Science.gov

Sample records for activity increased expression

  1. Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation.

    PubMed

    Chen, Huiyong; Choesang, Tenzin; Li, Huihui; Sun, Shuming; Pham, Petra; Bao, Weili; Feola, Maria; Westerman, Mark; Li, Guiyuan; Follenzi, Antonia; Blanc, Lionel; Rivella, Stefano; Fleming, Robert E; Ginzburg, Yelena Z

    2016-03-01

    Iron overload results in significant morbidity and mortality in β-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in β-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbb(th1/th1) (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes.

  2. Calpain activity and expression are increased in splenic inflammatory cells associated with experimental allergic encephalomyelitis.

    PubMed

    Shields, D C; Schaecher, K E; Goust, J M; Banik, N L

    1999-09-01

    Since calcium-activated neutral proteinase (calpain) activity and expression are significantly increased in activated glial/inflammatory cells in the central nervous system of animals with autoimmune demyelinating diseases, this enzyme may also play a role in peripheral organ systems in these diseases. In this study, the activity and expression of calpain and the endogenous inhibitor, calpastatin, were evaluated at transcriptional and translational levels in spleens of Lewis rats with acute experimental allergic encephalomyelitis (EAE) prior to the onset of clinical symptoms. Calpain activity and translational expression were increased by 475.5% and 44.3% respectively, on day 4 post-induction in adjuvant controls and animals with EAE. These levels remained elevated compared to normal controls on days 8 and 12. Calpastatin translational expression was similarly increased at these time points although transcriptional expression was not significantly altered at any time following induction of EAE. Likewise, transcriptional expression of mu-calpain was unchanged following induction, while small increases in m-calpain transcriptional expression were observed on days 2 and 8. Most calpain expression was observed in activated splenic macrophages at day 8 post-induction even though activated T cells were also calpain positive. In spinal cords of animals with EAE, calpain expression was significantly increased in rats with severe disease compared to those exhibiting only mild symptoms at day 12 post-induction. Thus, prior to symptomatic EAE, increased calpain activity and expression in peripheral lymphoid organs may play an important role in T cell migration and subsequent disease progression.

  3. Lung arginase expression and activity is increased in cystic fibrosis mouse models.

    PubMed

    Jaecklin, Thomas; Duerr, Julia; Huang, Hailu; Rafii, Mahroukh; Bear, Christine E; Ratjen, Felix; Pencharz, Paul; Kavanagh, Brian P; Mall, Marcus A; Grasemann, Hartmut

    2014-08-01

    The activity of arginase is increased in airway secretions of patients with cystic fibrosis (CF). Downstream products of arginase activity may contribute to CF lung disease. We hypothesized that pulmonary arginase expression and activity would be increased in mouse models of CF and disproportionally increased in CF mice with Pseudomonas aeruginosa pneumonia. Expression of arginase isoforms in lung tissue was quantified with reverse transcriptase-PCR in naive cystic fibrosis transmembrane conductance regulator (Cftr)-deficient mice and β-epithelial sodium channel-overexpressing [β-ENaC-transgenic (Tg)] mice. An isolated lung stable isotope perfusion model was used to measure arginase activity in Cftr-deficient mice before and after intratracheal instillation of Pseudomonas aeruginosa. The expression of arginase-2 in lung was increased in adult Cftr-deficient animals and in newborn β-ENaC-Tg. Arginase-1 lung expression was normal in Cftr-deficient and in newborn β-ENaC-Tg mice, but was increased in β-ENaC-Tg mice at age 1, 3, and 6 wk. Arginase activity was significantly higher in lung (5.0 ± 0.7 vs. 3.2 ± 0.3 nmol·(-1)·h(-1), P = 0.016) and airways (204.6 ± 49.8 vs. 79.3 ± 17.2 nmol·(-1)·h(-1), P = 0.045) of naive Cftr-deficient mice compared with sex-matched wild-type littermate controls. Infection with Pseudomonas aeruginosa resulted in a far greater increase in lung arginase activity in Cftr-deficient mice (10-fold) than in wild-type controls (6-fold) (P = 0.01). This is the first ex vivo characterization of arginase expression and activity in CF mouse lung and airways. Our data show that pulmonary arginase expression and activity is increased in CF mice, especially with Pseudomonas aeruginosa infections.

  4. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A; Cardozo, Christopher P

    2011-10-14

    Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  5. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  6. TNFα Increases RANKL Expression via PGE2-Induced Activation of NFATc1

    PubMed Central

    Park, Hyun-Jung; Baek, Kyunghwa; Baek, Jeong-Hwa; Kim, Hyung-Ryong

    2017-01-01

    Tumor necrosis factor α (TNFα) is known to upregulate the expression of receptor activator of NF-κB ligand (RANKL). We investigated the role of the calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathway in TNFα-induced RANKL expression in C2C12 and primary cultured mouse calvarial cells. TNFα-induced RANKL expression was blocked by the calcineurin/NFAT pathway inhibitors. TNFα increased NFAT transcriptional activity and subsequent RANKL promoter binding. Mutations in the NFAT-binding element (MT(N)) suppressed TNFα-induced RANKL promoter activity. TNFα increased prostaglandin E2 (PGE2) production, which in turn enhanced NFAT transcriptional activity and binding to the RANKL promoter. MT(N) suppressed PGE2-induced RANKL promoter activity. TNFα and PGE2 increased the expression of RANKL, NFAT cytoplasmic-1 (NFATc1), cAMP response element-binding protein (CREB), and cyclooxygenase 2 (COX2); which increment was suppressed by indomethacin, a COX inhibitor. Mutations in the CRE-like element blocked PGE2-induced RANKL promoter activity. PGE2 induced the binding of CREB to the RANKL promoter, whereas TNFα increased the binding of both CREB and NFATc1 to this promoter through a process blocked by indomethacin. The PGE2 receptor antagonists AH6809 and AH23848 blocked TNFα-induced expression of RANKL, NFATc1, and CREB; transcriptional activity of NFAT; and binding of NFATc1 or CREB to the RANKL promoter. These results suggest that TNFα-induced RANKL expression depends on PGE2 production and subsequent transcriptional activation/enhanced binding of NFATc1 and CREB to the RANKL promoter. PMID:28245593

  7. Increased KGF expression promotes fibroblast activation in a double paracrine manner resulting in cutaneous fibrosis.

    PubMed

    Canady, Johanna; Arndt, Stephanie; Karrer, Sigrid; Bosserhoff, Anja K

    2013-03-01

    Fibrotic disorders of the skin share the characteristic features of increased production and deposition of extracellular matrix components by activated fibroblasts. Their clinical course ranges from benign with localized cutaneous involvement to a systemic, life-threatening disease. The molecular cause for fibroblast activation remains unknown, yet epithelial-mesenchymal interactions draw mounting attention in the research field of fibrogenesis. We examined keratinocyte growth factor (KGF), a crucial molecule in fibroblast-keratinocyte cross talk, exemplarily in keloid and scleroderma, and found its expression to be increased in disease-derived fibroblasts and tissues compared with healthy controls. This overexpression induces fibroblast activation through a double paracrine mode of action. Upon KGF stimulation, the keratinocytes produced and secreted OSM (oncostatin M). Fibroblasts were in turn activated by OSM reacting with the increased expression of collagen type I-α1, fibroblast activation protein, and enhanced migration. The observed increase in collagen expression and fibroblast migration can be traced back to OSM-regulated STAT3 phosphorylation, leading to enhanced urokinase plasminogen activator expression. Hence, we propose a causative loop in the pathogenesis of fibrosing disorders of the skin mediated by the overexpression of KGF in mesenchymal cells.

  8. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    SciTech Connect

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  9. Histidine tag fusion increases expression levels of active recombinant amelogenin in Escherichia coli.

    PubMed

    Svensson, Johan; Andersson, Christer; Reseland, Janne E; Lyngstadaas, Petter; Bülow, Leif

    2006-07-01

    Amelogenin is a dental enamel matrix protein involved in formation of dental enamel. In this study, we have expressed two different recombinant murine amelogenins in Escherichia coli: the untagged rM179, and the histidine tagged rp(H)M180, identical to rM179 except that it carries the additional N-terminal sequence MRGSHHHHHHGS. The effects of the histidine tag on expression levels, and on growth properties of the amelogenin expressing cells were studied. Purification of a crude protein extract containing rp(H)M180 was also carried out using IMAC and reverse-phase HPLC. The results of this study showed clearly that both growth properties and amelogenin expression levels were improved for E. coli cells expressing the histidine tagged amelogenin rp(H)M180, compared to cells expressing the untagged amelogenin rM179. The positive effect of the histidine tag on amelogenin expression is proposed to be due to the hydrophilic nature of the histidine tag, generating a more hydrophilic amelogenin, which is more compatible with the host cell. Human osteoblasts treated with the purified rp(H)M180 showed increased levels of secreted osteocalcin, compared to untreated cells. This response was similar to cells treated with enamel matrix derivate, mainly composed by amelogenin, suggesting that the recombinant protein is biologically active. Thus, the histidine tag favors expression and purification of biologically active recombinant amelogenin.

  10. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  11. Activation of PI3Kγ/Akt pathway increases cardiomyocyte HMGB1 expression in diabetic environment

    PubMed Central

    Song, Jia; Liu, Qian; Tang, Han; Tao, Aibin; Wang, Hao; Kao, Raymond; Rui, Tao

    2016-01-01

    Background The high mobility group box 1 (HMGB1) protein mediates the cardiomyocyte–cardiac fibroblast interaction that contributes to induction of myocardial fibrosis in diabetes mellitus (DM). In the present study, we aim to investigate the intracellular signaling pathway that leads to cardiomyocyte HMGB1 expression under a diabetic environment. Results HMGB1 expression is increased in high concentration of glucose (HG)-conditioned cardiomyocytes. Challenging cardiomyocytes with HG also increased PI3Kγ and Akt phosphorylation. Inhibition of PI3Kγ (CRISPR/Cas9 knockout plasmid or AS605240) prevented HG-induced Akt phosphorylation and HMGB1 expression by the cardiomyocytes. In addition, inhibition of Akt (Akt1/2/3 siRNA or A6730) attenuated HG-induced HMGB1 production. Finally, challenging cardiomyocytes with HG resulted in increased reactive oxygen species (ROS) production. Treatment of cardiomyocytes with an antioxidant (Mitotempo) abolished HG-induced PI3Kγ and Akt activation, as well as HMGB1 production. Materials and Methods Isolated rat cardiomyocytes were cultured with a high concentration of glucose. Cardiomyocyte phosphatidylinositol 3-kinase gamma (PI3Kγ) and Akt activation were determined by Western blot. Cardiomyocyte HMGB1 production was evaluated with Western blot and enzyme-linked immunosorbent assay (ELISA), while cardiomyocyte oxidative stress was determined with a DCFDA fluorescence probe. Conclusions Our results suggest that the cardiomyocytes incur an oxidative stress under diabetic condition, which subsequently activates the PI3Kγ/Akt cell-signaling pathway and further increases HMGB1 expression. PMID:27821807

  12. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes

    PubMed Central

    Calderon-Dominguez, María; Sebastián, David; Fucho, Raquel; Weber, Minéia; Mir, Joan F.; García-Casarrubios, Ester; Obregón, María Jesús; Zorzano, Antonio; Valverde, Ángela M.; Serra, Dolors

    2016-01-01

    The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders. PMID:27438137

  13. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    SciTech Connect

    Feng, Shan-Li; Sun, Ming-Rui; Li, Ting-Ting; Yin, Xin; Xu, Chang-Qing; Sun, Yi-Hua

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  14. Peripheral Sensitization Increases Opioid Receptor Expression and Activation by Crotalphine in Rats

    PubMed Central

    Zambelli, Vanessa Olzon; Fernandes, Ana Carolina de Oliveira; Gutierrez, Vanessa Pacciari; Ferreira, Julio Cesar Batista; Parada, Carlos Amilcar; Mochly-Rosen, Daria; Cury, Yara

    2014-01-01

    Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d. terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA and protein levels of the µ- and κ-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid receptors by CRP and selective µ- and κ-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-regulated the expression and activation of the δ-opioid receptor. CRP increased the level of activated mitogen-activated protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cζ. This CRP effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute injury and that acute tissue injury enhances the efficacy of peripheral opioids. PMID:24594607

  15. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  16. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    PubMed

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  17. Role of membrane depolarization and extracellular calcium in increased complement receptor expression during neutrophil (PMN) activation

    SciTech Connect

    Berger, M.; Wetzler, E.; Birx, D.L.

    1986-03-05

    During PMN activation the surface expression of receptors (R) for C3b and C3bi increases rapidly. This is necessary for optimal cell adhesion, migration, and phagocytosis. Following stimulation with fMLP or LTB-4, the increased expression of C3bR depends only on the Ca/sup + +/ released from intracellular stores and is not inhibited by 5mM EDTA, while the increase in C3biR also requires extracellular Ca/sup + +/. CR expression also increases when the PMN are depolarized with 140 mM K/sup +/, but with this stimulus, EDTA inhibits C3bR by 67% and C3biR 100%, suggesting that intracellular Ca/sup + +/ stores may not be released. Pertussis toxin caused dose-dependent inhibition of both CR responses to fMLP and also inhibited the increases in both CR induced by K/sup +/. Membrane depolarization (monitored by di-O-C5 fluorescence) due to fMLP was similarly inhibited by toxin but the depolarization due to K/sup +/ was not. The dose of phorbol myristate acetate that maximally increased CR expression, 0.1 ng/ml, did not depolarize the membrane. These results suggest that membrane depolarization is neither necessary nor sufficient for increased CR expression. A Ca/sup + +/ and GTP binding protein-dependent enzyme such as phospholipase C is necessary to the amplify initial signals generated either by release of Ca/sup + +/ stores or by opening voltage dependent Ca/sup + +/ channels following membrane depolarization.

  18. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.

    PubMed

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.

  19. Magnesium ions increase the activity of Bacillus deramificans pullulanase expressed by Brevibacillus choshinensis.

    PubMed

    Zou, Chun; Duan, Xuguo; Wu, Jing

    2016-08-01

    Addition of MgCl2 to the culture medium has been found to dramatically increase the activity of Bacillus deramificans pullulanase expressed by Brevibacillus choshinensis. The specific activity of the pullulanase obtained from medium supplemented with MgCl2 was also higher than that obtained in culture medium without added magnesium ions. In this work, the mechanism of this increase was studied. When cultured in medium without added magnesium ions, B. choshinensis mainly produced a thermolabile, inactive form of pullulanase. The addition of magnesium ions led to the production of a thermostable, active form of pullulanase. Circular dichroism assays revealed considerable differences in secondary structure between the active and inactive pullulanase forms. Transmission electron microscopy suggested that magnesium ion addition inhibits the shedding of cell wall protein (HWP) layers from the cell surface. Quantitative real-time PCR showed that magnesium ion addition represses transcription of HWP. Because the pullulanase gene and HWP have identical promoters, pullulanase gene transcription was also inhibited. These results suggest that when pullulanase is expressed slowly, it tends to fold into an active form.

  20. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  1. Dietary resveratrol administration increases MnSOD expression and activity in mouse brain

    SciTech Connect

    Robb, Ellen L.; Winkelmolen, Lieke; Visanji, Naomi; Brotchie, Jonathan; Stuart, Jeffrey A.

    2008-07-18

    trans-Resveratrol (3,4',5-trihydroxystilbene; RES) is of interest for its reported protective effects in a variety of pathologies, including neurodegeneration. Many of these protective properties have been attributed to the ability of RES to reduce oxidative stress. In vitro studies have shown an increase in antioxidant enzyme activities following exposure to RES, including upregulation of mitochondrial superoxide dismutase, an enzyme that is capable of reducing both oxidative stress and cell death. We sought to determine if a similar increase in endogenous antioxidant enzymes is observed with RES treatment in vivo. Three separate modes of RES delivery were utilized; in a standard diet, a high fat diet and through a subcutaneous osmotic minipump. RES given in a high fat diet proved to be effective in elevating antioxidant capacity in brain resulting in an increase in both MnSOD protein level (140%) and activity (75%). The increase in MnSOD was not due to a substantial proliferation of mitochondria, as RES treatment induced a 10% increase in mitochondrial abundance (Citrate Synthase activity). The potential neuroprotective properties of MnSOD have been well established, and we demonstrate that a dietary delivery of RES is able to increase the expression and activity of this enzyme in vivo.

  2. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    PubMed

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J

    2016-06-23

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.

  3. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    PubMed Central

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  4. Tanshinone I increases CYP1A2 protein expression and enzyme activity in primary rat hepatocytes.

    PubMed

    Lee, Wayne Y W; Zhou, Xuelin; Or, Penelope M Y; Kwan, Yiu Wa; Yeung, John H K

    2012-01-15

    This study investigated the effects of Danshen and its active ingredients on the protein expression and enzymatic activity of CYP1A2 in primary rat hepatocytes. The ethanolic extract of Danshen roots (containing mainly tanshinones) inhibited CYP1A2-catalyzed phenacetin O-deethylation (IC(50)=24.6 μg/ml) in primary rat hepatocytes while the water extract containing mainly salvianolic acid B and danshenshu had no effect. Individual tanshinones such as cryptotanshinone, dihydrotanshinone, tanshinone IIA inhibited the CYP1A2-mediated metabolism with IC(50) values at 12.9, 17.4 and 31.9 μM, respectively. After 4-day treatment of the rat hepatocytes, the ethanolic extract of Danshen and tanshinone I increased rat CYP1A2 activity by 6.8- and 5.2-fold, respectively, with a concomitant up-regulation of CYP1A2 protein level by 13.5- and 6.5-fold, respectively. CYP1A2 induction correlated with the up-regulation of mRNA level of aryl hydrocarbon receptor (AhR), which suggested a positive feedback mechanism of tanshinone I-mediated CYP1A2 induction. A formulated Danshen pill (containing mainly danshensu and salvianolic acid B and the tanshinones) up-regulated CYP1A2 protein expression and enzyme activity, but danshensu and salvianolic acid B, when used individually, did not affect CYP1A2 activity. This study was the first report on the Janus action of the tanshinones on rat CYP1A2 activity.

  5. Progesterone increases the activity of glutamate transporter type 3 expressed in Xenopus oocytes.

    PubMed

    Son, Ilsoon; Shin, Hyun-Jung; Ryu, Jung-Hee; Kim, Hae-Kyoung; Do, Sang-Hwan; Zuo, Zhiyi

    2013-09-05

    Progesterone is an important sex hormone for pregnancy and also has neuroprotective and anticonvulsant effects. It is well-known that full-term parturients become more susceptible to volatile anesthetics. Glutamate transporters are important for preventing neurotoxicity and anesthetic action in the central nervous system. We investigated the effects of progesterone on the activity of glutamate transporter type 3 (EAAT3), the major neuronal EAAT. EAAT3 was expressed in Xenopus laevis oocytes by injecting its mRNA. Oocytes were incubated with diluted progesterone for 72 h. Two-electrode voltage clamping was used to measure membrane currents before, during, and after applying 30 μML-glutamate. Progesterone (1-100 nM) significantly increased EAAT3 activity in a dose-dependent manner. Our kinetic study showed that the Vmax was increased in the progesterone group compared with that in the control group (2.7 ± 0.2 vs. 3.6 ± 0.2μC for control group vs. progesterone group; n=18-23; P<0.05), however, Km was unaltered (46.7 ± 10.2μM vs. 55.9 ± 10.5μM for control group vs. progesterone group; n=18-23; P>0.05). Phorbol-12-myristate-13-acetate, a protein kinase C (PKC) activator, did not change progesterone-enhanced EAAT3 activity. Inhibitors of PKC or phosphatidylinositol 3-kinase (PI3K) abolished the progesterone-induced increases in EAAT3 activity. Our results suggest that progesterone enhances EAAT3 activity and that PKC and PI3K are involved in mediating these effects. These effects of progesterone may contribute to its anticonvulsant and anesthesia-related properties.

  6. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  7. Increased Expression and Cellular Localization of Spermine Oxidase in Ulcerative Colitis and Relationship to Disease Activity

    PubMed Central

    Hong, Shih-Kuang S.; Chaturvedi, Rupesh; Blanca Piazuelo, M.; Coburn, Lori A.; Williams, Christopher S.; Delgado, Alberto G.; Casero, Robert A.; Schwartz, David A.; Wilson, Keith T.

    2010-01-01

    Background Polyamines are important in cell growth and wound repair, but have also been implicated in inflammation-induced carcinogenesis. Polyamine metabolism includes back-conversion of spermine to spermidine by the enzyme spermine oxidase (SMO), which produces hydrogen peroxide that causes oxidative stress. In ulcerative colitis (UC), levels of spermine are decreased compared to spermidine. Therefore, we sought to determine if SMO is involved in UC. Methods Colon biopsies and clinical information from subjects undergoing colonoscopy for evaluation of UC or colorectal cancer screening were utilized from 16 normal controls and 53 UC cases. Histopathologic disease severity was graded and the Mayo Disease Activity Index (DAI) and endoscopy subscore assessed. SMO mRNA expression was measured in frozen biopsies by Taq-Man-based real-time polymerase chain reaction (PCR). Formalin-fixed tissues were used for SMO immunohistochemistry. Results There was a 3.1-fold upregulation of SMO mRNA levels in UC patients compared to controls (P = 0.044), and a 3.7-fold increase in involved left colon versus paired uninvolved right colon (P < 0.001). With worsening histologic injury in UC there was a progressive increase in SMO staining of mononuclear inflammatory cells. There was a similar increase in SMO staining with worsening endoscopic disease severity and strong correlation with the DAI (r = 0.653, P < 0.001). Inflammatory cell SMO staining was increased in involved left colon versus uninvolved right colon. Conclusions SMO expression is upregulated in UC tissues, deriving from increased levels in mononuclear inflammatory cells. Dysregulated polyamine homeostasis may contribute to chronic UC by altering immune responses and increasing oxidative stress. PMID:20127992

  8. Hypothermia Increases Tissue Plasminogen Activator Expression and Decreases Post-Operative Intra-Abdominal Adhesion

    PubMed Central

    Lee, Chien-Chang; Wang, Hsuan-Mao; Chou, Tzung-Hsin; Wu, Meng-Che; Hsueh, Kuang-Lung; Chen, Shyr-Chyr

    2016-01-01

    Background Therapeutic hypothermia during operation decreases postoperative intra-abdominal adhesion formation. We sought to determine the most appropriate duration of hypothermia, and whether hypothermia affects the expression of tissue plasminogen activator (tPA). Methods 80 male BALB/c mice weighing 25–30 g are randomized into one of five groups: adhesion model with infusion of 15°C saline for 15 minutes (A); 30 minutes (B); 45 minute (C); adhesion model without infusion of cold saline (D); and sham operation without infusion of cold saline (E). Adhesion scores and tPA levels in the peritoneum fluid levels were analyzed on postoperative days 1, 7, and 14. Results On day 14, the cold saline infusion groups (A, B, and C) had lower adhesion scores than the without infusion of cold saline group (D). However, only group B (cold saline infusion for 30 minutes) had a significantly lower adhesion scores than group D. Also, group B was found to have 3.4 fold, 2.3 fold, and 2.2 fold higher levels of tPA than group D on days 1, 7, and 14 respectively. Conclusions Our results suggest that cold saline infusion for 30 minutes was the optimum duration to decrease postoperative intra-abdominal adhesion formation. The decrease in the adhesion formations could be partly due to an increase in the level of tPA. PMID:27583464

  9. Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt's lymphoma cells.

    PubMed

    Kim, Jeong Hwa; Lee, Jae Kwon

    2015-11-01

    Natural killer (NK) cells are capable of identifying and killing tumor cells as well as virus infected cells without pre-sensitization. NK cells express activating and inhibitory receptors, and can distinguish between normal and tumor cells. The present study was designed to demonstrate the importance of the expression level of NKG2D ligands on the Burkitt's lymphoma cell line, Raji, in enhancing NK cell cytolytic activity. Various flavonoids were used as stimulants to enhance the expression of NKG2D ligands. NK cell lysis activity against Raji was not changed by pre-treatment of Raji with luteolin, kaempferol, taxifolin and hesperetin. However, treatment of Raji with naringenin showed increased sensitivity to NK cell lysis than untreated control cells. The activity of naringenin was due to enhanced NKG2D ligand expression. These results provide evidence that narigenin's antitumor activity may be due to targeting of NKG2D ligand expression and suggests a possible immunotherapeutic role for cancer treatment.

  10. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity

    PubMed Central

    Trivedi, Palak J.; Bruns, Tony; Ward, Stephen; Mai, Martina; Schmidt, Carsten; Hirschfield, Gideon M.; Weston, Chris J.; Adams, David H.

    2016-01-01

    CCL25-mediated activation of CCR9 is critical for mucosal lymphocyte recruitment to the intestine. In immune-mediated liver injury complicating inflammatory bowel disease, intrahepatic activation of this pathway allows mucosal lymphocytes to be recruited to the liver, driving hepatobiliary destruction in primary sclerosing cholangitis (PSC). However, in mice and healthy humans CCL25 expression is restricted to the small bowel, whereas few data exist on activation of this pathway in the inflamed colon despite the vast majority of PSC patients having ulcerative colitis. Herein, we show that colonic CCL25 expression is not only upregulated in patients with active colitis, but strongly correlates with endoscopic Mayo score and mucosal TNFα expression. Moreover, approximately 90% (CD4+) and 30% (CD8+) of tissue-infiltrating T-cells in colitis were identified as CCR9+ effector lymphocytes, compared to <10% of T-cells being CCR9+ in normal colon. Sorted CCR9+ lymphocytes also demonstrated enhanced cellular adhesion to stimulated hepatic sinusoidal endothelium compared with their CCR9– counterparts when under flow. Collectively, these results suggest that CCR9/CCL25 interactions are not only involved in colitis pathogenesis but also correlate with colonic inflammatory burden; further supporting the existence of overlapping mucosal lymphocyte recruitment pathways between the inflamed colon and liver. PMID:26873648

  11. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity.

    PubMed

    Trivedi, Palak J; Bruns, Tony; Ward, Stephen; Mai, Martina; Schmidt, Carsten; Hirschfield, Gideon M; Weston, Chris J; Adams, David H

    2016-04-01

    CCL25-mediated activation of CCR9 is critical for mucosal lymphocyte recruitment to the intestine. In immune-mediated liver injury complicating inflammatory bowel disease, intrahepatic activation of this pathway allows mucosal lymphocytes to be recruited to the liver, driving hepatobiliary destruction in primary sclerosing cholangitis (PSC). However, in mice and healthy humans CCL25 expression is restricted to the small bowel, whereas few data exist on activation of this pathway in the inflamed colon despite the vast majority of PSC patients having ulcerative colitis. Herein, we show that colonic CCL25 expression is not only upregulated in patients with active colitis, but strongly correlates with endoscopic Mayo score and mucosal TNFα expression. Moreover, approximately 90% (CD4(+)) and 30% (CD8(+)) of tissue-infiltrating T-cells in colitis were identified as CCR9(+) effector lymphocytes, compared to <10% of T-cells being CCR9(+) in normal colon. Sorted CCR9(+) lymphocytes also demonstrated enhanced cellular adhesion to stimulated hepatic sinusoidal endothelium compared with their CCR9(-) counterparts when under flow. Collectively, these results suggest that CCR9/CCL25 interactions are not only involved in colitis pathogenesis but also correlate with colonic inflammatory burden; further supporting the existence of overlapping mucosal lymphocyte recruitment pathways between the inflamed colon and liver.

  12. Cell Density-Dependent Increase in Tyrosine-Monophosphorylated ERK2 in MDCK Cells Expressing Active Ras or Raf

    PubMed Central

    Kawabata, Noriyuki; Matsuda, Michiyuki

    2016-01-01

    The extracellular signal-regulated kinase (ERK) is one of the principal hub proteins that transmit growth signals from upstream oncogene products including Ras and BRaf to downstream effector proteins. However, there are both reports supporting and refuting the increase in ERK activity in cancer tissues expressing the active Ras and BRaf proteins. We considered that the cell density might account for this discrepancy. To examine this possibility, we prepared Madin-Darby canine kidney (MDCK) cells that expressed an active HRas, NRas, KRas, or BRaf and an ERK biosensor based on the principle of Förster resonance energy transfer (FRET). As we anticipated, expression of the active Ras or BRaf increased ERK activity at low cell densities. However, the ERK activity was markedly suppressed at high cell densities irrespective of the expression of the active Ras or BRaf. Western blotting analysis with Phos-tag gel revealed the decrease of tyrosine and threonine-diphosphorylated active ERK and the increase of tyrosine-monophosphorylated inactive ERK at high cell density. In addition, we found that calyculin A, an inhibitor for PPP-subfamily protein serine/threonine phosphatases, decreased the tyrosine-monophosphorylated ERK. Our study suggests that PPP-subfamily phosphatases may be responsible for cell density-dependent ERK dephosphorylation in cancer cells expressing active Ras or BRaf protein. PMID:27936234

  13. Gestational diabetes mellitus is associated with increased leukocyte peroxisome proliferator-activated receptor γ expression

    PubMed Central

    Mac-Marcjanek, Katarzyna; Nadel, Iwona; Woźniak, Lucyna; Cypryk, Katarzyna

    2015-01-01

    Introduction Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor of the nuclear receptor superfamily that is involved in lipid and carbohydrate metabolism as well as inflammation; thereby it participates in metabolic diseases including diabetes. Although PPARγ expression has been observed in different tissues of diabetic patients, its level in leukocytes from subjects affected by gestational diabetes mellitus (GDM) has not yet been reported. This study aimed to investigate leukocyte PPARG expression in GDM patients at 24–33 weeks of gestation and, in turn, to correlate these alterations with anthropometric and metabolic parameters of patients. Material and methods Leukocytes were isolated from the blood of normal glucose tolerant (NGT; n = 34) and GDM (n = 77) pregnant women between 24 and 33 weeks of gestation. Leukocyte PPARG mRNA expression was determined by semi-quantitative polymerase chain reaction. Univariate correlation analysis was performed to investigate associations between PPARG expression and clinical characteristics of patients. Results Leukocyte PPARG mRNA level was significantly higher in GDM than NGT women (p < 0.05). In the whole study group, PPARG expression positively correlated with plasma glucose concentrations at 1 h (r = 0.222, p = 0.049) and 2 h (r = 0.315, p = 0.020) of 75 g oral glucose tolerance test (OGTT), and negatively correlated with plasma HDL cholesterol concentration (r = -0.351, p = 0.010). Conclusions The correlation between leukocyte PPARG overexpression and hyperglycaemia suggests that PPARG mRNA expression in these cells might be up-regulated in high-glucose conditions in GDM patients at 24–33 weeks of gestation. PMID:26322090

  14. Increases in nuclear p65 activation in dystrophic skeletal muscle are secondary to increases in the cellular expression of p65 and are not solely produced by increases in IkappaB-alpha kinase activity.

    PubMed

    Singh, Rajvir; Millman, Gregory; Turin, Eric; Polisiakeiwicz, Lucasz; Lee, Brian; Gatti, Francesca; Berge, Jonas; Smith, Emily; Rutter, John; Sumski, Chris; Winders, W Tyler; Samadi, Abbas; Carlson, C George

    2009-10-15

    Dystrophin-deficient muscle exhibits substantial increases in nuclear NF-kappaB activation. To examine potential mechanisms for this enhanced activation, the present study employs conventional Western blot techniques to provide the first determination of the relative expression of NF-kappaB signaling molecules in adult nondystrophic and dystrophic (mdx) skeletal muscle. The results indicate that dystrophic muscle is characterized by increases in the whole cell expression of IkappaB-alpha, p65, p50, RelB, p100, p52, IKK, and TRAF-3. The proportion of phosphorylated IkappaB-alpha, p65, NIK, and IKKbeta, and the level of cytosolic IkappaB-alpha, were also increased in the mdx diaphragm. Proteasomal inhibition using MG-132 increased the proportion of phosphorylated IkappaB-alpha in nondystrophic diaphragm, but did not significantly increase this proportion in the mdx diaphragm. This result suggests that phosphorylated IkappaB-alpha accumulates in dystrophic cytosol because the rate of IkappaB-alpha degradation is lower than the effective rate of IkappaB-alpha synthesis and phosphorylation. Dystrophic increases in SUMO-1 (small ubiquitin modifier-1) protein and in Akt activation were also observed. The results indicate that increases in nuclear p65 activation in dystrophic muscle are not produced solely by increases in the activity of IkappaB-alpha kinase (IKK), but are due primarily to increases in the expression of p65 and other NF-kappaB signaling components.

  15. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons

    PubMed Central

    2014-01-01

    Background Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. Results Reverse transcriptase-PCR validation showed increased levels of mRNAs encoding the nAChR subunits α3 (13.3-fold), β3 (4-fold) and β4 (7.7-fold) in trigeminal ganglia and α3 (4-fold) and β4 (2.8-fold) in dorsal root ganglia (DRG) of ART-OE mice. Sensory ganglia of ART-OE mice had increased immunoreactivity for nAChRα3 and exhibited increased overlap in labeling with GFRα3-positive neurons. Patch clamp analysis of back-labeled cutaneous afferents showed that while the majority of nicotine-evoked currents in DRG neurons had biophysical and pharmacological properties of α7-subunit containing nAChRs, the Artn-induced increase in α3 and β4 subunits resulted in functional channels. Behavioral analysis of ART-OE and wildtype mice showed that Artn-induced thermal hyperalgesia can be blocked by mecamylamine or hexamethonium. Complete Freund’s adjuvant (CFA) inflammation of paw skin, which causes an increase in Artn in the skin, also increased the level of nAChR mRNAs in DRG. Finally, the increase in nAChRs transcription was not dependent on the Artn-induced increase in TRPV1 or TRPA1 in ART-OE mice since nAChRs were elevated in ganglia of TRPV1/TRPA1 double knockout mice. Conclusions

  16. A low-salt diet increases the expression of renal sirtuin 1 through activation of the ghrelin receptor in rats

    PubMed Central

    Yang, Shao-Yu; Lin, Shuei-Liong; Chen, Yung-Ming; Wu, Vin-Cent; Yang, Wei-Shiung; Wu, Kwan-Dun

    2016-01-01

    Previous studies have shown that sirtuin 1 (Sirt1) is renoprotective; however, details regarding its distribution and functions in the kidney remain unknown. Here, we demonstrated that Sirt1 was mainly expressed in the tubulointerstitial cells of normal rat kidneys and was co-localized with aquaporin 2, indicating it may be involved in water/salt regulation. Renal Sirt1 expression increased in the non-glomerular cytoplasmic portion of the kidney after a 24-h fast, but no significant changes in Sirt1 expression occurred after water loading (50 mL/kg) or 24-h water deprivation. After consuming a low-salt (0.075%) or 60% calorie restriction diet for 7 days, Sirt1 expression in the rat kidney was significantly increased, whereas a high-salt (8%) diet did not change the level of Sirt1 expression. The low-salt diet also increased Sirt1 expression in the heart, muscle, brain, and fat tissues. The increased Sirt1 that was observed in rats on a low-salt diet was associated with increased ghrelin expression in the distal nephron, with both molecules exhibiting similar distribution patterns. An in vitro experiment suggested that ghrelin increases Sirt1 expression in cortical collecting duct cells by activating ghrelin receptors. Our study indicates that this ‘ghrelin-Sirt1 system’ may participate in regulating sodium reabsorption in the distal nephron. PMID:27600292

  17. Palmitate increases musclin gene expression through activation of PERK signaling pathway in C2C12 myotubes.

    PubMed

    Gu, Ning; Guo, Qian; Mao, Ke; Hu, Hailong; Jin, Sanli; Zhou, Ying; He, Hongjuan; Oh, Yuri; Liu, Chuanpeng; Wu, Qiong

    2015-11-20

    Musclin is a type of muscle-secreted cytokine and its increased gene expression induces insulin resistance in type 2 diabetes. However, the mechanism underlying increased musclin gene expression is currently unclear. Excessive saturated fatty acids (SFA) can activate the secretion of several muscle-secreted cytokines as well as endoplasmic reticulum (ER) stress pathway, thereby contributing to the development of type 2 diabetes. The purpose of this study was to investigate the mechanisms responsible for the effect of palmitate, the most abundant SFA in the plasma, on the gene expression of musclin in C2C12 myotubes. Treatment of C2C12 myotubes with palmitate or tunicamycin significantly increased the expression of musclin as well as ER stress-related genes, but treatment with oleate did not. Pre-treatment of C2C12 myotubes with 4-phenyl butyrate suppressed the expression of ER stress-related genes, simultaneously, resulting in decreased expression of the musclin gene induced by palmitate or tunicamycin. These results indicate that ER stress is related to palmitate-induced musclin gene expression. Moreover, palmitate-induced musclin gene expression was significantly inhibited in C2C12 myotubes when PERK pathway signaling was suppressed by knockdown of the PERK gene or treatment with GSK2656157, a PERK autophosphorylation inhibitor. However, there was no difference in the palmitate-induced musclin gene expression when IRE1 and ATF6 signaling pathways were suppressed by knockdown of the IRE1 and ATF6 genes. These findings suggest that palmitate increases musclin gene expression via the activation of the PERK signaling pathway in C2C12 myotubes.

  18. [Overexpression of NHE1 suppresses ABCA1 protein expression via increasing calpain activity in RAW264.7 cells].

    PubMed

    Mo, Xiangang; Wang, Lan; Guo, Jing; Hong, Wei; Long, Shiqi; Zhang, Li; Xiang, Ning; Yang, Juan

    2017-01-01

    Objective To investigate the effect of over-expressed Na(+)/H(+) exchanger 1 (NHE1) on the protein expression of adenosine three phosphate binding cassette transporter A1 (ABCA1) in RAW264.7 cells. Methods RAW264.7 cells were infected with the adenoviral vector encoding NHE1-EGFP (AdNHE1). The infected RAW264.7 cells were subjected to Western blot analysis for NHE1-EGFP fusion protein. The subcellular localization of NHE1-EGFP fusion protein was observed by confocal laser scanning microscopy. NHE1 activity was measured by the method of pH recovery in response to an acute acid pulse. Furthermore, Western blotting was performed to determine ABCA1 protein levels and calpain activity in NHE1-overexpressing RAW264.7 cells. The effect of calpain inhibitor N-acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN) on ABCA1 protein levels in the presence of TO-901317 was examined by Western blotting. Results NHE1-EGFP fusion protein was highly expressed and localized in cytoplasm and cell membrane of RAW264.7 cells infected with AdNHE1. NHE1-EGFP fusion protein reduced ABCA1 protein expression and increased calpain activity. The calpain inhibitor ALLN blocked the decrease of ABCA1 protein expression. Conclusion Overexpressed NHE1 suppresses the expression of ABCA1 protein via increasing the calpain activity in RAW264.7 cells.

  19. Pyrroloquinoline quinone increases the expression and activity of Sirt1 and -3 genes in HepG2 cells.

    PubMed

    Zhang, Jian; Meruvu, Sunitha; Bedi, Yudhishtar Singh; Chau, Jason; Arguelles, Andrix; Rucker, Robert; Choudhury, Mahua

    2015-09-01

    Sirtuin (Sirt) 1 and Sirt 3 are nicotinamide adenine dinucleotide ((+))-dependent protein deacetylases that are important to a number of mitochondrial-related functions; thus, identification of sirtuin activators is important. Herein, we hypothesize that pyrroloquinoline quinone (PQQ) can act as a Sirt1/Sirt3 activator. In HepG2 cell cultures, PQQ increased the expression of Sirt1 and Sirt3 gene, protein, and activity levels (P < .05). We also observed a significant increase in nicotinamide phosphoribosyltransferase gene expression (as early as 18 hours) and increased NAD(+) activity at 24 hours. In addition, targets of Sirt1 and Sirt3 (peroxisome proliferator-activated receptor γ coactivator 1α, nuclear respiratory factor 1 and 2, and mitochondrial transcription factor A) were increased at 48 hours. This is the first report that demonstrates PQQ as an activator of Sirt1 and Sirt3 expression and activity, making it an attractive therapeutic agent for the treatment of metabolic diseases and for healthy aging. Based on our study and the available data in vivo, PQQ has the potential to serve as a therapeutic nutraceutical, when enhancing mitochondrial function.

  20. Diabetes and activation of peroxisome proliferator activated receptor alpha increases mitochondrial thioesterase I protein expression and activity in the heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mitochondrial thioesterase-I (MTE-I) catalyzes the de-esterification of fattyacyl-CoAs to fatty acid anions in the mitochondrial matrix, which are extruded to the cytosol, thus preventing the accumulation of toxic mitochondrial fattyacyl-CoAs. MTE-I mRNA expression in the heart is regulated by perox...

  1. Amphotericin B Increases Transglutaminase 2 Expression Associated with Upregulation of Endocytotic Activity in Mouse Microglial Cell Line BV-2.

    PubMed

    Kawabe, Kenji; Takano, Katsura; Moriyama, Mitsuaki; Nakamura, Yoichi

    2017-02-21

    Amphotericin B (AmB), a polyene antibiotic, is reported to cause the microglial activation to induce nitric oxide (NO) production and proinflammatory cytokines expression, and change neurotrophic factors expression in cultured microglia (Motoyoshi et al. in Neurochem Int 52:1290-1296, 2008). On the other hand, tissue-type transglutaminase (TG2) is involved in connection to phagocytes with apoptotic cells. Engulfment of neurons by activated microglia is thought to cause neurodegenerative diseases but detail is unclear, and involvement of TG2 in phagocytosis has been reported in our previous study using lipopolysaccharide-stimulated BV-2 cells (Kawabe et al. in Neuroimmunomodulation 22(4):243-249, 2015). In the present study, we examined the changes of TG2 expression, phagocytosis and pinocytosis in BV-2 cells stimulated by AmB. AmB stimulation increased TG2 expression and TG activity. Phagocytosis of dead cells and pinocytosis of fluorescent microbeads were also up-regulated by AmB stimulation in BV-2 cells. Blockade of TG activity by cystamine, an inhibitor of TGs, suppressed AmB-enhanced TG2 expression, TG activity, NO production, phagocytosis and pinocytosis. Excessive NO production from microglia and/or facilitation of phagocytosis might be involved in neuronal death. To control TG activity might make possible to protect neurons and care for CNS diseases.

