravity data are still under study although some results about observed gravity changes could reflect the ground deformations pattern according to tiltmeter records and GPS measurements, or a change in the subsurface mass distribution as consequence of the new emplacement the magmatic material in the area with volcanic and seismic activity.

  14. Spatiotemporal analysis and interpretation of 1993-2013 ground deformation at Campi Flegrei, Italy, observed by advanced DInSAR

    NASA Astrophysics Data System (ADS)

    Samsonov, Sergey V.; Tiampo, Kristy F.; Camacho, Antonio G.; Fernández, José; González, Pablo J.

    2014-09-01

    Campi Flegrei is one of the most hazardous volcanic areas in the world because of its close proximity to the city of Naples. Here we apply the multidimensional small baseline subset (MSBAS) differential interferometric synthetic aperture radar (DInSAR) technique to obtain vertical and horizontal components of ground deformation for Campi Flegrei at high spatial and temporal resolutions that span, for the first time, 20 years. The area underwent continuous subsidence from 1993 through 1999. Moderate uplift began in 2010 and substantially increased through 2012, reaching approximately 13 cm by 2013. We model the observed deformation to determine source parameters for subsidence and uplift epochs. Both the inflation and deflation mechanisms involve large, extended sources in a layered hydrothermal system whose location is controlled by the caldera structure and stratigraphy. The temporal resolution of MSBAS approaches that of GPS daily time series, with superior precision and spatial resolution, making it an excellent alternative for volcano monitoring.

  15. Ground Deformation Analysis of Blast-Induced Liquefaction at a Simulated Airport Infrastructure Using High Resolution 3D Laser Scanning

    NASA Astrophysics Data System (ADS)

    Minasian, D.; Kayen, R.; Ashford, S.; Kawamata, Y.; Sugano, T.

    2008-12-01

    In October 2007, the Port and Airport Research Institute (PARI) of the Japan Ministry of Land, Infrastructure and Transportation conducted a large-scale blast-induced liquefaction experiment in Ishikari, Hokkaido, Japan. Approximately 24,000 m2 of ground was liquefied using controlled blasting techniques to investigate the performance of airport infrastructure. The USGS and Oregon State University participated in the study and measured topographic changes in ground level using 3D laser scanning techniques (terrestrial lidar), as well as changes in shear wave velocity of the between the pre- and post-liquefied soil. This poster focuses on the lidar results. The overall objective of the PARI experiment is to assess the performance of airport infrastructure subjected to liquefaction. Specifically, the performance of pipelines and large concrete utility raceways located beneath runway pavements is of interest, as well as the performance of pavements and embankments with and without soil improvement techniques. At the site, 5-7 m of loose silty sand was placed as hydraulic fill on natural alluvial sand as an expansion of the Ishikari port facility. On a portion of the liquefied site, three 20 m by 50 m test sections were constructed to investigate the performance of improved ground beneath asphalt runways, concrete runway aprons, and open areas. Pipelines and concrete utility conduits were also buried in each section. The three ground improvement techniques investigated were sand-cement mixing, vertical drains, and colloidal silica injection. The PARI experiment provided an excellent opportunity to conduct terrestrial lidar measurements - a revolutionary tool for accurate characterization of fine-scale changes of topography and identification of subtle deformations. Lidar was used for characterizing post-blast deformations both immediately after the charges were used, and subsequently over time at intervals of 2 days, 4 days, and 5 months after blasting. Settlement

  16. Mt. Etna ground deformation detected by SISTEM approach using GPS data and the new generation of SAR sensors

    NASA Astrophysics Data System (ADS)

    Guglielmino, Francesco; Puglisi, Giuseppe; Cocorullo, Chiara; Sansosti, Eugenio; Pepe, Susi; Solaro, Giuseppe; Casu, Francesco; Acocella, Valerio; Ruch, Joel; Nobile, Adriano; Zoffoli, Simona

    2013-04-01

    ALOS L-band and COSMO-SkyMed X-band SAR data, referring to Mt. Etna has been acquired in the framework of SAR4Volcanoes research project funded by the Italian Space Agency (ASI). The project is carried out in the framework of a cooperation agreement between the Japan Aerospace Exploration Agency (JAXA) and ASI. The SAR data have been analyzed by using a time series approach, based on the SBAS technique. Thanks to the availability of geodetic in situ data collected on Mt. Etna, it was possible validate and integrate the SAR data with the GPS ground deformation data applying the SISTEM approach. The SISTEM approach simultaneously integrates all the available datasets (i.e. GPS displacement vectors on sparse benchmarks and SAR displacement maps), providing the high-resolution 3D displacement map by taking advantage of the positive features of each datasets, i.e. the high temporal and spatial resolution of the COSMO-SkyMed data, the good coherence of ALOS L-band interferometric data and the 3D displacements component provided by GPS with sub-cm accuracy level We apply the SISTEM method to compute 3D high-resolution surface displacement maps of Mt. Etna related to ground deformations referring to 2009-2010 time-span. The preliminary SISTEM results are consistent with the geophysical and volcanological background knowledge of the dynamic of Mt. Etna during the 2009-2010 period, showing a general inflation of the entire volcanic edifice coupled with the ESE sliding of the eastern and southeastern flank. The displacement pattern obtained by applying the SISTEM integration method provides an accurate spatial characterization of ground deformation and the proposed technique is promising for future studies on other volcanic areas, which are planned to study in the framework of SAR4Volcanoes project.

  17. Correcting Thermal Deformations in an Active Composite Reflector

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.

    2011-01-01

    Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several

  18. Crustal-scale active deformation along the Ecuadorian Andes using Persistent Scatterers SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Champenois, J.; Baize, S.; Audin, L.; Pinel, V.; Alvarado, A.; Jomard, H.; Yepes, H. A.

    2013-12-01

    Located in the Northern Andes along the active subduction zone of the Nazca plate beneath the South American continent, Ecuador is highly exposed to seismic hazard. For the last ten years, numerous multidisciplinary studies focused on major seismicity related to the subduction, whereas few investigations concentrated on M>7 crustal seismicity in the upper plate (like 1797 Riobamba earthquake, ML 8.3, 12.000 deaths). The active faults producing these earthquakes are poorly known in term of slip rate and for some cases are even not identified yet. Additionnally, Ecuador is one of the most active volcanic areas of the northern Andean volcanic zone. Three among the nine active volcanoes are actually erupting (Reventador, Tungurahua, and Sangay). For the last 5 years, geodetic networks have been deployed in Ecuador to enhance crustal deformation monitoring, but these point-wise techniques cannot provide spatially dense maps of ground deformation and are quite expensive methods. To address this issue, we applied the Persistent Scatterers SAR Interferometry technique (StaMPS/MTI freeware developed by A. Hooper) to ENVISAT SAR data between 2003 and 2009. Using these cost-effective techniques, we are able to investigate both tectonic and volcanic surface deformations with an unprecedented spatial density of measurements. This study presents new PS-InSAR results along the Ecuadorian Andes, close to the area of Riobamba. We generated average velocity maps and consistent time-series of displacements measured along the radar line of sight. These results evidence large scale deformation localized on the Pallatanga fault system (locked fault) compatible with a model of locked strike slip fault. Moreover, these results show an important growth of the Tungurahua volcanic complex (maximum rate about 9 mm/yr) with a rapid uplift prior and post 2006 explosive eruption. We investigate the time-series of displacement for 22 images. Our results permitted to propose two crustal source

  19. Cenozoic to active deformation in Western Yunnan (Myanmar China border)

    NASA Astrophysics Data System (ADS)

    Socquet, A.; Pubellier, M.

    2003-04-01

    The northward movement of India induces a right-lateral shear band from the Sunda trench to the easternmost Himalaya, where wrenching between India and Sunda plates, interfere with a clockwise flow of material around the Eastern Himalayan Syntaxis. We describe brittle and ductile deformation styles in Western Yunnan and Northern Myanmar, using field data and Landsat 7 imagery for Cenozoic structures as well as GPS and seismicity for active structures to unravel the Neogene to Present evolution. Western Yunnan is crossed by three continental-size ductile shear zones characterized by high mountain belts mainly composed of high-grade metamorphics and mylonitic rocks, and affected by active faulting. The easternmost metamorphic range, the Gaoligong Shan composed of verticalized foliated granites and mylonites is flattened westward and joins the Mogok metamorphic belt in Myanmar. East of the Gaoligong Shan, lie the Chong Shan and the Ailao / Diangcan Shan metamorphic ranges, which presents a vertical shistosity and a left-lateral motion. These three shear zones are separated by sedimentary fold-and-thrust-belts in the East, and , West of the Gaoligong, by Quaternary basins and volcanics. Preliminary results indicate that the Shan Scarp constituted the major strike-slip boundary between Indochina and India during Eocene to Miocene time, and accommodated deformation in right-lateral wrench. At the same time, the Ailao / Diangcan Shan and the Chong Shan zones were sheared left-laterally allowing the displacement toward the SE of Indochina block relative to south China. In the Miocene, ductile deformation migrated north along the Shan Scarp to the Mogok / Ruili metamorphic belt and the Gaoligong belt, dragging the Chong Shan right-laterally and superimposing a late right-lateral ductile deformation on its metamorphic rocks. The present-day relative motion between India and Sundaland, inferred from GPS processing, reaches 35 mm / yr in the Myanmar area. It is classically

  20. A model of earthquake triggering probabilities and application to dynamic deformations constrained by ground motion observations

    USGS Publications Warehouse

    Gomberg, J.; Felzer, K.

    2008-01-01

    We have used observations from Felzer and Brodsky (2006) of the variation of linear aftershock densities (i.e., aftershocks per unit length) with the magnitude of and distance from the main shock fault to derive constraints on how the probability of a main shock triggering a single aftershock at a point, P(r, D), varies as a function of distance, r, and main shock rupture dimension, D. We find that P(r, D) becomes independent of D as the triggering fault is approached. When r ??? D P(r, D) scales as Dm where m-2 and decays with distance approximately as r-n with n = 2, with a possible change to r-(n-1) at r > h, where h is the closest distance between the fault and the boundaries of the seismogenic zone. These constraints may be used to test hypotheses about the types of deformations and mechanisms that trigger aftershocks. We illustrate this using dynamic deformations (i.e., radiated seismic waves) and a posited proportionality with P(r, D). Deformation characteristics examined include peak displacements, peak accelerations and velocities (proportional to strain rates and strains, respectively), and two measures that account for cumulative deformations. Our model indicates that either peak strains alone or strain rates averaged over the duration of rupture may be responsible for aftershock triggering.

  1. Chronology of the seismic and ground deformation precursors of the 2014 Fogo Volcano - Cape Verde Islands - eruption.

    NASA Astrophysics Data System (ADS)

    Day, S. J.; Faria, B. V. E.

    2015-12-01

    The most recent eruption of Fogo Volcano, Cape Verde Islands started on the 23 November 2014 at 10h15 (CVT), after 19 years of quiescence. Several months before the begging of the eruption, the seismic activity started to deviate from the baseline, with the appearance of a class of events that was not recorded before then. This activity was characterized by a significant number of instrumentally detected, very low magnitude seismic events, sometimes more than 100 per day. In September those events became more energetic and analysis indicated that they could be of volcano-tectonic (VT) origin. The first VT event to be located was on 4 October with a 2.5 local magnitude: it was located slightly to the south of the middle of the island at between 15.5 and 16 km depth. This was deeper than normal for background VT events and coincided with the depth of last magma equilibration in the 1995 eruption. It was therefore interpreted as a possible precursor of an eruption: thus the alert level was raised to level 2, and the civil protection authorities were informed. On the following weeks the rate of VT events slightly increased and the focal depths became shallower. Very sporadic harmonic volcano tremor episodes and very few and weak long-period events were also recorded. From about the 15 to 21 November, the VT activity rate oscillated, and hypocentres tended to gather in the vicinity of an inferred dike emplacement and at shallower depth - 6 to 5 km b.s.l. On the first hours of the 22 November seismic rate increased from 3 to 6 events per hour and the events became more energetic. After 19h30 (CVT), when the magma reached the ductile-brittle transition zone (5 to 4 km b.s.l), the seismic rate increased again to more than one event per minute; earthquake magnitudes increased as well. At about 03h00 (CVT) the tilt records shown a prominent ground deformation. Continuous volcanic tremor started only one to half an hour before the start of the eruption.

  2. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation.

    PubMed

    Norman, J Farley; Phillips, Flip; Cheeseman, Jacob R; Thomason, Kelsey E; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped "glaven") for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object's shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions-e.g., the participants' performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  3. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation

    PubMed Central

    Cheeseman, Jacob R.; Thomason, Kelsey E.; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B.; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped “glaven”) for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object’s shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions–e.g., the participants’ performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  4. Lifetime measurements of the first 2+ states in 104,106Zr: Evolution of ground-state deformations

    NASA Astrophysics Data System (ADS)

    Browne, F.; Bruce, A. M.; Sumikama, T.; Nishizuka, I.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Söderström, P.-A.; Watanabe, H.; Daido, R.; Patel, Z.; Rice, S.; Sinclair, L.; Wu, J.; Xu, Z. Y.; Yagi, A.; Baba, H.; Chiga, N.; Carroll, R.; Didierjean, F.; Fang, Y.; Fukuda, N.; Gey, G.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kameda, D.; Kojouharov, I.; Kurz, N.; Kubo, T.; Lalkovski, S.; Li, Z.; Lozeva, R.; Nishibata, H.; Odahara, A.; Podolyák, Zs.; Regan, P. H.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Simpson, G. S.; Suzuki, H.; Takeda, H.; Tanaka, M.; Taprogge, J.; Werner, V.; Wieland, O.

    2015-11-01

    The first fast-timing measurements from nuclides produced via the in-flight fission mechanism are reported. The lifetimes of the first 2+ states in 104,106Zr nuclei have been measured via β-delayed γ-ray timing of stopped radioactive isotope beams. An improved precision for the lifetime of the 21+ state in 104Zr was obtained, τ (21+) =2.90-20+25 ns, as well as a first measurement of the 21+ state in 106Zr, τ (21+) =2.60-15+20 ns, with corresponding reduced transition probabilities of B (E2 ; 21+ → 0g.s.+) = 0.39 (2) e2b2 and 0.31 (1) e2b2, respectively. Comparisons of the extracted ground-state deformations, β2 = 0.39 (1) (104Zr) and β2 = 0.36 (1) (106Zr) with model calculations indicate a persistence of prolate deformation. The data show that 104Zr is the most deformed of the neutron-rich Zr isotopes measured so far.

  5. Ground Deformation Monitoring in Qingdao Coastal Areas by Time-Series Terrasar-X Images

    NASA Astrophysics Data System (ADS)

    Hou, A. Y.; Qiao, X.; Li, D.

    2016-06-01

    As a new generation of high resolution and short revisit period of radar satellite, TerraSAR-X is not only able to meet the requirements of monitoring large scale surface subsidence, but also make it possible to monitor the small deformation of the short period. This articles takes the coastal areas of the west coast of Qingdao as the research object. With Small baselines subsets interferometry synthetic aperture radar (SBASI), this paper obtained the period the average annual rate of change from the time series analysis of TerraSAR-X data from April 2015 to October 2014.In order to enrich the historical deformation data of the study area, it analyse the time series of ALOS images from December 2010 to October 2008 with the same method. Finally,it analyse and demonstrate the experimental results.

  6. The influence of geologic structures on deformation due to ground water withdrawal.

    PubMed

    Burbey, Thomas J

    2008-01-01

    A 62 day controlled aquifer test was conducted in thick alluvial deposits at Mesquite, Nevada, for the purpose of monitoring horizontal and vertical surface deformations using a high-precision global positioning system (GPS) network. Initial analysis of the data indicated an anisotropic aquifer system on the basis of the observed radial and tangential deformations. However, new InSAR data seem to indicate that the site may be bounded by an oblique normal fault as the subsidence bowl is both truncated to the northwest and offset from the pumping well to the south. A finite-element numerical model was developed using ABAQUS to evaluate the potential location and hydromechanical properties of the fault based on the observed horizontal deformations. Simulation results indicate that for the magnitude and direction of motion at the pumping well and at other GPS stations, which is toward the southeast (away from the inferred fault), the fault zone (5 m wide) must possess a very high permeability and storage coefficient and cross the study area in a northeast-southwest direction. Simulated horizontal and vertical displacements that include the fault zone closely match observed displacements and indicate the likelihood of the presence of the inferred fault. This analysis shows how monitoring horizontal displacements can provide valuable information about faults, and boundary conditions in general, in evaluating aquifer systems during an aquifer test. PMID:18194320

  7. Evolution of Deformation Studies on Active Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Decker, R.; Okamura, A.

    2004-12-01

    Summarizing 1600 years of observations and interpretations into a brief presentation forces some difficult choices on highlighting the following techniques that are presented chronologically: Visual Observations, 400 AD to present: Missionary William Ellis' Hawaiian Guides told him that Kilauea "had been burning from time immemorial, or, to use their own words, `mai ka po mai', from chaos till now...that in earlier ages it used to boil up, overflow its banks, and inundate the adjacent country...and on occasions they supposed Pele went by a road under ground from her house in the crater to the shore". Observations of the nearly-continuous lava lake in Kilauea Caldera from 1823 until 1924 established that its surface level fluctuated from about 700 to 1100 m above sea level in 10 up-and-down episodes. Tilt Measurements, 1914 to present: Horizontal-seismometer drift and water-tube tiltmeters show that the range of long-term, ground-surface tilt radial to Halemaumau Crater exceeds 500 microradians. Triangulation and Leveling, 1920: R. M. Wilson measured deformation changes related to major Kilauea summit subsidence in 1924. The caldera area around Halemaumau subsided concentrically as much as 4 m relative to the Volcano House benchmark, and triangulation points moved toward Halemaumau by as much as 1.6 m in the caldera area. K. Mogi in 1958 modeled Kilauea leveling data and inferred 3-4 km-deep magma reservoirs. Gravity Measurements, 1959 to present: Changes were first measured during Kilauea summit subsidence related to the lower-east-rift Kapoho eruption. Surveys made before and after the 1975 M7.2 Kalapana Earthquake show that gravity changes are not a simple proxy for elevation changes. Electronic Distance Measurements (EDM), 1964 to present: D. A. Swanson, W. A. Duffield, and R. S. Fiske use EDM for trilateration proving movement of the south flank of Kilauea toward the sea. EDM show displacements as large as 8.7 m of Kilauea's south flank toward the sea related

  8. Microseismicity and active deformation of Messinia, SW Greece

    NASA Astrophysics Data System (ADS)

    Papoulia, J.; Makris, J.

    By deploying a 30 3-component digital seismic array in the Messiniakos gulf and the surrounding region, we recorded for a period of 45 days the microseismic activity. With a minimum of six records per event, we located 1121 earthquakes corresponding to an average of 20 events per day. For the hypocenter location we used a local velocity model adopted to two controlled source seismic experiments. Within the array, traveltime residuals were within ± 0.2 s and the epicentral accuracy in the order of ± 2 km, while the hypocentral one is twice this value. Correlation of the seismicity with the tectonic elements indicated that most of the NW-SE oriented faults are active with strike-slip movement along this orientation and extension perpendicular to it. The neogene basins of Messini, Meligalas and Megalopolis are seismically very active and their eastern flanks are delineated by higher seismic activity than their western ones. This indicates that the basins are asymmetric with master faults defining their eastern-northeastern flanks. This hypothesis is supported by the asymmetric structure mapped at the offshore Messiniakos basin as densely spaced high resolution reflection seismic profiles have revealed. The western margins of the basins are less deformed and the seismic activity is dispersed over several minor NW-SE faults. Since the NW-SE striking faults onshore are truncated by major NE-SW oriented ones, their overall length is shortened, reducing their seismic potential and capacity to store large stresses that could produce events above Ms6.1. Offshore western Messinia, in the Ionian Sea, the size and activity of the faults is significantly larger and prone to develop events of larger magnitudes. Subcrustal seismicity indicates a deepening of the foci to the east-northeast.

  9. Amplitude analysis of active source seismic data from the grounding zone of Whillans Ice Stream

    NASA Astrophysics Data System (ADS)

    Horgan, Huw; Anandakrishnan, Sridhar; Alley, Richard; Christianson, Knut

    2015-04-01

    Amplitude analysis of active source seismic data is often used to estimate acoustic properties and thereby infer the lithology of the substrate beneath glaciers and ice streams. The substrate beneath the ice streams of West Antarctica is of particular interest as here subglacial sediment deformation results in the rapid flow of the overriding ice. At the grounding zone, where the grounded ice sheet transitions to the floating ice shelf, this substrate is thought to stiffen due to tidal compaction resulting in a zone of higher basal shear stress which is manifest in the buckling of the internal layering in the overriding ice. Here we investigate these processes by estimating subglacial properties using active source seismic data acquired across the grounding zone of Whillans Ice Stream. Perhaps uniquely, we are able to test our methodology due to the survey crossing from an ice overlying sediment interface into a known ice overlying water interface. Our analysis indicates that lithological variations within the grounding zone are below the resolution of our methodology with the exception of a body of water trapped by a hydropotential reversal upstream of the grounding zone.

  10. General considerations for a Sentinel-1 constellation InSAR time series processing chain for ground deformation measurements

    NASA Astrophysics Data System (ADS)

    Gonzalez, P. J.; Wright, T. J.; Hooper, A. J.; Walters, R. J.

    2014-12-01

    Sentinel-1A was launched on April 3rd, 2014. It is the first satellite of a European Space Agency (ESA) constellation that promises to revolutionize measurement of deformation of the Earth's surface. The constellation is designed to acquire data globally as frequently as every 6 days on the same orbital pass, and every 3 days in alternating ascending and descending orbits over the same regions. This data acquisition plan is possible due to a much larger swath coverage than previous SAR (Synthetic Aperture Radar) sensors. In addition, all observations from Copernicus, the European Commission Earth Observation program, have a liberal data policy, which will enable full exploitation of the archived Sentinel-1 big data, both for scientific and commercial use.Sentinel-1, and similar future constellations, shape a new landscape in the way that InSAR data have traditionally been processed. We have started to develop a completely new re-engineered and adapted InSAR time series processing approach, which efficiently processes the data from this new type of SAR constellation, with the goal to deliver ground deformation products with the highest possible precision. In summary, the proposed system approach will require the development of an automatic, almost unsupervised, system that integrates methods to obtain time-dependent surface deformation estimates and correction products for atmospheric noise and refined orbits. The ground velocity maps will ideally meet the desired precision of 1 mm/yr / 100 km to measure strain-rates (10 nanostrain/yr) at a comparable level of precision to current existing sparse regional GPS measurement networks.In this communication, we describe the different steps we have adopted to partially solve: 1) coregistration of TOPS (Terrain Observation with Progressive Scans) SAR images to enable interferometry, 2) how to manage the ambiguity between ground motion in azimuth and in line-of-sight for TOPS InSAR, 3) how to process efficiently newly

  11. July 1973 ground survey of active Central American volcanoes

    NASA Technical Reports Server (NTRS)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1973-01-01

    The author has identified the following significant results. Ground survey has shown that thermal anomalies of various sizes associated with volcanic activity at several Central American volcanoes should be detectable from Skylab. Anomalously hot areas of especially large size (greater than 500 m in diameter) are now found at Santiaguito and Pacaya volcanoes in Guatemala and San Cristobal in Nicaragua. Smaller anomalous areas are to be found at least seven other volcanoes. This report is completed after ground survey of eleven volcanoes and ground-based radiation thermometry mapping at these same points.

  12. Active control landing gear for ground loads alleviation

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.

    1985-01-01

    An active landing gear has been created by connecting the hydraulic piston in an oleo strut to a hydraulic supply. A controller modulates the pressure in the oleo to achieve the desired dynamic characteristics. Tests on ground rigs (documented by a film) have demonstrated the successful alleviation of induced structural ground loads and the next step will be a flight test using a fighter aircraft.

  13. Geometric Aspects of Ground Augmentation of Satellite Networks for the Needs of Deformation Monitoring

    NASA Astrophysics Data System (ADS)

    Protaziuk, Elżbieta

    2016-06-01

    Satellite measurements become competitive in many tasks of engineering surveys, however, in many requiring applications possibilities to apply such solutions are still limited. The possibility to widely apply satellite technologies for displacements measurements is related with new challenges; the most important of them relate to increasing requirements concerning the accuracy, reliability and continuity of results of position determination. One of the solutions is a ground augmentation of satellite network, which intention is to improve precision of positioning, ensure comparable accuracy of coordinates and reduce precision fluctuations over time. The need for augmentation of GNSS is particularly significant in situations: where the visibility of satellites is poor because of terrain obstacles, when the determined position is not precise enough or a satellites constellation does not allow for reliable positioning. Ground based source/sources of satellite signal placed at a ground, called pseudosatellites, or pseudolites were intensively investigated during the last two decades and finally were developed into groundbased, time-synchronized transceivers, that can transmit and receive a proprietary positioning signal. The paper presents geometric aspects of the ground based augmentation of the satellite networks using various quality measures of positioning geometry, which depends on access to the constellation of satellites and the conditions of the observation environment. The issue of minimizing these measures is the key problem that allows to obtain the position with high accuracy. For this purpose, the use of an error ellipsoid is proposed and compared with an error ellipse. The paper also describes the results of preliminary accuracy analysis obtained at test area and a comparison of various measures of the quality of positioning geometry.

  14. Stress Changes and Deformation Monitoring of Longwall Coal Pillars Located in Weak Ground

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Zhang, Zhenyu; Kuang, Tiejun; Liu, Jinrong

    2016-08-01

    Coal pillar stability is strongly influenced by the site-specific geological and geotechnical conditions. Many geological structures such as faults, joints, or rock intrusions can be detrimental to mining operations. In order to evaluate the performance of coal pillars under weak roof degraded by igneous rock intrusion, stress and deformation monitoring was conducted in the affected tailgate areas of Nos. 8208 and 8210 longwalls in Tashan coal mine, Shanxi Province, China. The measurements in the 8208 longwall tailgate showed that the mining-induced stresses in 38-m-wide coal chain pillars under the overburden depth of 300-500 m started to increase at about 100 m ahead of the 8208 longwall working face and reached its peak level at approximately 50 m ahead of the longwall face. The peak stress of 9.16 MPa occurred at the depth of 8-9 m into the pillar from the tailgate side wall. In comparison, disturbance of the headgate block pillar area was negligible, indicating the difference of abutment pressure distribution between the tailgate and headgate sites where the adjacent unmined longwall block carried most of the overburden load. However, when the longwall face passed the headgate monitoring site by 360-379 m, the pillar stress increased to a peak value of 21.4 MPa at the pillar depth of 13 m from the gob side mainly due to stress redistribution in the chain pillar. In contrast to the headgate, at the tailgate side, the adjacent goaf was the dominant triggering factor for high stress concentrations in the chain pillar. Convergence measurements in the tailgate during longwall mining further indicated the evolution characteristics of coal pillar deformation, clearly showing that the gateroad deformation is mainly induced by the longwall extraction it serves. When predicting the future pillar loads from the monitored data, two stress peaks appeared across the 38-m-wide tailgate coal pillar, which are separated by the lower stress area within the pillar center. This

  15. InSAR Observation of Ground Surface Deformations Associated to Aquifer Storage and Recovery: A Case study for Future CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Normand, J.; Heggy, E.; Bonneville, A.

    2013-12-01

    Carbon Capture and Storage in subsurface has been suggested as a potential method to reduce the steep increase of exogenic CO2 in the atmosphere resulting from man-made industrial activities. Our site of Pendleton, OR is used as an analog to understand reservoirs' dynamic response for future CO2 sequestration. The CO2 sequestration simulation is carried out by injecting drainage water in the permeable basalt confined aquifer during winter and recovering it in summer. However, an extensive monitoring is necessary to measure the potential dilatation and subsidence of the ground during the injection and recovery. Two Interferometric Synthetic Aperture Radar (InSAR) techniques; Differential inSAR associated with the Small Baseline Subset (SBAS) Time Series approach and Permanent Scatterer inSAR (PSinSAR), are performed herein to assess the potential ground deformation associated to these injections and recoveries. The two inSAR techniques are applied on three different radar frequencies; ALOS PALSAR L-Band, Radarsat-2 C-Band and TerraSAR-X X-Band, which allow us to select the most adequate inSAR technique and Radar frequency for monitoring urban and semi-vegetated areas. The potential for sub-wavelength deformations in such type of terrains due to fluid recovery and injections, is explored through this study. Our discontinuous four-years of Line Of Sight (LOS) displacement observations, in areas with low decorrelation near the injection points, suggest that surface deformation associated with water injection and recovery follows an uplift and subsidence cycle with an amplitude of ~4 mm. While observed displacements are geographically correlated to injections and recoveries, they are temporally out-phased with these events due to the subsurface hydraulic conductivity. The sub-centimetric LOS displacements observed with Radar inSAR techniques in Pendleton after water injection in this basaltic confined aquifer suggest that the potential for CO2 sequestration is

  16. Multiphysics numerical models of resurgent calderas ground deformation: The 1982-2010 Campi Flegrei (Southern Italy) case studies

    NASA Astrophysics Data System (ADS)

    Tizzani, Pietro

    2013-04-01

    Ground deformation signals in caldera region are the expression of near-surface and/or deep-seated physical processes. As most of the geophysical analysis, the interpretation of the deformation data is usually performed setting up inverse problems, which often use Monte Carlo optimization techniques like the Simulated Annealing and the Genetic Algorithm, in order to constrain the nature of the causative sources at depth. Usually, these methods exploit the problem's solution space by iterating forward analytical models, which consider simplified geometries and homogeneous linear elastic material properties. However, several recent studies have shown that oversimplified forward models may lead to misinterpretations of the retrieved source parameters. To overcome these limitations we consider the Finite Element (FE) method as a powerful numerical tool that allows implementing models with complex geometries, material heterogeneities, as well as time dependent physical processes. For this reason, FE models are a suitable candidate to fill the gap between the accuracy achieved on the observation of ground deformation in volcanic areas and the models used for its interpretation. In this context, we investigate the driving forces responsible of the long-term ground deformation of the Campi Flegrei (CF) caldera, Southern Italy, during the 1982-2010 time interval. To this purpose, we propose a new multiphysics numerical model that takes into account both the mechanical heterogeneities of the crust and the thermal conditions of geothermal system beneath the volcano. We perform a numerical Chain Rule Optimization Procedure (CROP) in a FEM environment, that considers different physical contexts linked along a common evolution line: starting from the thermal proprieties and mechanical heterogeneities of the upper crust, we develop a 3D time dependent thermo-fluid dynamic model of CF caldera. More specifically, by carrying out two subsequent optimization procedures based on

  17. Can we infer the magma overpressure threshold before an eruption? Insights from ground deformation time series and numerical modeling of reservoir failure.

    NASA Astrophysics Data System (ADS)

    Albino, F.; Gregg, P. M.; Amelug, F.

    2015-12-01

    Overpressure within a magma chamber is a key parameter to understanding the onset of an eruption. Recent investigations indicate that surface inflation at a volcanic edifice does not always precede eruption (Chaussard and Amelung, 2012; Biggs et al., 2014), suggesting that the overpressure threshold may differ between volcanoes. To understand the failure conditions of a magma reservoir, mechanical models were developed to quantify the range of overpressure affordable in a reservoir for a given situation. Even if the choice of the failure criterion is still debated, most investigators agree that the overpressure required to fail the magma reservoir is at first order a function of the crustal stress field and the shape of the magma reservoir. Radar interferometry (InSAR) provides a large dataset of ground deformation worldwide, but many of these InSAR studies continue to use point or dislocation sources (Mogi, Okada) to explain deformation on volcanoes. Even if these simple solutions often fit the data and estimate the depth and the volume change of the source of deformation, key parameters such as the magma overpressure or the mechanical properties of the rocks cannot be derived. We use mechanical numerical models of reservoir failure combined with ground deformation data. It has been observed that volume change before an eruption can easily range one or two order of magnitude from 1-100x106 m3. The first goal of this study is to understand which parameter(s) control the critical volume changes just before the failure of the reservoir. First, a parametric study is performed to quantify the effect of the geometry of the reservoir (radius, depth), the local stress (compressive/extensive) and even the crust rheology (elastic/viscoelastic). We then compare modeling results with several active volcanoes where long time series of volume change are available: Okmok and Westdahl in Alaska, Sinabung and Agung in Indonesia and Galapagos. For each case, the maximum

  18. Computer program for the relativistic mean field description of the ground state properties of even-even axially deformed nuclei

    NASA Astrophysics Data System (ADS)

    Ring, P.; Gambhir, Y. K.; Lalazissis, G. A.

    1997-09-01

    We present a Fortran program for the calculation of the ground state properties of axially deformed even-even nuclei in the framework of Relativistic Mean Field Theory (RMF). In this approach a set of coupled partial differentials has to be solved self-consistently: the Dirac equation for the nucleons moving in self-consistent fields and the Klein-Gordon equations for the meson fields and the electromagnetic field, whose sources are scalar and vector densities determined of the nucleons. For this purpose the Dirac spinors as well as the meson fields are expanded in terms of anisotropic oscillator wave functions in cylindrical coordinates. This requires a matrix diagonalization for the solution of the Dirac equations and the solution of an inhomogeneous matrix equation for the meson fields. For the determination of the Coulomb field the Greens function method is used.

  19. The Model Experiments and Finite Element Analysis on Deformation and Failure by Excavation of Grounds in Foregoing-roof Method

    NASA Astrophysics Data System (ADS)

    Sotokoba, Yasumasa; Okajima, Kenji; Iida, Toshiaki; Tanaka, Tadatsugu

    We propose the trenchless box culvert construction method to construct box culverts in small covering soil layers while keeping roads or tracks open. When we use this construction method, it is necessary to clarify deformation and shear failure by excavation of grounds. In order to investigate the soil behavior, model experiments and elasto-plactic finite element analysis were performed. In the model experiments, it was shown that the shear failure was developed from the end of the roof to the toe of the boundary surface. In the finite element analysis, a shear band effect was introduced. Comparing the observed shear bands in model experiments with computed maximum shear strain contours, it was found that the observed direction of the shear band could be simulated reasonably by the finite element analysis. We may say that the finite element method used in this study is useful tool for this construction method.

  20. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.

    PubMed

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-01-01

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions. PMID:25980642

  1. Water flow based geometric active deformable model for road network

    NASA Astrophysics Data System (ADS)

    Leninisha, Shanmugam; Vani, Kaliaperumal

    2015-04-01

    A width and color based geometric active deformable model is proposed for road network extraction from remote sensing images with minimal human interception. Orientation and width of road are computed from a single manual seed point, from which the propagation starts both right and left hand directions of the starting point, which extracts the interconnected road network from the aerial or high spatial resolution satellite image automatically. Here the propagation (like water flow in canal with defined boundary) is restricted with color and width of the road. Road extraction is done for linear, curvilinear (U shape and S shape) roads first, irrespective of width and color. Then, this algorithm is improved to extract road with junctions in a shape of L, T and X along with center line. Roads with small break or disconnected roads are also extracts by a modified version of this same algorithm. This methodology is tested and evaluated with various remote sensing images. The experimental results show that the proposed method is efficient and extracting roads accurately with less computation time. However, in complex urban areas, the identification accuracy declines due to the various sizes of obstacles, over bridges, multilane etc.

  2. Railway deformation detected by DInSAR over active sinkholes in the Ebro Valley evaporite karst, Spain

    NASA Astrophysics Data System (ADS)

    Galve, J. P.; Castañeda, C.; Gutiérrez, F.

    2015-11-01

    Subsidence was measured for the first time on railway tracks in the central sector of Ebro Valley (NE Spain) using Differential Synthetic Aperture Radar Interferometry (DInSAR) techniques. This area is affected by evaporite karst and the analysed railway corridors traverse active sinkholes that produce deformations in these infrastructures. One of the railway tracks affected by slight settlements is the Madrid-Barcelona high-speed line, a form of transport infrastructure highly vulnerable to ground deformation processes. Our analysis based on DInSAR measurements and geomorphological surveys indicates that this line shows dissolution-induced subsidence and compaction of anthropogenic deposits (infills and embankments). Significant sinkhole-related subsidence was also measured by DInSAR techniques on the Castejón-Zaragoza conventional railway line. This study demonstrates that DInSAR velocity maps, coupled with detailed geomorphological surveys, may help in the identification of the railway track sections that are affected by active subsidence.

  3. Synergy of ASAR and RADARSAT-2 ultra-fine acquisitions for ground deformation monitoring by means of DInSAR and PSI

    NASA Astrophysics Data System (ADS)

    Elias, Panagiotis; Briole, Pierre; Sykioti, Olga

    2010-05-01

    consideration the raised seismisity of the area. The Psathopyrgos fault zone as well as the Rion-Patras transfer fault zone are investigated for any detectable ground deformations that could be indications/precursors or inter-seismic accumulation processes before a main event. The city of Patras are investigated for any detectable ground/buildings deformation due to human interventions or geophysical processes. The potential of Rion-Antirion bridge monitoring for any detectable deformation as well as the surrounding ground on the two edges of it, are also investigated and assessed. The study area presents major difficulties for DInSAR/PSI applications, due to its intense vegetation coverage and high topography presenting various facets, varying high slopes and shadowing effects. Moreover its intense topography in conjunction with its location between Aegean and Ionian seas is leading to high precipitation rates and extend cloud coverage. All these characteristics of the study area contribute to high decorrelation of the interferometric products. For the estimation of the ocuured deformations a series of ASAR/ENVISAT (image swath 2) data are processed by means of PSI and DInSAR techniques, but RADARSAT-2 (ultra-fine beam mode) data are processed only by means of DInSAR technique due to its lack of historical data. The processing will be carried out exploiting commercial and in-house software. The medium and high ground resolution added value products of the acquired data are combined in the thematic level.

  4. Dense Temporal and Spatial Measurement of Surface Deformation using Real-Aperture Ground-Based Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Werner, C.; Wiesmann, A.; Strozzi, T.; Wegmueller, U.; Santoro, M.

    2008-12-01

    May 2008 show deformation of up to 1 cm in the region of the landslide. Time series of measurements show atmospheric related phase variations on the scale of minutes demonstrating the advantage of ground-based measurements for acquisition of multiple images for atmospheric noise suppression.

  5. Use of analog ground medium of Taylor-Schneebeli type for modelling of multiparametric deformations arising in mining-influenced areas

    SciTech Connect

    Klosek, K.

    1996-12-31

    The results of the authors several years of model research using analog ground medium of Taylor-Schneebeli type to the multiparametric simulations of mining area deformations are presented in the paper. On the basis of the model similarity criteria the complete usefulness was proven of this research approach to the analysis of process of joint action of the mining rock mass and ground structures, underground infrastructures, engineering structures and road surface, also with use of geosynthetics.

  6. Monitoring ground deformation in the Hangjiahu Plain using InSAR technique

    NASA Astrophysics Data System (ADS)

    Wu, Hong'an; Zhang, Yonghong; Luo, Guangfei; Mao, Weihua; Kang, Yonghui; Zhu, Yanmin

    2015-12-01

    Affected by over-exploration of groundwater for a long time, the Hangjiahu Plain in Zhejiang province, southeast of China, has suffering serious ground subsidence during the past several decades. In this paper, we investigate the time series InSAR technique for the generation of subsidence maps over this plain. 25 Radarsat-2 images acquired from Jan 2012 to Nov 2014 are used. The results show that serious subsidence has taken place in the north and southeast of Jiaxing, the east and north of Huzhou, and the north of Hangzhou. Meanwhile some rebound occurs in the east of Jiaxing and the southeast of Huzhou. The results are compared with 35 levelling measurements. The standard deviation of the error between the two data is 3.01mm, which demonstrate that time series InSAR technique has good accuracy for subsidence monitoring.

  7. Phenol adsorption by activated carbon produced from spent coffee grounds.

    PubMed

    Castro, Cínthia S; Abreu, Anelise L; Silva, Carmen L T; Guerreiro, Mário C

    2011-01-01

    The present work highlights the preparation of activated carbons (ACs) using spent coffee grounds, an agricultural residue, as carbon precursor and two different activating agents: water vapor (ACW) and K(2)CO(3) (ACK). These ACs presented the microporous nature and high surface area (620-950 m(2) g(-1)). The carbons, as well as a commercial activated carbon (CAC) used as reference, were evaluated as phenol adsorbent showing high adsorption capacity (≈150 mg g(-1)). The investigation of the pH solution in the phenol adsorption was also performed. The different activating agents led to AC with distinct morphological properties, surface area and chemical composition, although similar phenol adsorption capacity was verified for both prepared carbons. The production of activated carbons from spent coffee grounds resulted in promising adsorbents for phenol removal while giving a noble destination to the residue. PMID:22105129

  8. Active control of a large deformable mirror for future E-ELT

    NASA Astrophysics Data System (ADS)

    Gasmi, R.; Le Bihan, D.; Dournaux, J. L.; Sinquin, J. C.; Jagourel, P.

    2010-07-01

    Increasing dimensions of ground based telescopes and adaptive optics needs for these instruments require wide deformable mirrors with a high number of actuators to compensate the effects of the atmospheric turbulence on the wave fronts. The new dimensions and characteristics of these deformable mirrors lead to the apparition of structural vibrations, which may reduce the rejection band width of the adaptive optics control loop. The aim of this paper is the study of the dynamic behavior of a 1-meter prototype of E-ELT's deformable mirror in order to identify its eigenmodes and to propose some ways to control its vibrations. We first present the first eigenmodes of the structure determined by both finite element analysis and experimental modal analysis. Then we present the frequency response of the prototype to a tilt excitation to estimate the effects of its vibrations on the adaptive optics loop. Finally we suggest a method to control the dynamics of the deformable mirror.

  9. Mechanics of dielectric elastomer-activated deformable transmission grating

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Zhou, Jinxiong; Sun, Wenjie; Wu, Xiaohong; Zhang, Ling

    2014-09-01

    Laminating a thin layer of elastomeric grating on the surface of a prestretched dielectric elastomer (DE) membrane forms a basic design of electrically tunable transmission grating. We analyze the inhomogeneous deformation of a circular multiple-region configuration. Variation of the geometric and material parameters, as well as of the critical condition determined by loss of tension instability, is probed to aid the design of a DE-based deformable grating. The predicted changes in the grating period agree substantially with the experimental results reported by Aschwanden et al (Aschwanden et al 2007 IEEE Photon. Technol. Lett. 19 1090).

  10. Monitoring Ground Deformation in Taiyuan Basin (China) with PS-InSAR and Continuous GPS Observation

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Liao, Mingsheng; Zhang, Lu; Balz, Timo; Yuan, Peng; Qin, Changwei

    2014-11-01

    Since the late 1950s, several areas of the Taiyuan basin have undergone accelerated ground subsidence and have developed associated fracturing and faulting. Through a combined analysis of GPS position time series from 2009.3438 to 2013.3109 for 5 reference stations and thousands of observations of InSAR persistent scatterers using ENVISAT-ASAR images from 2009.0849 to 2010.7150, we determine that the maximum subsidence rate at the study area is 80 mm/yr. Taiyuan city subsided at a rate of 15-20 mm/yr, in contrast to previous studies in the last decade of the 20th Century suggesting that the subsidence have become stabilized. Comparison to the independent GPS data indicates RMS agreement between the two techniques of 5.7 mm/yr. The main cause of subsidence is due to the long-term overexploitation of groundwater and coal-mining, so that our results could provide scientific evidence to improve the management of groundwater and coal exploitation in this area.

  11. Integrating Multiple Space Ground Sensors to Track Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Davies, Ashley; Doubleday, Joshua; Tran, Daniel; Jones, Samuel; Kjartansson, Einar; Thorsteinsson, Hrobjartur; Vogfjord, Kristin; Guomundsson, Magnus; Thordarson, Thor; Mandl, Daniel

    2011-01-01

    Volcanic activity can occur with little or no warning. Increasing numbers of space borne assets can enable coordinated measurements of volcanic events to enhance both scientific study and hazard response. We describe the use of space and ground measurements to target further measurements as part of a worldwide volcano monitoring system. We utilize a number of alert systems including the MODVOLC, GOESVOLC, US Air Force Weather Advisory, and Volcanic Ash Advisory Center (VAAC) alert systems. Additionally we use in-situ data from ground instrumentation at a number of volcanic sites, including Iceland.

  12. Modeling crustal deformation near active faults and volcanic centers: a catalog of deformation models and modeling approaches

    USGS Publications Warehouse

    Battaglia, Maurizio; Cervelli; Peter, F.; Murray, Jessica R.

    2013-01-01

    This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.

  13. Multi-temporal interferometric monitoring of ground deformations in Haiti with COSMO/SkyMed HIMAGE data

    NASA Astrophysics Data System (ADS)

    Nutricato, R.; Wasowski, J.; Chiaradia, M.; Piard, B. E.; Généa, S.

    2013-12-01

    The catastrophic Mw=7.0 shallow earthquake of 12 January 2010 that struck Haiti have led to numerous studies focused on the geodynamics of the region. In particular, the co-seismic fault mechanism of the 2010 Haiti earthquake as well as post-seismic deformations have been investigated through SAR interferometry (InSAR) techniques, thanks to the availability of satellite SAR sensors operating in different radar bands (ENVISAT ASAR, ALOS PALSAR, TerraSAR-X, COSMO/SkyMed). Moreover, advanced multitemporal SAR interferometry (MTI) based on COSMO/SkyMED (CSK) data is well suited for the detection and monitoring of post-seismic ground or structural instabilities. Indeed, with its short revisit time (up to 4 days) CSK allows building interferometric stacks much faster than previous satellite missions, like ERS/ENVISAT. Here we report the first outcomes of the MTI investigation based on high resolution (3 m) CSK data, conducted in the framework of a scientific collaboration between the Centre National de l'Information Géo-Spatiale (CNIGS) of Haiti and the Department of Physics (DIF) of the University of Bari, Italy. We rely on a stack of 89 CSK data (image mode: HIMAGE; polarization: HH; look side: right; pass direction: ascending; beam: H4-0A) acquired by the Italian Space Agency (ASI) over the Port-au-Prince (PaP) metropolitan and surrounding areas that were severely hit by the 2010 earthquake. CSK acquisitions span the period June 2011 ÷ February 2013, which is sufficient for detecting and monitoring significant ground instabilities. The MTI results were obtained through the application of the SPINUA processing chain, a Persistent Scatterers Interferometry (PSI)-like technique. In particular, we detected significant subsidence phenomena affecting river deltas and coastal areas of the PaP and Carrefour region. The maximum rate of subsidence movements exceed few cm/yr and this implies increasing flooding (or tsunami) hazard. Furthermore, maximum subsidence rates were

  14. Budget of shallow magma plumbing system at Asama Volcano, Japan, revealed by ground deformation and volcanic gas studies

    NASA Astrophysics Data System (ADS)

    Kazahaya, Ryunosuke; Aoki, Yosuke; Shinohara, Hiroshi

    2015-05-01

    Multiple cycles of the intensive volcanic gas discharge and ground deformation (inflation and deflation) were observed at Asama Volcano, Japan, from 2000 to 2011. Magma budget of the shallow magma plumbing system was estimated on the basis of the volcanic gas emission rates and ground deformation data. Recent inflations observed in 2004 and 2008 were modeled as a dike intrusion to 2-3 km west of Asama Volcano. Previous studies proposed that magma ascends from a midcrustal magma reservoir to the dike and reaches the surface via a sinuous conduit which connects the dike to the summit. The intensive volcanic sulfur dioxide discharge of up to 4600 t/d at the volcano was modeled by magma convective degassing through this magma pathway. The volcano deflates as shrinkage of the magma in a reservoir by volcanic gas discharge. We estimated the volume change of the dike modeled based on the GPS observations, the volume decrease of the magma by the volcanic gas discharge, and the amount of degassed magma produced to calculate the magma budget. The results show that the volume decrease of the magma by the volcanic gas discharge was larger than the volume change of the dike during the inflation periods. This indicates that a significant volume of magma at least more than 2 times larger than the volume change of the dike was supplied from the midcrustal magma reservoir to the dike. The volume decrease of the dike was comparable with the volume decrease of the magma by the volcanic gas discharge during the deflation periods. The long-term deflation trend of the dike and the volume of degassed magma (108-9 m3) suggest that the degassed magma produced is not stored in the dike and the magma is mainly supplied from the midcrustal magma reservoir. In both periods, the volume of degassed magma produced was 1 order of magnitude larger than the volume change of the dike. This indicates that the actual volume of the magma supplied from the midcrustal magma reservoir is up to 1 order of

  15. Deformation-induced diagenesis and microbial activity in the Nankai accretionary prism

    NASA Astrophysics Data System (ADS)

    Famin, V.; Andreani, M.; Boullier, A. M.; Raimbourg, H.; Magnin, V.

    2014-12-01

    We performed a microscopic and chemical study of diagenetic reactions in deformation microstructures within deep mud sediments from the Nankai accretionary prism (SW Japan) collected during IODP Expedition 315. Our study reveals that deformation microstructures localize the crystallization of pyrite, a diagenetic reaction also found in large megasplay faults of the prism. Textural observation shows that pyrite crystallization is synchronous of the sediment deformation. The framboidal shape of pyrite crystals, the barium depletion and the strong arsenic enrichment observed in deformation microstructures compared with the sediment matrix, suggest that pyrite crystallization is mediated by the proliferation of anoxic archae. During scientific drilling expeditions IODP 315, 316 and 319, microbial life has been evidenced at depths of up to 800 m below the sea floor by the presence of biogenic methane and sulfate reducers in sediments. We suggest that deformation structures localize microbial proliferation because the fracturing of silicate minerals produces hydrogen, a necessary compound for bacteria under anoxic conditions. Bacteria proliferate as long as active deformation supplies hydrogen, and vanish when the deformation stops. The development of bacteria in deformation structures impacts our mechanical understanding of fault zones in accretionary prisms: Firstly, bacterial activity converts carbon from organic matter and hydrogen into methane and/or water, which may alter the fluid budget of fault zones and the recurrence of dynamic ruptures in megathrusts. Secondly, the abundance of bacteria could be used to recognize active fault zones from inactive ones in drilling cores.

  16. QPNM calculation for the ground state magnetic moments of odd-mass deformed nuclei: 157-167Er isotopes

    NASA Astrophysics Data System (ADS)

    Yakut, H.; Guliyev, E.; Guner, M.; Tabar, E.; Zenginerler, Z.

    2012-08-01

    A new microscopic method has been developed in the framework of the Quasiparticle-Phonon Nuclear Model (QPNM) in order to investigate spin polarization effects on the magnetic properties such as magnetic moment, intrinsic magnetic moment and effective gs factor of the ground state of odd-mass 157-167Er isotopes. The calculations were performed using both Tamm-Dancoff Approximation (TDA) and Quasiparticle Random-Phase Approximation (QRPA). Reasonably good agreement has been obtained between the QRPA results and the relevant experimental data. Furthermore the variation of the intrinsic magnetic moment gK values with the mass number A exhibits similar behavior for both theoretical and experimental results. From the compression of the calculated intrinsic magnetic moment values with the experimental data the spin-spin interaction parameter has been found as χ=(30/A) MeV for odd-mass 157-167Er isotopes. Our results clarify the possibility of using this new method to describe the magnetic properties of odd-mass deformed nuclei.

  17. Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion

    NASA Astrophysics Data System (ADS)

    Stumpf, André; Malet, Jean-Philippe; Allemand, Pascal; Pierrot-Deseilligny, Marc; Skupinski, Grzegorz; Delacourt, Christophe

    2015-04-01

    Recent advances in multi-view photogrammetry have resulted in a new class of algorithms and software tools for more automated surface reconstruction. These new techniques have a great potential to provide topographic information for geoscience applications at significantly lower costs than classical topographic and laser scanning surveys. Based on several open-source libraries for multi-view stereo-photogrammetry and Structure-from-Motion, we investigate the accuracy that can be obtained from different processing pipelines for the 3D surface reconstruc- tion of landslides and the detection of changes over time. Two different algorithms for point-cloud comparison are tested and the accuracy of the resulting models is assessed against terrestrial and airborne LiDAR point clouds. Change detection over a period of more than two years allows a detailed assessment of the seasonal dynamics of the landslide; the possibility to estimate sediment volumes, as well as the quantification of the 3D displacement at most active parts of the landslide. Compared to LiDAR point clouds, the root-mean squared error of the photogrammetric point clouds did generally not exceed 0.2 m for the reconstruction of the entire landslide and 0.06 m for the reconstruction of the main scarp. We show that at the slope scale terrestrial multi-view photogrammetry is sufficiently accurate to detect surface changes in the range of decimeters. Thus, the technique currently remains less precise than terrestrial laser scanning or differential satellite positioning systems but provides spatially distributed information at significant lower costs and is, therefore, valuable for many practical landslide investigations. Algorithm parameters and the image acquisition protocols are found to have important impacts on the quality of the results and are discussed in detail. Our findings suggest that a relative precision of 1:500 and better is possible. The results of the change detection show a strong seasonality

  18. Active deformation in Western Turkey: new GPS observations and models

    NASA Astrophysics Data System (ADS)

    Nocquet, J.; Aktug, B.; Parsons, B.; Cingoz, A.; England, P.; Erkan, Y.; Soyer, N.; Akdeniz, H.; Kilicoglu, A.

    2007-12-01

    How the continents deform remains a matter of debate. One view postulates that continental deforming zones are comprised of a limited numbers of rigid (elastic) microplates. If true, the surface motion can then be described by the relative rotation of blocks, and strain should be localized along the major faults separating the blocks. An alternative view is that the deformation at depth is distributed over wide areas, can be modelled by a viscous flow responding to boundary conditions applied on it and gravitational potential energy gradients related to variations in topography, and the surface strain simply reflects this deformation. Western Turkey is a region of crustal extension, part of the Nubia/Eurasia plate boundary. Its kinematics is often modelled by the relative motion of a small number of rigid blocks (Nyst & Thatcher, 2005, Reilinger et al., 2006). However, until now, the limited number of GPS velocity vectors available has prevented a detailed examination of which is the more appropriate description. We present a new geodetic velocity field including ~100 sites from the longitude the Central Anatolian plateau to the Aegean coast, derived from a combination of campaigns carried out between 1997 and 2006, and continuous GPS operating since 2003, which we use to test the different models. While the kinematics of the area can be correctly modelled by a block model, a good fit to the velocity field requires blocks with sizes smaller than 100 km and still fails to adequately predict the strain rate observed within blocks . Alternatively, we test an approach where the lithosphere is modelled as a thin viscous sheet, responding to the gravitational potentiel energy contrast between the high plateau of eastern Turkey to the east and the subduction along the Hellenic trench in the southwest. The simplistic model has only one free parameter (the force applied by the subducting oceanic lithosphere on the Aegean ), but provides a good agreement with the observed

  19. Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion

    NASA Astrophysics Data System (ADS)

    Stumpf, A.; Malet, J.-P.; Allemand, P.; Pierrot-Deseilligny, M.; Skupinski, G.

    2015-02-01

    Recent advances in multi-view photogrammetry have resulted in a new class of algorithms and software tools for more automated surface reconstruction. These new techniques have a great potential to provide topographic information for geoscience applications at significantly lower costs than classical topographic and laser scanning surveys. Based on open-source libraries for multi-view stereo-photogrammetry and Structure-from-Motion, this study investigates the accuracy that can be obtained from several processing pipelines for the 3D surface reconstruction of landslides and the detection of changes over time. Two different algorithms for point-cloud comparison are tested and the accuracy of the resulting models is assessed against terrestrial and airborne LiDAR point clouds. Change detection over a period of more than two years allows a detailed assessment of the seasonal dynamics of the landslide; the possibility to estimate sediment volumes and 3D displacement are illustrated for the most active parts of the landslide. Algorithm parameters and the image acquisition protocols are found to have important impacts on the quality of the results and are discussed in detail.

  20. Active Fibers: Matching Deformable Tract Templates to Diffusion Tensor Images

    PubMed Central

    Eckstein, Ilya; Shattuck, David W.; Stein, Jason L.; McMahon, Katie L.; de Zubicaray, Greig; Wright, Margaret J.; Thompson, Paul M.; Toga, Arthur W.

    2009-01-01

    Reliable quantitative analysis of white matter connectivity in the brain is an open problem in neuroimaging, with common solutions requiring tools for fiber tracking, tractography segmentation and estimation of intersubject correspondence. This paper proposes a novel, template matching approach to the problem. In the proposed method, a deformable fiber-bundle model is aligned directly with the subject tensor field, skipping the fiber tracking step. Furthermore, the use of a common template eliminates the need for tractography segmentation and defines intersubject shape correspondence. The method is validated using phantom DTI data and applications are presented, including automatic fiber-bundle reconstruction and tract-based morphometry. PMID:19457360

  1. Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers.

    PubMed

    Albach, Daniel; LeTouzé, Geoffroy; Chanteloup, Jean-Christophe

    2011-04-25

    We discuss the deformation of a partially pumped active mirror amplifier as a free standing disk, as implemented in several laser systems. We rely on the Lucia laser project to experimentally evaluate the analytical and numerical deformation models. PMID:21643092

  2. Joint use of long water pipe tiltmeters and sea level gauges for monitoring ground deformation at Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Scarpa, Roberto; Capuano, Paolo; Tammaro, Umberto; Bilham, Roger

    2014-05-01

    The Campi Flegrei caldera, located in the Campanian Plain, Southern Italy, 15 km west of the city of Naples, is a nested, resurgent, and restless structure in the densely inhabited Neapolitan area. The main caldera at Campi Flegrei is 12 - 15 km across and its rim is thought to have been formed during the catastrophic eruption, occurred 39 ky ago ca., which produced a deposit referred to as the Campanian Ignimbrite. The volcanic hazards posed by this caldera and the related risk are extremely high, because of its explosive character and the about 1.5 million people living within the caldera. Campi Flegrei area periodically experiences significant unrest episodes which include ground deformations, the so-called 'bradisismo'. Following the last eruption (Monte Nuovo, 1538) a general subsidence has been interrupted by episodes of uplift, the most recent of which occurred in 1970-72 and 1982-84. Since 1950 the caldera is showing signs of unrest with ground uplift, seismicity, and composition variation of fumarole fluids. In particular, subsidence has been replaced by intermittent episodes of inflation with short time duration and various maximum amplitude. They occurred in 1989, 1994, 2000, 2005-06, 2008-09 and 2011-2014 with duration of few months and maximum amplitude ranging between 3 and 18 cm., approximately. In the last years an array of water-pipe tiltmeters with lengths between 28 m and 278 m in tunnels on the flanks of the region of maximum inflation has been installed to avoid problems common to the traditional tiltmeters. The tiltmeters record inflation episodes upon which are superimposed local load tides and the effects of the seiches in the Bay of Naples and in the Tyrrhenian sea. We use data recorded by three tide gauges in the Bay of Pozzuoli (Pozzuoli, Miseno, Nisida) to compare water pipe data with sea level to extract astronomical tidal components (diurnal and semidiurnal) and seiches periods (particularly between 20 minutes and 56 minutes) that

  3. Closure Plan for Active Low Level Burial Grounds

    SciTech Connect

    SKELLY, W.A.

    2000-11-16

    This plan has been prepared in response to direction from the U.S. Department of Energy. The purpose of the plan is to define approaches that will be implemented to ensure protection of the public and the environment when active Low-Level Burial Grounds (LLBGs) at the Hanford Site are closed. Performance assessments for active burial grounds in the 200 East and West 200 Areas provide current estimates of potential environmental contamination and doses to the ''maximum exposed individual'' from burial ground operation and closure and compare dose estimates to performance objective dose limits for the facilities. This is an Operational Closure Plan. The intent of the guidance in DOE Order 435.1 is that this plan will be a living document, like the facility performance assessments, and will be revised periodically through the operational life of the LLBGs to reflect updated information on waste inventory. management practices, facility transition planning, schedule dates, assessments of post-closure performance, and environmental consequences. Out year dates identified in this plan are tentative. A Final Closure Plan will be prepared in the future when the timing and extent of closure-related activities for LLBGs can be established with greater certainty. After current operations at the LLBGs are concluded, this plan proposes transitioning of these facilities to the Environmental Restoration Program. This action will enable the Environmental Restoration Program to design and implement consistent and coordinated final remedial actions for active and inactive LLBGs. Active and inactive burial grounds in the 200 West and 200 East Areas are commingled. This plan describes approaches that will be implemented during Interim Closure, Final Closure, and Institutional Control Periods to prepare LLBGs for surface barriers, and the construction of barriers, as well as the scope of inspection, monitoring and maintenance practices that will be performed during and after closure

  4. Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.

    2010-01-01

    This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.

  5. Gravity and deformation changes at two persistently active volcanoes: Insights into magmatic processes

    NASA Astrophysics Data System (ADS)

    Williams-Jones, G.; Rymer, H.

    2004-05-01

    Insights on some of the mechanisms responsible for persistent volcanism can be best achieved through the synergy of temporal geophysical and geochemical data sets. Gravity changes combined with ground deformation have been shown to provide important information on magma reservoir mass changes while measurements of gas flux have been influential in determining the rate of magma emplacement. The integration of long-term micro-gravity and ground deformation data with SO2 flux and total sulphur budgets collected at Poás and Masaya volcanoes (since 1983 and 1993, respectively) now allows for the identification of significant cycles of activity. Recent eruptive activity at Poás volcano (Costa Rica) has been characterised by the disappearance and subsequent reappearance of the summit crater lake following intrusive episodes in 1980 and 1986-1989. Magma approached the surface on both occasions and was detected by the observation of concurrent increases in micro-gravity. These increases can be best modelled in terms of brittle fracturing of a shallow magma carapace allowing magma ascent through the conduit system to beneath the crater. This process allows for the vertical transfer of heat and gas and is driven by convection of buoyant, volatile-rich magma displacing colder, degassed magma. As magma pressure drops, the connection between the deeper magma reservoir and shallow conduit system is severed allowing the hydrothermal system to resume its role as a cooling mechanism. In contrast, recent activity at Masaya volcano (Nicaragua) has been characterised by repeated periods of significant passive degassing (>2000 t/d SO2) with the eruption of only negligible amounts of juvenile material. The resulting cycle gravity and gas flux variations is clearly not driven by intrusion of additional magma into the shallow system. Rather, it may be due in part to blocking and gas accumulation caused by restrictions in the shallow volcano substructure. However, as with Poás, this

  6. Study to eliminate ground resonance using active controls

    NASA Technical Reports Server (NTRS)

    Straub, F. K.

    1984-01-01

    The effectiveness of active control blade feathering in increasing rotor body damping and the possibility to eliminate ground resonance instabilities were investigated. An analytical model representing rotor flapping and lead-lag degrees of freedom and body pitch, roll, longitudinal and lateral motion is developed. Active control blade feathering is implemented as state variable feedback through a conventional swashplate. The influence of various feedback states, feedback gain, and weighting between the cyclic controls is studied through stability and response analyses. It is shown that blade cyclic inplane motion, roll rate and roll acceleration feedback can add considerable damping to the system and eliminate ground resonance instabilities, which the feedback phase is also a powerful parameter, if chosen properly, it maximizes augmentation of the inherent regressing lag mode damping. It is shown that rotor configuration parameters, like blade root hinge offset, flapping stiffness, and precone considerably influence the control effectiveness. It is found that active control is particularly powerful for hingeless and bearingless rotor systems.

  7. The role of mechanical heterogeneities in evaporite sequence during deformation initiated by basement fault activity

    NASA Astrophysics Data System (ADS)

    Adamuszek, Marta; Dabrowski, Marcin; Burliga, Stanisław

    2016-04-01

    Kłodawa Salt Structure (KSS) situated in the centre of the Polish Zechstein Basin started to rise above a basement fault in the Early Triassic. Geological studies of the KSS revealed significant differences in the deformation patterns between the PZ1-PZ2 (intensely deformed) and PZ3-PZ4 (less deformed) cycle evaporites. These two older and two younger cycle evaporite complexes are separated by the thick Main Anhydrite (A3) bed. We use numerical simulations to assess the impact of a thick anhydrite bed on intrasalt deformation. In our models, the overburden consists of clastic sediments. A normal fault located in the rigid basement beneath the salt is activated due to model extension. At the same time, the sedimentation process takes place. The evaporites consist of a salt bed intercalated with a thick anhydrite layer of varying position and geometry. To understand the role of anhydrite layer, we run comparative simulations, in which no anhydrite layer is present. In the study, we use our own numerical codes implemented in MATLAB combined with the MILAMIN and MUTILS numerical packages. Our investigations revealed a significant influence of the anhydrite on deformation style in the evaporate series. The supra-anhydrite domain is characterized by weaker deformation and lower rates of salt flow in comparison to the sub-anhydrite domain. The highest contrast in the rate of salt flow between the two domains is observed in the case of the anhydrite layer situated close to the bottom of the salt complex. The thick anhydrite layer additionally diminishes the deformation rate in the supra-anhydrite domain and can lead to detachment of the basement deformation from its overlay. Our numerical simulations showed that the presence of the A3 Main Anhydrite bed could be the dominant factor responsible for the decoupling of deformation in the KSS salt complex.

  8. 2D and 3D Ground Penetrating Radar monitoring of a reinforced concrete asphalt plate affected by mechanical deformation.

    NASA Astrophysics Data System (ADS)

    Bavusi, M.; Dumoulin, J.; Loperte, A.; Rizzo, E.; Soldovieri, F.

    2012-04-01

    The main facility of Hydrogeosite Laboratory of the Italian National Research Council (Marsico Nuovo, CNR) is a 3m x 7m x 10m reinforced concrete pool filled by siliceous sand designed for hydrologic experiments. One of its peculiarities is the possibility to vary the water table depth by using a proper hydraulic system [1]. In the framework of the FP7 ISTIMES project (Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing), a 3m x 3m layered structure has been purposely built and placed in the pool of the Hydrogeosite Laboratory with the aim to carry out a long term monitoring, by using jointly several electromagnetic sensing technologies, during two different phases simulating the rising of the water table and a mechanical solicitation. Several layers composed the structure from the top to the bottom, such as: 5 cm of asphalt; 5-10 cm of reinforced concrete; 20-25 cm of conglomerate, 55 cm of sand. Moreover, in the sand layer, three (metallic and plastic) pipes of different size were buried to simulate utilities. Ground Penetrating Radar (GPR) surveys were performed by using a the GSSI SIR 3000 system equipped with 400 MHz and 1500 MHz central frequency antennas. Surveys carried out by means of 400 MHz antenna allowed to detect and localize the three pipes (one in plastic and two in metal) and to investigate the effects of the sand water content on their radar signature. Surveys carried out by using 1500 MHz antenna were focused to characterize the shallower layers of the structure. The Hydrogeosite experiment consisted in following stages: • Arising of a water table by infiltration from the bottom; • Water gravity infiltration condescendingly; • Infiltration by peristaltic pump in the very shallow layers of the structure; • Water table drawdown; • Mechanical structure deformation; • Asphalt plate restoration after mechanical solicitation. After each stage a series of GPR surveys was performed. Moreover

  9. Cold Season Ground Validation Activities in support of GPM

    NASA Astrophysics Data System (ADS)

    Hudak, D. R.; Petersen, W. A.

    2012-12-01

    A fundamental component of the next-generation global precipitation data products that will be addressed by the GPM mission is the hydrologic cycle at higher latitudes. In this respect, falling snow represents a primary contribution to regional atmospheric and terrestrial water budgets. The current study provides provide information on the precipitation microphysics and processes associated with cold season precipitation and precipitating cloud systems across multiple scales. It also addresses the ability of in-situ ground-based sensors as well as multi-frequency active and passive microwave sensors to detect and estimate falling snow, and more generally to contribute to our knowledge and understanding of the complete global water cycle. The work supports the incorporation of appropriate physics into GPM snowfall retrieval algorithms and the development of improved ground validation techniques for GPM product evaluation. Important information for developing GPM falling snow retrieval algorithms will be provided by a field campaign that took place in the winter of 2011/12 in the Great Lakes area of North America, termed the GPM Cold Season Precipitation Experiment (GCPEx). GCPEx represented a collaboration among the NASA, Environment Canada (EC), the Canadian Space Agency and several US, Canadian and European universities. The data collection strategy for GCPEx was coordinated, stacked high-altitude and in-situ cloud aircraft missions sampling within a broader network of ground-based volumetric observations and measurements. The NASA DSC-8 research aircraft provided a platform for the downward-viewing dual-frequency radar and multi-frequency radiometer observations. The University of North Dakota Citation and the Canadian NRC Convair-580 aircraft provided in-situ profiles of cloud and precipitation microphysics using a suite of optical array probes and bulk measurement instrumentation. Ground sampling was focused about a densely-instrumented central location that is

  10. Deformation Microstructure of a Reduced-Activation Ferritic/Martensitic Steel Irradiated in HFIR

    SciTech Connect

    Hashimoto, N.; Klueh, R.L.; Ando, M.; Tanigawa, H.; Sawai, T.; Shiba, K.

    2003-09-15

    In order to determine the contributions of different microstructural features to strength and to deformation mode, microstructure of deformed flat tensile specimens of irradiated reduced activation F82H (IEA heat) base metal (BM) and its tungsten inert-gas (TIG) weldments (weld metal and weld joint) were investigated by transmission electron microscopy (TEM), following fracture surface examination by scanning electron microscopy (SEM). After irradiation, the fracture surfaces of F82H BM and TIG weldment showed a martensitic mixed quasi-cleavage and ductile-dimple fracture. The microstructure of the deformed region of irradiated F82H BM contained dislocation channels. This suggests that dislocation channeling could be the dominant deformation mechanism in this steel, resulting in the loss of strain-hardening capacity. While, the necked region of the irradiated F82H TIG, where showed less hardening than F82H BM, showed deformation bands only. From these results, it is suggested that the pre-irradiation microstructure, especially the dislocation density, could affect the post-irradiation deformation mode.

  11. Crustal deformation at very long baseline interferometry sites due to seasonal air-mass and ground water variations

    NASA Technical Reports Server (NTRS)

    Stolz, A.; Larden, D. R.

    1980-01-01

    The seasonal deformation normal to the Earth's surface was calculated at stations involved or interested in very long baseline interferometry (VLBI) geodesy and at hypothetical sites in Australia and Brazil using global atmospheric pressure data, values for groundwater storage, and load Love numbers deduced from current Earth models. It was found that the annual range of deformation approached the centimeter level measuring potential of the VLBI technqiue at Greenbank, Haystack, and the Brazil site.

  12. Octupole deformation in the ground states of even-even nuclei: A global analysis within the covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Agbemava, S. E.; Afanasjev, A. V.; Ring, P.

    2016-04-01

    A systematic investigation of octupole-deformed nuclei is presented for even-even systems with Z ≤106 located between the two-proton and two-neutron driplines. For this study we use five most-up-to-date covariant energy density functionals of different types, with a nonlinear meson coupling, with density-dependent meson couplings, and with density-dependent zero-range interactions. Pairing correlations are treated within relativistic Hartree-Bogoliubov theory based on an effective separable particle-particle interaction of finite range. This allows us to assess theoretical uncertainties within the present covariant models for the prediction of physical observables relevant for octupole-deformed nuclei. In addition, a detailed comparison with the predictions of nonrelativistic models is performed. A new region of octupole deformation, centered around Z ˜98 ,N ˜196 is predicted for the first time. In terms of its size in the (Z ,N ) plane and the impact of octupole deformation on binding energies this region is similar to the best known region of octupole-deformed nuclei centered at Z ˜90 ,N ˜136 . For the later island of octupole-deformed nuclei, the calculations suggest substantial increase of its size as compared with available experimental data.

  13. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Biggs, Juliet; Wicks, Charles, Jr.; McNutt, Steve

    2010-01-01

    Starting soon after the 1997 eruption at Okmok volcano and continuing until the start of the 2008 eruption, magma accumulated in a storage zone centered ~3.5 km beneath the caldera floor at a rate that varied with time. A Mogi-type point pressure source or finite sphere with a radius of 1 km provides an adequate fit to the deformation field portrayed in time-sequential interferometric synthetic aperture radar images. From the end of the 1997 eruption through summer 2004, magma storage increased by 3.2–4.5 × 107 m3, which corresponds to 75–85% of the magma volume erupted in 1997. Thereafter, the average magma supply rate decreased such that by 10 July 2008, 2 days before the start of the 2008 eruption, magma storage had increased by 3.7–5.2 × 107 m3 or 85–100% of the 1997 eruption volume. We propose that the supply rate decreased in response to the diminishing pressure gradient between the shallow storage zone and a deeper magma source region. Eventually the effects of continuing magma supply and vesiculation of stored magma caused a critical pressure threshold to be exceeded, triggering the 2008 eruption. A similar pattern of initially rapid inflation followed by oscillatory but generally slowing inflation was observed prior to the 1997 eruption. In both cases, withdrawal of magma during the eruptions depressurized the shallow storage zone, causing significant volcano-wide subsidence and initiating a new intereruption deformation cycle.

  14. Observing active deformation of volcanoes in North America: Geodetic data from the Plate Boundary Observatory and associated networks

    NASA Astrophysics Data System (ADS)

    Puskas, C. M.; Phillips, D. A.; Mattioli, G. S.; Meertens, C. M.; Hodgkinson, K. M.; Crosby, C. J.; Enders, M.; Feaux, K.; Mencin, D.; Baker, S.; Lisowski, M.; Smith, R. B.

    2013-12-01

    The EarthScope Plate Boundary Observatory (PBO), operated by UNAVCO, records deformation of the geologically diverse North America western plate boundary, with subnetworks of instruments concentrated at selected active and potentially active volcanoes. These sensors record deformation and earthquakes and allow monitoring agencies and researchers to analyze changes in ground motion and seismicity. The intraplate volcanoes at Yellowstone and Long Valley are characterized by uplift/subsidence cycles, high seismicity, and hydrothermal activity but there have been no historic eruptions at either volcano. PBO maintains dense GPS networks of 20-25 stations at each of these volcanoes, with an additional 5 boreholes at Yellowstone containing tensor strainmeters, short-period seismometers, and borehole tiltmeters. Subduction zone volcanoes in the Aleutian Arc have had multiple historic eruptions, and PBO maintains equipment at Augustine (8 GPS), Akutan (8 GPS, 4 tiltmeters), and Unimak Island (14 GPS, 8 tiltmeters). The Unimak stations are at the active Westdahl and Shishaldin edifices and the nearby, inactive Isanotski volcano. In the Cascade Arc, PBO maintains networks at Mount St. Helens (15 GPS, 4 borehole strainmeters and seismometers, 8 borehole tiltmeters), Shasta (7 GPS, 1 borehole strainmeter and seismometer), and Lassen Peak (8 GPS). Data from many of these stations in the Pacific Northwest and California are also provided as realtime streams of raw and processed data. Real-time GPS data, along with high-rate GPS data, will be an important new resource for detecting and studying future rapid volcanic deformation events and earthquakes. UNAVCO works closely with the USGS Volcano Hazards Program, archiving data from USGS GPS stations in Alaska, Cascadia, and Long Valley. The PBO and USGS networks combined provide more comprehensive coverage than PBO alone, particularly of the Cascade Arc, where the USGS maintains a multiple instruments near each volcano. Ground

  15. Railway deformation detected by DInSAR over active sinkholes in the Ebro Valley evaporite karst, Spain

    NASA Astrophysics Data System (ADS)

    Galve, J. P.; Castañeda, C.; Gutiérrez, F.

    2015-06-01

    Previously not measured subsidence on railway tracks was detected using DInSAR displacement maps produced for the central sector of Ebro Valley (NE Spain). This area is affected by evaporite karst and the analyzed railway corridors traverse active sinkholes that produce deformations in these infrastructures. One of the railway tracks affected by slight settlements corresponds to the Madrid-Barcelona high-speed line, a transport infrastructure highly vulnerable to ground deformation processes. Our analysis based on DInSAR measurements and geomorphological surveys indicate that this line show dissolution-induced subsidence and compaction of anthropogenic deposits (infills and embankments). By using DInSAR techniques, it was also measured the significant subsidence related to the activity of sinkholes in the Castejón-Zaragoza conventional railway line. Thus, this study demonstrate that DInSAR velocity maps coupled with detailed geomorphological surveys may help in the identification of the sectors of railway tracks that may compromise the safety of travellers.

  16. InSAR analysis of the 2008 M 4.7 Reno-Mogul, Nevada earthquake: Evidence for co-seismic and post-seismic ground deformation associated with smaller magnitude earthquakes in the Basin and Range

    NASA Astrophysics Data System (ADS)

    Bell, J. W.; Amelung, F.

    2009-12-01

    On April 25, 2008, an M 4.7 earthquake occurred at Mogul, 10 km west of Reno, Nevada, following a two month long swarm of hundreds of small (M 1-4) events. Despite the lack of visible ground rupture, InSAR analysis of pre- and post-earthquake data reveals evidence for co-seismic and post-seismic ground deformation in the epicentral area and provides insight into contemporary tectonic processes in the western Basin and Range. Descending and ascending Envisat data acquired 1 month after the earthquake show 4-6 cm of LOS change within a 5-10 km asymmetric radius of the epicenter, delineating a maximum ground deformation pattern aligning with the seismically well-defined N35W rupture plane. The lobate deformation pattern of the LOS changes together with inverse modeling of the unwrapped interferograms (University of Miami Geodmod code) indicates that the earthquake was a right-lateral strike-slip event, consistent with the instrumental focal mechanism and a robust aftershock pattern. Further InSAR analysis of data acquired in July and August, 2008 indicate that post-seismic deformation continued for several months after the main event with as much as 2 cm of additional LOS change occurring, consistent with the continuation of intense swarm activity through August, 2008 (UNR Seismological Laboratory) and with post-seismic motion measured by GPS (Blewitt et al., 2008). Comparison of post-earthquake InSAR data indicates that no additional post-seismic deformation has occurred since August 2008. Pre-seismic GPS movement reported by Blewitt et al. (2008) was not found in the InSAR analysis, likely owing to the small-scale pre-seismic displacements. These results provide new insights into tectonic processes associated with smaller magnitude earthquakes that otherwise have no visible co-seismic deformation. Our previous InSAR studies indicate that InSAR-detectable earthquakes typically have magnitudes of M >5.0 using conventional C-band SAR data. The Reno-Mogul earthquake is

  17. Active optics experiments. II - Measurement of mirror deformation by holographic method

    NASA Astrophysics Data System (ADS)

    Itoh, Noboru; Mikami, Izumi; Miyawaki, Keizou; Sasaki, Aki; Tabata, Masao

    An active optics experiment was performed to study the feasibility of using an active correction system for the Japanese National Large Telescope (Wilson, 1986). A thin mirror was deformed with an active support mechanism and the mirror surface was measured by a holographic method. The experiment is performed for several cases of excess force distributions assigned at the supporting points. The results show good agreement with predictions from FEM analysis.

  18. Hot fluid migration: an efficient source of ground deformation: application to the 1982 1985 crisis at Campi Flegrei-Italy

    NASA Astrophysics Data System (ADS)

    Bonafede, Maurizio

    1991-08-01

    Some solutions of the forced heat advection problem in compressible media are worked out employing a perturbative approach and their implication for thermoelastic deformation are discussed. A sharp temperature front, which migrates at a speed in the order of Darcy flow rate, develops in the medium, giving rise to significant deformation via thermal expansion. A thermally induced pressure source accompanies the temperature front, which may be significant only in very high temperature cases. Results are applied to interpreting the uplift episode of 1982-1984 at Campi Flegrei (C.F.), near Naples, Italy. A mechanism is envisaged for uplift at Campi Flegrei in which a sudden connection is established between a deep, hot, high-pressure fluid reservoir and a shallow, relatively cold, low-pressure aquifer. The inclusion of fluid migration in the deformation model allows simple explanations of several geochemical and geophysical observations made during the bradyseismic crisis. It appears that the proposed mechanism may explain the large observed uplift, without requiring unreasonable pressure increase within the magma chamber. Furthermore, the deformation source may be allowed to be shallower than the magma chamber, as required by any reasonable deformation model at C.F.

  19. NASA SPoRT GOES-R Proving Ground Activities

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Fuell, Kevin K.; Jedloec, Gary J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) program is a partner with the GOES-R Proving Ground (PG) helping prepare forecasters understand the unique products to come from the GOES-R instrument suite. SPoRT is working collaboratively with other members of the GOES-R PG team and Algorithm Working Group (AWG) scientists to develop and disseminate a suite of proxy products that address specific forecast problems for the WFOs, Regional and National Support Centers, and other NOAA users. These products draw on SPoRT s expertise with the transition and evaluation of products into operations from the MODIS instrument and the North Alabama Lightning Mapping Array (NALMA). The MODIS instrument serves as an excellent proxy for the Advanced Baseline Imager (ABI) that will be aboard GOES-R. SPoRT has transitioned and evaluated several multi-channel MODIS products. The true and false color products are being used in natural hazard detection by several SPoRT partners to provide better observation of land features, such as fires, smoke plumes, and snow cover. Additionally, many of SPoRT s partners are coastal offices and already benefit from the MODIS sea surface temperature composite. This, along with other surface feature observations will be developed into ABI proxy products for diagnostic use in the forecast process as well as assimilation into forecast models. In addition to the MODIS instrument, the NALMA has proven very valuable to WFOs with access to these total lightning data. These data provide situational awareness and enhanced warning decision making to improve lead times for severe thunderstorm and tornado warnings. One effort by SPoRT scientists includes a lightning threat product to create short-term model forecasts of lightning activity. Additionally, SPoRT is working with the AWG to create GLM proxy data from several of the ground based total lightning networks, such as the NALMA. The evaluation will focus on the vastly improved spatial

  20. Modern Tectonic Deformation in the Active Basin-And Province Northwest of Beijing, China

    NASA Astrophysics Data System (ADS)

    Mi, S.; Wen, X.

    2012-12-01

    Our study region is the northwest of Beijing, northern north China. The most typical extensional active tectonic area of the China continent, called the active basin-and-range province northwest of Beijing, exist there. This active tectonic province is made up of several NE-trending Quaternary graben basins and horst ranges between basins. An about 1500-year-long written historical record has suggested that there have been no major earthquakes with magnitude 7 or greater occurred in most of the study region since AD 512. So, the characteristic of modern tectonic deformation of the study region and its implication for the future seismic potential of major earthquakes are important scientific issues. In this study, based on data of regional GPS station velocities and active tectonics, combining relocated earthquake distribution, we make a preliminary analysis on the characteristic of the modern tectonic deformation of the study region. We design three zones across deferent segments of the active basin-and-range province to analyze both the present tectonic deformation from the GPS velocity profiles and the major fault's downward-extents from the relocated hypocenters. Our analyses reveal that: (1) Significant NNW-ward and SSE-ward horizontal extension exists on different segments of the active basin-and-range province northwest of Beijing at rates of 2 to 3mm /yr, accompanied with right-lateral shear deformation at 1 to 2mm/yr. (2) On the present tectonic deformation, the southeastern margin of the Datong-Yangyuan basin, the biggest graben basin of the active tectonic province, shows as a turning belt of the extensional rates, suggesting that relatively high tensile strain accumulation could exist there. (3)On the northeastern segment of the studied active basin-and-range province, both the Zhangjiakou-Yanhui graben basin and the Beijing graben basin have also been being in significant extensional and shear deformation. (4) The relocated hypocenter distribution have

  1. A deformable lung tumor tracking method in fluoroscopic video using active shape models: a feasibility study

    NASA Astrophysics Data System (ADS)

    Xu, Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Jiang, Steve B.

    2007-09-01

    A dynamic multi-leaf collimator (DMLC) can be used to track a moving target during radiotherapy. One of the major benefits for DMLC tumor tracking is that, in addition to the compensation for tumor translational motion, DMLC can also change the aperture shape to conform to a deforming tumor projection in the beam's eye view. This paper presents a method that can track a deforming lung tumor in fluoroscopic video using active shape models (ASM) (Cootes et al 1995 Comput. Vis. Image Underst. 61 38-59). The method was evaluated by comparing tracking results against tumor projection contours manually edited by an expert observer. The evaluation shows the feasibility of using this method for precise tracking of lung tumors with deformation, which is important for DMLC-based real-time tumor tracking.

  2. Coherence between geodetic and seismic deformation in a context of slow tectonic activity (SW Alps, France)

    NASA Astrophysics Data System (ADS)

    Walpersdorf, A.; Sue, C.; Baize, S.; Cotte, N.; Bascou, P.; Beauval, C.; Collard, P.; Daniel, G.; Dyer, H.; Grasso, J.-R.; Hautecoeur, O.; Helmstetter, A.; Hok, S.; Langlais, M.; Menard, G.; Mousavi, Z.; Ponton, F.; Rizza, M.; Rolland, L.; Souami, D.; Thirard, L.; Vaudey, P.; Voisin, C.; Martinod, J.

    2015-04-01

    A dense, local network of 30 geodetic markers covering a 50 × 60 km2 area in the southwestern European Alps (Briançon region) has been temporarily surveyed in 1996, 2006 and 2011 by GPS. The aim is to measure the current deformation in this seismically active area. The study zone is characterized by a majority of extensional and dextral focal mechanisms, along north-south to N160 oriented faults. The combined analysis of the three measurement campaigns over 15 years and up to 16 years of permanent GPS data from the French RENAG network now enables to assess horizontal velocities below 1 mm/year within the local network. The long observation interval and the redundancy of the dense campaign network measurement help to constrain a significant local deformation pattern in the Briançon region, yielding an average E-W extension of 16 ± 11 nanostrain/year. We compare the geodetic deformation field to the seismic deformation rate cumulated over 37 years, and obtain good coherencies both in amplitude and direction. Moreover, the horizontal deformation localized in the Briançon region represents a major part of the Adriatic-European relative plate motion. However, the average uplift of the network in an extensional setting needs the presence of buoyancy forces in addition to plate tectonics.

  3. Crustal Deformation around Zhangjiakou-Bohai Seismically Active Belt

    NASA Astrophysics Data System (ADS)

    Jin, H.; Fu, G.; Kato, T.

    2011-12-01

    Zhangjiakou-Bohai belt is a seismically active belt located in Northern China around Beijing, the capital of China. Near such a belt many great earthquakes occurred in the past centuries (e.g. the 1976 Tanshan Ms7.8 earthquake, the 1998 Zhangbei Ms6.2 earthquake, etc). Chinese Government established dense permanent and regional Global Positioning System (GPS) stations in and near the area. We collected and analyzed all the GPS observation data between 1999 and 2009 around Zhangjiakou-Bohai seismic belt, and obtained velocities at 143 stations. At the same time we investigated Zhangjiakou-Bohai belt slip rate for three profiles from northwest to southeast, and constructed a regional strain field on the Zhangjiakou-Bohai seismic belt region by least-square collocation. Based on the study we found that: 1) Nowadays the Zhangjiakou-Bohai seismic belt is creeping with left-lateral slip rate of 2.0mm~2.4mm/a, with coupling depth of 35~50km; 2) In total, the slip and coupling depth of the northwestern seismic belt is less than the one of southeast side; 3) The maximum shear strain is about 3×10-8 at Beijing-Tianjin-Tangshan area.

  4. Use of polyurethane foam deformation sensor to record respiratory activity

    NASA Astrophysics Data System (ADS)

    Bredov, V. I.; Baranov, V. S.

    1980-05-01

    The sensor developed has some substantial advantages over other known types. It is highly sensitive over a wide range of strain loads. The level of the output signal is linearly related to the force exerted on it, and it is sufficient for direct recording without using amplifiers of electric signals. The sensor is based on elastic, spongy material, polyurethane foam (porolon) with current-conducting material on the pore surface, current-conducting carbon black or electrode paste. The elastic properties of the sensor are built in the actual base of the strain-sensitive element, which simplifies the construction substantially and increases the reliability of the unit. In order to test the possibility of using this sensor to examine respiratory function, human pneumograms were recorded with the subject in a calm state along with the respiratory activity of experimental animals (dogs). Samples of the respiratory curve are shown. The simplicity of design of the sensor makes it possible to use it in various physiological experiments.

  5. Deformation of the Calabrian Arc subduction complex and its relation to STEP activity at depth.

    NASA Astrophysics Data System (ADS)

    Polonia, Alina; Wortel, Rinus; Nijholt, Nicolai; Govers, Rob; Torelli, Luigi

    2015-04-01

    Propagating tear faults at the edge of subducted slabs ("Subduction transform edge propagator", STEP) are an intrinsic part of lithospheric plate dynamics. The surface expression of a STEP is generally not known yet, and is expected to vary significantly from one region to the other. We choose the Sicily -Calabria-Ionian Sea region, of which the lithosphere-upper mantle structure has the characteristics of a STEP zone, as a study area. The area has a very prominent accretionary wedge, the formation and subsequent deformation of which presumably were affected by the STEP activity at depth. In this contribution, we use seismic data on the near surface structure and deformation in combination with numerical model results to investigate the relation between deep STEP activity and near surface expression. Prominent features in the surface tectonics are the Malta escarpment (with predominantly normal faulting), the newly identified Ionian Fault and Alfeo-Etna fault system, and a distinct longitudinal division of the wedge into a western and an eastern lobe (Polonia et al., Tectonics, 2011). The two lobes are characterized by different structural style, deformation rates and basal detachment depths. Numerical model results indicate that the regional lithospheric structure, such as the orientation of the eastern passive (albeit subsequently activated) margin of Sicily relative to the Calabrian subduction zone, has a profound effect on possible fault activity along the Malta escarpment. Fault activity along the above primary fault structures may have varied in time, implying the possibility of intermittent activity. Interpreting seismicity in the context of a possible STEP, and the accompanying deformation zone at or near the surface, is not (yet) straightforward. Although direct evidence for recognizing all aspects of STEP activity is - as usual - lacking, a comparison with two well-known STEP regions, the northern part of the Tonga subduction zone and southern part of the

  6. Ground deformations along Ionian coastline of the northern Calabria (Southern Italy) from Capo Trionto to Capo Colonna detected by InSAR data

    NASA Astrophysics Data System (ADS)

    Vollrath, Andreas; Cianflone, Giuseppe; Bignami, Christian; Brunori, Carlo Alberto; Dominici, Rocco; Zucca, Francesco; Stramondo, Salvatore; Baldi, Paolo; Fabris, Massimo; Sepe, Vincenzo; Anzidei, Marco

    2015-04-01

    The study area is located along the Ionian coast of the northern Calabrian Arc, in correspondence of the Crotone and Spartivento fore-arc basins. The investigated coastal area represents the western margin of the Gulf of Taranto. The seafloor of this sector has been investigated by several authors during the last three decades and is characterized by numerous submarine depositional systems strictly related to main drainage basins which feed into the Ionian Sea. Northward, the area is limited by the Corigliano Canyon which connects the continental shelf with the Taranto Valley and separates the Cariati and Cirò Ridges. The latter is bounded, along its southern side, by the NW-SE trending Alice Canyon which reaches the inner continental shelf offshore Punta Alice and is not related to an onshore drainage system. Southward, the wide Neto-Lipuda Canyons system originates close to the coastline and is connected to the Neto and Lipuda Rivers. Toward South, this system is separated from the Esaro Canyon by the Luna-Hera Lacinia High. The southernmost canyon is connected to the Esaro River and runs subparallel to the coastline. Previous authors have been highlighted ground deformations, with sometimes associated km-long surface fractures and damages to buildings, in the Cirò coastal plain and in the area southward from Crotone. The cause of these deformation is attributed to megaslides. The multi-temporal (1958, 1985, 1998, 2008) analysis of the coastline variations shows a general erosive trend characterized by m and dm coastline retreats. We applied the multi-temporal StaMPS SBAS technique for two SAR datasets, one acquired from 2003 up to 2010 by Envisat ASAR instrument, and another from 1995 up to 2000 from the ERS satellite (ESA, European Space Agency) to investigate ground displacements in the studied coastal area. The Up component (recording the vertical ground deformation) allows to identify the main subsidence areas in correspondence of the Capo Colonna

  7. Chemopreventive activity of sesquiterpene lactones (SLs) from yacon against TPA-induced Raji cells deformation.

    PubMed

    Siriwan, D; Miyawaki, C; Miyamoto, T; Naruse, T; Okazaki, K; Tamura, H

    2011-05-15

    Yacon is a medicinal plant used as a traditional medicine by the natives in South America. In Japan, it becomes popular as a health food. Sesquiterpene Lactones (SLs) from yacon leaves were investigated and the active SLs such as enhydrin, uvedalin and sonchifolin, bearing alpha-methylene-gamma-lactone and epoxides as the active functional groups, were identified by 1H-6000 MHz-NMR. Chemopreventive and cytotoxic activities were determined using different primary screening methods. In this study, all tested SLs strongly inhibited TPA-induced deformed of Raji cells. The IC50 values of yacon SLs from anti-deforming assay were 0.04-0.4 microM. Interestingly, yacon SLs showed more potential of chemo preventive activity than both curcumin and parthenolide. However, the cytotoxicity on Raji cells was observed at high concentration of yacon SLs. The degree of anti-deformation was ranked in order: enhydrin >uvedalin >sonchifolin >parthenolide >curcumin. As according to structure-activity relationship, the high activities of enhydrin, uvedalin and sonchifolin may be due to the 2-methyl-2-butenoate and its epoxide moiety. PMID:22097098

  8. Space active optics: performance of a deformable mirror for in-situ wave-front correction in space telescopes

    NASA Astrophysics Data System (ADS)

    Laslandes, Marie; Hourtoule, Claire; Hugot, Emmanuel; Ferrari, Marc; Lopez, Céline; Devilliers, Christophe; Liotard, Arnaud; Chazallet, Frederic

    2012-09-01

    MADRAS (Mirror Active, Deformable and Regulated for Applications in Space) project aims at demonstrating the interest of Active Optics for space applications. We present the prototype of a 24 actuators, 100 mm diameter deformable mirror to be included in a space telescope's pupil relay to compensate for large lightweight primary mirror deformation. The mirror design has been optimized with Finite Element Analysis and its experimental performance characterized in representative conditions. The developed deformable mirror provides an efficient wave-front correction with a limited number of actuators and a design fitting space requirements.

  9. Thrust faulting and 3D ground deformation of the 3 July 2015 Mw 6.4 Pishan, China earthquake from Sentinel-1A radar interferometry

    NASA Astrophysics Data System (ADS)

    Sun, Jianbao; Shen, Zheng-Kang; Li, Tao; Chen, Jie

    2016-06-01

    Boosted by the launch of Sentinel-1A radar satellite from the European Space Agency (ESA), we now have the opportunity of fast, full and multiple coverage of the land based deformation field of earthquakes. Here we use the data to investigate a strong earthquake struck Pishan, western China on July 3, 2015. The earthquake fault is blind and no ground break features are found on-site, thus Synthetic Aperture Radar (SAR) data give full play to its technical advantage for the recovery of coseismic deformation field. By using the Sentinel-1A radar data in the Interferometric Wide Swath mode, we obtain 3 tracks of InSAR data over the struck region, and resolve the 3D ground deformation generated by the earthquake. Then the Line-of-Sight (LOS) InSAR data are inverted for the slip-distribution of the seismogenic fault. The final model shows that the earthquake is completely blind with pure-thrust motion. The maximum slip is ~ 0.48 m at a depth of ~ 7 km, consistent with the depth estimate from seismic reflection data. In particular, the inverted model is also compatible with a south-dipping fault ramp among a group of fault interfaces detected by the seismic reflection profile over the region. The seismic moment obtained equals to a Mw 6.4 earthquake. The Pishan earthquake ruptured the frontal part of the thrust ramps under the Slik anticline, and unloaded the coulomb stress of them. However, it may have loaded stress to the back-thrust above the thrust ramps by ~ 1-4 bar, and promoted it for future failure. Moreover, the stress loading on the west side of the earthquake fault is much larger than that on the east side, indicating a higher risk for failure to the west of the Zepu fault.