  2. Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation

    SciTech Connect

    Kim, Kook Hwan; Jeong, Yeon Taek; Kim, Seong Hun; Jung, Hye Seung; Park, Kyong Soo; Lee, Hae-Youn; Lee, Myung-Shik

    2013-10-11

    Highlights: •Metformin induces FGF21 expression in an AMPK independent manner. •Metformin enhances FGF21 expression by inhibiting mitochondrial complex I activity. •The PERK-eIF2α-ATF4 axis is required for metformin-induced FGF21 expression. •Metformin activates the ATF4-FGF21 axis in the liver of mouse. •Metformin increases serum FGF21 level in diabetic human subjects. -- Abstract: Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-obesity and anti-diabetes effects. Because metformin is widely used as a glucose-lowering agent in patients with type 2 diabetes (T2D), we investigated whether metformin modulates FGF21 expression in cell lines, and in mice or human subjects. We found that metformin increased the expression and release of FGF21 in a diverse set of cell types, including rat hepatoma FaO, primary mouse hepatocytes, and mouse embryonic fibroblasts (MEFs). Intriguingly, AMP-activated protein kinase (AMPK) was dispensable for the induction of FGF21 by metformin. Mammalian target of rapamycin complex 1 (mTORC1) and peroxisome proliferator-activated receptor α (PPARα), which are additional targets of metformin, were not involved in metformin-induced FGF21 expression. Importantly, inhibition of mitochondrial complex I activity by metformin resulted in FGF21 induction through PKR-like ER kinase (PERK)-eukaryotic translation factor 2α (eIF2α)-activating transcription factor 4 (ATF4). We showed that metformin activated ATF4 and increased FGF21 expression in the livers of mice, which led to increased serum levels of FGF21. We also found that serum FGF21 level was increased in human subjects with T2D after metformin therapy for 6 months. In conclusion, our results indicate that metformin induced expression of FGF21 through an ATF4-dependent mechanism by inhibiting mitochondrial respiration independently of AMPK. Therefore, FGF21 induction by metformin might explain a portion of the beneficial metabolic effects of metformin.

  3. Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ß production.

    PubMed

    Bordji, Karim; Becerril-Ortega, Javier; Nicole, Olivier; Buisson, Alain

    2010-11-24

    Calcium is a key mediator controlling essential neuronal functions depending on electrical activity. Altered neuronal calcium homeostasis affects metabolism of amyloid precursor protein (APP), leading to increased production of β-amyloid (Aβ), and contributing to the initiation of Alzheimer's disease (AD). A linkage between excessive glutamate receptor activation and neuronal Aβ release was established, and recent reports suggest that synaptic and extrasynaptic NMDA receptor (NMDAR) activation may have distinct consequences in plasticity, gene regulation, and neuronal death. Here, we report for the first time that prolonged activation of extrasynaptic NMDAR, but not synaptic NMDAR, dramatically increased the neuronal production of Aβ. This effect was preceded by a shift from APP695 to Kunitz protease inhibitory domain (KPI) containing APPs (KPI-APPs), isoforms exhibiting an important amyloidogenic potential. Conversely, after synaptic NMDAR activation, we failed to detect any KPI-APP expression and neuronal Aβ production was not modified. Calcium imaging data showed that intracellular calcium concentration after extrasynaptic NMDAR stimulation was lower than after synaptic activation. This suggests distinct signaling pathways for each pool of receptors. We found that modification of neuronal APP expression pattern triggered by extrasynaptic NMDAR activation was regulated at an alternative splicing level involving calcium-/calmodulin-dependent protein kinase IV, but overall APP expression remained identical. Finally, memantine dose-dependently inhibited extrasynaptic NMDAR-induced KPI-APPs expression as well as neuronal Aβ release. Altogether, these data suggest that a chronic activation of extrasynaptic NMDAR promotes amyloidogenic KPI-APP expression leading to neuronal Aβ release, representing a causal risk factor for developing AD.

  4. Inhibition of PKC activity blocks the increase of ETB receptor expression in cerebral arteries

    PubMed Central

    Henriksson, Marie; Vikman, Petter; Stenman, Emelie; Beg, Saema; Edvinsson, Lars

    2006-01-01

    Background Previous studies have shown that there is a time-dependent upregulation of contractile endothelin B (ETB) receptors in middle cerebral arteries (MCA) after organ culture. This upregulation is dependent on mitogen-activated protein kinases and possibly protein kinase C (PKC). The aim of this study was to examine the effect of PKC inhibitors with different profiles on the upregulation of contractile ETB receptors in rat MCA. Artery segments were incubated for 24 hours at 37°C. To investigate involvement of PKC, inhibitors were added to the medium before incubation. The contractile endothelin-mediated responses were measured and real-time PCR was used to detect endothelin receptor mRNA levels. Furthermore, immunohistochemistry was used to demonstrate the ETB receptor protein distribution in the MCA and Western blot to measure which of the PKC subtypes that were affected by the inhibitors. Results The PKC inhibitors bisindolylmaleimide I, Ro-32-0432 and PKC inhibitor 20–28 attenuated the ETB receptor mediated contractions. Furthermore, Ro-32-0432 and bisindolylmaleimide I decreased ETB receptor mRNA levels while PKC inhibitor 20–28 reduced the amount of receptor protein on smooth muscle cells. PKC inhibitor 20–28 also decreased the protein levels of the five PKC subtypes studied (α, βI, γ, δ and ε). Conclusion The results show that PKC inhibitors are able to decrease the ETB receptor contraction and expression in MCA smooth muscle cells following organ culture. The PKC inhibitor 20–28 affects the protein levels, while Ro-32-0432 and bisindolylmaleimide I affect the mRNA levels, suggesting differences in activity profile. Since ETB receptor upregulation is seen in cerebral ischemia, the results of the present study provide a way to interfere with the vascular involvement in cerebral ischemia. PMID:17129394

  5. Activated peripheral lymphocytes with increased expression of cell adhesion molecules and cytotoxic markers are associated with dengue fever disease.

    PubMed

    Azeredo, Elzinandes L; Zagne, Sonia M O; Alvarenga, Allan R; Nogueira, Rita M R; Kubelka, Claire F; de Oliveira-Pinto, Luzia M

    2006-06-01

    The immune mechanisms involved in dengue fever and dengue hemorrhagic/dengue shock syndrome are not well understood. The ex vivo activation status of immune cells during the dengue disease in patients was examined. CD4 and CD8 T cells were reduced during the acute phase. Interestingly, CD8 T cells co-expressing activation marker HLA-DR, Q, P, and cytolytic granule protein-Tia-1 were significantly higher in dengue patients than in controls. Detection of adhesion molecules indicated that in dengue patients the majority of T cells (CD4 and CD8) express the activation/memory phenotype, characterized as CD44HIGH and lack the expression of the naïve cell marker, CD62L LOW. Also, the levels of T cells co-expressing ICAM-1 (CD54), VLA-4, and LFA-1 (CD11a) were significantly increased. CD8 T lymphocytes expressed predominantly low levels of anti-apoptotic molecule Bcl-2 in the acute phase, possibly leading to the exhibition of a phenotype of activated/effector cells. Circulating levels of IL-18, TGF-b1 and sICAM-1 were significantly elevated in dengue patients. Early activation events occur during acute dengue infection which might contribute to viral clearance. Differences in expression of adhesion molecules among CD4 and CD8 T cells might underlie the selective extravasation of these subsets from blood circulation into lymphoid organs and/or tissues. In addition, activated CD8 T cells would be more susceptible to apoptosis as shown by the alteration in Bcl-2 expression. Cytokines such as IL-18, TGF-b1, and sICAM-1 may be contributing by either stimulating or suppressing the adaptative immune response, during dengue infection, thereby perhaps establishing a relationship with disease severity.

  6. Aldh1 Expression and Activity Increase During Tumor Evolution in Sarcoma Cancer Stem Cell Populations

    PubMed Central

    Martinez-Cruzado, Lucia; Tornin, Juan; Santos, Laura; Rodriguez, Aida; García-Castro, Javier; Morís, Francisco; Rodriguez, Rene

    2016-01-01

    Tumors evolve from initial tumorigenic events into increasingly aggressive behaviors in a process usually driven by subpopulations of cancer stem cells (CSCs). Mesenchymal stromal/stem cells (MSCs) may act as the cell-of-origin for sarcomas, and CSCs that present MSC features have been identified in sarcomas due to their ability to grow as self-renewed floating spheres (tumorspheres). Accordingly, we previously developed sarcoma models using human MSCs transformed with relevant oncogenic events. To study the evolution/emergence of CSC subpopulations during tumor progression, we compared the tumorigenic properties of bulk adherent cultures and tumorsphere-forming subpopulations both in the sarcoma cell-of-origin models (transformed MSCs) and in their corresponding tumor xenograft-derived cells. Tumor formation assays showed that the tumorsphere cultures from xenograft-derived cells, but not from the cell-of-origin models, were enriched in CSCs, providing evidence of the emergence of bona fide CSCs subpopulations during tumor progression. Relevant CSC-related factors, such as ALDH1 and SOX2, were increasingly upregulated in CSCs during tumor progression, and importantly, the increased levels and activity of ALDH1 in these subpopulations were associated with enhanced tumorigenicity. In addition to being a CSC marker, our findings indicate that ALDH1 could also be useful for tracking the malignant potential of CSC subpopulations during sarcoma evolution. PMID:27292183

  7. Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes

    SciTech Connect

    Lieuallen, Kimberly; Pennacchio, Len A.; Park, Morgan; Myers, Richard M.; Lennon, Gregory G.

    2001-07-05

    Loss-of-function mutations in the cystatin B (Cstb) gene cause a neurological disorder known as Unverricht Lundborg disease (EPM1) in human patients. Mice that lack Cstb provide a mammalian model for EPM1 by displaying progressive ataxia and myoclonic seizures. We analyzed RNAs from brains of Cstb-deficient mice by using modified differential display, oligonucleotide microarray hybridization and quantitative reverse transcriptase polymerase chain reaction to examine the molecular consequences of the lack of Cstb. We identified seven genes that have consistently increased transcript levels in neurological tissues from the knockout mice. These genes are cathepsin S, C1q B-chain of complement (C1qB), beta-2-microglobulin, glial fibrillary acidic protein (Gfap), apolipoprotein D, fibronectin 1 and metallothionein II, which are expected to be involved in increased proteolysis, apoptosis and glial activation. The molecular changes in Cstb-deficient mice are consistent with the pathology found in the mouse model and may provide clues towards the identification of therapeutic points of intervention for EPM1 patients.

  8. The number of preproghrelin mRNA expressing cells is increased in mice with activity-based anorexia.

    PubMed

    François, Marie; Barde, Swapnali; Achamrah, Najate; Breton, Jonathan; do Rego, Jean-Claude; Coëffier, Moïse; Hökfelt, Tomas; Déchelotte, Pierre; Fetissov, Sergueï O

    2015-06-01

    Plasma levels of ghrelin, an orexigenic peptide, are increased during conditions of chronic starvation, such as in patients with anorexia nervosa. However, it is not known whether such increase can be related to the number of preproghrelin mRNA-expressing cells in the stomach, and if chronic starvation may activate a tentative central ghrelin production. In this work, in situ hybridization technique was used to analyze the presence and number of preproghrelin mRNA-expressing cells in the stomach and the hypothalamus of mice with activity-based anorexia (ABA) induced by the combination of running wheel activity with progressive, during 10 days, feeding-time restriction (FTR) and compared with sedentary FTR, ABA pair-fed (PF) and ad libitum-fed control mice. All food-restricted mice lost more than 20% of body weight. Body weight loss was similar in ABA and PF mice, but it was more pronounced than in FTR mice. Food intake was also lower in ABA than in FTR mice. Preproghrelin mRNA-expressing cells in the stomach were increased proportionally to the body weight loss in all food-restricted groups with the highest number in ABA mice. No preproghrelin mRNA-producing cells were detectable in the hypothalamus of either control or food-restricted mice. Thus, the increased number of gastric preproghrelin mRNA-producing cells during chronic starvation proportionally to the body weight loss and reduced food intake may underlie increased plasma ghrelin. Hyperactivity-induced anorexia appears to further increase the number of preproghrelin mRNA-producing cells in the stomach. No evidence was found for ghrelin expression in the hypothalamus, not even in any of the present experimental models.

  9. Maternal Hypoxia Increases the Activity of MMPs and Decreases the Expression of TIMPs in the Brain of Neonatal Rats

    PubMed Central

    Tong, Wenni; Chen, Wanqiu; Ostrowski, Robert P.; Ma, Qingyi; Souvenir, Rhonda; Zhang, Lubo; Zhang, John H.; Tang, Jiping

    2010-01-01

    A recent study has shown that increased activity of matrix metalloproteinases-2 and metalloproteinases-9 (MMP-2 and MMP-9) has detrimental effect on the brain after neonatal hypoxia. The present study determined the effect of maternal hypoxia on neuronal survivability and the activity of MMP-2 and MMP-9, as well as the expression of tissue inhibitors of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2) in the brain of neonatal rats. Pregnant rats were exposed to 10.5% oxygen for 6 days from the gestation day 15 to day 21. Pups were sacrificed at day 0, 4, 7, 14, and 21 after birth. Body weight and brain weight of the pups were measured at each time point. The activity of MMP-2 and MMP-9 and the protein abundance of TIMP-1 and TIMP-2 were determined by zymography and Western blotting, respectively. The tissue distribution of MMPs was examined by immunofluorescence staining. The neuronal death was detected by Nissl staining. Maternal hypoxia caused significant decreases in body and brain size, increased activity of MMP-2 at day 0, and increased MMP-9 at day 0 and 4. The increased activity of the MMPs was accompanied by an overall tendency towards a reduced expression of TIMPs at all ages with the significance observed for TIMPs at day 0, 4, and 7. Immunofluorescence analysis showed an increased expression of MMP-2, MMP-9 in the hippocampus at day 0 and 4. Nissl staining revealed significant cell death in the hippocampus at day 0, 4, and 7. Functional tests showed worse neurobehavioral outcomes in the hypoxic animals. PMID:20017119

  10. Visiting a forest, but not a city, increases human natural killer activity and expression of anti-cancer proteins.

    PubMed

    Li, Q; Morimoto, K; Kobayashi, M; Inagaki, H; Katsumata, M; Hirata, Y; Hirata, K; Suzuki, H; Li, Y J; Wakayama, Y; Kawada, T; Park, B J; Ohira, T; Matsui, N; Kagawa, T; Miyazaki, Y; Krensky, A M

    2008-01-01

    We previously reported that a forest bathing trip enhanced human NK activity, number of NK cells, and intracellular anti-cancer proteins in lymphocytes. In the present study, we investigated how long the increased NK activity lasts and compared the effect of a forest bathing trip on NK activity with a trip to places in a city without forests. Twelve healthy male subjects, age 35-56 years, were selected with informed consent. The subjects experienced a three-day/two-night trip to forest fields and to a city, in which activity levels during both trips were matched. On day 1, subjects walked for two hours in the afternoon in a forest field; and on day 2, they walked for two hours in the morning and afternoon, respectively, in two different forest fields; and on day 3, the subjects finished the trip and returned to Tokyo after drawing blood samples and completing the questionnaire. Blood and urine were sampled on the second and third days during the trips, and on days 7 and 30 after the trip, and NK activity, numbers of NK and T cells, and granulysin, perforin, and granzymes A/B-expressing lymphocytes in the blood samples, and the concentration of adrenaline in urine were measured. Similar measurements were made before the trips on a normal working day as the control. Phytoncide concentrations in forest and city air were measured. The forest bathing trip significantly increased NK activity and the numbers of NK, perforin, granulysin, and granzyme A/B-expressing cells and significantly decreased the concentration of adrenaline in urine. The increased NK activity lasted for more than 7 days after the trip. In contrast, a city tourist visit did not increase NK activity, numbers of NK cells, nor the expression of selected intracellular anti-cancer proteins, and did not decrease the concentration of adrenaline in urine. Phytoncides, such as alpha-pinene and beta-pinene were detected in forest air, but almost not in city air. These findings indicate that a forest bathing

  11. Increased renal epithelial na channel expression and activity correlate with elevation of blood pressure in spontaneously hypertensive rats.

    PubMed

    Haloui, Mounsif; Tremblay, Johanne; Seda, Ondrej; Koltsova, Svetlana V; Maksimov, Georgy V; Orlov, Sergei N; Hamet, Pavel

    2013-10-01

    Elevation of blood pressure with age is one of the hallmarks of hypertension in both males and females. This study examined transcriptomic profiles in the kidney of 12-, 40-, and 80-week-old spontaneously hypertensive rats and 4 recombinant inbred strains in search for functional genetic elements supporting temporal dynamics of blood pressure elevation. We found that both in males and females of spontaneously hypertensive rats and hypertensive recombinant inbred strains age-dependent blood pressure increment was accompanied by 50% heightened expression of epithelial sodium channel β- and γ-subunits. Epithelial sodium channel subunit expression correlated positively with blood pressure but correlated negatively with renin expression. Increased epithelial sodium channel activity was observed in cultured epithelial cells isolated from the kidney medulla of 80-week-old spontaneously hypertensive rats but not in age-matched normotensive Wistar Kyoto. This difference remained evident after 24-hour treatment with aldosterone. 22Na uptake in the perfused kidney medulla was increased whereas the urinary Na/K ratio was decreased in old spontaneously hypertensive rats compared with normotensive controls. The difference was eliminated by the administration of epithelial sodium channel inhibitor benzamil. Observations in recombinant inbred strains representing various mixtures of parental hypertensive and normotensive genomes suggest that Scnn1g and Scnn1b genes themselves are not implicated in heightened expression and that the increased expression is neither secondary nor required for a partial elevation of blood pressure in contrast to spontaneously hypertensive rats. We suggest that spontaneously hypertensive rats display an intact negative feed-back between renin-angiotensin-system and epithelial Na channel activity whose upregulated expression is supported by a yet unknown mechanism.

  12. Increases in c-Yes expression level and activity promote motility but not proliferation of human colorectal carcinoma cells.

    PubMed

    Barraclough, Jane; Hodgkinson, Cassandra; Hogg, Alison; Dive, Caroline; Welman, Arkadiusz

    2007-09-01

    Increases in the levels and/or activity of nonreceptor tyrosine kinases c-Src and c-Yes are often associated with colorectal carcinogenesis. The physiological consequences of increased c-Yes activity during the early and late stages of tumorigenesis, in addition to the degree of redundancy between c-Yes and c-Src in colorectal cancer cells, remain elusive. To study the consequences of increases in c-Yes levels and activity in later stages of colorectal carcinogenesis, we developed human colorectal cancer cell lines in which c-Yes levels and activity can be inducibly increased by a tightly controlled expression of wild-type c-Yes or by constitutively active mutants of c-Yes, c-YesY537F, and c-Yes Delta t6aa. c-Yes induction resulted in increased cell motility but did not promote proliferation either in vitro or in vivo. These results suggest that in later stages of colorectal carcinogenesis, elevations in c-Yes levels/activity may promote cancer spread and metastasis rather than tumor growth.

  13. Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells.

    PubMed

    He, Wenjuan; Zhang, Min; Zhao, Min; Davis, Linda S; Blackwell, Timothy S; Yull, Fiona; Breyer, Matthew D; Hao, Chuan-Ming

    2014-02-01

    High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.

  14. Increased Dietary Sodium Induces COX2 Expression by activating NFκB in Renal Medullary Interstitial Cells

    PubMed Central

    Zhao, Min; Davis, Linda S.; Blackwell, Timothy S.; Yull, Fiona; Breyer, Matthew D.; Hao, Chuan-Ming

    2013-01-01

    High salt diet induces renal medullary COX2 expression. Selective blockade of renal medullary COX2 activity in rats causes salt sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8% NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6J mice. Co-immunofluorescence using a COX2 antibody and antibodies against AQP2, ClC-K, AQP1 and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a 7 fold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of EGFP expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet fed C57Bl/6J mice with selective IκB kinase inhibitor IMD-0354 (8mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary PGE2. These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium. PMID:23900806

  15. Increased Rho-kinase expression and activity and pulmonary endothelial dysfunction in smokers with normal lung function.

    PubMed

    Duong-Quy, S; Dao, P; Hua-Huy, T; Guilluy, C; Pacaud, P; Dinh-Xuan, A T

    2011-02-01

    Endothelial dysfunction is one of the main consequences of the toxic effects of cigarette smoke on the vascular system. Increasing evidence suggests that the small G-protein RhoA and its downstream effectors, the Rho-kinases (ROCKs), are involved in systemic endothelial dysfunction induced by cigarette smoke. This study aimed to evaluate the role of the RhoA/ROCKs pathway in pulmonary artery endothelial function in current smokers with normal lung function. Lung tissues were obtained from nonsmokers and smokers who underwent lobectomy for lung carcinoma. Arterial relaxation in response to acetylcholine (ACh) was assessed in isolated pulmonary arterial rings. Protein expressions and activities of endothelial nitric oxide synthase (eNOS), ROCKs and the myosin phosphatase subunit 1 (MYPT-1) were sought. Relaxation in response to ACh was significantly lower in smokers as compared with nonsmokers (n = 8 in each group), consistent with reduced eNOS activity in the former compared with the latter. eNOS protein expression remained, however, the same in both groups. Expression of ROCKs, guanosine triphosphate-RhoA and phosphorylated MYPT-1 were significantly increased in smokers compared with controls. Pulmonary endothelial dysfunction is present in smokers whose lung function has not yet been impaired. Reduced activity of eNOS accounts at least in part for this endothelial dysfunction. Increased expression and activity of ROCKs accounts for another part through direct or indirect inhibition of the Rho-A/ROCKs pathway on nitric oxide synthesis and sustained pulmonary vasoconstriction through inhibition of myosin phosphatase.

  16. The tolC locus affects the expression of sbmA through σE activity increase.

    PubMed

    Corbalán, Natalia S; Adler, Conrado; de Cristóbal, Ricardo E; Pomares, María Fernanda; Delgado, Mónica A; Vincent, Paula A

    2010-10-01

    The SbmA protein is involved in the transport of MccB17-, MccJ25-, bleomycin- and proline-rich peptides into the Escherichia coli cytoplasm. sbmA gene homologues were found in a variety of bacteria. However, the physiological role of this protein still remains unknown. Previously, we found that a combination of sbmA and tolC mutations in Tn10-carrying E. coli K-12 strains results in hypersusceptibility to tetracycline. In this work, we studied sbmA expression in a tolC mutant background and observed an increased expression throughout growth. We ruled out the global transcriptional regulator RpoS and the small RNA micF as intermediates in this regulation. The tolC mutation induced the expression of other well-characterized strong σ(E) -dependent promoters in E. coli. We observed that the increase in σ(E) activity led to a greater sbmA expression, conversely eliminating σ(E) prevented expression of sbmA. We also observed that the sbmA upregulation in a tolC mutant context was abolished in an rpoE-null strain. These results suggest a σ(E) -dependent positive regulation on sbmA by the tolC mutation. We hypothesize that this mechanism might be part of a compensatory cell envelope stress response.

  17. Chronic administration of caderofloxacin, a new fluoroquinolone, increases hepatic CYP2E1 expression and activity in rats

    PubMed Central

    Liu, Li; Miao, Ming-xing; Zhong, Ze-yu; Xu, Ping; Chen, Yang; Liu, Xiao-dong

    2016-01-01

    Aim: Caderofloxacin is a new fluoroquinolone that is under phase III clinical trials in China. Here we examined the effects of caderofloxacin on rat hepatic cytochrome P450 (CYP450) isoforms as well as the potential of caderofloxacin interacting with co-administered drugs. Methods: Male rats were treated with caderofloxacin (9 mg/kg, ig) once or twice daily for 14 consecutive days. The effects of caderofloxacin on CYP3A, 2D6, 2C19, 1A2, 2E1 and 2C9 were evaluated using a “cocktail” of 6 probes (midazolam, dextromethorphan, omeprazole, theophylline, chlorzoxazone and diclofenac) injected on d 0 (prior to caderofloxacin exposure) and d 15 (after caderofloxacin exposure). Hepatic microsomes from the caderofloxacin-treated rats were used to assess CYP2E1 activity and chlorzoxazone metabolism. The expression of CYP2E1 mRNA and protein in hepatic microsomes was analyzed with RT-PCR and Western blotting, respectively. Results: Fourteen-day administration of caderofloxacin significantly increased the activity of hepatic CYP2E1, leading to enhanced metabolism of chlorzoxazone. In vitro microsomal study confirmed that CYP2E1 was a major metabolic enzyme involved in chlorzoxazone metabolism, and the 14-d administration of caderofloxacin significantly increased the activity of CYP2E1 in hepatic microsomes, resulting in increased formation of 6-hydroxychlorzoxazone. Furthermore, the 14-d administration of caderofloxacin significantly increased the expression of CYP2E1 mRNA and protein in liver microsomes, which was consistent with the pharmacokinetic results. Conclusion: Fourteen-day administration of caderofloxacin can induce the expression and activity of hepatic CYP2E1 in rats. When caderofloxacin is administered, a potential drug-drug interaction mediated by CYP2E1 induction should be considered. PMID:26838075

  18. Increased expression of Gp96 by HBx-induced NF-κB activation feedback enhances hepatitis B virus production.

    PubMed

    Fan, Hongxia; Yan, Xiaoli; Zhang, Yu; Zhang, Xiaojun; Gao, Yanzhou; Xu, Yaxing; Wang, Fusheng; Meng, Songdong

    2013-01-01

    Elevated expression of heat shock protein gp96 in hepatitis B virus (HBV)-infected patients is positively correlated with the progress of HBV-induced diseases, but little is known regarding the molecular mechanism of virus-induced gp96 expression and its impact on HBV infection. In this study, up-regulation of gp96 by HBV replication was confirmed both in vitro and in vivo. Among HBV components, HBV x protein (HBx) was found to increase gp96 promoter activity and enhance gp96 expression by using a luciferase reporter system, and western blot analysis. Further, we found that HBx-mediated regulation of gp96 expression requires a NF-κB cis-regulatory element on the gp96 promoter, and chromatin immunoprecipitation results demonstrated that HBx promotes the binding of NF-κB to the gp96 promoter. Significantly, both gain- and loss-of-function studies showed that gp96 enhances HBV production in HBV-transfected cells and a mouse model based on hydrodynamic transfection. Moreover, up-regulated gp96 expression was observed in HBV-infected patients, and gp96 levels were correlated with serum viral loads. Thus, our work demonstrates a positive feedback regulatory pathway involving gp96 and HBV, which may contribute to persistent HBV infection. Our data also indicate that modulation of gp96 function may represent a novel strategy for the intervention of HBV infection.

  19. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    SciTech Connect

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.; Rodríguez-Rey, J.C.

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  20. Alphaxalone, a neurosteroid anaesthetic, increases the activity of the glutamate transporter type 3 expressed in Xenopus oocytes.

    PubMed

    Ryu, Junghee; Cheong, Il-Young; Do, Sang-Hwan; Zuo, Zhiyi

    2009-01-05

    Glutamate transporters may be important targets for anaesthetic action in the central nervous system. The authors investigated the effects of alphaxalone, an intravenous neurosteroid anaesthetic, on the activity of glutamate transporter type 3 (EAAT3). EAAT3 was expressed in Xenopus oocytes by injecting its mRNA. Two-electrode voltage clamping was used to record membrane currents before, during, and after applying L-glutamate (30 microM) in the presence or absence of alphaxalone. Responses were quantified by integrating current traces and are reported in microCoulombs (microC). Results are presented as means+/-S.E.M. L-Glutamate induced inward currents in EAAT3 expressing oocytes, and these currents were dose-dependently increased by alphaxalone. Alphaxalone at 0.01 to 3 microM significantly increased the inward currents. In addition, the treatment of oocytes with phorbol-12-myristate-13-acetate (PMA), a protein kinase C (PKC) activator, significantly increased the transporter currents (1.0+/-0.2 to 1.4+/-0.2 microC; P<0.05). However, treatment with PMA plus alphaxalone did not increase responses further as compared with PMA or alphaxalone alone. Furthermore, pretreatment of oocytes with chelerythrine or staurosporine, two PKC inhibitors, did not affect basal transporter currents, but did significantly reduce alphaxalone-enhanced EAAT3 activity; whereas oocytes pretreated with wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor, showed significant reductions in basal and alphaxalone-enhanced EAAT3 activities. The above results suggest that alphaxalone enhances EAAT3 activity and that PKC and PI3K are involved in this effect.

  1. Long-term imipramine treatment increases N-methyl-d-aspartate receptor activity and expression via epigenetic mechanisms.

    PubMed

    Nghia, Nguyen An; Hirasawa, Takae; Kasai, Hirotake; Obata, Chie; Moriishi, Kohji; Mochizuki, Kazuki; Koizumi, Schuichi; Kubota, Takeo

    2015-04-05

    Imipramine, a major antidepressant, is known to inhibit reuptake of serotonin and norepinephrine, which contributes to recovery from major depressive disorder. It has recently been reported that acute imipramine treatment inhibits N-methyl-d-aspartate (NMDA) receptor activity. However, the mechanisms underlying long-term effects of imipramine have not been identified. We tested these distinct effects in mouse cortical neurons and found that acute (30s) imipramine treatment decreased Ca(2+) influx through NMDA receptors, whereas long-term treatment (48h) increased Ca(2+) influx via the same receptors. Furthermore, long-term treatment increased NMDA receptor 2B (NR2B) subunit expression via epigenetic changes, including increased acetylation of histones H3K9 and H3K27 in the NR2B promoter and decreased activity of histone deacetylase 3 (HDAC3) and HDAC4. These results suggest that the long-term effects of imipramine on NMDA receptors are quite different from its acute effects. Furthermore, increased NR2B expression via epigenetic alterations might be a part of the mechanism responsible for this long-term effect.

  2. Early increase in DcR2 expression and late activation of caspases in the platelet storage lesion.

    PubMed

    Plenchette, S; Moutet, M; Benguella, M; N'Gondara, J P; Guigner, F; Coffe, C; Corcos, L; Bettaieb, A; Solary, E

    2001-10-01

    Platelet transfusion is widely used to prevent bleeding in patients with severe thrombocytopenia. The maximal storage duration of platelet concentrates is usually 5 days, due to the platelet storage lesion that impairs their functions when stored for longer times. Some of the morphological and biochemical changes that characterize this storage lesion are reminiscent of cell death by apoptosis. The present study analyzed whether proteins involved in nucleated cell apoptosis could play a role in the platelet storage lesion. Storage of leukocyte-depleted platelets obtained by apheresis is associated with a late and limited activation of caspases, mainly caspase-3. This event correlates with an increased expression of the pro-apoptotic BH3-only protein Bim in the particulate fraction and a slight and late release of the pro-apoptotic mitochondrial protein Diablo/Smac in the cytosol. Platelets do not express the death receptors Fas, DR4 and DR5 on their plasma membrane, while the expression of the decoy receptor DcR2 increases progressively during platelet storage. Addition of low concentrations of the cryoprotector dimethylsulfoxide accelerates platelet caspase activation during storage, an effect that is partially prevented by the caspase inhibitor z-VAD-fmk. Altogether, DcR2 expression on the plasma membrane is an early event while caspase activation is a late event during platelet storage. These observations suggest that caspases are unlikely to account for the platelet storage lesion. As a consequence, addition of caspase inhibitors may not improve the quality of platelet concentrates stored in standard conditions.

  3. MARCH1 down-regulation in IL-10-activated B cells increases MHC class II expression.

    PubMed

    Galbas, Tristan; Steimle, Viktor; Lapointe, Réjean; Ishido, Satoshi; Thibodeau, Jacques

    2012-07-01

    IL-10 is vastly studied for its anti-inflammatory properties on most immune cells. However, it has been reported that IL-10 activates B cells, up-regulates their MHC class II molecules and prevents apoptosis. As MARCH1 was shown to be responsible for the intracellular sequestration of MHC class II molecules in dendritic cells and monocytes in response to IL-10, we set out to clarify the role of this ubiquitin ligase in B cells. Here, we demonstrate in mice that splenic follicular B cells represent the major cell population that up-regulate MHC II molecules in the presence of IL-10. Activation of these cells through TLR4, CD40 or the IL-10 receptor caused the down-regulation of MARCH1 mRNA. Accordingly, B cells from MARCH1-deficient mice do not up-regulate I-A(b) in response to IL-10. In all, our results demonstrate that IL-10 can have opposite effects on MARCH1 regulation in different cell types.

  4. CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue.

    PubMed

    Bolus, W Reid; Gutierrez, Dario A; Kennedy, Arion J; Anderson-Baucum, Emily K; Hasty, Alyssa H

    2015-10-01

    Adipose tissue (AT) inflammation during obesity is mediated by immune cells and closely correlates with systemic insulin resistance. In lean AT, eosinophils are present in low but significant numbers and capable of promoting alternative macrophage activation in an IL-4/IL-13-dependent manner. In WT mice, obesity causes the proportion of AT eosinophils to decline, concomitant with inflammation and classical activation of AT macrophages. In this study, we show that CCR2 deficiency leads to increased eosinophil accumulation in AT. Furthermore, in contrast to WT mice, the increase in eosinophils in CCR2(-/-) AT is sustained and even amplified during obesity. Interestingly, a significant portion of eosinophils is found in CLSs in AT of obese CCR2(-/-) mice, which is the first time eosinophils have been shown to localize to these inflammatory hot spots. CCR2(-/-) bone marrow precursors displayed increased expression of various key eosinophil genes during in vitro differentiation to eosinophils, suggesting a potentially altered eosinophil phenotype in the absence of CCR2. In addition, the proportion of eosinophils in AT positively correlated with local expression of Il5, a potent eosinophil stimulator. The increase in eosinophils in CCR2(-/-) mice was detected in all white fat pads analyzed and in the peritoneal cavity but not in bone marrow, blood, spleen, or liver. In AT of CCR2(-/-) mice, an increased eosinophil number positively correlated with M2-like macrophages, expression of the Treg marker Foxp3, and type 2 cytokines, Il4, Il5, and Il13. This is the first study to link CCR2 function with regulation of AT eosinophil accumulation.

  5. Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon.

    PubMed

    Maseko, Tebo; Howell, Kate; Dunshea, Frank R; Ng, Ken

    2014-03-01

    The effect of dietary supplementation with Se-enriched Agaricus bisporus on cytosolic gluthathione peroxidase-1 (GPx-1), gastrointestinal specific glutathione peroxidase-2 (GPx-2), thioredoxin reductase-1 (TrxR-1) and selenoprotein P (SeP) mRNA expression and GPx-1 enzyme activity in rat colon was examined. Rats were fed for 5weeks with control diet (0.15μg Se/g feed) or Se-enriched diet fortified with selenised mushroom (1μg Se/g feed). The mRNA expression levels were found to be significantly (P<0.01) up-regulated by 1.65-fold and 2.3-fold for GPx-1 and GPx-2, respectively, but were not significantly different for TrxR-1 and SeP between the 2 diet treatments. The up-regulation of GPx-1 mRNA expression was consistent with GPX-1 activity level, which was significantly (P<0.05) increased by 1.77-fold in rats fed with the Se-enriched diet compared to the control diet. The results showed that selenised A. bisporus can positively increase GPx-1 and GPx-2 gene expression and GPx-1 enzyme activity in rat colon.

  6. SUMOylation of the Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel 2 Increases Surface Expression and the Maximal Conductance of the Hyperpolarization-Activated Current

    PubMed Central

    Parker, Anna R.; Welch, Meghyn A.; Forster, Lori A.; Tasneem, Sarah M.; Dubhashi, Janhavi A.; Baro, Deborah J.

    2017-01-01

    Small Ubiquitin-like Modifier (SUMO) is a ∼10 kDa peptide that can be post-translationally added to a lysine (K) on a target protein to facilitate protein–protein interactions. Recent studies have found that SUMOylation can be regulated in an activity-dependent manner and that ion channel SUMOylation can alter the biophysical properties and surface expression of the channel. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel surface expression can be regulated in an activity-dependent manner through unknown processes. We hypothesized that SUMOylation might influence the surface expression of HCN2 channels. In this manuscript, we show that HCN2 channels are SUMOylated in the mouse brain. Baseline levels of SUMOylation were also observed for a GFP-tagged HCN2 channel stably expressed in Human embryonic kidney (Hek) cells. Elevating GFP-HCN2 channel SUMOylation above baseline in Hek cells led to an increase in surface expression that augmented the hyperpolarization-activated current (Ih) mediated by these channels. Increased SUMOylation did not alter Ih voltage-dependence or kinetics of activation. There are five predicted intracellular SUMOylation sites on HCN2. Site-directed mutagenesis indicated that more than one K on the GFP-HCN2 channel was SUMOylated. Enhancing SUMOylation at one of the five predicted sites, K669, led to the increase in surface expression and Ih Gmax. The role of SUMOylation at additional sites is currently unknown. The SUMOylation site at K669 is also conserved in HCN1 channels. Aberrant SUMOylation has been linked to neurological diseases that also display alterations in HCN1 and HCN2 channel expression, such as seizures and Parkinson’s disease. This work is the first report that HCN channels can be SUMOylated and that this can regulate surface expression and Ih. PMID:28127275

  7. Increased activity and expression of Ca2+-dependent NOS in renal cortex of ANG II-infused hypertensive rats

    PubMed Central

    CHIN, SO YEON; PANDEY, KAILASH N.; SHI, SHANG-JIN; KOBORI, HIROYUKI; MORENO, CAROL; NAVAR, L. GABRIEL

    2008-01-01

    no detectable signal for iNOS in the renal medulla for both groups. These data indicate that there is a differential distribution of NOS activity, with the Ca2+-dependent activity and protein expression higher in the renal cortex of ANG II-infused rats compared with control rats, and support the hypothesis that increased constitutive NOS activity exerts a protective effect in ANG II-induced hypertension to maintain adequate renal cortical blood flow. PMID:10564245

  8. Sciatic nerve transection increases gluthatione antioxidant system activity and neuronal nitric oxide synthase expression in the spinal cord.

    PubMed

    Guedes, Renata Padilha; Dal Bosco, Lidiane; Araújo, Alex Sander da Rosa; Belló-Klein, Adriane; Ribeiro, Maria Flávia Marques; Partata, Wania Aparecida

    2009-12-16

    Glutathione (GSH) is a major non-enzymatic antioxidant which is present in all tissues. Its protective actions occur through different pathways such its role as a substrate of antioxidant enzymes, such as glutathione peroxidase (GPx) and glutathione-S-transferase (GST). Nitric oxide (NO) is involved in many physiological processes in the central nervous system, including nociception. In spite of much evidence concerning oxidative and nitrosative stress and neuropathic pain, the exact role of these molecules in pain processing is still unknown. Sciatic nerve transection (SNT) was employed to induce neuropathic pain in rats. Glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities, glutathione (GSH) content, GSH/GSSG ratio, nitric oxide metabolites (NOx) and neuronal nitric oxide synthase (nNOS) protein expression in the lumbosacral spinal cord were determined. All of these analyses were performed in the SNT and sham groups 1, 3, 7 and 15 days after surgery. There was an increase in GPx activity and in GSH content 3 days after surgery in both sham and SNT groups, but the GSH/GSSG ratio increased only in the SNT group in this time point. nNOS expression was upregulated 7 days post SNT. NOx was detected 1 day after surgery in sham and SNT groups, but at 7 and 15 days, the increase occurred only in SNT animals. These results support the role of the gluthatione system in pain physiology and highlight the involvement of NO as an important molecule related to nociception.

  9. Ortho-aminoazotoluene activates mouse constitutive androstane receptor (mCAR) and increases expression of mCAR target genes

    SciTech Connect

    Smetanina, Mariya A.; Pakharukova, Mariya Y.; Kurinna, Svitlana M.; Dong, Bingning; Hernandez, Juan P.; Moore, David D.; Merkulova, Tatyana I.

    2011-08-15

    2'-3-dimethyl-4-aminoazobenzene (ortho-aminoazotoluene, OAT) is an azo dye and a rodent carcinogen that has been evaluated by the International Agency for Research on Cancer (IARC) as a possible (class 2B) human carcinogen. Its mechanism of action remains unclear. We examined the role of the xenobiotic receptor Constitutive Androstane Receptor (CAR, NR1I3) as a mediator of the effects of OAT. We found that OAT increases mouse CAR (mCAR) transactivation in a dose-dependent manner. This effect is specific because another closely related azo dye, 3'-methyl-4-dimethyl-aminoazobenzene (3'MeDAB), did not activate mCAR. Real-time Q-PCR analysis in wild-type C57BL/6 mice revealed that OAT induces the hepatic mRNA expression of the following CAR target genes: Cyp2b10, Cyp2c29, Cyp3a11, Ugt1a1, Mrp4, Mrp2 and c-Myc. CAR-null (Car{sup -/-}) mice showed no increased expression of these genes following OAT treatment, demonstrating that CAR is required for their OAT dependent induction. The OAT-induced CAR-dependent increase of Cyp2b10 and c-Myc expression was confirmed by Western blotting. Immunohistochemistry analysis of wild-type and Car{sup -/-} livers showed that OAT did not acutely induce hepatocyte proliferation, but at much later time points showed an unexpected CAR-dependent proliferative response. These studies demonstrate that mCAR is an OAT xenosensor, and indicate that at least some of the biological effects of this compound are mediated by this nuclear receptor. - Highlights: > The azo dye and mouse carcinogen OAT is a very effective mCAR activator. > OAT increases mCAR transactivation in a dose-dependent manner. > OAT CAR-dependently increases the expression of a specific subset of CAR target genes. > OAT induces an unexpectedly deferred, but CAR-dependent hepatocyte proliferation.

  10. Major Neutrophilia Observed in Acute Phase of Human Leptospirosis Is Not Associated with Increased Expression of Granulocyte Cell Activation Markers

    PubMed Central

    Raffray, Loic; Giry, Claude; Vandroux, David; Kuli, Barbara; Randrianjohany, Andry; Pequin, Anne-Marie; Renou, Frédéric; Jaffar-Bandjee, Marie-Christine; Gasque, Philippe

    2016-01-01

    It has long been known that pathogenic Leptospira can mobilize the immune system but the specific contribution of neutrophils to control the infectious challenge remains to be clarified. We herein analyzed the phenotype of circulating neutrophils of patients with leptospirosis and healthy controls for the expression of toll-like receptor (TLR) type 2 (TLR2, to sense the leptospiral LPS) and several activation markers: interleukin 8 chemokine receptor CD182 (CXCR2), CD11b of the integrin/opsonin complement receptor type 3 (CR3) and CD15 (ligand of the selectin). The plasmatic level of the main CD182 ligand, interleukin 8 (CXCL8), was measured by ELISA. Hospitalized leptospirosis cases showed marked neutrophilia, particularly in the most severe cases. Interestingly, TLR2 was significantly increased in leptospirosis but identical levels of CD182 and CD11b were detected when compared to controls. CD15 was significantly decreased on neutrophils in leptospirosis but returned to normal within 1 month. Basal levels of IL-8 were measured in control subjects and were not increased in leptospirosis cases at the initial stage of the disease. In conclusion, we observed that neutrophils failed to regulate the expression of several of the receptors involved in cell activation and recruitment. This study further emphasizes the paradigm that neutrophils may be impaired in their overall capacity to thwart bacterial infection in leptospirosis patients. PMID:27802348

  11. Elevated glucose and angiotensin II increase 12-lipoxygenase activity and expression in porcine aortic smooth muscle cells.

    PubMed Central

    Natarajan, R; Gu, J L; Rossi, J; Gonzales, N; Lanting, L; Xu, L; Nadler, J

    1993-01-01

    The lipoxygenase (LO) pathway of arachidonate metabolism has been suggested to play a key role in atherosclerosis and in mediating several actions of angiotensin II (AII). However, the relationship between LO activation and factors linked to accelerated diabetic vascular disease such as hyperglycemia and AII is not known. We have investigated the effect of high glucose (HG; 25 mM) and AII on LO activity as well as LO protein and mRNA expression in porcine aortic vascular smooth muscle cells (PVSMCs). We observed that cells cultured in HG had significantly higher levels of the cell-associated LO products 12- and 15-hydroxyeicosatetraenoic acids (HETEs). AII added to cells grown in HG specifically further increased only cell-associated 12-HETE levels. Using immunoblot analysis and reverse transcriptase PCRs, we demonstrated the presence in PVSMCs of porcine leukocyte-type 12-LO protein and mRNA, respectively. Furthermore, the levels of both were markedly upregulated by AII as well as by HG. These studies suggest that enhanced 12-LO activity and expression are mechanisms for accelerated vascular disease produced by HG and AII in diabetes mellitus. Images Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8506339

  12. OVEREXPRESSION OF ANTIOXIDANT ENZYMES UPREGULATES ARYL HYDROCARBON RECEPTOR EXPRESSION VIA INCREASED SP1 DNA-BINDING ACTIVITY

    PubMed Central

    Tang, Tian; Lin, Xinghua; Yang, Hong; Zhou, LiChun; Wang, Zefen; Shan, Guang; Guo, ZhongMao

    2010-01-01

    We previously reported up-regulation of aryl hydrocarbon receptor (AhR) expression as a mechanism by which overexpression of Cu/Zn-superoxide dismutase (SOD) and/or catalase accelerates benzo(a)pyrene (BaP) detoxification in mouse aorta endothelial cells (MAECs). The objective of this study was to investigate the regulatory role of specificity protein-1 (Sp1) in AhR expression in MAECs that overexpress Cu/Zn-SOD and/or catalase. Our data demonstrated comparable levels of nuclear Sp1 protein in the transgenic and wild-type MAECs; however, binding of Sp1 protein to the AhR promoter region was more than 2-fold higher in MAECs overexpressing Cu/Zn-SOD and/or catalase than in wild-type cells. Inhibition of Sp1 binding to the AhR promoter by mithramycin A reduced AhR expression and eliminated the differences between wild-type MAECs, and three lines of transgenic cells. Functional promoter analysis indicated that AhR promoter activity was significantly higher in MAECs overexpressing catalase than in wild-type cells. Mutation of an AhR promoter Sp1-binding site or addition of hydrogen peroxide to the culture medium reduced AhR promoter activity, and decreased the differences between wild-type MAECs and transgenic cells overexpressing catalase. These results suggest that increased Sp1 binding to the AhR promoter region is an underlying mechanism for up-regulation of AhR expression in MAECs that overexpress Cu/Zn-SOD and/or catalase. PMID:20478378

  13. Increased Expression of the Large Conductance, Calcium-Activated K+ (BK) Channel in Adult-Onset Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Donnelier, Julien; Braun, Samuel T.; Dolzhanskaya, Natalia; Ahrendt, Eva; Braun, Andrew P.; Velinov, Milen; Braun, Janice E. A.

    2015-01-01

    Cysteine string protein (CSPα) is a presynaptic J protein co-chaperone that opposes neurodegeneration. Mutations in CSPα (i.e., Leu115 to Arg substitution or deletion (Δ) of Leu116) cause adult neuronal ceroid lipofuscinosis (ANCL), a dominantly inherited neurodegenerative disease. We have previously demonstrated that CSPα limits the expression of large conductance, calcium-activated K+ (BK) channels in neurons, which may impact synaptic excitability and neurotransmission. Here we show by western blot analysis that expression of the pore-forming BKα subunit is elevated ~2.5 fold in the post-mortem cortex of a 36-year-old patient with the Leu116∆ CSPα mutation. Moreover, we find that the increase in BKα subunit level is selective for ANCL and not a general feature of neurodegenerative conditions. While reduced levels of CSPα are found in some postmortem cortex specimens from Alzheimer’s disease patients, we find no concomitant increase in BKα subunit expression in Alzheimer’s specimens. Both CSPα monomer and oligomer expression are reduced in synaptosomes prepared from ANCL cortex compared with control. In a cultured neuronal cell model, CSPα oligomers are short lived. The results of this study indicate that the Leu116∆ mutation leads to elevated BKα subunit levels in human cortex and extend our initial work in rodent models demonstrating the modulation of BKα subunit levels by the same CSPα mutation. While the precise sequence of pathogenic events still remains to be elucidated, our findings suggest that dysregulation of BK channels may contribute to neurodegeneration in ANCL. PMID:25905915

  14. Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity.

    PubMed

    Dalla Pozza, Elisa; Lerda, Carlotta; Costanzo, Chiara; Donadelli, Massimo; Dando, Ilaria; Zoratti, Elisa; Scupoli, Maria Teresa; Beghelli, Stefania; Scarpa, Aldo; Fattal, Elias; Arpicco, Silvia; Palmieri, Marta

    2013-05-01

    Pancreatic adenocarcinoma is often diagnosed when metastatic events have occurred. The early spread of circulating cancer cells expressing the CD44 receptor may play a crucial role in this process. In this study, we have investigated the cellular delivery ability and both in vitro and in vivo anti-tumoral activity of liposomes conjugated with two different low molecular weight hyaluronic acids (HA 4.8kDa and HA 12kDa), the primary ligand of CD44, and containing a lipophilic gemcitabine (GEM) pro-drug. By confocal microscopy and flow cytometry analyses, we demonstrate that the cellular uptake into a highly CD44-expressing pancreatic adenocarcinoma cell line is higher with HA-conjugated (12kDa>4.8kDa) than non-conjugated liposomes. Consistently, in vitro cytotoxic assays display an increased sensitivity towards GEM containing HA-liposomes, compared to non-conjugated liposomes. Conversely, CD44 non-expressing normal cells show a similar uptake and in vitro cytotoxicity with both HA-conjugated and non-conjugated liposomes. Furthermore, we demonstrate that the HA-liposomes are taken up into the cells via lipid raft-mediated endocytosis. All the liposome formulations containing GEM show a higher antitumoral activity than free GEM in a mouse xenograft tumor model of human pancreatic adenocarcinoma. The 12kDa HA-liposomes have the strongest efficiency, while non-conjugated liposomes and the 4.8kDa HA-liposomes are similarly active. Taken together, our results provide a strong rationale for further development of HA-conjugated liposomes to treat pancreatic adenocarcinoma.

  15. Ortho-aminoazotoluene activates mouse constitutive androstane receptor (mCAR) and increases expression of mCAR target genes.

    PubMed

    Smetanina, Mariya A; Pakharukova, Mariya Y; Kurinna, Svitlana M; Dong, Bingning; Hernandez, Juan P; Moore, David D; Merkulova, Tatyana I

    2011-08-15

    2'-3-dimethyl-4-aminoazobenzene (ortho-aminoazotoluene, OAT) is an azo dye and a rodent carcinogen that has been evaluated by the International Agency for Research on Cancer (IARC) as a possible (class 2B) human carcinogen. Its mechanism of action remains unclear. We examined the role of the xenobiotic receptor Constitutive Androstane Receptor (CAR, NR1I3) as a mediator of the effects of OAT. We found that OAT increases mouse CAR (mCAR) transactivation in a dose-dependent manner. This effect is specific because another closely related azo dye, 3'-methyl-4-dimethyl-aminoazobenzene (3'MeDAB), did not activate mCAR. Real-time Q-PCR analysis in wild-type C57BL/6 mice revealed that OAT induces the hepatic mRNA expression of the following CAR target genes: Cyp2b10, Cyp2c29, Cyp3a11, Ugt1a1, Mrp4, Mrp2 and c-Myc. CAR-null (Car(-/-)) mice showed no increased expression of these genes following OAT treatment, demonstrating that CAR is required for their OAT dependent induction. The OAT-induced CAR-dependent increase of Cyp2b10 and c-Myc expression was confirmed by Western blotting. Immunohistochemistry analysis of wild-type and Car(-/-) livers showed that OAT did not acutely induce hepatocyte proliferation, but at much later time points showed an unexpected CAR-dependent proliferative response. These studies demonstrate that mCAR is an OAT xenosensor, and indicate that at least some of the biological effects of this compound are mediated by this nuclear receptor.

  16. Epigenetic Activation of μ-Opioid Receptor Gene via Increased Expression and Function of Mitogen- and Stress-Activated Protein Kinase 1.

    PubMed

    Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H

    2017-04-01

    Since the discovery of μ-opioid receptor (MOR) gene two decades ago, various regulatory factors have been shown to interact with the MOR promoter and modulate transcript levels. However, the majority of early transcriptional studies on MOR gene have not addressed how intracellular signaling pathways mediate extracellular modulators. In this study, we demonstrate that MOR epigenetic regulation requires multiple coordinated signals converging at the MOR promoter, involving mitogen-activated protein kinase (MAPK) activation and mitogen- and stress-activated protein kinase 1 (MSK1)-ranges of intracellular signaling pathways similar to those activated by opioid agonists. Inhibiting p38 MAPK or extracellular signal-regulated kinase (ERK) 1/2 MAPK (upstream activators of MSK1) reduced MOR expression levels; accordingly, the functional role of MSK1, but not MSK2, was demonstrated using genetic approaches. However, for maximal MSK1 effect, an open chromatin configuration was required, because in vitro CpG methylation of the MOR promoter abolished MSK1 activity. Finally, endogenous MSK1 levels concomitantly increased to regulate MOR gene expression during neuronal differentiation of P19 cells, suggesting a conserved role of this kinase in the epigenic activation of MOR in neurons. Taken together, our findings indicate that the expression of MOR gene requires the activity of intracellular signaling pathways that have been implicated in the behavioral outcomes of opioid drugs, which suggests that an autoregulatory mechanism may function in opioid systems.

  17. Increased expression of stefin B in the nucleus of T98G astrocytoma cells delays caspase activation

    PubMed Central

    Sun, Tao; Turk, Vito; Turk, Boris; Kopitar-Jerala, Nataša

    2012-01-01

    Stefin B (cystatin B) is an endogenous inhibitor of cysteine proteinases localized in the nucleus and the cytosol. Loss-of-function mutations in the stefin B gene (CSTB) gene were reported in patients with Unverricht-Lundborg disease (EPM1). Our previous results showed that thymocytes isolated from stefin B-deficient mice are more sensitive to apoptosis induced by the protein kinase C (PKC) inhibitor staurosporin (STS) than the wild-type control cells. We have also shown that the increased expression of stefin B in the nucleus of T98G astrocytoma cells delayed cell cycle progression through the S phase. In the present study we examined if the nuclear or cytosolic functions of stefin B are responsible for the accelerated induction of apoptosis observed in the cells from stefin B-deficient mice. We have shown that the overexpression of stefin B in the nucleus, but not in the cytosol of astrocytoma T98G cells, delayed caspase-3 and -7 activation. Pretreatment of cells with the pan-caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone completely inhibited caspase activation, while treatment with the inhibitor of calpains- and papain-like cathepsins (2S,3S)-trans-epoxysuccinyl-leucylamido-3-methyl-butane ethyl ester did not prevent caspase activation. We concluded that the delay of caspase activation in T98G cells overexpressing stefin B in the nucleus is independent of cathepsin inhibition. PMID:23049497

  18. Increased Expression and Activation of Absent in Melanoma 2 Inflammasome Components in Lymphocytic Infiltrates of Abdominal Aortic Aneurysms

    PubMed Central

    Dihlmann, Susanne; Erhart, Philipp; Mehrabi, Arianeb; Nickkholgh, Arash; Lasitschka, Felix; Böckler, Dittmar; Hakimi, Maani

    2014-01-01

    Chronic vascular inflammation is a key hallmark in the pathogenesis of abdominal aortic aneurysm (AAA). Recent investigations have suggested that the inflammasome, a cytosolic multiprotein complex that recognizes pathogen-associated molecular patterns, plays a role in atherosclerosis. However, its role in AAA inflammation has not yet been investigated. This pilot study analyzed inflammasome activation and its intramural localization in 24 biopsy samples from 11 patients with asymptomatic AAA versus 12 aortic samples from apparently healthy controls. Using a histological inflammation scale, we identified grade 2/3 inflammatory changes with lymphoid aggregates/tertiary lymphoid organs in 21 out of 24 AAA samples, whereas only 7 of the 12 control samples exhibited local grade 1 inflammatory changes. Strong expression levels of “apoptosis-associated speck-like protein with a caspase recruitment domain” (ASC), caspase-1, caspase-5 and “absent in melanoma 2” (AIM2) were detected by immunohistochemistry in both sporadic infiltrating lymphoid cells and lymphoid aggregates located in the outer media and adventitia of AAA samples. In contrast, inflammasome-positive cells were restricted to cholesterol plaque–associated areas and to single infiltrating cells in control aortas. Analysis of gene expression using real-time polymerase chain reaction (PCR) revealed significantly increased median mRNA levels of the inflammasome core components PYCARD (ASC), CASP1 (Caspase-1) and IL1B (IL-1β) in AAA tissue compared with normal aorta. Moreover, significantly increased median amounts of AIM2 protein and mature caspase-5 (p20) were found in samples associated with high rupture risk compared with paired low rupture risk samples of the same AAA patient. We conclude from our data that AAA-associated lymphoid cells are capable of inflammasome signaling, suggesting that inflammasome activation is involved in the chronic inflammatory process driving AAA progression. PMID:24618883

  19. Myricetin Increases Hepatic Peroxisome Proliferator-Activated Receptor α Protein Expression and Decreases Plasma Lipids and Adiposity in Rats

    PubMed Central

    Chang, Chia Ju; Tzeng, Thing-Fong; Liou, Shorong-Shii; Chang, Yuan-Shiun; Liu, I-Min

    2012-01-01

    The aim of this study was to investigate the antiobesity and antihyperlipidaemic effects of myricetin. Myricetin exhibited a significant concentration-dependent decrease in the intracellular accumulation of triglyceride in 3T3-L1 adipocytes. The high-fat diet (HFD)-fed rats were dosed orally with myricetin or fenofibrate, once daily for eight weeks. Myricetin (300 mg kg−1 per day) displayed similar characteristics to fenofibrate (100 mg kg−1 per day) in reducing lowered body weight (BW) gain, visceral fat-pad weights and plasma lipid levels of HFD-fed rats. Myricetin also reduced the hepatic triglyceride and cholesterol contents, as well as lowered hepatic lipid droplets accumulation and epididymal adipocyte size in HFD-fed rats. Myricetin and fenofibrate reversed the HFD-induced down-regulation of the hepatic peroxisome proliferator activated receptor (PPAR)α. HFD-induced decreases of the hepatic protein level of acyl-CoA oxidase and cytochrome P450 isoform 4A1 were up-regulated by myricetin and fenofibrate. The elevated expressions of hepatic sterol regulatory element binding proteins (SREBPs) of HFD-fed rats were lowered by myricetin and fenofibrate. These results suggest that myricetin suppressed BW gain and body fat accumulation by increasing the fatty acid oxidation, which was likely mediated via up-regulation of PPARα and down-regulation of SREBP expressions in the liver of HFD-fed rats. PMID:22474525

  20. Ghrelin Increases Beta-Catenin Level through Protein Kinase A Activation and Regulates OPG Expression in Rat Primary Osteoblasts

    PubMed Central

    Mrak, Emanuela; Casati, Lavinia; Pagani, Francesca; Rubinacci, Alessandro; Zarattini, Guido; Sibilia, Valeria

    2015-01-01

    Ghrelin, by binding growth hormone secretagogue receptor (GHS-R), promotes osteoblast proliferation but the signaling mechanism of GHS-R on these cells remains unclear. Since canonical Wnt/β-catenin pathway is critically associated with bone homeostasis, we investigated its involvement in mediating ghrelin effects in osteoblasts and in osteoblast-osteoclast cross talk. Ghrelin (10−10M) significantly increased β-catenin levels in rat osteoblasts (rOB). This stimulatory action on β-catenin involves a specific interaction with GHS-R1a, as it is prevented by the selective GHS-R1a antagonist, D-Lys3-GHRP-6 (10−7M). The effect of ghrelin on β-catenin involves the phosphorylation and inactivation of GSK-3β via protein kinase A (PKA). Inhibition of PKA activity reduces the facilitatory action of ghrelin on β-catenin stabilization. Ghrelin treatment of rOB significantly increases the expression of osteoprotegerin (OPG), which plays an important role in the regulation of osteoclastogenesis, and this effect is blocked by D-Lys3-GHRP-6. Furthermore, ghrelin reduced RANKL/OPG ratio thus contrasting osteoclastogenesis. Accordingly, conditioned media from rOB treated with ghrelin decreased the number of multinucleated TRAcP+ cells as compared with the conditioned media from untreated-control rOB. Our data suggest new roles for ghrelin in modulating bone homeostasis via a specific interaction with GHSR-1a in osteoblasts with subsequent enhancement of both β-catenin levels and OPG expression. PMID:25866509

  1. Adaptive increases in expression and vasodilator activity of estrogen receptor subtypes in a blood vessel-specific pattern during pregnancy

    PubMed Central

    Mata, Karina M.; Li, Wei; Reslan, Ossama M.; Siddiqui, Waleed T.; Opsasnick, Lauren A.

    2015-01-01

    Normal pregnancy is associated with adaptive hemodynamic, hormonal, and vascular changes, and estrogen (E2) may promote vasodilation during pregnancy; however, the specific E2 receptor (ER) subtype, post-ER signaling mechanism, and vascular bed involved are unclear. We tested whether pregnancy-associated vascular adaptations involve changes in the expression/distribution/activity of distinct ER subtypes in a blood vessel-specific manner. Blood pressure (BP) and plasma E2 were measured in virgin and pregnant (day 19) rats, and the thoracic aorta, carotid artery, mesenteric artery, and renal artery were isolated for measurements of ERα, ERβ, and G protein-coupled receptor 30 [G protein-coupled ER (GPER)] expression and tissue distribution in parallel with relaxation responses to E2 (all ERs) and the specific ER agonist 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)-tris-phenol (PPT; ERα), diarylpropionitrile (DPN; ERβ), and G1 (GPER). BP was slightly lower and plasma E2 was higher in pregnant versus virgin rats. Western blots revealed increased ERα and ERβ in the aorta and mesenteric artery and GPER in the aorta of pregnant versus virgin rats. Immunohistochemistry revealed that the increases in ERs were mainly in the intima and media. In phenylephrine-precontracted vessels, E2 and PPT caused relaxation that was greater in the aorta and mesenteric artery but similar in the carotid and renal artery of pregnant versus virgin rats. DPN- and G1-induced relaxation was greater in the mesenteric and renal artery than in the aorta and carotid artery, and aortic relaxation to G1 was greater in pregnant versus virgin rats. The nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester with or without the cyclooxygenase inhibitor indomethacin with or without the EDHF blocker tetraethylammonium or endothelium removal reduced E2, PPT, and G1-induced relaxation in the aorta of pregnant rats, suggesting an endothelium-dependent mechanism, but did not affect E2-, PPT

  2. Adaptive increases in expression and vasodilator activity of estrogen receptor subtypes in a blood vessel-specific pattern during pregnancy.

    PubMed

    Mata, Karina M; Li, Wei; Reslan, Ossama M; Siddiqui, Waleed T; Opsasnick, Lauren A; Khalil, Raouf A

    2015-11-15

    Normal pregnancy is associated with adaptive hemodynamic, hormonal, and vascular changes, and estrogen (E2) may promote vasodilation during pregnancy; however, the specific E2 receptor (ER) subtype, post-ER signaling mechanism, and vascular bed involved are unclear. We tested whether pregnancy-associated vascular adaptations involve changes in the expression/distribution/activity of distinct ER subtypes in a blood vessel-specific manner. Blood pressure (BP) and plasma E2 were measured in virgin and pregnant (day 19) rats, and the thoracic aorta, carotid artery, mesenteric artery, and renal artery were isolated for measurements of ERα, ERβ, and G protein-coupled receptor 30 [G protein-coupled ER (GPER)] expression and tissue distribution in parallel with relaxation responses to E2 (all ERs) and the specific ER agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)-tris-phenol (PPT; ERα), diarylpropionitrile (DPN; ERβ), and G1 (GPER). BP was slightly lower and plasma E2 was higher in pregnant versus virgin rats. Western blots revealed increased ERα and ERβ in the aorta and mesenteric artery and GPER in the aorta of pregnant versus virgin rats. Immunohistochemistry revealed that the increases in ERs were mainly in the intima and media. In phenylephrine-precontracted vessels, E2 and PPT caused relaxation that was greater in the aorta and mesenteric artery but similar in the carotid and renal artery of pregnant versus virgin rats. DPN- and G1-induced relaxation was greater in the mesenteric and renal artery than in the aorta and carotid artery, and aortic relaxation to G1 was greater in pregnant versus virgin rats. The nitric oxide synthase inhibitor N(ω)-nitro-l-arginine methyl ester with or without the cyclooxygenase inhibitor indomethacin with or without the EDHF blocker tetraethylammonium or endothelium removal reduced E2, PPT, and G1-induced relaxation in the aorta of pregnant rats, suggesting an endothelium-dependent mechanism, but did not affect E2-, PPT

  3. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs.

    PubMed

    Hu, C H; Xiao, K; Luan, Z S; Song, J

    2013-03-01

    Although weaning stress has been reported to impair intestinal barrier function, the mechanisms have not yet been elucidated. In the present study, the intestinal morphology and permeability and mRNA expressions of tight junction proteins and cytokines in the intestine of piglets during the 2 wk after weaning were assessed. The phosphorylated (activated) ratios of p38, c-Jun NH(2)-terminal kinase (JNK), and extracellular regulated kinases (ERK1/2) were determined to investigate whether mitogen-activated protein kinase (MAPK) signaling pathways are involved in the early weaning process. A shorter villus and deeper crypt were observed on d 3 and 7 postweaning. Although damaged intestinal morphology recovered to preweaning values on d 14 postweaning, the intestinal mucosal barrier, which was reflected by transepithelial electrical resistance (TER) and paracellular flux of dextran (4 kDa) in the Ussing chamber and tight junction protein expression, was not recovered. Compared with the preweaning stage (d 0), jejunal TER and mRNA expressions of occludin and claudin-1 on d 3, 7, and 14 postweaning and Zonula occludens-1 (ZO-1) mRNA on d 3 and 7 postweaning were reduced, and paracellular flux of dextran on d 3, 7, and 14 postweaning was increased. An increase (P < 0.05) of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA on d 3 and d 7 postweaning and an increase (P < 0.05) of interferon-γ (IFN-γ) mRNA on d 3 postweaning were observed compared with d 0. No significant increase of transforming growth factor β1 (TGF-β1) and interleukin-10 (IL-10) mRNA after weaning was observed. The phosphorylated (activated) ratios of JNK and p38 on d 3 and 7 postweaning and the phosphorylated ratio of ERK1/2 on d 3 postweaning were increased (P < 0.05) compared with d 0. The results indicated that early weaning induced sustained impairment in the intestinal barrier, decreased mRNA expression of tight junction proteins, and upregulated the expression of proinflammatory

  4. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells

    SciTech Connect

    Ishikado, Atsushi; Nishio, Yoshihiko; Morino, Katsutaro; Ugi, Satoshi; Kondo, Hajime; Makino, Taketoshi; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2010-11-05

    Research highlights: {yields} Low doses of 4-HHE and 4-HNE induce HO-1 expression in vascular endothelial cells. {yields} 4-HHE and 4-HNE increase the intranuclear expression and DNA binding of Nrf2. {yields} 4-HHE and 4-HNE-induced HO-1 expression depends on the activation of Nrf2. {yields} Pretreatment with 4-HHE and 4-HNE prevents oxidative stress-induced cytotoxicity. -- Abstract: Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative and anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10 {mu}M 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5 {mu}M. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated

  5. Dietary fructose feeding increases adipose methylglyoxal accumulation in rats in association with low expression and activity of glyoxalase-2.

    PubMed

    Masterjohn, Christopher; Park, Youngki; Lee, Jiyoung; Noh, Sang K; Koo, Sung I; Bruno, Richard S

    2013-08-21

    Methylglyoxal is a precursor to advanced glycation endproducts that may contribute to diabetes and its cardiovascular-related complications. Methylglyoxal is successively catabolized to D-lactate by glyoxalase-1 and glyoxalase-2. The objective of this study was to determine whether dietary fructose and green tea extract (GTE) differentially regulate methylglyoxal accumulation in liver and adipose, mediated by tissue-specific differences in the glyoxalase system. We fed six week old male Sprague-Dawley rats a low-fructose diet (10% w/w) or a high-fructose diet (60% w/w) containing no GTE or GTE at 0.5% or 1.0% for nine weeks. Fructose-fed rats had higher (P < 0.05) adipose methylglyoxal, but GTE had no effect. Plasma and hepatic methylglyoxal were unaffected by fructose and GTE. Fructose and GTE also had no effect on the expression or activity of glyoxalase-1 and glyoxalase-2 at liver or adipose. Regardless of diet, adipose glyoxalase-2 activity was 10.8-times lower (P < 0.05) than adipose glyoxalase-1 activity and 5.9-times lower than liver glyoxalase-2 activity. Adipose glyoxalase-2 activity was also inversely related to adipose methylglyoxal (r = -0.61; P < 0.05). These findings suggest that fructose-mediated adipose methylglyoxal accumulation is independent of GTE supplementation and that its preferential accumulation in adipose compared to liver is due to low constitutive expression of glyoxalase-2.

  6. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen.

    PubMed

    Choi, Hye-Ryung; Nam, Kyung-Mi; Lee, Hyun-Sun; Yang, Seung-Hye; Kim, Young-Soo; Lee, Jongsung; Date, Akira; Toyama, Kazumi; Park, Kyoung-Chan

    2016-01-01

    E. senticosus extract (ESE), known as antioxidant, has diverse pharmacologic effects. It is also used as an antiaging agent for the skin and phlorizin (PZ) is identified as a main ingredient. In this study, the effects of PZ on epidermal stem cells were investigated. Cultured normal human keratinocytes and skin equivalents are used to test whether PZ affects proliferative potential of keratinocytes and how it regulates these effects. Skin equivalents (SEs) were treated with ESE and the results showed that the epidermis became slightly thickened on addition of 0.002% ESE. The staining intensity of p63 as well as proliferating cell nuclear antigen (PCNA) is increased, and integrin α6 was upregulated. Analysis of ESE confirmed that PZ is the main ingredient. When SEs were treated with PZ, similar findings were observed. In particular, the expression of integrin α6, integrin β1, and type IV collagen was increased. Levels of mRNA for type IV collagen were increased and levels of miR135b were downregulated. All these findings suggested that PZ can affect the proliferative potential of epidermal cells in part by microenvironment changes via miR135b downregulation and following increased expression of type IV collagen.

  7. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen

    PubMed Central

    Choi, Hye-Ryung; Nam, Kyung-Mi; Lee, Hyun-Sun; Yang, Seung-Hye; Kim, Young-Soo; Lee, Jongsung; Date, Akira; Toyama, Kazumi; Park, Kyoung-Chan

    2016-01-01

    E. senticosus extract (ESE), known as antioxidant, has diverse pharmacologic effects. It is also used as an antiaging agent for the skin and phlorizin (PZ) is identified as a main ingredient. In this study, the effects of PZ on epidermal stem cells were investigated. Cultured normal human keratinocytes and skin equivalents are used to test whether PZ affects proliferative potential of keratinocytes and how it regulates these effects. Skin equivalents (SEs) were treated with ESE and the results showed that the epidermis became slightly thickened on addition of 0.002% ESE. The staining intensity of p63 as well as proliferating cell nuclear antigen (PCNA) is increased, and integrin α6 was upregulated. Analysis of ESE confirmed that PZ is the main ingredient. When SEs were treated with PZ, similar findings were observed. In particular, the expression of integrin α6, integrin β1, and type IV collagen was increased. Levels of mRNA for type IV collagen were increased and levels of miR135b were downregulated. All these findings suggested that PZ can affect the proliferative potential of epidermal cells in part by microenvironment changes via miR135b downregulation and following increased expression of type IV collagen. PMID:27042261

  8. Inhibition of UBE2D3 Expression Attenuates Radiosensitivity of MCF-7 Human Breast Cancer Cells by Increasing hTERT Expression and Activity

    PubMed Central

    Hu, Liu; Li, Fen; Ren, Li; Yu, Haijun; Liu, Yu; Xia, Ling; Lei, Han; Liao, Zhengkai; Zhou, Fuxiang; Xie, Conghua; Zhou, Yunfeng

    2013-01-01

    The known functions of telomerase in tumor cells include replenishing telomeric DNA and maintaining cell immortality. We have previously shown the existence of a negative correlation between human telomerase reverse transcriptase (hTERT) and radiosensitivity in tumor cells. Here we set out to elucidate the molecular mechanisms underlying regulation by telomerase of radiosensitivity in MCF-7 cells. Toward this aim, yeast two-hybrid (Y2H) screening of a human laryngeal squamous cell carcinoma radioresistant (Hep2R) cDNA library was first performed to search for potential hTERT interacting proteins. We identified ubiquitin-conjugating enzyme E2D3 (UBE2D3) as a principle hTERT-interacting protein and validated this association biochemically. ShRNA-mediated inhibition of UBE2D3 expression attenuated MCF-7 radiosensitivity, and induced the accumulation of hTERT and cyclin D1 in these cells. Moreover, down-regulation of UBE2D3 increased hTERT activity and cell proliferation, accelerating G1 to S phase transition in MCF-7 cells. Collectively these findings suggest that UBE2D3 participates in the process of hTERT-mediated radiosensitivity in human breast cancer MCF-7 cells by regulating hTERT and cyclin D1. PMID:23741361

  9. Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes.

    PubMed

    Moreira, Marcela L; Costa-Pereira, Christiane; Alves, Marina Luiza Rodrigues; Marteleto, Bruno H; Ribeiro, Vitor M; Peruhype-Magalhães, Vanessa; Giunchetti, Rodolfo C; Martins-Filho, Olindo A; Araújo, Márcio S S

    2016-04-15

    Visceral leishmaniasis (VL) is transmitted by phlebotomine sandfly vectors and domestic dogs serve as a reservoir. The elimination of seropositive dogs has been a recommended strategy for managing the disease in Brazil. A protective canine vaccine would be an important tool for controlling the disease, reducing the parasites available to sandfly vectors and, consequently, reducing the number of human VL cases. Leishmune(®) is an anti-canine Leishmaniosis (VL Canine) vaccine produced by Zoetis (Pfizer, Brazil) that was commercially available in Brazil until 2014. The main goal of the present study was to investigate the protective immunological events induced by vaccination with Leishmune(®) in the time frame of one year. Healthy, non-vaccinated dogs and dogs of 1, 6 and 10 months post-vaccination were evaluated. Results showed that Leishmune(®) induced an increase in phagocytic activity of neutrophils and monocytes and also increased NO production. Immunological events were correlated with functional responses, as high levels of IgG and an increase of the receptor Fcγ were detected. Vaccination induced an increased expression of TLR (2, 4, 5, 9), integrin (CD29, CD49f), activation (MHCII) and co-stimulatory (CD80, CD81) molecules by neutrophils and monocytes. Vaccination led to decrease of IL-4 and an increase of IL-8 production by monocytes and higher IFN-γ and IL-17 production by T-cells. The results suggested that Leishmune(®) was able to induce a long-lasting change in immune response, mediated by supportive immunological events that may be participating in protective immunity against CL.

  10. Hypertonic saline up-regulates A3 adenosine receptors expression of activated neutrophils and increases acute lung injury after sepsis

    PubMed Central

    Inoue, Yoshiaki; Chen, Yu; Pauzenberger, Reinhard; Mark, Hirsh I.; Junger, Wolfgang G.

    2008-01-01

    receptor knockout mice remained only 50% regardless of timing of hypertonic saline administration. Conclusions Polymorphonuclear neutrophils A3 receptors expression determines whether hypertonic saline resuscitation inhibits or aggravates polymorphonuclear neutrophils-induced acute lung injury. These findings suggest that A3 antagonists could improve the efficacy of hypertonic saline resuscitation by reducing side effects in patients whose polymorphonuclear neutrophils are activated before hypertonic saline treatment. PMID:18679117

  11. Down-regulation of acyl-CoA oxidase gene expression and increased NF-kappaB activity in etomoxir-induced cardiac hypertrophy.

    PubMed

    Cabrero, Agatha; Merlos, Manuel; Laguna, Juan C; Carrera, Manuel Vázquez

    2003-02-01

    Activation of nuclear factor-kappaB (NF-kappaB) is required for hypertrophic growth of cardiomyocytes. Etomoxir is an irreversible inhibitor of carnitine palmitoyltransferase I (CPT-I) that activates peroxisome proliferator-activated receptor alpha (PPARalpha) and induces cardiac hypertrophy through an unknown mechanism. We studied the mRNA expression of genes involved in fatty acid oxidation in the heart of mice treated for 1 or 10 days with etomoxir (100 mg/kg/day). Etomoxir administration for 1 day significantly increased (4.4-fold induction) the mRNA expression of acyl-CoA oxidase (ACO), which catalyzes the rate-limiting step in peroxisomal beta-oxidation. In contrast, etomoxir treatment for 10 days dramatically decreased ACO mRNA levels by 96%. The reduction in ACO expression in the hearts of 10-day etomoxir-treated mice was accompanied by an increase in the mRNA expression of the antioxidant enzyme glutathione peroxidase and the cardiac marker of oxidative stress bax. Moreover, the activity of the redox-regulated transcription factor NF-kappaB was increased in heart after 10 days of etomoxir treatment. Overall, the findings here presented show that etomoxir treatment may induce cardiac hypertrophy via increased cellular oxidative stress and NF-kappaB activation.

  12. Hyperoxia activates NF-kappaB and increases TNF-alpha and IFN-gamma gene expression in mouse pulmonary lymphocytes.

    PubMed

    Shea, L M; Beehler, C; Schwartz, M; Shenkar, R; Tuder, R; Abraham, E

    1996-11-01

    Hyperoxia-associated production of reactive oxygen species leads to neutrophil infiltration into the lungs and increased pulmonary proinflammatory cytokine expression. However, the initial events induced by hyperoxia, and leading to acute inflammatory lung injury, remain incompletely characterized. To explore this issue, we examined nuclear transcriptional regulatory factor (NF-kappaB and NF-IL-6) activation and cytokine expression in the lungs following 12 to 48 h of hyperoxia exposure. No increases in cytokine (IL-1beta, IL-6, IL-10, TGF-beta, TNF-alpha, IFN-gamma) expression nor in NF-kappaB activation were found after 12 h of hyperoxia. Following 24 h of hyperoxia, NF-kappaB activation and increased levels of TNF-alpha mRNA were present in pulmonary lymphocytes. By 48 h of hyperoxia, amounts of IFN-gamma and TNF-alpha protein as well as mRNA were increased in the lungs, and NF-kappaB continued to show activation, even though no histologic abnormalities were present. These results show that hyperoxia activates NF-kappaB in the lungs before any increase in proinflammatory cytokine protein occurs, and suggest that NF-kappaB activation may represent an initial event in the proinflammatory sequence induced by hyperoxia.

  13. The Over-expression of the Plastidial Transglutaminase from Maize in Arabidopsis Increases the Activation Threshold of Photoprotection

    PubMed Central

    Ioannidis, Nikolaos E.; Malliarakis, Dimitris; Torné, Josep M.; Santos, Mireya; Kotzabasis, Kiriakos

    2016-01-01

    Plastidial transglutaminase is one of the most promising enzymes in chloroplast bioenergetics due to its link with polyamine pathways and the cross talk with signals such as Ca2+ and GTP. Here, we show the effect of the increase of transglutaminase activity in Arabidopsis by using genetic transformation techniques. These lines fulfill their biological cycle normally (normal growth in soil, production of viable seeds) and show a relatively mild increase in transglutaminase activity (127%). These overexpressors of transglutaminase (OE TGase) have an extended stroma thylakoid network (71% higher number of PSIIβ centers), similar chlorophyll content (-4%), higher linear electron flow (+13%), and higher threshold of photoprotection activation (∼100%). On the other hand OE TGase showed a reduced maximum photochemistry of PSII (-6.5%), a smaller antenna per photosystem II (-25%), a lower photoprotective “energization” quenching or qE (-77% at 490 μmol photons m-2 s-1) due to a higher threshold of qE activation and slightly lower light induced proton motive force (-17%). The role of the polyamines and of the transglutaminase in the regulation of chemiosmosis and photoprotection in chloroplasts is discussed. PMID:27242838

  14. Sepsis increases the expression and activity of the transcription factor Forkhead Box O 1 (FOXO1) in skeletal muscle by a glucocorticoid-dependent mechanism.

    PubMed

    Smith, Ira J; Alamdari, Nima; O'Neal, Patrick; Gonnella, Patricia; Aversa, Zaira; Hasselgren, Per-Olof

    2010-05-01

    Sepsis-induced muscle wasting has severe clinical consequences, including muscle weakness, need for prolonged ventilatory support and stay in the intensive care unit, and delayed ambulation with risk for pulmonary and thromboembolic complications. Understanding molecular mechanisms regulating loss of muscle mass in septic patients therefore has significant clinical implications. Forkhead Box O (FOXO) transcription factors have been implicated in muscle wasting, partly reflecting upregulation of the ubiquitin ligases atrogin-1 and MuRF1. The influence of sepsis on FOXO transcription factors in skeletal muscle is poorly understood. We tested the hypothesis that sepsis upregulates expression and activity of FOXO transcription factors in skeletal muscle by a glucocorticoid-dependent mechanism. Sepsis in rats increased muscle FOXO1 and 3a mRNA and protein levels but did not influence FOXO4 expression. Nuclear FOXO1 levels and DNA binding activity were increased in septic muscle whereas FOXO3a nuclear levels were not increased during sepsis. Sepsis-induced expression of FOXO1 was reduced by the glucocorticoid receptor antagonist RU38486 and treatment of rats with dexamethasone increased FOXO1 mRNA levels suggesting that the expression of FOXO1 is regulated by glucocorticoids. Reducing FOXO1, but not FOXO3a, expression by siRNA in cultured L6 myotubes inhibited dexamethasone-induced atrogin-1 and MuRF1 expression, further supporting a role of FOXO1 in glucocorticoid-regulated muscle wasting. Results suggest that sepsis increases FOXO1 expression and activity in skeletal muscle by a glucocorticoid-dependent mechanism and that glucocorticoid-dependent upregulation of atrogin-1 and MuRF1 in skeletal muscle is regulated by FOXO1. The study is significant because it provides novel information about molecular mechanisms involved in sepsis-induced muscle wasting.

  15. BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl- co-transporter KCC2.

    PubMed

    Aguado, Fernando; Carmona, Maria A; Pozas, Esther; Aguiló, Agustín; Martínez-Guijarro, Francisco J; Alcantara, Soledad; Borrell, Victor; Yuste, Rafael; Ibañez, Carlos F; Soriano, Eduardo

    2003-04-01

    Spontaneous neural activity is a basic property of the developing brain, which regulates key developmental processes, including migration, neural differentiation and formation and refinement of connections. The mechanisms regulating spontaneous activity are not known. By using transgenic embryos that overexpress BDNF under the control of the nestin promoter, we show here that BDNF controls the emergence and robustness of spontaneous activity in embryonic hippocampal slices. Further, BDNF dramatically increases spontaneous co-active network activity, which is believed to synchronize gene expression and synaptogenesis in vast numbers of neurons. In fact, BDNF raises the spontaneous activity of E18 hippocampal neurons to levels that are typical of postnatal slices. We also show that BDNF overexpression increases the number of synapses at much earlier stages (E18) than those reported previously. Most of these synapses were GABAergic, and GABAergic interneurons showed hypertrophy and a 3-fold increase in GAD expression. Interestingly, whereas BDNF does not alter the expression of GABA and glutamate ionotropic receptors, it does raise the expression of the recently cloned K(+)/Cl(-) KCC2 co-transporter, which is responsible for the conversion of GABA responses from depolarizing to inhibitory, through the control of the Cl(-) potential. Together, results indicate that both the presynaptic and postsynaptic machineries of GABAergic circuits may be essential targets of BDNF actions to control spontaneous activity. The data indicate that BDNF is a potent regulator of spontaneous activity and co-active networks, which is a new level of regulation of neurotrophins. Given that BDNF itself is regulated by neuronal activity, we suggest that BDNF acts as a homeostatic factor controlling the emergence, complexity and networking properties of spontaneous networks.

  16. Resveratrol increases anti-aging Klotho gene expression via the activating transcription factor 3/c-Jun complex-mediated signaling pathway.

    PubMed

    Hsu, Shih-Che; Huang, Shih-Ming; Chen, Ann; Sun, Chiao-Yin; Lin, Shih-Hua; Chen, Jin-Shuen; Liu, Shu-Ting; Hsu, Yu-Juei

    2014-08-01

    The Klotho gene functions as an aging suppressor gene. Evidence from animal models suggests that induction of Klotho expression may be a potential treatment for age-associated diseases. However, the molecular mechanism involved in regulating renal Klotho gene expression remains unclear. In this study, we determined that resveratrol, a natural polyphenol, induced renal Klotho expression both in vivo and in vitro. In the mouse kidney, resveratrol administration markedly increased both Klotho mRNA and protein expression. In resveratrol-treated NRK-52E cells, increased Klotho expression was accompanied by the upregulation and nuclear translocation of activating transcription factor 3 (ATF3) and c-Jun. ATF3 or c-Jun overexpression enhanced the transcriptional activation of Klotho. Conversely, resveratrol-induced Klotho expression was attenuated in the presence of dominant-negative ATF3 or c-Jun. Coimmunoprecipitation and a chromatin immunoprecipitation assay revealed that ATF3 physically interacted with c-Jun and that the ATF3/c-Jun complex directly bound to the Klotho promoter through ATF3- and AP-1-binding elements. c-Jun cotransfection augmented the effects of ATF3 on Klotho transcription in vitro. Although Sirtuin 1 mRNA expression was induced by resveratrol and involved in regulating Klotho mRNA expression, it was not the primary cause for the aforementioned ATF3/c-Jun pathway. In summary, resveratrol enhances the renal expression of the anti-aging Klotho gene, and the transcriptional factors ATF3 and c-Jun functionally interact and coordinately regulate the resveratrol-mediated transcriptional activation of Klotho.