  10. Modern Tectonic Deformation in the Active Basin-and-Range Province Northwest of Beijing, China

    NASA Astrophysics Data System (ADS)

    Mi, Suting; Wen, Xueze

    2013-04-01

    Our study region is the northwest of Beijing, northern north China. The most typical extensional active tectonic area of the China continent, called the active basin-and-range province northwest of Beijing, exist there. This active tectonic province is made up of several NE-trending Quaternary graben basins and horst ranges between basins. An about 1500-year-long written historical record has suggested that there have been no major earthquakes with magnitude 7 or greater occurred in most of the study region since AD 512. So, the characteristic of modern tectonic deformation of the study region and its implication for the future seismic potential of major earthquakes are important scientific issues. In this study, based on data of regional GPS station velocities and active tectonics, combining relocated earthquake distribution, we make a preliminary analysis on the characteristic of the modern tectonic deformation of the study region. We design three zones across deferent segments of the active basin-and-range province to analyze both the present tectonic deformation from the GPS velocity profiles and the major fault's downward-extents from the relocated hypocenters. Our analyses reveal that: (1) Significant NNW-ward and SSE-ward horizontal extension exists on different segments of the active basin-and-range province northwest of Beijing at rates of 2 to 3mm /yr, accompanied with right-lateral shear deformation at 1 to 2mm/yr. (2) On the western and middle segments of the active basin and range province, most of the total horizontal extension and shear deformation happen in the width from the Huangqihai basin to the Datong-Yanggao basin , suggesting that some major faults in this width could have had relatively-high strain build-up. (3) It is possible that one or more basement detachment belts exist under the active basins, and it or they possibly dip(s) southeastern-ward. (4) The modern tectonic extensional rate is up to 2 to 3mm /yr in the study region. However

  11. Observations of Seafloor Deformation and Methane Venting within an Active Fault Zone Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Brewer, P. G.; Vrijenhoek, R.; Lundsten, L.

    2013-12-01

    Detailed mapping surveys of the floor and flanks of the Santa Monica Basin, San Pedro Basin, and San Diego Trough were conducted during the past seven years using an Autonomous Underwater Vehicle (AUV) built and operated by MBARI specifically for seafloor mapping. The AUV collected data provide up to 1 m resolution multibeam bathymetric grids with a vertical precision of 0.15 m. Along with high-resolution multibeam, the AUV also collects chirp seismic reflection profiles. Structures within the uppermost 10-20 m of the seafloor, which in the surveys presented here is composed of recent sediment drape, can typically be resolved in the sub-bottom reflectors. Remotely operated vehicle (ROV) dives allowed for ground-truth observations and sampling within the surveyed areas. The objectives of these dives included finding evidence of recent seafloor deformation and locating areas where chemosynthetic biological communities are supported by fluid venting. Distinctive seafloor features within an active fault zone are revealed in unprecedented detail in the AUV generated maps and seismic reflection profiles. Evidence for recent fault displacements include linear scarps which can be as small as 20 cm high but traceable for several km, right lateral offsets within submarine channels and topographic ridges, and abrupt discontinuities in sub-bottom reflectors, which in places appear to displace seafloor sediments. Several topographic highs that occur within the fault zone appear to be anticlines related to step-overs in these faults. These topographic highs are, in places, topped with circular mounds that are up to 15 m high and have ~30° sloping sides. The crests of the topographic highs and the mounds both have distinctive rough morphologies produced by broken pavements of irregular blocks of methane-derived authigenic carbonates, and by topographic depressions, commonly more than 2 m deep. These areas of distinctive rough topography are commonly associated with living

  12. Characterization of micro-scale creep deformation of an electro-active paper actuator

    NASA Astrophysics Data System (ADS)

    Lee, Sangwoo; Kim, Joo-Hyung; Kang, Kwangseon; Kim, Jaehwan; Kim, Heung Soo; Yang, Chulho

    2009-09-01

    The creep deformation process of an electro-active paper (EAPap) actuator was investigated by adapting stepwise dead-weight loading. To understand the deformation mechanism of the EAPap film, including morphological and structural changes, various loading conditions below yield strength were applied to cellophane EAPap. From the structural observation, micro-dimples and micro-cracks were detected at applied load lower than 10% of yield strength, while they were not found in higher load conditions. It is hypothesized that only short and random fibers in the amorphous region may respond to the applied stress at the low loading condition, not the fibers in the crystalline area. As a result, deformation energy at the localized spot accumulated and created micro-defects at the surface. Meanwhile, fibers in the crystalline region may sustain most of the loads as creep load increases to a high level. Molecular chains in the fiber may rotate and elongate with high load. Elongated fibers were observed only at a high level of load. From the structural change as a function of applied load, a peak shift of crystal orientation was observed only in high load conditions by wide angle x-ray measurement. This may confirm that creep deformation could give rise to structure changes in EAPap.

  13. Root Hair Deformation Activity of Nodulation Factors and Their Fate on Vicia sativa.

    PubMed Central

    Heidstra, R.; Geurts, R.; Franssen, H.; Spaink, H. P.; Van Kammen, A.; Bisseling, T.

    1994-01-01

    We used a semiquantitative root hair deformation assay for Vicia sativa (vetch) to study the activity of Rhizobium leguminosarum bv viciae nodulation (Nod) factors. Five to 10 min of Nod factor-root interaction appears to be sufficient to induce root hair deformation. The first deformation is visible within 1 h, and after 3 h about 80% of the root hairs in a small susceptible zone of the root are deformed. This zone encompasses root hairs that have almost reached their maximal size. The Nod factor accumulates preferentially to epidermal cells of the young part of the root, but is not restricted to the susceptible zone. In the interaction with roots, the glucosamine backbone of Nod factors is shortened, presumably by chitinases. NodRlv-IV(C18:4,Ac) is more stable than NodRlv-V(C18:4,Ac). No correlation was found between Nod factor degradation and susceptibility. Degradation occurs both in the susceptible zone and in the mature zone. Moreover, degradation is not affected by NH4NO3 and is similar in vetch and in the nonhost alfalfa (Medicago sativa). PMID:12232242

  14. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  15. Correction of an active space telescope mirror using a gradient approach and an additional deformable mirror

    NASA Astrophysics Data System (ADS)

    Allen, Matthew R.; Kim, Jae Jun; Agrawal, Brij N.

    2015-09-01

    High development cost is a challenge for space telescopes and imaging satellites. One of the primary reasons for this high cost is the development of the primary mirror, which must meet diffraction limit surface figure requirements. Recent efforts to develop lower cost, lightweight, replicable primary mirrors include development of silicon carbide actuated hybrid mirrors and carbon fiber mirrors. The silicon carbide actuated hybrid mirrors at the Naval Postgraduate School do not meet the surface quality required for an optical telescope due to high spatial frequency residual surface errors. A technique under investigation at the Naval Postgraduate School is to correct the residual surface figure error using a deformable mirror in the optical path. We present a closed loop feedback gradient controller to actively control a SMT active segment and an additional deformable mirror to reduce residual wavefront error. The simulations and experimental results show that the gradient controller reduces the residual wavefront error more than an integral controller.

  16. Evidence of ongoing crustal deformation related to magmatic activity near Socorro, New Mexico

    NASA Technical Reports Server (NTRS)

    Larsen, S.; Brown, L.; Reilinger, R.

    1986-01-01

    Leveling measurements conducted in 1980-1981 by the National Geodetic Survey in the Socorro area of the Rio Grande rift are analyzed. Crustal uplift related to magma inflation in the midcrustal magma body is detected; an uplift of 0.18 cm/yr is measured for the time between 1951-1980. The survey data of 1911 and 1959 are compared to the present data and good correlation is observed. The systematic leveling errors including height-dependence and refraction errors are studied. The 30-km-wide subsidence in the area is examined. The spatial correlation between seismic activity, the Socorro magma body, and crustal deformation in Socorro is investigated. The crustal movement from magma reservior activities is modeled using the formulations of Dieterich and Decker (1975). The modeling of the deformation reveals that the movement in the Socorro area is associated with the 19-km deep Socorro magma body.

  17. Active Thermal Control Experiments for LISA Ground Verification Testing

    NASA Astrophysics Data System (ADS)

    Higuchi, Sei; DeBra, Daniel B.

    2006-11-01

    The primary mission goal of LISA is detecting gravitational waves. LISA uses laser metrology to measure the distance between proof masses in three identical spacecrafts. The total acceleration disturbance to each proof mass is required to be below 3 × 10-15 m/s2√Hz . Optical path length variations on each optical bench must be kept below 40 pm/√Hz over 1 Hz to 0.1 mHz. Thermal variations due to, for example, solar radiation or temperature gradients across the proof mass housing will distort the spacecraft causing changes in the mass attraction and sensor location. We have developed a thermal control system developed for the LISA gravitational reference sensor (GRS) ground verification testing which provides thermal stability better than 1 mK/√Hz to f < 1 mHz and which by extension is suitable for in-flight thermal control for the LISA spacecraft to compensate solar irradiation. Thermally stable environment is very demanded for LISA performance verification. In a lab environment specifications can be met with considerable amount of insulation and thermal mass. For spacecraft, the very limited thermal mass calls for an active control system which can meet disturbance rejection and stability requirements simultaneously in the presence of long time delay. A simple proportional plus integral control law presently provides approximately 1 mK/√Hz of thermal stability for over 80 hours. Continuing development of a model predictive feed-forward algorithm will extend performance to below 1 mK/√Hz at f < 1 mHz and lower.

  18. New results on ground deformation in the Upper Silesian Coal Basin (southern Poland) obtained during the DORIS Project (EU-FP 7)

    NASA Astrophysics Data System (ADS)

    Graniczny, Marek; Colombo, Davide; Kowalski, Zbigniew; Przyłucka, Maria; Zdanowski, Albin

    2015-11-01

    This paper presents application of satellite interferometric methods (persistent scatterer interferometric synthetic aperture radar (PSInSAR™) and differential interferometric synthetic aperture radar (DInSAR)) for observation of ground deformation in the Upper Silesian Coal Basin (USCB) in Southern Poland. The presented results were obtained during the DORIS project (EC FP 7, Grant Agreement n. 242212, www.doris-project.eu). Several InSAR datasets for this area were analysed. Most of them were processed by Tele-Rilevamento Europa - T.R.E. s.r.l. Italy. Datasets came from different SAR satellites (ERS 1 and 2, Envisat, ALOS- PALSAR and TerraSAR-X) and cover three different SAR bands (L, C and X). They were processed using both InSAR techniques: DInSAR, where deformations are presented as interferometric fringes on the raster image, and PSInSAR, where motion is indentified on irregular set of persistent scatterer (PS) points. Archival data from the C-band European Space Agency satellites ERS and ENVISAT provided information about ground movement since 1992 until 2010 in two separate datasets (1992-2000 and 2003-2010). Two coal mines were selected as examples of ground motion within inactive mining areas: Sosnowiec and Saturn, where mining ceased in 1995 and 1997, respectively. Despite well pumping after closure of the mines, groundwater rose several dozen meters, returning to its natural horizon. Small surface uplift clearly indicated on satellite interferometric data is related to high permeability of the hydrogeological subregion and insufficient water withdrawal from abandoned mines. The older 1992-2000 PSInSAR dataset indicates values of ground motion ranging from -40.0 to 0.0 mm. The newer 2003-2010 dataset shows values ranging from -2.0 to +7.0 mm. This means that during this period of time subsidence was less and uplift greater in comparison to the older dataset. This is even more evident in the time series of randomly selected PS points from both coal

  19. Active control of shocks and sonic boom ground signal

    NASA Astrophysics Data System (ADS)

    Yagiz, Bedri

    The manipulation of a flow field to obtain a desired change is a much heightened subject. Active flow control has been the subject of the major research areas in fluid mechanics for the past two decades. It offers new solutions for mitigation of shock strength, sonic boom alleviation, drag minimization, reducing blade-vortex interaction noise in helicopters, stall control and the performance maximization of existing designs to meet the increasing requirements of the aircraft industries. Despite the wide variety of the potential applications of active flow control, the majority of studies have been performed at subsonic speeds. The active flow control cases were investigated in transonic speed in this study. Although the active flow control provides significant improvements, the sensibility of aerodynamic performance to design parameters makes it a nontrivial and expensive problem, so the designer has to optimize a number of different parameters. For the purpose of gaining understanding of the active flow control concepts, an automated optimization cycle process was generated. Also, the optimization cycle reduces cost and turnaround time. The mass flow coefficient, location, width and angle were chosen as design parameters to maximize the aerodynamic performance of an aircraft. As the main contribution of this study, a detailed parametric study and optimization process were presented. The second step is to appraise the practicability of weakening the shock wave and thereby reducing the wave drag in transonic flight regime using flow control devices such as two dimensional contour bump, individual jet actuator, and also the hybrid control which includes both control devices together, thereby gaining the desired improvements in aerodynamic performance of the air-vehicle. After this study, to improve the aerodynamic performance, the flow control and shape parameters are optimized separately, combined, and in a serial combination. The remarkable part of all these

  20. Projection Moire Interferometry for Rotorcraft Applications: Deformation Measurements of Active Twist Rotor Blades

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Soto, Hector L.; South, Bruce W.

    2002-01-01

    Projection Moire Interferometry (PMI) has been used during wind tunnel tests to obtain azimuthally dependent blade bending and twist measurements for a 4-bladed Active Twist Rotor (ATR) system in simulated forward flight. The ATR concept offers a means to reduce rotor vibratory loads and noise by using piezoelectric active fiber composite actuators embedded in the blade structure to twist each blade as they rotate throughout the rotor azimuth. The twist imparted on the blades for blade control causes significant changes in blade loading, resulting in complex blade deformation consisting of coupled bending and twist. Measurement of this blade deformation is critical in understanding the overall behavior of the ATR system and the physical mechanisms causing the reduction in rotor loads and noise. PMI is a non-contacting, video-based optical measurement technique capable of obtaining spatially continuous structural deformation measurements over the entire object surface within the PMI system field-of-view. When applied to rotorcraft testing, PMI can be used to measure the azimuth-dependent blade bending and twist along the full span of the rotor blade. This paper presents the PMI technique as applied to rotorcraft testing, and provides results obtained during the ATR tests demonstrating the PMI system performance. PMI measurements acquired at select blade actuation conditions generating minimum and maximum rotor loads are provided to explore the interrelationship between rotor loads, blade bending, and twist.

  1. Active faults in the deformation zone off Noto Peninsula, Japan, revealed by high- resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Okamura, Y.; Murakami, F.; Kimura, H.; Ikehara, K.

    2008-12-01

    Recently, a lot of earthquakes occur in Japan. The deformation zone which many faults and folds have concentrated exists on the Japan Sea side of Japan. The 2007 Noto Hanto Earthquake (MJMA 6.9) and 2007 Chuetsu-oki Earthquake (MJMA 6.8) were caused by activity of parts of faults in this deformation zone. The Noto Hanto Earthquake occurred on 25 March, 2007 under the northwestern coast of Noto Peninsula, Ishikawa Prefecture, Japan. This earthquake is located in Quaternary deformation zone that is continued from northern margin of Noto Peninsula to southeast direction (Okamura, 2007a). National Institute of Advanced Industrial Science and Technology (AIST) carried out high-resolution seismic survey using Boomer and 12 channels short streamer cable in the northern part off Noto Peninsula, in order to clarify distribution and activities of active faults in the deformation zone. A twelve channels short streamer cable with 2.5 meter channel spacing developed by AIST and private corporation is designed to get high resolution seismic profiles in shallow sea area. The multi-channel system is possible to equip on a small fishing boat, because the data acquisition system is based on PC and the length of the cable is short and easy to handle. Moreover, because the channel spacing is short, this cable is very effective for a high- resolution seismic profiling survey in the shallow sea, and seismic data obtained by multi-channel cable can be improved by velocity analysis and CDP stack. In the northern part off Noto Peninsula, seismic profiles depicting geologic structure up to 100 meters deep under sea floor were obtained. The most remarkable reflection surface recognized in the seismic profiles is erosion surface at the Last Glacial Maximum (LGM). In the western part, sediments about 30 meters (40 msec) thick cover the erosional surface that is distributed under the shelf shallower than 100m in depth and the sediments thin toward offshore and east. Flexures like deformation in

  2. The surface geometry of inherited joint and fracture trace patterns resulting from active and passive deformation

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Gold, D. P.

    1974-01-01

    Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.

  3. A piece of cake: the ground-state energies in γ i -deformed = 4 SYM theory at leading wrapping order

    NASA Astrophysics Data System (ADS)

    Fokken, Jan; Sieg, Christoph; Wilhelm, Matthias

    2014-09-01

    In the non-supersymmetric γi-deformed = 4 SYM theory, the scaling dimensions of the operators tr[ Z L ] composed of L scalar fields Z receive finite-size wrapping and prewrapping corrections in the 't Hooft limit. In this paper, we calculate these scaling dimensions to leading wrapping order directly from Feynman diagrams. For L ≥ 3, the result is proportional to the maximally transcendental `cake' integral. It matches with an earlier result obtained from the integrability-based Lüscher corrections, TBA and Y-system equations. At L = 2, where the integrability-based equations yield infinity, we find a finite rational result. This result is renormalization-scheme dependent due to the non-vanishing β-function of an induced quartic scalar double-trace coupling, on which we have reported earlier. This explicitly shows that conformal invariance is broken — even in the 't Hooft limit. [Figure not available: see fulltext.

  4. Removal of daytime thermal deformations in the GBT active surface via out-of-focus holography

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Mello, M.; Nikolic, B.; Mason, B. S.; Schwab, F. R.; Ghigo, F. D.; Dicker, S. R.

    2009-01-01

    The 100-m diameter Green Bank Telescope (GBT) was built with an active surface of 2209 actuators in order to achieve and maintain an accurate paraboloidal shape. While much of the large-scale gravitational deformation of the surface can be described by a finite element model, a significant uncompensated gravitational deformation exists. In recent years, the elevation-dependence of this residual deformation has been successfully measured during benign nighttime conditions using the out-of-focus (OOF) holography technique (Nikolic et al, 2007, A&A 465, 685). Parametrized by a set of Zernike polynomials, the OOF model correction was implemented into the active surface and has been applied during all high frequency observations since Fall 2006, yielding a consistent gain curve that is constant with elevation. However, large-scale thermal deformation of the surface has remained a problem for daytime high-frequency observations. OOF holography maps taken throughout a clear winter day indicate that surface deformations become significant whenever the Sun is above 10 degrees elevation, but that they change slowly while tracking a single source. In this paper, we describe a further improvement to the GBT active surface that allows an observer to measure and compensate for the thermal surface deformation using the OOF technique. In order to support high-frequency observers, "AutoOOF" is a new GBT Astrid procedure that acquires a quick set of in-focus and out-of-focus on-the-fly continuum maps on a quasar using the currently active receiver. Upon completion of the maps, the data analysis software is launched automatically which produces and displays the surface map along with a set of Zernike coefficients. These coefficients are then sent to the active surface manager which combines them with the existing gravitational Zernike terms and FEM in order to compute the total active surface correction. The end-to-end functionality has been tested on the sky at Q-Band and Ka

  5. The unrest of the San Miguel volcano (El Salvador, Central America): installation of the monitoring network and observed volcano-tectonic ground deformation

    NASA Astrophysics Data System (ADS)

    Bonforte, Alessandro; Hernandez, Douglas Antonio; Gutiérrez, Eduardo; Handal, Louis; Polío, Cecilia; Rapisarda, Salvatore; Scarlato, Piergiorgio

    2016-08-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of San Miguel, erupted suddenly with explosive force, forming a column more than 9 km high and projecting ballistic projectiles as far as 3 km away. Pyroclastic density currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force, made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales, was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multiparametric mobile network comprising seismic, geodetic and geochemical sensors (designed to cover all the volcano flanks from the lowest to the highest possible altitudes) and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were colocated into multiparametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  6. The Isospin Admixture of The Ground State and The Properties of The Isobar Analog Resonances In Deformed Nuclei

    SciTech Connect

    Aygor, H. Ali; Maras, Ismail; Cakmak, Necla; Selam, Cevad

    2008-11-11

    Within quasiparticle random phase approximation (QRPA), Pyatov-Salamov method for the self-consistent determination of the isovector effective interaction strength parameter, restoring a broken isotopic symmetry for the nuclear part of the Hamiltonian, is used. The isospin admixtures in the ground state of the parent nucleus, and the isospin structure of the isobar analog resonance (IAR) state are investigated by including the pairing correlations between nucleons for {sup 72-80}Kr isotopes. Our results are compared with the spherical case and with other theoretical results.

  7. Failure and deformation mechanisms at macro- and nano-scales of alkali activated clay

    NASA Astrophysics Data System (ADS)

    Sekhar Das, Pradip; Bhattacharya, Manjima; Chanda, Dipak Kr; Dalui, Srikanta; Acharya, Saikat; Ghosh, Swapankumar; Mukhopadhyay, Anoop Kumar

    2016-06-01

    Here we report two qualitative models on failure and deformation mechanisms at macro- and nano-scales of alkali activated clay (AACL), a material of extraordinary importance as a low cost building material. The models were based on experimental data of compressive failure and nanoindentation response of the AACL materials. A 420% improvement in compressive strength (σ c) of the AACL was achieved after 28 days (d) of curing at room temperature and it correlated well with the decrements in the residual alkali and pH concentrations with the increase in curing time. Based on extensive post-mortem FE-SEM examinations, a schematic model for the compressive failure mechanism of AACL was proposed. In addition, the nanoindentation results of AACL provided the first ever experimental evidence of the presence of nano-scale plasticity and a nano-scale contact deformation resistance that increased with the applied load. These results meant the development of a unique strain tolerant microstructure in the AACL of Indian origin. The implications of these new observations were discussed in terms of a qualitative model based on the deformation of layered clay structure.

  8. Space active optics: in situ compensation of lightweight primary mirrors' deformations

    NASA Astrophysics Data System (ADS)

    Laslandes, M.; Ferrari, M.; Hugot, E.; Lemaitre, G.

    2010-12-01

    The need for both high quality images and light structures is a constant concern in the conception of space telescopes. The goal here is to determine how an active optics system could be embarked on a satellite in order to correct the wave front deformations of the optical train. The optical aberrations appearing in a space environment are due to mirrors' deformations, with three main origins: the thermal variations, the weightlessness conditions and the use of large weightlighted primary mirrors. We are developing a model of deformable mirror as minimalist as possible, especially in term of number of actuators, which is able to correct the first Zernike polynomials in a specified range of amplitude and precision. Flight constraints as weight, volume and power consumption are considered. Firstly, such a system is designed according to the equations from the elasticity theory: we determine the geometrical and mechanical characteristics of the mirror, the location of the forces to be applied and the way to apply them. Then the concept is validated with a Finite Element Analysis, allowing to optimize the system by taking into account parameters absent from the theory. At the end, the mirror will be realized and characterized in a representative optical configuration.

  9. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar

    2015-10-01

    Tertiary creep deformation behavior of reduced activation ferritic-martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, , considering minimum creep rate () instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ` p.' The relationships between (1) tertiary parameter `p' with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ` p' with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

  10. Mirror actively deformed and regulated for applications in space: design and performance

    NASA Astrophysics Data System (ADS)

    Laslandes, Marie; Hugot, Emmanuel; Ferrari, Marc; Hourtoule, Claire; Singer, Christian; Devilliers, Christophe; Lopez, Céline; Chazallet, Frédéric

    2013-09-01

    The need for both high quality images and lightweight structures is one of the main drivers in space telescope design. An efficient wavefront control system will become mandatory in future large observatories, retaining performance while relaxing specifications in the global system's stability. We present the mirror actively deformed and regulated for applications in space project, which aims to demonstrate the applicability of active optics for future space instrumentation. It has led to the development of a 24-actuator, 90-mm-diameter active mirror, able to compensate for large lightweight primary mirror deformations in the telescope's exit pupil. The correcting system has been designed for expected wavefront errors from 3-m-class lightweight primary mirrors, while also taking into account constraints for space use. Finite element analysis allowed an optimization of the system in order to achieve a precision of correction better than 10 nm rms. A dedicated testbed has been designed to fully characterize the integrated system performance in representative operating conditions. It is composed of: a telescope simulator, an active correction loop, a point spread function imager, and a Fizeau interferometer. All conducted tests demonstrated the correcting mirror performance and has improved this technology maturity to a TRL4.

  11. Active deformation in the northern Sierra de Valle Fértil, Sierras Pampeanas, Argentina

    NASA Astrophysics Data System (ADS)

    Ortiz, Gustavo; Alvarado, Patricia; Fosdick, Julie C.; Perucca, Laura; Saez, Mauro; Venerdini, Agostina

    2015-12-01

    The Western Sierras Pampeanas region in the San Juan Province is characterized by thick-skinned deformation with approximately N-S trending ranges of average heights of 2500 m and a high frequency occurrence of seismic activity. Its location to the east of the mainly thin-skinned tectonics of the Argentine Precordillera fold-and-thrust belt suggests that at 30°S, deformation is concentrated in a narrow zone involving these two morphostructural units. In this paper, we present new apatite (U-Th)/He results (AHe) across the northern part of the Sierra de Valle Fértil (around 30°S) and analyze them in a framework of thermochronologic available datasets. We found Pliocene AHe results for Carboniferous and Triassic strata in the northern Sierra de Valle Fértil consistent with the hypothesis of recent cooling and inferred erosional denudation concentrated along the northern end of this mountain range. Our analysis shows that this northern region may have evolved under different conditions than the central part of the Sierra de Valle Fértil. Previous studies have observed AHe ages consistent with Permian through Cretaceous cooling, indicating the middle part of the Sierra de Valle Fértil remained near surface before the Pampean slab subduction flattening process. Those studies also obtained ˜5 My cooling ages in the southern part of the Sierra de Valle Fértil, which are similar to our results in the northern end of the range. Taken together, these results suggest a pattern of young deformation in the northern and southern low elevation ends of the Sierra de Valle Fértil consistent with regions of high seismic activity, and Quaternary active faulting along the western-bounding thrust fault of the Sierra de Valle Fértil.

  12. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    NASA Astrophysics Data System (ADS)

    Morrow, C.; Lockner, D. A.; Hickman, S.

    2015-12-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drill hole near Parkfield, California, crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m wide fault damage zone of sandstones, siltstones, and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 Ω-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were 1 to 2 orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  13. Attenuation Properties of Fontainebleau Sandstone During True-Triaxial Deformation using Active and Passive Ultrasonics

    NASA Astrophysics Data System (ADS)

    Goodfellow, S. D.; Tisato, N.; Ghofranitabari, M.; Nasseri, M. H. B.; Young, R. P.

    2015-11-01

    Active and passive ultrasonic methods were used to study the evolution of attenuation properties in a sample of Fontainebleau sandstone during true-triaxial deformation. A cubic sample of Fontainebleau sandstone (80 mm × 80 mm × 80 mm) was deformed under true-triaxial stresses until failure. From the stress state: σ _3 = 5 MPa and σ _1 = σ _2 = 35 MPa, σ _1 was increased at a constant displacement rate until the specimen failed. Acoustic emission (AE) activity was monitored by 18 piezoelectric sensors and bandpass filtered between 100 kHz and 1 MHz. A source location analysis was performed on discrete AE data harvested from the continuous record where 48,502 events were locatable inside the sample volume. AE sensors were sequentially pulsed during periodic P-wave surveys among 135 raypaths. Analytical solutions for Biot, squirt flow, viscous shear, and scattering attenuation were used to discuss to observed attenuation at various stages of the experiment. We concluded that initial attenuation anisotropy was stress induced and resulted from friction and squirt flow. Later attenuation of the high-frequency spectrum was attributed to scattering as a result of the formation of large macroscopic vertical fractures. Passive (AE) ultrasonic data produced similar information to that from active data but with enhanced temporal and spacial resolution.

  14. Distribution of deformation on an active normal fault network, NW Corinth Rift

    NASA Astrophysics Data System (ADS)

    Ford, Mary; Meyer, Nicolas; Boiselet, Aurélien; Lambotte, Sophie; Scotti, Oona; Lyon-Caen, Hélène; Briole, Pierre; Caumon, Guillaume; Bernard, Pascal

    2013-04-01

    Over the last 20-25 years, geodetic measurements across the Gulf of Corinth have recorded high extension rates varying from 1.1 cm/a in the east to a maximum of 1.6 cm/a in the west. Geodetic studies also show that current deformation is confined between two relatively rigid blocks defined as Central Greece (to the north) and the Peloponnesus to the south. Active north dipping faults (<1 Ma) define the south coast of the subsiding Gulf, while high seismicity (major earthquakes and micro-seismicity) is concentrated at depth below and to the north of the westernmost Gulf. How is this intense deformation distributed in the upper crust? Our objectives here are (1) to propose two models for the distribution of deformation in the upper crust in the westernmost rift since 1 Ma, and (2) to place the tectonic behaviour of the western Gulf in the context of longer term rift evolution. Over 20 major active normal faults have been identified in the CRL area based specific characteristics (capable of generating earthquakes M> 5.5, active in the last 1 M yrs, slip rate >0.5 mm/a). Because of the uncertainty related to fault geometry at depth two models for 3D fault network geometry in the western rift down to 10 km were constructed using all available geophysical and geological data. The first model assumes planar fault geometries while the second uses listric geometries for major faults. A model for the distribution of geodetically-defined extension on faults is constructed along five NNE-SSW cross sections using a variety of data and timescales. We assume that the role of smaller faults in accommodating deformation is negligible so that extension is fully accommodated on the identified major faults. Uncertainties and implications are discussed. These models provide estimates of slip rate for each fault that can be used in seismic hazard models. A compilation of onshore and offshore data shows that the western Gulf is the youngest part of the Corinth rift having initiated

  15. The role of the Montello hill in the seismicity and active deformation of Southern Alps

    NASA Astrophysics Data System (ADS)

    Pondrelli, S.; Serpelloni, E.; Danesi, S.; Lovati, S.; Massa, M.; Mastrolembo Ventura, B.; Danecek, P.; Cavaliere, A.; Salimbeni, S.

    2013-12-01

    The most remarkable geomorphological feature of the eastern Southern Alps (northern Italy) is the Montello anticline, a ~15km long SSW-NNE elongated hill, sited ~40km north of Venice, and offset of ~15 km to the south from the main pede-Alpine thrust front. It has been generated by the uplift and the deformation produced by a S-verging blind thrust, constrained by morphotectonic analyses of uplifted river terraces and sub-surface data. Despite it is presently considered as one of the main S-verging seismogenic segments of the tectonically active Southern Alps thrust front, its real seismogenic potential is still matter of debate. Although the area has been hit in 1695 by a Mw 6.5 earthquake, the Montello is currently characterized by slower seismicity activity than its confining segments and geodetic deformation rates are at the mm/yr level. In order to study the present day crustal deformation at the fault-scale and to improve the detection of background seismicity associated to the 'seismically silent' Montello thrust and to understand its interseismic behavior, we have installed a temporary multi-parametric geophysical network, which integrates space geodetic (GPS) and seismological observations during the 2010-2011 time-interval, running semi-continuous GPS experiments from 2009 to 2013. We recorded 142 local events (compared to the 43 events located by the Italian Seismic Network), located with good reliability (rms < 0.5) with Ml between 1.5 and 3.5. The available continuous and semi-continuous GPS data show that ~2 mm/yr of N-S convergence are accommodated across this sector of the Southern Alps, but the deformation signal appears more complex than what expected by a single thrust fault. GPS, although preliminary and not sampling optimally possible lateral variations of the strain-rate field, show a remarkable change of the kinematics across the external Montello thrust front. The GPS and seismological data collected during the experiment suggest that the

  16. Exhumed analogues of seismically active carbonate-bearing thrusts: fault architecture and deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Tesei, T.; Collettini, C.; Viti, C.; Barchi, M. R.

    2012-12-01

    In May 2012 a M = 5.9 earthquake followed by a long aftershock sequence struck the Northern Italy. The sequence occurred at 4-10 km depth within the active front of Northern Apennines Prism and the major events nucleate within, or propagate through, a thick sequence of carbonates. In an inner sector of the Northern Apennines, ancient carbonate-bearing thrusts exposed at the surface, represent exhumed analogues of structures generating seismicity in the active front. Here we document fault architecture and deformation mechanisms of three regional carbonate bearing thrusts with displacement of several kilometers and exhumation in the range of 1-4 km. Fault zone structure and deformation mechanisms are controlled by the lithology of the faulted rocks. In layered limestones and marly-limestones the fault zone is up to 200 m thick and is characterized by intense pressure solution. In massive limestones the deformation generally occurs along thin and sharp slip planes that are in contact with fault portions affected by either cataclasis or pressure solution. SEM and TEM observations show that pressure solution surfaces, made of smectite lamellae, with time tend to form an interconnected network affected by frictional sliding. Sharp slipping planes along massive limestones show localization along Y shear planes that separate an extremely comminuted cataclasites from an almost undeformed protolith. The comparison of the three shear zones depicts a fault zone structure extremely heterogeneous as the result of protolith lithology, geometrical complexities and the presence of inherited structures. We observe the competition between brittle (cataclasis, distributed frictional sliding along phyllosilicates and extremely localized slip within carbonates) and pressure solution processes, that suggest a multi-mode of slip behaviour. Extreme localization along carbonate-bearing Y shear planes is our favorite fault zone feature representing past seismic ruptures along the studied

  17. Ongoing Active Deformation Processes at Fernandina Volcano (Galapagos) Detected via Multi-Orbit COSMO-SkyMed SAR Data Analysis

    NASA Astrophysics Data System (ADS)

    Pepe, Susi; Castaldo, Raffaele; De Luca, Claudio; Casu, Francesco; Tizzani, Pietro; Sansosti, Eugenio

    2014-05-01

    Fernandina Volcano, Galápagos (Ecuador), has experienced several uplift and eruption episodes over the last twenty-two years. The ground deformation between 2002 and 2006 was interpreted as the effect of an inflation phenomenon of two separate magma reservoirs beneath the caldera. Moreover, the uplift deformation occurred during the 2005 eruption was concentrated near the circumferential eruptive fissures, while being superimposed on a broad subsidence centred on the caldera. The geodetic studies emphasized the presence of two sub volcanic lateral intrusions from the central storage system in December 2006 and August 2007. The latest eruption in 2009 was characterized by lava flows emitted from the SW radial fissures. We analyze the spatial and temporal ground deformation between March 2012 and July 2013, by using data acquired by COSMO-SkyMed X-band constellation along both ascending and descending orbits and by applying advanced InSAR techniques. In particular, we use the SBAS InSAR approach and combine ascending and descending time series to produce vertical and East-West components of the mean deformation velocity and deformation time series. Our analysis revealed a new uplift phenomenon due to the stress concentration inside the shallow magmatic system of the volcano. In particular, the vertical mean velocity map shows that the deformation pattern is concentrated inside caldera region and is characterized by strongly radial symmetry with a maximum displacement of about 20 cm in uplift; an axial symmetry is also observed in the EW horizontal mean velocity map, showing a maximum displacement of about +12 cm towards East for the SE flank, and -12 cm towards West for the NW flank of the volcano. Moreover, the deformation time series show a rather linear uplift trend from March to September 2012, interrupted by a low deformation rate interval lasting until January 2013. After this stage, the deformation shows again a linear behaviour with an increased uplift rate

  18. 10Be surface exposure dating reveals strong active deformation in the central Andean backarc interior

    NASA Astrophysics Data System (ADS)

    García Morabito, Ezequiel; Terrizzano, Carla; Zech, Roland; Willett, Sean; Yamin, Marcela; Haghipour, Negar; Wuethrich, Lorenz; Christl, Marcus; María Cortes, José; Ramos, Victor

    2016-04-01

    Understanding the deformation associated with active thrust wedges is essential to evaluate seismic hazard. How is active faulting distributed throughout the wedge, and how much deformation is taken up by individual structures? We address these questions for our study region, the central Andean backarc of Argentina. We combined a structural and geomorphological approach with surface exposure dating (10Be) of alluvial fans and strath terraces in two key localities at ~32° S: the Cerro Salinas, located in the active orogenic front of the Precordillera, and the Barreal block in the interior of the Andean mountain range. We analysed 22 surface samples and 6 depth profiles. At the thrust front, the oldest terrace (T1) yields an age of 100-130 ka, the intermediate terrace (T2) between 40-95 ka, and the youngest terrace (T3) an age of ~20 ka. In the Andean interior, T1´ dates to 117-146 ka, T2´ to ~70 ka, and T3´ to ~20 ka, all calculations assuming negligible erosion and using the scaling scheme for spallation based on Lal 1991, Stone 2000. Vertical slip rates of fault offsets are 0.3-0.5 mm/yr and of 0.6-1.2 mm/yr at the thrust front and in the Andean interior, respectively. Our results highlight: i) fault activity related to the growth of the Andean orogenic wedge is not only limited to a narrow thrust front zone. Internal structures have been active during the last 150 ka, ii) deformation rates in the Andean interior are comparable or even higher that those estimated and reported along the emerging thrust front, iii) distribution of active faulting seems to account for unsteady state conditions, and iv) seismic hazards may be more relevant in the internal parts of the Andean orogen than assumed so far. References Lal, D., 1991: Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104: 424-439. Stone, J.O., 2000: Air pressure and cosmogenic isotope production. Journal of Geophysical

  19. Active salt deformation and rapid, transient incision along the Colorado River near Moab, Utah

    NASA Astrophysics Data System (ADS)

    Jochems, Andrew P.; Pederson, Joel L.

    2015-04-01

    In certain settings, erosion is driven by and balanced with tectonic uplift, but the evolution of many landscapes is dominated by other factors such as geologic substrate, drainage history, and transient incision. The Colorado Plateau is an example where these controls are debated and where salt deformation is hypothesized to be locally active and driven by differential unloading, although this is unconfirmed and unquantified in most places. We use luminescence-dated Colorado River terraces upstream of Moab, Utah, to quantify rates of salt-driven subsidence and uplift at the local scale. Active deformation in the study area is also supported by patterns of concavity along tributary drainages crossing salt structures. Subsidence in Professor Valley at a time-averaged rate of ~500 m/Myr (meters/million years) is superimposed upon rapid bedrock incision rates that increase from ~600 to ~900 m/Myr upstream through the study area. Such high rates are unexpected given the absence of sources of regional tectonic uplift here. Instead, the incision rate pattern across the greater area is consistent with a transient signal, perhaps still from ancient drainage integration through Grand Canyon far downstream, and then amplified by unloading at both the broad regional scale and at the local canyon scale.

  20. Active deformation and seismicity in the Southern Alps (Italy): The Montello hill as a case study

    NASA Astrophysics Data System (ADS)

    Danesi, Stefania; Pondrelli, Silvia; Salimbeni, Simone; Cavaliere, Adriano; Serpelloni, Enrico; Danecek, Peter; Lovati, Sara; Massa, Marco

    2015-06-01

    The Montello anticline is a morphotectonic feature of the east pede-mountain of the South Alpine Chain in northern Italy, which lies ca. 40 km northwest of Venice, Italy. The purpose of this study is to characterize the present-day crustal deformation and seismotectonics of the Montello area through multi-parametric geophysical observations. We used new data obtained from the installation of a temporary network of 12 seismic stations and 6 GPS sites. The GPS observations indicate that there is ~ 1 mm/yr shortening across the Montello thrust. Sites located north of the Montello thrust front deviate from the ~ NNW-ward Adria-Eurasia convergence direction, as they are constrained by a relative rotation pole in northwestern Italy that has a NNE-ward motion trend. Over 18 months, seismographic recordings allowed us to locate 142 local seismic events with Ml 0.5-3.5 with good reliability (rms < 0.5). After cross-correlation analysis, we classified 42 of these events into six clusters, with cross-correlation thresholds > 0.80. The source focal solutions indicate that: (i) there is thrusting seismic activity on the basal, sub-horizontal, portion of the Montello structure; and (ii) strike-slip source kinematics prevail on the western edge of the Montello hill. Our observations on the source mechanisms and the measured crustal deformation confirm that the Montello thrust is tectonically active.

  1. The unrest of S. Miguel volcano (El Salvador, CA): installation of the monitoring network and observed volcano-tectonic ground deformation

    NASA Astrophysics Data System (ADS)

    Bonforte, A.; Hernandez, D.; Gutiérrez, E.; Handal, L.; Polío, C.; Rapisarda, S.; Scarlato, P.

    2015-10-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of S. Miguel, erupted suddenly with explosive force, forming a more than 9 km high column and projecting ballistic projectiles as far as 3 km away. Pyroclastic Density Currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multi-parametric mobile network comprising seismic, geodetic and geochemical sensors, designed to cover all the volcano flanks from the lowest to the highest possible altitudes, and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were co-located into multi-parametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  2. Active deformation along the Andaman-Nicobar subduction zone from seismic reflection studies

    NASA Astrophysics Data System (ADS)

    Moeremans, R. E.; Singh, S. C.

    2013-12-01

    The Andaman-Sumatra subduction zone is one of the most seismically active regions on Earth and is a prime example of oblique subduction. It is the result of the oblique convergence between the downgoing Indo-Australian and the overriding Eurasian plates, leading to slip partitioning into a trench-normal thrust component along the plate interface and a trench-subparallel strike-slip component along a sliver fault. The direction of convergence is 90° with respect to the trench near Java, reduces to 45° off of northern Sumatra, and becomes almost parallel to the trench along the Andaman-Nicobar portion of the subduction. Rates of subduction vary from 63 mm/yr off of Java, 50 mm/yr near Nias Island, 45 mm/yr northwest of Sumatra, and 39 mm/yr near the Andaman Islands. After the great December 2004 earthquake, the Sumatran section of the subduction zone was heavily investigated using marine geophysical studies, but the deformation processes in the Andaman-Nicobar region remain poorly understood due to the lack of data. Here, we present seismic reflection profiles from the Andaman-Nicobar region that cover the deformation front, the forearc high, and the forearc basin. We find that the presence of thick (> 3 s TWT) sediments lead to slip taking place predominantly along landward vergent frontal faults. The frontal fault vergence changes to seaward due to the thinning (< 2 s TWT) of the sediments in the region where the Ninetyeast ridge subducts. The presence of a thick (> 3 s TWT) 20 km-long unit of undeformed sediments, possibly resulting from the landward vergence of the frontal thrusts, suggests that ~40 km of the Ninetyeast ridge has subducted beneath the Andaman forearc. The forearc is widest between the Andaman and Nicobar Islands, likely due to the subduction of thick sediments. The forearc basin is bounded in the west by a series of backthrusts and is underlain by a continental crust, which was once a part of the Malay Peninsula. The forearc basin is crescent

  3. Analysis of Mining Terrain Deformation Characteristics with Deformation Information System

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr

    2014-05-01

    Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on

  4. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  5. Contemporary approaches to studying and mapping of active water exchange zone of ground water

    NASA Astrophysics Data System (ADS)

    Moraru, C. Ye

    2016-03-01

    The article deals with a zone of ground water active exchange. New principles of the zone study and mapping under the platform hydrogeological condition are discussed. The assessment and distribution techniques are suggested for the active water exchange zone under the condition of hydrogeological parameterization uncertainty. The efficiency and significance of the suggested techniques are proved using the example of ground water in the southwest of Black Sea artesian basin.

  6. Research on the Calculated Methods of Active Control Value for Antenna Panel Deformations under Gravity

    NASA Astrophysics Data System (ADS)

    Fu, L.; Zhong, W. Y.; Qiao, H. H.; Liu, G. X.; Qian, H. L.

    2015-07-01

    The methods of ideal reflector surface, two-parameter, five-parameter, and six-parameter best-fit paraboloid are presented in this paper. Based on these methods, the adjustment values of gravity deformations are calculated for the main reflector of large-scale Cassegrain antenna. Accordingly, the positions of subreflector are corrected, and the effects of offset-focus on electric performance are also analyzed. Taking Shanghai 65 m antenna as a research object, the adjustment values of actuator and hexapod, the accuracy of the main reflector surface, and the pointing error after offsetting the focus are contrasted. As a result, the method of six-parameter best-fit paraboloid is ideal to calculate active control value for antenna panels after the effects of feed defocus have been adjusted and modified. The results offer data for the active control of antenna.

  7. Regulation of glucokinase activity in liver of hibernating ground squirrel Spermophilus undulatus.

    PubMed

    Khu, L Ya; Storey, K B; Rubtsov, A M; Goncharova, N Yu

    2014-07-01

    The kinetic properties of glucokinase (GLK) from the liver of active and hibernating ground squirrels Spermophilus undulatus have been studied. Entrance of ground squirrels into hibernation from their active state is accompanied by a sharp decrease in blood glucose (Glc) level (from 14 to 2.9 mM) and with a significant (7-fold) decrease of GLK activity in the liver cytoplasm. Preparations of native GLK practically devoid of other molecular forms of hexokinase were obtained from the liver of active and hibernating ground squirrels. The dependence of GLK activity upon Glc concentration for the enzyme from active ground squirrel liver showed a pronounced sigmoid character (Hill coefficient, h=1.70 and S0.5=6.23 mM; the experiments were conducted at 25°C in the presence of enzyme stabilizers, K+ and DTT). The same dependence of enzyme activity on Glc concentration was found for GLK from rat liver. However, on decreasing the temperature to 2°C (simulation of hibernation conditions), this dependency became almost hyperbolic (h=1.16) and GLK affinity for substrate was reduced (S0.5=23 mM). These parameters for hibernating ground squirrels (body temperature 5°C) at 25°C were found to be practically equal to the corresponding values obtained for GLK from the liver of active animals (h=1.60, S0.5=9.0 mM, respectively); at 2°C sigmoid character was less expressed and affinity for Glc was drastically decreased (h=1.20, S0.5=45 mM). The calculations of GLK activity in the liver of hibernating ground squirrels based on enzyme kinetic characteristics and seasonal changes in blood Glc concentrations have shown that GLK activity in the liver of hibernating ground squirrels is decreased about 5500-fold. PMID:25108335

  8. Active and long-lived permanent forearc deformation driven by the subduction seismic cycle

    NASA Astrophysics Data System (ADS)

    Aron Melo, Felipe Alejandro

    I have used geological, geophysical and engineering methods to explore mechanisms of upper plate, brittle deformation at active forearc regions. My dissertation particularly addresses the permanent deformation style experienced by the forearc following great subduction ruptures, such as the 2010 M w8.8 Maule, Chile and 2011 Mw9.0 Tohoku, Japan earthquakes. These events triggered large, shallow seismicity on upper plate normal faults above the rupture reaching Mw7.0. First I present new structural data from the Chilean Coastal Cordillera over the rupture zone of the Maule earthquake. The study area contains the Pichilemu normal fault, which produced the large crustal aftershocks of the megathrust event. Normal faults are the major neotectonic structural elements but reverse faults also exist. Crustal seismicity and GPS surface displacements show that the forearc experiences pulses of rapid coseismic extension, parallel to the heave of the megathrust, and slow interseismic, convergence-parallel shortening. These cycles, over geologic time, build the forearc structural grain, reactivating structures properly-oriented respect to the deformation field of each stage of the interplate cycle. Great subduction events may play a fundamental role in constructing the crustal architecture of extensional forearc regions. Static mechanical models of coseismic and interseismic upper plate deformation are used to explore for distinct features that could result from brittle fracturing over the two stages of the interplate cycle. I show that the semi-elliptical outline of the first-order normal faults along the Coastal Cordillera may define the location of a characteristic, long-lived megathrust segment. Finally, using data from the Global CMT catalog I analyzed the seismic behavior through time of forearc regions that have experienced great subduction ruptures >Mw7.7 worldwide. Between 61% and 83% of the cases where upper plate earthquakes exhibited periods of increased seismicity

  9. On the energy conservation during the active deformation in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Zhong, Zheng

    2015-04-01

    In this paper, we examined the energy conservation for the current schemes of applying active deformation in molecular dynamics (MD) simulations. Specifically, two methods are examined. One is scaling the dimension of the simulation box and the atom positions via an affine transformation, suitable for the periodic system. The other is moving the rigid walls that interact with the atoms in the system, suitable for the non-periodic system. Based on the calculation of the external work and the internal energy change, we present that the atom velocities also need to be updated in the first deformation method; otherwise the energy conservation cannot be satisfied. The classic updating scheme is examined, in which any atom crossing the periodic boundary experiences a velocity delta that is equal to the velocity difference between the opposite boundaries. In addition, a new scheme which scales the velocities of all the atoms according to the strain increment is proposed, which is more efficient and realistic than the classic scheme. It is also demonstrated that the Virial stress instead of its interaction part is the correct stress definition that corresponds to Cauchy stress in the continuum mechanics.