  17. Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana.

    PubMed

    Fang, Weiguo; Feng, Jin; Fan, Yanhua; Zhang, Yongjun; Bidochka, Michael J; Leger, Raymond J St; Pei, Yan

    2009-10-01

    Entomopathogenic fungi, such as Beauveria bassiana and Metarhizium anisopliae are being developed as alternatives to chemical insecticides. They infect insects by direct penetration of the cuticle using a combination of physical pressure and extracellular hydrolytic enzymes such as proteases and chitinases. Previously we found that overexpression of a subtilisin-like protease (Pr1A) or a chitinase (Bbchit1) resulted in increased virulence of M. anisopliae and B. bassiana, respectively. In this study, we found that a mixture of the B. bassiana Pr1A homolog (CDEP1) and Bbchit1 degraded insect cuticle in vitro more efficiently than either CDEP1 or Bbchit1 alone. Based on this we produced three plasmid constructs; (1) Bbchit1, (2) CDEP1, and (3) a fusion gene of Bbchit1 linked to CDEP1 each under the control of the constitutive gpd promoter from Aspergillus nidulans. B. bassiana transformants secreting the fusion protein (CDEP1:Bbchit1) penetrated the cuticle significantly faster than the wild type or transformants overexpressing either Bbchit1 or CDEP1. Compared to the wild type, the transformant overexpressing CDEP1 showed a 12.5% reduction in LT(50), without a reduction in LC(50). The LT(50) of the transformant expressing CDEP1:Bbchit1 was reduced by 24.9%. Strikingly, expression of CDEP1:Bbchit1 resulted in a 60.5% reduction in LC(50), more than twice the reduction obtained by overexpression of Bbchit1 (28.5%). This work represents a significant step towards the development of hypervirulent insect pathogens for effective pest control.

  18. TRAF family member-associated NF-kappa B activator (TANK) expression increases in injured sensory neurons and is transcriptionally regulated by Sox11

    PubMed Central

    Salerno, Kathleen M.; Jing, Xiaotang; Diges, Charlotte M.; Davis, Brian M.; Albers, Kathryn M.

    2013-01-01

    Peripheral nerve injury evokes rapid and complex changes in gene transcription and cellular signaling pathways. Understanding how these changes are functionally related is essential for developing new approaches that accelerate and improve nerve regeneration. Towards this goal we found that nerve injury induces a rapid and significant up-regulation of the transcription factor Sox11 in dorsal root ganglia (DRG) neurons. Gain and loss of function studies have shown this increase is essential for normal axon regeneration. To determine how Sox11 impacts neuronal gene expression, DRG neurons were treated with Sox11 siRNA to identify potential transcriptional targets. One gene significantly reduced by Sox11 knockdown was TRAF (tumor necrosis factor (TNF) receptor-associated factor)-associated NF-κB activator (TANK). Here we show that TANK is expressed in DRG neurons, that TANK expression is increased in response to peripheral nerve injury and that Sox11 overexpression in vitro increases TANK expression. Injury and in vitro overexpression were also found to preferentially increase TANK transcript variant 3 and a larger TANK protein isoform. To determine if Sox11 regulates TANK transcription bioinformatic analysis was used to identify potential Sox binding motifs within 5 kbp of the TANK 5’ untranslated region (UTR) across several mammalian genomes. Two sites in the mouse TANK gene were examined. Luciferase expression assays coupled with site-directed mutagenesis showed each site contributes to enhanced TANK promoter activity. In addition, chromatin immunoprecipitation assays showed direct Sox11 binding in regions containing the two identified Sox motifs in the mouse TANK 5’-UTR. These studies are the first to show that TANK is expressed in DRG neurons, that TANK is increased by peripheral nerve injury and that the regulation of TANK expression is, at least in part, controlled by the injury-associated transcription factor Sox11. PMID:23201825

  19. Activation of transient receptor potential vanilloid subtype 1 increases expression and permeability of tight junction in normal and hyposecretory submandibular gland.

    PubMed

    Cong, Xin; Zhang, Yan; Shi, Liang; Yang, Ning-Yan; Ding, Chong; Li, Jing; Ding, Qian-Wen; Su, Yun-Chao; Xiang, Ruo-Lan; Wu, Li-Ling; Yu, Guang-Yan

    2012-05-01

    Tight junction (TJ) is an important structure that regulates material transport through the paracellular pathway across the epithelium, but its significance in salivary physiology and pathogenesis of salivary dysfunctional diseases is not fully understood. We previously demonstrated that a functional transient receptor potential vanilloid subtype 1 (TRPV1) expresses in submandibular gland (SMG). However, association of TRPV1-induced saliva secretion with TJ remains unknown. Here we explored the effect of TRPV1 activation on expression and function of TJ of rabbit SMG in vitro and in vivo. RT-PCR and western blot analysis revealed that capsaicin upregulated expression of zonula occludin-1 (ZO-1), claudin (Cldn)-3, and -11, but not Cldn-1, -2, -4, -5, and -7 in cultured SMG cells. Capsaicin also increased the entering of 4 kDa FITC-dextran into the acinar lumen, induced redistribution of cytoskeleton F-actin under confocal microscope, and these effects were abolished by preincubation of capsazepine, a TRPV1 antagonist, indicating that activation of TRPV1 increases expression and permeability of TJ in SMG. Additionally, in a hyposecretory model induced by rabbit SMG transplantation, the expression of ZO-1, Cldn-3, and -11 was decreased, whereas other TJs remained unaltered. The structure of TJ was impaired and the width of apical TJs was reduced under transmission electron microscope, concomitant with diminished immunofluorescence of F-actin in peri-apicolateral region, indicating impaired TJ expression and decreased paracellular permeability in the transplanted SMG. Moreover, topical capsaicin cream increased secretion, decreased TJ structural injury, reversed TJ expression levels, and protected F-actin morphology from disarrangement in transplanted SMGs. These data provide the first evidence to demonstrate that TJ components, particularly ZO-1, Cldn-3, and -11 have important roles in secretion of SMG under both physiological and pathophysiological conditions. The

  20. Eicosapentaenoic acid increases cytochrome P-450 2J2 gene expression and epoxyeicosatrienoic acid production via peroxisome proliferator-activated receptor γ in endothelial cells.

    PubMed

    Wang, Dahai; Hirase, Tetsuaki; Nitto, Takeaki; Soma, Masaaki; Node, Koichi

    2009-12-01

    ω-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have beneficial effects on cardiovascular diseases. Cytochrome P-450 (CYP) 2J2 that is expressed in endothelial cells metabolizes arachidonic acids to biologically active epoxyeicosatrienoic acids (EETs) that possess anti-inflammatory and anti-thrombotic effects. We studied the effects of EPA and DHA on the expression of CYP 2J2 mRNA by reverse transcription-polymerase chain reaction in cultured human umbilical vein endothelial cells and found that EPA, but not DHA, increased the expression of CYP 2J2 mRNA in a dose-dependent and a time-dependent manner. EPA-induced CYP 2J2 expression was significantly inhibited by pretreatment with a peroxisome proliferator-activated receptor (PPAR) γ antagonist, GW9662. EPA, but not DHA, caused a significant increase in cellular levels of 11,12-dihydroxyeicosatrienoic acid that is a stable metabolite of 11,12-EET, which was blocked by pretreatment with GW9662. These data demonstrate that EPA increases CYP 2J2 mRNA expression and 11,12-EET production via PPARγ in endothelial cells and indicate a novel protective role of EPA and PPARγ against vascular inflammation.

  1. The expression of HIV-1 Vpu in monocytes causes increased secretion of TGF-β that activates profibrogenic genes in hepatic stellate cells.

    PubMed

    Patel, Paresh; Khan, Nabab; Rani, Manjusha; Gupta, Deepti; Jameel, Shahid

    2014-01-01

    There is faster progression to fibrosis in persons with liver injury who are also infected with HIV. Other reports have suggested that HIV can directly infect and activate stellate cells, and the viral Tat and gp160 proteins also induce profibrogenic factors from peripheral blood mononuclear cells (PBMCs). We tested the role of HIV-1 Vpu accessory protein in promoting profibrogenic activation of hepatic stellate cells. Human stellate LX2 cells were cocultured with human monocytic U937 cells stably expressing the Vpu protein or latently infected U1 cells knocked down for Vpu expression, LX2 cells were also cultured with the supernatants from these cells. The expression of profibrogenic markers was evaluated in LX2 cells usingquantitative reverse transcription polymerase chain reaction (qRT-PCR),western blotting, immunofluorescence,flow cytometry and ELISA were used to confirm and quantitate protein expression. Monocytic cells expressing Vpu increased the expression of profibrogenic markers in LX2 cells. The culture supernatants of these cells contained increased levels of transforming growth factor beta (TGF-β), which correlated with increased activity of the AP-1 transcription factor. Antibodies against TGF-β or a TGF-β receptor inhibitor (SB431452) reversed Vpu-mediated profibrogenic activation of LX2 cells, suggesting that TGF-β mediated these effects. The cytokine macrophage migration inhibitory factor (MIF) attenuated Vpu-mediated TGF-β secretion and profibrogenic effects on LX2 cells. Besides its other roles in pathogenesis, Vpu is likely to contribute to hepatic fibrosis through this hitherto unknown mechanism.

  2. High levels of acetoacetate and glucose increase expression of cytokines in bovine hepatocytes, through activation of the NF-κB signalling pathway.

    PubMed

    Li, Yu; Ding, Hongyan; Wang, Xichun; Liu, Lei; Huang, Dan; Zhang, Renhe; Guo, Lihui; Wang, Zhe; Li, Xiaobing; Liu, Guowen; Wu, Jinjie; Li, Xinwei

    2016-02-01

    Elevated levels of blood interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) increase insulin resistance and result in inflammation. It is not clear whether elevated blood level of acetoacetate (ACAC) and decreased blood level of glucose, which are the predominant characteristics of clinical biochemistry in ketotic dairy cows, increase proinflammatory cytokines and subsequent inflammation. The objective of this study was to test the hypothesis that ACAC and glucose activate the NF-κB signalling pathway to regulate cytokines expression in bovine hepatocytes. Bovine hepatocytes were cultured with ACAC (0-4.8 mm) and glucose (0-5.55 mm) with or without NF-κB inhibitor PDTC for 24 h. The secretion and mRNA levels of cytokines were determined by enzyme-linked immunosorbent assay (ELISA) and real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). The NF-κB signalling pathway activation was evaluated by western blotting. Results showed that the secretion and expression of IL-1β, IL-6 and TNF-α increased in an ACAC dose-dependent manner. Additionally, there was an increase in the secretion and mRNA expression of these three cytokines in glucose treatment group, which increased significantly when the glucose concentrations exceed 3.33 mm. Furthermore, both ACAC and glucose upregulated NF-κB p65 protein expression and IκBα phosphorylation levels. However, these effects were reduced by PDTC. These results demonstrate that elevated levels of ACAC and glucose increase the synthesis and expression of proinflammatory factors by activating NF-κB signalling pathway in hepatocytes, which may contribute to inflammation injury in ketotic dairy cows.

  3. Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression

    PubMed Central

    Barone, Rosario; Macaluso, Filippo; Sangiorgi, Claudia; Campanella, Claudia; Marino Gammazza, Antonella; Moresi, Viviana; Coletti, Dario; Conway de Macario, Everly; Macario, Alberto JL; Cappello, Francesco; Adamo, Sergio; Farina, Felicia; Zummo, Giovanni; Di Felice, Valentina

    2016-01-01

    Heat shock protein 60 (Hsp60) is a chaperone localizing in skeletal muscle mitochondria, whose role is poorly understood. In the present study, the levels of Hsp60 in fibres of the entire posterior group of hindlimb muscles (gastrocnemius, soleus, and plantaris) were evaluated in mice after completing a 6-week endurance training program. The correlation between Hsp60 levels and the expression of four isoforms of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) were investigated only in soleus. Short-term overexpression of hsp60, achieved by in vitro plasmid transfection, was then performed to determine whether this chaperone could have a role in the activation of the expression levels of PGC1α isoforms. The levels of Hsp60 protein were fibre-type specific in the posterior muscles and endurance training increased its content in type I muscle fibers. Concomitantly with the increased levels of Hsp60 released in the blood stream of trained mice, mitochondrial copy number and the expression of three isoforms of PGC1α increased. Overexpressing hsp60 in cultured myoblasts induced only the expression of PGC1 1α, suggesting a correlation between Hsp60 overexpression and PGC1 1 α activation. PMID:26812922

  4. Activation of human naïve Th cells increases surface expression of GD3 and induces neoexpression of GD2 that colocalize with TCR clusters.

    PubMed

    Villanueva-Cabello, Tania M; Mollicone, Rosella; Cruz-Muñoz, Mario E; López-Guerrero, Delia V; Martínez-Duncker, Iván

    2015-12-01

    CD4+ T helper lymphocytes (Th) orchestrate the immune response after their activation by antigen-presenting cells. Activation of naïve Th cells is reported to generate the reduction in surface epitopes of sialic acid (Sia) in α2,3 and α2,6 linkages. In this work, we report that in spite of this glycophenotype, anti-CD3/anti-CD28-activated purified human naïve Th cells show a significant increase in surface Sia, as assessed by metabolic labeling, compared with resting naïve Th cells, suggesting an increased flux of Sia toward Siaα2,8 glycoconjugates. To understand this increase as a result of ganglioside up-regulation, we observed that very early after activation, human naïve Th cells show an increased expression in surface GD3 and neoexpression of surface GD2 gangliosides, the latter clustering with the T cell receptor (TCR). Also, we report that in contrast to GM2/GD2 synthase null mice, lentiviral vector-mediated silencing of the GM2/GD2 synthase in activated human naïve Th cells reduced efficient TCR clustering and downstream signaling, as assessed by proliferation assays and IL-2 and IL-2R expression, pointing to an important role of this enzyme in activation of human naive Th cells.

  5. Transcriptional Activation by NFκB Increases Perlecan/HSPG2 Expression in the Desmoplastic Prostate Tumor Microenvironment

    PubMed Central

    Warren, Curtis R.; Grindel, Brian J.; Francis, Lewis; Carson, Daniel D.; Farach-Carson, Mary C.

    2014-01-01

    Perlecan/HSPG2, a heparan sulfate proteoglycan typically found at tissue borders including those separating epithelia and connective tissue, increases near sites of invasion of primary prostatic tumors as previously shown for other proteins involved in desmoplastic tissue reaction. Studies of prostate cancer cells and stromal cells from both prostate and bone, the major site for prostate cancer metastasis, showed that cancer cells and a subset of stromal cells increased production of perlecan in response to cytokines present in the tumor microenvironment. In silico analysis of the HSPG2 promoter revealed two conserved NFκB binding sites, in addition to the previously reported SMAD3 binding sites. By systematically transfecting cells with a variety of reporter constructs including sequences up to 2.6 kb from the start site of transcription, we identified an active cis element in the distal region of the HSPG2 promoter, and showed that it functions in regulating transcription of HSPG2. Treatment with TNF-α and/or TGFβ1 identified TNF-α as a major cytokine regulator of perlecan production. TNF-α treatment also triggered p65 nuclear translocation and binding to the HSPG2 regulatory region in stromal cells and cancer cells. In addition to stromal induction of perlecan production in the prostate, we identified a matrix-secreting bone marrow stromal cell type that may represent the source for increases in perlecan in the metastatic bone marrow environment. These studies implicate perlecan in cytokine-mediated, innate tissue responses to cancer cell invasion, a process we suggest reflects a modified wound healing tissue response co-opted by prostate cancer cells. PMID:24700612

  6. Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma

    PubMed Central

    Cookman, Clifford J.

    2015-01-01

    Medulloblastoma (Med) is the most common malignant brain tumor in children. The role of ESR2 [estrogen receptor (ER)-β] in promoting Med growth was comprehensively examined in three in vivo models and human cell lines. In a novel Med ERβ-null knockout model developed by crossing Esr2−/− mice with cerebellar granule cell precursor specific Ptch1 conditional knockout mice, the tumor growth rate was significantly decreased in males and females. The absence of Esr2 resulted in increased apoptosis, decreased B-cell lymphoma 2 (BCL2), and IGF-1 receptor (IGF1R) expression, and decreased levels of active MAPKs (ERK1/2) and protein kinase B (AKT). Treatment of Med in Ptch1+/− Trp53−/− mice with the antiestrogen chemotherapeutic drug Faslodex significantly increased symptom-free survival, which was associated with increased apoptosis and decreased BCL2 and IGF1R expression and signaling. Similar effects were also observed in nude mice bearing D283Med xenografts. In vitro studies in human D283Med cells metabolically stressed by glutamine withdrawal found that 17β-estradiol and the ERβ selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile dose dependently protected Med cells from caspase-3-dependent cell death. Those effects were associated with increased phosphorylation of IGF1R, long-term increases in ERK1/2 and AKT signaling, and increased expression of IGF-1, IGF1R, and BCL2. Results of pharmacological experiments revealed that the cytoprotective actions of estradiol were dependent on ERβ and IGF1R receptor tyrosine kinase activity and independent of ERα and G protein-coupled estrogen receptor 1 (G protein coupled receptor 30). The presented results demonstrate that estrogen promotes Med growth through ERβ-mediated increases in IGF1R expression and activity, which induce cytoprotective mechanisms that decrease apoptosis. PMID:25885794

  7. Plasma from hemorrhaged mice activates CREB and increases cytokine expression in lung mononuclear cells through a xanthine oxidase-dependent mechanism.

    PubMed

    Shenkar, R; Abraham, E

    1996-02-01

    Hemorrhage rapidly increases plasma xanthine oxidase levels as well as the expression of proinflammatory and immunoregulatory cytokines in the lungs. To determine the role of circulating xanthine oxidase (XO), as well as other plasma factors, in affecting pulmonary cytokine expression, we conducted studies in which plasma from hemorrhaged mice was transferred into unhemorrhaged recipient mice. Administration of posthemorrhage plasma to recipient mice increased the levels of mRNA for interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), and transforming growth factor-beta 1 (TGF-beta 1) in lung mononuclear cells. No enhancement of mRNA levels for these cytokines was found in the lungs of mice given allopurinol-treated posthemorrhage plasma or fed a tungsten-enriched, XO-depleting diet prior to transfer of posthemorrhage plasma. Among the nuclear transcriptional regulatory factors examined, only the cyclic AMP response-element binding protein (CREB) was activated in nuclear extracts from lung mononuclear cells of mice that were given posthemorrhage plasma. No activation of nuclear factor-kappa B (NF-kappa B), nuclear factor interleukin 6 (NF-IL6), activating protein-1 (AP-1), or serum protein-1 (SP-1) was found. These results suggest that the mechanism for hemorrhage-induced increases in pulmonary cytokine expression is by activation of the enhancer CREB through a tissue XO-dependent pathway initiated by plasma-borne mediators.

  8. Altered RECQL5 expression in urothelial bladder carcinoma increases cellular proliferation and makes RECQL5 helicase activity a novel target for chemotherapy

    PubMed Central

    Patterson, Karl; Arya, Lovleen; Bottomley, Sarah; Morgan, Susan; Cox, Angela; Catto, James; Bryant, Helen E.

    2016-01-01

    RECQ helicases are a family of enzymes with both over lapping and unique functions. Functional autosomal recessive loss of three members of the family BLM, WRN and RECQL4, results in hereditary human syndromes characterized by cancer predisposition and premature aging, but despite the finding that RECQL5 deficient mice are cancer prone, no such link has been made to human RECQL5. Here we demonstrate that human urothelial carcinoma of the bladder (UCC) has increased expression of RECQL5 compared to normal bladder tissue and that increasing RECQL5 expression can drive proliferation of normal bladder cells and is associated with poor prognosis. Further, by expressing a helicase dead RECQL5 and by depleting bladder cancer cells of RECQL5 we show that inhibition of RECQL5 activity has potential as a new target for treatment of UCC. PMID:27764811

  9. Increased FcγRII expression and aberrant tumour necrosis factor α production by mature dendritic cells from patients with active rheumatoid arthritis

    PubMed Central

    Radstake, T; Blom, A; Sloetjes, A; van Gorselen, E O F; Pesman, G; Engelen, L; Torensma, R; van den Berg, W B; Figdor, C; van Lent, P L E M; Adema, G; Barrera, P

    2004-01-01

    Objectives: To investigate potential differences in phenotype and behaviour of immature (iDC) and mature dendritic cells (mDC) from patients with RA and healthy subjects. Methods: iDC and mDC were derived from blood monocytes of patients with RA and healthy controls following standardised protocols. FACS was used to analyse expression of FcγRI, II, and III and molecules to characterise DC. Discrimination between FcγRIIa and FcγRIIb was achieved by RT-PCR. Immunohistochemistry was performed on synovial biopsy specimens of three patients with RA and three healthy controls. TNFα production by iDC and mDC upon FcγR dependent stimulation was compared between patients with RA and controls by ELISA. Results: iDC from patients with active RA but not from patients with inactive RA or healthy controls markedly up regulated FcγRII. mDC from patients with active RA also lacked the physiological down regulation of FcγRII that occurs upon maturation in both control groups. RT-PCR analysis confirmed the increased expression of FcγRII in RA—especially marked for FcγRIIb. FcγR dependent stimulation of DC using antigen-IgG immune complexes (IC) significantly increased TNFα production by DC from healthy subjects, but significantly decreased TNFα by DC from patients with RA. Overlapping expression patterns between FcγRII and DC-LAMP in the synovial tissue of patients with RA imply that in vivo, also, mature DC express increased levels of FcγRIIb. Conclusion: The presence and altered characteristics of DC during active RA suggest that DC help to modulate autoimmunity in RA. Further studies should elucidate the role of local factors in altering the function of DC in RA and in increasing expression of FcγRII. PMID:15547078

  10. Bacteroides induce higher IgA production than Lactobacillus by increasing activation-induced cytidine deaminase expression in B cells in murine Peyer's patches.

    PubMed

    Yanagibashi, Tsutomu; Hosono, Akira; Oyama, Akihito; Tsuda, Masato; Hachimura, Satoshi; Takahashi, Yoshimasa; Itoh, Kikuji; Hirayama, Kazuhiro; Takahashi, Kyoko; Kaminogawa, Shuichi

    2009-02-01

    The gut mucosal immune system is crucial in host defense against infection by pathogenic microbacteria and viruses via the production of IgA. Previous studies have shown that intestinal commensal bacteria enhance mucosal IgA production. However, it is poorly understood how these bacteria induce IgA production and which genera of intestinal commensal bacteria induce IgA production effectively. In this study, we compared the immunomodulatory effects of Bacteroides and Lactobacillus on IgA production by Peyer's patches lymphocytes. IgA production by Peyer's patches lymphocytes co-cultured with Bacteroides was higher than with Lactobacillus. In addition, the expression of activation-induced cytidine deaminase increased in co-culture with Bacteroides but not with Lactobacillus. We found that intestinal commensal bacteria elicited IgA production. In particular, Bacteroides induced the differentiation of Peyer's patches B cell into IgA(+) B cells by increasing activation-induced cytidine deaminase expression.

  11. The inflammatory effect of infection with Hymenolepis diminuta via the increased expression and activity of COX-1 and COX-2 in the rat jejunum and colon.

    PubMed

    Kosik-Bogacka, D I; Baranowska-Bosiacka, I; Kolasa-Wołosiuk, A; Lanocha-Arendarczyk, N; Gutowska, I; Korbecki, J; Namięta, H; Rotter, I

    2016-10-01

    The aim of this study was to determine whether Hymenolepis diminuta may affect the expression and activity of cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2), resulting in the altered levels of their main products - prostaglandins (PGE2) and thromboxane B2 (TXB2). The study used the same experimental model as in our previous studies in which we had observed changes in the transepithelial ion transport, tight junctions and in the indicators of oxidative stress, in both small and large intestines of rats infected with H. diminuta. In this paper, we investigated not only the site of immediate presence of the tapeworm (jejunum), but also a distant site (colon). Inflammation related to H. diminuta infection is associated with the increased expression and activation of cyclooxygenase (COX), enzyme responsible for the synthesis of PGE2 and TXB2, local hormones contributing to the enhanced inflammatory reaction in the jejunum and colon in the infected rats. The increased COX expression and activity is probably caused by the increased levels of free radicals and the weakening of the host's antioxidant defense induced by the presence of the parasite. Our immunohistochemical analysis showed that H. diminuta infection affected not only the intensity of the immunodetection of COX but also the enzyme protein localization within intestinal epithelial cells - from the entire cytoplasm to apical/basal regions of cells, or even to the nucleus.

  12. Cyclic AMP-responsive expression of the surfactant protein-A gene is mediated by increased DNA binding and transcriptional activity of thyroid transcription factor-1.

    PubMed

    Li, J; Gao, E; Mendelson, C R

    1998-02-20

    Surfactant protein (SP)-A gene transcription is stimulated by factors that increase cyclic AMP. In the present study, we observed that three thyroid transcription factor-1 (TTF-1) binding elements (TBEs) located within a 255 base pair region flanking the 5'-end of the baboon SP-A2 (bSP-A2) gene are required for maximal cyclic AMP induction of bSP-A2 promoter activity. We found that TTF-1 DNA binding activity was increased in nuclear extracts of pulmonary type II cells cultured in the presence of cyclic AMP. By contrast, the levels of immunoreactive TTF-1 protein were similar in nuclear extracts of control and cyclic AMP-treated type II cells. The incorporation of [32P]orthophosphate into immunoprecipitated TTF-1 protein also was markedly increased by cyclic AMP treatment. Moreover, exposure of nuclear extracts from cyclic AMP-treated type II cells either to potato acid phosphatase or alkaline phosphatase abolished the cyclic AMP-induced increase in TTF-1 DNA-binding activity. Interestingly, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), known to activate protein kinase C, also enhanced incorporation of [32P]orthophosphate into TTF-1 protein; however, the DNA binding activity of TTF-1 was decreased in nuclear extracts of TPA-treated type II cells. Expression vectors encoding TTF-1 and the catalytic subunit of protein kinase A (PKA-cat) were cotransfected into A549 lung adenocarcinoma cells together with an SPA:human growth hormone fusion gene (255 base pairs of 5'-flanking DNA from the baboon SP-A2 gene linked to human growth hormone, as reporter) containing TBEs, or with a reporter gene construct containing three tandem TBEs fused upstream of the bSP-A2 gene TATA box and the transcription initiation site. Coexpression of TTF-1 and PKA-cat increased fusion gene expression 3-4-fold as compared with expression of TTF-1 in the absence of PKA-cat. Moreover, the transcriptional activity of TTF-1 was suppressed by cotransfection of a dominant negative form

  13. Dexmedetomidine increases the activity of excitatory amino acid transporter type 3 expressed in Xenopus oocytes: the involvement of protein kinase C and phosphatidylinositol 3-kinase.

    PubMed

    Do, Sang-Hwan; Park, Seong-Joo; Shin, Hyun-Jung; Paik, Hye-Sun; Zuo, Zhiyi; Yoon, Hea-Jo; Ryu, Jung-Hee

    2014-09-05

    Dexmedetomidine, an α2 adrenergic agonist, has neuroprotective and anticonvulsant properties in addition to its sedative and anxiolytic effects. We hypothesized that dexmedetomidine would increase the activity of excitatory amino acid transporter type 3 (EAAT3) and that this effect would involve protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K), two protein kinases known to regulate EAAT3 activity. EAAT3 was expressed in Xenopus oocytes by injecting its mRNA. Two-electrode voltage clamping was used to record membrane currents before, during, and after application of 30 μM l-glutamate in the presence of 0.1-30 nM dexmedetomidine. Dexmedetomidine-treated oocytes were also exposed to a PKC activator (phorbol-12-myristate-13-acetate [PMA]), PKC inhibitors (chelerythrine, staurosporine, and calphostin C), and PI3K inhibitors (wortmannin and LY294002) before current measurement. Dexmedetomidine application resulted in a concentration-dependent increase in the EAAT3 activity in response to l-glutamate. The kinetic study showed that dexmedetomidine significantly increased the Vmax without changing Km. Treatment of oocytes with PMA significantly increased transporter currents compared with controls, but treatment with dexmedetomidine plus PMA did not further increase the response compared with PMA or dexmedetomidine alone. In addition, pre-treatment of oocytes with PKC inhibitors and PI3K inhibitors significantly abolished the dexmedetomidine-enhanced EAAT3 activity. These results suggest that dexmedetomidine increases the activity of EAAT3 expressed in Xenopus oocytes. PKC and PI3K seem to mediate this effect. These findings may explain the neuroprotective and anticonvulsant effects of dexmedetomidine.

  14. The ENTPD1 promoter polymorphism -860 A > G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk.

    PubMed

    Maloney, James P; Branchford, Brian R; Brodsky, Gary L; Cosmic, Maxwell S; Calabrese, David W; Aquilante, Christina L; Maloney, Kelly W; Gonzalez, Joseph R; Zhang, Weiming; Moreau, Kerrie L; Wiggins, Kerri L; Smith, Nicholas L; Broeckel, Ulrich; Di Paola, Jorge

    2017-03-16

    Ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1) degrades the purines ATP and ADP that are key regulators of inflammation and clotting. We hypothesized that NTPDase1 polymorphisms exist and that they regulate this pathway. We sequenced the ENTPD1 gene (encoding NTPDase1) in 216 subjects then assessed genotypes in 2 cohorts comprising 2213 humans to identify ENTPD1 polymorphisms associated with venous thromboembolism (VTE). The G allele of the intron 1 polymorphism rs3176891 was more common in VTE vs. controls (odds ratio 1.26-1.9); it did not affect RNA splicing, but it was in strong linkage disequilibrium with the G allele of the promoter polymorphism rs3814159, which increased transcriptional activity by 8-fold. Oligonucleotides containing the G allele of this promoter region bound nuclear extracts more avidly. Carriers of rs3176891 G had endothelial cells with increased NTPDase1 activity and protein expression, and had platelets with enhanced aggregation. Thus, the G allele of rs3176891 marks a haplotype associated with increased clotting and platelet aggregation attributable to a promoter variant associated with increased transcription, expression, and activity of NTPDase1. We term this gain-of-function phenotype observed with rs3814159 G "CD39 Denver."-Maloney, J. P., Branchford, B. R., Brodsky, G. L., Cosmic, M. S., Calabrese, D. W., Aquilante, C. L., Maloney, K. W., Gonzalez, J. R., Zhang, W., Moreau, K. L., Wiggins, K. L., Smith, N. L., Broeckel, U., Di Paola, J. The ENTPD1 promoter polymorphism -860 A > G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk.

  15. Increasing in cysteine proteinase B expression and enzymatic activity during in vitro differentiation of Leishmania (Viannia) braziliensis: First evidence of modulation during morphological transition.

    PubMed

    Gomes, Cinthia Bernardes; -Silva, Franklin Souza; Charret, Karen Dos Santos; Pereira, Bernardo Acácio Santini; Finkelstein, Léa Cysne; Santos-de-Souza, Raquel; de Castro Côrtes, Luzia Monteiro; Pereira, Mirian Claudia Souza; Rodrigues de Oliveira, Francisco Odêncio; Alves, Carlos Roberto

    2017-02-01

    Leishmania (Viannia) braziliensis presents adaptive protease-dependent mechanisms, as cysteine proteinases B (CPB). This study investigates the expression of three cpb gene isoforms and CPB enzymatic activity during the parasite differentiation. Relative expression levels of LbrM.08.0810 gene were assessed, exhibiting a higher quantity of transcripts in the logarithmic promastigotes phase than in the stationary promastigotes phase (>1.5 times). The cbp gene tends to decrease during acid pH shock and increases when the temperature rises (>1.3 times). LbrM.08.0820 and LbrM.08.0830 genes exhibited similar expression profiles to LbrM.08.0810 gene, with lower levels being observed overall. The proteolytic activity exhibits a gradual increase during the parasite's differentiation with low levels in samples of logarithmic promastigotes phase (3.2 ± 0.08 mmol min(-1) mg protein(-1)) to a peak of activity after 72 h of incubation at 32 °C (4.2 ± 0.026 mmol min(-1) mg protein(-1)) followed by a subsequent decrease of 68 % of peak activity levels after 96 h of incubation at 32 °C (2.8 ± 0.37 mmol min(-1) mg protein(-1)). These activities were also measured in the presence of selective inhibitors for cysteine proteinases, such as Z-Phe-Phe-fluoromethyl ketone and trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane, demonstrating their source as cathepsin-like proteinases. To the best of our knowledge, this report presents the first description of a modulation of cathepsin L-like expression during the L. (V.) braziliensis in vitro differentiation induced by acid pH and high temperature.

  16. Transgenic Over-expression of Plasminogen Activator Inhibitor-1 Results in Age-dependent and Gender-specific Increases in Bone Strength and Mineralization

    PubMed Central

    Nordstrom, S.M.; Carleton, S.M.; Carson, W.L.; Eren, M.; Phillips, C.L.; Vaughan, D.E.

    2014-01-01

    The plasminogen activation system (PAS) and its principal inhibitor, plasminogen activator inhibitor- 1 (PAI-1), are recognized modulators of matrix. In addition, the PAS has previously been implicated in the regulation of bone homeostasis. Our objective was to study the influence of active PAI-1 on geometric, biomechanical, and mineral characteristics of bone using transgenic mice that over-expresses a variant of human PAI-1 that exhibits enhanced functional stability. Femora were isolated from male and female, wildtype (WT) and transgenic (PAI-1.stab) mice at 16 and 32 weeks of age (n=10). Femora were imaged via DEXA for BMD and µCT for cortical mid-slice geometry. Torsional testing was employed for biomechanical properties. Mineral composition was analyzed via instrumental neutron activation analysis. Female femora were further analyzed for trabecular bone histomorphometry (n=11). Whole animal DEXA scans were performed on PAI-1.stab females and additional transgenic lines in which the functional domains of the PAI-1 protein were specifically disrupted. Thirty-two week female PAI-1.stab femora exhibited decreased mid-slice diameters and reduced polar moment of area compared to WT, while maintaining similar cortical bone width. Greater biomechanical strength and stiffness was demonstrated by 32 week PAI-1.stab female femora in addition to a 52% increase in BMD. PAI-1.stab trabecular bone architecture was comparable to WT. Osteoid area was decreased in PAI-1.stab mice while mineral apposition rate increased by 78% over WT. Transgenic mice expressing a reactive-site mutant form of PAI-1 showed an increase in BMD similar to PAI-1.stab, whereas transgenic mice expressing a PAI-1 with reduced affinity for vitronectin were comparable to WT. Over-expression of PAI-1 resulted in increased mineralization and biomechanical properties of mouse femora in an age-dependent and gender-specific manner. Changes in mineral preceded increases in strength/stiffness and deterred

  17. Transgenic over-expression of plasminogen activator inhibitor-1 results in age-dependent and gender-specific increases in bone strength and mineralization.

    PubMed

    Nordstrom, S M; Carleton, S M; Carson, W L; Eren, M; Phillips, C L; Vaughan, D E

    2007-12-01

    The plasminogen activation system (PAS) and its principal inhibitor, plasminogen activator inhibitor-1 (PAI-1), are recognized modulators of matrix. In addition, the PAS has previously been implicated in the regulation of bone homeostasis. Our objective was to study the influence of active PAI-1 on geometric, biomechanical, and mineral characteristics of bone using transgenic mice that over-express a variant of human PAI-1 that exhibits enhanced functional stability. Femora were isolated from male and female, wildtype (WT) and transgenic (PAI-1.stab) mice at 16 and 32 weeks of age (n=10). Femora were imaged via DEXA for BMD and muCT for cortical mid-slice geometry. Torsional testing was employed for biomechanical properties. Mineral composition was analyzed via instrumental neutron activation analysis. Female femora were further analyzed for trabecular bone histomorphometry (n=11). Whole animal DEXA scans were performed on PAI-1.stab females and additional transgenic lines in which the functional domains of the PAI-1 protein were specifically disrupted. Thirty-two week female PAI-1.stab femora exhibited decreased mid-slice diameters and reduced polar moment of area compared to WT, while maintaining similar cortical bone width. Greater biomechanical strength and stiffness were demonstrated by 32 week PAI-1.stab female femora in addition to a 52% increase in BMD. PAI-1.stab trabecular bone architecture was comparable to WT. Osteoid area was decreased in PAI-1.stab mice while mineral apposition rate increased by 78% over WT. Transgenic mice expressing a reactive-site mutant form of PAI-1 showed an increase in BMD similar to PAI-1.stab, whereas transgenic mice expressing a PAI-1 with reduced affinity for vitronectin were comparable to WT. Over-expression of PAI-1 resulted in increased mineralization and biomechanical properties of mouse femora in an age-dependent and gender-specific manner. Changes in mineral preceded increases in strength/stiffness and deterred normal

  18. St. John's Wort increases brain serotonin synthesis by inhibiting hepatic tryptophan 2, 3 dioxygenase activity and its gene expression in stressed rats.

    PubMed

    Bano, Samina; Ara, Iffat; Saboohi, Kausar; Moattar, Tariq; Chaoudhry, Bushra

    2014-09-01

    We aimed to investigate the effects of herbal St. John's Wort (SJW) on transcriptional regulation of hepatic tryptophan 2, 3 - dioxygenase (TDO) enzyme activity and brain regional serotonin (5-HT) levels in rats exposed to forced swim test (FST). TDO mRNA expression was quantified using real-time reverse transcription polymerase chain (RT-PCR) reaction and brain regional indoleamines were determined by high performance liquid chromatography coupled to fluorescence detector. Behavioral analysis shows significant reduction in immobility time in SJW (500mg/kg/ml) administered rats. It was found that pretreatment of SJW to rats did not prevent stress-induced elevation in plasma corticosterone levels however it increases serotonin synthesis by virtue of inhibiting hepatic TDO enzyme activity and its gene expression, ascertaining the notion that there exists an inverse relationship between hepatic TDO enzyme activity and brain 5-HT. The drug also decreases serotonin turnover in all the brain areas (hypothalamus, hippocampus amygdala) in stressed rats endorsing its monoamine oxidase inhibition property. Inhibition of TDO enzyme activity and its gene expression by the drug provides new insights for the development of therapeutic interventions for stress related mental illnesses.

  19. CXCL12 protects pancreatic β-cells from oxidative stress by a Nrf2-induced increase in catalase expression and activity

    PubMed Central

    DINIĆ, Svetlana; GRDOVIĆ, Nevena; USKOKOVIĆ, Aleksandra; ĐORĐEVIĆ, Miloš; MIHAILOVIĆ, Mirjana; JOVANOVIĆ, Jelena Arambašić; POZNANOVIĆ, Goran; VIDAKOVIĆ, Melita

    2016-01-01

    Due to intrinsically low levels of antioxidant enzyme expression and activity, insulin producing pancreatic β-cells are particularly susceptible to free radical attack. In diabetes mellitus, which is accompanied by high levels of oxidative stress, this feature of β-cells significantly contributes to their damage and dysfunction. In light of the documented pro-survival effect of chemokine C-X-C Ligand 12 (CXCL12) on pancreatic β-cells, we examined its potential role in antioxidant protection. We report that CXCL12 overexpression enhanced the resistance of rat insulinoma (Rin-5F) and primary pancreatic islet cells to hydrogen peroxide (H2O2). CXCL12 lowered the levels of DNA damage and lipid peroxidation and preserved insulin expression. This effect was mediated through an increase in catalase (CAT) activity. By activating downstream p38, Akt and ERK kinases, CXCL12 facilitated Nrf2 nuclear translocation and enhanced its binding to the CAT gene promoter, inducing constitutive CAT expression and activity that was essential for protecting β-cells from H2O2. PMID:27840391

  20. Increased expression with differential subcellular location of cytidine deaminase APOBEC3G in human CD4(+) T-cell activation and dendritic cell maturation.

    PubMed

    Oliva, Harold; Pacheco, Rodrigo; Martinez-Navio, José M; Rodríguez-García, Marta; Naranjo-Gómez, Mar; Climent, Núria; Prado, Carolina; Gil, Cristina; Plana, Montserrat; García, Felipe; Miró, José M; Franco, Rafael; Borras, Francesc E; Navaratnam, Naveenan; Gatell, José M; Gallart, Teresa

    2016-08-01

    APOBEC3G (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G; A3G) is an innate defense protein showing activity against retroviruses and retrotransposons. Activated CD4(+) T cells are highly permissive for HIV-1 replication, whereas resting CD4(+) T cells are refractory. Dendritic cells (DCs), especially mature DCs, are also refractory. We investigated whether these differences could be related to a differential A3G expression and/or subcellular distribution. We found that A3G mRNA and protein expression is very low in resting CD4(+) T cells and immature DCs, but increases strongly following T-cell activation and DC maturation. The Apo-7 anti-A3G monoclonal antibody (mAb), which was specifically developed, confirmed these differences at the protein level and disclosed that A3G is mainly cytoplasmic in resting CD4(+) T cells and immature DCs. Nevertheless, A3G translocates to the nucleus in activated-proliferating CD4(+) T cells, yet remaining cytoplasmic in matured DCs, a finding confirmed by immunoblotting analysis of cytoplasmic and nuclear fractions. Apo-7 mAb was able to immunoprecipitate endogenous A3G allowing to detect complexes with numerous proteins in activated-proliferating but not in resting CD4(+) T cells. The results show for the first time the nuclear translocation of A3G in activated-proliferating CD4(+) T cells.

  1. Long-Term Activation of Group I Metabotropic Glutamate Receptors Increases Functional TRPV1-Expressing Neurons in Mouse Dorsal Root Ganglia

    PubMed Central

    Masuoka, Takayoshi; Kudo, Makiko; Yoshida, Junko; Ishibashi, Takaharu; Muramatsu, Ikunobu; Kato, Nobuo; Imaizumi, Noriko; Nishio, Matomo

    2016-01-01

    Damaged tissues release glutamate and other chemical mediators for several hours. These chemical mediators contribute to modulation of pruritus and pain. Herein, we investigated the effects of long-term activation of excitatory glutamate receptors on functional expression of transient receptor potential vaniloid type 1 (TRPV1) in dorsal root ganglion (DRG) neurons and then on thermal pain behavior. In order to detect the TRPV1-mediated responses in cultured DRG neurons, we monitored intracellular calcium responses to capsaicin, a TRPV1 agonist, with Fura-2. Long-term (4 h) treatment with glutamate receptor agonists (glutamate, quisqualate or DHPG) increased the proportion of neurons responding to capsaicin through activation of metabotropic glutamate receptor mGluR1, and only partially through the activation of mGluR5; engagement of these receptors was evident in neurons responding to allylisothiocyanate (AITC), a transient receptor potential ankyrin type 1 (TRPA1) agonist. Increase in the proportion was suppressed by phospholipase C (PLC), protein kinase C, mitogen/extracellular signal-regulated kinase, p38 mitogen-activated protein kinase or transcription inhibitors. Whole-cell recording was performed to record TRPV1-mediated membrane current; TRPV1 current density significantly increased in the AITC-sensitive neurons after the quisqualate treatment. To elucidate the physiological significance of this phenomenon, a hot plate test was performed. Intraplantar injection of quisqualate or DHPG induced heat hyperalgesia that lasted for 4 h post injection. This chronic hyperalgesia was attenuated by treatment with either mGluR1 or mGluR5 antagonists. These results suggest that long-term activation of mGluR1/5 by peripherally released glutamate may increase the number of neurons expressing functional TRPV1 in DRG, which may be strongly associated with chronic hyperalgesia. PMID:27064319

  2. Long-term untreated streptozotocin-diabetes leads to increased expression and elevated activity of prostaglandin H2 synthase in blood platelets.

    PubMed

    Siewiera, Karolina; Kassassir, Hassan; Talar, Marcin; Wieteska, Lukasz; Watala, Cezary

    2016-01-01

    In diabetes-related states of chronic hyperglycaemia elevated concentrations of glucose may alter the functioning of platelet enzymes involved in arachidonic acid metabolism, including prostaglandin H2 synthase (cyclooxygenase) (PGHS, COX). Therefore, the principal aim of this study was to assess the effects of experimental chronic hyperglycaemia on platelet PGHS-1 (COX-1) expression and activity. Blood platelet activation and reactivity were assessed in Sprague-Dawley rats with the 5-month streptozotocin (STZ) diabetes. The PGHS-1 abundance in platelets was evaluated with flow cytometry and Western blotting, while its activity monitored using a high resolution respirometry and the peroxidase fluorescent assay. The production of prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) in platelets were assayed immunoenzymatically. Circulating platelets from diabetic were characterised by increased size, elevated 'priming' and altered reactivity, compared to non-diabetic animals. Both Western blot analysis and flow cytometry revealed significantly elevated expressions of platelet PGHS-1 in STZ-diabetic rats (p < 0.05). We also observed significantly elevated platelet PGHS-1-related arachidonic acid metabolism in diabetic vs. non-diabetic animals, with the use of polarographic (p < 0.05) and total activity assay (p < 0.001). Such increases were accompanied by the elevated production of PGE2 (p < 0.001) and TXB2 (p < 0.05) in diabetic animals. The increased PGHS-1-dependent oxygen consumption and the total activity of PGHS-1 in diabetic animals remained very significant (p < 0.001) also upon adjusting for blood platelet PGHS-1 abundance. Therefore, our results further contribute to the explanation of the increased metabolism of arachidonic acid observed in diabetes.

  3. Long-Term Activation of Group I Metabotropic Glutamate Receptors Increases Functional TRPV1-Expressing Neurons in Mouse Dorsal Root Ganglia.

    PubMed

    Masuoka, Takayoshi; Kudo, Makiko; Yoshida, Junko; Ishibashi, Takaharu; Muramatsu, Ikunobu; Kato, Nobuo; Imaizumi, Noriko; Nishio, Matomo

    2016-01-01

    Damaged tissues release glutamate and other chemical mediators for several hours. These chemical mediators contribute to modulation of pruritus and pain. Herein, we investigated the effects of long-term activation of excitatory glutamate receptors on functional expression of transient receptor potential vaniloid type 1 (TRPV1) in dorsal root ganglion (DRG) neurons and then on thermal pain behavior. In order to detect the TRPV1-mediated responses in cultured DRG neurons, we monitored intracellular calcium responses to capsaicin, a TRPV1 agonist, with Fura-2. Long-term (4 h) treatment with glutamate receptor agonists (glutamate, quisqualate or DHPG) increased the proportion of neurons responding to capsaicin through activation of metabotropic glutamate receptor mGluR1, and only partially through the activation of mGluR5; engagement of these receptors was evident in neurons responding to allylisothiocyanate (AITC), a transient receptor potential ankyrin type 1 (TRPA1) agonist. Increase in the proportion was suppressed by phospholipase C (PLC), protein kinase C, mitogen/extracellular signal-regulated kinase, p38 mitogen-activated protein kinase or transcription inhibitors. Whole-cell recording was performed to record TRPV1-mediated membrane current; TRPV1 current density significantly increased in the AITC-sensitive neurons after the quisqualate treatment. To elucidate the physiological significance of this phenomenon, a hot plate test was performed. Intraplantar injection of quisqualate or DHPG induced heat hyperalgesia that lasted for 4 h post injection. This chronic hyperalgesia was attenuated by treatment with either mGluR1 or mGluR5 antagonists. These results suggest that long-term activation of mGluR1/5 by peripherally released glutamate may increase the number of neurons expressing functional TRPV1 in DRG, which may be strongly associated with chronic hyperalgesia.

  4. Acute denervation alters the epithelial response to adrenoceptor activation through an increase in α1-adrenoceptor expression on villus enterocytes

    PubMed Central

    Baglole, Carolyn J; Sigalet, David L; Martin, Gary R; Yao, Shengtao; Meddings, Jon B

    2005-01-01

    Loss of sympathetic input due to intestinal denervation results in hypersensitivity and increased intestinal secretion. It is unknown whether denervation-induced alterations in intestinal epithelial physiology are the result of changes in adrenoceptors on enterocytes (ENTs). The purpose of this study was to examine adrenoceptor distribution and pharmacology on small intestinal ENTs following acute intestinal denervation. Lewis rats underwent small bowel transplantation (SBT) or sham operation and proximal small intestinal segments were harvested 1, 2 and 4 weeks postoperatively. Intestinal electrolyte movement was assessed using short-circuit current (Isc) measurements of stripped epithelial sheets following stimulation with phenylephrine (PE), an α1-adrenoceptor agonist. The presence of adrenoceptor subtypes on separated villus and crypt ENTs was assessed using flow cytometry. α1-Adrenoceptors were found on approximately 27% of jejunal villus ENTs, but not crypt ENTs, following acute extrinsic denervation. ENTs from the Lewis rat have few β-adrenoceptors. α1-Adrenoceptor stimulation of acutely denervated intestinal epithelial sheets decreased Isc by −13.45%. This effect was mediated by a reduction in chloride (Cl−) secretion; the absence of Cl− reversed the Isc to +13.79%. In conclusion, loss of sympathetic innervation to the gastrointestinal epithelium causes acute upregulation of α1-adrenoceptors on villus ENTs, leading to inhibition of Cl− secretion at the villus tip. The increase in adrenoceptors may reflect a compensatory mechanism to combat the increased secretory state of the bowel due to the loss of the sympathetic innervation and tonic control over intestinal secretion. PMID:16258526

  5. Fear potentiated startle increases phospholipase D (PLD) expression/activity and PLD-linked metabotropic glutamate receptor mediated post-tetanic potentiation in rat amygdala.

    PubMed

    Krishnan, Balaji; Scott, Michael T; Pollandt, Sebastian; Schroeder, Bradley; Kurosky, Alexander; Shinnick-Gallagher, Patricia

    2016-02-01

    Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders.

  6. Incubation of methamphetamine craving is associated with selective increases in expression of Bdnf and trkb, glutamate receptors, and epigenetic enzymes in cue-activated fos-expressing dorsal striatal neurons.

    PubMed

    Li, Xuan; Rubio, F Javier; Zeric, Tamara; Bossert, Jennifer M; Kambhampati, Sarita; Cates, Hannah M; Kennedy, Pamela J; Liu, Qing-Rong; Cimbro, Raffaello; Hope, Bruce T; Nestler, Eric J; Shaham, Yavin

    2015-05-27

    Cue-induced methamphetamine seeking progressively increases after withdrawal (incubation of methamphetamine craving), but the underlying mechanisms are largely unknown. We determined whether this incubation is associated with alterations in candidate genes in dorsal striatum (DS), a brain area implicated in cue- and context-induced drug relapse. We first measured mRNA expression of 24 candidate genes in whole DS extracts after short (2 d) or prolonged (1 month) withdrawal in rats following extended-access methamphetamine or saline (control condition) self-administration (9 h/d, 10 d). We found minimal changes. Next, using fluorescence-activated cell sorting, we compared gene expression in Fos-positive dorsal striatal neurons, which were activated during "incubated" cue-induced drug-seeking tests after prolonged withdrawal, with nonactivated Fos-negative neurons. We found significant increases in mRNA expression of immediate early genes (Arc, Egr1), Bdnf and its receptor (Trkb), glutamate receptor subunits (Gria1, Gria3, Grm1), and epigenetic enzymes (Hdac3, Hdac4, Hdac5, GLP, Dnmt3a, Kdm1a) in the Fos-positive neurons only. Using RNAscope to determine striatal subregion and cell-type specificity of the activated neurons, we measured colabeling of Fos with Drd1 and Drd2 in three DS subregions. Fos expression was neither subregion nor cell-type specific (52.5 and 39.2% of Fos expression colabeled with Drd1 and Drd2, respectively). Finally, we found that DS injections of SCH23390 (C17H18ClNO), a D1-family receptor antagonist known to block cue-induced Fos induction, decreased incubated cue-induced methamphetamine seeking after prolonged withdrawal. Results demonstrate a critical role of DS in incubation of methamphetamine craving and that this incubation is associated with selective gene-expression alterations in cue-activated D1- and D2-expressing DS neurons.

  7. Incubation of Methamphetamine Craving Is Associated with Selective Increases in Expression of Bdnf and Trkb, Glutamate Receptors, and Epigenetic Enzymes in Cue-Activated Fos-Expressing Dorsal Striatal Neurons

    PubMed Central

    Rubio, F. Javier; Zeric, Tamara; Bossert, Jennifer M.; Kambhampati, Sarita; Cates, Hannah M.; Kennedy, Pamela J.; Liu, Qing-Rong; Cimbro, Raffaello; Hope, Bruce T.; Nestler, Eric J.

    2015-01-01

    Cue-induced methamphetamine seeking progressively increases after withdrawal (incubation of methamphetamine craving), but the underlying mechanisms are largely unknown. We determined whether this incubation is associated with alterations in candidate genes in dorsal striatum (DS), a brain area implicated in cue- and context-induced drug relapse. We first measured mRNA expression of 24 candidate genes in whole DS extracts after short (2 d) or prolonged (1 month) withdrawal in rats following extended-access methamphetamine or saline (control condition) self-administration (9 h/d, 10 d). We found minimal changes. Next, using fluorescence-activated cell sorting, we compared gene expression in Fos-positive dorsal striatal neurons, which were activated during “incubated” cue-induced drug-seeking tests after prolonged withdrawal, with nonactivated Fos-negative neurons. We found significant increases in mRNA expression of immediate early genes (Arc, Egr1), Bdnf and its receptor (Trkb), glutamate receptor subunits (Gria1, Gria3, Grm1), and epigenetic enzymes (Hdac3, Hdac4, Hdac5, GLP, Dnmt3a, Kdm1a) in the Fos-positive neurons only. Using RNAscope to determine striatal subregion and cell-type specificity of the activated neurons, we measured colabeling of Fos with Drd1 and Drd2 in three DS subregions. Fos expression was neither subregion nor cell-type specific (52.5 and 39.2% of Fos expression colabeled with Drd1 and Drd2, respectively). Finally, we found that DS injections of SCH23390 (C17H18ClNO), a D1-family receptor antagonist known to block cue-induced Fos induction, decreased incubated cue-induced methamphetamine seeking after prolonged withdrawal. Results demonstrate a critical role of DS in incubation of methamphetamine craving and that this incubation is associated with selective gene-expression alterations in cue-activated D1- and D2-expressing DS neurons. PMID:26019338

  8. Assessing and Increasing Physical Activity

    ERIC Educational Resources Information Center

    Van Camp, Carole M.; Hayes, Lynda B.

    2012-01-01

    Increasing physical activity is a crucial component of any comprehensive approach to combat the growing obesity epidemic. This review summarizes recent behavioral research on the measurement of physical activity and interventions aimed at increasing physical activity and provides directions for future research.

  9. Phenyl-1-Pyridin-2yl-Ethanone-Based Iron Chelators Increase IκB-α Expression, Modulate CDK2 and CDK9 Activities, and Inhibit HIV-1 Transcription

    PubMed Central

    Kumari, Namita; Iordanskiy, Sergey; Kovalskyy, Dmytro; Breuer, Denitra; Niu, Xiaomei; Lin, Xionghao; Xu, Min; Gavrilenko, Konstantin; Kashanchi, Fatah; Dhawan, Subhash

    2014-01-01

    HIV-1 transcription is activated by the Tat protein, which recruits CDK9/cyclin T1 to the HIV-1 promoter. CDK9 is phosphorylated by CDK2, which facilitates formation of the high-molecular-weight positive transcription elongation factor b (P-TEFb) complex. We previously showed that chelation of intracellular iron inhibits CDK2 and CDK9 activities and suppresses HIV-1 transcription, but the mechanism of the inhibition was not understood. In the present study, we tested a set of novel iron chelators for the ability to inhibit HIV-1 transcription and elucidated their mechanism of action. Novel phenyl-1-pyridin-2yl-ethanone (PPY)-based iron chelators were synthesized and examined for their effects on cellular iron, HIV-1 inhibition, and cytotoxicity. Activities of CDK2 and CDK9, expression of CDK9-dependent and CDK2-inhibitory mRNAs, NF-κB expression, and HIV-1- and NF-κB-dependent transcription were determined. PPY-based iron chelators significantly inhibited HIV-1, with minimal cytotoxicity, in cultured and primary cells chronically or acutely infected with HIV-1 subtype B, but they had less of an effect on HIV-1 subtype C. Iron chelators upregulated the expression of IκB-α, with increased accumulation of cytoplasmic NF-κB. The iron chelators inhibited CDK2 activity and reduced the amount of CDK9/cyclin T1 in the large P-TEFb complex. Iron chelators reduced HIV-1 Gag and Env mRNA synthesis but had no effect on HIV-1 reverse transcription. In addition, iron chelators moderately inhibited basal HIV-1 transcription, equally affecting HIV-1 and Sp1- or NF-κB-driven transcription. By virtue of their involvement in targeting several key steps in HIV-1 transcription, these novel iron chelators have the potential for the development of new therapeutics for the treatment of HIV-1 infection. PMID:25155598

  10. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase

    SciTech Connect

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj; Oh, Seok Jeong; Lee, Moo Yeol; Kang, Keon Wook

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 {mu}g/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase were enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.

  11. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase.

    PubMed

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj; Oh, Seok Jeong; Lee, Moo Yeol; Kang, Keon Wook

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10μg/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase were enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.

  12. Peroxisome proliferator-activated receptor delta agonist attenuates nicotine suppression effect on human mesenchymal stem cell-derived osteogenesis and involves increased expression of heme oxygenase-1.

    PubMed

    Kim, Dong Hyun; Liu, Jiayong; Bhat, Samerna; Benedict, Gregory; Lecka-Czernik, Beata; Peterson, Stephen J; Ebraheim, Nabil A; Heck, Bruce E

    2013-01-01

    Smoking has long been associated with osteoporosis, decreased bone mineral density, increased risk of bone fracture, and increased health costs. Nicotine, the main component of cigarette smoke, has major negative effects on bone metabolism and skeletal remodeling in vivo. Although osteoblasts and osteoblast-like cells have been used extensively to study the impact of nicotine, few studies have been performed on human mesenchymal stem cells (hMSCs). In this context, we examined the impact of nicotine on (a) hMSCs proliferation, (b) osteoblastic differentiation, (c) alkaline phosphatase (ALP) activity, and (d) expression of canonical genes during differentiation of hMSCs. MSCs isolated from human bone marrow were treated with different concentrations (0, 0.1, 1 and 10 μM) of nicotine for 7 days. Nicotine caused a dose-dependent decrease in cell proliferation, decreased heme oxygenase-1 (HO-1) expression (p < 0.05) and attenuated osteogenesis (p < 0.05) in hMSCs (45 % reduction at day 14). In addition, nicotine caused a dose-dependent decrease in alizarin red staining for calcium and staining for ALP. Induction of HO-1 by peroxisome proliferator-activated receptor delta agonist (GW0742) prevented the effect of nicotine. Nicotine caused a dose-dependent reduction in the expression of BMP-2, a well-known marker for bone formation; however, this was prevented by GW0742 treatment. Therefore, induction of HO-1 prevents the deleterious effects of nicotine on osteogenesis in hMSC. This offers insight into both how nicotine affects bone remodeling and a therapeutic approach to prevent fracture and osteoporosis in smokers.

  13. Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection.

    PubMed

    Cavalcante, Paola; Galbardi, Barbara; Franzi, Sara; Marcuzzo, Stefania; Barzago, Claudia; Bonanno, Silvia; Camera, Giorgia; Maggi, Lorenzo; Kapetis, Dimos; Andreetta, Francesca; Biasiucci, Amelia; Motta, Teresio; Giardina, Carmelo; Antozzi, Carlo; Baggi, Fulvio; Mantegazza, Renato; Bernasconi, Pia

    2016-04-01

    Considerable data implicate the thymus as the main site of autosensitization to the acetylcholine receptor in myasthenia gravis (MG), a B-cell-mediated autoimmune disease affecting the neuromuscular junction. We recently demonstrated an active Epstein-Barr virus (EBV) infection in the thymus of MG patients, suggesting that EBV might contribute to the onset or maintenance of the autoimmune response within MG thymus, because of its ability to activate and immortalize autoreactive B cells. EBV has been reported to elicit and modulate Toll-like receptor (TLR) 7- and TLR9-mediated innate immune responses, which are known to favor B-cell dysfunction and autoimmunity. Aim of this study was to investigate whether EBV infection is associated with altered expression of TLR7 and TLR9 in MG thymus. By real-time PCR, we found that TLR7 and TLR9 mRNA levels were significantly higher in EBV-positive MG compared to EBV-negative normal thymuses. By confocal microscopy, high expression levels of TLR7 and TLR9 proteins were observed in B cells and plasma cells of MG thymic germinal centers (GCs) and lymphoid infiltrates, where the two receptors co-localized with EBV antigens. An increased frequency of Ki67-positive proliferating B cells was found in MG thymuses, where we also detected proliferating cells expressing TLR7, TLR9 and EBV antigens, thus supporting the idea that EBV-associated TLR7/9 signaling may promote abnormal B-cell activation and proliferation. Along with B cells and plasma cells, thymic epithelium, plasmacytoid dendritic cells and macrophages exhibited enhanced TLR7 and TLR9 expression in MG thymus; TLR7 was also increased in thymic myeloid dendritic cells and its transcriptional levels positively correlated with those of interferon (IFN)-β. We suggested that TLR7/9 signaling may be involved in antiviral type I IFN production and long-term inflammation in EBV-infected MG thymuses. Our overall findings indicate that EBV-driven TLR7- and TLR9-mediated innate immune

  14. Comparative Proteomics of Ovarian Cancer Aggregate Formation Reveals an Increased Expression of Calcium-activated Chloride Channel Regulator 1 (CLCA1)*

    PubMed Central

    Musrap, Natasha; Tuccitto, Alessandra; Karagiannis, George S.; Saraon, Punit; Batruch, Ihor; Diamandis, Eleftherios P.

    2015-01-01

    Ovarian cancer is a lethal gynecological disease that is characterized by peritoneal metastasis and increased resistance to conventional chemotherapies. This increased resistance and the ability to spread is often attributed to the formation of multicellular aggregates or spheroids in the peritoneal cavity, which seed abdominal surfaces and organs. Given that the presence of metastatic implants is a predictor of poor survival, a better understanding of how spheroids form is critical to improving patient outcome, and may result in the identification of novel therapeutic targets. Thus, we attempted to gain insight into the proteomic changes that occur during anchorage-independent cancer cell aggregation. As such, an ovarian cancer cell line, OV-90, was cultured in adherent and non-adherent conditions using stable isotope labeling with amino acids in cell culture (SILAC). Anchorage-dependent cells (OV-90AD) were grown in tissue culture flasks, whereas anchorage-independent cells (OV-90AI) were grown in suspension using the hanging-drop method. Cellular proteins from both conditions were then identified using LC-MS/MS, which resulted in the quantification of 1533 proteins. Of these, 13 and 6 proteins were up-regulated and down-regulated, respectively, in aggregate-forming cells compared with cells grown as monolayers. Relative gene expression and protein expression of candidates were examined in other cell line models of aggregate formation (TOV-112D and ES-2), which revealed an increased expression of calcium-activated chloride channel regulator 1 (CLCA1). Moreover, inhibitor and siRNA transfection studies demonstrated an apparent effect of CLCA1 on cancer cell aggregation. Further elucidation of the role of CLCA1 in the pathogenesis of ovarian cancer is warranted. PMID:26004777

  15. Comparative Proteomics of Ovarian Cancer Aggregate Formation Reveals an Increased Expression of Calcium-activated Chloride Channel Regulator 1 (CLCA1).

    PubMed

    Musrap, Natasha; Tuccitto, Alessandra; Karagiannis, George S; Saraon, Punit; Batruch, Ihor; Diamandis, Eleftherios P

    2015-07-10

    Ovarian cancer is a lethal gynecological disease that is characterized by peritoneal metastasis and increased resistance to conventional chemotherapies. This increased resistance and the ability to spread is often attributed to the formation of multicellular aggregates or spheroids in the peritoneal cavity, which seed abdominal surfaces and organs. Given that the presence of metastatic implants is a predictor of poor survival, a better understanding of how spheroids form is critical to improving patient outcome, and may result in the identification of novel therapeutic targets. Thus, we attempted to gain insight into the proteomic changes that occur during anchorage-independent cancer cell aggregation. As such, an ovarian cancer cell line, OV-90, was cultured in adherent and non-adherent conditions using stable isotope labeling with amino acids in cell culture (SILAC). Anchorage-dependent cells (OV-90AD) were grown in tissue culture flasks, whereas anchorage-independent cells (OV-90AI) were grown in suspension using the hanging-drop method. Cellular proteins from both conditions were then identified using LC-MS/MS, which resulted in the quantification of 1533 proteins. Of these, 13 and 6 proteins were up-regulated and down-regulated, respectively, in aggregate-forming cells compared with cells grown as monolayers. Relative gene expression and protein expression of candidates were examined in other cell line models of aggregate formation (TOV-112D and ES-2), which revealed an increased expression of calcium-activated chloride channel regulator 1 (CLCA1). Moreover, inhibitor and siRNA transfection studies demonstrated an apparent effect of CLCA1 on cancer cell aggregation. Further elucidation of the role of CLCA1 in the pathogenesis of ovarian cancer is warranted.

  16. Increased expressions and activations of apoptosis-related factors in cell signaling during incised skin wound healing in mice: a preliminary study for forensic wound age estimation.

    PubMed

    Zhao, Rui; Guan, Da-Wei; Zhang, Wei; Du, Yu; Xiong, Chang-Yan; Zhu, Bao-Li; Zhang, Jian-Jun

    2009-04-01

    Recent studies have demonstrated that apoptosis plays a pivotal role during skin wound healing and apoptosis-related factors in cell signaling regulate a variety of cellular function. In this study, the expressions of p38MAPK, and JNK, iNOS, eNOS were detected and the activations of caspase-6, -7, -8, -9, and calpain, another signaling pathway of apoptosis, were also investigated by immunohistochemical staining and Western blotting in mice. A time-dependent increase of each protein level was observed by immunohistochemistry and Western blot in mouse skin incision. p38MAPK level peaked at 12 h and 3 d, calpain level peaked at 1 d and 5 d, iNOS level peaked at 1 d and 10 d, while the peak levels of eNOS, caspase-6, -7, -8, and -9 occurred at 3 d and p-JNK at 1 d post-injury. In the early phase of wound healing, infiltrating polymorphonulcear cells were labeled with all the factors except caspase-8. Thereafter, infiltrating mononuclear cells and proliferating spindle-shaped fibroblastic cells showed positive staining for p38MAPK, JNK, calpain, caspases and NOS. The activation of caspase-8, -9, -6, and -7 as detected by Western blot indicated that caspase apoptotic pathway may take effect in cellular elimination during skin wound healing. From the viewpoint of forensic pathology, the time-dependent expressions of the factors in apoptotic pathway during skin incised wound healing may be used as potential markers for wound age estimation.

  17. Nitric oxide-proton stimulation of trigeminal ganglion neurons increases mitogen-activated protein kinase and phosphatase expression in neurons and satellite glial cells.

    PubMed

    Freeman, S E; Patil, V V; Durham, P L

    2008-12-02

    Elevated nitric oxide (NO) and proton levels in synovial fluid are implicated in joint pathology. However, signaling pathways stimulated by these molecules that mediate inflammation and pain in the temporomandibular joint (TMJ) have not been investigated. The goal of this study was to determine the effect of NO-proton stimulation of rat trigeminal neurons on the in vivo expression of mitogen-activated protein kinases (MAPKs) and phosphatases (MKPs) in trigeminal ganglion neurons and satellite glial cells. Low levels of the active MAPKs extracellular signal-regulated kinase (ERK), Jun amino-terminal kinase (JNK), and p38 were localized in the cytosol of neurons and satellite glial cells in unstimulated animals. However, increased levels of active ERK and p38, but not JNK, were detected in the cytosol and nucleus of V3 neurons and satellite glial cells 15 min and 2 h following bilateral TMJ injections of an NO donor diluted in pH 5.5 medium. While ERK levels returned to near basal levels 24 h after stimulation, p38 levels remained significantly elevated. In contrast to MKP-2 and MKP-3 levels that were barely detectable in neurons or satellite glial cells, MKP-1 staining was readily observed in satellite glial cells in ganglia from unstimulated animals. However, neuronal and satellite glial cell staining for MKP-1, MKP-2, and MKP-3 was significantly increased in response to NO-protons. Increased active ERK and p38 levels as well as elevated MKP levels were also detected in neurons and satellite glial cells located in V2 and V1 regions of the ganglion. Our data provide evidence that NO-proton stimulation of V3 neurons results in temporal and spatial changes in expression of active ERK and p38 and MKPs in all regions of the ganglion. We propose that in trigeminal ganglia these cellular events, which are involved in peripheral sensitization as well as control of inflammatory and nociceptive responses, may play a role in TMJ pathology.

  18. Galangin increases the cytotoxic activity of imatinib mesylate in imatinib-sensitive and imatinib-resistant Bcr-Abl expressing leukemia cells.

    PubMed

    Tolomeo, Manlio; Grimaudo, Stefania; Di Cristina, Antonietta; Pipitone, Rosaria M; Dusonchet, Luisa; Meli, Maria; Crosta, Lucia; Gebbia, Nicola; Invidiata, Francesco Paolo; Titone, Lucina; Simoni, Daniele

    2008-07-08

    Resistance to imatinib mesylate is an emergent problem in the treatment of Bcr-Abl expressing myelogenous leukemias and additional therapeutic strategies are required. We observed that galangin, a non-toxic, naturally occurring flavonoid was effective as anti-proliferative, and apoptotic agent in Bcr-Abl expressing K562 and KCL22 cells and in imatinib mesylate resistant K562-R and KCL22-R cells. Galangin induced an arrest of cells in G0-G1phase of cell cycle and a decrease in pRb, cdk4, cdk1, cycline B levels; moreover, it was able to induce a monocytic differentiation of leukemic Bcr-Abl+ cells. Of note, galangin caused a decrease in Bcl-2 levels and markedly increased the apoptotic activity of imatinib both in sensitive or imatinib-resistant Bcr-Abl+ cell lines. In contrast, flavonoids unable to modify the Bcl-2 intracellular levels, such as fisetin and chrysin, did not increase the apoptotic effect of imatinib. These data suggest that galangin is an interesting candidate for a combination therapy in the treatment of imatinib-resistant leukemias.

  19. ROS and ERK1/2-mediated caspase-9 activation increases XAF1 expression in dexamethasone-induced apoptosis of EBV-transformed B cells.

    PubMed

    Park, Ga Bin; Choi, Yunock; Kim, Yeong Seok; Lee, Hyun-Kyung; Kim, Daejin; Hur, Dae Young

    2013-07-01

    Dexamethasone (Dex) inhibits the growth of diverse types of cancer cells and is utilized clinically for the therapy of hematological malignancies. In this study, we investigated the molecular mechanisms of Dex action in the apoptosis of Epstein-Barr virus (EBV)-transformed B cells. We showed that Dex inhibited the proliferation of EBV-transformed B cells and induced apoptosis by activating caspase-9, -3 and -8. While activation of caspase-9 was triggered as early as 2 h after Dex treatment, cleavage of caspase-8 was deferred and was found 8 h after the exposure. Dex-dependent activation of caspase-8 was blocked by the specific caspase-9 inhibitor, z-LEHD-fmk. Moreover, Dex significantly increased the expression of X-linked inhibitor of apoptosis (XIAP)‑associated factor 1 (XAF1) and induced the translocation of XAF1 into the cytosol. Cytosolic XAF1 with Puma induced the translocation of Bax into mitochondria. Dex led to up-regulation of reactive oxygen species (ROS) generation and the phosphorylation of ERK1/2 after the exposure. We speculated that ROS generation might be the first event of Dex-induced apoptosis because ROS inhibitor NAC abrogated ROS production and ERK1/2 activation, but PD98059 did not block ROS production. NAC and PD98059 also suppressed the translocation of XAF1, Puma and Bax into mitochondria. These results demonstrated that Dex-mediated activation of caspase-9 via ROS generation and ERK1/2 pathway activation resulted in the activation of caspase-8 and the increment of XAF1, thereby induced apoptosis of EBV-transformed B cells. These findings suggest that Dex constitutes a probable therapy for EBV-associated hematological malignancies.

  20. PARP-1 activation causes neuronal death in the hippocampal CA1 region by increasing the expression of Ca(2+)-permeable AMPA receptors.

    PubMed

    Gerace, E; Masi, A; Resta, F; Felici, R; Landucci, E; Mello, T; Pellegrini-Giampietro, D E; Mannaioni, G; Moroni, F

    2014-10-01

    An excessive activation of poly(ADP-ribose) polymerases (PARPs) may trigger a form of neuronal death similar to that occurring in neurodegenerative disorders. To investigate this process, we exposed organotypic hippocampal slices to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG, 100μM for 5min), an alkylating agent widely used to activate PARP-1. MNNG induced a pattern of degeneration of the CA1 pyramidal cells morphologically similar to that observed after a brief period of oxygen and glucose deprivation (OGD). MNNG exposure was also associated with a dramatic increase in PARP-activity and a robust decrease in NAD(+) and ATP content. These effects were prevented by PARP-1 but not PARP-2 inhibitors. In our experimental conditions, cell death was not mediated by AIF translocation (parthanatos) or caspase-dependent apoptotic processes. Furthermore, we found that PARP activation was followed by a significant deterioration of neuronal membrane properties. Using electrophysiological recordings we firstly investigated the suggested ability of ADP-ribose to open TRPM2 channels in MNNG-induced cells death, but the results we obtained showed that TRPM2 channels are not involved. We then studied the involvement of glutamate receptor-ion channel complex and we found that NBQX, a selective AMPA receptor antagonist, was able to effectively prevent CA1 neuronal loss while MK801, a NMDA antagonist, was not active. Moreover, we observed that MNNG treatment increased the ratio of GluA1/GluA2 AMPAR subunit expression, which was associated with an inward rectification of the IV relationship of AMPA sEPSCs in the CA1 but not in the CA3 subfield. Accordingly, 1-naphthyl acetyl spermine (NASPM), a selective blocker of Ca(2+)-permeable GluA2-lacking AMPA receptors, reduced MNNG-induced CA1 pyramidal cell death. In conclusion, our results show that activation of the nuclear enzyme PARP-1 may change the expression of membrane proteins and Ca(2+) permeability of AMPA channels, thus affecting

  1. Lead exposure increases blood pressure by increasing angiotensinogen expression.

    PubMed

    Jiao, Jiandong; Wang, Miaomiao; Wang, Yiqing; Sun, Na; Li, Chunping

    2016-01-01

    Lead exposure can induce increased blood pressure. Several mechanisms have been proposed to explain lead-induced hypertension. Changes in angiotensinogen (AGT) expression levels or gene variants may also influence blood pressure. In this study, we hypothesized that AGT expression levels or gene variants contribute to lead-induced hypertension. A preliminary HEK293 cell model experiment was performed to analyze the association between AGT expression and lead exposure. In a population-based study, serum AGT level was measured in both lead-exposed and control populations. To further detect the influence of AGT gene single nucleotide polymorphisms (SNPs) in lead-induced hypertension, two SNPs (rs699 and rs4762) were genotyped in a case-control study including 219 lead-exposed subjects and 393 controls. Lead exposure caused an increase in AGT expression level in HEK 293 cell models (P < 0.001) compared to lead-free cells, and individuals exposed to lead had higher systolic and diastolic blood pressure (P < 0.001). Lead-exposed individuals had higher serum AGT levels compared to controls (P < 0.001). However, no association was found between AGT gene SNPs (rs699 and rs4762) and lead exposure. Nevertheless, the change in AGT expression level may play an important role in the development of lead-induced hypertension.

  2. Increased Spreading Activation in Depression

    ERIC Educational Resources Information Center

    Foster, Paul S.; Yung, Raegan C.; Branch, Kaylei K.; Stringer, Kristi; Ferguson, Brad J.; Sullivan, William; Drago, Valeria

    2011-01-01

    The dopaminergic system is implicated in depressive disorders and research has also shown that dopamine constricts lexical/semantic networks by reducing spreading activation. Hence, depression, which is linked to reductions of dopamine, may be associated with increased spreading activation. However, research has generally found no effects of…

  3. Integrin α4β7 expression increases HIV susceptibility in activated cervical CD4+ T cells via an HIV attachment-independent mechanism

    PubMed Central

    Ding, Jian; Tasker, Carley; Lespinasse, Pierre; Dai, Jihong; Fitzgerald-Bocarsly, Patricia; Lu, Wuyuan; Heller, Debra; Chang, Theresa L.

    2015-01-01

    Background CD4+ T cells, the principal target in acute SIV and HIV infection, are crucial for the establishment and dissemination of HIV infection in mucosal tissues. Studies indicate that α4β7 CD4+ T cells are preferentially infected by HIV in vitro and during acute SIV infection. The integrin α4β7 is thought to promote HIV capture by target cells; however, the role of integrin α4β7 in HIV transmission remains controversial. In this study, we characterized immune phenotypes of human cervical T cells and examined HIV preference in integrin α4β7+ CD4+ T cells. In vitro all-trans retinoic acid differentiated peripheral CD4+ T cells (at-RA differentiated cells) were included as a comparison. Results In both peripheral and cervical cells, the majority of HIV p24+ cells were activated CD4+ T cells expressing integrin α4β7. Among infected at-RA differentiated cells, the frequency of CCR5 expression was higher in HIV p24+ cells than in HIV p24- cells; no such difference was observed in cervical cells. Neither the cyclic hexapeptide CWLDVC nor a monoclonal antibody against integrin α4β7 blocked HIV attachment or gp120 binding to target cells regardless of the presence of CD4, indicating that integrin α4β7 did not facilitate HIV capture by target cells. Conclusion Integrin α4β7 expression increases HIV susceptibility, but the mechanism is not through promoting HIV binding to target cells. PMID:26167616

  4. Bisphenol A increases aP2 expression in 3T3L1 by enhancing the transcriptional activity of nuclear receptors at the promoter

    PubMed Central

    Atlas, Ella; Pope, Louise; Wade, Mike G; Kawata, Alice; Boudreau, Adele; Boucher, Jonathan G

    2014-01-01

    Environmental pollutants, such as bisphenol A (BPA), have the potential to affect the differentiation processes and the biology of the adipose tissue. The 3T3-L1 model is one of the murine cell models used extensively for the investigation of the molecular events that govern the differentiation of adipocytes from a committed preadipocyte to a mature, lipid laden adipocyte. Most of the studies investigating the effects of BPA on preadipocyte differentiation have investigated the effects of this chemical in the presence of an optimal differentiation cocktail containing high concentrations of the synthetic glucocorticoid dexamethasone, conditions that result in 90% to 100% of differentiated adipocytes. Our studies employed the 3T3-L1 cell model in the absence of exogenous glucocorticoids. We show that BPA is able to increase the differentiation of the 3T3-L1 cells under these conditions. Furthermore, the effect of BPA was observed in the absence of the synthetic glucocorticoid (dexamethasone), a hormone known to be required for the differentiation of the 3T3-L1 cells. In addition, BPA upregulated the mRNA expression and protein levels of the terminal marker of adipogenesis the fatty acid binding protein (aP2) in these cells. Interestingly, the known modulators of adipogenesis such as the peroxisome proliferator-activated receptor (PPAR) γ or CCAAT enhancer binding protein (C/EBP) α were not elevated at the mRNA or protein level in response to BPA. Furthermore, BPA upregulated the expression levels of the marker of adipogenesis aP2, through an effect on the transcriptional activity of C/EBPδ and the glucocorticoid receptor (GR) at its promoter. PMID:25068083

  5. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications.

    PubMed

    Hilmas, C; Pereira, E F; Alkondon, M; Rassoulpour, A; Schwarcz, R; Albuquerque, E X

    2001-10-01

    The tryptophan metabolite kynurenic acid (KYNA) has long been recognized as an NMDA receptor antagonist. Here, interactions between KYNA and the nicotinic system in the brain were investigated using the patch-clamp technique and HPLC. In the electrophysiological studies, agonists were delivered via a U-shaped tube, and KYNA was applied in admixture with agonists and via the background perfusion. Exposure (>/=4 min) of cultured hippocampal neurons to KYNA (>/=100 nm) inhibited activation of somatodendritic alpha7 nAChRs; the IC(50) for KYNA was approximately 7 microm. The inhibition of alpha7 nAChRs was noncompetitive with respect to the agonist and voltage independent. The slow onset of this effect could not be accounted for by an intracellular action because KYNA (1 mm) in the pipette solution had no effect on alpha7 nAChR activity. KYNA also blocked the activity of preterminal/presynaptic alpha7 nAChRs in hippocampal neurons in cultures and in slices. NMDA receptors were less sensitive than alpha7 nAChRs to KYNA. The IC(50) values for KYNA-induced blockade of NMDA receptors in the absence and presence of glycine (10 microm) were approximately 15 and 235 microm, respectively. Prolonged (3 d) exposure of cultured hippocampal neurons to KYNA increased their nicotinic sensitivity, apparently by enhancing alpha4beta2 nAChR expression. Furthermore, as determined by HPLC with fluorescence detection, repeated systemic treatment of rats with nicotine caused a transient reduction followed by an increase in brain KYNA levels. These results demonstrate that nAChRs are targets for KYNA and suggest a functionally significant cross talk between the nicotinic cholinergic system and the kynurenine pathway in the brain.

  6. Increased Expression of CCN2, Epithelial Membrane Antigen, and Fibroblast Activation Protein in Hepatocellular Carcinoma with Fibrous Stroma Showing Aggressive Behavior

    PubMed Central

    Yoo, Jeong Eun; Ko, Jung Eun; Lee, Jee San; Kim, Hyunki; Choi, Jin Sub; Park, Young Nyun

    2014-01-01

    Tumor behavior is affected by the tumor microenvironment, composed of cancer-associated fibroblasts (CAFs). Meanwhile, hepatocellular carcinomas (HCC) with fibrous stroma reportedly exhibit aggressive behavior suggestive of tumor-stroma interaction. However, evidence of the crosstalk remains unclear. In this study, CCN2, epithelial membrane antigen (EMA), fibroblast activation protein (FAP), and keratin 19 (K19) expression was studied in 314 HCCs (cohort 1), 42 scirrhous HCCs (cohort 2), and 36 chronic hepatitis/cirrhosis specimens by immunohistochemistry. Clinicopathological parameters were analyzed according to the expressions of these markers. In tumor epithelial cells from cohort 1, CCN2 and EMA were expressed in 15.3% and 17.2%, respectively, and their expressions were more frequent in HCCs with fibrous stroma (≥5% of tumor area) than those without (P<0.05 for all); CCN2 expression was well correlated with K19 and EMA expression. In tumor stromal cells, FAP expression was found in 6.7%. In cohort 2, CCN2, EMA, and FAP expression was noted in 40.5%, 40.5%, and 66.7%, respectively, which was more frequent than that in cohort 1 (P<0.05 for all). Additionally, EMA expression was associated with the expression of K19, CCN2, and FAP (P<0.05 for all); EMA expressing tumor epithelial cells showed a topographic closeness to FAP-expressing CAFs. Analysis of disease-free survival revealed CCN2 expression to be a worse prognostic factor in both cohort 1 (P = 0.005) and cohort 2 (P = 0.023), as well as EMA as a worse prognostic factor in cohort 2 (P = 0.048). In conclusion, expression of CCN2, EMA, and FAP may be involved in the activation of CAFs in HCC, giving rise to aggressive behavior. Significant correlation between EMA-expressing tumor cells and FAP-expressing CAFs and their topographic closeness suggests possible cross-talk between tumor epithelial cells and stromal cells in the tumor microenvironment of HCC. PMID:25126747

  7. Fluoride-containing podophyllum derivatives exhibit antitumor activities through enhancing mitochondrial apoptosis pathway by increasing the expression of caspase-9 in HeLa cells

    PubMed Central

    Zhao, Wei; Yang, Yong; Zhang, Ya-Xuan; Zhou, Chen; Li, Hong-Mei; Tang, Ya-Ling; Liang, Xin-Hua; Chen, Tao; Tang, Ya-Jie

    2015-01-01

    This work aims to provide sampling of halogen-containing aniline podophyllum derivatives and their mode of action with an in-depth comparison among fluorine, chloride and bromide for clarifying the important role and impact of fluorine substitution on enhancing antitumor activity, with an emphasis on the development of drug rational design for antitumor drug. The tumor cytotoxicity of fluoride-containing aniline podophyllum derivatives were in general improved by 10–100 times than those of the chloride and bromide-containing aniline podophyllum derivatives since fluoride could not only strongly solvated in protic solvents but also forms tight ion pairs in most aprotic solvents. When compared with chloride and bromide, the higher electronegativity fluoride substituted derivatives significantly enhanced mitochondrial apoptosis pathway by remarkably increasing the expression of caspase-9 in HeLa cells. The current findings would stimulate an enormous amount of research directed toward exploiting novel leading compounds based on podophyllum derivatives, especially for the fluoride-substituted structures with promising antitumor activity. PMID:26608216

  8. Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation.