  10. GPS-derived ground deformation (2005-2014) within the Gulf of Mexico region referred to a stable Gulf of Mexico reference frame

    NASA Astrophysics Data System (ADS)

    Yu, Jiangbo; Wang, Guoquan

    2016-07-01

    This study investigates current ground deformation derived from the GPS geodesy infrastructure in the Gulf of Mexico region. The positions and velocity vectors of 161 continuous GPS (CGPS) stations are presented with respect to a newly established local reference frame, the Stable Gulf of Mexico Reference Frame (SGOMRF). Thirteen long-term (> 5 years) CGPS are used to realize the local reference frame. The root mean square (RMS) of the velocities of the 13 SGOMRF reference stations achieves 0.2 mm yr-1 in the horizontal and 0.3 mm yr-1 in the vertical directions. GPS observations presented in this study indicate significant land subsidence in the coastal area of southeastern Louisiana, the greater Houston metropolitan area, and two cities in Mexico (Aguascalientes and Mexico City). The most rapid subsidence is recorded at the Mexico City International airport, which is up to 26.6 cm yr-1 (2008-2014). Significant spatial variation of subsidence rates is observed in both Mexico City and the Houston area. The overall subsidence rate in the Houston area is decreasing. The subsidence rate in southeastern Louisiana is relatively smaller (4.0-6.0 mm yr-1) but tends to be steady over time. This poses a potential threat to the safety of coastal infrastructure in the long-term.

  11. Sequential activation of multiple grounding pads reduces skin heating during radiofrequency tumor ablation

    PubMed Central

    HAEMMERICH, DIETER; SCHUTT, DAVID JAMES

    2009-01-01

    Purpose Radiofrequency (RF) tumor ablation has become an accepted treatment modality for tumors not amenable to surgery. Skin burns due to ground pad heating may become a limiting factor for further increase in ablation zone dimensions and generator power. We investigated a method were groups of ground pads are sequentially activated to reduce skin heating. Methods We compared conventional operation (i.e. simultaneous connection of all pads) to sequentially switched activation of the pads where different pad combinations are active for periods of ∼0.3 − 8 s. The timing during sequential activation was adjusted to keep the leading edge temperature equal between the pads. We created Finite Element Method computer models of three pads (5 × 5 cm, 1 cm apart) placed in line with the RF electrode on a human thigh to determine differences in tissue heating during simultaneous and sequential ground pad activation. We performed experiments with three ground pads (5 × 10 cm, 4 cm apart) placed on a tissue phantom (1.5 A, 12 min) and measured pad surface and leading edge temperatures. Results Temperature rise below the leading edge for proximal, middle and distal ground pad in relation to active electrode location was 5.9°C ± 0.1°C, 0.8°C ± 0.1°C and 0.3°C ± 0.1°C for conventional operation, and 3.3°C ± 0.1°C, 3.4°C ± 0.2°C and 3.4°C ± 0.2°C for sequentially activated operation in the experiments (p < 0.001). Conclusion Sequential activation of multiple ground pads resulted in reduced maximum tissue temperature. This may reduce the incidence of ground pad burns and may allow higher power RF generators. PMID:18038286

  12. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to the NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Nuclear thermal propulsion (NTP) has been recognized as an enabling technology for missions to Mars and beyond. However, one of the key challenges of developing a nuclear thermal rocket is conducting verification and development tests on the ground. A number of ground test options are presented, with the Sub-surface Active Filtration of Exhaust (SAFE) method identified as a preferred path forward for the NTP program. The SAFE concept utilizes the natural soil characteristics present at the Nevada National Security Site to provide a natural filter for nuclear rocket exhaust during ground testing. A validation method of the SAFE concept is presented, utilizing a non-nuclear sub-scale hydrogen/oxygen rocket seeded with detectible radioisotopes. Additionally, some alternative ground test concepts, based upon the SAFE concept, are presented. Finally, an overview of the ongoing discussions of developing a ground test campaign are presented.

  13. [Seasonal peculiarities of the ground squirrel (Spermophilus undulatus) and Wistar rats circadian activity].

    PubMed

    Semenova, T P; Spiridonova, L A; Zakharova, N M

    2014-09-01

    The seasonal peculiarities of the circadian activity of hibernator, Yakutian long tail ground squirrels (S. undulatus) (n = 35) and non hibernator, Wistar rats (n = 35), were studied. The locomotor activity was registered in each subject individually during 5-17 days by means of "Animex" in the different periods of annual cycle. It was shown that ground squirrels were animals with daily type of activity. On the contrary, the Wistar rats demonstrated nocturne type of locomotors activity. The active period in rats was longer than in ground squirrels. It included not only at night, but morning time in spring, and daytime--in summer. The circadian differences between hibernators and non-hibernators were kept during all annual cycle at night time, but in daytime--only in spring and summer time. PMID:25697015

  14. Quaternary grabens in southernmost Illinois: Deformation near an active intraplate seismic zone

    USGS Publications Warehouse

    Nelson, W.J.; Denny, F.B.; Follmer, L.R.; Masters, J.M.

    1999-01-01

    Narrow grabens displace Quaternary sediments near the northern edge of the Mississippi Embayment in extreme southern Illinois, east-central United States. Grabens are part of the Fluorspar Area Fault Complex (FAFC), which has been recurrently active throughout Phanerozoic time. The FAFC strikes directly toward the New Madrid Seismic Zone (NMSZ), scene of some of the largest intra-plate earthquakes in history. The NMSZ and FAFC share origin in a failed Cambrian rift (Reelfoot Rift). Every major fault zone of the FAFC in Illinois exhibits Quaternary displacement. The structures appear to be strike-slip pull-apart grabens, but the magnitude and direction of horizontal slip and their relationship to the current stress field are unknown. Upper Tertiary strata are vertically displaced more than 100 m, Illinoian and older Pleistocene strata 10 to 30 m, and Wisconsinan deposits 1 m or less. No Holocene deformation has been observed. Average vertical slip rates are estimated at 0.01 to 0.03 mm/year, and recurrence intervals for earthquakes of magnitude 6 to 7 are on the order of 10,000s of years for any given fault. Previous authors remarked that the small amount of surface deformation in the New Madrid area implies that the NMSZ is a young feature. Our findings show that tectonic activity has shifted around throughout the Quaternary in the central Mississippi Valley. In addition to the NMSZ and southern Illinois, the Wabash Valley (Illinois-Indiana), Benton Hills (Missouri), Crowley's Ridge (Arkansas-Missouri), and possibly other sites have experienced Quaternary tectonism. The NMSZ may be only the latest manifestation of seismicity in an intensely fractured intra-plate region.

  15. InSAR Measurements of Ground Deformation Related to the 2003, May 21 Mw = 6.8 Zemmouri, Algeria Earthquake

    NASA Astrophysics Data System (ADS)

    Wicks, C. W.; Meghraoui, M.; Lu, Z.; Lin, J.; Cakir, Z.; Stein, R.; Belabbes, S.; Maouche, S.

    2004-12-01

    The Mw=6.8 Zemmouri earthquake was the largest earthquake felt in the region around Algiers since 1716. The quake occurred on a thrust fault within a system of folds and thrusts in northern Africa resulting from convergence between the African and Eurasian plates. Modern seismicity in the Atlas Mountains of northern Africa indicates that this fold and thrust belt is active, although the partitioning of strain within the belt is poorly understood. Because of the high population density in northern Algeria and tragic loss of life resulting from the Zemmouri earthquake, it is important to use all seismological, geodetic, and stress analysis tools available to study this earthquake and analyze its implications for future seismic hazards. We have processed and are analyzing the InSAR data from the Canadian Space Agency RADARSAT-1 satellite. We gained access to the data through the Alaska Satellite Facility with support from NASA and the Office of U.S. Foreign Disaster Assistance. The data reveal the two-patch nature of the rupture associated with the Zemmouri earthquake. This is in general agreement with field work by Meghraoui et al. (GRL, in press) that used shoreline uplift, GPS, and leveling measurements to show that the Zemmouri rupture occurred on two patches, one east and one west of the epicenter. Although InSAR coherence in the area around the epicenter is poor, as much as 0.45 m of InSAR measured uplift can be seen in the area of Boumerdes in the patch west of the epicenter. This is the same area where Meghraoui et al. measured shoreline uplift that was generally between 0.4 and 0.6 m, but as much as ~0.8 m. We are incorporating the disparate data sets and investigating how the addition of InSAR data might offer improvement over models derived from field data alone. We have also calculated patterns of stress transfer caused by the 2003 Zemmouri earthquake. Preliminary results reveal that the Zemmouri quake increased stresses on the thrust fault system in the

  16. Constraints and conundrums resulting from ground-deformation measurements made during the 2004-2005 dome-building eruption of Mount St. Helens, Washington: Chapter 14 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Dzurisin, Daniel; Lisowski, Michael; Poland, Michael P.; Sherrod, David R.; LaHusen, Richard G.

    2008-01-01

    Lack of precursory inflation suggests that the volcano was poised to erupt magma already stored in a crustal reservoir when JRO1 was installed in 1997. Trilateration and campaign GPS data indicate surface dilatation, presumably caused by reservoir expansion between 1982 and 1991, but no measurable deformation between 1991 and 2003. We conclude that all three of the traditionally reliable eruption precursors (seismicity, ground deformation, and volcanic gas emission) failed to provide warning that an eruption was imminent until a few days before a visible welt appeared at the surface--a situation reminiscent of the 1980 north-flank bulge at Mount St. Helens.

  17. Analysis of ground reaction force and electromyographic activity of the gastrocnemius muscle during double support.

    PubMed

    Sousa, Andreia S P; Santos, Rubim; Oliveira, Francisco P M; Carvalho, Paulo; Tavares, João Manuel R S

    2012-05-01

    Mechanisms associated with energy expenditure during gait have been extensively researched and studied. According to the double-inverted pendulum model energy expenditure is higher during double support, as lower limbs need to work to redirect the centre of mass velocity. This study looks into how the ground reaction force of one limb affects the muscle activity required by the medial gastrocnemius of the contralateral limb during step-to-step transition. Thirty-five subjects were monitored as to the medial gastrocnemius electromyographic activity of one limb and the ground reaction force of the contralateral limb during double support. After determination of the Pearson correlation coefficient (r), a moderate correlation was observed between the medial gastrocnemius electromyographic activity of the dominant leg and the vertical (Fz) and anteroposterior (Fy) components of ground reaction force of the non-dominant leg (r = 0.797, p < 0.000 1; r = -0.807, p < 0.000 1). A weak and moderate correlation was observed between the medial gastrocnemius electromyographic activity of the non-dominant leg and the Fz and Fy of the dominant leg, respectively (r = 0.442, p = 0.018; r = -0.684 p < 0.000 1). The results obtained suggest that during double support, ground reaction force is associated with the electromyographic activity of the contralateral medial gastrocnemius and that there is an increased dependence between the ground reaction force of the non-dominant leg and the electromyographic activity of the dominant medial gastrocnemius. PMID:22720393

  18. Influence of thermally activated processes on the deformation behavior during low temperature ECAP

    NASA Astrophysics Data System (ADS)

    Fritsch, S.; Scholze, M.; F-X Wagner, M.

    2016-03-01

    High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.

  19. Active deformation processes of the Northern Caucasus deduced from the GPS observations

    NASA Astrophysics Data System (ADS)

    Milyukov, Vadim; Mironov, Alexey; Rogozhin, Eugeny; Steblov, Grigory; Gabsatarov, Yury

    2015-04-01

    The Northern Caucasus, as a part of the Alpine-Himalayan mobile belt, is a zone of complex tectonics associated with the interaction of the two major tectonic plates, Arabian and Eurasian. The first GPS study of the contemporary geodynamics of the Caucasus mountain system were launched in the early 1990s in the framework of the Russia-US joint project. Since 2005 observations of the modern tectonic motion of the Northern Caucasus are carried out using the continuous GPS network. This network encompasses the territory of three Northern Caucasian Republics of the Russian Federation: Karachay-Cherkessia, Kabardino-Balkaria, and North Ossetia. In the Ossetian part of the Northern Caucasus the network of GPS survey-mode sites has been deployed as well. The GPS velocities confirm weak general compression of the Northern Caucasus with at the rate of about 1-2 mm/year. This horizontal motion at the boundary of the Northern Caucasus with respect to the Eurasian plate causes the higher seismic and tectonic activity of this transition zone. This result confirms that the source of deformation of the Northern Caucasus is the sub-meridional drift of the Arabian plate towards the adjacent boundary of the Eastern European part of the Eurasian lithospheric plate. The concept of such convergence implies that the Caucasian segment of the Alpine-Himalayan mobile belt is under compression, the layers of sedimentary and volcanic rocks are folded, the basement blocks are subject to shifts in various directions, and the upper crust layers are ruptured by reverse faults and thrusts. Weak deviation of observed velocities from the pattern corresponding to homogeneous compression can also be revealed, and numerical modeling of deformations of major regional tectonic structures, such as the Main Caucasus Ridge, can explain this. The deformation tensor deduced from the velocity field also exhibits the sub-meridional direction of the major compressional axes which coincides with the direction of

  20. Promoting physical activity: fertile ground for rehabilitation psychology.

    PubMed

    Uswatte, Gitendra

    2013-02-01

    Comments on the article by Schmacher et al. (see record 2013-06066-009). Readers of Rehabilitation Psychology might be surprised, or maybe even alarmed, to find an article on promoting physical activity in able-bodied people between the covers of their latest issue. This commentary contends that this area of research and practice might be one into which rehabilitation psychologists want to venture. Schumacher and coworkers describe a field test (N = 216) of a token system for reinforcing stair taking. The setting was an eight-story office building housing a single company in a midsized city in the southeastern United States. Schumacher et al. report an increase from 39 stair transactions per day by all study participants in the 6 months before implementation of the intervention to 301 transactions in the 6 months after the implementation of the intervention, which represents a 600% increase. The cost of the intervention was only $17 per person. Although replication of these results in a study with additional sources of control would increase confidence in the validity of the findings, the size of the gains in stair taking, the number of participants in the study, the length of the baseline and implementation periods, and the objective measurement of outcome warrant attention. PMID:23438004

  1. Active anthropogenic and surface salt deformation measured by InSAR, northwestern China

    NASA Astrophysics Data System (ADS)

    Colon, C.; Webb, A. G.; Lasserre, C.; Doin, M. P.

    2014-12-01

    Despite the global occurrence of salt, very few salt bodies outcrop and are presently preserved at the surface. Because of this much of our knowledge on salt structures is sourced from subsurface imaging and modeling and less from field based studies. Using interferometry of synthetic aperture radar (InSAR) we monitor surface displacements across four surface salt outcrops in the western margin of the Kuqa fold-thrust belt of Xinjiang Province, China. An InSAR time series was constructed from 40 Envisat ASAR C-band images between June 2003 and October 2010. Interferometric processing was completed using the New Small Baseline Algorithm Subset (NSBAS). These poorly studied salt structures provide a fresh opportunity to study how salt behaves on the surface. The salt bodies outcrop along an active intracontinental thrust system between the Tian Shan and Tarim basin to the south. The four surface namakiers (salt glaciers) were analyzed in this study include: the Quele, Awate, Bozidun, and an unnamed structure referred to as the Western namakier. The ~35 km long Quele namakier is a line-sourced structure advancing along the Quele salt thrust. The other three namakiers range between ~1-3 km long and are point-sourced structures. The namakiers studied display non-steady deformation with rates of displacement varying between uplifts of up to +4 cm/yr and subsidence rates of -4 cm/yr. Additionally, the Kuqa fold-thrust belt hosts a number of hydrocarbon fields and InSAR measurements detect significant anthropogenic deformation associated with hydrocarbon extraction and fluid injection.

  2. Structural deformation measurement via efficient tensor polynomial calibrated electro-active glass targets

    NASA Astrophysics Data System (ADS)

    Gugg, Christoph; Harker, Matthew; O'Leary, Paul

    2013-03-01

    This paper describes the physical setup and mathematical modelling of a device for the measurement of structural deformations over large scales, e.g., a mining shaft. Image processing techniques are used to determine the deformation by measuring the position of a target relative to a reference laser beam. A particular novelty is the incorporation of electro-active glass; the polymer dispersion liquid crystal shutters enable the simultaneous calibration of any number of consecutive measurement units without manual intervention, i.e., the process is fully automatic. It is necessary to compensate for optical distortion if high accuracy is to be achieved in a compact hardware design where lenses with short focal lengths are used. Wide-angle lenses exhibit significant distortion, which are typically characterized using Zernike polynomials. Radial distortion models assume that the lens is rotationally symmetric; such models are insufficient in the application at hand. This paper presents a new coordinate mapping procedure based on a tensor product of discrete orthogonal polynomials. Both lens distortion and the projection are compensated by a single linear transformation. Once calibrated, to acquire the measurement data, it is necessary to localize a single laser spot in the image. For this purpose, complete interpolation and rectification of the image is not required; hence, we have developed a new hierarchical approach based on a quad-tree subdivision. Cross-validation tests verify the validity, demonstrating that the proposed method accurately models both the optical distortion as well as the projection. The achievable accuracy is e <= +/-0.01 [mm] in a field of view of 150 [mm] x 150 [mm] at a distance of the laser source of 120 [m]. Finally, a Kolmogorov Smirnov test shows that the error distribution in localizing a laser spot is Gaussian. Consequently, due to the linearity of the proposed method, this also applies for the algorithm's output. Therefore, first

  3. Active deformation in the inner western Alps inferred from comparison between 1972-classical and 1996-GPS geodetic surveys

    NASA Astrophysics Data System (ADS)

    Sue, Christian; Martinod, Joseph; Tricart, Pierre; Thouvenot, François; Gamond, Jean-François; Fréchet, Julien; Marinier, Delphine; Glot, Jean-Paul; Grasso, Jean-Robert

    2000-04-01

    Eighteen geodetic points surveyed in 1972 by the French National Geographic Institute (IGN) were remeasured by GPS in 1996 in the Briançonnais and Piémont Zones, east of the Pelvoux massif (French Western Alps). A displacement vector set was determined for the two surveys' common points. Calculations of the strain-rate tensors associated with 15 triangular cells of the network have been performed. Only four of them show a strain rate significant at a 95% level of confidence. These data suggest an E-W extension of about 2-4 mm/yr between the western and eastern part of the network (Pelvoux external crystalline massif and Queyras blueschists, respectively) associated with N-S shortening. This active deformation agrees with neotectonic and seismotectonic data. The measured tectonic motion seems to be distributed throughout the central part of the Briançonnais zone, where the seismic activity is concentrated. The local seismicity has been precisely surveyed since 1989. It is moderate ( Ml<4.7) and no larger earthquake occured in the 1972-1989 period. The seismic deformation of the 1972-1996 period, extrapolated from the 1989-1996 local seismicity, accounts for less than 10% of the geodetic deformation. Thus, aseismic processes accommodated more than 90% of the observed deformation during this period. This could correspond to accumulation of elastic strain on locked faults, creep on faults or plastic deformation in a large crustal volume.

  4. Quaternary deformation

    SciTech Connect

    Brown, R.D. Jr.

    1990-01-01

    Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.

  5. Can deep seated gravitational slope deformations be activated by regional tectonic strain: First insights from displacement measurements in caves from the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Plan, Lukas; Grasemann, Bernhard; Mitroviċ, Ivanka; Lenhardt, Wolfgang; Hausmann, Helmut; Stemberk, Josef

    2016-04-01

    Tectonic elastic strain and ground deformations are documented as the most remarkable environmental phenomena occurring prior to local earthquakes in tectonically active areas. The question arises if such strain would be able to trigger mass movements. We discuss a directly observed fault slip and a subsequent minor activation of a deep-seated gravitational slope deformation prior to the M = 3 Bad Fischau earthquake between end of November and early December 2013 in NE Austria. The data originate from two faults in the Emmerberg and Eisenstein Caves in the transition zone between the Eastern Alps and the Vienna Basin, monitored in the framework of the FWF "Speleotect" project. The fault slips have been observed at the micrometer-level by means of an opto-mechanical 3D crack gauge TM-71. The discussed event started with the fault activation in the Emmerberg Cave on 25 November 2013 recorded by measurements of about 2 μm shortening and 1 μm sinistral parallel slip, which was fully in agreement with the macroscopically documented past fault kinematics. One day later, the mass (micro) movement activated on the opposite side of the mountain ridge in the Eisenstein Cave and it continued on three consecutive days. Further, the fault in the Emmerberg Cave experienced also a subsequent gravitational relaxation on 2/3 December 2013, when the joint opened and the southern block subsided towards the valley, while the original sinistral displacement remained irreversible. The process was followed by the M = 3 earthquake in Bad Fischau on 11 December 2013. Our data suggest that tectonic strain could play a higher role on the activation of slow mass movements in the area than expected. Although we cannot fully exclude the co-activation of the mass movement in the Eisenstein Cave by water saturation, the presented data bring new insight into recent geodynamics of the Eastern Alps and the Vienna Basin. For better interpretations and conclusions however, we need a much longer

  6. Characterization of actin filament deformation in response to actively driven microspheres propagated through entangled actin networks

    NASA Astrophysics Data System (ADS)

    Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae

    2014-03-01

    The semi-flexible biopolymer actin is a ubiquitous component of nearly all biological organisms, playing an important role in many biological processes such as cell structure and motility, cancer invasion and metastasis, muscle contraction, and cell signaling. Concentrated actin networks possess unique viscoelastic properties that have been the subject of much theoretical and experimental work. However, much is still unknown regarding the correlation of the applied stress on the network to the induced filament strain at the molecular level. Here, we use dual optical traps alongside fluorescence microscopy to carry out active microrheology measurements that link mechanical stress to structural response at the micron scale. Specifically, we actively drive microspheres through entangled actin networks while simultaneously measuring the force the surrounding filaments exert on the sphere and visualizing the deformation and subsequent relaxation of fluorescent labeled filaments within the network. These measurements, which provide much needed insight into the link between stress and strain in actin networks, are critical for clarifying our theoretical understanding of the complex viscoelastic behavior exhibited in actin networks.

  7. Deformation twinning activated α --> ω transformation in titanium under shock compression

    NASA Astrophysics Data System (ADS)

    Zong, Hongxiang; Lookman, Turab

    Materials dynamics, especially the behavior of solids under extreme compression, is a topic of broad scientific and technological interest. However, less is known of the role of grain boundary structures on the shock response of hexagonal-close-packed metals. We use molecular dynamics simulations to study deformation mechanisms in shock compressed Ti bicrystals containing three types of grain boundary (GB) microstructures, i.e., coherent twin boundaries (CTBs), symmetric incoherent twin boundaries (ITB) and {1-210}asymmetric tilt grain boundaries. Our results show that both dislocation activity and the α -> ω phase transformation in Ti are sensitive to the GB characteristics. In particular, we find that the elastic shock wave can readily trigger the α -> ω transformation at CTBs but not at the other two GBs, and the activation of the α -> ω transformation at CTBs leads to considerable wave attenuation (i.e., the elastic precursor decay). Combined with first principle calculations, we find that CTBs can facilitate the overcoming of the energy barrier for the α -> ω transformation. Our findings have potential implications for interface engineering and materials design under extreme conditions.

  8. Tectonic and gravity-induced deformation along the active Talas-Fergana Fault, Tien Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Tibaldi, A.; Corazzato, C.; Rust, D.; Bonali, F. L.; Pasquarè Mariotto, F. A.; Korzhenkov, A. M.; Oppizzi, P.; Bonzanigo, L.

    2015-08-01

    This paper shows, by field palaeoseismological data, the Holocene activity of the central segment of the intracontinental Talas-Fergana Fault (TFF), and the relevance of possible future seismic shaking on slope stability around a large water reservoir. The fault, striking NW-SE, is marked by a continuous series of scarps, deflected streams and water divides, and prehistoric earthquakes that offset substrate and Holocene deposits. Fault movements are characterised by right-lateral strike-slip kinematics with a subordinate component of uplift of the NE block. Structural, geological and geomorphological field data indicate that shallow and deep landslides are aligned along the TFF, and some of them are active. Where the TFF runs close to the reservoir, the fault trace is obscured by a series of landslides, affecting rock and soil materials and ranging in size from small slope instabilities to deep-seated gravity-induced slope deformations (DGSDs). The largest of these, which does not show clear evidence of present-day activity, involves a volume of about 1 km3 and is associated with smaller but active landslides in its lower part, with volumes in the order of 2.5 × 104 m3 to 1 × 106 m3. Based on the spatial and temporal relations between landslides and faults, we argue that at least some of these slope failures may have a coseismic character. Stability analyses by means of limit equilibrium methods (LEMs), and stress-strain analysis by finite difference numerical modelling (FDM), were carried out to evaluate different hazard scenarios linked to these slope instabilities. The results indicate concern for the different threats posed, ranging from the possible disruption of the M-41 highway, the main transportation route in central Asia, to the possible collapse of huge rock masses into the reservoir, possibly generating a tsunami.

  9. Active deformation of the Congo intracratonic basin and its eastern margin

    NASA Astrophysics Data System (ADS)

    Everaerts, Michel; Delvaux, Damien; Beoka, Ateba

    2015-04-01

    The Congo basin, one of the largest intracontinental sedimentary basin in the world, developed in Central Africa since the early Neoproterozoic during successive tectonically controlled stages. It formed over an heterogeneous basement as highlighted by aeromagnetic data, composed of Archean cores welded by Proterozoic mobile belts. It contains an average of 4 km and locally up to 8 km of Neoproterozoic to Mesozoic sediments. Since late Mesozoic (Cenomanian), it was submitted to intraplate stresses due to the action of ridge-push forces related to the spreading of the South Atlantic. As a result, most part of the basin entered in an erosional stage while only a small part is still accumulating sediments. Active deformation of this vast region (5°N-11°S and 12-27°E) is indicated by a certain level of seismic activity, with about 270 earthquakes instrumentally recorded with magnitudes ranging from 2.2 to 5.5 inside the basin and up to up to 6.3 along its NW (Gabon) and NW (Katanga) margins. The dozen available focal mechanisms indicate that the basin is under ENE-WSW horizontal compression, under a compressional regime in its center and strike-slip regime along its northern and western margins. Low-angle slickensided fault planes are observed in the Samba cored well, constraining the onset of the recent compressional setting in the late Albian, at a time when South America was already separated from Africa and the South Atlantic Ridge was already functioning. Although subtle, recent tectonic deformations (faulting and buckling undulations) can also be inferred from the reflection seismic profiles and the topography and river network. The overall neotectonic picture is inferred as reflecting the development of compressional tectonic instabilities in the basin fill and its margins under the action of intraplate stress field and the control of the basement heterogeneity. This is a contribution to preparation of the Seismotectonic Map of Africa by the working group of

  10. TerraSAR InSAR Investigation of Active Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Lei, L.; Burgmann, R.

    2009-12-01

    We aim to utilize advanced analysis of TerraSAR-X data to investigate the dynamics and interactions of solid Earth deformation processes, such as earthquakes and fault creep, and Earth surface processes, such as land subsidence and groundwater movements, in a densely populated, urban region, the San Francisco Bay Area. Ongoing deformation imaging reveals a number of natural hazards including elastic strain accumulation about seismologic faults, active landsliding, land subsidence and rebound, and settling of unconsolidated sediments that are highly susceptible to liquefaction. Up to now, we have ordered and received 20 more TerraSAR-X Spotlight Single Look Complex (SLC) images and a few Stripmap SLC images delivered by DLR and got a few preliminary results. The TerraSAR-X images were acquired over the San Francisco Bay Area particularly around an area of active landsliding, coastal subsidence and shallow Hayward fault creep near the city of Berkeley. Berkeley is situated between latitude 37.45 and 38.00, longitude 237.30 and 238.00. The data acquisition interval is from November, 2008 to now. Four types of Spotlight images and one type of Stripmap images in time sequence were ordered and acquired: spot_012, spot_038, spot_049, spot_075 and strip_003, having different look angles and pass directions. Access to the SAR data is via ftp about 10 days after acquisition date. The data is supplied in TerraSAR-X standard SLC COSAR (COmplex SAR) format with orbital information in an Extensible Markup Language (XML) header. The file contains integer real-complex components with double sampling and calibration constants for values. I am using ROI_PAC to do the interferograms. But ROI_PAC was designed to process the raw data rather SLC images. So there are some problems in azimuth processing with TerraSAR SLC data especially the Spotlight data. We now have some preliminary results of Stripmap interferograms and Spotlight interferograms but still work on those problems and

  11. Observing ground surface change series at active volcanoes in Indonesia using backscattering intensity of SAR data

    NASA Astrophysics Data System (ADS)

    Saepuloh, Asep; Trianaputri, Mila Olivia

    2015-04-01

    Indonesia contains 27 active volcanoes passing the West through the East part. Therefore, Indonesia is the most hazard front due to the volcanic activities. To obtain the new precursory signals leading to the eruptions, we applied remote sensing technique to observe ground surface change series at the summit of Sinabung and Kelud volcanoes. Sinabung volcano is located at Karo Region, North Sumatra Province. This volcano is a strato volcano type which is re-activated in August 2010. The eruption continues to the later years by ejecting volcanic products such as lava, pyroclastic flow, and ash fall deposits. This study is targeted to observe ground surface change series at the summit of Sinabung volcano since 2007 to 2011. In addition, we also compared the summit ground surface changes after the eruptions of Kelud volcano in 2007. Kelud volcano is also strato volcano type which is located at East Java, Indonesia. The Synthetic Aperture Radar (SAR) remotely sensed technology makes possible to observe rapidly a wide ground surface changes related to ground surface roughness. Detection series were performed by extracting the backscattering intensity of the Phased Array type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS). The intensity values were then calculated using a Normalized Radar Cross-Section (NRCS). Based on surface roughness criterion at the summit of Sinabung volcano, we could observe the ground surface changes prior to the early eruption in August 2010. The continuous increment of NRCS values showed clearly at window size 3×3 pixel of the summit of Sinabung volcano. The same phenomenon was also detected at the summit of Kelud volcano after the 2007 eruptions. The detected ground surface changes were validated using optical Landsat-8, backscattering intensity ratio for volcanic products detection, and radial component of a tilt-meter data.

  12. Activated carbon derived from waste coffee grounds for stable methane storage

    NASA Astrophysics Data System (ADS)

    Kemp, K. Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M.; Kim, Kwang S.

    2015-09-01

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m2 g-1 and a micropore volume of 0.574 cm3 g-1 and exhibits a stable CH4 adsorption capacity of ˜4.2 mmol g-1 at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  13. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    SciTech Connect

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; Wilson, Cathy; Wullschleger, Stan D.

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  14. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    NASA Astrophysics Data System (ADS)

    Newman, B. D.; Throckmorton, H. M.; Graham, D. E.; Gu, B.; Hubbard, S. S.; Liang, L.; Wu, Y.; Heikoop, J. M.; Herndon, E. M.; Phelps, T. J.; Wilson, C. J.; Wullschleger, S. D.

    2015-03-01

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  15. Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge.

    PubMed

    Li, Qian; Qiao, Wei; Wang, Xiaochang; Takayanagi, Kazuyuki; Shofie, Mohammad; Li, Yu-You

    2015-02-01

    This study was conducted to characterize the kinetics of an anaerobic process (hydrolysis, acetogenesis, acidogenesis and methanogenesis) under thermophilic (55 °C) and mesophilic (35 °C) conditions with coffee grounds and waste activated sludge (WAS) as the substrates. Special focus was given to the kinetics of propionic acid degradation to elucidate the accumulation of VFAs. Under the thermophilic condition, the methane production rate of all substrates (WAS, ground coffee and raw coffee) was about 1.5 times higher than that under the mesophilic condition. However, the effects on methane production of each substrate under the thermophilic condition differed: WAS increased by 35.8-48.2%, raw coffee decreased by 76.3-64.5% and ground coffee decreased by 74.0-57.9%. Based on the maximum reaction rate (Rmax) of each anaerobic stage obtained from the modified Gompertz model, acetogenesis was found to be the rate-limiting step for coffee grounds and WAS. This can be explained by the kinetics of propionate degradation under thermophilic condition in which a long lag-phase (more than 18 days) was observed, although the propionate concentration was only 500 mg/L. Under the mesophilic condition, acidogenesis and hydrolysis were found to be the rate-limiting step for coffee grounds and WAS, respectively. Even though reducing the particle size accelerated the methane production rate of coffee grounds, but did not change the rate-limiting step: acetogenesis in thermophilic and acidogenesis in mesophilic. PMID:25534040

  16. Earthquake relocations, crustal rheology, and active deformation in the central-eastern Alps (N Italy)

    NASA Astrophysics Data System (ADS)

    Viganò, Alfio; Scafidi, Davide; Ranalli, Giorgio; Martin, Silvana; Della Vedova, Bruno; Spallarossa, Daniele

    2015-10-01

    A revised seismic catalogue (1994-2007) for the central-eastern Alps (N Italy) is presented. 396 earthquake relocations, for local magnitudes in the 1.2-5.3 range, are performed using a 3D crustal velocity structure and probabilistic locations. The location procedure is validated by computing a set of 41 quarry shot solutions and all the results, both about shots and seismic events, are compared with those obtained using the routine location procedure. Results are shown for five contiguous seismotectonic domains, as supported by geological and geophysical evidence (e.g., fault systems, crustal tomography, focal mechanisms types). Earthquake hypocentres are mostly located in the upper crust (0-15 km of depth), in good agreement with thermo-rheological models about the brittle-ductile transitions (8-9 km of depth) and total crustal strengths (1.0-2.0 TN m- 1). Epicentres are clustered and/or aligned along present-day active geological structures. The proposed seismotectonic model shows dominant compression along the Giudicarie and Belluno-Bassano-Montello thrusts, with strain partitioning along the dominant right-lateral strike-slip faults of the Schio-Vicenza domain. The present-day deformation of the Southern Alps and the internal Alpine chain is compatible with Adria indentation and the related crustal stress distribution.

  17. Active oil-water interfaces: buckling and deformation of oil drops by bacteria

    NASA Astrophysics Data System (ADS)

    Juarez, Gabriel; Stocker, Roman

    2014-11-01

    Bacteria are unicellular organisms that seek nutrients and energy for growth, division, and self-propulsion. Bacteria are also natural colloidal particles that attach and self-assemble at liquid-liquid interfaces. Here, we present experimental results on active oil-water interfaces that spontaneously form when bacteria accumulate or grow on the interface. Using phase-contrast and fluorescence microscopy, we simultaneously observed the dynamics of adsorbed Alcanivorax bacteria and the oil-water interface within microfluidic devices. We find that, by growing and dividing, adsorbed bacteria form a jammed monolayer of cells that encapsulates the entire oil drop. As bacteria continue to grow at the interface, the drop buckles and the interface undergoes strong deformations. The bacteria act to stabilize non-equilibrium shapes of the oil-phase such wrinkling and tubulation. In addition to presenting a natural example of a living interface, these findings shape our understanding of microbial degradation of oil and may have important repercussions on engineering interventions for oil bioremediation.

  18. Tectonic history and thrust-fold deformation style of seismically active structures near Coalinga

    SciTech Connect

    Namson, J.S. ); Davis, T.L.; Lagoe, M.B.

    1990-01-01

    The stratigraphy of the Coalinga region can be divided into tectostratigraphic facies whose boundaries delineate two major tectonic events - one in the mid-Cenozoic (38-17 Ma) and one in the late Cenozoic (less than 3 Ma). The succession of these tectostratigraphic facies, and an integration of geology, subsurface well data, a seismic-reflection profile, and earthquake seismicity on a retrodeformable cross section, yield a model for the tectonic evolution of the Coalinga region. This model suggests that the structural style of both deformational events is characteristic of fold and thrust belts. The model also indicates that the causative fault of the May 2 earthquake is a ramped thrust. The results of this study, in combination with regional geologic relations, suggest that the Coalinga region is part of an active fold and thrust belt which borders the west and south sides of the San Joaquin Valley. The potential for future earthquakes due to movement of other blind thrust faults within this belt should be evaluated.

  19. Ground State Destabilization by Anionic Nucleophiles Contributes to the Activity of Phosphoryl Transfer Enzymes

    PubMed Central

    Andrews, Logan D.; Fenn, Tim D.; Herschlag, Daniel

    2013-01-01

    Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP) and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 1022-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound Pi was determined from pH dependencies of the binding of Pi and tungstate, a Pi analog lacking titratable protons over the pH range of 5–11, and from the 31P chemical shift of bound Pi. The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥108-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and Pi binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the phosphoryl group in the transition

  20. Sequential Activation of a Segmented Ground Pad Reduces Skin Heating During Radiofrequency Tumor Ablation: Optimization via Computational Models

    PubMed Central

    Schutt, David J.; Haemmerich, Dieter

    2009-01-01

    Radiofrequency (RF) ablation has become an accepted treatment modality for unresectable tumors. The need for larger ablation zones has resulted in increased RF generator power. Skin burns due to ground pad heating are increasingly limiting further increases in generator power, and thus, ablation zone size. We investigated a method for reducing ground pad heating in which a commercial ground pad is segmented into multiple ground electrodes, with sequential activation of ground electrode subsets. We created finite-element method computer models of a commercial ground pad (14 × 23 cm) and compared normal operation of a standard pad to sequential activation of a segmented pad (two to five separate ground electrode segments). A constant current of 1 A was applied for 12 min in all simulations. Time periods during sequential activation simulations were adjusted to keep the leading edge temperatures at each ground electrode equal. The maximum temperature using standard activation of the commercial pad was 41.7 °C. For sequential activation of a segmented pad, the maximum temperature ranged from 39.3 °C (five segments) to 40.9 °C (two segments). Sequential activation of a segmented ground pad resulted in lower tissue temperatures. This method may reduce the incidence of ground pad burns and enable the use of higher power generators during RF tumor ablation. PMID:18595807

  1. Structural deformation and sedimentation in an active Caldera, Rabaul, Papua New Guinea

    USGS Publications Warehouse

    Greene, H. Gary; Tiffin, D.L.; McKee, C.O.

    1986-01-01

    Recent seismic and tectonic activity in Rabaul Caldera, Papua New Guinea, suggests that magma is accumulating at a shallow depth beneath this partially submerged structure and that a new volcano may be developing. Changes in onshore elevation since 1971 (as much as 2 m on south Matupit Island) indicate that rapid and large-scale uplifts have occurred on the seafloor near the center of the caldera. The frequency of seismic events within the caldera has also increased during this period. Earthquake locations define an elliptical ring surrounding the center of this uplift within the caldera. A marine geophysical survey in 1982 by the U.S. Geological Survey's R/V "S.P. Lee" in Rabaul Caldera shows the development of a bulge in the seafloor near the center of the caldera. High-resolution seismic reflection profiles show that this bulge consists of two domal uplifts bounded and separated by two major north-south-trending fault zones. Deformed sediments overlie these zones; a prominent slump flanks the area of the bulge. Five major acoustic units were identified in the seismic reflection profiles: an acoustic basement and four sedimentary units consisting of irregularly layered, cross-layered, contorted, and well-layered sequences. The acoustic basement is probably composed of crystalline volcanic rocks, and the layered acoustic units are probably sediments, primarily ash deposited in different environments. The cross-layered, irregularly layered, and contorted units appear to have been deposited in a dynamic environment subjected to strong currents, seismicity, and/or mass wasting, while the well-layered units were deposited in a low-energy environment. Locally, well-layered sequences interfinger with the other sedimentary units, indicating a transitional environment that alternated between high-energy and low-energy depositional processes. A submarine channel cuts most of the acoustic units and appears to be the conduit for sediment transport out of the caldera; it

  2. Seasonal variation in daily activity patterns of free-ranging European ground squirrels (Spermophilus citellus).

    PubMed

    Everts, Lammina G; Strijkstra, Arjen M; Hut, Roelof A; Hoffmann, Ilse E; Millesi, Eva

    2004-01-01

    Daily aboveground activity of European ground squirrels (Spermophilus citellus) in their natural habitat was recorded with a visual scanning procedure during the active seasons of 1992 and 1993. Activity patterns were analyzed with respect to time of year and to the animal's reproductive state. Aboveground activity started on average 3.9 h (SD 0.6 h, n = 37 days) after civil twilight at dawn and ended on average 3.2 h (SD 0.9 h, n = 37 days) before civil twilight at dusk. Between onset and offset of activity, 54% was spent aboveground, of which 73% was spent foraging. Activity patterns were influenced by photoperiod, rainfall, and by reproductive state. During mating, reproductively active males started activity earlier than females and reproductively inactive males. For females, time spent foraging was high during lactation. The midpoint of daily activity was at 12:16 h (SD 0.37 h, n = 37 days). Activity patterns of European ground squirrels thus appear robustly positioned in the middle of the photoperiod. PMID:15129824

  3. Denitrification: a Clean-Up Mechanism for High Nitrate Ground Water Near an Active Swine Facility?

    NASA Astrophysics Data System (ADS)

    Townsend, M. A.

    2001-05-01

    An active swine facility in south central Kansas appears to be cleaning up nitrate in regional ground water in an area with shallow ground water (<10 m), sandy soils, and irrigated and dry land row crop farming. This study used nitrogen stable isotopes and standard water chemistry to determine the impact of a bentonite lined hog lagoon on shallow ground-water chemistry. Regional ground water surrounding the facility had nitrate-nitrogen values routinely measured above 10 ppm. Chloride concentrations in the area ranged from 3 to 25 ppm and bicarbonate values ranged from 45 to 200 ppm. Two periods of sampling in the area showed nitrogen isotope values in the fertilizer range (<+2 to +8) and nitrate-N values above 10 ppm for all wells within a mile of a swine facility except for the monitoring well downgradient of the facility. This well had nitrate-N values of 4 to 5 ppm and nitrogen isotope values in the animal waste range (+13 to +20) which is similar to the value measured for the waste lagoon (+18). Chloride and bicarbonate values at all of the monitoring wells, except the well downgradient from the lagoon, were similar to the regional ground water. The lagoon water had >500 ppm chloride and >1400 ppm ammonium-N. The downgradient monitoring well had chloride values > 100 ppm and bicarbonate values above 400 ppm for the two sampling periods. Use of chloride ratios showed that approximately 30% of the water contributing to the downgradient well sample was from lagoon leakage. Preliminary calculations of the amount of bicarbonate resulting from denitrification processes, chloride ratios, and nitrogen isotope values suggest that the sampled water is a mixture of denitrified regional ground water plus lagoon water. Although the nitrate values near the swine facility appear to be decreasing, the long-term impact of increased salt load on the regional ground water is unknown at this time.

  4. A High-Performance Deformable Mirror with Integrated Driver ASIC for Space Based Active Optics

    NASA Astrophysics Data System (ADS)

    Shelton, Chris

    Direct imaging of exoplanets is key to fully understanding these systems through spectroscopy and astrometry. The primary impediment to direct imaging of exoplanets is the extremely high brightness ratio between the planet and its parent star. Direct imaging requires a technique for contrast suppression, which include coronagraphs, and nulling interferometers. Deformable mirrors (DMs) are essential to both of these techniques. With space missions in mind, Microscale is developing a novel DM with direct integration of DM and its electronic control functions in a single small envelope. The Application Specific Integrated Circuit (ASIC) is key to the shrinking of the electronic control functions to a size compatible with direct integration with the DM. Through a NASA SBIR project, Microscale, with JPL oversight, has successfully demonstrated a unique deformable mirror (DM) driver ASIC prototype based on an ultra-low power switch architecture. Microscale calls this the Switch-Mode ASIC, or SM-ASIC, and has characterized it for a key set of performance parameters, and has tested its operation with a variety of actuator loads, such as piezo stack and unimorph, and over a wide temperature range. These tests show the SM-ASIC's capability of supporting active optics in correcting aberrations of a telescope in space. Microscale has also developed DMs to go with the SM-ASIC driver. The latest DM version produced uses small piezo stack elements in an 8x8 array, bonded to a novel silicon facesheet structure fabricated monolithically into a polished mirror on one side and mechanical linkage posts that connect to the piezoelectric stack actuators on the other. In this Supporting Technology proposal we propose to further develop the ASIC-DM and have assembled a very capable team to do so. It will be led by JPL, which has considerable expertise with DMs used in Adaptive Optics systems, with high-contrast imaging systems for exoplanet missions, and with designing DM driver

  5. Automatic corpus callosum segmentation using a deformable active Fourier contour model

    NASA Astrophysics Data System (ADS)

    Vachet, Clement; Yvernault, Benjamin; Bhatt, Kshamta; Smith, Rachel G.; Gerig, Guido; Cody Hazlett, Heather; Styner, Martin

    2012-03-01

    The corpus callosum (CC) is a structure of interest in many neuroimaging studies of neuro-developmental pathology such as autism. It plays an integral role in relaying sensory, motor and cognitive information from homologous regions in both hemispheres. We have developed a framework that allows automatic segmentation of the corpus callosum and its lobar subdivisions. Our approach employs constrained elastic deformation of flexible Fourier contour model, and is an extension of Szekely's 2D Fourier descriptor based Active Shape Model. The shape and appearance model, derived from a large mixed population of 150+ subjects, is described with complex Fourier descriptors in a principal component shape space. Using MNI space aligned T1w MRI data, the CC segmentation is initialized on the mid-sagittal plane using the tissue segmentation. A multi-step optimization strategy, with two constrained steps and a final unconstrained step, is then applied. If needed, interactive segmentation can be performed via contour repulsion points. Lobar connectivity based parcellation of the corpus callosum can finally be computed via the use of a probabilistic CC subdivision model. Our analysis framework has been integrated in an open-source, end-to-end application called CCSeg both with a command line and Qt-based graphical user interface (available on NITRC). A study has been performed to quantify the reliability of the semi-automatic segmentation on a small pediatric dataset. Using 5 subjects randomly segmented 3 times by two experts, the intra-class correlation coefficient showed a superb reliability (0.99). CCSeg is currently applied to a large longitudinal pediatric study of brain development in autism.

  6. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    SciTech Connect

    Borra, E. F.

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror uses a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.

  7. Regolith Activation on the Lunar Surface and its Ground Test Simulation

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2009-01-01

    Activation of the surfaces of lunar regolith particles can occur through interactions with solar electromagnetic radiation, solar and galactic particle radiation and micrometeoroid bombardment. An attempt has been made to quantify the relative importance of each of those effects. The effects of these activated surfaces may be to enhance the adhesion and toxicity of the particles. Also key to the importance of activation is the lifetimes of activated states in various environments which is controlled by their passivation rate as well as their activation rate. Although techniques exist to characterize the extent of activation of particles in biological system, it is important to be able to quantify the activation state on the lunar surface, in ground-test vacuum systems, and in habitat atmospheres as well.