    PubMed

    Yu, Tiecheng; Junger, Wolfgang G; Yuan, Changji; Jin, An; Zhao, Yi; Zheng, Xueqing; Zeng, Yanjun; Liu, Jianguo

    2010-03-01

    Shockwaves elicited by transient pressure disturbances are used to treat musculoskeletal disorders. Previous research has shown that shockwave treatment affects T-cell function, enhancing T-cell proliferation and IL-2 expression by activating p38 mitogen-activated protein kinase (MAPK) signaling. Here we investigated the signaling pathway by which shockwaves mediate p38 MAPK phosphorylation. We found that shockwaves at an intensity of 0.18 mJ/mm(2) induce the release of extracellular ATP from human Jurkat T-cells at least in part by affecting cell viability. ATP released into the extracellular space stimulates P2X7-type purinergic receptors that induce the activation of p38 MAPK and of focal adhesion kinase (FAK) by phosphorylation on residues Tyr397 and Tyr576/577. Elimination of released ATP with apyrase or inhibition of P2X7 receptors with the antagonists KN-62 or suramin significantly weakens FAK phosphorylation, p38 MAPK activation, IL-2 expression, and T-cell proliferation. Conversely, addition of exogenous ATP causes phosphorylation of FAK and p38 MAPK. Silencing of FAK expression also reduces these cell responses to shockwave treatment. We conclude that shockwaves enhance p38 MAPK activation, IL-2 expression, and T-cell proliferation via the release of cellular ATP and feedback mechanisms that involve P2X7 receptor activation and FAK phosphorylation.

  9. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels.

    PubMed

    Kratzer, Stephan; Mattusch, Corinna; Metzger, Michael W; Dedic, Nina; Noll-Hussong, Michael; Kafitz, Karl W; Eder, Matthias; Deussing, Jan M; Holsboer, Florian; Kochs, Eberhard; Rammes, Gerhard

    2013-01-01

    Corticotropin-releasing hormone (CRH) plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS) and field excitatory postsynaptic potentials (fEPSP) were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean ± Standard error of the mean; 231.8 ± 31.2% of control; n = 10) while neither affecting fEPSPs (104.3 ± 4.2%; n = 10) nor long-term potentiation (LTP). However, when Schaffer-collaterals were excited via action potentials (APs) generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n = 8) and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1) expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca(2+)-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity.

  10. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels

    PubMed Central

    Kratzer, Stephan; Mattusch, Corinna; Metzger, Michael W.; Dedic, Nina; Noll-Hussong, Michael; Kafitz, Karl W.; Eder, Matthias; Deussing, Jan M.; Holsboer, Florian; Kochs, Eberhard; Rammes, Gerhard

    2013-01-01

    Corticotropin-releasing hormone (CRH) plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS) and field excitatory postsynaptic potentials (fEPSP) were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean ± Standard error of the mean; 231.8 ± 31.2% of control; n = 10) while neither affecting fEPSPs (104.3 ± 4.2%; n = 10) nor long-term potentiation (LTP). However, when Schaffer-collaterals were excited via action potentials (APs) generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n = 8) and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1) expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca2+-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity. PMID:23882180

  11. Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells.

    PubMed

    Pal, Sebely; Ho, Nerissa; Santos, Carlos; Dubois, Paul; Mamo, John; Croft, Kevin; Allister, Emma

    2003-03-01

    Epidemiologic studies suggest that the consumption of red wine may lower the risk of cardiovascular disease. The cardioprotective effect of red wine has been attributed to the polyphenols present in red wine, particularly resveratrol (a stilbene, with estrogen-like activity), and the flavonoids, catechin, epicatechin, quercetin and phenolic acids such as gallic acid. At present, very little is known about the mechanisms by which red wine phenolic compounds benefit the cardiovascular system. Therefore, the aim of this study was to elucidate whether red wine polyphenolics reduce lipoprotein production and clearance by the liver. Cultured HepG2 cells were incubated in the presence of dealcoholized red wine, alcohol-containing red wine and atorvastatin for 24 h. The apolipoprotien B100 (apoB100) protein (marker of hepatic lipoproteins) was quantified on Western blots with an anti-apoB100 antibody and the enhanced chemiluminescence detection system. Apolipoprotein B100 levels in the cells and that secreted into the media were significantly reduced by 50% in liver cells incubated with alcohol-stripped red wine compared with control cells. This effect of dealcoholized red wine on apoB100 production in HepG2 cells was similar to the effect of atorvastatin. Apo B100 production was significantly attenuated by 30% in cells incubated with alcoholized red wine, suggesting that the alcohol was masking the effect of red wine polyphenolics. Apo B100 production was significantly attenuated by 45% with the polyphenolic compounds resveratrol and quercertin. In addition, dealcoholized and alcoholized red wine and atorvastatin significantly increased 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase mRNA and LDL receptor binding activity relative to controls. Dealcoholized red wine also increased LDL receptor gene expression. Collectively, this study suggests that red wine polyphenolics regulate major pathways involved in lipoprotein metabolism.

  12. Codon Preference Optimization Increases Prokaryotic Cystatin C Expression

    PubMed Central

    Wang, Qing; Mei, Cui; Zhen, Honghua; Zhu, Jess

    2012-01-01

    Gene expression is closely related to optimal vector-host system pairing in many prokaryotes. Redesign of the human cystatin C (cysC) gene using the preferred codons of the prokaryotic system may significantly increase cysC expression in Escherichia coli (E. coli). Specifically, cysC expression may be increased by removing unstable sequences and optimizing GC content. According to E. coli expression system codon preferences, the gene sequence was optimized while the amino acid sequence was maintained. The codon-optimized cysC (co-cysC) and wild-type cysC (wt-cysC) were expressed by cloning the genes into a pET-30a plasmid, thus transforming the recombinant plasmid into E. coli BL21. Before and after the optimization process, the prokaryotic expression vector and host bacteria were examined for protein expression and biological activation of CysC. The recombinant proteins in the lysate of the transformed bacteria were purified using Ni2+-NTA resin. Recombinant protein expression increased from 10% to 46% based on total protein expression after codon optimization. Recombinant CysC purity was above 95%. The significant increase in cysC expression in E. coli expression produced by codon optimization techniques may be applicable to commercial production systems. PMID:23093857

  13. Addition of an N-terminal epitope tag significantly increases the activity of plant fatty acid desaturases expressed in yeast cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharomyces cerevisiae shows great potential for development of bioreactor systems geared towards the production of high-value lipids such as polyunsaturated omega-3 fatty acids, the yields of which are largely dependent on the activity of ectopically-expressed enzymes. Here we show that the addit...

  14. Estrogen increases renal oxytocin receptor gene expression.

    PubMed

    Ostrowski, N L; Young, W S; Lolait, S J

    1995-04-01

    Estrogens have been implicated in the sodium and fluid imbalances associated with the menstrual cycle and late pregnancy. An estrogen-dependent role for renal oxytocin receptors in fluid homeostasis is suggested by the present findings which demonstrate that estradiol benzoate treatment increases the expression of the oxytocin receptor messenger ribonucleic acid and 125I-OTA binding to oxytocin receptors in the renal cortex and medullary collecting ducts of ovariectomized female rats. Moreover, estradiol induced high levels of oxytocin receptor expression in outer stripe proximal tubules of ovariectomized female and adrenalectomized male rats. Proximal tubule induction was inhibited in a dose-dependent manner by the antiestrogen tamoxifen, but cortical expression of oxytocin receptors in macula densa cells was unaffected by tamoxifen. These data demonstrate cell-specific regulation of oxytocin receptor expression in macula densa and proximal tubule cells, and suggest a important role for these receptors in mediating estrogen-induced alterations in renal fluid dynamics by possibly affecting glomerular filtration and water and solute reabsorption during high estrogen states.

  15. Anticancer drug bortezomib increases interleukin-8 expression in human monocytes.

    PubMed

    Sanacora, Shannon; Urdinez, Joaquin; Chang, Tzu-Pei; Vancurova, Ivana

    2015-05-01

    Bortezomib (BZ) is the first clinically approved proteasome inhibitor that has shown remarkable anticancer activity in patients with hematological malignancies. However, many patients relapse and develop resistance; yet, the molecular mechanisms of BZ resistance are not fully understood. We have recently shown that in solid tumors, BZ unexpectedly increases expression of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (IL-8), while it inhibits expression of other NFκB-regulated genes. Since monocytes and macrophages are major producers of IL-8, the goal of this study was to test the hypothesis that BZ increases the IL-8 expression in human monocytes and macrophages. Here, we show that BZ dramatically increases the IL-8 expression in lipopolysaccharide (LPS)-stimulated U937 macrophages as well as in unstimulated U937 monocytes and peripheral blood mononuclear cells, while it inhibits expression of IL-6, IL-1 and tumor necrosis factor-α. In addition, our results show that the underlying mechanisms involve p38 mitogen-activated protein kinase, which is required for the BZ-induced IL-8 expression. Together, these data suggest that the BZ-increased IL-8 expression in monocytes and macrophages may represent one of the mechanisms responsible for the BZ resistance and indicate that targeting the p38-mediated IL-8 expression could enhance the BZ effectiveness in cancer treatment.

  16. Dietary bitter melon seed increases peroxisome proliferator-activated receptor-γ gene expression in adipose tissue, down-regulates the nuclear factor-κB expression, and alleviates the symptoms associated with metabolic syndrome.

    PubMed

    Gadang, Vidya; Gilbert, William; Hettiararchchy, Navam; Horax, Ronny; Katwa, Laxmansa; Devareddy, Latha

    2011-01-01

    The objective of this study was to examine the extent to which bitter melon seed (BMS) alleviates the symptoms associated with metabolic syndrome and elucidate the mechanism by which BMS exerts beneficial effects. Three-month-old female Zucker rats were assigned to following groups: lean control (L-Ctrl), obese control (O-Ctrl), and obese + BMS (O-BMS). The control groups were fed AIN-93M purified rodent diet, and the O-BMS group was fed AIN-93M diet modified to contain 3.0% (wt/wt) ground BMS for 100 days. After 100 days of treatment, BMS supplementation in the obese rats lowered the total serum cholesterol by 38% and low-density lipoprotein-cholesterol levels by about 52% and increased the ratio of serum high-density lipoprotein-cholesterol to total cholesterol compared to the O-Ctrl group. The percentage of total liver lipids was about 32% lower and serum triglyceride levels were 71% higher in the O-BMS group compared to the O-Ctrl group. Serum glucose levels were significantly lowered partly because of the increase in the serum insulin levels in the BMS-based diet groups. BMS supplementation increased the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) in the white adipose tissue of the obese rats significantly (P < .05) and down-regulated the expression of PPAR-γ, nuclear factor-κB (NF-κB), and interferon-γ mRNA in heart tissue of the obese rats. The findings of this study suggest that BMS improves the serum and liver lipid profiles and serum glucose levels by modulating PPAR-γ gene expression. To our knowledge, this study for the first time shows that BMS exerts cardioprotective effects by down-regulating the NF-κB inflammatory pathway.

  17. ZAK induces MMP-2 activity via JNK/p38 signals and reduces MMP-9 activity by increasing TIMP-1/2 expression in H9c2 cardiomyoblast cells.

    PubMed

    Cheng, Yi-Chang; Kuo, Wei-Wen; Wu, Hsi-Chin; Lai, Tung-Yuan; Wu, Chun-Hsien; Hwang, Jin-Ming; Wang, Wen-Hong; Tsai, Fuu-Jen; Yang, Jaw-Ji; Huang, Chih-Yang; Chu, Chun-Hsien

    2009-05-01

    Leucine-zipper and sterile-alpha motif kinase (ZAK) is the key intra-cellular mediator protein in cardiomyocyte hypertrophy induction by transforming growth factor beta 1 (TGF-beta1) which has also been identified as a profibrotic cytokine involved in cardiac fibrosis progression. We hypothesized whether ZAK over-expression causes cardiac scar formation due to the extra-cellular matrix (ECM) degraded enzyme regulation in this paper. Using immuno-histochemical analysis of the human cardiovascular tissue array, we found a positively significant association between ZAK over-expression and myocardial scars. ZAK over-expression in H9c2 cardiomyoblast cells increases the metalloproteinase tissue inhibitor 1/2 (TIMP-1/2) protein level, which reduces matria metalloproteinase-9 (MMP-9) activity and also activates c-JNK N-terminal kinase 1/2 (JNK1/2) and p38 signaling, which induces MMP-2, possibly resulting in cardiac fibrosis. Taken together, ZAK activity inhibition may be a good strategy to prevent the cardiac fibrosis progression.

  18. Increased hepatic Na,K-ATPase activity during hepatic regeneration is associated with induction of the beta1-subunit and expression on the bile canalicular domain.

    PubMed

    Simon, F R; Fortune, J; Alexander, A; Iwahashi, M; Dahl, R; Sutherland, E

    1996-10-04

    Cellular and molecular mechanisms regulating the activity of the sodium pump or Na,K-ATPase during proliferation of hepatocytes following 70% liver resection have not been defined. Na,K-ATPase may be regulated by synthesis of its alpha- and beta-subunits, by sorting to either the sinusoidal or apical plasma membrane domains, or by increasing membrane lipid fluidity. This study investigated the time course of changes during hepatic regeneration for Na, K-ATPase activity, lipid composition and fluidity, and protein content of liver plasma membrane subfractions. As early as 4 h after hepatic resection, Na,K-ATPase activity was increased selectively in the bile canalicular fraction. It reached a new steady state at 12 h and remained elevated for 2 days. Although hepatic regeneration was associated with a reduced cholesterol/phospholipid molar ratio and increased fluidity, measured with two different probes, these changes in lipid metabolism were in the sinusoidal membrane domain. The Na,K-ATPase beta1-subunit, but not the alpha1-subunit, was increased selectively at the bile canalicular surface as shown by immunoblotting of liver plasma membrane subfractions and the morphological demonstration at both the light and electron microscopic levels. Furthermore, cycloheximide blocked the rise in beta1-subunit mRNA levels. Since the time course for beta1-subunit accumulation was similar to that for activation of Na,K-ATPase activity, this change implicated the beta1-subunit in activating sodium pump activity.

  19. Induction and increase of HLA-DR antigen expression by immune interferon on ML-3 cell line enhances the anti-HLA-DR immunotoxin activity.

    PubMed Central

    Chiron, M; Jaffrezou, J P; Carayon, P; Bordier, C; Roubinet, F; Xavier, C; Brandely, M; Laurent, G

    1990-01-01

    In order to evaluate the impact of induction and increase target antigen expression on immunotoxin potency, we measured the potentiating effect of recombinant immune interferon-gamma (rIFN-gamma) on the cytotoxicity of an anti HLA-DR ricin A-chain immunotoxin (2G5 RTA-IT) on the myeloid cell line ML-3. After 48 h of incubation with rIFN-gamma (500 U/ml) the percentage of 2G5-positive cells increased from 40% to 79%, and the 2G5 mean density was enhanced by 10-fold (11,000 versus 110,000 molecules/cell). Concurrently, rIFN-gamma pretreatment induced a dramatic improvement of 2G5 RTA-IT dose-effect cytotoxicity, as well as immunotoxin cytotoxicity kinetics. When 2G5 RTA-IT was used at the optimal dose of 10(-8)M (the maximum dose which avoided non-specific ricin A-chain cytotoxicity), the immunotoxin-induced cell kill increased with the percentage of DR-positive ML-3 cells according to a similar linear-logarithmic function of rIFN-gamma concentration. Moreover, in the same range of rIFN-gamma concentrations, the killing values and the percentage of DR-positive ML-3 cells were similar if not identical. These findings imply that the enhancement of 2G5 RTA-IT cytotoxicity by rIFN-gamma is mainly related to the rIFN-gamma 2G5 antigen induction on HLA-DR negative cells when immunotoxin was used at 10(-8) M. Furthermore, 2G5 RTA-IT dose-effect cytotoxicity on DR-expressing ML-3 cells, when used at lower concentrations, was also increased by rIFN-gamma in a dose-dependent manner. This result suggests that for immunotoxin concentrations close to the limiting membrane saturation dose (10(-10)M), rIFN-gamma may not solely act by inducing HLA-DR expression on DR-negative ML-3 subpopulation but also by increasing individual cellular DR density on DR expressing ML-3 cells. Finally, our study showed that immunotoxin potency on malignant cell populations which display an heterogeneous antigen expression, could be greatly improved by the use of rIFN-gamma. PMID:2122930

  20. Random Monoallelic Gene Expression Increases upon Embryonic Stem Cell Differentiation

    PubMed Central

    Eckersley-Maslin, Mélanie A.; Thybert, David; Bergmann, Jan H.; Marioni, John C.; Flicek, Paul; Spector, David L.

    2014-01-01

    Summary Random autosomal monoallelic gene expression refers to the transcription of a gene from one of two homologous alleles. We assessed the dynamics of monoallelic expression during development through an allele-specific RNA sequencing screen in clonal populations of hybrid mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We identified 67 and 376 inheritable autosomal random monoallelically expressed genes in ESCs and NPCs respectively, a 5.6-fold increase upon differentiation. While DNA methylation and nuclear positioning did not distinguish the active and inactive alleles, specific histone modifications were differentially enriched between the two alleles. Interestingly, expression levels of 8% of the monoallelically expressed genes remained similar between monoallelic and biallelic clones. These results support a model in which random monoallelic expression occurs stochastically during differentiation, and for some genes is compensated for by the cell to maintain the required transcriptional output of these genes. PMID:24576421

  1. Increase in composite binder activity

    NASA Astrophysics Data System (ADS)

    Fediuk, R.; Smoliakov, A.; Stoyushko, N.

    2016-11-01

    The binder of portland cement (51-59 wt.%), fly ash of thermal power stations (3644 wt.%), limestone crushing waste (4-9 wt.%) and dry hyper plasticizer (0.2 wt.%) has been created. It can be used in the building materials industry for production of high-strength concrete. The composite binder is obtained by co-milling of the components in vario-planetary mill to a specific surface area of 550-600 m2/kg. The technical result is the possibility of obtaining a composite binder with significant replacement of cement with industrial waste, cost-effective and superior to portland cement for construction and technical properties, increased activity. This allows producing concrete for walling with a compressive strength of 100 MPa, while using more than 50% of industrial waste.

  2. Globally increased ultraconserved noncoding RNA expression in pancreatic adenocarcinoma

    PubMed Central

    Lee, Eun Joo; Gusev, Yuriy; Allard, David; Sutaria, Dhruvitkumar S.; Badawi, Mohamed; Elgamal, Ola A.; Lerner, Megan R.; Brackett, Daniel J.; Calin, George A.; Schmittgen, Thomas D.

    2016-01-01

    Transcribed ultraconserved regions (T-UCRs) are a class of non-coding RNAs with 100% sequence conservation among human, rat and mouse genomes. T-UCRs are differentially expressed in several cancers, however their expression in pancreatic adenocarcinoma (PDAC) has not been studied. We used a qPCR array to profile all 481 T-UCRs in pancreatic cancer specimens, pancreatic cancer cell lines, during experimental pancreatic desmoplasia and in the pancreases of P48Cre/wt; KrasLSL-G12D/wt mice. Fourteen, 57 and 29% of the detectable T-UCRs were differentially expressed in the cell lines, human tumors and transgenic mouse pancreases, respectively. The vast majority of the differentially expressed T-UCRs had increased expression in the cancer. T-UCRs were monitored using an in vitro model of the desmoplastic reaction. Twenty-five % of the expressed T-UCRs were increased in the HPDE cells cultured on PANC-1 cellular matrix. UC.190, UC.233 and UC.270 were increased in all three human data sets. siRNA knockdown of each of these three T-UCRs reduced the proliferation of MIA PaCa-2 cells up to 60%. The expression pattern among many T-UCRs in the human and mouse pancreases closely correlated with one another, suggesting that groups of T-UCRs are co-activated in PDAC. Successful knockout of the transcription factor EGR1 in PANC-1 cells caused a reduction in the expression of a subset of T-UCRs suggesting that EGR1 may control T-UCR expression in PDAC. We report a global increase in expression of T-UCRs in both human and mouse PDAC. Commonalties in their expression pattern suggest a similar mechanism of transcriptional upregulation for T-UCRs in PDAC. PMID:27363020

  3. Activation of TLR3 in keratinocytes increases expression of genes involved in formation of the epidermis, lipid accumulation and epidermal organelles

    PubMed Central

    Borkowski, Andrew W.; Park, Kyungho; Uchida, Yoshikazu; Gallo, Richard L.

    2013-01-01

    Injury to the skin, and the subsequent release of non-coding double-stranded RNA from necrotic keratinocytes, has been identified as an endogenous activator of Toll-like receptor 3 (TLR3). Since changes in keratinocyte growth and differentiation follow injury, we hypothesized that TLR3 might trigger some elements of the barrier repair program in keratinocytes. Double-stranded RNA was observed to induce TLR3-dependent increases in human keratinocyte mRNA abundance for ABCA12 (ATP-binding cassette, sub-family A, member 12), glucocerebrosidase, acid sphingomyelinase, and transglutaminase 1. Additionally, treatment with double-stranded RNA resulted in increases in sphingomyelin and morphologic changes including increased epidermal lipid staining by oil-red O and TLR3-dependent increases in lamellar bodies and keratohyalin granules. These observations show that double-stranded RNA can stimulate some events in keratinocytes that are important for skin barrier repair and maintenance. PMID:23353987

  4. Increasing opportunities for physical activity.

    PubMed

    Buckley, Sue

    2007-07-01

    Being physically active can have a number of benefits - having fun, meeting with friends, keeping healthy and experiencing success. For children with Down syndrome the foundations need to be laid early if they are to keep active in school, teenage and adult years and parents ask for more help in this area from professionals.

  5. IRE1α-XBP1s induces PDI expression to increase MTP activity for hepatic VLDL assembly and lipid homeostasis.

    PubMed

    Wang, Shiyu; Chen, Zhouji; Lam, Vivian; Han, Jaeseok; Hassler, Justin; Finck, Brian N; Davidson, Nicholas O; Kaufman, Randal J

    2012-10-03

    The unfolded protein response (UPR) is a signaling pathway required to maintain endoplasmic reticulum (ER) homeostasis and hepatic lipid metabolism. Here, we identify an essential role for the inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α)-X box binding protein 1 (XBP1) arm of the UPR in regulation of hepatic very low-density lipoprotein (VLDL) assembly and secretion. Hepatocyte-specific deletion of Ire1α reduces lipid partitioning into the ER lumen and impairs the assembly of triglyceride (TG)-rich VLDL but does not affect TG synthesis, de novo lipogenesis, or the synthesis or secretion of apolipoprotein B (apoB). The defect in VLDL assembly is, at least in part, due to decreased microsomal triglyceride-transfer protein (MTP) activity resulting from reduced protein disulfide isomerase (PDI) expression. Collectively, our findings reveal a key role for the IRE1α-XBP1s-PDI axis in linking ER homeostasis with regulation of VLDL production and hepatic lipid homeostasis that may provide a therapeutic target for disorders of lipid metabolism.

  6. Blocking the mitogen activated protein kinase-p38 pathway is associated with increase expression of nitric oxide synthase and higher production of nitric oxide by bovine macrophages infected with Mycobacterium avium subsp paratuberculosis.

    PubMed

    Souza, Cleverson D

    2015-03-15

    This study evaluated the role of the mitogen-activated protein kinase (MAPK)-p38 pathway in the nitric oxide synthase (iNOS) expression and nitric oxide (NO) production by bovine monocyte-derived macrophages ingesting Mycobacterium avium subsp. paratuberculosis (MAP) organisms in vitro. Bovine monocyte-derived macrophages were incubated with MAP organisms with or without a specific inhibitor of the MAPKp38 pathway and activation of the MAPKp38, interleukin - (IL) IL-10, IL-12, iNOS mRNA expression and NO production were evaluated. Incubation of macrophages with MAP organisms activates the MAPKp38 pathway at early time points post infection. Chemically inhibition of MAPKp38 before incubation of bovine macrophages with MAP resulted in increased expression of IL-12 mRNA at 2, 6 and 24h, decreased expression of IL-10 mRNA at 2, 6 and 24h and increased expression of iNOS mRNA at 2 and 6h. Nitric oxide was evaluated to indirectly determine the effects of MAPKp38 pathway on the anti-microbial activity of bovine macrophages. Incubation of bovine macrophages with MAP resulted in modest increased production of NO at 4 and 6h post infection. Pretreatment of bovine macrophages with the MAPKp38 inhibitor SB203580 before addition of MAP organisms resulted in increased production of NO at 2, 4, 6 and 24h post infection. This study expanded our knowledge of the importance of the MAPKp38 pathway in limiting an appropriate macrophage response to MAP and suggested how activation of MAPKp38 pathway may be a target of this organism to disrupt earlier antimicrobial mechanisms of macrophages. These findings raises the interesting possibility that the cellular manipulation of MAPKp38 may be useful in designing novel vaccines against MAP.

  7. Increasing Youth Physical Activity with Activity Calendars

    ERIC Educational Resources Information Center

    Eckler, Seth

    2016-01-01

    Physical educators often struggle with ways to get their students to be active beyond the school day. One strategy to accomplish this is the use of physical activity calendars (PACs). The purpose of this article is to support the use of PACs and give practical advice for creating effective PACs.

  8. Sex Reversal in C57BL/6J XY Mice Caused by Increased Expression of Ovarian Genes and Insufficient Activation of the Testis Determining Pathway

    PubMed Central

    Correa, Stephanie M.; Washburn, Linda L.; Kahlon, Ravi S.; Musson, Michelle C.; Bouma, Gerrit J.; Eicher, Eva M.; Albrecht, Kenneth H.

    2012-01-01

    Sex reversal can occur in XY humans with only a single functional WT1 or SF1 allele or a duplication of the chromosome region containing WNT4. In contrast, XY mice with only a single functional Wt1, Sf1, or Wnt4 allele, or mice that over-express Wnt4 from a transgene, reportedly are not sex-reversed. Because genetic background plays a critical role in testis differentiation, particularly in C57BL/6J (B6) mice, we tested the hypothesis that Wt1, Sf1, and Wnt4 are dosage sensitive in B6 XY mice. We found that reduced Wt1 or Sf1 dosage in B6 XYB6 mice impaired testis differentiation, but no ovarian tissue developed. If, however, a YAKR chromosome replaced the YB6 chromosome, these otherwise genetically identical B6 XY mice developed ovarian tissue. In contrast, reduced Wnt4 dosage increased the amount of testicular tissue present in Sf1+/− B6 XYAKR, Wt1+/− B6 XYAKR, B6 XYPOS, and B6 XYAKR fetuses. We propose that Wt1B6 and Sf1B6 are hypomorphic alleles of testis-determining pathway genes and that Wnt4B6 is a hypermorphic allele of an ovary-determining pathway gene. The latter hypothesis is supported by the finding that expression of Wnt4 and four other genes in the ovary-determining pathway are elevated in normal B6 XX E12.5 ovaries. We propose that B6 mice are sensitive to XY sex reversal, at least in part, because they carry Wt1B6 and/or Sf1B6 alleles that compromise testis differentiation and a Wnt4B6 allele that promotes ovary differentiation and thereby antagonizes testis differentiation. Addition of a “weak” Sry allele, such as the one on the YPOS chromosome, to the sensitized B6 background results in inappropriate development of ovarian tissue. We conclude that Wt1, Sf1, and Wnt4 are dosage-sensitive in mice, this dosage-sensitivity is genetic background-dependant, and the mouse strains described here are good models for the investigation of human dosage-sensitive XY sex reversal. PMID:22496664

  9. Increases in apoptosis, caspase activity and expression of p53 and bax, and the transition between two types of mitochondrion-rich cells, in the gills of the climbing perch, Anabas testudineus, during a progressive acclimation from freshwater to seawater

    PubMed Central

    Ching, Biyun; Chen, Xiu L.; Yong, Jing H. A.; Wilson, Jonathan M.; Hiong, Kum C.; Sim, Eugene W. L.; Wong, Wai P.; Lam, Siew H.; Chew, Shit F.; Ip, Yuen K.

    2013-01-01

    This study aimed to test the hypothesis that branchial osmoregulatory acclimation involved increased apoptosis and replacement of mitochdonrion-rich cells (MRCs) in the climbing perch, Anabas testudineus, during a progressive acclimation from freshwater to seawater. A significant increase in branchial caspase-3/-7 activity was observed on day 4 (salinity 20), and an extensive TUNEL-positive apoptosis was detected on day 5 (salinity 25), indicating salinity-induced apoptosis had occurred. This was further supported by an up-regulation of branchial mRNA expression of p53, a key regulator of cell cycle arrest and apoptosis, between day 2 (salinity 10) and day 6 (seawater), and an increase in branchial p53 protein abundance on day 6. Seawater acclimation apparently activated both the extrinsic and intrinsic pathways, as reflected by significant increases in branchial caspase-8 and caspase-9 activities. The involvement of the intrinsic pathway was confirmed by the significant increase in branchial mRNA expression of bax between day 4 (salinity 20) and day 6 (seawater). Western blotting results revealed the presence of a freshwater Na+/K+-ATPase (Nka) α-isoform, Nka α1a, and a seawater isoform, Nka α1b, the protein abundance of which decreased and increased, respectively, during seawater acclimation. Immunofluorescence microscopy revealed the presence of two types of MRCs distinctly different in sizes, and confirmed that the reduction in Nka α1a expression, and the prominent increases in expression of Nka α1b, Na+:K+:2Cl− cotransporter 1, and cystic fibrosis transmembrane conductance regulator Cl− channel coincided with the salinity-induced apoptotic event. Since modulation of existing MRCs alone could not have led to extensive salinity-induced apoptosis, it is probable that some, if not all, freshwater-type MRCs could have been removed through increased apoptosis and subsequently replaced by seawater-type MRCs in the gills of A. testudineus during seawater

  10. Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: reversal by clozapine.

    PubMed

    Ribeiro, Bruna Mara Machado; do Carmo, Marta Regina Santos; Freire, Rosemayre Souza; Rocha, Nayrton Flávio Moura; Borella, Vládia Célia Moreira; de Menezes, Antonio Teles; Monte, Aline Santos; Gomes, Patrícia Xavier Lima; de Sousa, Francisca Cléa Florenço; Vale, Mariana Lima; de Lucena, David Freitas; Gama, Clarissa Severino; Macêdo, Danielle

    2013-12-01

    Schizophrenia was proposed as a progressive neurodevelopmental disorder. In this regard herein we attempted to determine progressive inflammatory and oxidative alterations induced by a neonatal immune challenge and its possible reversal by clozapine administration. For this end, Wistar rats at postnatal day (PN) 5-7 were administered the viral mimetic polyriboinosinic-polyribocytidilic acid (polyI:C) or saline. A distinct group of animals additionally received the antipsychotic drug clozapine (25mg/kg) from PN60 to 74. At PN35 (periadolescence), 60 (adult) and 74 (adulthood) the animals were submitted to behavioral determinations of prepulse inhibition of the startle (PPI) and Y maze task for working memory evaluation. At PN35 and 74 the animals were sacrificed and the hippocampus (HC), prefrontal cortex (PFC) and striatum (ST) immunostained for Iba-1, a microglial marker, and inducible nitric oxide synthase (iNOS). At PN74 oxidative stress parameters, such as, reduced glutathione levels (GSH) and lipid peroxidation were determined. The results showed a progressive increase of microglial activation and iNOS immunostaining from PN35 to PN74 mainly in the CA2 and CA3 regions of the HC and in the ST. At PN74 neonatal challenge also induced an oxidative imbalance. These inflammatory alterations were accompanied by deficits in PPI and working memory only in adult life that were reversed by clozapine. Clozapine administration reversed microglial activation and iNOS increase, but not the alterations of oxidative stress parameters. Taken together these results give further evidences for a neuroprogressive etiology and course of schizophrenia and that clozapine may partly alleviate this process.

  11. Supplementation with Japanese bunching onion (Allium fistulosum L.) expressing a single alien chromosome from shallot increases the antioxidant activity of Kamaboko fish jelly paste in vitro.

    PubMed

    Harada, Kazuki; Wada, Ritsuko; Yaguchi, Shigenori; Maeda, Toshimichi; Date, Rie; Tokunaga, Takushi; Kazumura, Kimiko; Shimada, Kazuko; Matsumoto, Misato; Wako, Tadayuki; Yamauchi, Naoki; Shigyo, Masayoshi

    2013-05-01

    Kamaboko is a traditional type of processed seafood made from fish jelly paste that is unique to Japan. We supplemented Kamaboko with Japanese bunching onion (Allium fistulosum L.) with an alien monosome from shallot (Allium cepa L. Aggregatum group) and we measured in vitro the oxygen radical absorbance capacity (ORAC) value, an index of antioxidant activity. We also evaluated the results of sensory testing. The ORAC value of plain Kamaboko was 166±14 μmol trolox equivalent (TE)/100 g fresh weight (FW). The values of the edible Alliaceae powder, i.e., Japanese bunching onion (JBO, genome FF, 2n=2x=16) and the alien addition line of JBO carrying the 6A chromosome from shallot (FF+6A, 2n=2x+1=17), were 6,659±238 and 14,096±635 μmol TE/100 g dry weight (DW). We hypothesized that the 6A chromosome encoded the enhancement of polyphenol production. Subsequently, we created Kamaboko containing 4.8% JBO powder or 4.8% FF+6A powder. The ORAC value of each modified Kamaboko product was increased to 376±24 μmol TE/100 g FW for the JBO powder and to 460±16 μmol TE/100 g FW for the FF+6A powder, respectively. We next created Kamaboko containing 9.0% JBO powder or 9.0% FF+6A powder and the ORAC values of the respective modified Kamaboko products was increased to 671±16 and 740±21 μmol TE/100 g FW, i.e., 4.1- and 4.5-times the value of plain Kamaboko. Consequently, taking into consideration the sensory evaluation regarding taste and appearance as well, the use of Kamaboko supplemented with 4.8% FF+6A powder is recommended.

  12. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    SciTech Connect

    Ho, Hsieh-Hsun; Chang, Chi-Sen; Ho, Wei-Chi; Liao, Sheng-You; Lin, Wea-Lung; Wang, Chau-Jong

    2013-01-01

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGS cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.

  13. Resveratrol Increases Anti-Proliferative Activity of Bestatin Through Downregulating P-Glycoprotein Expression Via Inhibiting PI3K/Akt/mTOR Pathway in K562/ADR Cells.

    PubMed

    Wang, Li; Wang, Changyuan; Jia, Yongming; Liu, Zhihao; Shu, Xiaohong; Liu, Kexin

    2016-05-01

    Multidrug resistance (MDR) is a major obstacle in the clinical therapy of hematological malignancies. P-glycoprotein (P-gp) overexpression results in reduction of intracellular drug concentration with a consequence that the cytotoxicity of anti-tumor drugs is decreased, which leads to MDR in K562/ADR cells. In this study, we found that resveratrol enhanced the anti-proliferative activity of bestatin in K562/ADR cells. Co-treatment with resveratrol, IC50 values of bestatin in K562/ADR cells significantly decreased and activation of caspase-3 and caspase-8 increased, which indicated that resveratrol potentiated bestatin-induced apoptosis. Resveratrol increased the intracellular concentration of bestatin through inhibiting P-gp function and downregulating P-gp expression at mRNA and protein levels, which increased anti-proliferative activity of bestatin in K562/ADR cells. Resveratrol decreased the phosphorylation of Akt and mTOR but did not affect the phosphorylations of JNK or ERK1/2. These results demonstrated that resveratrol could increase the anti-proliferative activity of bestatin through downregulating P-gp expression via suppressing the PI3K/Akt/mTOR signaling pathway.

  14. Aging increases CCN1 expression leading to muscle senescence.

    PubMed

    Du, Jie; Klein, Janet D; Hassounah, Faten; Zhang, Jin; Zhang, Cong; Wang, Xiaonan H

    2014-01-01

    Using microarray analysis, we found that aging sarcopenia is associated with a sharp increase in the mRNA of the matricellular protein CCN1 (Cyr61/CTGF/Nov). CCN1 mRNA was upregulated 113-fold in muscle of aged vs. young rats. CCN1 protein was increased in aging muscle in both rats (2.8-fold) and mice (3.8-fold). When muscle progenitor cells (MPCs) were treated with recombinant CCN1, cell proliferation was decreased but there was no change in the myogenic marker myoD. However, the CCN1-treated MPCs did express a senescence marker (SA-βgal). Interestingly, we found CCN1 increased p53, p16(Ink4A), and pRP (hypophosphorylated retinoblastoma protein) protein levels, all of which can arrest cell growth in MPCs. When MPCs were treated with aged rodent serum CCN1 mRNA increased by sevenfold and protein increased by threefold suggesting the presence of a circulating regulator. Therefore, we looked for a circulating regulator. Wnt-3a, a stimulator of CCN1 expression, was increased in serum from elderly humans (2.6-fold) and aged rodents (2.0-fold) compared with young controls. We transduced C2C12 myoblasts with wnt-3a and found that CCN1 protein was increased in a time- and dose-dependent manner. We conclude that in aging muscle, the circulating factor wnt-3a acts to increase CCN1 expression, prompting muscle senescence by activating cell arrest proteins.

  15. Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish.

    PubMed

    Horstick, Eric J; Jordan, Diana C; Bergeron, Sadie A; Tabor, Kathryn M; Serpe, Mihaela; Feldman, Benjamin; Burgess, Harold A

    2015-04-20

    Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3' untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.

  16. SFRP2 Is Associated with Increased Adiposity and VEGF Expression

    PubMed Central

    Crowley, Rachel K.; Bujalska, Iwona J.; Hassan-Smith, Zaki K.; Hazlehurst, Jonathan M.; Foucault, Danielle R.; Stewart, Paul M.; Tomlinson, Jeremy W.

    2016-01-01

    Aims The aim of this study was to assess depot-specific expression and secretion of secreted frizzled-related protein 2 (sFRP2) by adipose tissue and its effect on adipocyte biology. We measured serum sFRP2 concentrations in 106 patients in vivo to explore its relationship to fat mass, glycaemia and insulin resistance. Methods Expression of sFRP2 in mouse and human tissues was assessed using polymerase chain reaction and Western blot. Western blot confirmed secretion of sFRP2 by adipose tissue into cell culture medium. Effects of recombinant sFRP2 on lipogenesis and preadipocyte proliferation were measured. Preadipocyte expression of the angiogenic genes vascular endothelial growth factor (VEGF) and nuclear factor of activated T-cells 3 (NFATC3) was measured after recombinant sFRP2 exposure. Complementary clinical studies correlating human serum sFRP2 with age, gender, adiposity and insulin secretion were also performed. Results sFRP2 messenger RNA (mRNA) was expressed in mouse and human adipose tissue. In humans, sFRP2 mRNA expression was 4.2-fold higher in omental than subcutaneous adipose. Omental adipose tissue secreted 63% more sFRP2 protein than subcutaneous. Treatment with recombinant sFRP2 did not impact on lipogenesis or preadipocyte proliferation but was associated with increased VEGF mRNA expression. In human subjects, circulating insulin levels positively correlated with serum sFRP2, and levels were higher in patients with abnormal glucose tolerance (34.2ng/ml) compared to controls (29.5ng/ml). A positive correlation between sFRP2 and BMI was also observed. Conclusions Circulating sFRP2 is associated with adipose tissue mass and has a potential role to drive adipose angiogenesis through enhanced VEGF expression. PMID:27685706

  17. Synovial cell death is regulated by TNF-α-induced expression of B-cell activating factor through an ERK-dependent increase in hypoxia-inducible factor-1α.

    PubMed

    Lee, Jae-Wook; Lee, Jiyoung; Um, Sung Hee; Moon, Eun-Yi

    2017-04-06

    B-cell activating factor (BAFF) has a role in the maturation and maintenance of B cells and is associated with rheumatoid arthritis (RA). Here, we investigated whether tumor necrosis factor (TNF)-α-induced BAFF expression controls the survival of fibroblast-like synoviocytes (FLS) and whether their survival can be regulated by TNF-α-mediated upregulation of hypoxia-inducible factor (HIF)-1α using MH7A synovial cells transfected with the SV40 T antigen. More TNF-α-treated cells died compared with the control. Survival was increased by incubation with Z-VAD but inhibited after transfection with BAFF-siRNA. Both BAFF and HIF-1α expression were enhanced when MH7A cells were treated with TNF-α. TNF-α-induced BAFF expression decreased in response to HIF-1α-siRNA, whereas it increased under hypoxia or by overexpressing HIF-1α. The HIF-1α binding site on the BAFF promoter (-693 to -688 bp) was confirmed by chromatin immunoprecipitation assay to detect the -750 to -501 bp and -800 to -601 bp regions. The BAFF promoter increased in response to TNF-α treatment or overexpression of HIF-1α. However, TNF-α-induced BAFF expression and promoter activity decreased after treatment with the ERK inhibitor PD98059. Cell death was enhanced by PD98059 but was inhibited by overexpression of HIF-1α. Taken together, our results demonstrate that BAFF expression to control synovial cell survival was regulated by HIF-1α binding to the BAFF promoter, and suggest for the first time that HIF-1α might be involved in the production of inflammatory cytokines to regulate the physiological function of rheumatic FLS.

  18. ApoER2 expression increases Aβ production while decreasing Amyloid Precursor Protein (APP) endocytosis: Possible role in the partitioning of APP into lipid rafts and in the regulation of γ-secretase activity

    PubMed Central

    Fuentealba, Rodrigo A; Barría, Maria Ines; Lee, Jiyeon; Cam, Judy; Araya, Claudia; Escudero, Claudia A; Inestrosa, Nibaldo C; Bronfman, Francisca C; Bu, Guojun; Marzolo, Maria-Paz

    2007-01-01

    Background The generation of the amyloid-β peptide (Aβ) through the proteolytic processing of the amyloid precursor protein (APP) is a central event in the pathogenesis of Alzheimer's disease (AD). Recent studies highlight APP endocytosis and localization to lipid rafts as important events favoring amyloidogenic processing. However, the precise mechanisms underlying these events are poorly understood. ApoER2 is a member of the low density lipoprotein receptor (LDL-R) family exhibiting slow endocytosis rate and a significant association with lipid rafts. Despite the important neurophysiological roles described for ApoER2, little is known regarding how ApoER2 regulates APP trafficking and processing. Results Here, we demonstrate that ApoER2 physically interacts and co-localizes with APP. Remarkably, we found that ApoER2 increases cell surface APP levels and APP association with lipid rafts. The increase of cell surface APP requires the presence of ApoER2 cytoplasmic domain and is a result of decreased APP internalization rate. Unexpectedly, ApoER2 expression correlated with a significant increase in Aβ production and reduced levels of APP-CTFs. The increased Aβ production was dependent on the integrity of the NPxY endocytosis motif of ApoER2. We also found that expression of ApoER2 increased APP association with lipid rafts and increased γ-secretase activity, both of which might contribute to increased Aβ production. Conclusion These findings show that ApoER2 negatively affects APP internalization. However, ApoER2 expression stimulates Aβ production by shifting the proportion of APP from the non-rafts to the raft membrane domains, thereby promoting β-secretase and γ-secretase mediated amyloidogenic processing and also by incrementing the activity of γ-secretase. PMID:17620134

  19. Deletion of FoxO1 leads to shortening of QRS by increasing Na(+) channel activity through enhanced expression of both cardiac NaV1.5 and β3 subunit.

    PubMed

    Cai, Benzhi; Wang, Ning; Mao, Weike; You, Tao; Lu, Yan; Li, Xiang; Ye, Bo; Li, Faqian; Xu, Haodong

    2014-09-01

    Our in vitro studies revealed that a transcription factor, Forkhead box protein O1 (FoxO1), negatively regulates the expression of NaV1.5, a main α subunit of the cardiac Na(+) channel, by altering the promoter activity of SCN5a in HL-1 cardiomyocytes. The in vivo role of FoxO1 in the regulation of cardiac NaV1.5 expression remains unknown. The present study aimed to define the role of FoxO1 in the regulation of NaV1.5 expression and cardiac Na(+) channel activity in mouse ventricular cardiomyocytes and assess the cardiac electrophysiological phenotype of mice with cardiac FoxO1 deletion. Tamoxifen-induced and cardiac-specific FoxO1 deletion was confirmed by polymerase chain reaction (PCR). Cardiac FoxO1 deletion failed to result in either cardiac functional changes or hypertrophy as assessed by echocardiography and individual ventricular cell capacitances, respectively. Western blotting showed that FoxO1 was significantly decreased while NaV1.5 protein level was significantly increased in mouse hearts with FoxO1 deletion. Reverse transcription-PCR (RT-PCR) revealed that FoxO1 deletion led to an increase in NaV1.5 and Na(+) channel subunit β3 mRNA, but not β1, 2, and 4, or connexin 43. Whole patch-clamp recordings demonstrated that cardiac Na(+) currents were significantly augmented by FoxO1 deletion without affecting the steady-state activation and inactivation, leading to accelerated depolarization of action potentials in mouse ventricular cardiomyocytes. Electrocardiogram recordings showed that the QRS complex was significantly shortened and the P wave amplitude was significantly increased in conscious and unrestrained mice with cardiac FoxO1 deletion. NaV1.5 expression was decreased in the peri-infarct (border-zone) of mice with myocardial infarction and FoxO1 accumulated in the cardiomyocyte nuclei of chronic ischemic human hearts. Our findings indicate that FoxO1 plays an important role in the regulation of NaV1.5 and β3 subunit expressions as well as Na

  20. Quercetin up-regulates expressions of peroxisome proliferator-activated receptor γ, liver X receptor α, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human macrophage cell line.

    PubMed

    Lee, Seung-Min; Moon, Jiyoung; Cho, Yoonsu; Chung, Ji Hyung; Shin, Min-Jeong

    2013-02-01

    Cholesterol-laden macrophages trigger accumulation of foam cells and increase the risk of developing atherosclerosis. We hypothesized that quercetin could lower the content of cholesterol in macrophages by regulating the expression of the ATP binding cassette transporter A1 (ABCA1) gene in differentiated human acute monocyte leukemia cell line (THP-1) cells and thereby reducing the chance of forming foam cells. Quercetin, in concentrations up to 30 μM, was not cytotoxic to differentiated THP-1 cells. Quercetin up-regulated both ABCA1 messenger RNA and protein expression in differentiated THP-1 cells, and its maximum effects were demonstrated at 0.3 μM for 4 to 8 hours in incubation. In addition, quercetin increased protein levels of peroxisome proliferator-activated receptor γ (PPARγ) and liver X receptor α (LXRα) within 2 hours of treatment. Because PPARγ and LXRα are important transcriptional factors for ABCA1, quercetin-induced up-regulation of ABCA1 may be mediated by increased expression levels of the PPARγ and LXRα genes. Furthermore, quercetin-enhanced cholesterol efflux from differentiated THP-1 cells to both high-density lipoprotein (HDL) and apolipoprotein A1. Quercetin at the dose of 0.15 μM elevated the cholesterol efflux only for HDL. At the dose of 0.3 μM, quercetin demonstrated effects both on HDL and apolipoprotein A1. Our data demonstrated that quercetin increased the expressions of PPARγ, LXRα, and ABCA1 genes and cholesterol efflux from THP-1 macrophages. Quercetin-induced expression of PPARγ and LXRα might subsequently affect up-regulation of their target gene ABCA1. Taken together, ingestion of quercetin or quercetin-rich foods could be an effective way to improve cholesterol efflux from macrophages, which would contribute to lowering the risk of atherosclerosis.

  1. Expression of a Flax Allene Oxide Synthase cDNA Leads to Increased Endogenous Jasmonic Acid (JA) Levels in Transgenic Potato Plants but Not to a Corresponding Activation of JA-Responding Genes.

    PubMed Central

    Harms, K.; Atzorn, R.; Brash, A.; Kuhn, H.; Wasternack, C.; Willmitzer, L.; Pena-Cortes, H.

    1995-01-01

    Both jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are thought to be significant components of the signaling pathway regulating the expression of plant defense genes in response to various stresses. JA and MeJA are plant lipid derivatives synthesized from [alpha]-linolenic acid by a lipoxygenase-mediated oxygenation leading to 13-hydroperoxylinolenic acid, which is subsequently transformed by the action of allene oxide synthase (AOS) and additional modification steps. AOS converts lipoxygenase-derived fatty acid hydroperoxide to allene epoxide, which is the precursor for JA formation. Overexpression of flax AOS cDNA under the regulation of the cauliflower mosaic virus 35S promoter in transgenic potato plants led to an increase in the endogenous level of JA. Transgenic plants had six- to 12-fold higher levels of JA than the nontransformed plants. Increased levels of JA have been observed when potato and tomato plants are mechanically wounded. Under these conditions, the proteinase inhibitor II (pin2) genes are expressed in the leaves. Despite the fact that the transgenic plants had levels of JA similar to those found in nontransgenic wounded plants, pin2 genes were not constitutively expressed in the leaves of these plants. Transgenic plants with increased levels of JA did not show changes in water state or in the expression of water stress-responsive genes. Furthermore, the transgenic plants overexpressing the flax AOS gene, and containing elevated levels of JA, responded to wounding or water stress by a further increase in JA and by activating the expression of either wound- or water stress-inducible genes. Protein gel blot analysis demonstrated that the flax-derived AOS protein accumulated in the chloroplasts of the transgenic plants. PMID:12242357

  2. ROAM mutations causing increased expression of yeast genes: their activation by signals directed toward conjugation functions and their formation by insertion of tyl repetitive elements

    SciTech Connect

    Errede, B.; Cardillo, T.S.; Wever, G.; Sherman, F.

    1980-01-01

    Mechanisms available to eukaryotic organisms for the coordinate regulation of gene expression are being examined by genetic and biochemical characterization of an unusual mutation, CYC7-H2, which causes overproduction of iso-2-cytochrome c in the yeast Saccharomyces cerevisiae. The CYC7-H2 mutation causes approximately a twenty fold overproduction of iso-2-cytochrome c in haploid strains but only a one to four fold overproduction in MATa/MAT..cap alpha.. diploid strains. This regulation of overproduction has been characterized as a response to signals controlling conjugation in yeast. The CYC7-H2 mutation is closely related to other regulatory mutations occurring at the cargA, cargB and DUR1,2 loci which are the structural genes for arginase, ornithine transaminase and urea amidolyase, respectively. Similar to the CYC7-H2 mutation, the mutations designated cargA/sup +/O/sup h/, cargB/sup +/O/sup h/ and durO/sup h/ cause constitutive production of their respective gene products at much lower levels in MATa/MAT..cap alpha.. diploid strains than in the corresponding haploid strains. Observations characterizing the regulation of overproduction in the CYC7-H2 mutant are presented with the additional and parallel observations for the O/sup h/ mutants.

  3. N-3 Polyunsaturated Fatty Acids Improve Liver Lipid Oxidation-Related Enzyme Levels and Increased the Peroxisome Proliferator-Activated Receptor α Expression Level in Mice Subjected to Hemorrhagic Shock/Resuscitation.

    PubMed

    Zhang, Li; Tian, Feng; Gao, Xuejin; Wang, Xinying; Wu, Chao; Li, Ning; Li, Jieshou

    2016-04-22

    Appropriate metabolic interventions after hemorrhagic shock/resuscitation injury have not yet been identified. We aimed to examine the effects of fish oil on lipid metabolic intervention after hemorrhagic shock/resuscitation. Firstly, 48 C57BL/6 mice were assigned to six groups (n = 8 per group). The sham group did not undergo surgery, while mice in the remaining groups were sacrificed 1-5 days after hemorrhagic shock/resuscitation. In the second part, mice were treated with saline or fish oil (n = 8 per group) five days after injury. We determined serum triglyceride levels and liver tissues were collected and prepared for qRT-PCR or Western blot analysis. We found that triglyceride levels were increased five days after hemorrhagic shock/resuscitation, but decreased after addition of fish oil. After injury, the protein and gene expression of carnitine palmitoyltransferase 1A, fatty acid transport protein 1, and peroxisome proliferator-activated receptor-α decreased significantly in liver tissue. In contrast, after treatment with fish oil, the expression levels of these targets increased compared with those in the saline group. The present results suggest n-3 polyunsaturated fatty acids could improve lipid oxidation-related enzymes in liver subjected to hemorrhagic shock/resuscitation. This function is possibly accomplished through activating the peroxisome proliferator-activated receptor-α pathway.

  4. TSU-16, (Z)-3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-2-indolinone, is a potent activator of aryl hydrocarbon receptor and increases CYP1A1 and CYP1A2 expression in human hepatocytes.

    PubMed

    Matsuoka-Kawano, Kazuaki; Yoshinari, Kouichi; Nagayama, Sekio; Yamazoe, Yasushi

    2010-04-15

    (Z)-3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-2-indolinone (TSU-16), is a potent anti-angiogenic agent that inhibits the tyrosine kinase of vascular endothelial growth factor receptor-2. In clinical trials with daily or twice weekly intravenous administration of TSU-16, its increased clearance was observed. To understand the mechanism underlying this observation, we have investigated the TSU-16-mediated regulation of cytochrome P450 expression. In human hepatocytes, TSU-16 increased mRNA levels of CYP1A1 and CYP1A2, but not CYP2B6 and CYP3A4. The extent of increase and profiles of the time-dependent changes in CYP1A1 and CYP1A2 mRNA levels after TSU-16 treatment were similar to those after treatment with 3-methylcholanthrene (3MC), a well-known activator of the aryl hydrocarbon receptor (AhR). In reporter assays using a plasmid construct that contained the human CYP1A1 5'-flanking region including the region crucial for the AhR-dependent transcription of both human CYP1A1 and CYP1A2, TSU-16 treatment increased reporter activities to an extent similar to that obtained with 3MC. Treatment of HepG2 cells and human hepatocytes with AhR-targeting siRNA suppressed the increase in both mRNA levels and CYP1A activities after treatment with TSU-16 as well as after that with omeprazole or 3MC. TSU-16 also time-dependently reduced cellular AhR protein levels in HepG2 cells to a similar extent with 3MC treatment. Furthermore, we demonstrated that unlabeled TSU-16 and 3MC but not omeprazole completely inhibited the specific binding of [(3)H]-3MC to mouse Hepa1c1c7 cytosol, suggesting TSU-16 as an AhR ligand. In conclusion, our present results suggest that TSU-16 binds to and activates AhR to enhance the expression of both human CYP1A1 and CYP1A2. Because TSU-16 is metabolized mainly by CYP1A2, its increased clearance after repeated dosing may be attributed to the enhanced expression of hepatic CYP1A2.

  5. BACE2 expression increases in human neurodegenerative disease.

    PubMed

    Holler, Christopher J; Webb, Robin L; Laux, Ashley L; Beckett, Tina L; Niedowicz, Dana M; Ahmed, Rachel R; Liu, Yinxing; Simmons, Christopher R; Dowling, Amy L S; Spinelli, Angela; Khurgel, Moshe; Estus, Steven; Head, Elizabeth; Hersh, Louis B; Murphy, M Paul

    2012-01-01

    β-Secretase, the rate-limiting enzymatic activity in the production of the amyloid-β (Aβ) peptide, is a major target of Alzheimer's disease (AD) therapeutics. There are two forms of the enzyme: β-site Aβ precursor protein cleaving enzyme (BACE) 1 and BACE2. Although BACE1 increases in late-stage AD, little is known about BACE2. We conducted a detailed examination of BACE2 in patients with preclinical to late-stage AD, including amnestic mild cognitive impairment, and age-matched controls, cases of frontotemporal dementia, and Down's syndrome. BACE2 protein and enzymatic activity increased as early as preclinical AD and were found in neurons and astrocytes. Although the levels of total BACE2 mRNA were unchanged, the mRNA for BACE2 splice form C (missing exon 7) increased in parallel with BACE2 protein and activity. BACE1 and BACE2 were strongly correlated with each other at all levels, suggesting that their regulatory mechanisms may be largely shared. BACE2 was also elevated in frontotemporal dementia but not in Down's syndrome, even in patients with substantial Aβ deposition. Thus, expression of both forms of β-secretase are linked and may play a combined role in human neurologic disease. A better understanding of the normal functions of BACE1 and BACE2, and how these change in different disease states, is essential for the future development of AD therapeutics.

  6. Enhanced membrane protein expression by engineering increased intracellular membrane production

    PubMed Central

    2013-01-01

    Background Membrane protein research is frequently hampered by the low natural abundance of these proteins in cells and typically relies on recombinant gene expression. Different expression systems, like mammalian cells, insect cells, bacteria and yeast are being used, but very few research efforts have been directed towards specific host cell customization for enhanced expression of membrane proteins. Here we show that by increasing the intracellular membrane production by interfering with a key enzymatic step of lipid synthesis, enhanced expression of membrane proteins in yeast is achieved. Results We engineered the oleotrophic yeast, Yarrowia lipolytica, by deleting the phosphatidic acid phosphatase, PAH1, which led to massive proliferation of endoplasmic reticulum (ER) membranes. For all eight tested representatives of different integral membrane protein families, we obtained enhanced protein accumulation levels and in some cases enhanced proteolytic integrity in the ∆pah1 strain. We analysed the adenosine A2AR G-protein coupled receptor case in more detail and found that concomitant induction of the unfolded protein response in the ∆pah1 strain enhanced the specific ligand binding activity of the receptor. These data indicate an improved quality control mechanism for membrane proteins accumulating in yeast cells with proliferated ER. Conclusions We conclude that redirecting the metabolic flux of fatty acids away from triacylglycerol- and sterylester-storage towards membrane phospholipid synthesis by PAH1 gene inactivation, provides a valuable approach to enhance eukaryotic membrane protein production. Complementary to this improvement in membrane protein quantity, UPR co-induction further enhances the quality of the membrane protein in terms of its proper folding and biological activity. Importantly, since these pathways are conserved in all eukaryotes, it will be of interest to investigate similar engineering approaches in other cell types of

  7. Exergames: Increasing Physical Activity through Effective Instruction

    ERIC Educational Resources Information Center

    Rudella, Jennifer L.; Butz, Jennifer V.

    2015-01-01

    Due to the growing obesity epidemic in the United States, educators must consider new ways to increase physical activity in an effort to address obesity. There are a variety of ways educators can increase physical activity in the classroom, and exergames--video games that require physical movement in order to play--are a modern-day approach to…

  8. Expression of val-12 mutant ras p21 in an IL-3-dependent murine myeloid cell line is associated with loss of serum-dependence and increases in membrane PIP2-specific phospholipase C activity.

    PubMed

    Rizzo, M T; Boswell, H S; English, D; Gabig, T G

    1991-01-01

    We previously showed that the proliferative response of a serum- and interleukin-3 (IL-3)-dependent murine myeloid cell line, NFS/N1-H7, was partially inhibited by pertussis toxin as a result of toxin-induced increased adenylate cyclase activity. In the present studies, we examined the role of the phosphoinositide cycle in the proliferative response of these cells and demonstrated that there was no change in PIP (phosphatidylinositol bisphosphate)-specific phospholipase C activity in response to IL-3 alone. However, serum caused a pertussis toxin-insensitive increase in PIP2-specific phospholipase C activity as reflected by decreased cellular levels of 32P-labelled PIP2. Proliferation of a subline selected from val-12-mutant H-ras-transfected NFS-H7 cells, clone E5, was insensitive to pertussis toxin, occurred in the absence of serum but remained serum-stimulatable and absolutely dependent on IL-3. This val-12 mutant ras-expressing cell line showed an increase in 32P-labelled PIP (phosphatidylinositol phosphate) in response to serum whereas the parent cell line did not. Membrane fractions from 32P-labelled ras-transfected cells displayed higher GTP gamma S-, GTP-, or F(-)-stimulated PIP2-specific phospholipase C activity compared to membranes from the parent cell line. Thus serum-dependence and adenylate cyclase-mediated pertussis toxin-sensitivity of the parent cell line was bypassed by val-12 mutant ras p21, possibly as a result of increased PIP2-specific phospholipase C activity.

  9. Zinc pyrithione induces apoptosis and increases expression of Bim.

    PubMed

    Mann, J J; Fraker, P J

    2005-03-01

    We demonstrate herein that zinc pyrithione can induce apoptosis at nanomolar concentrations. Zinc pyrithione was a potent inducer of cell death causing greater than 40-60% apoptosis among murine thymocytes, murine splenic lymphocytes and human Ramos B and human Jurkat T cells. Conversely, the addition of a zinc chelator protected thymocytes against zinc pyrithione induced apoptosis indicating these responses were specific for zinc. Zinc-induced apoptosis was dependent on transcription and translation which suggested possible regulation by a proapoptotic protein. Indeed, zinc induced a 1.9 and 3.4 fold increase respectively in expression of the BimEL and BimL isoforms and also stimulated production of the most potent isoform, BimS. This increase in Bim isoform expression was dependent on transcription being blocked by treatment with actinomycin D. Overexpression of Bcl-2 or Bcl-xL provided substantial protection of Ramos B and Jurkat T cells against zinc-induced apoptosis. Zinc also activated the caspase cascade demonstrated by cleavage of caspase 9. Addition of specific inhibitors for caspase 9 and caspase 3 also blocked zinc-induced apoptosis. The data herein adds to the growing evidence that free or unbound zinc could be harmful to cells of the immune system.

  10. Hippocampal GR expression is increased in elderly depressed females.

    PubMed

    Wang, Q; Joels, M; Swaab, D F; Lucassen, P J

    2012-01-01

    Hyperactivity of the Hypthalamus-Pituitary-Adrenal (HPA)-axis is common in major depression and evident from e.g., a frequently exaggerated response to combined application of dexamethasone and CRH in this disorder. HPA-axis activity and hence the secretion of glucocorticoids (GC), the endpoint of the HPA-axis, depends to some extent on GC binding to glucocorticoid receptors (GR) that are abundantly expressed in the hippocampus. To assess whether differences in hippocampal GR expression occur in association with depression, we investigated GR-alpha protein immunoreactivity (ir) in postmortem hippocampal tissue of an elderly cohort of 9 well-characterized depressed patients and 9 control subjects that were pair-wise matched for age, sex, CSF-pH and postmortem delay. Abundant nuclear GR-ir was observed in neurons of the hippocampal Ammon's horn (CA) and dentate gyrus (DG) subregions. GR-ir in the DG correlated positively with age in the depressed but not the control group. Although no significant differences were found in GR-ir between the depressed and control groups, a significant increase in GR-ir was present in depressed females compared to depressed males. Whether this sex difference in hippocampal GR-ir in depression relates to the increased incidence of depression in females awaits further study. This article is part of a Special Issue entitled 'Anxiety and Depression'.

  11. Primary cultures of rat cortical microglia treated with nicotine increases in the expression of excitatory amino acid transporter 1 (GLAST) via the activation of the α7 nicotinic acetylcholine receptor.

    PubMed

    Morioka, N; Tokuhara, M; Nakamura, Y; Idenoshita, Y; Harano, S; Zhang, F F; Hisaoka-Nakashima, K; Nakata, Y

    2014-01-31

    Although the clearance of glutamate from the synapse under physiological conditions is performed by astrocytic glutamate transporters, their expression might be diminished under pathological conditions. Microglia glutamate transporters, however, might serve as a back-up system when astrocytic glutamate uptake is impaired, and could have a prominent neuroprotective function under pathological conditions. In the current study, the effect of nicotine, well known as a neuroprotective molecule, on the function of glutamate transporters in cultured rat cortical microglia was examined. Reverse transcription polymerase chain reaction and pharmacological approaches demonstrated that, glutamate/aspartate transporter (GLAST), not glutamate transporter 1 (GLT-1), is the major functional glutamate transporter in cultured cortical microglia. Furthermore, the α7 subunit was demonstrated to be the key subunit comprising nicotinic acetylcholine (nACh) receptors in these cells. Treatment of cortical microglia with nicotine led to a significant increase of GLAST mRNA expression and (14)C-glutamate uptake in a concentration- and time-dependent manner, which were markedly inhibited by pretreatment with methyllycaconitine, a selective α7 nACh receptor antagonist. The nicotine-induced expression of GLAST mRNA and protein is mediated through an inositol trisphosphate (IP3) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) depend intracellular pathway, since pretreatment with either xestospongin C, an IP3 receptor antagonist, or KN-93, a CaMKII inhibitor, blocked GLAST expression. Together, these findings indicate that activation of nACh receptors, specifically those expressing the α7 subunit, on cortical microglia could be a key mechanism of the neuroprotective effect of nACh receptor ligands such as nicotine.

  12. Human immunodeficiency virus type 1 infection of H9 cells induces increased glucose transporter expression.

    PubMed Central

    Sorbara, L R; Maldarelli, F; Chamoun, G; Schilling, B; Chokekijcahi, S; Staudt, L; Mitsuya, H; Simpson, I A; Zeichner, S L

    1996-01-01

    A clone obtained from a differential display screen for cellular genes with altered expression during human immunodeficiency virus (HIV) infection matched the sequence for the human GLUT3 facilitative glucose transporter, a high-velocity-high-affinity facilitative transporter commonly expressed in neurons of the central nervous system. Northern (RNA) analysis showed that GLUT3 expression increased during infection. Flow cytometry showed that GLUT3 protein expression increased specifically in the HIV-infected cells; this increase correlated with increased 2-deoxyglucose transport in the HIV-infected culture. HIV infection therefore leads to increased expression of a glucose transporter normally expressed at high levels in other cell types and a corresponding increase in glucose transport activity. If HIV infection places increased metabolic demands on the host cell, changes in the expression of a cellular gene that plays an important role in cellular metabolism might provide a more favorable environment for viral replication. PMID:8794382

  13. Morphine-Induced Constipation Develops With Increased Aquaporin-3 Expression in the Colon via Increased Serotonin Secretion.

    PubMed

    Kon, Risako; Ikarashi, Nobutomo; Hayakawa, Akio; Haga, Yusuke; Fueki, Aika; Kusunoki, Yoshiki; Tajima, Masataka; Ochiai, Wataru; Machida, Yoshiaki; Sugiyama, Kiyoshi

    2015-06-01

    Aquaporin-3 (AQP3) is a water channel that is predominantly expressed in the colon, where it plays a critical role in the regulation of fecal water content. This study investigated the role of AQP3 in the colon in morphine-induced constipation. AQP3 expression levels in the colon were analyzed after oral morphine administration to rats. The degree of constipation was analyzed after the combined administration of HgCl(2) (AQP3 inhibitor) or fluoxetine (5-HT reuptake transporter [SERT] inhibitor) and morphine. The mechanism by which morphine increased AQP3 expression was examined in HT-29 cells. AQP3 expression levels in rat colon were increased during morphine-induced constipation. The combination of HgCl(2) and morphine improved morphine-induced constipation. Treatment with morphine in HT-29 cells did not change AQP3 expression. However, 5-HT treatment significantly increased the AQP3 expression level and the nuclear translocation of peroxisome proliferator-activated receptor gamma (PPARγ) 1 h after treatment. Pretreatment with fluoxetine significantly suppressed these increases. Fluoxetine pretreatment suppressed the development of morphine-induced constipation and the associated increase in AQP3 expression in the colon. The results suggest that morphine increases the AQP3 expression level in the colon, which promotes water absorption from the luminal side to the vascular side and causes constipation. This study also showed that morphine-induced 5-HT secreted from the colon was taken into cells by SERT and activated PPARγ, which subsequently increased AQP3 expression levels.

  14. Increased Ribozyme Activity in Crowded Solutions*

    PubMed Central

    Desai, Ravi; Kilburn, Duncan; Lee, Hui-Ting; Woodson, Sarah A.

    2014-01-01

    Noncoding RNAs must function in the crowded environment of the cell. Previous small-angle x-ray scattering experiments showed that molecular crowders stabilize the structure of the Azoarcus group I ribozyme, allowing the ribozyme to fold at low physiological Mg2+ concentrations. Here, we used an RNA cleavage assay to show that the PEG and Ficoll crowder molecules increased the biochemical activity of the ribozyme, whereas sucrose did not. Crowding lowered the Mg2+ threshold at which activity was detected and increased total RNA cleavage at high Mg2+ concentrations sufficient to fold the RNA in crowded or dilute solution. After correcting for solution viscosity, the observed reaction rate was proportional to the fraction of active ribozyme. We conclude that molecular crowders stabilize the native ribozyme and favor the active structure relative to compact inactive folding intermediates. PMID:24337582

  15. Increased CRE-binding activity and tryptophan hydroxylase mRNA expression induced by 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") in the rat frontal cortex but not in the hippocampus.

    PubMed

    García-Osta, Ana; Del Río, Joaquín; Frechilla, Diana

    2004-07-26

    A single administration of either 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") or p-chloroamphetamine (PCA) produced a rapid and marked reduction of serotonin (5-HT) content in rat frontal cortex and hippocampus. In the cortex of MDMA-treated rats, 5-HT levels returned to control values 48 h after drug administration. This recovery was correlated with an induction of CRE-binding activity and an enhanced expression of tryptophan hydroxylase (TPH) mRNA, the rate-limiting enzyme in 5-HT biosynthesis, suggesting that MDMA may up-regulate the TPH gene through a CREB-dependent mechanism. In the cortex of PCA-treated rats, neither a recovery of 5-HT levels nor changes in DNA-binding or TPH mRNA were found at the same time point. In the hippocampus of rats receiving either PCA or MDMA a decrease in TPH mRNA levels was found at all times, along with a reduced CRE-binding at the 8-h time point. The results show region-specific effects of MDMA. In the frontal cortex, the increased TPH expression suggests a compensatory response to MDMA-induced loss of serotonergic function.

  16. A combination of biomolecules enhances expression of E-cadherin and peroxisome proliferator-activated receptor gene leading to increased cell proliferation in primary human meniscal cells: an in vitro study.

    PubMed

    Pillai, Mamatha M; Elakkiya, V; Gopinathan, J; Sabarinath, C; Shanthakumari, S; Sahanand, K Santosh; Dinakar Rai, B K; Bhattacharyya, Amitava; Selvakumar, R

    2016-10-01

    The present study investigates the impact of biomolecules (biotin, glucose, chondroitin sulphate, proline) as supplement, (individual and in combination) on primary human meniscus cell proliferation. Primary human meniscus cells isolated from patients undergoing meniscectomy were maintained in Dulbecco's Modified Eagle's Medium (DMEM). The isolated cells were treated with above mentioned biomolecules as individual (0-100 µg/ml) and in combinations, as a supplement to DMEM. Based on the individual biomolecule study, a unique combination of biomolecules (UCM) was finalized using one way ANOVA analysis. With the addition of UCM as supplement to DMEM, meniscal cells reached 100 % confluency within 4 days in 60 mm culture plate; whereas the cells in medium devoid of UCM, required 36 days for reaching confluency. The impact of UCM on cell viability, doubling time, histology, gene expression, biomarkers expression, extra cellular matrix synthesis, meniscus cell proliferation with respect to passages and donor's age were investigated. The gene expression studies for E-cadherin and peroxisome proliferator-activated receptor (PPAR∆) using RT-qPCR and immunohistochemical analysis for Ki67, CD34 and Vimentin confirmed that UCM has significant impact on cell proliferation. The extracellular collagen and glycosaminoglycan secretion in cells supplemented with UCM were found to increase by 31 and 37 fold respectively, when compared to control on the 4th day. The cell doubling time was reduced significantly when supplemented with UCM. The addition of UCM showed positive influence on different passages and age groups. Hence, this optimized UCM can be used as an effective supplement for meniscal tissue engineering.

  17. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA- OMVs, without further stimulating their proinflammatory activity on circulating monocytes.

    PubMed

    Tavano, Regina; Franzoso, Susanna; Cecchini, Paola; Cartocci, Elena; Oriente, Francesca; Aricò, Beatrice; Papini, Emanuele

    2009-07-01

    Hypervirulent MenB causing fatal human infections frequently display the oligomeric-coiled coil adhesin NadA, a 45-kDa intrinsic outer membrane protein implicated in binding to and invasion of respiratory epithelial cells. A recombinant soluble mutant lacking the 10-kDa COOH terminal membrane domain (NadA(Delta351-405)) also activates human monocytes/macrophages/DCs. As NadA is physiologically released during sepsis as part of OMVs, in this study, we tested the hypothesis that NadA(+) OMVs have an enhanced or modified proinflammatory/proimmune action compared with NadA(-) OMVs. To do this we investigated the activity of purified free NadA(Delta351-405) and of OMVs from MenB and Escherichia coli strains, expressing or not full-length NadA. NadA(Delta351-405) stimulated monocytes and macrophages to secrete cytokines (IL-1beta, TNF-alpha, IL-6, IL-12p40, IL-12p70, IL-10) and chemokines (IL-8, MIP-1alpha, MCP-1, RANTES), and full-length NadA improved MenB OMV activity, preferentially on macrophages, and only increased cytokine release. NadA(Delta351-405) induced the lymphocyte costimulant CD80 in monocytes and macrophages, and NadA(+) OMVs induced a wider set of molecules supporting antigen presentation (CD80, CD86, HLA-DR, and ICAM-1) more efficiently than NadA(-) OMVs only in macrophages. Moreover, membrane NadA effects, unlike NadA(Delta351-405) ones, were much less IFN-gamma-sensitive. The activity of NadA-positive E. coli OMVs was similar to that of control OMVs. NadA in MenB OMVs acted at adhesin concentrations approximately 10(6) times lower than those required to stimulate cells with free NadA(Delta351-405).

  18. NOX Activity Is Increased in Mild Cognitive Impairment

    PubMed Central

    Gupta, Sunita; Parrino, Taryn E.; Knight, Alecia G.; Ebenezer, Philip J.; Weidner, Adam M.; LeVine, Harry; Keller, Jeffrey N.; Markesbery, William R.

    2010-01-01

    Abstract This study was undertaken to investigate the profile of NADPH oxidase (NOX) in the clinical progression of Alzheimer's disease (AD). Specifically, NOX activity and expression of the regulatory subunit p47phox and the catalytic subunit gp91phox was evaluated in affected (superior and middle temporal gyri) and unaffected (cerebellum) brain regions from a longitudinally followed group of patients. This group included both control and late-stage AD subjects, and also subjects with preclinical AD and with amnestic mild cognitive impairment (MCI) to evaluate the profile of NOX in the earliest stages of dementia. Data show significant elevations in NOX activity and expression in the temporal gyri of MCI patients as compared with controls, but not in preclinical or late-stage AD samples, and not in the cerebellum. Immunohistochemical evaluations of NOX expression indicate that whereas microglia express high levels of gp91phox, moderate levels of gp91phox also are expressed in neurons. Finally, in vitro experiments showed that NOX inhibition blunted the ability of oligomeric amyloid beta peptides to injure cultured neurons. Collectively, these data show that NOX expression and activity are upregulated specifically in a vulnerable brain region of MCI patients, and suggest that increases in NOX-associated redox pathways in neurons might participate in the early pathogenesis of AD. Antioxid. Redox Signal. 12, 1371–1382. PMID:19929442

  19. Endotoxin tolerance impairs IL-1 receptor-associated kinase (IRAK) 4 and TGF-beta-activated kinase 1 activation, K63-linked polyubiquitination and assembly of IRAK1, TNF receptor-associated factor 6, and IkappaB kinase gamma and increases A20 expression.

    PubMed

    Xiong, Yanbao; Qiu, Fu; Piao, Wenji; Song, Chang; Wahl, Larry M; Medvedev, Andrei E

    2011-03-11

    Endotoxin tolerance reprograms Toll-like receptor 4 responses by impairing LPS-elicited production of pro-inflammatory cytokines without inhibiting expression of anti-inflammatory or anti-microbial mediators. In septic patients, Toll-like receptor tolerance is thought to underlie decreased pro-inflammatory cytokine expression in response to LPS and increased incidence of microbial infections. The impact of endotoxin tolerance on recruitment, post-translational modifications and signalosome assembly of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, TNF receptor-associated factor (TRAF) 6, TGF-β-activated kinase (TAK) 1, and IκB kinase (IKK) γ is largely unknown. We report that endotoxin tolerization of THP1 cells and human monocytes impairs LPS-mediated receptor recruitment and activation of IRAK4, ablates K63-linked polyubiquitination of IRAK1 and TRAF6, compromises assembly of IRAK1-TRAF6 and IRAK1-IKKγ platforms, and inhibits TAK1 activation. Deficiencies in these signaling events in LPS-tolerant cells coincided with increased expression of A20, an essential deubiquitination enzyme, and sustained A20-IRAK1 associations. Overexpression of A20 inhibited LPS-induced activation of NF-κB and ablated NF-κB reporter activation driven by ectopic expression of MyD88, IRAK1, IRAK2, TRAF6, and TAK1/TAB1, while not affecting the responses induced by IKKβ and p65. A20 shRNA knockdown abolished LPS tolerization of THP1 cells, mechanistically linking A20 and endotoxin tolerance. Thus, deficient LPS-induced activation of IRAK4 and TAK1, K63-linked polyubiquitination of IRAK1 and TRAF6, and disrupted IRAK1-TRAF6 and IRAK1-IKKγ assembly associated with increased A20 expression and A20-IRAK1 interactions are new determinants of endotoxin tolerance.

  20. Endotoxin Tolerance Impairs IL-1 Receptor-Associated Kinase (IRAK) 4 and TGF-β-activated Kinase 1 Activation, K63-linked Polyubiquitination and Assembly of IRAK1, TNF Receptor-associated Factor 6, and IκB Kinase γ and Increases A20 Expression*

    PubMed Central

    Xiong, Yanbao; Qiu, Fu; Piao, Wenji; Song, Chang; Wahl, Larry M.; Medvedev, Andrei E.

    2011-01-01

    Endotoxin tolerance reprograms Toll-like receptor 4 responses by impairing LPS-elicited production of pro-inflammatory cytokines without inhibiting expression of anti-inflammatory or anti-microbial mediators. In septic patients, Toll-like receptor tolerance is thought to underlie decreased pro-inflammatory cytokine expression in response to LPS and increased incidence of microbial infections. The impact of endotoxin tolerance on recruitment, post-translational modifications and signalosome assembly of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, TNF receptor-associated factor (TRAF) 6, TGF-β-activated kinase (TAK) 1, and IκB kinase (IKK) γ is largely unknown. We report that endotoxin tolerization of THP1 cells and human monocytes impairs LPS-mediated receptor recruitment and activation of IRAK4, ablates K63-linked polyubiquitination of IRAK1 and TRAF6, compromises assembly of IRAK1-TRAF6 and IRAK1-IKKγ platforms, and inhibits TAK1 activation. Deficiencies in these signaling events in LPS-tolerant cells coincided with increased expression of A20, an essential deubiquitination enzyme, and sustained A20-IRAK1 associations. Overexpression of A20 inhibited LPS-induced activation of NF-κB and ablated NF-κB reporter activation driven by ectopic expression of MyD88, IRAK1, IRAK2, TRAF6, and TAK1/TAB1, while not affecting the responses induced by IKKβ and p65. A20 shRNA knockdown abolished LPS tolerization of THP1 cells, mechanistically linking A20 and endotoxin tolerance. Thus, deficient LPS-induced activation of IRAK4 and TAK1, K63-linked polyubiquitination of IRAK1 and TRAF6, and disrupted IRAK1-TRAF6 and IRAK1-IKKγ assembly associated with increased A20 expression and A20-IRAK1 interactions are new determinants of endotoxin tolerance. PMID:21220427

  1. Asbestos exposure increases human bronchial epithelial cell fibrinolytic activity.

    PubMed

    Gross, T J; Cobb, S M; Gruenert, D C; Peterson, M W

    1993-03-01

    Chronic exposure to asbestos fibers results in fibrotic lung disease. The distal pulmonary epithelium is an early target of asbestos-mediated injury. Local plasmin activity may be important in modulating endoluminal inflammatory responses in the lung. We studied the effects of asbestos exposure on cell-mediated plasma clot lysis as a marker of pericellular plasminogen activation. Exposing human bronchial epithelial (HBE) cells to 100 micrograms/ml of asbestos fibers for 24 h resulted in increased plasma clot lysis. Fibrinolytic activity was augmented in a dose-dependent fashion, was not due to secreted protease, and occurred only when there was direct contact between the plasma clot and the epithelial monolayer. Further analysis showed that asbestos exposure increased HBE cell-associated urokinase-type plasminogen activator (uPA) activity in a time-dependent manner. The increased cell-associated PA activity could be removed by acid washing. The increase in PA activity following asbestos exposure required new protein synthesis because it was abrogated by treatment with either cycloheximide or actinomycin D. Therefore, asbestos exposure increases epithelial-mediated fibrinolysis by augmenting expression of uPA activity at the cell surface by mechanisms that require new RNA and protein synthesis. These observations suggest a novel mechanism whereby exposure of the distal epithelium to inhaled particulates may result in a chronic inflammatory response that culminates in the development of fibrotic lung disease.

  2. Increased intra- and extracellular granzyme expression in patients with tuberculosis.

    PubMed

    Garcia-Laorden, M Isabel; Blok, Dana C; Kager, Liesbeth M; Hoogendijk, Arie J; van Mierlo, Gerard J; Lede, Ivar O; Rahman, Wahid; Afroz, Rumana; Ghose, Aniruddha; Visser, Caroline E; Md Zahed, Abu Shahed; Husain, Md Anwar; Alam, Khan Mashrequl; Chandra Barua, Pravat; Hassan, Mahtabuddin; Hossain, Ahmed; Tayab, Md Abu; Day, Nick; Dondorp, Arjen M; de Vos, Alex F; van der Poll, Tom

    2015-09-01

    Tuberculosis (TB) is an important cause of morbidity and mortality worldwide. Granzymes (gzms) are proteases mainly found in cytotoxic lymphocytes, but also extracellularly. While the role of gzms in target cell death has been widely characterized, considerable evidence points towards broader roles related to infectious and inflammatory responses. To investigate the expression of the gzms in TB, intracellular gzms A, B and K were measured by flow cytometry in lymphocyte populations from peripheral blood mononuclear cells from 18 TB patients and 12 healthy donors from Bangladesh, and extracellular levels of gzmA and B were measured in serum from 58 TB patients and 31 healthy controls. TB patients showed increased expression of gzmA in CD8(+) T, CD4(+) T and CD56(+) T, but not NK, cells, and of gzmB in CD8(+) T cells, when compared to controls. GzmK expression was not altered in TB patients in any lymphocyte subset. The extracellular levels of gzmA and, to a lesser extent, of gzmB, were increased in TB patients, but did not correlate with intracellular gzm expression in lymphocyte subsets. Our results reveal enhanced intra- and extracellular expression of gzmA and B in patients with pulmonary TB, suggesting that gzms are part of the host response to tuberculosis.

  3. Thyroid hormone increases bulk histones expression by enhancing translational efficiency.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Villamuera, Raquel; Aranda, Ana

    2015-01-01

    The expression of canonical histones is normally coupled to DNA synthesis during the S phase of the cell cycle. Replication-dependent histone mRNAs do not contain a poly(A) tail at their 3' terminus, but instead possess a stem-loop motif, the binding site for the stem-loop binding protein (SLBP), which regulates mRNA processing, stability, and relocation to polysomes. Here we show that the thyroid hormone can increase the levels of canonical histones independent of DNA replication. Incubation of mouse embryonic fibroblasts with T3 increases the total levels of histones, and expression of the thyroid hormone receptor β induces a further increase. This is not restricted to mouse embryonic fibroblasts, because T3 also raises histone expression in other cell lines. T3 does not increase histone mRNA or SLBP levels, suggesting that T3 regulates histone expression by a posttranscriptional mechanism. Indeed, T3 enhanced translational efficiency, inducing relocation of histone mRNA to heavy polysomes. Increased translation was associated with augmented transcription of the eukaryotic translation initiation factor 4 γ2 (EIF4G2). T3 induced EIF4G2 protein and mRNA levels and the thyroid hormone receptor bound to the promoter region of the Eif4g2 gene. Induction of EIF4G2 was essential for T3-dependent histone induction, because depletion of this factor abolished histone increase. These results point out the importance of the thyroid hormones on the posttranscriptional regulation of histone biosynthesis in a cell cycle-independent manner and also suggest the potential regulation of eukaryotic translation by the modulation of the initiation factor EIF4G2, which also operates in the translation of canonical mRNAs.