  8. Regolith Activation on the Lunar Surface and Its Ground Test Simulation

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2009-01-01

    Activation of the surfaces of lunar regolith particles can occur through interactions with solar electromagnetic radiation, solar and galactic particle radiation and micrometeoroid bombardment. An attempt has been made to quantify the relative importance of each of those effects. The effects of these activated surfaces may be to enhance the adhesion and toxicity of the particles. Also key to the importance of activation is the lifetimes of activated states in various environments which is controlled by their passivation rate as well as their activation rate. Although techniques exist to characterize the extent of activation of particles in biological system, it is important to be able to quantify the activation state on the lunar surface, in ground-test vacuum systems, and in habitat atmospheres as well.

  9. Experimental Deformation of Olivine Single Crystal at Mantle P and T: Pressure Effect on Olivine Dislocation Slip-System Activities

    NASA Astrophysics Data System (ADS)

    Paul, R.; Girard, J.; Chen, J.; Amiguet, E.

    2008-12-01

    Seismic velocity anisotropies observed in the upper mantle are interpreted from lattice preferred orientations (LPO) produced experimentally in olivine, which depends on the dominant dislocation slip systems. At low pressure P<3 GPa, mantle temperature (T) and in dry conditions, olivine [100] dislocation slip dominates the less active [001] slip. This tends to align crystal fast velocity [100] axis with the principal shear direction. Yet recent high-pressure deformation experiments (Couvy et al., 2004, EJM, 16, 877; Raterron et al., 2007, Am. Min., 92, 1436; Raterron et al., 2008, Phys. Earth Planet. Int., doi:10.1016/j.pepi.2008.07.026) show that [001](010) slip system dominates [100](010) system in the (P,T) range of the deep upper mantle. This may promote a shear-parallel slow-velocity [001] axis and may explain the seismic-velocity attenuation observed at depth >200 km (Mainprice et al., 2005, Nature, 433, 731). In order to further constrain the effect of P on olivine slip system activities, which is classically quantified by the activation volume V* in power creep laws, deformation experiments were carried out in poor water condition, at P>5 GPa and T=1400°C, on pure forsterite (Fo100) and San Carlos olivine crystals, using the Deformation-DIA apparatus at the X17B2 beamline of the NSLS (Upton, NY). Ten crystals were oriented in order to active either [100] slip alone or [001] slip alone in (010) plane, or both [100](001) and [001](100) systems together. Constant applied stress σ <300 MPa and specimen strain rates were monitored in situ using time-resolved x-ray diffraction and radiography, respectively, for a total of 27 investigated steady state conditions. The obtained rheological data were compared with data previously obtained in comparable T and σ conditions, but at room P, by Darot and Gueguen (1981, JGR, 86, 6219) for Fo100 and by Bai et al. (1991, JGR, 96, 2441) for San Carlos olivine. This new set of data confirms previous deformation data

  10. SPoRT's Participation in the GOES-R Proving Ground Activity

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Fuell, Kevin; Smith, Matthew; Stano, Geoffrey; Molthan, Andrew

    2011-01-01

    The next generation geostationary satellite, GOES-R, will carry two new instruments with unique atmospheric and surface observing capabilities, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM), to study short-term weather processes. The ABI will bring enhanced multispectral observing capabilities with frequent refresh rates for regional and full disk coverage to geostationary orbit to address many existing and new forecast challenges. The GLM will, for the first time, provide the continuous monitoring of total lightning flashes over a hemispherical region from space. NOAA established the GOES-R Proving Ground activity several years ago to demonstrate the new capabilities of these instruments and to prepare forecasters for their day one use. Proving Ground partners work closely with algorithm developers and the end user community to develop and transition proxy data sets representing GOES-R observing capabilities. This close collaboration helps to maximize refine algorithms leading to the delivery of a product that effectively address a forecast challenge. The NASA Short-term Prediction Research and Transition (SPoRT) program has been a participant in the NOAA GOES-R Proving Ground activity by developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the SPoRT program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. Participation in the Proving Ground activities extends SPoRT s activities and taps its experience and expertise in diagnostic weather analysis, short-term weather forecasting, and the transition of research and experimental

  11. Active deformation of the northern front of the Eastern Great Caucasus

    NASA Astrophysics Data System (ADS)

    Niviere, Bertrand; Gagala, Lukasz; Callot, Jean-Paul; Regard, Vincent; Ringenbach, Jean-Claude

    2016-04-01

    The Arabia-Eurasia collision involved a mosaic of island arcs and microcontinents. Their accretion to the complex paleogeographic margin of Neotethys was marked by numerous collisional events. The Greater Caucasus constitute the northernmost tectonic element of this tectonic collage, developed as a back arc extensional zone now inverted, which relationships to the onset of Arabia-Eurasia continental collision and/or to the reorganization of the Arabia-Eurasia plate boundary at ˜5 Ma remain controversial. Structurally, the Greater Caucasus are a former continental back arc rift, now the locus of ongoing continental shortening. Modern geodetic observations suggest that in the west, the strain north of the Armenian Plateau is accommodated almost exclusively along the margins of the Greater Caucasus. This differs from regions further east where strain accommodation is distributed across both the Lesser and Greater Caucasus, and within the Greater Caucasus range, with a unique southward vergence. We question here the amount and mechanisms by which the Eastern Greater Caucasus accommodate part of the Arabia-Eurasia convergence. Morphostructural analysis of the folded late Pleistocene marine terrace along the northern slope of the Eastern Greater Caucasus evidences an on going tectonic activity in the area where GPS measurements record no motion. Most of the recent foreland deformation is accommodated by south-vergent folds and thrust, i. e. opposite to the vergence of the Caucasus frontal northern thrust. A progressive unconformity in the folded beds shows that it was already active during the late Pliocene. Cosmogenic dating of the terrace and kinematic restoration of the remnant terrace, linked to the subsurface geology allows for the estimation of a shortening rate ranging from a few mm/yr to 1 cm/yr over the last 5 Myr along the greater Caucasus northern front. Thus more than one third of the shortening between the Kura block / Lesser Caucasus domain and the Stable

  12. Ground Motion Polarization in the Damage Zone of the Active, Strike-Slip Mattinata Fault, Southern Italy

    NASA Astrophysics Data System (ADS)

    Pischiutta, M.; Cianfarra, P.; Anselmi, M.; Salvini, F.; Rovelli, A.

    2013-12-01

    We have recently observed the occurrence of directional amplification effects in fault zones using both earthquakes and ambient noise records. In several faults we have found that ground motion polarization tends to have a high angle to cleavages produced by the stress related to the kinematics in the fault damage zone. We thus interpret this effect as due to the higher compliance of the fractured rocks of the damage zone in a direction transversal to the cleavage strike. Here we have tested the technique of the wavefield polarization using ambient vibrations recorded across the seismically active Mattinata Fault, in the Gargano Promontory, Italy. This fault has been chosen for the high number of structural investigations led out so far. The Mattinata Fault outcrops for over 40 km and shows an ondulated trajectory that is characterized by a number of significant tectonic-related morphological features compatible with a general left-lateral strike-slip kinematics. These features include a pull-apart basin and a transpressional zone. The main associated cleavage consists of a marked array of disjunctive, spaced pressure-solution surfaces developed within the 200-300 m wide fault damage zone. In order to relate the orientation of cleavage to the ground motion polarization, we measured 20-50 min of ambient noise at about 30 sites chosen in the fault damage zone close to rock outcrops where also structural geological measurements were carried out. Ground motion polarization is assessed both in the frequency and time domain through the individual-station horizontal-to-vertical spectral ratio and covariance-matrix analysis, respectively. Two ambient noise measurements were performed close to permanent broadband stations of the Italian Seismic Telemetric Network. Results are consistent with those inferred on earthquake records at the two permanent stations, confirming that ambient noise yields results consistent with earthquake records as previously observed in other

  13. Definition of the time-space propagation of ground deformation of the instable Eastern Flank of Mt.Etna between 2007 and 2010 from ALOS PALSAR InSAR data and comparison with CGPS data

    NASA Astrophysics Data System (ADS)

    Scandura, Danila; Cannavò, Flavio; Aloisi, Marco; Bruno, Valentina; Mattia, Mario; Weigmuller, Urs

    2013-04-01

    In this work we apply techniques of image processing to analyze 19 ALOS PALSAR images covering the time interval between 27 January 2007 and 07 may 2010 in order to analyze the time-space propagation of the ground deformation at the Eastern Flank of Mt. Etna. The proposed methodology compares one image to another, with the aim to find changes in the spatial location of deformation. This allows us to estimate the direction and the amplitude of the time-space propagation of ground deformation calculating a pre-defined distance between two Gaussian distributions. The main result of this kind of analysis is the confirm that the instable Eastern Flank of Mt. Etna is undergoing to an effect of rotation. In particular our work shows an area of clockwise rotation which extends in the eastern flank, bounded approximately to the North by the North-East Rift and the Pernicana fault system, to the North-East by the Ripe della Naca fault scarps and to the East by the Timpe fault system. In correspondence with these structures the rotation reverses and becomes counter-clockwise. These effects of rotations are strongly controlled by the main tectonic features acting as real barriers to the propagation of the deformation. Finally we have compared these results with the analysis of the strain parameters calculated starting from the CGPS data of the 38-stations "Etna@net" network, covering the same time span of the ALOS data. This comparison has also confirmed the presence of a main rotation of the eastern flank and the difference of motion between different sectors of this instable flank.

  14. Innovative use of activated carbon for the removal of heavy metals from ground water sources

    SciTech Connect

    Lewis, T. III

    1996-12-31

    This report discusses the evaluation of the ENVIRO-CLEAN PROCESS, a technology developed by Lewis Environmental Services, Inc. for the recovery of metals such as chromium, mercury, copper, cadmium, lead, and zinc from surface and groundwater streams. This new heavy metal removal process (patent-pending) utilizes granular activated carbon with a proprietary conditioning pretreatment to enhance heavy metal adsorption combined with electrolytic metal recovery to produce a saleable metallic product. The process generates no sludge or hazardous waste and the effluent meets EPA limits. A 50 gpm system was installed for recovering hexavalent chromium from a ground water stream at a site located in Fresno, California. The effluent from the activated carbon system was reinjected into the ground water table with the hexavalent chromium concentration < 10 ppb. The system simultaneously removed trichloroethylene (TCE) to concentrations levels < 05 ppb. The activated carbon is regenerated off-site and the chromium electrolytically recovered. The full scale system has treated over 5 million gallons of ground water since installation. 5 refs., 1 fig., 3 tabs.

  15. Decadal to millennial deformation in the Pamir - Tian Shan collision zone, NW China and surface expression of active tectonics

    NASA Astrophysics Data System (ADS)

    Bufe, A.; Bookhagen, B.; Burbank, D. W.; Bekaert, D. P.; Hussain, E.

    2013-12-01

    The collision between the Pamir and the Tian Shan is a type example of intracontinental collision. GPS studies show that in Northwest China, at the junction between the Tarim basin, the Pamir and the Tian Shan, 7-9 mm/y of north-south shortening are presently accommodated across the boundary between the two orogens. Here, the deformation has mostly stepped out from the high mountain front into the foreland and has formed a complex array of compressional structures. We compare rates of decadal deformation in the area with 104- to 106-year estimates and investigate the extent to which stream profiles and topography reflect the active tectonics in this setting. A dataset of decadal deformation rates around the Tarim-Tian Shan-Pamir junction in Northwest China is obtained from Interferometric Synthetic Aperture Radar (InSAR) time-series analysis. We use the StaMPS/MTI package to combine small-baseline and persistent-scatterer techniques and obtain results that show no significant residual topographic phase correlation. Our data show that deformation has stepped away from the high mountain front and is concentrated on a few structures in the foreland of the Pamir and Tian Shan. Line-of-sight deformation of up to 2-4 mm/y on the Pamir Frontal Thrust (PFT) and the Kashi detachment anticline are observed. No significant displacement of the Main Pamir Thrust can be detected. Within error, the modern deformation rates agree with previously published millennial to million-year estimates along the PFT. However, decadal deformation rates deviate from million-year shortening and rock-uplift rates of anticlines in the foreland of the Tian Shan. It remains unclear whether the discrepancy arises from a recent change to a new persistent uplift rate, or merely from short timescale fluctuation of uplift rate, for example within an earthquake cycle. In an additional step, we extract stream profiles and normalized steepness index (ksn) values for rivers with drainage areas larger than 9

  16. Characterising Seismicity at Alutu, an Actively Deforming Volcano in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Wilks, M.; Nowacki, A.; Kendall, J. M.; Wookey, J. M.; Biggs, J.; Bastow, I. D.; Ayele, A.; Bedada, T.

    2013-12-01

    The Main Ethiopian Rift (MER) provides a unique example of the tectonic and volcanic processes occuring during the transition from continental rifting to oceanic spreading. Situated 100 km south of Addis Ababa along the eastern rift margin, Alutu is a silicic stratovolcano that geodetic measurements (InSAR and GPS) have shown is actively deforming. Though the volcano has received relatively little scientific attention it is also a site of economic significance as a geothermal power plant resides within the caldera. As part of ARGOS (Alutu Research Geophysical ObservationS), a multi-disciplinary project aiming to investigate the magmatic and hydrothermal processes occuring at Alutu, a seismic network of 12 broadband seismometers was deployed in January 2012. Other components of ARGOS include InSAR, GPS, geologic mapping and magnetotellurics. From the seismic dataset, P- and S-wave arrivals across the array were manually picked and used to locate events using a non-linear earthquake location algorithm (NonLinLoc) and a predefined 1D velocity model. Perturbations were later applied to this velocity model to investigate the sensitivity of the locations and evaluate the true uncertainties of the solutions. Over 1000 events were successfully located during 2012, where picks were possible at 4 or more stations. Seismicity clusters at both shallow depths (z<2 km) beneath the caldera and at deeper depths of 5-15 km. There is a significant increase in seismicity during the rainy months, suggesting the shallow events may be related to the hydrothermal system. We interpret the deeper events as being magmatic in origin. Events are also located along the eastern border faults that bound the outer edges of the MER and highlights that seismicity arises concurrently via tectonic processes. An adapted version of Richter's original local magnitude scale (ML) to account for attenuation within the MER (Keir et al., 2006) was then used to compute magnitudes for the best located events

  17. Ground state destabilization by anionic nucleophiles contributes to the activity of phosphoryl transfer enzymes.

    PubMed

    Andrews, Logan D; Fenn, Tim D; Herschlag, Daniel

    2013-07-01

    Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP) and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 10²²-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound P(i) was determined from pH dependencies of the binding of Pi and tungstate, a P(i) analog lacking titratable protons over the pH range of 5-11, and from the ³¹P chemical shift of bound P(i). The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥10⁸-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and P(i) binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the phosphoryl group in

  18. Active deformations of the Jura arc inferred by GPS and seismotectonics

    NASA Astrophysics Data System (ADS)

    Rabin, Mickael; Sue, Christian; Walpersdorf, Andrea

    2016-04-01

    The Jura Mountain is the most recent expression of the alpine orogeny. At the northern end of the western Alps, its recent deformation is still a matter of debates. GPS data available in the Jura bear witness of disagreement between studies, as interpretations vary from uplifted belt to arc-parallel extension (Walpersdorf, et al., 2006) and very slow horizontal movements. Moreover, the traditionally accepted model of an active collisional activity of the Jura, in the dynamic continuity of the Alps, rises up the matter of its geodynamic origin. Indeed, the European Alps are in a post-collisional regime characterized by isostatic-related extension and uplift driven by interaction between buoyancy forces and erosional dynamics (e.g. Sue et al. 2007; Champagnac, et al., 2007; Vernant, et al., 2013.). We present a reappraisal of published focal mechanisms combined with a new GPS solution over the entire arc and surrounding areas. Although the Jura presents a low seismic activity, 53 focal mechanisms over the Jura have been inverted in order to infer the current stress field. Anyhow, we tested several combinations of f.m. inversions, by structural zones, in order to test the regional stress stability. It appears that the current stress field is very stable all over the arc, and following our different sub-datasets. Indeed, the stress field shows a stable near horizontal NW-SE-oriented s1, associated to a NE-SW-oriented s3. Therefore, the structural arc of the Jura seems to have very low or no impact in terms of current stress. Complementarily, we present preliminary velocity and strain fields from a GPS network composed of 25 permanent stations implemented between 1998 and 2014 all around the Jura arc. Indeed, we also integrated the recent GPS-JURA station (OSU THETA Besançon), but they are still too young to accurately constrain the strain of the belt. Preliminary results exhibit very slow velocities across the arc in term of baselines evolution, with infra

  19. Activated carbon derived from waste coffee grounds for stable methane storage.

    PubMed

    Kemp, K Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M; Kim, Kwang S

    2015-09-25

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m(2) g(-1) and a micropore volume of 0.574 cm(3) g(-1) and exhibits a stable CH4 adsorption capacity of ∼4.2 mmol g(-1) at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon. PMID:26329310

  20. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    DOE PAGESBeta

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; et al

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) formore » analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.« less

  1. Ground fissures in the area of Mavropigi Village (N. Greece): Seismotectonics or mining activity?

    NASA Astrophysics Data System (ADS)

    Kalogirou, Eleni; Tsapanos, Theodoros; Karakostas, Vassilios; Marinos, Vassilios; Chatzipetros, Alexandros

    2014-12-01

    In the beginning of July 2010, a ground fissure was observed in the field near the village of Mavropigi (Northern Greece) and specifically in its NW side. Later on (early September), a second ground fissure was perceived, close and almost parallel to the first one and very close to the limits of the lignite exploitation mine (by the Public Power Corporation, PPC). It was observed that the village of Mavropigi slides away slowly towards the PPC lignite mine. Geological, seismological, as well as geotechnical survey in the field indicated that the phenomenon is related to the coal mining exploitation in the near vicinity of the village rather than to any seismotectonic activity in the surrounding area.

  2. Ground-water recharge through active sand dunes in northwestern Nevada

    USGS Publications Warehouse

    Berger, D.L.

    1992-01-01

    Most water-resource investigations in semiarid basins of the Great Basin in western North America conclude that ground-water recharge from direct precipitation on the valley floor is negligible. However, many of these basins contain large areas covered by unvegetated, active sand dunes that may act as conduits for ground-water recharge. The potential for this previously undocumented recharge was investigated in an area covered by sand dunes in Desert Valley, northwestern Nevada, using a deep percolation model. The model uses daily measurements of precipitation and temperature to determine energy and moisture balance, from which estimates of long-term mean annual recharge are made. For the study area, the model calculated a mean annual recharge rate of as much as 1.3 inches per year, or 17 percent of the long-term mean precipitation. Model simulations also indicate that recharge would be virtually zero if the study area were covered by vegetation rather than dunes.

  3. Field examination of ground water quality as an indicator of microbiological activity at gasoline contaminated sites.

    PubMed

    Norkus, R G; Maurer, J; Schultz, N A; Stuart, J D; Robbins, G A; Bristol, R D

    1996-08-01

    Various portable electrodes and an on-line colorimetric test kit were used in the field to examine ground water quality as an indicator of natural bioremediation across two sites in Connecticut having subsurface gasoline contamination. The parameters examined included dissolved oxygen, dissolved carbon dioxide, direct redox potential (Eh), nitrate, ammonia and pH. These parameters permitted delineating regions of aerobic and anaerobic microbiological activity. Variations in these parameters over an eighteen month period along with gas chromatographic analyses of certain gasoline components in the ground water indicated that in-situ bioremediation was effective at containing the petroleum contamination at both sites. It was found that a new on-line colorimetric test kit for the determination of oxygen was more accurate than a commonly used dissolved oxygen electrode. PMID:8680831

  4. Volumetric Deformation of Live Cells Induced by Pressure-Activated Cross-Membrane Ion Transport

    NASA Astrophysics Data System (ADS)

    Hui, T. H.; Zhou, Z. L.; Qian, J.; Lin, Y.; Ngan, A. H. W.; Gao, H.

    2014-09-01

    In this work, we developed a method that allows precise control over changes in the size of a cell via hydrostatic pressure changes in the medium. Specifically, we show that a sudden increase, or reduction, in the surrounding pressure, in the physiologically relevant range, triggers cross-membrane fluxes of sodium and potassium ions in leukemia cell lines K562 and HL60, resulting in reversible volumetric deformation with a characteristic time of around 30 min. Interestingly, healthy leukocytes do not respond to pressure shocks, suggesting that the cancer cells may have evolved the ability to adapt to pressure changes in their microenvironment. A model is also proposed to explain the observed cell deformation, which highlights how the apparent viscoelastic response of cells is governed by the microscopic cross-membrane transport.

  5. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils

    PubMed Central

    Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie

    2015-01-01

    This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now. PMID:26480892

  6. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils.

    PubMed

    Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie

    2015-01-01

    This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now. PMID:26480892

  7. Earthquake Cycle Deformation and GPS: A Quantitative Computer-Based Activity for Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Marshall, S. T.

    2012-12-01

    Earthquake cycle deformation and geodetic measurements of tectonic strain are well represented in recent peer-reviewed literature; however, because of the quantitative nature of these topics, students are often given only a conceptual description of these processes and techniques at the undergraduate level. Here, I present a computer-based assignment appropriate for Sophomore-level undergraduate students in either a structural geology, tectonics, or geophysics course. The assignment introduces students to the classic analytical earthquake cycle equations for a vertical strike-slip fault. While the equations alone are relatively non-intuitive for understanding earthquake cycle deformation, modern computer applications (e.g Maple, Excel, Matlab, Mathematica, etc…) can be used to easily produce graphs of the equations that are much more meaningful for understanding tectonics. The advantage of having students create their own plots is that once the plots have been created, students can tweak model parameters (locking depth and slip rate) to see how the resultant deformation would change. Thus, the students can effectively create their own earthquake cycle deformation tool that can be tweaked to fit real or hypothetical data. The assignment ends by having students determine the interseismic slip rate and locking depth on the San Andreas fault given actual Plate Boundary Observatory Data that is provided to them. The overarching goals of the assignment are to encourage students to make their own tools and graphics for learning new concepts and to encourage the next generation of geologists to pursue quantitative tectonic studies in their academic and/or professional futures.

  8. Persistent inflation at Aira caldera accompanying explosive activity at Sakurajima volcano: Constraining deformation source parameters from Finite Element inversions

    NASA Astrophysics Data System (ADS)

    Hickey, James; Gottsmann, Jo; Iguchi, Masato; Nakamichi, Haruhisa

    2015-04-01

    Aira caldera is located within Kagoshima Bay at the southern end of Kyushu, Japan. Sakurajima is an active post-caldera andesitic stratovolcano that sits on the caldera's southern rim. Despite frequent Vulcanian-type explosive activity, the area is experiencing continued uplift at a maximum rate of approximately 1.5 cm/yr with a footprint of 40 km, indicating that magma is being supplied faster than it is erupted. This is of particular concern as the amplitude of deformation is approaching the level inferred prior to the 1914 VEI 4 eruption. Using GPS data from 1996 - 2007 we explore causes for the uplift. To solve for the optimum deformation source parameters we use an inverse Finite Element method accounting for three-dimensional material heterogeneity (inferred from seismic tomography) and the surrounding topography of the region. The same inversions are also carried out using Finite Element models that incorporate simplified homogeneous or one-dimensional subsurface material properties, with and without topography. Results from the comparison of the six different models show statistically significant differences in the inferred deformation sources. This indicates that both subsurface heterogeneity and surface topography are essential in geodetic modelling to extract the most realistic deformation source parameters. The current best-fit source sits within a seismic low-velocity zone in the north-east of the caldera at a depth of approximately 14 km with a volume increase of 1.2 x 108 m3. The source location underlies a region of active underwater fumaroles within the Wakamiko crater and differs significantly from previous analytical modelling results. Seismic data further highlights areas of high seismic attenuation as well as large aseismic zones, both of which could allude to inelastic behaviour and a significant heat source at depth. To integrate these observations, subsequent forward Finite Element models will quantify the importance of rheology and

  9. Ground subsidence and associated ground fracturing in urban areas: InSAR monitoring of active tectonic structures (Ciudad Guzman, Colima Graben - Mexico)

    NASA Astrophysics Data System (ADS)

    Bignami, C.; Brunori, C.; Zucca, F.; Groppelli, G.; Norini, G.; Hernandez, N. D.; Stramondo, S.

    2013-12-01

    This study focuses on the observation of a creeping phenomenon that produces subsidence of the Zapotlan basin and ground fracturing in correspondence of the Ciudad Guzmàn (Jalisco - Mexico). The September 21, 2012, the Ciudad Guzmàn has been struck by a phenomenon of ground fracturing of about 1.5 km of length. This event caused the deformation of the roads and the damage of 30 houses, of which eight have been declared uninhabitable. The alignment of fractures is coincident with the escarpments produced in September 19, 1985, in the Ciudad Guzman urban area, when a strong earthquake, magnitude 8.1, struck the Mexican area, causing the deaths of at least 10,000 people and serious damage in Mexico City. In Ciudad Guzmán, about 60% of the buildings were destroyed, with about 50 loss of life. The city is located in the Zapotlan basin (northern Colima graben), a wide tectonic depression where the depth of the infilling sediments is about 1 km. This subsidence cannot be measured outside the urbanized area, but it can be considered as a deformation mechanism of the central part of the basin. In order to detect and mapping the spatio-temporal features of the processes that led to this event, we applied InSAR multi-temporal techniques to analyze a dataset of ENVISAT satellite SAR images, acquired in a time span between 2003-2010. InSAR techniques detect a subsidence of the north-western part of Ciudad Guzmàn of about 15 mm/yr in the time interval 2003-2010. The displacement occurred in September 21, 2012, was detected using two RadarSAT2 acquisitions (2012-03-22 and 2013-03-17). The explanation of surface movements based on interferometric results, ground data and geological field observations, allowed confirming surface effect due to the overexploitation of the aquifers and highlights a subsidence due to anthropogenic causes coupled to buried tectonic structures.

  10. Active intraplate deformation as geodynamic responses to oblique shallow subduction of a flat slab: example from central and southwest Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Sato, Hiroshi

    2015-04-01

    Subduction of a flat slab has been recognized as one of the primary driving mechanism of wide intracontinental subsidence farther away from the subduction leading edge in many subduction margins. In most cases, however, quantitative and qualitative limitations on chronological constraints prevent comprehensive understanding of these geodynamic linkages. In this study, we show distinct, geologic and seismic evidence for spatial and temporal correlation between plate subduction and intercontinental deformation, mainly driven by dynamic interaction between subducting Philippine Sea (PHS) plate and overriding continental crusts of central and southwest Japan (Eurasian plate) along the Nankai-Tonankai subduction zone since Pliocene. Based on analyses of Pliocene to Pleistocene tectonic histories by use of rich dataset of Neogene stratigraphy, drainage network evolution, and shallow to deep seismic reflection profiles, depocenters of wide sedimentary basins and active thrusting have migrated northward since ca. 5 Ma to present from forearc to backarc of the southwest Japan arc. Median tectonic line, active dextral strike-slip fault as a forearc sliver along the Nankai, is located north of the upward extension of the downdip limit of the interseismic locked zone. Southwest Japan north of the MTL, underlain by the subducting slab with steady state slip (Nakanishi et al., 2002; Kodaira et al., 2004), appears tectonically less inactive than central Japan and has behaved as a less deformed rigid block. Contrastingly, Quaternary active intraplate deformation has been prominent north of the inactive MTL above a shallow flat segment of the PHS plate along the Tonankai. Deep seismic reflection profile images upward corrugated very shallow PHS slab being contact with continental lower crust beneath actively deforming area. We interpreted temporal and spatial correlation of oblique subduction of the shallow and flat, corrugated PHS slab as an essential mechanical role to enhance

  11. Active deformation and engineering analysis of CFRP mirror of various lay-up sequences within quasi-isotropic laminates

    NASA Astrophysics Data System (ADS)

    Zeng, Chunmei; Yu, Xia; Guo, Peiji

    2014-08-01

    A regularization stiffness coefficient method was verified further to optimize lay-up sequences of quasi-isotropic laminates for carbon fiber reinforced polymer (CFRP) composite mirrors. Firstly, the deformation due to gravity of 1G and temperature difference of 20-100°C and the modal were analyzed by finite element method (FEM). Secondly, the influence of angle error of ply stacking on quasi-isotropic of bending stiffness was evaluated. Finally, an active support system of 49 actuators in circular arrangement is designed for a 500mm CFRP mirror, and its goal is to deform the spherical CFRP mirror to a parabolic. Therefore, the response functions of the actuators were gotten, and the surface form errors and stresses were calculated and analyzed. The results show that the CFRP mirrors designed by the method have a better symmetrical bending deformation under gravity and thermal load and a higher fundamental frequency, and the larger n the better symmetry (for π/n quasi-isotropic laminates); the method reduces the sensitivity to misalignment of ply orientation for symmetric bending, and the mirror's maximum von Mises stress and maximum shear stress are less compared to those laminates not optimized in lay-up sequence.

  12. Evaluation of stiffness and plastic deformation of active ceramic self-ligating bracket clips after repetitive opening and closure movements

    PubMed Central

    Carneiro, Grace Kelly Martins; Roque, Juliano Alves; Segundo, Aguinaldo Silva Garcez; Suzuki, Hideo

    2015-01-01

    OBJECTIVE: The aim of this study was to assess whether repetitive opening and closure of self-ligating bracket clips can cause plastic deformation of the clip. METHODS: Three types of active/interactive ceramic self-ligating brackets (n = 20) were tested: In-Ovation C, Quicklear and WOW. A standardized controlled device performed 500 cycles of opening and closure movements of the bracket clip with proper instruments and techniques adapted as recommended by the manufacturer of each bracket type. Two tensile tests, one before and one after the repetitive cycles, were performed to assess the stiffness of the clips. To this end, a custom-made stainless steel 0.40 x 0.40 mm wire was inserted into the bracket slot and adapted to the universal testing machine (EMIC DL2000), after which measurements were recorded. On the loading portion of the loading-unloading curve of clips, the slope fitted a first-degree equation curve to determine the stiffness/deflection rate of the clip. RESULTS: The results of plastic deformation showed no significant difference among bracket types before and after the 500 cycles of opening and closure (p = 0.811). There were significant differences on stiffness among the three types of brackets (p = 0.005). The WOW bracket had higher mean values, whereas Quicklear bracket had lower values, regardless of the opening/closure cycle. CONCLUSION: Repetitive controlled opening and closure movements of the clip did not alter stiffness or cause plastic deformation. PMID:26352844

  13. Correction of an active space telescope mirror using a deformable mirror in a woofer-tweeter configuration

    NASA Astrophysics Data System (ADS)

    Allen, Matthew R.; Kim, Jae Jun; Agrawal, Brij N.

    2016-04-01

    The Naval Postgraduate School's segmented mirror telescope (SMT) was developed using prototype silicon carbide active hybrid mirror technology to demonstrate lower cost and rapid manufacture of primary mirror segments for a space telescope. The developmental mirror segments used too few actuators limiting the ability to adequately correct the surface figure error. To address the unintended shortfall of the developmental mirrors, a deformable mirror is added to the SMT and control techniques are developed. The control techniques are similar to woofer-tweeter adaptive optics, where the SMT segment represents the woofer and the deformable mirror represents the tweeter. The optical design of an SMT woofer-tweeter system is presented, and the impacts of field angle magnification on the placement and size of the deformable mirror are analyzed. A space telescope woofer-tweeter wavefront control technique is proposed using a global influence matrix and closed-loop constrained minimization controller. The control technique simultaneously manipulates the woofer and tweeter mirrors. Simulation and experimental results demonstrate a significant improvement in wavefront error of the primary mirror and the control technique shows significant wavefront error improvement compared to sequentially controlling the woofer and tweeter mirrors.

  14. Effect of Tungsten on Primary Creep Deformation and Minimum Creep Rate of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar; Mathew, M. D.

    2014-10-01

    Effect of tungsten on transient creep deformation and minimum creep rate of reduced activation ferritic-martensitic (RAFM) steel has been assessed. Tungsten content in the 9Cr-RAFM steel has been varied between 1 and 2 wt pct, and creep tests were carried out over the stress range of 180 and 260 MPa at 823 K (550 °C). The tempered martensitic steel exhibited primary creep followed by tertiary stage of creep deformation with a minimum in creep deformation rate. The primary creep behavior has been assessed based on the Garofalo relationship, , considering minimum creep rate instead of steady-state creep rate . The relationships between (i) rate of exhaustion of transient creep r' with minimum creep rate, (ii) rate of exhaustion of transient creep r' with time to reach minimum creep rate, and (iii) initial creep rate with minimum creep rate revealed that the first-order reaction-rate theory has prevailed throughout the transient region of the RAFM steel having different tungsten contents. The rate of exhaustion of transient creep r' and minimum creep rate decreased, whereas the transient strain ɛ T increased with increase in tungsten content. A master transient creep curve of the steels has been developed considering the variation of with . The effect of tungsten on the variation of minimum creep rate with applied stress has been rationalized by invoking the back-stress concept.

  15. Feedback between erosion and active deformation: geomorphic constraints from the frontal Jura fold-and-thrust belt (eastern France)

    NASA Astrophysics Data System (ADS)

    Madritsch, Herfried; Fabbri, Olivier; Hagedorn, Eva-Marie; Preusser, Frank; Schmid, Stefan M.; Ziegler, Peter A.

    2010-10-01

    A regional tectono-geomorphic analysis indicates a Pliocene to recent rock uplift of the outermost segment of the Jura fold-and-thrust belt, which spatially coincides with the intra-continental Rhine-Bresse Transfer Zone. Elevated remnants of the partly eroded Middle Pliocene Sundgau-Forêt de Chaux Gravels identified by heavy mineral analyses allow for a paleo-topographic reconstruction that yields minimum regional Latest Pliocene to recent rock uplift rates of 0.05 ± 0.02 mm/year. This uplift also affected the Pleistocene evolution of the Ognon and Doubs drainage basins and is interpreted as being tectonically controlled. While the Ognon River was deflected from the uplifted region the Doubs deeply incised into it. Focused incision of the Doubs possibly sustained ongoing deformation along anticlines which were initiated during the Neogene evolution of the thin-skinned Jura fold-and-thrust belt. At present, this erosion-related active deformation is taking place synchronously with thick-skinned tectonics, controlling the inversion of the Rhine-Bresse Transfer Zone. This suggests local decoupling between seismogenic basement faulting and erosion-related deformation of the Mesozoic cover sequences.

  16. Mechanics of Magnetostrictive Thin Film Deformation and its Application in Active X-ray Optics

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli

    High quality imaging system of telescopes in astronomy requires innovations to remove or correct the mid-spatial frequency (MSF) ripples on the mirror surface of lightweight optics. When the telescope is sent to the space, its launch mass is the key point to limit its collecting area. Therefore, the lightweight optics (100-150 mum thick electroplated nickel/cobalt, or 200-400 mum thick glass) is considered to be employed. However, the surface profile of the thin optical surface can't be polished to extremely high accuracy. Instead, the profile is expected to be corrected by applying voltage or magnetic field to drive the coating of smart materials (piezo or magnetostrictive materials) on the back side of the mirrors. During the process, the surface profile correction by the local stress on the 2-d surface is challenging. Both the measurements and the theoretical prediction of the surface profiles after correction are investigated. As a first step in the development of tools to predict the deformation of the coated glass strip samples (20x5x0.1 mm), one commercial magnetically smart material (MSM) was deposited on the samples by the magnetron sputtering method. One experimental setup was established to measure the deflections of these coated samples under an external magnetic field by Zygo NewView white light interferometry (WLI). These deflections agreed well with the results from the developed analytical and numerical analysis under various magnetic field strengths. In the further research, more efforts were made to analyze the full three-dimensional deformation behavior of MSM thin films on a square glass sample (50x50x0.2 mm). With the magnetic field applied, the 2-d surface profile of the coated glass sample was measured by WLI. To better study the deformation of the sample coated with MSMs, a finite element method (FEM) and a theoretical model were developed to predict the deformation of the sample with local misfit strains. The results calculated form the FEM

  17. Opposing Activity Changes in AMP Deaminase and AMP-Activated Protein Kinase in the Hibernating Ground Squirrel

    PubMed Central

    Cicerchi, Christina; Garcia, Gabriela E.; Roncal-Jimenez, Carlos A.; Trostel, Jessica; Jain, Swati; Mant, Colin T.; Rivard, Christopher J.; Ishimoto, Takuji; Shimada, Michiko; Sanchez-Lozada, Laura Gabriela; Nakagawa, Takahiko; Jani, Alkesh; Stenvinkel, Peter; Martin, Sandra L.; Johnson, Richard J.

    2015-01-01

    Hibernating animals develop fatty liver when active in summertime and undergo a switch to a fat oxidation state in the winter. We hypothesized that this switch might be determined by AMP and the dominance of opposing effects: metabolism through AMP deaminase (AMPD2) (summer) and activation of AMP-activated protein kinase (AMPK) (winter). Liver samples were obtained from 13-lined ground squirrels at different times during the year, including summer and multiples stages of winter hibernation, and fat synthesis and β-fatty acid oxidation were evaluated. Changes in fat metabolism were correlated with changes in AMPD2 activity and intrahepatic uric acid (downstream product of AMPD2), as well as changes in AMPK and intrahepatic β-hydroxybutyrate (a marker of fat oxidation). Hepatic fat accumulation occurred during the summer with relatively increased enzymes associated with fat synthesis (FAS, ACL and ACC) and decreased enoyl CoA hydratase (ECH1) and carnitine palmitoyltransferase 1A (CPT1A), rate limiting enzymes of fat oxidation. In summer, AMPD2 activity and intrahepatic uric acid levels were high and hepatic AMPK activity was low. In contrast, the active phosphorylated form of AMPK and β-hydroxybutyrate both increased during winter hibernation. Therefore, changes in AMPD2 and AMPK activity were paralleled with changes in fat synthesis and fat oxidation rates during the summer-winter cycle. These data illuminate the opposing forces of metabolism of AMP by AMPD2 and its availability to activate AMPK as a switch that governs fat metabolism in the liver of hibernating ground squirrel. PMID:25856396

  18. Opposing activity changes in AMP deaminase and AMP-activated protein kinase in the hibernating ground squirrel.

    PubMed

    Lanaspa, Miguel A; Epperson, L Elaine; Li, Nanxing; Cicerchi, Christina; Garcia, Gabriela E; Roncal-Jimenez, Carlos A; Trostel, Jessica; Jain, Swati; Mant, Colin T; Rivard, Christopher J; Ishimoto, Takuji; Shimada, Michiko; Sanchez-Lozada, Laura Gabriela; Nakagawa, Takahiko; Jani, Alkesh; Stenvinkel, Peter; Martin, Sandra L; Johnson, Richard J

    2015-01-01

    Hibernating animals develop fatty liver when active in summertime and undergo a switch to a fat oxidation state in the winter. We hypothesized that this switch might be determined by AMP and the dominance of opposing effects: metabolism through AMP deaminase (AMPD2) (summer) and activation of AMP-activated protein kinase (AMPK) (winter). Liver samples were obtained from 13-lined ground squirrels at different times during the year, including summer and multiples stages of winter hibernation, and fat synthesis and β-fatty acid oxidation were evaluated. Changes in fat metabolism were correlated with changes in AMPD2 activity and intrahepatic uric acid (downstream product of AMPD2), as well as changes in AMPK and intrahepatic β-hydroxybutyrate (a marker of fat oxidation). Hepatic fat accumulation occurred during the summer with relatively increased enzymes associated with fat synthesis (FAS, ACL and ACC) and decreased enoyl CoA hydratase (ECH1) and carnitine palmitoyltransferase 1A (CPT1A), rate limiting enzymes of fat oxidation. In summer, AMPD2 activity and intrahepatic uric acid levels were high and hepatic AMPK activity was low. In contrast, the active phosphorylated form of AMPK and β-hydroxybutyrate both increased during winter hibernation. Therefore, changes in AMPD2 and AMPK activity were paralleled with changes in fat synthesis and fat oxidation rates during the summer-winter cycle. These data illuminate the opposing forces of metabolism of AMP by AMPD2 and its availability to activate AMPK as a switch that governs fat metabolism in the liver of hibernating ground squirrel. PMID:25856396

  19. Sequential growth of deformation bands in carbonate grainstones in the hangingwall of an active growth fault: Implications for deformation mechanisms in different tectonic regimes

    NASA Astrophysics Data System (ADS)

    Rotevatn, Atle; Thorsheim, Elin; Bastesen, Eivind; Fossmark, Heidi S. S.; Torabi, Anita; Sælen, Gunnar

    2016-09-01

    Deformation bands in porous sandstones have been extensively studied for four decades, whereas comparatively less is known about deformation bands in porous carbonate rocks, particularly in extensional settings. Here, we investigate porous grainstones of the Globigerina Limestone Formation in Malta, which contain several types of deformation bands in the hangingwall of the Maghlaq Fault: (i) bed-parallel pure compaction bands (PCB); (ii) pressure solution-dominated compactive shear bands (SCSB) and iii) cataclasis-dominated compactive shear bands (CCSB). Geometric and kinematic analyses show that the bands formed sequentially in the hangingwall of the evolving Maghlaq growth fault. PCBs formed first due to fault-controlled subsidence and vertical loading; a (semi-)tectonic control on PCB formation is thus documented for the first time in an extensional setting. Pressure solution (dominating SCSBs) and cataclasis (dominating CCSBs) appear to have operated separately, and not in concert. Our findings therefore suggest that, in some carbonate rocks, cataclasis within deformation bands may develop irrespective of whether pressure solution processes are involved. We suggest this may be related to stress state, and that whereas pressure solution is a significant facilitator of grain size reduction in contractional settings, grain size reduction within deformation bands in extensional settings is less dependent on pressure solution processes.

  20. Safe Physical Activity Environments--To What Extent Are Local Government Authorities Auditing the Safety of Grassed Sporting Grounds?

    ERIC Educational Resources Information Center

    Otago, Leonie; Swan, Peter; Donaldson, Alex; Payne, Warren; Finch, Caroline

    2009-01-01

    Physical activity (PA) participation is influenced by the safety of the settings in which it is undertaken. This study describes the grounds assessment practices of Local Government Authorities (LGAs) in Victoria, Australia to ensure the safety of grassed sporting grounds. It also makes recommendations for improving these practices to maximise the…

  1. Monitoring Ground Deformation Using Persistent Scatters Interferometry (PSI) and Small Baselines (SBAS) Techniques Integrated in the ESA RSS Service: The Case Study of Valencia, Rome and South Sardinia

    NASA Astrophysics Data System (ADS)

    Delgado, Manuel J.; Cuccu, Roberto; Rivolta, Giancarlo

    2015-05-01

    This work is focused on the infrastructure monitoring of areas which had experienced significant urbanization and therefore, also an increase of the exploitation of natural resources. Persistent Scatters Interferometry (PS-InSAR) and Small Baselines (SBAS) approaches are applied to three study areas for which large datasets of SAR images are available in ascending and descending modes to finally deploy deformation maps of different buildings and infrastructures. Valencia, Rome and South Sardinia areas have been selected for this study, having experienced an increase of the exploitation of natural resources in parallel with their urban expansion. Moreover, Rome is a very special case, where Cultural Heritage permeating the city and its surroundings would suggest the necessity of a tool for monitoring the stability of the different sites. This work wants to analyse the potential deformation that had occurred in these areas during the period 1992 to 2010, by applying Persistent Scatters Interferometry to ESA ERS SAR and Envisat ASAR data.

  2. Character and origins of ground rupturing and ground deformation during the 28 June 1992 Landers, California earthquake (as well as the 1989 Loma Prieta and 1994 Northridge earthquakes). Final report

    SciTech Connect

    Johnson, A.M.

    1996-09-17

    The overall objective of the research has been to understand the form and significance of surface rupture produced by earthquakes. Specific objectives are to describe fracturing and other manifestations of broad belts of ground rupture during the Landers earthquake and to mechanically analyze the structures that form along the belts. The author has learned much about ground rupture during earthquakes, even though he has studied only three earthquakes to date: Loma Prieta, Landers and Northridge.

  3. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Ouyang, Feng

    2013-03-01

    Activated carbon prepared from spent coffee grounds and pomelo skin by phosphoric acid activation had been employed as the adsorbent for ethylene and n-butane at room temperature. Prepared activated carbon was characterized by means of nitrogen adsorption-desorption, X-ray powder diffraction, scanning electron microscope and Fourier transform infrared spectroscope. It was confirmed that pore structure played an important role during the adsorption testes. Adsorption isotherms of ethylene and n-butane fitted well with Langmuir equation. The prepared samples owned better adsorption capacity for n-butane than commercial activated carbon. Isosteric heats of adsorptions at different coverage were calculated through Clausius-Clapeyron equation. Micropore filling effect was explained in a thermodynamic way.

  4. Measurement of energetic radiation caused by thunderstorm activities by a sounding balloon and ground observation

    NASA Astrophysics Data System (ADS)

    Torii, T.

    2015-12-01

    Energetic radiation caused by thunderstorm activity is observed at various places, such as the ground, high mountain areas, and artificial satellites. In order to investigate the radiation source and its energy distribution, we measured energetic radiation by a sounding balloon, and the ground observation. On the measurement inside/above the thundercloud, we conducted a sounding observation using a radiosonde mounted two GM tubes (for gamma-rays, and for beta/gamma-rays), in addition to meteorological instruments. The balloon passed through a region of strong echoes in a thundercloud shown by radar image, at which time an increase in counting rate of the GM tube about 2 orders of magnitude occurred at the altitude from 5 km to 7.5 km. Furthermore, the counting rate of two GM tubes indicated the tendency different depending on movement of a balloon. This result suggests that the ratio for the gamma-rays (energetic photons) of the beta-rays (energetic electrons) varies according to the place in the thundercloud. Furthermore, we carried out a ground observation of the energetic gamma rays during winter thunderstorm at a coastal area facing the Sea of Japan. Two types of the energetic radiation have been observed at this time. We report the outline of these measurements and analysis in the session of the AGU meeting.

  5. Removal of micropollutants with coarse-ground activated carbon for enhanced separation with hydrocyclone classifiers.

    PubMed

    Otto, N; Platz, S; Fink, T; Wutscherk, M; Menzel, U

    2016-01-01

    One key technology to eliminate organic micropollutants (OMP) from wastewater effluent is adsorption using powdered activated carbon (PAC). To avoid a discharge of highly loaded PAC particles into natural water bodies a separation stage has to be implemented. Commonly large settling tanks and flocculation filters with the application of coagulants and flocculation aids are used. In this study, a multi-hydrocyclone classifier with a downstream cloth filter has been investigated on a pilot plant as a space-saving alternative with no need for a dosing of chemical additives. To improve the separation, a coarser ground PAC type was compared to a standard PAC type with regard to elimination results of OMP as well as separation performance. With a PAC dosing rate of 20 mg/l an average of 64.7 wt% of the standard PAC and 79.5 wt% of the coarse-ground PAC could be separated in the hydrocyclone classifier. A total average separation efficiency of 93-97 wt% could be reached with a combination of both hydrocyclone classifier and cloth filter. Nonetheless, the OMP elimination of the coarse-ground PAC was not sufficient enough to compete with the standard PAC. Further research and development is necessary to find applicable coarse-grained PAC types with adequate OMP elimination capabilities. PMID:27232411

  6. Quantification of Cyclic Ground Reaction Force Histories During Daily Activity in Humans

    NASA Technical Reports Server (NTRS)

    Breit, G. A.; Whalen, R. T.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Theoretical models and experimental studies of bone remodeling suggest that bone density and structure are influenced by local cyclic skeletal tissue stress and strain histories. Estimation of long-term loading histories in humans is usually achieved by assessment of physical activity level by questionnaires, logbooks, and pedometers, since the majority of lower limb cyclic loading occurs during walking and running. These methods provide some indication of the mechanical loading history, but fail to consider the true magnitude of the lower limb skeletal forces generated by various daily activities. These techniques cannot account for individual gait characteristics, gait speed, and unpredictable high loading events that may influence bone mass significantly. We have developed portable instrumentation to measure and record the vertical component of the ground reaction force (GRFz) during normal daily activity. This equipment allows long-term quantitative monitoring of musculoskeletal loads, which in conjunction with bone mineral density assessments, promises to elucidate the relationship between skeletal stresses and bone remodeling.

  7. Method and Apparatus for Monitoring of Daily Activity in Terms of Ground Reaction Forces

    NASA Technical Reports Server (NTRS)

    Whalen, Robert T. (Inventor); Breit, Gregory A. (Inventor)

    2001-01-01

    A device to record and analyze habitual daily activity in terms of the history of gait-related musculoskeletal loading is disclosed. The device consists of a pressure-sensing insole placed into the shoe or embedded in a shoe sole, which detects contact of the foot with the ground. The sensor is coupled to a portable battery-powered digital data logger clipped to the shoe or worn around the ankle or waist. During the course of normal daily activity, the system maintains a record of time-of-occurrence of all non-spurious foot-down and lift-off events. Off line, these data are filtered and converted to a history of foot-ground contact times, from which measures of cumulative musculoskeletal loading, average walking- and running-specific gait speed, total time spent walking and running, total number of walking steps and running steps, and total gait-related energy expenditure are estimated from empirical regressions of various gait parameters to the contact time reciprocal. Data are available as cumulative values or as daily averages by menu selection. The data provided by this device are useful for assessment of musculoskeletal and cardiovascular health and risk factors associated with habitual patterns of daily activity.

  8. Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State.

    PubMed

    Stoop, Ruedi; Gomez, Florian

    2016-07-15

    The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information. PMID:27472144

  9. Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State

    NASA Astrophysics Data System (ADS)

    Stoop, Ruedi; Gomez, Florian

    2016-07-01

    The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.

  10. Study of the active deformation of Mitidja (Tell Atlas, Algeria) by GPS

    NASA Astrophysics Data System (ADS)

    Bacha, Wahab; Masson, Frederic; Yelles-Chaouche, Abdelkrim; Lammali, Kamel; Bellik, Amar; Hamai, Lamine

    2013-04-01

    A network was created in the Mitidja region around the capital Algiers (Algeria). It has been established to study the deformation of the region and the slow operation of flaws in it. The network was installed by a distribution of GPS stations according to structural domains existing in the region. Twelve bases spread across the study area, have been installed. The measurements were acquired by performing four measurement campaigns in 2006, 2007, 2009 and 2010, with sessions over a month of action. This work allowed the installation of a geodetic network of regional monitoring by methodology GPS in the zone of Mitidja (Tellian Atlas, Algeria). Four observation campaigns were carried out on this area with session's superiors in one month of measurements. The treatment was carried out with software GAMIT-GLOBK, the network is attached to several world stations IGS treated between 2000-2010, indexed in a precise frame of reference ITRF05. The results presented in this memory show a deformation in shortening ≤ 0.5 mm/an in the plain of Mitidja and the surrounding Solid masses.

  11. The three-dimensional pattern of crustal deformation associated with active normal fault systems observed using continuous GPS geodesy

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Hreinsdottir, S.

    2009-12-01

    Geological examples of shallow dipping normal faults with large displacements are exposed at numerous locations throughout the world and it is widely recognized that extensional deformation at brittle crustal levels is most efficiently accomplished by slip across such structures. It has previously been shown that lower dip angles reduce the regional stresses required to drive large horizontal displacements. Nevertheless, the traditional theory of fault mechanics—based on Anderson’s classification of stress regimes, the Coulomb failure criterion, and Byerlee’s friction law—precludes such faults from slipping at low angle. Observational support for this traditional theory includes the absence of large unequivocally low-angle normal fault earthquakes in the global catalog; all well-determined normal fault earthquakes appear to have occurred on moderate to steeply dipping planes. However, precise measurements of 3D crustal motions based on continuous GPS in central Italy and Utah reveal deformation patterns across active normal fault systems that are inconsistent with active slip across steeply dipping planes. Instead, the combination of observed horizontal and vertical surface motions are consistent with slip across low angle surfaces independently imaged in the subsurface by seismic reflection and other geophysical data. For the Alto Tiberina fault in central Italy, active aseismic creep occurs at shallow crustal levels, most likely within the brittle-frictional regime at which Andersonian-Byerlee fault mechanics should be applicable. The actively creeping portion of the fault inferred using GPS geodesy correlates well with the observed pattern of micro-seismicity, which concentrates along the inferred subsurface fault plane. GPS measurements across the greater Wasatch fault zone in the vicinity of Salt Lake City, Utah, reveal crustal motions consistent with aseismic displacement across a shallow dipping fault or sub-horizontal shear zone at mid

  12. High resolution deformation measurements at active volcanoes: a new remote sensing technology

    NASA Astrophysics Data System (ADS)

    Hort, M. K.; Scharff, L.; Gerst, A.; Meier, K.; Falk, S.; Peters, G.; Ripepe, M.

    2013-12-01

    It is known from observations at different volcanoes using ULP seismic observations that the volcanic edifice deforms slightly prior to an eruption. It can be expected that immediately prior to an eruption the largest deformation should occur in the vicinity of the vent. However, placing instruments at the vent is impossible as they will be destroyed during an eruption. Here we present new, high temporal resolution (up to 300Hz) deformation measurement that utilizes the phase information of a frequency modulated Doppler radar system. We decompose the Doppler signal into two parts, one part which allows us to measure speeds significantly above 0.5m/s (i.e. the movement of volcanic ash and clasts). The other part utilizes the slow phase changes of the signal reflected from non-moving objects, i.e. the volcanic edifice. This signal is used to measure very slow and longer term deformations, which are the main subject of this study. The method has been tested measuring the displacement of high rise buildings during strong winds. It can be shown that displacements down to 50 μm can be resolved without a problem. We apply this method to different data sets collected at Stromboli volcano, Italy, as well as Santiaguito volcano, Guatemala. At Stromboli we observed the NE crater once in 2008 and once in 2011. During both campaigns we observe on average a displacement between 1 and 5mm before different eruptions. This displacement can be interpreted as a widening of the conduit prior to an eruption. In a couple of cases even an oscillatory movement is observed with frequencies of about 0.5Hz. Finite element modeling of the rise of a pressurized slug indicates that deformations at the crater rim on the order of a 1mm or less are certainly reasonable. In the case of Santiaguito volcano prior to an eruption we observe a pre eruptive displacement 5-15mm and after the end of an eruption a displacement of up to 1m before the next eruption occurs. This can be interpreted as in

  13. Numerical simulation and experimental validation of the large deformation bending and folding behavior of magneto-active elastomer composites

    NASA Astrophysics Data System (ADS)

    Sheridan, Robert; Roche, Juan; Lofland, Samuel E.; vonLockette, Paris R.

    2014-09-01

    This work seeks to provide a framework for the numerical simulation of magneto-active elastomer (MAE) composite structures for use in origami engineering applications. The emerging field of origami engineering employs folding techniques, an array of crease patterns traditionally on a single flat sheet of paper, to produce structures and devices that perform useful engineering operations. Effective means of numerical simulation offer an efficient way to optimize the crease patterns while coupling to the performance and behavior of the active material. The MAE materials used herein are comprised of nominally 30% v/v, 325 mesh barium hexafarrite particles embedded in Dow HS II silicone elastomer compound. These particulate composites are cured in a magnetic field to produce magneto-elastic solids with anisotropic magnetization, e.g. they have a preferred magnetic axis parallel to the curing axis. The deformed shape and/or blocked force characteristics of these MAEs are examined in three geometries: a monolithic cantilever as well as two- and four-segment composite accordion structures. In the accordion structures, patches of MAE material are bonded to a Gelest OE41 unfilled silicone elastomer substrate. Two methods of simulation, one using the Maxwell stress tensor applied as a traction boundary condition and another employing a minimum energy kinematic (MEK) model, are investigated. Both methods capture actuation due to magnetic torque mechanisms that dominate MAE behavior. Comparison with experimental data show good agreement with only a single adjustable parameter, either an effective constant magnetization of the MAE material in the finite element models (at small and moderate deformations) or an effective modulus in the minimum energy model. The four-segment finite element model was prone to numerical locking at large deformation. The effective magnetization and modulus values required are a fraction of the actual experimentally measured values which suggests a

  14. GOES-R Proving Ground Activities at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew

    2011-01-01

    SPoRT is actively involved in GOES-R Proving Ground activities in a number of ways: (1) Applying the paradigm of product development, user training, and interaction to foster interaction with end users at NOAA forecast offices national centers. (2) Providing unique capabilities in collaboration with other GOES-R Proving Ground partners (a) Hybrid GOES-MODIS imagery (b) Pseudo-GLM via regional lightning mapping arrays (c) Developing new RGB imagery from EUMETSAT guidelines

  15. Patterned ground as an indicator of periglacial activity in and around Lomonosov Crater, Mars

    NASA Astrophysics Data System (ADS)

    Barrett, Alex; Balme, Matt; Patel, Manish; Hagermann, Axel

    2014-05-01

    A survey of the northern plains of Mars has been conducted to catalogue the distribution of possible periglacial landforms across several large study areas in Acidalia, Utopia and Arcadia Planitiae.. Several hundred HiRISE and CTX images have been surveyed, looking for features indicative of a periglacial environment; patterned ground, solifluction features and scalloped depressions. Non-sorted patterned ground is fairly common across the Northern Plains of Mars where nets of fracture polygons are common at mid to high latitudes. These features are most likely the result of contraction cracking due to temperature changes. The occurrence of fracture polygons is in keeping with the cold, dry environment of Mars. Analogous features on Earth are found in some of the coldest and driest regions of the planet. However other types of patterned ground, such as sorted circles and stripes, tend to occur in warmer and wetter environments as sorted patterned ground is the result of the repeated freezing and thawing of the permafrost active layer. These features require the action of liquid water during the warmer months of the year and are characteristic of a periglacial environment. Such features would not be expected to be as common on Mars, where the surface temperature is only warm enough for water to exist in a liquid state for short periods of time in isolated areas which receive high levels of insolation. Prior studies (e.g. Gallagher et al., 2011, Icarus.) have observed features which appear to be morphologically similar to sorted patterned ground. It is possible that unusual sites where boulders appear organised into stripes and networks could be analogous to these terrestrial periglacial features. Determining where such features occur on Mars could have important implications for understanding the martian environment. Lomonosov Crater, located at 64.9 degrees N, 9.3 degrees W in the northern reaches of Acidalia Planitia, is a 150 km diameter crater surrounded by the

  16. Temperature adaptation of active sodium-potassium transport and of passive permeability in erythrocytes of ground squirrels.

    NASA Technical Reports Server (NTRS)

    Kimzey, S. L.; Willis, J. S.

    1971-01-01

    Unidirectional active and passive fluxes of K-42 and Na-24 were measured in red blood cells of ground squirrels (hibernators) and guinea pigs (nonhibernators). As the temperature was lowered, ?active' (ouabain-sensitive) K influx and Na efflux were more considerably diminished in guinea pig cells than in those of ground squirrels. The fraction of total K influx which is ouabain-sensitive in red blood cells of ground squirrels was virtually constant at all temperatures, whereas it decreased abruptly in guinea pig cells as temperature was lowered.

  17. Estimation of active faulting in a slow deformation area: Culoz fault as a case study (Jura-Western Alps junction).

    NASA Astrophysics Data System (ADS)

    de La Taille, Camille; Jouanne, Francois; Crouzet, Christian; Jomard, Hervé; Beck, Christian; de Rycker, Koen; van Daele, Maarten; Lebourg, Thomas

    2014-05-01

    The north-western Alps foreland is considered as still experiencing distal effects of Alpine collision, resulting in both horizontal and vertical relative displacements. Based on seismological and geodetic surveys, detailed patterns of active faulting (including subsurface décollements, blind ramps and deeper crustal thrusts have been proposed (Thouvenot et al., 1998), underlining the importance of NW-SE left-lateral strike-slip offsets as along the Vuache and Culoz faults (cf. the 1996 Epagny event: M=5.4; Thouvenot et al., 1998 and the 1822 Culoz event I=VII-VIII; Vogt, 1979). In parallel to this tectonic evolution, the last glaciation-deglaciation cycles contributed to develop large and over-deepened lacustrine basins, such as Lake Le Bourget (Perrier, 1980). The fine grain, post LGM (ie post 18 ky), sedimentary infill gives a good opportunity to evidence late quaternary tectonic deformations. This study focuses on the Culoz fault, extending from the Jura to the West, to the Chautagne swamp and through the Lake Le Bourget to the East. Historical earthquakes are known nearby this fault as ie the 1822 Culoz event. The precise location and geometry of the main fault is illustrated but its Eastern termination still needs to be determined. High resolution seismic sections and side-scan sonar images performed in the 90's (Chapron et al., 1996) showed that the Col du Chat and Culoz faults have locally deformed the quaternary sedimentary infill of the lake. These studies, mainly devoted to paleo-climate analysis were not able to determine neither the geometry of the fault, or to quantify the observed deformations. A new campaign devoted to highlight the fault geometry and associated deformation, has been performed in October 2013. Very tight profiles were performed during this high resolution seismic survey using seistec boomer and sparker sources. In several places the rupture reaches the most recent seismic reflectors underlying that these faults were active during

  18. New GPS constraints on active deformation along the Africa-Iberia plate boundary

    NASA Astrophysics Data System (ADS)

    Koulali, A.; Ouazar, D.; Tahayt, A.; King, R. W.; Vernant, P.; Reilinger, R. E.; McClusky, S.; Mourabit, T.; Davila, J. M.; Amraoui, N.

    2011-08-01

    We use velocities from 65 continuous stations and 31 survey-mode GPS sites as well as kinematic modeling to investigate present day deformation along the Africa-Iberia plate boundary zone in the western Mediterranean region. The GPS velocity field shows southwestward motion of the central part of the Rif Mountains in northern Morocco with respect to Africa varying between 3.5 and 4.0 mm/yr, consistent with prior published results. Stations in the southwestern part of the Betic Mountains of southern Spain move west-southwest with respect to Eurasia (˜ 2-3 mm/yr). The western component of Betics motion is consistent with partial transfer of Nubia-Eurasia plate motion into the southern Betics. The southward component of Betics motion with respect to Iberia is kinematically consistent with south to southwest motion of the Rif Mountains with respect to Africa. We use block modeling, constrained by mapped surface faults and seismicity to estimate the geometry and rates of strain accumulation on plate boundary structures. Our preferred plate boundary geometry includes one block between Iberia and Africa including the SW Betics, Alboran Sea, and central Rif. This geometry provides a good fit to the observed motions, suggesting a wide transpressive boundary in the westernmost Mediterranean, with deformation mainly accommodated by the Gloria-Azores fault system to the West and the Rif-Tell lineament to the East. Block boundaries encompass aspects of earlier interpretations suggesting three main deformation styles: (i) extension along the NE-SW trending Trans-Alboran shear zone, (ii) dextral strike-slip in the Betics corresponding to a well defined E-W seismic lineament, and (iii) right lateral strike-slip motion extending West to the Azores and right-lateral motion with compression extending East along the Algerian Tell. We interpret differential motion in the Rif-Alboran-Betic system to be driven both by surface processes related the Africa-Eurasia oblique convergence and

  19. Finding year-long activity cycles in ground-based and space-borne photometry

    NASA Astrophysics Data System (ADS)

    Vida, Krisztián; Oláh, Katalin; Szabó, Róbert

    2015-08-01

    Using long­term ground­based photometry of fast­rotating M­-dwarfs (EY Dra, V405 And, GSC 3377­0296 and V374 Peg), all with rotational periods near 0.5 day, but with different internal structures, we found activity cycles in the form of long-­term brightness changes, on the time scales of about one year. Using the cycling stars as templates, we searched for similar, fast rotating (P < 1d), active, late­-type targets in the Kepler Input Catalogue. Analysing the light curves of these 39 stars, we found hints of 300­-900 day­-long cycles in 9 cases detecting small variations in the rotation periods caused by differential rotation and the changing spot emergence latitudes over the cycle (i.e., the butterfly diagram).

  20. Haglund's Deformity

    MedlinePlus

    ... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...

  1. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 2. Coeruptive deflation, July-August 2008

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel

    2010-01-01

    A hydrovolcanic eruption near Cone D on the floor of Okmok caldera, Alaska, began on 12 July 2008 and continued until late August 2008. The eruption was preceded by inflation of a magma reservoir located beneath the center of the caldera and ~3 km below sea level (bsl), which began immediately after Okmok's previous eruption in 1997. In this paper we use data from several radar satellites and advanced interferometric synthetic aperture radar (InSAR) techniques to produce a suite of 2008 coeruption deformation maps. Most of the surface deformation that occurred during the eruption is explained by deflation of a Mogi-type source located beneath the center of the caldera and 2–3 km bsl, i.e., essentially the same source that inflated prior to the eruption. During the eruption the reservoir deflated at a rate that decreased exponentially with time with a 1/e time constant of ~13 days. We envision a sponge-like network of interconnected fractures and melt bodies that in aggregate constitute a complex magma storage zone beneath Okmok caldera. The rate at which the reservoir deflates during an eruption may be controlled by the diminishing pressure difference between the reservoir and surface. A similar mechanism might explain the tendency for reservoir inflation to slow as an eruption approaches until the pressure difference between a deep magma production zone and the reservoir is great enough to drive an intrusion or eruption along the caldera ring-fracture system.

  2. Inter- and Post-Seismic Ground Deformation of the 2012 Emilia Seismic Sequence By Means of COSMO-Skymed and Ers-Envisat InSAR Time Series

    NASA Astrophysics Data System (ADS)

    Pezzo, G.; Tolomei, C.; Salvi, S.; Atzori, S.; Merryman Boncori, J. P.

    2014-12-01

    On May 20, 2012, a moderate earthquake of local magnitude, M 5.9 started a seismic sequence in the central Po Plain of Northern Italy. The mainshock occurred in an area where seismicity of comparable magnitude has neither been recorded nor reported in the historical record over the last 1,000 years. On May 29, 2012 a second large earthquake of M 5.8 occurred 12 km WSW of the mainshock, starting a new seismic sequence in the western area; a total of seven earthquakes with M >5 occurred in the area between May 20 and June 3, 2012. After the first mainshock, a COSMO-SkyMed acquisition plan was going to provide data over a wide area of the Emilia Region covering both the epicentral region and the adjacent West and East areas, and was later extended up to December 31th, 2013 to monitor the post-seismic deformation. Using multitemporal SBAS InSAR technique we measured co and post-seismic deformations; . we used COSMO-SkyMed image datasets spanning the time period 2012-2013, along both ascending and descending orbit. Moreover we studied the pre-seismic (inter-seismic) phase by means of ERS1/2 and ASAR-Envisat data covering the 1992-2010 temporal interval. In this framework the Emilia seismic sequence represents a very interesting case for the study of the complete seismic cycle.

  3. Source mechanism analysis of strong mining induced seismic event and its influence on ground deformation observed by InSAR technique.

    NASA Astrophysics Data System (ADS)

    Rudzinski, Lukasz; Mirek, Katarzyna; Mirek, Janusz

    2016-04-01

    On April 17th, 2015 a strong shallow seismic event M4.0 struck a mining panel in the Wujek-Slask coal mine, southern Poland. The event was widely felt, followed with rockburst and caused a strong damages inside mining corridors. Unfortunately two miners are trapped by tunnels collapse. Full Moment Tensor (MT) estimated with regional broad-band signals shows that the event was characterized with very high isotropic (implosive) part. Mining inspections verified the occurrence of a rockfall and floor uplift. Very shallow foci depth (less than 1000m) and collapse - like MT solution suggest that event could be responsible for surface deformation in the vicinity of epicenter. To verified this issue we used the Interferometric Synthetic Aperture Radar technique (InSAR). The InSAR relies on measuring phase differences between two SAR images (radarograms). The measured differences may be computed into a single interferometric image. i.e. an interferogram. Interferogram computed from two radarograms of the same terrain taken at different time allows detecting changes in elevation of the terrain. Two SAR scenes acquired by Sentinel-1 satellite (European Space Agency) were processed to obtain the interferogram covered study area (12.04.2015 and 24.04.2015). 12 days interval differential interferogram shows distinctive concentric feature which indicate subsidence trough. Subsidence pattern shows 1 cycle of deformation corresponding with about 2.5 cm subsidence. The InSAR solution support the reliability of very strong implosive MT part.

  4. Fluvial Record of Active Deformation Along the Canyon River Fault in the Wynoochee River Valley, WA

    NASA Astrophysics Data System (ADS)

    Delano, J.; Amos, C. B.; Loveless, J. P.; Rittenour, T. M.

    2015-12-01

    Ongoing uplift of the Olympic Peninsula of Washington State represents unknown contributions from Cascadia subduction zone processes, including earthquakes, interseismic deformation, aseismic slow slip events, and north-south shortening of the North American plate focused on upper plate faults. The relationship between upper plate faults and Cascadia subduction is poorly understood, as is the seismic hazard posed by these structures to the greater Puget Sound region. The Wynoochee River is a south-flowing drainage in the southern Olympic Mountains bisected by a previously uncharacterized section of the Canyon River reverse fault. In this study we utilize high-resolution aerial lidar and optically stimulated luminescence (OSL) dating of offset fluvial terraces to determine the kinematics and slip rate of the Canyon River fault over the late Quaternary. In combination with surficial geologic mapping and differential GPS surveys of terrace straths observed in the field, we also determine incision rates along the Wynoochee River from OSL dates. Our mapping reveals eight generations of fluvial and glaciofluvial terraces, with twenty-one pending ages from OSL sampling of fluvial sands intercalated with outwash and river gravels. Additionally, we compare our slip rate results with a boundary element model, estimating the stress on the Canyon River fault over the recent decades, as constrained by GPS data from the Cascadia subduction zone. Preliminary results indicate that the Canyon River fault is a long-lived feature with south-side-up and left-lateral displacement. Taken together, our results enable comparison of deformation rates constrained by short-term, geodetic data with those acting over longer-term geologic time scales.

  5. Active Dehydration, Delamination and Deformation of Transitional Continental Crust in an Arc-Continent Collision, Taiwan

    NASA Astrophysics Data System (ADS)

    Byrne, T. B.; Rau, R. J.; Chen, K. H.; Huang, H. H.; Wang, Y. J.; Ouimet, W. B.

    2014-12-01

    A new study of the 3-D velocity structure of Taiwan, using a new tomographic model (Vp and Vs; Huang et al., 2014), suggests that subducted continental crust is delaminated from the subducting mantle of the Eurasia plate and progressively deformed by the subducting Philippine Sea plate. In southern Taiwan, vertical sections show an east-dipping, asymmetric lobe of low velocity that projects down dip to a band of seismicity interpreted as the Wadati-Benioff zone of the subducting Eurasian plate. Seismic tremors in the mid-crust also suggest dehydration (Chuang et al., 2014), consistent with prograde metamorphism of crustal materials. In central Taiwan, however, the seismicity of the W-B zone progressively disappears and the low velocity lobe shallows and broadens. The velocity structure of the lower and middle crust (represented by the 7.5 and 6.5 km/sec isovelocity surfaces, respectively) also appear distinctly out-of-phase, with the lower crust forming a broad, smooth synformal structure that contrasts with the higher amplitude undulations of the middle crust. These mid-crust structures appear as smaller irregular lobes separated by patches of higher velocity. In northern Taiwan, the velocity structure of the lower and middle crust again appear "in phase" and form a symmetrical crustal root centered beneath the Central Range. Seismicity patterns and 3-D analysis of the velocity structure also show the western edge of the PSP subducting beneath the eastern Central Range. We interpret these south-to-north changes to reflect the partial subduction (southern Taiwan), delamination (central Taiwan) and deformation (northern Taiwan) of continental-like crust. Support for these interpretation comes from: 1) unusually high rates of surface uplift (up to 15 mm/yr; Ching et al., 2011); 2) Vp and Vs attenuation studies that suggest anomalously high temperatures; 3) evidence for NE-SW extension; and 4) anomalous areas of low topographic relief.

  6. Characterization of Activity at Loki from Galileo and Ground-based Observations

    NASA Technical Reports Server (NTRS)

    Howell, R. R.; Lopes, R. M.

    2004-01-01

    While Loki is the most active volcanic center on Io, major questions remain concerning the nature of that activity. Rathbun et al. showed that the activity was semi-periodic, and suggested it was due to a resurfacing wave which swept across a lava lake as the crust cooled and become unstable. However in 2001 new observations showed that an intermediate level, less periodic mode of activity had apparently begun. Galileo-NIMS observations of Loki clearly show that the highest temperatures are found near the edge of the patera, consistent with disruption of a lava lake at the margins. NIMS observations also show gradients in temperature across the patera which, when modeled in terms of lava cooling models, are generally consistent with ages expected for the resurfacing wave but may also be consistent with spreading flows. We present a further analysis of NIMS data from I24 and I32 which help define the nature of the temperature variations present in Loki patera, along with Galileo-SSI images from the G1-I32 flybys which show albedo changes apparently correlated with the "periodic" activity measured from ground-based observations.

  7. Monitoring volcanic activities using correlation patterns between infrasound and ground motion

    NASA Astrophysics Data System (ADS)

    Ichihara, M.; Takeo, M.; Yokoo, A.

    2012-04-01

    This paper presents a simple method to distinguish infrasonic signals from wind noise using a cross-correlation function of signals from a microphone and a co-located seismometer. The method makes use of a particular feature of the cross-correlation function of vertical ground motion generated by infrasound, and the infrasound itself. Contribution of wind noise to the correlation function is effectively suppressed by separating the microphone and the seismometer by several meters because the correlation length of wind noise is much shorter than wavelengths of infrasound. The method is tested with data from volcanoes, and demonstrates that the method effectively detects not only the main eruptions, but also minor activity generating weak infrasound hardly visible in the wave traces. In addition, the correlation function gives more information about volcanic activity than infrasound alone. The correlation pattern changes when the spectral feature of the infrasound and/or the seismic wave changes and the relative strength of infrasound and seismic wave changes, both of which are expected to be accompanied by change in eruptive activity. Therefore, a graphical presentation of temporal variation in the cross-correlation function enables to see qualitative changes of eruptive activities at a glance. This method is particularly useful when available sensors are limited, and will extend the utility of a single microphone and seismometer in monitoring and understanding volcanic activity. The method is used to analyze sequences of two recent eruptions of Asama and Shinmoe-dake volcanoes, Japan.

  8. Madelung Deformity.

    PubMed

    Kozin, Scott H; Zlotolow, Dan A

    2015-10-01

    Madelung deformity of the wrist is more common in females and is often associated with Leri Weill dyschondrosteosis, a mesomelic form of dwarfism. Patients with Madelung deformity often report wrist deformity resulting from the prominence of the relatively long ulna. The typical Madelung deformity is associated with a Vickers ligament that creates a tether across the volar-ulnar radial physis that restricts growth across this segment. The distal radius deforms in the coronal (increasing radial inclination) and the sagittal (increasing volar tilt) planes. There is lunate subsidence and the proximal carpal row adapts to the deformity by forming an upside-down pyramid shape or triangle. Treatment depends on the age at presentation, degree of deformity, and magnitude of symptoms. Mild asymptomatic deformity warrants a period of nonsurgical management with serial x-ray examinations because the natural history is unpredictable. Many patients never require surgical intervention. Progressive deformity in the young child with considerable growth potential remaining requires release of Vickers ligament and radial physiolysis to prevent ongoing deterioration Concomitant ulnar epiphysiodesis may be necessary. Advanced asymptomatic deformity in older children with an unacceptable-appearing wrist or symptomatic deformity are indications for surgery. A dome osteotomy of the radius allows 3-dimensional correction of the deformity. Positive radiographic and clinical results after dome osteotomy have been reported. PMID:26341718

  9. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-03-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  10. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  11. Structure modulated electrostatic deformable mirror for focus and geometry control.

    PubMed

    Nam, Saekwang; Park, Suntak; Yun, Sungryul; Park, Bongje; Park, Seung Koo; Kyung, Ki-Uk

    2016-01-11

    We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view. PMID:26832237

  12. Fault Activity, Seismicity and GPS Deformation of the Seismic Gap along the Red River Fault Zone (RRFZ) in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Xue-Ze, Wen; Shengli, Ma; Fang, Du; Feng, Long

    2016-04-01

    Along the middle segment of the NW-trending and dextral-slip Red River fault zone (RRFZ), also the Honghe fault zone, Yunnan, China, there has been little of modern seismicity since the 1970's. Some Chinese researchers believed that this fault segment is inactive in the late Quaternary. However, more and more evidence shows that the middle segment of RRFZ is geologically-active in the late Quaternary, even is a Holocene-active one with evidence of paleo-earthquakes occurring. Our study suggests that along the fault segment there has been no any major earthquake occurring for over 500 years at least, and a large-scale seismic gap, the Honghe seismic gap, have formed there. On the modern seismicity, the middle segment of RRFZ has presented as a fault portion without or with very few small earthquakes occurring since the 1980's, but surrounded by several areas with low b-values, suggesting relatively high stress having built-up there. Also, GPS deformation analysis suggests that this fault segment has tightly locked already. Such tight locking would be associated with the fault geometry: A large-scale restraining bend of about 30°over a distance of ~100 km exists along the main fault trace along RRFZ between Yuanjiang and Yuanyang. However, how such a restraining bend makes the middle segment of RRFZ have tightly locked? How much strain has built up there? Moreover, how about the long-term seismic potential of major earthquake on the middle segment of RRFZ, and on some secondary active faults of the two sides of the segment, especially on the parallel faults Chuxiong, Qujiang and Shiping. All these are issues we want to study further. Keywords: Red River Fault Zone, Seismic Gap, Fault Activity, Seismicity, GPS Deformation

  13. Analysis of the Earth surface deformations and local ties of astronomical and geodetic devices at Crimean geodetical ground "Simeiz-Katsively"

    NASA Astrophysics Data System (ADS)

    Odynets, P. S.; Samoilenko, O. M.; Yatskiv, Ya. S.

    2013-12-01

    New measurment and processing methods of the determination of the coordinates of the basements of astronomical and geodetic devices and Earth surface deformations are developed. The coordinates of fiducial points of the astronomical and geodetic devices are delivered in ITRF2000 relatively to GPS fixed points at epoch 2004,6 together with eccentricities of two SLR stations and two permanent GPS points relative to fiducial point of radio telescope RT-22. The results are used for comparison of three independent methods of the spatial coordinates determination for ITRF: GPS, VLBI and SLR. The method of estimation of SLR station coordinates stability on long time intervals depending on quality and amount of satellite observations is proposed. The assignments of weights for stations coordinates is analysed. The precision estimations are gived.

  14. Characteristics of cloud-to-ground lightning activity in hailstorms over Yunnan province

    NASA Astrophysics Data System (ADS)

    Xie, Yiran; Wu, Jian; Liu, Xuetao; Zhang, Tengfei; Xie, Yinjian; Xu, Yinjie; Zhao, Deming

    2015-12-01

    The characteristics of cloud-to-ground (CG) lightning for nine hailstorms in Yunnan province of China are analyzed statistically. It is determined that the hailstorms were found to present dominant negative CG lightning flashes at any given stage. One specific hailstorm occurring on July 16, 2006, is analyzed in detail by using the data from a CG lightning location network and Doppler radar. This severe hailstorm, which exhibited strong vertical development with cloud tops reaching 15.9 km, produced hailstones as large as 15 mm and had a lifespan of 3 h and 12 min. The total CG lightning within the hailstorm showed high levels of activity with flash rates of up to 79 fl/5 min. The analysis of the storm cell's lifecycle shows similar trends between the CG lightning flash rates and radar-derived parameters. Cloud-to-ground flashes tended to initiate within the cloud region with reflectivity of more than 30 dBZ at the -10 °C isotherm height. A distinct increase in CG flash rate is shown during the rapid development stages of hailstorms. The CG lightning jump pattern appears to be an effective tool for short-term forecasting of possible occurrences of severe weather.

  15. New insights into the active deformation of accretionary prisms: examples from the Western Makran, Iran

    NASA Astrophysics Data System (ADS)

    Penney, Camilla; Copley, Alex; Oveisi, Benham

    2016-04-01

    The Makran subduction zone, along the southern coasts of Iran and Pakistan, hosts one of the largest exposed accretionary wedges in the world. The western Makran has been characterised by a lack of shallow and thrust seismicity in both the instrumental and historical periods. The Mw 6.1 2013 Minab earthquake thus provides a rare opportunity to study the deformation of the accretionary wedge in the transition region between continent-continent collision, in the Zagros, and oceanic subduction, in the Makran. We study the source parameters and slip distribution of this earthquake using seismology, geodesy and field observations. We observe left-lateral strike-slip motion on a fault striking ENE-WSW; approximately perpendicular to the faults of the Minab-Zendan-Palami fault zone, the main structure previously thought to accommodate the right-lateral shear between the Zagros and the Makran. The fault that ruptured in 2013 is one of a series of approximately E-W striking left-lateral faults visible in the geology and geomorphology. These accommodate a velocity field equivalent to right-lateral shear on N-S striking planes by clockwise rotations about vertical axes. The longitudinal range of shear in the western Makran is likely to be controlled by the distance over which the underthrusting Arabian lithosphere deepens in the transition from continent-continent collision to oceanic subduction. The lack of observed megathrust seismicity in the western Makran has led to assertions that the convergence in this region may be aseismic, in contrast to the eastern Makran, which experienced an Mw8.1 earthquake in 1945. The right-lateral Sistan Suture Zone, which runs ~N-S along the Iran-Afghanistan border to the north of the Makran, appears to separate these regimes. However, right-lateral faulting is not observed south of ~27°N, within the wedge. The Minab earthquake and the 2013 Balochistan earthquake show that the Makran accretionary wedge is dominated by strike-slip faulting

  16. Monitoring volcanic activity using correlation patterns between infrasound and ground motion

    NASA Astrophysics Data System (ADS)

    Ichihara, M.; Takeo, M.; Yokoo, A.; Oikawa, J.; Ohminato, T.

    2012-02-01

    This paper presents a simple method to distinguish infrasonic signals from wind noise using a cross-correlation function of signals from a microphone and a collocated seismometer. The method makes use of a particular feature of the cross-correlation function of vertical ground motion generated by infrasound, and the infrasound itself. Contribution of wind noise to the correlation function is effectively suppressed by separating the microphone and the seismometer by several meters because the correlation length of wind noise is much shorter than wavelengths of infrasound. The method is applied to data from two recent eruptions of Asama and Shinmoe-dake volcanoes, Japan, and demonstrates that the method effectively detects not only the main eruptions, but also minor activity generating weak infrasound hardly visible in the wave traces. In addition, the correlation function gives more information about volcanic activity than infrasound alone, because it reflects both features of incident infrasonic and seismic waves. Therefore, a graphical presentation of temporal variation in the cross-correlation function enables one to see qualitative changes of eruptive activity at a glance. This method is particularly useful when available sensors are limited, and will extend the utility of a single microphone and seismometer in monitoring volcanic activity.

  17. Minimizing the dysfunctional interplay between activity and recovery: A grounded theory on living with fibromyalgia

    PubMed Central

    Hallberg, Lillemor R.-M.; Bergman, Stefan

    2011-01-01

    The aim of this study was to generate a substantive theory, based on interviews with women with fibromyalgia, explaining how they manage their main concerns in daily life. The study has an inductive approach in line with classic grounded theory (Glaser, 1992). Twenty-three women living in the southwest region of Sweden were interviewed in-depth about their daily living with fibromyalgia and problems related to this. Probing and follow-up questions were asked by the interviewers when relevant. The interviews were transcribed verbatim and consecutively analysed in line with guidelines for grounded theory. The results showed that the main concern for women with fibromyalgia was to reach a balance in daily life. This concern was resolved by them using different strategies aimed at minimizing the dysfunctional interplay between activity and recovery (core category). This imbalance includes that the women are forcing themselves to live a fast-paced life and thereby tax or exceed their physical and psychological abilities and limits. Generally, the fibromyalgia symptoms vary and are most often unpredictable to the women. Pain and fatigue are the most prominent symptoms. However, pain-free periods occur, often related to intense engagement in some activity, relaxation or joy, but mainly the “pain gaps” are unpredictable. To reach a balance in daily life and manage the dysfunctional interplay between activity and recovery the women use several strategies. They are avoiding unnecessary stress, utilizing good days, paying the price for allowing oneself too much activity, planning activities in advance, distracting oneself from the pain, engaging in alleviating physical activities, and ignoring pain sensations. Distracting from the pain seems to be an especially helpful strategy as it may lead to “pain gaps”. This strategy, meaning to divert attention from the pain, is possible to learn, or improve, in health promoting courses based on principles of cognitive

  18. The variety of subaerial active salt deformations in the Kuqa fold-thrust belt (China) constrained by InSAR

    NASA Astrophysics Data System (ADS)

    Colón, Cindy; Webb, A. Alexander G.; Lasserre, Cécile; Doin, Marie-Pierre; Renard, François; Lohman, Rowena; Li, Jianghai; Baudoin, Patrick F.

    2016-09-01

    Surface salt bodies in the western Kuqa fold-thrust belt of northwestern China allow study of subaerial salt kinematics and its possible correlations with weather variations. Ephemeral subaerial salt exposure during the evolution of a salt structure can greatly impact the subsequent development and deformation of its tectonic setting. Here, we present a quantitative time-lapse survey of surface salt deformation measured from interferometric synthetic aperture radar (InSAR) using Envisat radar imagery acquired between 2003 and 2010. Time series analysis and inspection of individual interferograms confirm that the majority of the salt bodies in western Kuqa are active, with significant InSAR observable displacements at 3 of 4 structures studied in the region. Subaerial salt motion toward and away from the satellite at rates up to 5 mm/yr with respect to local references. Rainfall measurements from the Tropical Rainfall Measuring Mission (TRMM) and temperature from a local weather station are used to test the relationship between seasonality and surface salt motion. We observe decoupling between surface salt motion and seasonality and interpret these observations to indicate that regional and local structural regimes exert primary control on surface salt displacement rates.

  19. Acoustic waves in the atmosphere and ground generated by volcanic activity

    SciTech Connect

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  20. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    PubMed Central

    Eitel, Jan U. H.; Keefe, Robert F.; Long, Dan S.; Davis, Anthony S.; Vierling, Lee A.

    2010-01-01

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and do not require spectral reference readings. Besides measuring red (590–670 nm) and near-infrared (>760 nm) reflectance AGORS devices have recently become available that also measure red-edge (730 nm) reflectance. We tested the hypothesis that the additional availability of red-edge reflectance information would improve AGORS of plant stress induced chlorophyll breakdown in Scots pine (Pinus sylvestris). Our results showed that the availability of red-edge reflectance information improved AGORS estimates of stress induced variation in chlorophyll concentration (r2 > 0.73, RMSE < 1.69) when compared to those without (r2 = 0.57, RMSE = 2.11). PMID:22319275

  1. Active suspension design for a Large Space Structure ground test facility

    NASA Technical Reports Server (NTRS)

    Lange, Thomas J. H.; Schlegel, Clemens

    1993-01-01

    The expected future high performance requirements for Large Space Structures (LSS) enforce technology innovations such as active vibration damping techniques e.g., by means of structure sensors and actuators. The implementation of new technologies like that requires an interactive and integrated structural and control design with an increased effort in hardware validation by ground testing. During the technology development phase generic system tests will be most important covering verification and validation aspects up to the preparation and definition of relevant space experiments. For many applications using advanced designs it is deemed necessary to improve existing testing technology by further reducing disturbances and gravity coupling effects while maintaining high performance reliability. A key issue in this context is the improvement of suspension techniques. The ideal ground test facility satisfying these requirements completely will never be found. The highest degree of reliability will always be obtained by passive suspension methods taking into account severe performance limitations such as non-zero rigid body modes, restriction of degrees of freedom of motion and frequency response limitations. Passive compensation mechanisms, e.g., zero-spring-rate mechanisms, either require large moving masses or they are limited with respect to low-frequency performance by friction, stiction or other non-linear effects. With active suspensions these limitations can be removed to a large extent thereby increasing the range of applications. Despite an additional complexity which is associated with a potential risk in reliability their development is considered promising due to the amazing improvement of real-time control technology which is still continuing.

  2. Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4.

    PubMed

    Namane, A; Mekarzia, A; Benrachedi, K; Belhaneche-Bensemra, N; Hellal, A

    2005-03-17

    In order to evaluate the adsorptive capacities of granular activated carbon produced from coffee grounds by chemical activation, the adsorption of different phenols and acid and basic dyes, has been carried out. The comparison with a commercial activated carbon has been made. Adsorption isotherms of phenols and dyes (acid and basic) onto produced and commercial granular activated carbons were experimentally determined by batch tests. Both Freundlich and Langmuir models are well suited to fit the adsorption isotherm data. As a result, the coffee grounds based activated carbon may be promising for phenol and dye removal from aqueous streams. PMID:15752865

  3. School grounds and physical activity: Associations at secondary schools, and over the transition from primary to secondary schools.

    PubMed

    Harrison, Flo; van Sluijs, Esther M F; Corder, Kirsten; Jones, Andy

    2016-05-01

    This paper aims to further understanding of the physical environments of secondary schools and their associations with young peoples' physical activity. Accelerometer-derived physical activity measurements from 299 participants in the SPEEDY study (Norfolk, UK) were obtained from baseline measurements (age 9-10y) and +4y follow-up. These were linked to objective measures of primary and secondary school environments as measured by the SPEEDY grounds audit tool. We saw considerable differences in the nature of school grounds between primary and secondary schools. Cross-sectional associations were seen between active travel provision scores and commuting time moderate-to-vigorous physical activity (MVPA) for 13-14 year old boys and adolescents living further from school. However, few associations were seen between changes in school grounds scores and changes in school-based MVPA. PMID:26922516

  4. PS-InSAR measurements at the most active volcanoes in Iceland: role of the GEO supersite initiative in deformation monitoring at Bárðarbunga, Askja, Hekla, Katla and Eyjafjallajökull volcanoes

    NASA Astrophysics Data System (ADS)

    Parks, Michelle; Dumont, Stéphanie; Drouin, Vincent; Sigmundsson, Freysteinn; Spaans, Karsten; Hooper, Andrew; Ófeigsson, Benedikt; Árnadóttir, Þóra; Hreinsdóttir, Sigrún; Michalczewska, Karolina; Hjaltadóttir, Sigurlaug; María Friðriksdóttir, Hildur; Rut Hjartardóttir, Ásta; Magnússon, Eyjólfur; Vogfjörd, Kristín; Jónsdóttir, Kristín; Hensch, Martin; Guðmundsson, Gunnar; Geirsson, Halldór; Sturkell, Erik

    2015-04-01

    Analysis of a time series of ground deformation measurements at active volcanoes can provide an improved understanding of sub-volcanic and sub-aerial processes; including those related to magmatic, hydrothermal and structural development. Interpreting a long time series may also help determine background behavior, and identify any deviations from this, including the migration of new melt. We use Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) techniques to generate a time series of high-resolution deformation measurements, in the vicinity of the most active volcanoes in Iceland: Bárðarbunga, Askja, Hekla, Katla and Eyjafjallajökull and compare these to other geodetic measurements. A comprehensive network of continuous GPS stations is already deployed at these volcanoes and a series of campaign GPS measurements are routinely undertaken each summer. InSAR observations are complementary to these field based measurements and their high spatial resolution assists in resolving the geometry of the deformation field hence gaining improved constraints on the inferred source. The Committee on Earth Observation Satellites has recently declared Iceland a Permanent Geohazard Supersite, based on its propensity for relatively frequent eruptions and their potentially hazardous, long ranging effects. The recent Supersite award ensures a considerable amount of SAR data is made available for both past and future satellite acquisitions, including new X-band images (acquired by TerraSAR-X and Cosmo-SkyMed satellites), and historic C-band images from ERS and ENVISAT. We present a series of long-term deformation measurements for Hekla, Katla, Eyjafjallajökull and Askja volcanoes, derived using PS-InSAR techniques, and include recent interferograms spanning the 2014 unrest and eruption within the Bárðarbunga volcanic system. InSAR and tilt measurements at Hekla indicate renewed melt supply to a sub-volcanic reservoir after the last eruption in 2000. Recent

  5. Active deformation and shallow structure of the Wagner, Consag, and Delfín Basins, northern Gulf of California, Mexico

    NASA Astrophysics Data System (ADS)

    Persaud, Patricia; Stock, Joann M.; Steckler, Michael S.; MartíN-Barajas, Arturo; Diebold, John B.; GonzáLez-FernáNdez, Antonio; Mountain, Gregory S.

    2003-07-01

    Oblique rifting began synchronously along the length of the Gulf of California at 6 Ma, yet there is no evidence for the existence of oceanic crust or a spreading transform fault system in the northern Gulf. Instead, multichannel seismic data show a broad shallow depression, ˜70 × 200 km, marked by active distributed deformation and six ˜10-km-wide segmented basins lacking well-defined transform faults. We present detailed images of faulting and magmatism based on the high resolution and quality of these data. The northern Gulf crust contains a dense (up to 18 faults in 5 km) complex network of mainly oblique-normal faults, with small offsets, dips of 60-80° and strikes of N-N30°E. Faults with seafloor offsets of tens of meters bound the Lower and two Upper Delfín Basins. These subparallel basins developed along splays from a transtensional zone at the NW end of the Ballenas Transform Fault. Twelve volcanic knolls were identified and are associated with the strands or horsetails from this zone. A structural connection between the two Upper Delfín Basins is evident in the switching of the center of extension along axis. Sonobuoy refraction data suggest that the basement consists of mixed igneous sedimentary material, atypical of mid-ocean ridges. On the basis of the near-surface manifestations of active faulting and magmatism, seafloor spreading will likely first occur in the Lower Delfín Basin. We suggest the transition to seafloor spreading is delayed by the lack of strain-partitioned and focused deformation as a consequence of shear in a broad zone beneath a thick sediment cover.

  6. Active Deformation Along the Algerian Margin (MARADJA Cruise): Framework of the May 21, 2003, Mw-6.8 Boumerdes Earthquake

    NASA Astrophysics Data System (ADS)

    Deverchère, J.; Yelles, K.; Calais, E.

    2003-12-01

    The May 21, 2003, Mw=6.8 Boumerdes earthquake (Algeria) ruptured a ˜60 km long fault, previously unknown, located a few km off the coast of Algeria, causing major damage and casualties on land. The MARADJA cruise (Suroit R/V, Aug.-Sept. 2003), dedicated to a survey of the Algerian margin in order to determine its present-day tectonic regime and identify potentially active faults, allowed for a detailed study of the Boumerdes earthquake rupture area. From a high-resolution multibeam bathymetry and back-scattering data, 3.5 kHz profiles (Chirp), 6 and 24-channel seismic reflection lines, we produced the first detailed morpho-tectonic map of the central Algerian margin and deep basin. The margin and the proximal part of the deep basin show a series of north-verging reverse faults and folds, probably developping over south-dipping ramps. The northern front of this compressional deformation zone reaches ˜20 km into the deep basin, where it interacts with salt-related deformation of the Messinian evaporites, possibly gravity driven in part, widespread in the deep basin. In the area of the May 21, 2003, earthquake, we found active fault scarps delineating a ˜60 km long fault zone at the bottom of the continental slope and at midslope, ˜17 km offshore and roughly parallel to the coast. The fault consists of at least two major segments striking N65 and N71. It might represent the place of rupture of the Boumerdes earthquake. Its location is consistent with the aftershock distribution and with preliminary dislocation models based on GPS data and uplfit observations onland. The MARADJA Scientific Party: Bouillin J-P., Bracene R., Gaullier V., Kherroubi A., Mercier de Lepinay B., Le Roy P., Pauc H., Savoye B.

  7. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy.

    PubMed

    Guo, Qing; He, Yufan; Lu, H Peter

    2015-11-10

    Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure-function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2-amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme-substrate interactions, enzyme-substrate active complex formation, and protein folding-binding interactions. PMID:26512103

  8. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy

    PubMed Central

    Guo, Qing; He, Yufan; Lu, H. Peter

    2015-01-01

    Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure–function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2–amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme–substrate interactions, enzyme–substrate active complex formation, and protein folding–binding interactions. PMID:26512103

  9. Space-Borne and Ground-Based Sar Interferometry for Landslide Activity Analysis and Monitoring in the Appennines of Emilia Romagna (Italy): Review of Methods and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Barbieri, M.; Corsini, A.; Casagli, N.; Farina, P.; Coren, F.; Sterzai, P.; Leva, D.; Tarchi, D.

    2004-06-01

    This work concerns the application of SAR interferometry for the assessment of the long-term analysis of the state of activity of deep seated mass movements affecting some urban areas in the northern Appennines of Emilia Romagna region (from 1994-2001 space-borne ERS data) and for the real-time monitoring of active flow-like landslides in year 2002 (from ground-based system). These activities are part of an ongoing research project supported by civil protection authorities of the Emilia-Romagna region that involves several research institutes with diverse expertises. A set of test sites characterized by a high landslide risk have been selected mainly taking into account phenomena characteristics such as deformation rates and vegetation coverage, with respect to the employed techniques. After a preliminary detailed geomorphologic characterization of the sites, the interferometric analyses, still in progress, have been implemented. In particular space-borne DInSAR has been applied for 10 unstable areas using a set of ERS1/ERS2 data acquired in the last 7 years. From 9 interferograms, the line-of-sight displacement maps have been calculated and, later on, post processed in GIS environment in order to have on-slope-direction displacement maps that could fully be integrated with geomorphologic and ancillary data and that could semi-quantitatively be compared with other traditional monitoring data. The results obtained have been rather satisfactory, especially in some test sites where entire villages are settled on the mass movement, as in the case of Berceto (Parma) presented in the paper, and post-processed products have proved a significant amelioration of basic interferometric ones. Moreover, in order to measure terrain displacements induced by landslide characterized by high deformation rates and little urbanisation, ground-based SAR interferometry (GBInSAR) has been used for the monitoring of a test site located in the province of Bologna. This application proved

  10. The Tyrrhenian Basin: fault activity migration, focusing of deformation, break up, magmatism and fast mantle exhumation

    NASA Astrophysics Data System (ADS)

    Ranero, Cesar R.; Sallarés, Valenti; Vendrell, Montserrat G.; Prada, Manuel; Grevemeyer, Ingo; Zitellini, Nevio

    2015-04-01

    We present a new interpretation of the creation of the geological domains and the processes forming the Tyrrhenian basin by rifting of Cratonic Variscan lithosphere. The basin is not presently extending, but its crustal structure preserves information of the temporal evolution of rifting processes. Our work is based on the tectonic structure and stratigraphy of over 3000 km of calibrated multichannel seismic data and full coverage multibeam bathymetry of the basin. From these data circa 2000 km are new and about 1000 are vintage data. The seismic data are used to understand the formation of the domains (continental, backarc magmatism, exhumed mantle) defined with our recently published, under review, or submitted 5 across-the-basin wide-angle reflection and refraction transects. The 5 transects provide the Vp distribution of the crust and upper mantle. This information has allowed defining the petrological nature and distribution of the geological domains, and to infer the importance of magmatism in the rifting process, to constrain the location of break up and the expanse of the region of mantle exhumation. The seismic reflection images have been interpreted to map in time and space the evolution of the deformation across the basin. We analyzed the tectonic structure and mapped the calibrated stratigraphy across the basin to understand the temporal evolution and styles of faulting processes. The stratigraphy provides also constraints on the rates at which the different processes of extension, magmatism, break up and mantle exhumation have occurred. The basin has opened with different extension factors from north to south. The northern region stopped opening after a relatively low extension factors. Towards the south extension increased up to full crustal separation. Here extension in some areas was coeval with abundant magmatism. Changing in the locus of faulting and rates of extension led to break up and to a surprisingly fast mantle exhumation. Subsequent

  11. Measurement of short-base deformations in one of the regions of active fracturing in the Hanoi depression (the Socialist Republic of Vietnam)

    NASA Astrophysics Data System (ADS)

    Karmaleeva, R. M.; Yem, Nguyen Trong; Tu, Nguyen Dinh; Quoc, Le Minh; Chan Quoc, Hung

    1992-02-01

    Observations of deformation processes were carried out in one of the regions of active fracturing in the territory of the Hanoi depression, with the purpose of determining the rates of recent crustal movements during time intervals of about 1 yr to several years. The measurements were conducted with deformometers and hydrostatic levellers installed in a 5 m deep trench. The observation data for the 1985-1988 period indicate a high tectonic activity in the region studied. The horizontal deformation rates are (1-10) 10 -5/yr, and the vertical rates are 10 -4-10 -3/yr. Spectral characteristics of recorded processes have been obtained as well as meteorological effects.

  12. Estimating youth locomotion ground reaction forces using an accelerometer-based activity monitor.

    PubMed

    Neugebauer, Jennifer M; Hawkins, David A; Beckett, Laurel

    2012-01-01

    To address a variety of questions pertaining to the interactions between physical activity, musculoskeletal loading and musculoskeletal health/injury/adaptation, simple methods are needed to quantify, outside a laboratory setting, the forces acting on the human body during daily activities. The purpose of this study was to develop a statistically based model to estimate peak vertical ground reaction force (pVGRF) during youth gait. 20 girls (10.9 ± 0.9 years) and 15 boys (12.5 ± 0.6 years) wore a Biotrainer AM over their right hip. Six walking and six running trials were completed after a standard warm-up. Average AM intensity (g) and pVGRF (N) during stance were determined. Repeated measures mixed effects regression models to estimate pVGRF from Biotrainer activity monitor acceleration in youth (girls 10-12, boys 12-14 years) while walking and running were developed. Log transformed pVGRF had a statistically significant relationship with activity monitor acceleration, centered mass, sex (girl), type of locomotion (run), and locomotion type-acceleration interaction controlling for subject as a random effect. A generalized regression model without subject specific random effects was also developed. The average absolute differences between the actual and predicted pVGRF were 5.2% (1.6% standard deviation) and 9% (4.2% standard deviation) using the mixed and generalized models, respectively. The results of this study support the use of estimating pVGRF from hip acceleration using a mixed model regression equation. PMID:23133564

  13. Environmental assessment of ground water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming. Revision 0

    SciTech Connect

    1996-03-01

    This document is an environmental assessment of the Spook, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. It analyzes the impacts of the U.S. Department of Energy (DOE) proposed action for ground water compliance. The proposed action is to comply with the U.S. Environmental Protection Agency (EPA) standards for the UMTRA Project sites (40 CFR Part 192) by meeting supplemental standards based on the limited use ground water at the Spook site. This proposed action would not require site activities, including ground water monitoring, characterization, or institutional controls. Ground water in the uppermost aquifer was contaminated by uranium processing activities at the Spook site, which is in Converse County, approximately 48 miles (mi) (77 kilometers [km]) northeast of Casper, Wyoming. Constituents from the site infiltrated and migrated into the uppermost aquifer, forming a plume that extends approximately 2500 feet (ft) (800 meters [m]) downgradient from the site. The principal site-related hazardous constituents in this plume are uranium, selenium, and nitrate. Background ground water in the uppermost aquifer at the site is considered limited use. It is neither a current nor a potential source of drinking water because of widespread, ambient contamination that cannot be cleaned up using treatment methods reasonably employed in public water supply systems (40 CFR {section} 192.11 (e)). Background ground water quality also is poor due to first, naturally occurring conditions (natural uranium mineralization associated with an alteration front), and second, the effects of widespread human activity not related to uranium milling operations (uranium exploration and mining activities). There are no known exposure pathways to humans, animals, or plants from the contaminated ground water in the uppermost aquifer because it does not discharge to lower aquifers, to the surface, or to surface water.

  14. Antimicrobial activity of the pygidial gland secretion of three ground beetle species (Insecta: Coleoptera: Carabidae)

    NASA Astrophysics Data System (ADS)

    Nenadić, Marija; Soković, Marina; Glamočlija, Jasmina; Ćirić, Ana; Perić-Mataruga, Vesna; Ilijin, Larisa; Tešević, Vele; Vujisić, Ljubodrag; Todosijević, Marina; Vesović, Nikola; Ćurčić, Srećko

    2016-04-01

    The antimicrobial properties of the pygidial gland secretions released by the adults of the three ground beetle species, Carabus ullrichii, C. coriaceus, and Abax parallelepipedus, have been tested. Microdilution method was applied for detection of minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), and minimal fungicidal concentrations (MFCs). Additionally, morpho-histology of the pygidial glands is investigated. We have tested 16 laboratory and clinical strains of human pathogens—eight bacterial both gram-positive and gram-negative species and eight fungal species. The pygidial secretion samples of C. ullrichii have showed the strongest antimicrobial effect against all strains of treated bacteria and fungi. Staphylococcus aureus, Lysteria monocytogenes, and Salmonella typhimurium proved to be the most sensitive bacterial strains. Penicillium funiculosum proved to be the most sensitive micromycete, while P. ochrochloron and P. verrucosum var . cyclopium the most resistant micromycetes. The pygidial secretion of C. coriaceus has showed antibacterial potential solely against Pseudomonas aeruginosa and antifungal activity against Aspergillus fumigatus, A. versicolor, A. ochraceus, and P. ochrochloron. Antibacterial properties of pygidial gland secretion of A. parallelepipedus were achieved against P. aeruginosa, while antifungal activity was detected against five of the eight tested micromycetes (A. fumigatus, A. versicolor, A. ochraceus, Trichoderma viride, and P. verrucosum var . cyclopium). Commercial antibiotics Streptomycin and Ampicillin and mycotics Ketoconazole and Bifonazole, applied as the positive controls, showed higher antibacterial/antifungal properties for all bacterial and fungal strains. The results of this observation might have a significant impact on the environmental aspects and possible medical purpose in the future.

  15. Tragaldabas: a muon ground-based detector for the study of the solar activity; first observations

    NASA Astrophysics Data System (ADS)

    José Blanco, Juan

    2016-04-01

    A new RPC-based cosmic ray detector, TRAGALDABAS (acronym of "TRAsGo for the AnaLysis of the nuclear matter Decay, the Atmosphere, the earth's B-field And the Solar activity") has been installed at the Univ. of Santiago de Compostela, Spain (N:42°52'34",W:8°33'37"). The detector, in its present layout, consists of three 1.8 m2 planes of three 1mm-gap glass RPCs. Each plane is readout with 120 pads with grounded guard electrodes between them to minimize the crosstalk noise. The main performances of the detectors are: an arrival time resolution of about ~300 ps, a tracking angular resolution below 3°, a detection efficiency close to 1, and a solid angle acceptance of ~5 srad. TRAGALDABAS will be able to monitor the cosmic ray low energy component strongly modulated by solar activity by mean the observation of secondary muons from the interaction between cosmic rays and atmospheric molecules. Its cadence and its angular resolution will allow to study in detail, small variations in cosmic ray anisotropy. These variations can be a key parameter to understand the effect of solar disturbances on the propagation of cosmic ray in the inner heliosphere and, maybe, provide a new tool for space weather analysis. In this work first TRAGALDABAS observations of solar events are shown

  16. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    SciTech Connect

    1997-02-01

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met.

  17. Seasonal changes in the activity of antioxidative defense in the kidneys of the euthermic ground squirrel (Citellus citellus).

    PubMed

    Buzadzić, B; Blagojević, D; Korać, B; Saicić, Z S; Spasić, M B; Petrović, V M

    1998-01-01

    The aim of this work was to determine the activity of the antioxidant enzymes: superoxide dismutase (EC 1.15.1.1; SOD), catalase (EC 1.11.1.6; CAT), glutathione peroxidase (EC 1.11.1.9; GSH-Px), glutathione-S-transferase (EC 2.5.1.18; GST), glutathione reductase (EC 1.6.4.2; GR) and the low molecular mass antioxidants: ascorbic acid (ASA) and vitamin E (vit E) in the kidney of ground squirrels during circannual changes. Keeping the ground squirrel at the temperature of thermic neutrality (30 degrees C) provides a stable euthermic state during the whole year and thus any change is due to the circannual rhythm. The highest specific activity of all examined antioxidative defense enzymes in the kidney was found in the spring, when ground squirrels are seasonally the most active. In the summer, lower specific activity of GSH-Px as well as of SOD and CAT were noted and, when expressed per g wet mass, only a decrease in GSH-Px activity was recorded. In the kidney of ground squirrels kept at 30 degrees C, the lowest specific activity of all examined enzymes was found during the winter and, when expressed per g wet mass, only the SOD activity was lower than in the spring and summer. Higher amounts of vitamins C and E were found in the ground squirrel kidneys in the summer. The results obtained in this work demonstrate that circannual regulation of metabolic activity, which is inherent to seasonal hibernators, is also expressed at the level of antioxidative defense in the kidneys. PMID:9726801

  18. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    USGS Publications Warehouse

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  19. Activation and deformation of immobilized lipase on self-assembled monolayers with tailored wettability.

    PubMed

    Chen, Peng-Cheng; Huang, Xiao-Jun; Xu, Zhi-Kang

    2015-05-28

    In this work, lipase from Candida rugosa (CRL) was immobilized on self-assembled monolayers (SAMs) with various wettabilities ranging from highly hydrophilic to highly hydrophobic by adsorption in order to clearly elucidate the interfacial activation character of lipases. The SAMs were made of 11-hydroxyundecane-1-thiol and 1-dodecanethiol. The adsorption behavior was monitored in situ by quartz crystal microbalance with dissipation (QCM-D), and the enzyme binding constants indicated a stronger affinity between CRL and more hydrophobic surfaces. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphologies of the adsorbed lipases. Amide I band attenuated total reflection/Fourier transformed infrared (ART/FTIR) spectroscopy showed an increasing fraction of intermolecular β-sheet content on surfaces with higher hydrophilicities. Moreover, liquid chromatography (LC) verified that the activity of CRL adsorbed on a hydrophobic surface was higher than that of CRL adsorbed on a hydrophilic surface. This work related the enzyme activity to the substrate properties, adsorption behavior, distribution, and morphology of lipases, helping to achieve the external control of both the immobilization process and enzyme utilization. PMID:25929434

  20. 76 FR 48859 - Agency Information Collection Activities; Proposed Collection; Comment Request; Facility Ground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ...-Water Monitoring Requirements AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: In... Business or other for-profit; and State, Local, or Tribal Governments. Title: Facility Ground-Water.... Abstract: This ICR examines the ground-water monitoring standards for permitted and interim...

  1. Evidence of a shallow persistent magmatic reservoir from joint inversion of gravity and ground deformation data: The 25-26 October 2013 Etna lava fountaining event

    NASA Astrophysics Data System (ADS)

    Greco, Filippo; Currenti, Gilda; Palano, Mimmo; Pepe, Antonio; Pepe, Susi

    2016-04-01

    To evaluate the volcanic processes leading to the 25-26 October 2013 lava fountain at Mount Etna, we jointly investigated gravity, GPS, and DInSAR measurements covering the late-June to early-November time interval. We used finite element modeling to infer a shallow magmatic reservoir which (i) inflated since July 2013, (ii) fed the volcanic activity at the summit craters during 25-26 October, and (iii) deflated due to magma drainage related to this volcanic activity. We suggested that this reservoir belongs to a shallow volume, which is located beneath the summit area and is replenished by magma rising from deep reservoirs and fed the short-term volcanic activity, representing a persistent shallow magmatic plumbing system of Etna. In addition, the model results show that there is a large discrepancy between the erupted and shallow reservoir deflation volumes, which could be reasonably attributable to a highly compressible volatile-rich magma.

  2. An Evaluation of Activated Bismuth Isotopes in Environmental Samples From the Former Western Pacific Proving Grounds

    SciTech Connect

    Robison, W.L.; Brunk, J.A.; Jokela, T.A.

    2000-03-21

    {sup 207}Bi (t{sub 1/2}=32.2 y) was generated by activation of weapons material during a few ''clean'' nuclear tests at the U.S. Western Pacific Proving Grounds of Enewetak and Bikini Atolls. The radionuclides first appeared in the Enewetak environment during 1958 and in the environment of Bikini during 1956. Crater sediments from Bikini with high levels of {sup 207}Bi were analyzed by gamma spectrometry in an attempt to determine the relative concentrations of {sup 208}Bi (t{sup 1/2} = 3.68 x 10{sup 5} y). The bismuth isotopes were probably generated during the ''clean'', 9.3 Mt Poplar test held on 7/12/58. The atom ratio of {sup 208}Bi to {sup 207}Bi (R value) ranges from {approx}12 to over 200 in sections of core sediments from the largest nuclear crater at Bikini atoll. The presence of bismuth in the device is suggested to account for R values in excess of 10.

  3. Research on positioning of Xi'an ground fissures with InSAR quality map

    NASA Astrophysics Data System (ADS)

    Xu, Li; Zhao, Chao-ying

    2011-02-01

    Xi'an ground fissure is a typical geo-hazard with nearly half a century history, which have been caused serious damages to roads, building and other civil facilities. Based on the theory of deformation de-correlation of the active ground fissures, this manuscript mainly investigated the positioning method of active ground fissures by analyzing the pseudo-coherence map of adaptively filtered differential interferogram. We took two ERS1 SAR data during 1992-1993 as an example to investigate the active fissures position during this period. Consequently, high consistency between newly detected fissures and the ground fissure map from engineering geological investigation can be achieved.

  4. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil

    SciTech Connect

    Schroth, M.H.; Eugster, W.; Gomez, K.E.; Gonzalez-Gil, G.; Niklaus, P.A.; Oester, P.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We quantify above- and below-ground CH{sub 4} fluxes in a landfill-cover soil. Black-Right-Pointing-Pointer We link methanotrophic activity to estimates of CH{sub 4} loading from the waste body. Black-Right-Pointing-Pointer Methane loading and emissions are highly variable in space and time. Black-Right-Pointing-Pointer Eddy covariance measurements yield largest estimates of CH{sub 4} emissions. Black-Right-Pointing-Pointer Potential methanotrophic activity is high at a location with substantial CH{sub 4} loading. - Abstract: Landfills are a major anthropogenic source of the greenhouse gas methane (CH{sub 4}). However, much of the CH{sub 4} produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH{sub 4} fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH{sub 4} ingress (loading) from the waste body at selected locations. Fluxes of CH{sub 4} into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH{sub 4} concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH{sub 4} fluxes and CH{sub 4} loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH{sub 4} oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH{sub 4} emissions from the test section (daily mean up to {approx}91,500 {mu}mol m{sup -2} d{sup -1}), whereas flux-chamber measurements and CH{sub 4} concentration profiles indicated that at the majority of locations the cover soil was a

  5. The paleoclimatic significance of deformation structures in Neoproterozoic successions

    NASA Astrophysics Data System (ADS)

    Arnaud, Emmanuelle

    2012-01-01

    This paper reviews the different types of soft sediment deformation structures that can form in glacial and non-glacial settings and explores the potential use of these structures in resolving long standing debates in paleoenvironmental reconstructions of Neoproterozoic glacigenic successions. Soft sediment deformation structures are created when compressional, gravitational or shear stress is applied to unlithified sediments during or shortly after deposition. In subglacial or ice marginal glacial settings, shear and compressional stress imparted by ice moving on top of a deformable substrate or advancing ice buldozing unlithified ice marginal sediments can result in a wide range of folding, faulting and shear structures. In glaciofluvial or stagnant ice marginal setting, gravitational collapse and remobilization of sediments associated with the melting of buried ice can result in normal faulting and broad folding. In glaciolacustrine or glaciomarine settings, compressional, shear and gravitational types of deformation structures can occur as a result of grounding ice or icebergs, rapid sedimentation and reworking downslope associated with high sedimentation rates. In non glacial settings, similar deformation structures can form as a result of slope instability and reworking of sediments downslope, rapid sedimentation, seismic shaking, wave induced shearing or loading. In this context, two case studies are presented to demonstrate the type of paleoenvironmental information that an analysis of deformation structures can provide. In the first case study, analysis of deformation in the Port Askaig Formation (Scotland) reveals a distinctive stratigraphic distribution of deformation structures. The types of deformation observed together with their recurrence over several 100s of meters and their basinal context are used to infer a seismic origin for the deformation, which in turn suggests a significant tectonic control on sedimentation atop a record of ice margin

  6. 2D and 3D Electrical Resistivity Tomography imaging of earthquake related ground deformations at the Ancient Roman Forum and Isis Temple of Baelo Claudia (Cádiz, South Spain).

    NASA Astrophysics Data System (ADS)

    Silva, Pablo G.

    2010-05-01

    The ancient roman city of Baelo Claudia has been subject of several papers on earthquake environmental effects (EEE) and well as earthquake archaeological effects (EAE). During the field training course on archaeoseismology and palaeoseismology conducted in September 2009 (INQUA-IGCP567 Workshop) held at Baelo Claudia, four Electric Resistivity Tomography (ERT) profiles were carried out, by the teams of the Salamanca University (Spain), RWTH Aachen University (Germany) and the Geological Survey of Spain (IGME). ERT surveys were developed in the eastern side of the ancient roman Forum across the unexcavated sector of the archaeological site heading on the 1st Century AD Isis Temple. Each ERT profile was constituted by a 48 multielectrode array with spacing of 2 m resulting in a total length of investigation of around 384 m. ERT lines were separated 10 m each other resulting in a total research area of 3840 m2 to a mean investigation depth of 16 m. The selected survey configurations were Pole-Dipole and Wenner in order to get detailed information about lateral resistivity contrasts, but with a reasonable depth of investigation. The resulting 2D resistivity pseudosections clearly display deformations of the buried roman pavements which propagated in depth within the pre-roman clayey substratum of the Bolonia Bay area.. 3D modelling of the 2D pseudosections indicates that the observed deformations are related to near-surface landsliding, being possible to calculate the minimum volume of mobilized material. ERT 3D imaging allow to refine previous GPR surveys conducted at this same area and to get a subsurface picture of ground deformations caused by repeated earthquakes during the 1st and 3rd Centuries AD. Preliminary calculated volume for the mobilized materials affecting the foundations of the Isis Temple and Forum clearly points to a minimum ESI-07 VIII Intensity validating previous research in the zone. This study has been supported by the Spanish Research Projects

  7. Neotectonic deformation models for probabilistic seismic hazard: a study in the External Dinarides

    NASA Astrophysics Data System (ADS)

    Kastelic, Vanja; Carafa, Michele M. C.; Visini, Francesco

    2016-06-01

    In Europe, common input data types for seismic hazard evaluation include earthquake catalogues, seismic zonation models and ground motion models, all with well-constrained epistemic uncertainties. In contrast, neotectonic deformation models and their related uncertainties are rarely considered in earthquake forecasting and seismic hazard studies. In this study, for the first time in Europe, we developed a seismic hazard model based exclusively on active fault and geodynamic deformation models. We applied it to the External Dinarides, a slow-deforming fold-and-thrust belt in the Central Mediterranean. The two deformation models furnish consistent long-term earthquake rates above the Mw 4.7 threshold on a latitude/longitude grid with 0.2° spacing. Results suggest that the use of deformation models is a valid alternative to empirical-statistical approaches in earthquake forecasting in slow-deforming regions of Europe. Furthermore, we show that the variability of different deformation models has a comparable effect on the peak ground motion acceleration uncertainty as do the ground motion prediction equations.

  8. Swim stress, motion, and deformation of active matter: effect of an external field.

    PubMed

    Takatori, Sho C; Brady, John F

    2014-12-21

    We analyze the stress, dispersion, and average swimming speed of self-propelled particles subjected to an external field that affects their orientation and speed. The swimming trajectory is governed by a competition between the orienting influence (i.e., taxis) associated with the external (e.g., magnetic, gravitational, thermal, nutrient concentration) field versus the effects that randomize the particle orientations (e.g., rotary Brownian motion and/or an intrinsic tumbling mechanism like the flagella of bacteria). The swimmers' motion is characterized by a mean drift velocity and an effective translational diffusivity that becomes anisotropic in the presence of the orienting field. Since the diffusivity yields information about the micromechanical stress, the anisotropy generated by the external field creates a normal stress difference in the recently developed "swim stress" tensor [Takatori, Yan, and Brady, Phys. Rev. Lett., 2014]. This property can be exploited in the design of soft, compressible materials in which their size, shape, and motion can be manipulated and tuned by loading the material with active swimmers. Since the swimmers exert different normal stresses in different directions, the material can compress/expand, elongate, and translate depending on the external field strength. Such an active system can be used as nano/micromechanical devices and motors. Analytical solutions are corroborated by Brownian dynamics simulations. PMID:25330273

  9. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil.

    PubMed

    Schroth, M H; Eugster, W; Gómez, K E; Gonzalez-Gil, G; Niklaus, P A; Oester, P

    2012-05-01

    Landfills are a major anthropogenic source of the greenhouse gas methane (CH(4)). However, much of the CH(4) produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH(4) fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH(4) ingress (loading) from the waste body at selected locations. Fluxes of CH(4) into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH(4) concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH(4) fluxes and CH(4) loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH(4) oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH(4) emissions from the test section (daily mean up to ∼91,500μmolm(-2)d(-1)), whereas flux-chamber measurements and CH(4) concentration profiles indicated that at the majority of locations the cover soil was a net sink for atmospheric CH(4) (uptake up to -380μmolm(-2)d(-1)) during the experimental period. Methane concentration profiles also indicated strong variability in CH(4) loading over short distances in the cover soil, while potential methanotrophic activity derived from GPPTs was high (v(max)∼13mmolL(-1)(soil air)h(-1)) at a location with substantial CH(4) loading. Our results provide a basis to assess spatial and temporal variability of CH(4) dynamics in the complex terrain of a landfill-cover soil. PMID:22143049

  10. Enhancement of cloud-to-ground lightning activity over Taipei, Taiwan in relation to urbanization

    NASA Astrophysics Data System (ADS)

    Kar, S. K.; Liou, Y. A.

    2014-10-01

    Collecting the cloud-to-ground (CG) lightning flash data from Tai-Power Company of Taiwan, a long term study has been performed to investigate the enhancement of lightning activity in and around Taipei City, the largest metropolitan city of Taiwan, in relation to urbanization, for the period of 2005-2010. Results reveal that negative flash density is enhanced by approximately 64% while the positive flash density is enhanced by 48%, over and downwind of the city compared with other neighboring areas. On the other hand a decrease of nearly 24% in the percentage of positive flashes occurs over and downwind of Taipei compared to upwind values. We have also investigated the effect of urbanization on peak current of both polarities but no significant effect is noticed. Possible influence of urban particulate matter on the enhancement of CG lightning activity has been analyzed utilizing the annual averages of PM10 (particulate matter with aerodynamic diameter smaller than 10 μm) and SO2 (sulfur dioxide) concentrations data. Interesting results are found, indicating the higher concentrations of PM10 and SO2 contributes to the CG lightning enhancement. Both the concentrations exhibit a positive linear correlation with the percent change in CG flashes from the upwind to the urban area and from the upwind to the downwind area. However, the correlation coefficient for PM10 concentrations is comparatively much lower than SO2 concentrations. Positive correlations of 0.55 and 0.68 are found for the PM10 and SO2 concentrations, respectively, when compared separately with the percent change in CG flashes from the upwind to the downwind area, indicating the influence of aerosols on urban CG lightning enhancement. Hourly variation of lightning flashes show that the urban effects on CG lightning is prominent in the afternoon and early evening hours. The results obtained from the present analysis corroborate the results reported in the literature by other researchers.

  11. Views of Growing Methane Emissions near Oil and Natural Gas Activity: Satellite, Aircraft, and Ground

    NASA Astrophysics Data System (ADS)

    Kollonige, D. E.; Thompson, A. M.; Diskin, G. S.; Hannigan, J. W.; Nussbaumer, E.

    2015-12-01

    To better understand the discrepancies between current top-down and bottom-up estimates, additional methane (CH4) measurements are necessary for regions surrounding growing oil and natural gas (ONG) development. We have evaluated satellite measurements of CH4 in US regions with ONG operations for their application as "top-down" constraints (part of the NASA Air Quality Applied Sciences Team (AQAST) project). For validation of the satellite instruments' sensitivities to emitted gases, we focus on regions where the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaign deployed ground and aircraft measurements in Maryland (2011), California and Texas (2013), and Colorado (2014). The largest CH4 signals were observed in the Greater Green River and Powder River Basins using Tropospheric Emission Spectrometer (TES) Representative Tropospheric Volume Mixing Ratio (RTVMR) measurements. A long-term comparison between a ground remote-sensing Fourier Transform Spectrometer (FTS) at Boulder and TES for 2010-2013 shows good correlation and differences ranging 2.5-5% for their yearly distribution of total column CH4. To determine any correlation between lower/mid-tropospheric CH4 (where a thermal IR sensor, such as TES, is most sensitive) and near-surface/boundary CH4 (where sources emit), we analyze the variability of DISCOVER-AQ aircraft profiles using principal component analysis and assess the correlation between near-surface (0-2 km) and mid-tropospheric (>2 km) CH4 concentrations. Using these relationships, we estimate near-surface CH4 using mid-tropospheric satellite measurements based on the partial column amounts within vertical layers with a linear regression. From this analysis, we will demonstrate whether the uncertainties of satellite-estimated near-surface CH4 are comparable to observed variability near ONG activity. These results will assist validation of satellite instrument

  12. Spitzer, Kepler, and Ground Based Reverberation Mapping of 3 Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Malkan, Matthew; Barth, Aaron; Filippenko, Alex; Bloom, Joshua

    2011-05-01

    Near-infrared reverberation measurements have proven to be a valuable tool for mapping the location of hot dust in active galactic nuclei (AGNs). Ground-based campaigns have shown that the K-band continuum varies in response to changes in the optical continuum, and measurements of the K-band lag time give the size scale of the hot dust emission region. Reverberation measurements at longer wavelengths can add valuable information on the dust temperature profile in AGNs and the structure of the putative dusty torus, but there have not previously been any definitive measurements of dust reverberation at wavelengths longer than the K band. In our Cycle 7 campaign we proposed to conduct a campaign of high-cadence monitoring observations (1 observation per ~72 hours) of three bright, low-redshift AGNs in order to detect 3.6 micron variability and to measure the reverberation lag time of the 3.6 micron continuum relative to the optical continuum. Four obstacles needed to be overcome to do reverberation mapping at 3.6 microns: 1. Could we obtain long and well sampled 3.6 micron light curves with high precision? 2. Would the monitored AGN show significant optical variation? 3. Would IRAC detect significant variations during the observing window? 4. Finally, would there be correlated variability between the IR and the optical light curves? Based on our first observed source, Zw 229-015, the answer to all those questions is YES! In addition to Zw 229-105 which is also a Kepler monitoring target and so it has become a key AGN for coordinated multi-wavelength monitoring; our sample includes two well-studied and highly variable AGNs, NGC 4051 and Mrk 817. We will conitnue to obtain ground-based optical (V-band) and near-IR (JHK) monitoring data for these AGNs in order to compare the near-IR and 3.6 micron variability with the optical light curves, providing unique new constraints on the dust temperature profiles in these AGNs.

  13. Addendum to the performance assessment analysis for low-level waste disposal in the 200 west area active burial grounds

    SciTech Connect

    Wood, M.I., Westinghouse Hanford

    1996-12-20

    An addendum was completed to the performance assessment (PA) analysis for the active 200 West Area low-level solid waste burial grounds. The addendum includes supplemental information developed during the review of the PA analysis, an ALARA analysis, a comparison of PA results with the Hanford Groundwater Protection Strategy, and a justification for the assumption of 500 year deterrence to the inadvertent intruder.

  14. Airborne Laser Scanning (ALS) point cloud ground filtering for area of an active landslide (Doren, Western Austria)

    NASA Astrophysics Data System (ADS)

    Brodić, Nenad; Cvijetinović, Željko; Milenković, Milutin; Dorninger, Peter; Mitrović, Momir

    2014-05-01

    Ground filtering of point cloud is the primary step required for Digital Terrain Model (DTM) generation. The procedure is especially interesting for forested areas, since LiDAR systems can measure terrain elevation under vegetation cover with a high level of penetration. This work analyzes the potential of ALS data ground filtering for area of an active landslide. The results of ALS filtering, for example, may improve geomorphological and motion-detection studies. ALS data was collected during flight campaign 2011 under leaf-off conditions for Doren region, Vorarlberg, Western Austria. In this area, non-ground objects are mostly low vegetation such as shrubs, small trees etc. The vegetation is more dense in lower part of the landslide where erosion is smaller. Vegetation points can be removed based on the hypothesis that these are significantly higher than their neighboring points. However, in case of steep terrain, ground points may have the same heights as vegetation points, and thus, local slope should be considered. Also, if terrain roughness increases, the classification may become even more complex. Software system OPALS (Orientation and Processing of Airborne Laser Scanning data, Vienna University of Technology) was used for processing the ALS data. Labeling ground points has been made using physical and geometrical attributes (parameters) of ALS points. Also additional attributes were calculated in order to improve extraction. Since bare ground surface is usually smooth and continuous unlike vegetation, standard deviation of local elevations was used as roughness measure to differentiate these surfaces. EchoRatio (ER) was adopted as a measure of surface penetrability, while number of echoes and differentiation between echoes (EchoNumber) were also deployed in filtering. Since the ground points are measurements from bare-earth that are usually the lowest surface features in a local area, normalized height was defined as a rank of neighboring points

  15. A review about the mechanisms associated with active deformation, regional uplift and subsidence in southern South America

    NASA Astrophysics Data System (ADS)

    Folguera, Andrés; Gianni, Guido; Sagripanti, Lucía; Rojas Vera, Emilio; Novara, Iván; Colavitto, Bruno; Alvarez, Orlando; Orts, Darío; Tobal, Jonathan; Giménez, Mario; Introcaso, Antonio; Ruiz, Francisco; Martínez, Patricia; Ramos, Victor A.

    2015-12-01

    A broad range of processes acted simultaneously during the Quaternary producing relief in the Andes and adjacent foreland, from the Chilean coast, where the Pacific Ocean floor is being subducted beneath South American, to the Brazilian and the Argentinean Atlantic platform area. This picture shows to be complex and responds to a variety of processes. The Geoid exemplifies this spectrum of uplift mechanisms, since it reflects an important change at 35°S along the Andes and the foreland that could be indicating the presence of dynamic forces modeling the topography with varying intensity through the subduction margin. On the other hand, mountains uplifted in the Atlantic margin, along a vast sector of the Brazilian Atlantic coast and inland regions seem to be created at the area where the passive margin has been hyper-extended and consequently mechanically debilitated and the forearc region shifts eastwardly at a similar rate than the westward advancing continent. Therefore the forearc at the Arica latitudes can be considered as relatively stationary and dynamically sustained by a perpendicular-to-the-margin asthenospheric flow that inhibits trench roll back, determining a highly active orogenic setting at the eastern Andes in the Subandean region. To the south, the Pampean flat subduction zone creates particular conditions for deformation and rapid propagation of the orogenic front producing a high-amplitude orogen. In the southern Central and Patagonian Andes, mountain (orogenic) building processes are attenuated, becoming dominant other mechanisms of exhumation such as the i) impact of mantle plumes originated in the 660 km mantle transition, ii) the ice-masse retreat from the Andes after the Pleistocene producing an isostatic rebound, iii) the dynamic topography associated with the opening of an asthenospheric window during the subduction of the Chile ridge and slab tearing processes, iv) the subduction of oceanic swells linked to transform zones and v) the

  16. An Overview of JAXA's Ground-Observation Activities for HAYABUSA Reentry

    NASA Astrophysics Data System (ADS)

    Fujita, Kazuhisa; Yamamoto, Masa-Yuki; Abe, Shinsuke; Ishihara, Yoshiaki; Iiyama, Ohmi; Kakinami, Yoshihiro; Hiramatsu, Yoshihiro; Furumoto, Muneyoshi; Takayanagi, Hiroki; Suzuki, Toshiyuki; Yanagisawa, Toshifumi; Kurosaki, Hirohisa; Shoemaker, Michael; Ueda, Masayoshi; Shiba, Yasuo; Suzuki, Masaharu

    2011-10-01

    On 2010 June 13, the HAYABUSA asteroid explorer returned to Earth and underwent a super-orbital atmospheric reentry. In order to recover the sample return capsule and to take ground-based measurements, the Japan Aerospace Exploration Agency organized a ground-observation team and performed optical tracking of the capsule, spectroscopy of the fireball, and measurements of infrasounds and shock waves generated by the fireball. In this article, an overview of the ground-based observation is presented, and an outline of the preliminary results derived from observations is reported.

  17. InSAR imaging of volcanic deformation over cloud-prone areas - Aleutian islands

    USGS Publications Warehouse

    Lu, Zhong

    2007-01-01

    Interferometric synthetic aperture radar (INSAR) is capable of measuring ground-surface deformation with centimeter-tosubcentimeter precision and spatial resolution of tens-of meters over a relatively large region. With its global coverage and all-weather imaging capability, INSAR is an important technique for measuring ground-surface deformation of volcanoes over cloud-prone and rainy regions such as the Aleutian Islands, where only less than 5 percent of optical imagery is usable due to inclement weather conditions. The spatial distribution of surface deformation data, derived from INSAR images, enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper reviews the basics of INSAR for volcanic deformation mapping and the INSAR studies of ten Aleutian volcanoes associated with both eruptive and noneruptive activity. These studies demonstrate that all-weather INSAR imaging can improve our understanding of how the Aleutian volcanoes work and enhance our capability to predict future eruptions and associated hazards.

  18. Analysis of slip activity and heterogeneous deformation in tension and tension-creep of Ti-5Al-2.5Sn (wt %) using in-situ SEM experiments

    NASA Astrophysics Data System (ADS)

    Li, H.; Boehlert, C. J.; Bieler, T. R.; Crimp, M. A.

    2012-08-01

    The deformation behavior of a Ti-5Al-2.5Sn (wt %) near-α alloy was investigated during in-situ deformation inside a scanning electron microscope. Tensile experiments were performed at 296 K and 728 K (≈0.4 T m), while tensile-creep experiments were performed at 728 K and 763 K. Active deformation systems were identified using electron backscattered diffraction-based slip trace analysis. Both basal and prismatic slip systems were active during the tensile experiments. Basal slip was observed for grains clustered around high Schmid factor orientations, while prismatic slip exhibited less dependence on the crystallographic orientation. The tension-creep experiments revealed less slip but more development of grain boundary ledges than in the higher strain rate tensile experiments. Some of the grain boundary ledges evolved into grain boundary cracks, and grain boundaries oriented nearly perpendicular to the tensile axis formed ledges earlier in the deformation process. Grain boundaries with high misorientations also tended to form ledges earlier than those with lower misorientations. Most of the grain boundary cracks formed in association with grains displaying hard orientations, where the c-axis was nearly perpendicular to the tensile direction. For the tension-creep experiments, pronounced basal slip was observed in the lower-stress creep regime and the activity of prismatic slip increased with increasing creep stress and temperature.

  19. Cloud-to-ground lightning activity over Greece: Spatio-temporal analysis and impacts

    NASA Astrophysics Data System (ADS)

    Matsangouras, I. T.; Nastos, P. T.; Kapsomenakis, J.

    2016-03-01

    Cloud-to-ground (CG) lightning activity recorded by the Hellenic National Meteorological Service (HNMS) Precision Lightning Network (PLN) is analysed over the wider area of Greece. In addition, the spatial and temporal relationships between TRMM 3B42 (Tropical Rainfall Measuring Mission) datasets and lightning are presented. The analyses concern the period from January 14, 2008 to December 31, 2012. The Laboratory of Climatology and Atmospheric Environment, University of Athens, has established a detailed dataset of lightning impacts over Greece from 1895 to 2013, based on digitized archive editions of newspapers. The mean seasonal variability of CG lightning activity revealed autumn as the most dominant season with 303 LD, while the mean monthly variability of CG indicated October as the most lightning active month and May as the month with a mean of 27 LD. The mean annual spatial distribution of CG lightning per km2, depicted the maximum frequency over Pindus mountain range (> 7 CG/km2). During the autumn season, the northern Ionian Sea experienced a mean frequency of more than 5 CG/km2, compared to the southern Ionian Sea and NW Peloponnesus, where values of more than 7 CG/km2 are depicted. During the summer season, the maximum frequency appeared along Pindus mountain range, around Attica, Thessaly and central Macedonia highlands. The spatial distribution of seasonal correlations between the number of CG flashes/day and gridded (TRMM 3B42) daily rainfall totals for the period 2008-2012 over Greece, indicated that correlations were mainly positive all over the under study area, within all seasons, and especially during summer and autumn. Regarding the lightning impacts in Greece, based on the 1895-2013 study period, more than 343 fatalities and at least 224 injured people have been recorded. The spatial analysis of lightning impacts, showed that the majority of events has been recorded over Greek mainland and only few scattered events have been reported over

  20. Long-term versus short-term deformation processes at Tenerife (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Tizzani, Pietro; Manconi, Andrea; Zeni, Giovanni; Pepe, Antonio; Manzo, Mariarosaria; Camacho, Antonio; FernáNdez, Jose

    2010-12-01

    Several geophysical investigations have identified that the Tenerife volcanic complex is affected by crustal deformation processes occurring at timescales of millions of years. Recently, space-based geodetic observations have also detected a short-term surface deformation, characterized by a broad subsidence pattern with maximum ground velocities of about 4 mm yr-1. For the purpose of investigating the relationship between these long-term and short-term deformation processes, we performed an advanced fluid dynamic analysis (FDA). We first carried out a standard dimensionless FDA to discriminate the deformation style of Tenerife and found that, at million year timescales, basement flexure mainly controls its long-term structural evolution. Secondly, to highlight the driving forces of the short-term deformation process, we simulated a numerical FDA based on finite element models that include topography as well as vertical and lateral material heterogeneities. Our results show that the recent surface deformation is mainly caused by a progressive sagging of the denser (less viscous) core of the island onto the weaker (but more viscous) lithosphere. Moreover, over periods comparable to the hypothesized age of loading of the oceanic crust beneath Tenerife, this tendency would result in a total flexure of about 3-4 km, which is in agreement with independent estimations based on geophysical analyses. Our study shows that a unitary physical model may explain both the deformation recorded in deep geological structures and the current active ground deformation processes occurring at the Tenerife volcano.

  1. Mammoth Lakes earthquakes and ground uplift: precursors to possible volcanic activity ( USA)?

    USGS Publications Warehouse

    Bailey, R.A.

    1983-01-01

    Recent seismicity and ground uplift in the area are described. A comparison with other areas in the Cascades is made and the possibility of the Long Valley Magma Chamber as a source for eruptions is discussed. -P.N.Chroston

  2. Overview of ground coupled heat pump research and technology transfer activities

    NASA Astrophysics Data System (ADS)

    Baxter, V. D.; Mei, V. C.

    Highlights of DOE-sponsored ground coupled heat pump (GCHP) research at Oak Ridge National Laboratory (ORNL) are presented. ORNL, in cooperation with Niagara Mohawk Power Company, Climate Master, Inc., and Brookhaven National Laboratory developed and demonstrated an advanced GCHP design concept with shorter ground coils that can reduce installed costs for northern climates. In these areas it can also enhance the competitiveness of GCHP systems versus air-source heat pumps by lowering their payback from 6 to 7 years to 3 to 5 years. Ground coil heat exchanger models (based primarily on first principles) have been developed and used by others to generate less conservative ground coil sizing methods. An aggressive technology transfer initiative was undertaken to publicize results of this research and make it available to the industry. Included in this effort were an international workshop, trade press releases and articles, and participation in a live teleconference on GCHP technology.

  3. [Oxidative modification of proteins and antioxidative blood activity of ground squirrels during induced awakening from winter sleep].

    PubMed

    Astaeva, M D; Klichkhanov, N K

    2009-01-01

    The intensity of oxidative modification of plasma proteins and activity of the antioxidative system of the blood of the ground squirrels during awakening from winter sleep is studied. During waking of animals, processes of oxidative modification of proteins in the blood plasma intensify. While the body temperature rises, the antioxidative activity of hydrophylic components of the blood plasma grows essentially, and erythrocyte superoxide dismutase too. Activity of erythrocyte catalase at all stages of waking is definitely higher than in the control. The received results evidence that the high activity of various links of antioxidative blood protection provides stability to oxidative stress during waking of animals from deep sleep. PMID:20143625

  4. Active tectonic deformation along rejuvenated faults in tropical Borneo: Inferences obtained from tectono-geomorphic evaluation

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Kumar, Shashi Gaurav; Authemayou, Christine

    2016-08-01

    active folding of the Rajang Group fold-thrust belt to present and these events reactivated old major faults and minor related dislocations. From geomorphic analysis associated with sedimentary record, we posit that the terrain could have undergone high uplift rates since 5 Ma or multi-phased uplift with periodic intermittent pulses of high and low uplift rates.

  5. Active Deformation along the Southern End of the Tosco-Abreojos Fault System: New Insights from Multibeam Swath Bathymetry

    NASA Astrophysics Data System (ADS)

    Michaud, François; Calmus, Thierry; Ratzov, Gueorgui; Royer, Jean-Yves; Sosson, Marc; Bigot-Cormier, Florence; Bandy, William; Mortera Gutiérrez, Carlos

    2011-08-01

    The relative motion of the Pacific plate with respect to the North America plate is partitioned between transcurrent faults located along the western margin of Baja California and transform faults and spreading ridges in the Gulf of California. However, the amount of right lateral offset along the Baja California western margin is still debated. We revisited multibeam swath bathymetry data along the southern end of the Tosco-Abreojos fault system. In this area the depths are less than 1,000 m and allow a finer gridding at 60 m cell spacing. This improved resolution unveils several transcurrent right lateral faults offsetting the seafloor and canyons, which can be used as markers to quantify local offsets. The seafloor of the southern end of the Tosco-Abreojos fault system (south of 24°N) displays NW-SE elongated bathymetric highs and lows, suggesting a transtensional tectonic regime associated with the formation of pull-apart basins. In such an active tectonic context, submarine canyon networks are unstable. Using the deformation rate inferred from kinematic predictions and pull-apart geometry, we suggest a minimum age for the reorganization of the canyon network.

  6. Ground penetrating radar and active seismic investigation of stratigraphically verified pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Gase, A.; Bradford, J. H.; Brand, B. D.

    2015-12-01

    We conducted ground-penetrating radar (GPR) and active seismic surveys in July and August, 2015 parallel to outcrops of the pyroclastic density current deposits of the May 18th, 1980 eruption of Mount St. Helens (MSH), Washington. The primary objective of this study is to compare geophysical properties that influence electromagnetic and elastic wave velocities with stratigraphic parameters in the un-saturated zone. The deposits of interest are composed of pumice, volcanic ash, and lava blocks comprising a wide range of intrinsic porosities and grain sizes from sand to boulders. Single-offset GPR surveys for reflection data were performed with a Sensors and Software pulseEKKO Pro 100 GPR using 50 MHz, 100 MHz, and 200 MHz antennae. GPR data processing includes time-zero correction, dewow filter, migration, elevation correction. Multi-offset acquisition with 100 MHz antennae and offsets ranging from 1 m to 16 m are used for reflection tomography to create 2 D electromagnetic wave velocity models. Seismic surveys are performed with 72 geophones spaced at two meters using a sledge hammer source with shot points at each receiver point. We couple p- wave refraction tomography with Rayleigh wave inversion to compute Vp/Vs ratios. The two geophysical datasets are then compared with stratigraphic information to illustrate the influence of lithological parameters (e.g. stratification, grain-size distribution, porosity, and sorting) on geophysical properties of unsaturated pyroclastic deposits. Future work will include joint petrophysical inversion of the multiple datasets to estimate porosity and water content in the unsaturated zone.

  7. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010

  8. Active Deformation in the Greater Himalayan Zone in Western Nepal from Inversion of New (U-Th)/He Cooling Ages

    NASA Astrophysics Data System (ADS)

    Harvey, J. E.; Burbank, D.

    2015-12-01

    Much of the central Himalaya features an abrupt rise in mean elevation from ~1.5 km in the Lesser Himalaya to ~4-5 km Greater Himalaya and Tibetan Plateau. This physiographic transition is known as PT2, and is often interpreted as the surface expression of transport over a ramp in the Main Himalayan Thrust (MHT). In western Nepal, however, the same rise in elevation occurs over two distinct topographic steps (PT2-N and PT2-S). In previous work, Harvey et al. (2015) argue that this anomalous topography is the result of recent southward-migration of mid-crustal deformation along the MHT. Due to the seismogenic potential of the MHT it is important to constrain its geometry in the western Nepal seismic gap, which has not had a large earthquake in over 600 years. To test the above hypothesis, we perform [U-Th]/He dating on 39 apatite and 47 zircon samples collected along seven relief transects throughout western Nepal. We constrain exhumation histories by inverting these new cooling ages with the 3-D thermo-kinematic model Pecube. Five transects collected from the Greater Himalaya north of PT2-N are best fit by relatively rapid exhumation rates (~1-2 km/Myr) since ~4 Ma. The other two, collected from farther south near PT2-S, require rapid (~1-2 km/Myr) exhumation until around 8-11 Ma, followed by much slower (~0.1-0.2 km/Myr) exhumation until at least the late Pliocene. Assuming that exhumation rates reflect uplift rates, the rapid Plio-Pleistocene exhumation in the Greater Himalaya north of PT2-N suggest that this physiographic transition is similar to that at the foot of the Greater Himalaya in central Nepal. It follows that active deformation is occurring along a NW-trend as much as 100 km farther north than would be expected if simply projecting PT2 across western Nepal. This finding is consistent with transport over a more northerly MHT ramp or perhaps oblique slip along the recently identified, surface-breaking WNFZ. Although the geomorphology and microseismicity

  9. Investigation of remnant versus active deformation in the lithosphere beneath south Africa from shear-wave splitting

    NASA Astrophysics Data System (ADS)

    emuh, M.; Nyblade, A.; Weeraratne, D. S.

    2012-12-01

    South Africa is comprised of several continental blocks formed during previous collisional events, which date back 2-3 Ga. The three main blocks known as the Pietersburg, Kimberley, and Witwatersrand blocks are delineated by ancient subduction boundaries such as the Colesberg lineament. We consider whether these continental blocks retain remnant deformation at lithospheric depths from ancient collisional events or are governed by stresses due to current plate motion and mantle flow. We use shear-wave splitting methods to study seismic anisotropy from teleseismic phases. Splitting measurements are obtained by minimizing the smallest eigenvalue, maximizing the ratio of the smallest and largest eigenvalues, and rotation correlation, using the graphical user interface Splitlab. We only consider results that show consistency between multiple methods. The seismic data was collected from a new deployment of AfricaArray stations in south Africa and consists of 28 earthquake events. Earthquakes used in this study have a good azimuthal distribution with the poorest coverage only in the NW and S directions. Stations located within the Witwatersrand block display consistent results with a NE fast direction and an average delay time of 1.01 +/- 0.4 s. One station west of the Colesberg lineament in the Kimberley block yields a NW-SE fast direction for all measurements and is nearly perpendicular to results from stations east of this boundary. Stations south of Kaapvaal craton show dependence on the back azimuth of earthquake arrivals. Paths which travel through the Namaqua-Natal fold belt all produce N-S fast directions with average delay times of 0.9 s. Raypaths that travel through the southern Saldania fold belt produce NW-SE fast directions. We suggest that seismic anisotropy in this region represents active deformation in the Witwatersrand block dictated by current tectonic stresses and absolute plate motion. Remnant fabric from ancient tectonic collisional events may still

  10. MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Cornelissen, S. A.; Hartzell, A. L.; Stewart, J. B.; Bifano, T. G.; Bierden, P. A.

    2010-07-01

    We report on the development of high actuator count, micro-electromechanical (MEMS) deformable mirrors designed for high order wavefront correction in ground and space-based astronomical adaptive optics instruments. The design of these polysilicon, surface-micromachined MEMS deformable mirrors builds on technology that has been used extensively to correct for ocular aberrations in retinal imaging systems and for compensation of atmospheric turbulence in free-space laser communication. These light-weight, low power deformable mirrors have an active aperture of up to 25.2mm consisting of a thin silicon membrane mirror supported by an array of 140 to 4092 electrostatic actuators which exhibit no hysteresis and have sub-nanometer repeatability making them well suited for open-loop control applications such as Multi-Object Adaptive Optics (MOAO). The continuous membrane deformable mirrors, coated with a highly reflective metal film, are capable of up to 6μm of stroke, have a surface finish of <10nm RMS with a fill factor of 99.8%. Presented in this paper are device characteristics and performance test results, as well as reliability test data and device lifetime predictions that show that trillions of actuator cycles can be achieved without failures.

  11. Ozone treatment of coal- and coffee grounds-based active carbons: Water vapor adsorption and surface fractal micropores

    SciTech Connect

    Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi

    1998-09-15

    Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon with D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.

  12. Dynamic performance of MEMS deformable mirrors for use in an active/adaptive two-photon microscope

    NASA Astrophysics Data System (ADS)

    Zhang, Christian C.; Foster, Warren B.; Downey, Ryan D.; Arrasmith, Christopher L.; Dickensheets, David L.

    2016-03-01

    Active optics can facilitate two-photon microscopic imaging deep in tissue. We are investigating fast focus control mirrors used in concert with an aberration correction mirror to control the axial position of focus and system aberrations dynamically during scanning. With an adaptive training step, sample-induced aberrations may be compensated as well. If sufficiently fast and precise, active optics may be able to compensate under-corrected imaging optics as well as sample aberrations to maintain diffraction-limited performance throughout the field of view. Toward this end we have measured a Boston Micromachines Corporation Multi-DM 140 element deformable mirror, and a Revibro Optics electrostatic 4-zone focus control mirror to characterize dynamic performance. Tests for the Multi-DM included both step response and sinusoidal frequency sweeps of specific Zernike modes. For the step response we measured 10%-90% rise times for the target Zernike amplitude, and wavefront rms error settling times. Frequency sweeps identified the 3dB bandwidth of the mirror when attempting to follow a sinusoidal amplitude trajectory for a specific Zernike mode. For five tested Zernike modes (defocus, spherical aberration, coma, astigmatism and trefoil) we find error settling times for mode amplitudes up to 400nm to be less than 52 us, and 3 dB frequencies range from 6.5 kHz to 10 kHz. The Revibro Optics mirror was tested for step response only, with error settling time of 80 μs for a large 3 um defocus step, and settling time of only 18 μs for a 400nm spherical aberration step. These response speeds are sufficient for intra-scan correction at scan rates typical of two-photon microscopy.

  13. Transcriptional responses, metabolic activity and mouthpart deformities in natural populations of Chironomus riparius larvae exposed to environmental pollutants.

    PubMed

    Planelló, Rosario; Servia, María J; Gómez-Sande, Pablo; Herrero, Óscar; Cobo, Fernando; Morcillo, Gloria

    2015-04-01

    Biomarkers are an important tool in laboratory assays that link exposure or effect of specific toxicants to key molecular and cellular events, but they have not been widely used in invertebrate populations exposed to complex mixtures of environmental contaminants in their natural habitats. The present study focused on a battery of biomarkers and their comparative analysis in natural populations of the benthic larvae of Chironomus riparius (Diptera), sampled in three differentially polluted rivers (the Con, Sar, and Louro in Galicia, Spain). In our study, some parameters were identified, such as hsp70 gene activity, GST enzymatic activity, total glycogen content and mouthpart deformities, which showed significant differences among populations from the three rivers that differed in the levels and types of sedimentary contaminants analyzed (metals, organic-chlorine pesticides, alkylphenols, pharmaceutical, and personal care products). In contrast to these sensitive biomarkers, other parameters showed no significant differences (hsc70 gene, EcR gene, P450 gene, RNA:DNA ratio, total protein content), and were stable even when comparing field and nonexposed laboratory populations. The hsp70 gene seems to be particularly sensitive to conditions of pollutant exposure, while its constitutive counterpart hsc70 showed invariable expression, suggesting that the hsc70/hsp70 ratio may be a potential indicator of polluted environments. Although further studies are required to understand the correlation between molecular responses and the ecological effects of pollutants on natural populations, the results provide new data about the biological responses to multiple-stressor environments. This field study adds new molecular endpoints, including gene expression, as suitable tools that, complementing other ecotoxicological parameters, may help to improve the methodologies of freshwater monitoring under the increasing burden of xenobiotics. PMID:23893657

  14. Levelling Profiles and a GPS Network to Monitor the Active Folding and Faulting Deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain)

    PubMed Central

    Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; Gil, Antonio José; Borque, María Jesús; de Lacy, María Clara; Pedrera, Antonio; López-Garrido, Angel Carlos; Alfaro, Pedro; García-Tortosa, Francisco; Ramos, Maria Isabel; Rodríguez-Caderot, Gracia; Rodríguez-Fernández, José; Ruiz-Constán, Ana; de Galdeano-Equiza, Carlos Sanz

    2010-01-01

    The Campo de Dalias is an area with relevant seismicity associated to the active tectonic deformations of the southern boundary of the Betic Cordillera. A non-permanent GPS network was installed to monitor, for the first time, the fault- and fold-related activity. In addition, two high precision levelling profiles were measured twice over a one-year period across the Balanegra Fault, one of the most active faults recognized in the area. The absence of significant movement of the main fault surface suggests seismogenic behaviour. The possible recurrence interval may be between 100 and 300 y. The repetitive GPS and high precision levelling monitoring of the fault surface during a long time period may help us to determine future fault behaviour with regard to the existence (or not) of a creep component, the accumulation of elastic deformation before faulting, and implications of the fold-fault relationship. PMID:22319309

  15. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region.

    PubMed

    Kassotis, Christopher D; Tillitt, Donald E; Davis, J Wade; Hormann, Annette M; Nagel, Susan C

    2014-03-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized that a selected subset of chemicals used in natural gas drilling operations and also surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas-related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operations may result in elevated endocrine-disrupting chemical activity in surface and ground water. PMID:24424034

  16. Comparison of ground and satellite based measurements of the fraction of photosynthetically active radiation intercepted by tall-grass prairie

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, T. H.; Kanemasu, E. T.; Flitcroft, I. D.; Su, H.

    1992-01-01

    The fraction of photosynthetically active radiation intercepted by vegetation, F(sub ipar) is an important parameter for modeling the interactions between the land-surface and atmosphere and for estimating vegetation biomass productivity. This study was, therefore, an integral part of FIFE. The specific purpose of this experiment was to find out how well definitive measurements of F(sub ipar) on the ground relate to near-ground and satellite based spectral reflectance measurements. Concurrent measurements of F(sub ipar) and ground, helicopter, and satellite based reflectance measurements were taken at thirteen tall-grass prairie sites within the FIFE experimental area. The sites were subjected to various combinations of burning and grazing managements. The ground and helicopter based reflectance measurements were taken on the same day or few days from the time of the overpass of LANDSAT and SPOT satellites. Ground-based reflectance measurements and sun photometer readings taken at the times of the satellite overpasses were used to correct for atmospheric attenuation. Hand-held radiometer spectral indices were strongly correlated with helicopter and satellite based values (r = 0.94 for helicopter, 0.93 for LANDSAT Thematic Mapper, and 0.86 for SPOT). However, the ground, helicopter, and satellite based normalized difference spectral vegetation indices showed low sensitivity to changes in F(sub ipar). Reflectance measurements were only moderately well correlated with measurements of F(sub ipar) (r = 0.82 for hand-held radiometer, 0.84 for helicopter measurements, and 0.75 for the LANDSAT Thematic Mapper and SPOT). Improved spectral indices which can compensate for site differences are needed in order to monitor F(sub ipar) more reliably.

  17. Comparison of ground and satellite based measurements of the fraction of photosynthetically active radiation intercepted by tall-grass prairie

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, T. H.; Kanemasu, E. T.; Flitcroft, I.; Su, H.

    1991-01-01

    The fraction, of photosynthetically active radiation intercepted by vegetation, F(sub ipar) is an important parameter for modeling the interactions between the land-surface and atmosphere and for estimating vegetation biomass productivity. This study was; therefore, an integral part of FIFE. The specific purpose of this experiment was to find out how well definitive measurements of F(sub ipar) on the ground relate to near-ground and satellite based spectral reflectance measurements. Concurrent measurements of F(sub ipar) and ground, helicopter, and satellite based reflectance measurements were taken at thirteen tall-grass prairie sites within the FIFE experimental area. The sites were subjected to various combinations of burning and grazing managements. The ground and helicopter based reflectance measurements were taken on the same day or few days from the time of the overpass of LANDSAT and SPOT satellites. Ground-based reflectance measurements and sun photometer readings taken at the times of the satellite overpasses were used to correct for atmospheric attenuation. Hand-held radiometer spectral indices were strongly correlated with helicopter and satellite based values (r=0.94 for helicopter, 0.93 for LANDSAT Thematic Mapper, and 0.86 for SPOT). However, the ground, helicopter, and satellite based normalized difference spectral vegetation indices showed low sensitivity to changes in F(sub ipar). Reflectance measurements were only moderately well correlated with measurements of F(sub ipar) (r=0.82 for hand-held radiometer, 0.84 for helicopter measurements, and 0.75 for the LANDSAT Thematic Mapper and SPOT). Improved spectral indices which can compensate for site differences are needed in order to monitor F(sub ipar) more reliably.

  18. Blanket Biological Review for General Maintenance Activities within Active Burial Grounds, 200 E and 200 W Areas, ECR No. 99-200-042

    SciTech Connect

    Brandt, Charles A.

    1999-04-30

    No plant and animal species protected under the Endangered Species Act, candidates for such protection, or species listed by the Washington state government were observed in the vicinity of the proposed sites. Piper's daisy is a Washington State Sensitive plant species, and as such is a Level III resource under the Hanford Site Biological Resources Management Plan. Compensatory mitigation is appropriate for this species when adverse impacts cannot be avoided. The stalked pod and crouching milkvetchs are relatively common throughout 200 West area, therefore even if the few individuals within the active burial grounds are disturbed, it is not likely that the overall local population will be adversely affected. The Watch List is the lowest level of listing for plant species of concern in the State of Washington. No adverse impacts to species or habitats of concern are expected to occur from routine maintenance within the active portions of the 218-W-4C, 218-W-4B, 218-W-3, 218-W-3A, a nd 218-W-5 burial grounds, as well as the portion of 218-E-12B currently used for storage of retired submarine reactor cores. The remaining portions of the 218-E-12B burial ground, the entire 218-E-10 burial ground, and the 218-W-6 burial ground currently have extensive vegetative cover and it is highly likely that migratory birds, such as meadow larks, horned larks, and curlews will nest in these areas. Therefore, it is recommended that if removal of the existing vegetation is required for burial ground operations, such removal only occur during the August through March time period (i.e. when the birds are not actively nesting). If vegetation removal is required prior to August 1999 or after 1 April 2000, please contact the ECAP staff for an additional analysis to ensure compliance with the Migratory Bird Treaty Act.

  19. Coseismic Faulting and Folding in an Active Thrust Sheet over Multiple Rupture Cycles Resolved by Integrating Surface and Subsurface Records of Earthquake Deformation

    NASA Astrophysics Data System (ADS)

    Stockmeyer, J. M.; Shaw, J. H.; Brown, N.; Rhodes, E. J.; Wang, M.; Lavin, L. C.; Guan, S.

    2015-12-01

    Many recent thrust fault earthquakes have involved coseismic surface faulting and folding, revealing the complex nature of surface deformation in active thrust sheets. In this study, we characterize deformation along the active Southern Junggar Thrust (SJT) in the Junggar basin, NW China - which sourced the 1906 M8 Manas earthquake - to gain insight into how fault slip at depth is partitioned between faulting and folding strains at Earth's surface by integrating deformed terrace records, subsurface geophysical data, and luminescence geochronology. Using a 1-m digital elevation model and field surveys, we have mapped the precise geometries of fluvial terraces across the entire Tugulu anticline, which lies in the hanging wall of the SJT. These profiles reveal progressive uplift of several terraces along prominent fault scarps where the SJT is surface-emergent. Similarly aged terraces are folded in the backlimb of the Tugulu fold, providing a sequential record of surface folding. These folded terraces are progressively rotated such that the oldest terraces are dipping much steeper than younger terraces within the same fold limb. Using 2- and 3-D seismic reflection data, we integrate subsurface deformation constraints with records of surface strain. Structural interpretations of these seismic data define the geometry of the SJT and reveal that folding is localized across synclinal bends along the SJT. We evaluate a range of distinct fault-related fold models (e.g. fault-bend folding, shear fault-bend folding) to assess which structural style best describes the geometries of the subsurface and surface fold patterns. By doing so, we have the opportunity to directly relate surface fault slip measures from terrace folding and uplift to total fault slip at depth. This integration of surface and subsurface deformation - combined with constraints on terrace ages from post-IR IRSL geochronology - allows us to characterize how fault slip and seismic moment are partitioned

  20. Gravity changes and deformation at Kīlauea Volcano, Hawaii, associated with summit eruptive activity, 2009-2012

    USGS Publications Warehouse

    Bagnardi, Marco; Poland, Michael P.; Carbone, Daniele; Baker, Scott; Battaglia, Maurizio; Amelung, Falk

    2014-01-01

    Analysis of microgravity and surface displacement data collected at the summit of Kīlauea Volcano, Hawaii (USA), between December 2009 and November 2012 suggests a net mass accumulation at ~1.5 km depth beneath the northeast margin of Halema‘uma‘u Crater, within Kīlauea Caldera. Although residual gravity increases and decreases are accompanied by periods of uplift and subsidence of the surface, respectively, the volume change inferred from the modeling of interferometric synthetic aperture radar deformation data can account for only a small portion (as low as 8%) of the mass addition responsible for the gravity increase. We propose that since the opening of a new eruptive vent at the summit of Kīlauea in 2008, magma rising to the surface of the lava lake outgasses, becomes denser, and sinks to deeper levels, replacing less dense gas-rich magma stored in the Halema‘uma‘u magma reservoir. In fact, a relatively small density increase (<200 kg m−3) of a portion of the reservoir can produce the positive residual gravity change measured during the period with the largest mass increase, between March 2011 and November 2012. Other mechanisms may also play a role in the gravity increase without producing significant uplift of the surface, including compressibility of magma, formation of olivine cumulates, and filling of void space by magma. The rate of gravity increase, higher than during previous decades, varies through time and seems to be directly correlated with the volcanic activity occurring at both the summit and the east rift zone of the volcano.

  1. Gravity changes and deformation at Kīlauea Volcano, Hawaii, associated with summit eruptive activity, 2009-2012

    NASA Astrophysics Data System (ADS)

    Bagnardi, Marco; Poland, Michael P.; Carbone, Daniele; Baker, Scott; Battaglia, Maurizio; Amelung, Falk

    2014-09-01

    Analysis of microgravity and surface displacement data collected at the summit of Kīlauea Volcano, Hawaii (USA), between December 2009 and November 2012 suggests a net mass accumulation at ~1.5 km depth beneath the northeast margin of Halema`uma`u Crater, within Kīlauea Caldera. Although residual gravity increases and decreases are accompanied by periods of uplift and subsidence of the surface, respectively, the volume change inferred from the modeling of interferometric synthetic aperture radar deformation data can account for only a small portion (as low as 8%) of the mass addition responsible for the gravity increase. We propose that since the opening of a new eruptive vent at the summit of Kīlauea in 2008, magma rising to the surface of the lava lake outgasses, becomes denser, and sinks to deeper levels, replacing less dense gas-rich magma stored in the Halema`uma`u magma reservoir. In fact, a relatively small density increase (<200 kg m-3) of a portion of the reservoir can produce the positive residual gravity change measured during the period with the largest mass increase, between March 2011 and November 2012. Other mechanisms may also play a role in the gravity increase without producing significant uplift of the surface, including compressibility of magma, formation of olivine cumulates, and filling of void space by magma. The rate of gravity increase, higher than during previous decades, varies through time and seems to be directly correlated with the volcanic activity occurring at both the summit and the east rift zone of the volcano.

  2. 77 FR 51827 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Ground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... (77 FR 26046). Interested parties are encouraged to send comments to the OMB, Office of Information...; Ground Control Plans for Surface Coal Mines and Surface Work Areas of Underground Coal Mines ACTION... Mines and Surface Work Areas of Underground Coal Mines,'' to the Office of Management and Budget...

  3. Determination of the activation enthalpy for migration of dislocations in plastically deformed 8006 Al-alloy by positron annihilation lifetime technique

    NASA Astrophysics Data System (ADS)

    Salah, Mohammed; Abdel-Rahman, M.; Badawi, Emad A.; Abdel-Rahman, M. A.

    2016-06-01

    The activation enthalpy for migration of dislocations of plastically deformed 8006 Al-alloy was investigated by positron annihilation lifetime technique. Plastic deformation using a hydraulic press produces mainly dislocations and may produce point defects. The type of defect was studied by isochronal annealing which determines the temperature range of recovery of each type. Only one type of defect (dislocations) was observed for the investigated sample and was found to be recovered within the range 455-700 K. Isothermal annealing by slow cooling was performed through this range and used in determination of the activation enthalpy of migration of dislocations which was found to be 0.26 ± 0.01 eV.

  4. Effects of season and host physiological state on the diversity, density, and activity of the arctic ground squirrel cecal microbiota.

    PubMed

    Stevenson, Timothy J; Duddleston, Khrystyne N; Buck, C Loren

    2014-09-01

    We examined the seasonal changes of the cecal microbiota of captive arctic ground squirrels (Urocitellus parryii) by measuring microbial diversity and composition, total bacterial density and viability, and short-chain fatty acid concentrations at four sample periods (summer, torpor, interbout arousal, and posthibernation). Abundance of Firmicutes was lower, whereas abundances of Bacteroidetes, Verrucomicrobia, and Proteobacteria were higher during torpor and interbout arousal than in summer. Bacterial densities and percentages of live bacteria were significantly higher in summer than during torpor and interbout arousal. Likewise, total short-chain fatty acid concentrations were significantly greater during summer than during torpor and interbout arousal. Concentrations of individual short-chain fatty acids varied across sample periods, with butyrate concentrations higher and acetate concentrations lower during summer than at all other sample periods. Characteristics of the gut community posthibernation were more similar to those during torpor and interbout arousal than to those during summer. However, higher abundances of the genera Bacteroides and Akkermansia occurred during posthibernation than during interbout arousal and torpor. Collectively, our results clearly demonstrate that seasonal changes in physiology associated with hibernation and activity affect the gut microbial community in the arctic ground squirrel. Importantly, similarities between the gut microbiota of arctic ground squirrels and thirteen-lined ground squirrels suggest the potential for a core microbiota during hibernation. PMID:25002417

  5. Madelung deformity.

    PubMed

    Ghatan, Andrew C; Hanel, Douglas P

    2013-06-01

    Madelung deformity is a rare congenital anomaly of the wrist caused by asymmetric growth at the distal radial physis secondary to a partial ulnar-sided arrest. The deformity is characterized by ulnar and palmar curvature of the distal radius, positive ulnar variance, and proximal subsidence of the lunate. It more commonly occurs in females than males and typically affects both wrists. The deformity can occur in isolation or as part of a genetic syndrome. The pattern of inheritance varies, with some cases following a pseudoautosomal pattern and many others lacking a clear family history. Nonsurgical management is typically advocated in asymptomatic patients. Few studies exist on the natural history of the condition; however, extensor tendon ruptures have been reported in severe and chronic cases. Stiffness, pain, and patient concerns regarding wrist cosmesis have been cited as indications for surgery. Various techniques for surgical management of Madelung deformity have been described, but clear evidence to support the use of any single approach is lacking. PMID:23728962

  6. Long-term active layer and ground surface temperature trends: results of 12 years of observations at Alaskan CALM sites

    NASA Astrophysics Data System (ADS)

    Shiklomanov, N. I.; Nelson, F. E.; Streletskyi, D. A.; Klene, A. E.; Schimek, M.; Little, J.

    2006-12-01

    The uppermost layer of seasonal thawing above permafrost (the active layer) is an important regulator of energy and mass fluxes between the surface and the atmosphere in the polar regions. The Circumpolar Active Layer Monitoring (CALM) program is a network of sites at which data about active-layer thickness (ALT) and dynamics are collected. CALM was established in the 1990s to observe and detect the long-term response of the active layer and near-surface permafrost to changes in climate. Active layer monitoring is an important component of efforts to assess the effects of global change in permafrost environments. CALM strategies are evolving; this presentation showcases some additions to CALM observation procedures designed to monitor processes and detect changes not anticipated in the original CALM protocol of the early 1990s. In this study we used data from 12 (1995-2006) years of extensive, spatially oriented field observations at CALM sites in northern Alaska to examine landscape-specific spatial and temporal trends in active-layer thickness and air and ground surface temperature. Despite an observed increase in air temperature, active-layer thickness exhibited a decreasing trend over the study period. This result indicates that soil consolidation accompanying penetration of thaw into an ice-rich stratum at the base of the active layer has resulted in subsidence of the surface with little or no apparent thickening of the active layer, as traditionally defined. Differential Global Positioning Systems (DGPS) technology was used to detect frost heave and thaw settlement within representative landscapes. Preliminary results indicate that heave and settlement follow patterns of spatial variation similar to those of active-layer thickness. To evaluate the effect of vegetation on ground surface temperature, several heat-transfer coefficients were estimated, including land cover specific thermal diffusivity and empirical n-factors.

  7. Characterizing Ground-Water Flow Paths in High-Altitude Fractured Rock Settings Impacted by Mining Activities

    NASA Astrophysics Data System (ADS)

    Wireman, M.; Williams, D.

    2003-12-01

    The Rocky Mountains of the western USA have tens of thousands of abandoned, inactive and active precious-metal(gold,silver,copper)mine sites. Most of these sites occur in fractured rock hydrogeologic settings. Mining activities often resulted in mobilization and transport of associated heavy metals (zinc,cadmium,lead) which pose a significant threat to aquatic communities in mountain streams.Transport of heavy metals from mine related sources (waste rock piles,tailings impoudments,underground workings, mine pits)can occur along numerous hydrological pathways including complex fracture controlled ground-water pathways. Since 1991, the United States Environmental Protection Agency, the Colorado Division of Minerals and Geology and the University of Colorado (INSTAAR)have been conducting applied hydrologic research at the Mary Murphy underground mine. The mine is in the Chalk Creek mining district which is located on the southwestern flanks of the Mount Princeton Batholith, a Tertiary age intrusive comprised primarily of quartz monzonite.The Mount Princeton batholith comprises a large portion of the southern part of the Collegiate Range west of Buena Vista in Chaffee County, CO. Chalk Creek and its 14 tributaries drain about 24,900 hectares of the eastern slopes of the Range including the mining district. Within the mining district, ground-water flow is controlled by the distribution, orientation and permeability of discontinuities within the bedrock. Important discontinuities include faults, joints and weathered zones. Local and intermediate flow systems are perturbed by extensive underground excavations associated with mining (adits, shafts, stopes, drifts,, etc.). During the past 12 years numerous hydrological investigations have been completed. The investigations have been focused on developing tools for characterizing ground-water flow and contaminant transport in the vicinity of hard-rock mines in fractured-rock settings. In addition, the results from these

  8. Surface Deformation Analysis of the Active Faults revealed by InSAR Observations and Geodetic Data in Southern Part of the Taitung Longitudinal Valley, Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Tung, H.; Chen, H. Y.; Hu, J. C.

    2009-04-01

    The NNE-striking Longitudinal Valley Fault (LVF) in eastern Taiwan is an extremely active inverse fault, which is considered as a collision boundary between the Eurasian and the Philippine Sea plates. The fault segments of the LVF demonstrate different slip behaviors, especially in the southern segment of the LVF. The deformation is partitioned by the strike-slip (Lichi fault segment) and the reverse faulting (Luyeh segment). Thus we investigate crustal deformation pattern along the southern LVF by using SAR interferometry and precise leveling data. The SAR data of the Longitudinal Valley area were collected by ERS-1, ERS-2 and Envisat satellite of the European Space Agency in both descending (track: 232; frame: 3141) and ascending (track: 311; frame: 459) orbits. However, this area is so heavily vegetated that high coherence area is limited in the Taitung City and good interfergrams with better coherence are limited to short time span and small perpendicular baseline pairs. Therefore we made three stacking image from the higher coherence interferograms representing deformation interval from 1995-1996, 1996-1998 and 2006-2008 separately. These three results show a same relative subsidence between Luyeh fault and Lichi fault, which is consistent with leveling data measured that time. Besides, we also used the PSInSAR technique to trace the discrete points that were minimally affected by the decorrelation of radar signals through time. Finally we constrain the deformation map based on PSInSAR with leveling data for better understanding the deformation patterns in the southern Longitudinal Valley area.

  9. BLANKET BIOLOGICAL REVIEW FOR GENERAL MAINTENANCE ACTIVITIES WITHIN ACTIVE BURIAL GROUNDS, 200 E and 200 W Areas, ECR #2000-200-013

    SciTech Connect

    Sackschewsky, Michael R.

    2002-04-04

    No plant and animal species protected under the ESA, candidates for such protection, or species listed by the Washington state government were observed in the vicinity of the proposed sites. Piper's daisy may still occur in some of the burial grounds. This is a Washington State Sensitive plant species, and as such is a Level III resource under the Hanford Site Biological Resources Management Plan. Compensatory mitigation is appropriate for this species when adverse impacts cannot be avoided. The Ecological Compliance Assessment Project (ECAP) staff should consulted prior to the initiation of major work activities within areas where this species has been identified (218-E-12, 218-E-10). The stalked-pod and crouching milkvetch are relatively common throughout 200 West area, therefore even if the few individuals within the active burial grounds are disturbed, it is not likely that the overall local population will be adversely affected. The Watch List is the lowest level of listing for plant species of concern in the State of Washington. No adverse impacts to species or habitats of concern are expected to occur from routine maintenance within the active portions of the 218-W-4C, 218-W-4B, 218-W-3, 218-W-3A, and 218-W-5 burial grounds, as well as the portion of 218-E-12B currently used for storage of retired submarine reactor cores. The remaining portions of the 218-E-12B burial ground, the entire 218-E-10 burial ground, and the 218-W-6 burial ground currently have extensive vegetative cover and it is highly likely that migratory birds, such as meadow larks, horned larks, and curlews will nest in these areas. Therefore, it is recommended that if removal of the existing vegetation is required for burial ground operations, such removal only occur during the August through March time period (i.e. when the birds are not actively nesting). This blanket review does not apply to the portions of 218-W-4C, and 218-W-6 previously described.

  10. BLANKET BIOLOGICAL REVIEW FOR GENERAL MAINTENANCE ACTIVITIES WITHIN ACTIVE BURIAL GROUNDS, 200 E and 200 W Areas, ECR No.2001-200-048

    SciTech Connect

    Sackschewsky, Michael R.

    2002-05-08

    No plant and animal species protected under the ESA, candidates for such protection, or species listed by the Washington state government were observed in the vicinity of the proposed sites. Piper's daisy may still occur in some of the burial grounds. This is a Washington State Sensitive plant species, and as such is a Level III resource under the Hanford Site Biological Resources Management Plan. Compensatory mitigation is appropriate for this species when adverse impacts cannot be avoided. The Ecological Compliance Assessment Project (ECAP) staff should consulted prior to the initiation of major work activities within areas where this species has been identified (218-E-12, 218-E-10). The stalked-pod and crouching milkvetch are relatively common throughout 200 West area, therefore even if the few individuals within the active burial grounds are disturbed, it is not likely that the overall local population will be adversely affected. The Watch List is the lowest level of listing for plant species of concern in the State of Washington. No adverse impacts to species or habitats of concern are expected to occur from routine maintenance within the active portions of the 218-W-4C, 218-W-4B, 218-W-3, 218-W-3A, and 218-W-5 burial grounds, as well as the portion of 218-E-12B currently used for storage of retired submarine reactor cores. The remaining portions of the 218-E-12B burial ground, the entire 218-E-10 burial ground, and the 218-W-6 burial ground currently have extensive vegetative cover and it is highly likely that migratory birds, such as meadow larks, horned larks, and curlews will nest in these areas. Therefore, it is recommended that if removal of the existing vegetation is required for burial ground operations, such removal only occur during the August through March time period (i.e. when the birds are not actively nesting). This blanket review does not apply to the portions of 218-W-4C, and 218-W-6 previously described.

  11. BLANKET BIOLOGICAL REVIEW FOR GENERAL MAINTENANCE ACTIVITIES WITHIN ACTIVE BURIAL GROUNDS, 200 E and 200 W Areas, ECR No. 2002-200-034

    SciTech Connect

    Sackschewsky, Michael R.

    2003-06-26

    No plant and animal species protected under the ESA, candidates for such protection, or species listed by the Washington state government were observed in the vicinity of the proposed sites. Piper's daisy may still occur in some of the burial grounds. This is a Washington State Sensitive plant species, and as such is a Level III resource under the Hanford Site Biological Resources Management Plan. Compensatory mitigation is appropriate for this species when adverse impacts cannot be avoided. The Ecological Compliance Assessment Project (ECAP) staff should consulted prior to the initiation of major work activities within areas where this species has been identified (218-E-12, 218-E-10). The stalked-pod and crouching milkvetch are relatively common throughout 200 West area, therefore even if the few individuals within the active burial grounds are disturbed, it is not likely that the overall local population will be adversely affected. The Watch List is the lowest level of listing for pl ant species of concern in the State of Washington. No adverse impacts to species or habitats of concern are expected to occur from routine maintenance within the active portions of the 218-W-4C, 218-W-4B, 218-W-3, 218-W-3A, and 218-W-5 burial grounds, as well as the portion of 218-E-12B currently used for storage of retired submarine reactor cores. The remaining portions of the 218-E-12B burial ground, the entire 218-E-10 burial ground, and the 218-W-6 burial ground currently have extensive vegetative cover and it is highly likely that migratory birds, such as meadow larks, horned larks, and curlews will nest in these areas. Therefore, it is recommended that if removal of the existing vegetation is required for burial ground operations, such removal only occur during the August through March time period (i.e. when the birds are not actively nesting). This blanket review does not apply to the portions of 218-W-4C, and 218-W-6 previously described.

  12. Antimicrobial activity of plant compounds against Salmonella Typhimurium DT104 in ground pork and the influence of heat and storage on the antimicrobial activity.

    PubMed

    Chen, Cynthia H; Ravishankar, Sadhana; Marchello, John; Friedman, Mendel

    2013-07-01

    Salmonella enterica is a predominant foodborne pathogen that causes diarrheal illness worldwide. A potential method of inhibiting pathogenic bacterial growth in meat is through the introduction of plant-derived antimicrobials. The objectives of this study were to investigate the influence of heat (70°C for 5 min) and subsequent cold storage (4°C up to 7 days) on the effectiveness of oregano and cinnamon essential oils and powdered olive and apple extracts against Salmonella enterica serovar Typhimurium DT104 in ground pork and to evaluate the activity of the most effective antimicrobials (cinnamon oil and olive extract) at higher concentrations in heated ground pork. The surviving Salmonella populations in two groups (heated and unheated) of antimicrobial-treated pork were compared. Higher concentrations of the most effective compounds were then tested (cinnamon oil at 0.5 to 1.0% and olive extract at 3, 4, and 5%) against Salmonella Typhimurium in heated ground pork. Samples were stored at 4°C and taken on days 0, 3, 5, and 7 for enumeration of survivors. The heating process did not affect the activity of antimicrobials. Significant 1.3- and 3-log reductions were observed with 1.0% cinnamon oil and 5% olive extract, respectively, on day 7. The minimum concentration required to achieve . 1-log reduction in Salmonella population was 0.8% cinnamon oil or 4% olive extract. The results demonstrate the effectiveness of these antimicrobials against multidrug-resistant Salmonella Typhimurium in ground pork and their stability during heating and cold storage. The most active formulations have the potential to enhance the microbial safety of ground pork. PMID:23834804

  13. Comparison of ground and satellite based measurements of the fraction of photosynthetically active radiation intercepted by tall-grass prairie

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, T. H.; Kanemasu, E. T.; Flitcroft, I.; Su, H.

    1990-01-01

    The fraction, of photosynthetically active radiation absorbed by vegetation, F sub ipar, is an important requirement for estimating vegetation biomass productivity and related quantities. This was an integral part of a large international effort; the First ISLSCP Field Experiment (FIFE). The main objective of FIFE was to study the effects of vegetation on the land atmosphere interactions and to determine if these interactions can be assessed from satellite spectral measurements. The specific purpose of this experiment was to find out how well measurements of F sub ipar relate to ground, helicopter, and satellite based spectral reflectance measurements. Concurrent measurements of F sub ipar and ground, helicopter, and satellite based measurements were taken at 13 tall grass prairie sites in Kansas. The sites were subjected to various combinations of burning and grazing managements.

  14. Anti-lymphoproliferative activity of alpha-2-macroglobulin in the plasma of hibernating 13-lined ground squirrels and woodchucks.

    PubMed

    Sieckmann, Donna G; Jaffe, Howard; Golech, Susanne; Cai, DeCheng; Hallenbeck, John M; McCarron, Richard M

    2014-09-15

    Plasma from hibernating (HIB) woodchucks (Marmota monax) or 13-lined ground squirrels (Ictidomys tridecemlineatus) suppressed (3)H-thymidine uptake in mouse spleen cell cultures stimulated with Concanavalin A (ConA); plasma from non-hibernating animals were only slightly inhibitory. Maximum inhibition occurred when HIB plasma was added to the cultures prior to ConA. After HPLC size exclusion chromatography of the HIB ground squirrel plasma, a single fraction (fraction-14) demonstrated inhibitory activity. Assay of fraction-14 from 8 HIB squirrels showed inhibition ranging from 13 to 95%; inhibition was correlated to the time the squirrels were exposed to cold prior to hibernation. Western blot analysis showed the factor to be a large molecular weight protein (>300 kDa), and mass spectrometry identified sequences that were 100% homologous with alpha-2-macroglobulin from humans and other species. These findings indicate a hibernation-related protein that may be responsible for immune system down regulation. PMID:25113962

  15. Modelling magnetically deformed neutron stars

    NASA Astrophysics Data System (ADS)

    Haskell, B.; Samuelsson, L.; Glampedakis, K.; Andersson, N.

    2008-03-01

    Rotating deformed neutron stars are important potential sources for ground-based gravitational wave interferometers such as LIGO, GEO600 and VIRGO. One mechanism that may lead to significant non-asymmetries is the internal magnetic field. It is well known that a magnetic star will not be spherical and, if the magnetic axis is not aligned with the spin axis, the deformation will lead to the emission of gravitational waves. The aim of this paper is to develop a formalism that would allow us to model magnetically deformed stars, using both realistic equations of state and field configurations. As a first step, we consider a set of simplified model problems. Focusing on dipolar fields, we determine the internal magnetic field which is consistent with a given neutron star model and calculate the associated deformation. We discuss the relevance of our results for current gravitational wave detectors and future prospects.

  16. Paleoseismologic and geomorphic constraints to the deformation style and activity of the Cittanova Fault (southern Calabria, Italy)

    NASA Astrophysics Data System (ADS)

    Peronace, Edoardo; Della Seta, Marta; Fredi, Paola; Galli, Paolo; Giaccio, Biagio; Messina, Paolo; Troiani, Francesco

    2016-04-01

    The western side of Southern Calabria is the epicentral region of the strongest earthquakes of Italy. These are mainly generated by extensional faults which are still poorly investigated and/or parameterized. In this study, we explore the potential of the combined analysis of geomorphic markers, stream network morphometry and paleosimological investigations, aimed at identifying and time-constraining the surface effects of the Calabrian seismogenic faults. In this perspective, we presents results from i) plano-altimetric analysis of geomorphic markers related to active tectonics (such as marine and fluvial terraces), ii) paleoseismological investigations, and iii) time-dependent river basin and long-profile metrics of the Cittanova Fault (CF). The CF, responsible for the catastrophic Mw 7.0 earthquake of 5 February 1783, is a N220° striking, 30 km-long normal fault that downthrows the crystalline-metamorphic basement of the Aspromonte massif (~1000 m asl) below the Gioia Tauro Plain, to elevations of ~500-800 m bsl. Radiocarbon dating allowed us to ascribe the depostion of a major terraced alluvial fan (Cittanova-Taurianova terrace, TAC) to the early Last Glacial Maximum (LGM) and to date the avulsion of the depositional top surface of TAC to 28 ka. As we have found remnants of the TAC also in the CF footwall offset by 12-17 m, we estimate a vertical slip rate of 0.6 ± 0.1 mm/yr for the past 28 ka. Paleoseismological data across the fault scarp evidenced at least three surface ruptures associated to ~Mw 7.0 paleoearthquakes prior to the 1783 event. The recurrence time (~3.2 kyr) is rather longer than other Apennine normal faults (0.3-2.4 kyr), whereas it is consistent with the low slip rate of CF for the late Upper Pleistocene (0.6 mm/yr). On a longer time scale, the spatial configuration of river basin morphometry evidenced the morphodynamic rensponse to the higher slip in the central sector of CF. Furthermore, long-profile metrics, and in particular the spatial

  17. Blanket Biological Review for General Maintenance Activities Within Active Burial Grounds, 200 East and 200 West Areas, ECR No.2003-200-035

    SciTech Connect

    Sackschewsky, Michael R.

    2003-08-25

    No plant and animal species protected under the ESA, candidates for such protection, or species listed by the Washington state government were observed in the vicinity of the proposed sites. Piper's daisy may still occur in some of the burial grounds (218-E-12, 218-E-10). This is a Washington State Sensitive plant species, and as such is a Level III resource under the Hanford Site Biological Resources Management Plan. Compensatory mitigation is appropriate for this species when adverse impacts cannot be avoided. The stalked-pod and crouching milkvetch, Watch List species, are relatively common throughout 200 West area, therefore even if the few individuals within the active burial grounds are disturbed, it is not likely that the overall local population will be adversely affected. The Watch List is the lowest level of listing for plant species of concern in the State of Washington. No adverse impacts to species or habitats of concern are expected to occur from routine maintenance within the active portions of the 218-W-4C, 218-W-4B, 218-W-3, 218-W-3A, and 218-W-5 burial grounds, as well as the portion of 218-E-12B currently used for storage of retired submarine reactor cores. The remaining portions of the 218-E-12B burial ground and the entire 218-E-10 burial ground currently have extensive vegetative cover and it is highly likely that migratory birds, such as meadowlarks, horned larks, and curlews may nest in these areas. Therefore, it is recommended that if removal of the existing vegetation is required for burial ground operations, such removal only occur during the August through March time period (i.e. when the birds are not actively nesting). If vegetation removal is required prior to August 2003 or after 1 April 2004, please contact the ECAP staff for an additional analysis to ensure compliance with the Migratory Bird Treaty Act. Workers should be advised to watch for nesting birds within the burial grounds, if any are encountered, please contact the ECAP

  18. Experimental Deformation of Magnetite

    NASA Astrophysics Data System (ADS)

    Till, J. L.; Rybacki, E.; Morales, L. F. G.

    2015-12-01

    Magnetite is an important iron ore mineral and the most prominent Fe-oxide phase in the Earth's crust. The systematic occurrence of magnetite in zones of intense deformation in oceanic core complexes suggests that it may play a role in strain localization in some silicate rocks. We performed a series of high-temperature deformation experiments on synthetic magnetite aggregates and natural single crystals to characterize the rheological behavior of magnetite. As starting material, we used fine-grained magnetite powder that was hot isostatically pressed at 1100°C for several hours, resulting in polycrystalline material with a mean grain size of around 40 μm and containing 3-5% porosity. Samples were deformed to 15-20% axial strain under constant load (approximating constant stress) conditions in a Paterson-type gas apparatus for triaxial deformation at temperatures between 900 and 1100°C and 300 MPa confining pressure. The aggregates exhibit typical power-law creep behavior. At high stresses, samples deformed by dislocation creep exhibit stress exponents close to 3, revealing a transition to near-Newtonian creep with stress exponents around 1.3 at lower stresses. Natural magnetite single crystals deformed at 1 atm pressure and temperatures between 950°C and 1150 °C also exhibit stress exponents close to 3, but with lower flow stresses and a lower apparent activation energy than the aggregates. Such behavior may result from the different oxygen fugacity buffers used. Crystallographic-preferred orientations in all polycrystalline samples are very weak and corroborate numerical models of CPO development, suggesting that texture development in magnetite may be inherently slow compared with lower symmetry phases. Comparison of our results with experimental deformation data for various silicate minerals suggests that magnetite should be weaker than most silicates during ductile creep in dry igneous rocks.

  19. Imaging active faulting in a region of distributed deformation from the joint clustering of focal mechanisms and hypocentres: Application to the Azores-western Mediterranean region

    NASA Astrophysics Data System (ADS)

    Custódio, Susana; Lima, Vânia; Vales, Dina; Cesca, Simone; Carrilho, Fernando

    2016-04-01

    The matching between linear trends of hypocentres and fault planes indicated by focal mechanisms (FMs) is frequently used to infer the location and geometry of active faults. This practice works well in regions of fast lithospheric deformation, where earthquake patterns are clear and major structures accommodate the bulk of deformation, but typically fails in regions of slow and distributed deformation. We present a new joint FM and hypocentre cluster algorithm that is able to detect systematically the consistency between hypocentre lineations and FMs, even in regions of distributed deformation. We apply the method to the Azores-western Mediterranean region, with particular emphasis on western Iberia. The analysis relies on a compilation of hypocentres and FMs taken from regional and global earthquake catalogues, academic theses and technical reports, complemented by new FMs for western Iberia. The joint clustering algorithm images both well-known and new seismo-tectonic features. The Azores triple junction is characterised by FMs with vertical pressure (P) axes, in good agreement with the divergent setting, and the Iberian domain is characterised by NW-SE oriented P axes, indicating a response of the lithosphere to the ongoing oblique convergence between Nubia and Eurasia. Several earthquakes remain unclustered in the western Mediterranean domain, which may indicate a response to local stresses. The major regions of consistent faulting that we identify are the mid-Atlantic ridge, the Terceira rift, the Trans-Alboran shear zone and the north coast of Algeria. In addition, other smaller earthquake clusters present a good match between epicentre lineations and FM fault planes. These clusters may signal single active faults or wide zones of distributed but consistent faulting. Mainland Portugal is dominated by strike-slip earthquakes with fault planes coincident with the predominant NNE-SSW and WNW-ESE oriented earthquake lineations. Clusters offshore SW Iberia are

  20. Ground-squirrel mounds and related patterned ground along the San Andreas Fault in Central California

    USGS Publications Warehouse

    Wallace, Robert E.

    1991-01-01

    Extensive areas of mound topography and related patterned ground, apparently derived from the mounds of the California Ground Squirrel (Spermophilus beecheyi beecheyi), are in central California.  The relation of patterned ground to the San Andreas fault west of Bakersfield may provide insight into the timing of deformation along the fault as well as the history of ground squirrels.  Mound topography appears to have evolved through several stages from scattered mounds currently being constructed on newly deposited alluvial surfaces, to saturation of areas by mounds, followed by coalescence, elongation and lineation of the mounds.  Elongation, coalescence and modification of the mounds has been primarily by wind, but to a lesser extent by drainage and solifluction.  A time frame including ages of 4,000, 10,500, 29,000, and 73,000 years BP is derived by relating the patterns to slip on the San Andreas fault.  Further relating of the patterns to faulting, tilting, and warping may illuminate details of the rates and history of deformat