  4. NAc Shell Arc/Arg3.1 Protein Mediates Reconsolidation of Morphine CPP by Increased GluR1 Cell Surface Expression: Activation of ERK-Coupled CREB is Required

    PubMed Central

    Lv, Xiu-Fang; Sun, Lin-Lin; Han, Ji-Sheng

    2015-01-01

    Background: Relapse into drug abuse evoked by reexposure to the drug-associated context has been a primary problem in the treatment of drug addiction. Disrupting the reconsolidation of drug-related context memory would therefore limit the relapse susceptibility. Methods: Morphine conditioned place preference (CPP) was used to assess activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and correlative molecule expression in the Nucleus accumbens (NAc) shell during the reconsolidation of morphine CPP. U0126 and Arc/Arg3.1 antisense oligodeoxynucleotide were adapted to evaluate the role and the underlying mechanism of Arc/Arg3.1 during the reconsolidation. Results: The retrieval of morphine CPP in rats specifically increased the Arc/Arg3.1 protein level in the NAc shell, accompanied simultaneously by increases in the phosphorylation of extracellular signal-regulated kinase1/2 (pERK1/2), the phosphorylation of Cyclic Adenosine monophosphate (cAMP) response element-binding (pCREB), and the up-regulation of the membrane α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors GluR1 subunit level. Intra-NAc shell infusion U0126, an inhibitor of the Mitogen-activated protein kinase kinase (MEK), prevented the retrieval-induced up-regulation of pERK1/2, pCREB, Arc/Arg3.1, and membrane GluR1 immediately after retrieval of morphine CPP. The effect of disrupting the reconsolidation of morphine CPP by U0126 could last for at least 14 days, and could not be evoked by a priming injection of morphine. Furthermore, the specific knockdown of Arc/Arg3.1 in the NAc shell decreased the membrane GluR1 level, and impaired both the reconsolidation and the reinstatement of morphine CPP. Conclusions: Arc/Arg3.1 in the NAc shell mediates the reconsolidation of morphine-associated context memory via up-regulating the level of membrane of GluR1, for which the local activation of the ERK-CREB signal pathway, as an upstream mechanism of Arc/Arg3.1, is required. PMID

  5. Progesterone increases brain-derived neuroptrophic factor expression and protects against glutamate toxicity in a mitogen-activated protein kinase- and phosphoinositide-3 kinase-dependent manner in cerebral cortical explants.

    PubMed

    Kaur, Paramjit; Jodhka, Parmeet K; Underwood, Wendy A; Bowles, Courtney A; de Fiebre, Nancyellen C; de Fiebre, Christopher M; Singh, Meharvan

    2007-08-15

    The higher prevalence and risk for Alzheimer's disease in women relative to men has been partially attributed to the precipitous decline in gonadal hormone levels that occurs in women following the menopause. Although considerable attention has been focused on the consequence of estrogen loss, and thus estrogen's neuroprotective potential, it is important to recognize that the menopause results in a precipitous decline in progesterone levels as well. In fact, progesterone is neuroprotective, although the precise mechanisms involved remain unclear. Based on our previous observation that progesterone elicits the phosphorylation of ERK and Akt, key effectors of the neuroprotective mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase (PI3-K) pathways, respectively, we determined whether activation of either of these pathways was necessary for progesterone-induced protection. With organotypic explants (slice culture) of the cerebral cortex, we found that progesterone protected against glutamate-induced toxicity. Furthermore, these protective effects were inhibited by either the MEK1/2 inhibitor UO126 or the PI3-K inhibitor LY294002, supporting the requirement for both the MAPK and PI3-K pathways in progesterone-induced protection. In addition, at a concentration and duration of treatment consistent with our neuroprotection data, progesterone also increased the expression of brain-derived neurotrophic factor (BDNF), at the level of both protein and mRNA. This induction of BDNF may be relevant to the protective effects of progesterone, in that inhibition of Trk signaling, with K252a, inhibited the protective effects of progesterone. Collectively, these data suggest that progesterone is protective via multiple and potentially related mechanisms. (c) 2007 Wiley-Liss, Inc.

  6. Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield.

    PubMed

    Sykorová, Blanka; Kuresová, Gabriela; Daskalova, Sasha; Trcková, Marie; Hoyerová, Klára; Raimanová, Ivana; Motyka, Václav; Trávnícková, Alena; Elliott, Malcolm C; Kamínek, Miroslav

    2008-01-01

    The manipulation of cytokinin levels by senescence-regulated expression of the Agrobacterium tumefaciens ipt gene through its control by the Arabidopsis SAG12 (senescence-associated gene 12) promoter is an efficient tool for the prolongation of leaf photosynthetic activity which potentially can affect plant productivity. In the present study, the efficiency of this approach was tested on wheat (Triticum aestivum L.)-a monocarpic plant characterized by a fast switch from vegetative to reproductive growth, and rapid translocation of metabolites from leaves to developing grains after anthesis. When compared with the wild-type (WT) control plants, the SAG12::ipt wheat plants exhibited delayed chlorophyll degradation only when grown under limited nitrogen (N) supply. Ten days after anthesis the content of chlorophyll and bioactive cytokinins of the first (flag) leaf of the transgenic plants was 32% and 65% higher, respectively, than that of the control. There was a progressive increase in nitrate influx and nitrate reductase activity. However, the SAG12::ipt and the WT plants did not show differences in yield-related parameters including number of grains and grain weight. These results suggest that the delay of leaf senescence in wheat also delays the translocation of metabolites from leaves to developing grains, as indicated by higher accumulation of ((15)N-labelled) N in spikes of control compared with transgenic plants prior to anthesis. This delay interferes with the wheat reproductive strategy that is based on a fast programmed translocation of metabolites from the senescing leaves to the reproductive sinks shortly after anthesis.

  7. Empowering Multi-Cohort Gene Expression Analysis to Increase Reproducibility

    PubMed Central

    Haynes, Winston A; Vallania, Francesco; Liu, Charles; Bongen, Erika; Tomczak, Aurelie; Andres-Terrè, Marta; Lofgren, Shane; Tam, Andrew; Deisseroth, Cole A; Li, Matthew D; Sweeney, Timothy E

    2016-01-01

    A major contributor to the scientific reproducibility crisis has been that the results from homogeneous, single-center studies do not generalize to heterogeneous, real world populations. Multi-cohort gene expression analysis has helped to increase reproducibility by aggregating data from diverse populations into a single analysis. To make the multi-cohort analysis process more feasible, we have assembled an analysis pipeline which implements rigorously studied meta-analysis best practices. We have compiled and made publicly available the results of our own multi-cohort gene expression analysis of 103 diseases, spanning 615 studies and 36,915 samples, through a novel and interactive web application. As a result, we have made both the process of and the results from multi-cohort gene expression analysis more approachable for non-technical users. PMID:27896970

  8. Lnc-CC3 increases metastasis in cervical cancer by increasing Slug expression

    PubMed Central

    Jiang, Binyuan; Sun, Ruili; Fang, Shujuan; Qin, Changfei; Pan, Xi; Peng, Li; Li, Yuehui; Li, Guancheng

    2016-01-01

    Although screening has reduced mortality rates, metastasis still results in poor survival and prognosis in cervical cancer patients. We compared cervical cancer ESTs libraries with other ESTs libraries to identify candidate genes and cloned a novel cervical cancer-associated lncRNA, lnc-CC3. Overexpression of lnc-CC3 promoted migration and invasion by SiHa cervical cancer cells in vitro and in vivo, increased Slug expression, and reduced the expression of the epithelial cell marker E-cadherin. Conversely, lnc-CC3 knockdown altered SiHa cell morphology and increased the expression of E-cadherin, thereby suppressing migration and invasion. These results suggest lnc-CC3 may be a useful marker of metastasis in cervical cancer. PMID:27223436

  9. Increased proteasome activity determines human embryonic stem cell identity

    PubMed Central

    Vilchez, David; Boyer, Leah; Morantte, Ianessa; Lutz, Margaret; Merkwirth, Carsten; Joyce, Derek; Spencer, Brian; Page, Lesley; Masliah, Eliezer; Berggren, W. Travis; Gage, Fred H.; Dillin, Andrew

    2016-01-01

    Embryonic stem cells are able to replicate continuously in the absence of senescence and, therefore, are immortal in culture1,2. While genome stability is central for survival of stem cells; proteome stability may play an equally important role in stem cell identity and function. Additionally, with the asymmetric divisions invoked by stem cells, the passage of damaged proteins to daughter cells could potentially destroy the resulting lineage of cells. We hypothesized that stem cells have an increased proteostasis ability compared to their differentiated counterparts and asked whether proteasome activity differed among human embryonic stem cells (hESCs). Notably, hESC populations exhibit a high proteasome activity that is correlated with increased levels of the 19S proteasome subunit PSMD11/RPN-63–5 and a corresponding increased assembly of the 26S/30S proteasome. Ectopic expression of PSMD11 is sufficient to increase proteasome assembly and activity. Proteasome inhibition affects pluripotency of hESCs inducing differentiation towards specific cell lineages. FOXO4, an insulin/IGF-1 responsive transcription factor associated with long lifespan in invertebrates6,7, regulates proteasome activity by modulating the expression of PSMD11 in hESCs. Our results establish a novel regulation of proteostasis in hESCs that links longevity and stress resistance in invertebrates with hESC function and identity. PMID:22972301

  10. Increased matriptase zymogen activation in inflammatory skin disorders

    PubMed Central

    Chen, Cheng-Jueng; Wu, Bai-Yao; Tsao, Pai-In; Chen, Chi-Yung; Wu, Mei-Hsuan; Chan, Yee Lam E.; Lee, Herng-Sheng; Johnson, Michael D.; Eckert, Richard L.; Chen, Ya-Wen; Chou, Fengpai; Lin, Chen-Yong

    2011-01-01

    Matriptase, a type 2 transmembrane serine protease, and its inhibitor hepatocyte growth factor activator inhibitor (HAI)-1 are required for normal epidermal barrier function, and matriptase activity is tightly regulated during this process. We therefore hypothesized that this protease system might be deregulated in skin disease. To test this, we examined the level and activation state of matriptase in examples of 23 human skin disorders. We first examined matriptase and HAI-1 protein distribution in normal epidermis. Matriptase was detected at high levels at cell-cell junctions in the basal layer and spinous layers but was present at minimal levels in the granular layer. HAI-1 was distributed in a similar pattern, except that high-level expression was retained in the granular layer. This pattern of expression was retained in most skin disorders. We next examined the distribution of activated matriptase. Although activated matriptase is not detected in normal epidermis, a dramatic increase is seen in keratinocytes at the site of inflammation in 16 different skin diseases. To gain further evidence that activation is associated with inflammatory stimuli, we challenged HaCaT cells with acidic pH or H2O2 and observed matriptase activation. These findings suggest that inflammation-associated reactive oxygen species and tissue acidity may enhance matriptase activation in some skin diseases. PMID:21123732

  11. Increased adipose tissue expression of Grb14 in several models of insulin resistance.

    PubMed

    Cariou, Bertrand; Capitaine, Nadège; Le Marcis, Véronique; Vega, Nathalie; Béréziat, Véronique; Kergoat, Micheline; Laville, Martine; Girard, Jean; Vidal, Hubert; Burnol, Anne-Françoise

    2004-06-01

    Grb14 is an effector of insulin signaling, which directly inhibits insulin receptor catalytic activity in vitro. Here, we investigated whether the expression of Grb14 and its binding partner ZIP (PKC zeta interacting protein) is regulated during insulin resistance in type 2 diabetic rodents and humans. Grb14 expression was increased in adipose tissue of both ob/ob mice and Goto-Kakizaki (GK) rats, whereas there was no difference in liver. An increase was also observed in subcutaneous adipose tissue of type 2 diabetic subjects when compared with controls. ZIP expression was increased in adipose tissue of ob/ob mice and type 2 diabetic patients, but it did not vary in GK rats. Hormonal regulation of Grb14 and ZIP expression was then investigated in 3T3-F442A adipocytes. In this model, insulin stimulated Grb14 expression, while TNF-alpha increased ZIP expression. Moreover, the insulin-sensitizing drugs thiazolidinediones (TZDs) decreased Grb14 expression in 3T3-F442A adipocytes. Finally, we investigated the dynamic regulation of Grb14 expression in ob/ob mice in several conditions improving their insulin sensitivity. Prolonged fasting and treatment with metformin significantly decreased Grb14 expression in peri-epidydimal adipose tissue, while there was only a trend to a diminution after TZD treatment. Taken together, these results suggest that the regulation of Grb14 expression in adipose tissue may play a physiological role in insulin sensitivity.

  12. [Increase of physical activity by improvement of the nutritional status].

    PubMed

    Torún, B

    1989-09-01

    Physical activity is affected by nutritional modifications and, in turn, influences growth, cognition, social behavior, work performance and other functions. Studies in preschool children showed that: 1. A decrease in energy intake during four to seven days reduced the time allocated to energy-demanding activities and increased sedentary activities. 2. Children with mild weight deficit were more sedentary than well-nourished counterparts. 3. Children became more active when nutritional status improved. 4. A 10% reduction in energy intake reduced total energy expenditure by 15% without affecting weight gain nor basal metabolism. Studies of men working in non-mechanized agriculture showed that: 1. Dietary improvements led to faster salaried work, reduction of napping time and greater physical activity after work. 2. An increase in energy intake increased total daily energy expenditure, tending to maintain energy balance and relatively stable body weight within the cyclic variations of the agricultural year. 3. Food supplementation did not necessarily improve productivity. Other labor incentives without dietary improvements increased energy expenditure during working hours, which resulted in weight loss. In conclusion, good health and nutrition provide the biological basis for adequate physical activity that may improve cognitive development, social interactions, economic productivity and the quality of life of an individual or a population, but other incentives are required for the optimal expression of that biologic potential.

  13. Increased expression of blood mononuclear cell nitric oxide synthase type 2 in rheumatoid arthritis patients.

    PubMed

    St Clair, E W; Wilkinson, W E; Lang, T; Sanders, L; Misukonis, M A; Gilkeson, G S; Pisetsky, D S; Granger, D I; Weinberg, J B

    1996-09-01

    Nitric oxide (NO) is an important inflammatory mediator in nonhuman animal models of rheumatoid arthritis (RA). The purpose of the present study was to determine whether blood mononuclear cells from patients with active RA (as compared to control subjects) have higher levels of NO synthase type 2 (NOS2) and produce more NO in vitro. Leukocytes from 25 RA patients and 20 normal subjects were examined. Arthritis activity was assessed by tender and swollen joint counts, duration of morning stiffness, patient assessment of pain, physician and patient global assessment of disease activity, the modified Stanford Health Assessment Questionnaire, and by blood levels of acute phase reactants. Blood mononuclear cell NOS enzyme activity/antigen content and nitrite/nitrate formation in vitro were measured. Blood mononuclear cells from RA patients had increased NOS activity and increased NOS2 antigen content as compared to those from normal subjects, and responded to interferon-gamma with increased NOS expression and nitrite/nitrate production in vitro. NOS activity of freshly isolated blood mononuclear cells correlated significantly with disease activity, as assessed by render and swollen joint counts. Our results demonstrate that patients with RA have systemic activation for NOS2 expression, and that the degree of activation correlates with disease activity. Increased NOS2 expression and NO generation may be important in the pathogenesis of RA.

  14. Activation of protease activated receptor 1 increases the excitability of the dentate granule neurons of hippocampus

    PubMed Central

    2011-01-01

    Protease activated receptor-1 (PAR1) is expressed in multiple cell types in the CNS, with the most prominent expression in glial cells. PAR1 activation enhances excitatory synaptic transmission secondary to the release of glutamate from astrocytes following activation of astrocytically-expressed PAR1. In addition, PAR1 activation exacerbates neuronal damage in multiple in vivo models of brain injury in a manner that is dependent on NMDA receptors. In the hippocampal formation, PAR1 mRNA appears to be expressed by a subset of neurons, including granule cells in the dentate gyrus. In this study we investigate the role of PAR activation in controlling neuronal excitability of dentate granule cells. We confirm that PAR1 protein is expressed in neurons of the dentate cell body layer as well as in astrocytes throughout the dentate. Activation of PAR1 receptors by the selective peptide agonist TFLLR increased the intracellular Ca2+ concentration in a subset of acutely dissociated dentate neurons as well as non-neuronal cells. Bath application of TFLLR in acute hippocampal slices depolarized the dentate gyrus, including the hilar region in wild type but not in the PAR1-/- mice. PAR1 activation increased the frequency of action potential generation in a subset of dentate granule neurons; cells in which PAR1 activation triggered action potentials showed a significant depolarization. The activation of PAR1 by thrombin increased the amplitude of NMDA receptor-mediated component of EPSPs. These data suggest that activation of PAR1 during normal function or pathological conditions, such as during ischemia or hemorrhage, can increase the excitability of dentate granule cells. PMID:21827709

  15. Exercise Sandals Increase Lower Extremity Electromyographic Activity During Functional Activities

    PubMed Central

    Hirth, Christopher J.; Guskiewicz, Kevin M.

    2003-01-01

    Objective: Anecdotal evidence suggests that use of Exercise Sandals results in a number of positive clinical outcomes. However, little research has been conducted to determine their efficacy objectively. Our purposes were to determine the effect of Exercise Sandals on lower leg electromyography (EMG) during activities in the Exercise Sandals and to compare EMG associated with Exercise Sandals with traditional lower extremity rehabilitation exercises. Design and Setting: Two within-subjects, repeated-measures designs were used to identify differences in lower extremity EMG: (1) between activities with and without Exercise Sandals and (2) between Exercise Sandals activities and traditional rehabilitation activities. All data were collected in the Sports Medicine Research Laboratory. Subjects: Eighteen subjects involved in rehabilitation using Exercise Sandals for at least 2 weeks within the year before data collection. Measurements: Mean EMG amplitudes from the tibialis anterior, peroneus longus, soleus, and lateral gastrocnemius muscles were measured during single-leg stance, side stepping, and “high knees,” all performed with and without the Exercise Sandals, as well as single-leg stance on a foam surface and T-band kicks in the sagittal and frontal planes. Results: Exercise Sandals increased lower leg EMG activity, particularly in the ankle invertors and evertors. Also, activities involving the Exercise Sandals resulted in EMG activity similar to or exceeding that associated with traditional ankle-rehabilitation exercises. Conclusions: These results, coupled with the fact that Exercise Sandals are used in a functional closed kinetic chain manner, suggest that they are an effective means of increasing lower extremity muscle activity. PMID:14608427

  16. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses

    PubMed Central

    Stegle, Oliver; Parts, Leopold; Piipari, Matias; Winn, John; Durbin, Richard

    2012-01-01

    We present PEER (probabilistic estimation of expression residuals), a software package implementing statistical models that improve the sensitivity and interpretability of genetic associations in population-scale expression data. This approach builds on factor analysis methods that infer broad variance components in the measurements. PEER takes as input transcript profiles and covariates from a set of individuals, and then outputs hidden factors that explain much of the expression variability. Optionally, these factors can be interpreted as pathway or transcription factor activations by providing prior information about which genes are involved in the pathway or targeted by the factor. The inferred factors are used in genetic association analyses. First, they are treated as additional covariates, and are included in the model to increase detection power for mapping expression traits. Second, they are analyzed as phenotypes themselves to understand the causes of global expression variability. PEER extends previous related surrogate variable models and can be implemented within hours on a desktop computer. PMID:22343431

  17. Kynurenine signaling increases DNA polymerase kappa expression and promotes genomic instability in glioblastoma cells

    PubMed Central

    Bostian, April C.L.; Maddukuri, Leena; Reed, Megan R.; Savenka, Tatsiana; Hartman, Jessica H.; Davis, Lauren; Pouncey, Dakota L.; Miller, Grover P.; Eoff, Robert L.

    2015-01-01

    Over-expression of the translesion synthesis polymerase (TLS pol) hpol κ in glioblastomas has been linked to a poor patient prognosis; however, the mechanism promoting higher expression in these tumors remains unknown. We determined that activation of the aryl hydrocarbon receptor (AhR) pathway in glioblastoma cells leads to increased hpol κ mRNA and protein levels. We blocked nuclear translocation and DNA binding by the AhR in glioblastoma cells using a small-molecule and observed decreased hpol κ expression. Pharmacological inhibition of tryptophan-2,3-dioxygenase (TDO), the enzyme largely responsible for activating the AhR in glioblastomas, led to a decrease in the endogenous AhR agonist kynurenine (Kyn) and a corresponding decrease in hpol κ protein levels. Importantly, we discovered that inhibiting TDO activity, AhR signaling, or suppressing hpol κ expression with RNA interference led to decreased chromosomal damage in glioblastoma cells. Epistasis assays further supported the idea that TDO activity, activation of AhR signaling and the resulting over-expression of hpol κ function primarily in the same pathway to increase endogenous DNA damage. These findings indicate that up-regulation of hpol κ through glioblastoma-specific TDO activity and activation of AhR signaling likely contributes to the high levels of replication stress and genomic instability observed in these tumors. PMID:26651356

  18. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  19. Thrombin Increases Expression of Fibronectin Antigen on the Platelet Surface

    NASA Astrophysics Data System (ADS)

    Ginsberg, Mark H.; Painter, Richard G.; Forsyth, Jane; Birdwell, Charles; Plow, Edward F.

    1980-02-01

    Fibronectins (fn) are adhesive glycoproteins which bind to collagen and to fibrin and appear to be important in cellular adhesion to other cells or surfaces. Fn-related antigen is present in human platelets, suggesting a possible role for fn in the adhesive properties of platelets. We have studied the localization of fn in resting and thrombin-stimulated platelets by immunofluorescence and quantitative binding of radiolabeled antibody. In resting fixed platelets, variable light surface staining for fn was observed. When these cells were made permeable to antibody with detergent, staining for fn was markedly enhanced and was present in a punctate distribution, suggesting intracellular localization. Stimulation with thrombin, which is associated with increased platelet adhesiveness, resulted in increased staining for fn antigen on intact platelets. These stimulated cells did not leak 51Cr nor did they stain for F-actin, thus documenting that the increased fn staining was not due to loss of plasma membrane integrity. The thrombin-induced increase in accessible platelet fn antigen was confirmed by quantitative antibody binding studies in which thrombin-stimulated platelets specifically bound 15 times as much radiolabeled F(ab')2 anti-fn as did resting cells. Thus, thrombin stimulation results in increased expression of fn antigen on the platelet surface. Here it may participate in interactions with fibrin, connective tissue, or other cells.

  20. Increased longevity mediated by yeast NDI1 expression in Drosophila intestinal stem and progenitor cells

    PubMed Central

    Hur, Jae H.; Bahadorani, Sepehr; Graniel, Jacqueline; Koehler, Christopher L.; Ulgherait, Matthew; Rera, Michael; Jones, D. Leanne; Walker, David W.

    2013-01-01

    A functional decline in tissue stem cells and mitochondrial dysfunction have each been linked to aging and multiple aging-associated pathologies. However, the interplay between energy homeostasis, stem cells, and organismal aging remains poorly understood. Here, we report that expression of the single-subunit yeast alternative NADH dehydrogenase, ndi1, in Drosophila intestinal stem and progenitor cells delays the onset of multiple markers of intestinal aging and extends lifespan. In addition, expression of ndi1 in the intestine increases feeding behavior and results in organismal weight gain. Consistent with increased nutrient uptake, flies expressing ndi1 in the digestive tract display a systemic reduction in the activity of AMP-activated protein kinase (AMPK), a key cellular energy sensor. Together, these results demonstrate that ndi1 expression in the intestinal epithelium is an effective strategy to delay tissue and organismal aging. PMID:24038661

  1. Increased caveolin-1 expression in Alzheimer's disease brain.

    PubMed

    Gaudreault, Sophie B; Dea, Doris; Poirier, Judes

    2004-07-01

    Increasing evidence suggests that cholesterol plays a central role in the pathophysiology of Alzheimer's disease (AD). Caveolin is a cholesterol-binding membrane protein involved in cellular cholesterol transport. We investigated the changes in the protein amount of hippocampal caveolin of autopsy-confirmed AD and aged-matched control subjects. Our results demonstrate that caveolin protein levels in the hippocampus and caveolin mRNA in the frontal cortex are up-regulated in AD by approximately two-fold, compared to control brains. These results suggest a relationship between caveolin-1 expression levels and a dysregulation of cholesterol homeostasis at the plasma membrane of brain cells. In support of this hypothesis, a significant increase in caveolin protein levels has also been observed in hippocampal tissue from ApoE-deficient (knockout) and aged wild-type mice; two situations associated with modifications of transbilayer distribution of cholesterol in brain synaptic plasma membranes. These results indicate that caveolin over-expression is linked to alterations of cholesterol distribution in the plasma membrane of brain cells and are consistent with the notion of a deterioration of cholesterol homeostasis in AD.

  2. The transcription factor regulatory factor X1 increases the expression of neuronal glutamate transporter type 3.

    PubMed

    Ma, Kaiwen; Zheng, Shuqiu; Zuo, Zhiyi

    2006-07-28

    Glutamate transporters (excitatory amino acid transporters, EAAT) play an important role in maintaining extracellular glutamate homeostasis and regulating glutamate neurotransmission. However, very few studies have investigated the regulation of EAAT expression. A binding sequence for the regulatory factor X1 (RFX1) exists in the promoter region of the gene encoding for EAAT3, a neuronal EAAT, but not in the promoter regions of the genes encoding for EAAT1 and EAAT2, two glial EAATs. RFX proteins are transcription factors binding to X-boxes of DNA sequences. Although RFX proteins are necessary for the normal function of sensory neurons in Caenorhabditis elegans, their roles in the mammalian brain are not known. We showed that RFX1 increased EAAT3 expression and activity in C6 glioma cells. RFX1 binding complexes were found in the nuclear extracts of C6 cells. The activity of EAAT3 promoter as measured by luciferase reporter activity was increased by RFX1 in C6 cells and the neuron-like SH-SY5Y cells. However, RFX1 did not change the expression of EAAT2 proteins in the NRK52E cells. RFX1 proteins were expressed in the neurons of rat brain. A high expression level of RFX1 proteins was found in the neurons of cerebral cortex and Purkinje cells. Knockdown of the RFX1 expression by RFX1 antisense oligonucleotides decreased EAAT3 expression in rat cortical neurons in culture. These results suggest that RFX1 enhances the activity of EAAT3 promoter to increase the expression of EAAT3 proteins. This study provides initial evidence for the regulation of gene expression in the nervous cells by RFX1.

  3. Anxiogenic-like activity of 3,4-methylenedioxy-methamphetamine ("Ecstasy") in the social interaction test is accompanied by an increase of c-fos expression in mice amygdala.

    PubMed

    Navarro, José Francisco; Rivera, Alicia; Maldonado, Enrique; Cavas, María; de la Calle, Adelaida

    2004-03-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a synthetic amphetamine popularly known as "Ecstasy." Animal studies examining acute effects of MDMA on anxiety are unclear because although an anxiolytic-like action of MDMA in different animal models of anxiety has been described, there is also substantial evidence supporting an anxiogenic-like effect of this drug. To date, several studies have examined c-fos expression following MDMA administration in rats. However, there is no information about the MDMA-induced c-fos expression in mice previously tested in an animal model of anxiety. In this study, male mice were injected with MDMA (1, 8 and 15 mg/kg ip) and assessed for changes on anxiety and for the expression of the immediate early gene c-fos in the amygdala (central, basolateral and basomedial). Anxiety was evaluated by the "social interaction test." Ten behavioral categories were recorded: body care, digging, nonsocial exploration, exploration from a distance, social investigation, threat, attack, avoidance/flee, defense/submission and immobility. As compared with the control group, mice treated with MDMA (all doses) showed a decrease in mean duration and total time spent in social investigation behaviors, whereas avoidance/flee behaviors were significantly increased after treatment with this compound (8 and 15 mg/kg). Likewise, a significant increase in c-fos expression was found in the basolateral (all doses) and central (15 mg/kg) amygdala after MDMA administration. Overall, these findings indicate that MDMA exhibits an anxiogenic-like profile in the social interaction test in mice, and that central and basolateral amygdala might be involved in these anxiogenic-like effects of the drug.

  4. School Programs to Increase Physical Activity

    ERIC Educational Resources Information Center

    Lee, Amelia; Solmon, Melinda

    2007-01-01

    A quality physical education program is at the heart of any plan to promote lifelong participation in physical activity, but it has become evident at many schools that physical education specialists alone cannot address the physical activity needs of children. This is why a series of studies were conducted to develop strategies for the…

  5. Increased AICD generation does not result in increased nuclear translocation or activation of target gene transcription

    SciTech Connect

    Waldron, Elaine; Isbert, Simone; Kern, Andreas; Jaeger, Sebastian; Martin, Anne M.; Hebert, Sebastien S.; Behl, Christian; Weggen, Sascha; De Strooper, Bart; Pietrzik, Claus U.

    2008-08-01

    A sequence of amyloid precursor protein (APP) cleavages culminates in the sequential release of the APP intracellular domain (AICD) and the amyloid {beta} peptide (A{beta}) and/or p3 fragment. One of the environmental factors favouring the accumulation of AICD appears to be a rise in intracellular pH. Here we further identified the metabolism and subcellular localization of artificially expressed constructs under such conditions. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely cleaved from C83. While the AICD surplus was unable to further activate transcription of a luciferase reporter via a Gal4-DNA-binding domain, it failed entirely via the endogenous promoter regions of proposed target genes, APP and KAI1. The lack of a specific transactivation potential was also demonstrated by the unchanged levels of target gene mRNA. However, rather than translocating to the nucleus, the AICD surplus remains membrane tethered or free in the cytosol where it interacts with Fe65. Therefore we provide strong evidence that an increase in AICD generation does not directly promote gene activation of previously proposed target 0011gen.

  6. Weight gain increases human aromatase expression in mammary gland.

    PubMed

    Chen, Dong; Zhao, Hong; Coon, John S; Ono, Masanori; Pearson, Elizabeth K; Bulun, Serdar E

    2012-05-15

    Adulthood weight gain predicts estrogen receptor-positive breast cancer. Because local estrogen excess in the breast likely contributes to cancer development, and aromatase is the key enzyme in estrogen biosynthesis, we investigated the role of local aromatase expression in weight gain-associated breast cancer risk in a humanized aromatase (Arom(hum)) mouse model containing the coding region and the 5'-regulatory region of the human aromatase gene. Compared with littermates on normal chow, female Arom(hum) mice on a high fat diet gained more weight, and had a larger mammary gland mass with elevated total human aromatase mRNA levels via promoters I.4 and II associated with increased levels of their regulators TNFα and C/EBPβ. There was no difference in total human aromatase mRNA levels in gonadal white adipose tissue. Our data suggest that diet-induced weight gain preferentially stimulates local aromatase expression in the breast, which may lead to local estrogen excess and breast cancer risk.

  7. Increased expression of nestin in human pterygial epithelium

    PubMed Central

    Wen, Dan; Wang, Hua; Heng, Boon Chin; Liu, Hua

    2013-01-01

    AIM To investigate the distribution of nestin-positive cells in pterygium, as well as the relationship between nestin-positive cells and proliferative cells in the pathogenesis of pterygium. METHODS Nine pterygium specimens and 5 normal conjunctiva specimens were investigated. All explanted specimens were immediately immersed in 5-Ethynyl-2′-deoxyuridine, and were subjected to hematoxylin and eosin staining, as well as immunostaining to detect nestin. RESULTS Small sub-populations of nestin-expressing cells in both normal and pterygial conjunctiva epithelium were found. These were located at the superficial layer of the epithelium, and were significantly increased (P=0.007) and spread out in the pterygial conjunctiva epithelium, even though these cells were mitotically quiescent. CONCLUSION In pterygium, more nestin-positive cells were present at the superficial layer of the epithelium. With growing scientific evidence that nestin plays an important role in defining various specialized cell types, such as stem cells, cancer cells and angiogenic cells, further investigations on the roles of nestin-expressing cells in pterygium may help to uncover the mechanisms of initiation, development and the prognosis of this disease. PMID:23826515

  8. Bradykinin promotes vascular endothelial growth factor expression and increases angiogenesis in human prostate cancer cells.

    PubMed

    Yu, Hsin-Shan; Wang, Shih-Wei; Chang, An-Chen; Tai, Huai-Ching; Yeh, Hung-I; Lin, Yu-Min; Tang, Chih-Hsin

    2014-01-15

    Prostate cancer is the most commonly diagnosed malignancy in men and shows a tendency for metastasis to distant organs. Angiogenesis is required for metastasis. Bradykinin (BK) is an inflammatory mediator involved in tumor growth and metastasis, but its role in vascular endothelial growth factor (VEGF) expression and angiogenesis in human prostate cancer remains unknown. The aim of this study was to examine whether BK promotes prostate cancer angiogenesis via VEGF expression. We found that exogenous BK increased VEGF expression in prostate cancer cells and further promoted tube formation in endothelial progenitor cells and human umbilical vein endothelial cells. Pretreatment of prostate cancer with B2 receptor antagonist or small interfering RNA (siRNA) reduced BK-mediated VEGF production. The Akt and mammalian target of rapamycin (mTOR) pathways were activated after BK treatment, and BK-induced VEGF expression was abolished by the specific inhibitor and siRNA of the Akt and mTOR cascades. BK also promoted nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) activity. Importantly, BK knockdown reduced VEGF expression and abolished prostate cancer cell conditional medium-mediated angiogenesis. Taken together, these results indicate that BK operates through the B2 receptor, Akt, and mTOR, which in turn activate NF-κB and AP-1, activating VEGF expression and contributing to angiogenesis in human prostate cancer cells.

  9. Carcinogen-induced trans activation of gene expression.

    PubMed Central

    Kleinberger, T; Flint, Y B; Blank, M; Etkin, S; Lavi, S

    1988-01-01

    We report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later. Images PMID:2835673

  10. Carcinogen-induced trans activation of gene expression

    SciTech Connect

    Kleinberger, T.; Flint, Y.B.; Blank, M.; Etkin, S.; Lavi, S.

    1988-03-01

    The authors report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later.

  11. Methotrexate increases skeletal muscle GLUT4 expression and improves metabolic control in experimental diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term administration of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) mimics the effects of endurance exercise by activating AMP kinase and by increasing skeletal muscle expression of GLUT4 glucose transporter. AICAR is an intermediate in the purine de novo synthesis, and its tissue conc...

  12. The neurotensin agonist PD149163 increases Fos expression in the prefrontal cortex of the rat.

    PubMed

    Petrie, Kimberly A; Bubser, Michael; Casey, Cheryl D; Davis, M Duff; Roth, Bryan L; Deutch, Ariel Y

    2004-10-01

    Dopaminergic axons innervating the prefrontal cortex (PFC) target both pyramidal cells and GABAergic interneurons. Many of these dopamine (DA) axons in the rat coexpress the peptide neurotransmitter neurotensin. Previous electrophysiological data have suggested that neurotensin activates GABAergic interneurons in the PFC. Activation of D2-like DA receptors increases extracellular GABA levels in the PFC, as opposed to the striatum, where D2 receptor activation inhibits GABAergic neurons. Because activation of presynaptic D2 release-modulating autoreceptors in the PFC suppresses DA release but increases release of the cotransmitter neurotensin, D2 agonists may enhance the activity of GABAergic interneurons via release of neurotensin. In order to determine if neurotensin can activate GABAergic interneurons, we treated rats with the peptide neurotensin agonist, PD149163, and examined Fos expression in PFC neurons. Systemic administration of PD149163 increased overall Fos expression in the PFC, but not in the dorsal striatum. PD149163 induced Fos in PFC interneurons, as defined by the presence of calcium-binding proteins, and in pyramidal cells. Pretreatment with the high-affinity neurotensin antagonist, SR48692, blocked neurotensin agonist-induced Fos expression. These data suggest that neurotensin activates interneurons in the PFC of the rat.

  13. TLR ligands and butyrate increase Pyy expression through two distinct but inter-regulated pathways.

    PubMed

    Larraufie, Pierre; Doré, Joël; Lapaque, Nicolas; Blottière, Hervé M

    2017-02-01

    The intestinal epithelium is an active barrier separating the host from its microbiota. It senses microbial compounds through expression of a wide range of receptors including the Toll-like receptors (TLRs). TLRs have been shown to regulate epithelium permeability or secretion of defensin by Paneth cells. However, the expression and function of TLRs in enteroendocrine L-cells, a specific subtype of intestinal cells secreting PYY and GLP-1, have not yet been assessed. PYY and GLP-1 are implicated in regulation of gut motility, food intake and insulin secretion, and are of great interest regarding obesity and type 2 diabetes. Using a cellular model of human L-cells and a reporter system for NF-κB activation pathway, we reported functional expression of TLRs in these cells. Stimulation with specific TLR-agonists increased expression of Pyy but not Proglucagon in an NF-κB-dependent manner. Moreover, the effect of TLR stimulation was additive to butyrate, a product of bacterial fermentation, on Pyy expression. Additionally, butyrate also increased Tlr expression, including Tlr4, and the NF-κB response to TLR stimulation. Altogether, our results demonstrated a role of TLRs in the modulation of Pyy expression and the importance of butyrate, a product of bacterial fermentation in regulation of microbial TLR-dependent sensing.

  14. Increased ABCA1 activity protects against atherosclerosis.

    PubMed

    Singaraja, Roshni R; Fievet, Catherine; Castro, Graciela; James, Erick R; Hennuyer, Nathalie; Clee, Susanne M; Bissada, Nagat; Choy, Jonathan C; Fruchart, Jean-Charles; McManus, Bruce M; Staels, Bart; Hayden, Michael R

    2002-07-01

    The ABC transporter ABCA1 plays a key role in the first steps of the reverse cholesterol transport pathway by mediating lipid efflux from macrophages. Previously, it was demonstrated that human ABCA1 overexpression in vivo in transgenic mice results in a mild elevation of plasma HDL levels and increased efflux of cholesterol from macrophages. In this study, we determined the effect of overexpression of ABCA1 on atherosclerosis development. Human ABCA1 transgenic mice (BAC(+)) were crossed with ApoE(-/-) mice, a strain that spontaneously develop atherosclerotic lesions. BAC(+)ApoE(-/-) mice developed dramatically smaller, less-complex lesions as compared with their ApoE(-/-) counterparts. In addition, there was increased efflux of cholesterol from macrophages isolated from the BAC(+)ApoE(-/-) mice. Although the increase in plasma HDL cholesterol levels was small, HDL particles from BAC(+)ApoE(-/-) mice were significantly better acceptors of cholesterol. Lipid analysis of HDL particles from BAC(+)ApoE(-/-) mice revealed an increase in phospholipid levels, which was correlated significantly with their ability to enhance cholesterol efflux.

  15. Exercise-Mediated Increase in Nigral Tyrosine Hydroxylase Is Accompanied by Increased Nigral GFR-α1 and EAAC1 Expression in Aging Rats

    PubMed Central

    Arnold, Jennifer C.; Salvatore, Michael F.

    2016-01-01

    Exercise may alleviate locomotor impairment in Parkinson's disease (PD) or aging. Identifying molecular responses immediately engaged by exercise in the nigrostriatal pathway and allied tissue may reveal critical targets associated with its long-term benefits. In aging, there is loss of tyrosine hydroxylase (TH) and the glial cell line-derived neurotrophic factor (GDNF) receptor, GFR-α1, in the substantia nigra (SN). Exercise can increase GDNF expression, but its effect on GFR-α1 expression is unknown. Infusion of GDNF into striatum or GFR-α1 in SN, respectively, can increase locomotor activity and TH function in SN but not striatum in aged rats. GDNF may also increase glutamate transporter expression, which attenuates TH loss in PD models. We utilized a footshock-free treadmill exercise regimen to determine the immediate impact of short-term exercise on GFR-α1 expression, dopamine regulation, glutamate transporter expression, and glutamate uptake in 18 month old male Brown-Norway/Fischer 344 F1 hybrid rats. GFR-α1 and TH expression significantly increased in SN but not striatum. This exercise regimen did not affect glutamate uptake or glutamate transporter expression in striatum. However, EAAC1 expression increased in SN. These results indicate that nigral GFR-α1 and EAAC1 expression increased in conjunction with increased nigral TH expression following short-term exercise. PMID:26599339

  16. Memory-enhancing corticosterone treatment increases amygdala norepinephrine and Arc protein expression in hippocampal synaptic fractions.

    PubMed

    McReynolds, Jayme R; Donowho, Kyle; Abdi, Amin; McGaugh, James L; Roozendaal, Benno; McIntyre, Christa K

    2010-03-01

    Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of memory for emotionally arousing events through interactions with the noradrenergic system of the basolateral complex of the amygdala (BLA). We previously reported that intra-BLA administration of a beta-adrenoceptor agonist immediately after inhibitory avoidance training enhanced memory consolidation and increased hippocampal expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc). In the present experiments corticosterone (3 mg/kg, i.p.) was administered to male Sprague-Dawley rats immediately after inhibitory avoidance training to examine effects on long-term memory, amygdala norepinephrine levels, and hippocampal Arc expression. Corticosterone increased amygdala norepinephrine levels 15 min after inhibitory avoidance training, as assessed by in vivo microdialysis, and enhanced memory tested at 48 h. Corticosterone treatment also increased expression of Arc protein in hippocampal synaptic tissue. The elevation in BLA norepinephrine appears to participate in corticosterone-influenced modulation of hippocampal Arc expression as intra-BLA blockade of beta-adrenoceptors with propranolol (0.5 microg/0.2 microL) attenuated the corticosterone-induced synaptic Arc expression in the hippocampus. These findings indicate that noradrenergic activity at BLA beta-adrenoceptors is involved in corticosterone-induced enhancement of memory consolidation and expression of the synaptic-plasticity-related protein Arc in the hippocampus.

  17. Chromosome 1 replacement increases brain orexins and antidepressive measures without increasing locomotor activity.

    PubMed

    Feng, Pingfu; Hu, Yufen; Vurbic, Drina; Akladious, Afaf; Strohl, Kingman P

    2014-12-01

    Decreased orexin level has been well demonstrated in patients suffering from narcolepsy, depression accompanied with suicide attempt; obstructive sleep apnea and comorbidity were also demonstrated in these diseases. As C57BL/6J (B6) mice are more "depressed" and have lower brain orexins than A/J mice, B6 mice having chromosome 1 replacement (B6A1 mice) might have restored orexin levels and less depressive behavior. We studied the behavior of 4-6 month old B6, A/J and B6A1 mice with forced swim, tail suspension, and locomotor activity tests. The animals were then sacrificed and hypothalamus and medullas dissected from brain tissue. Orexins-A and -B were determined by radioimmunoassay. Compared with A/J mice, B6 mice displayed several signs of depression, including increased immobility, increased locomotors activity, and decreased orexin A and -B levels in both the hypothalamus and medulla. Compared to B6 mice, B6A1 mice exhibited significantly higher levels of orexins-A and -B in both brain regions. B6A1 mice also exhibited antidepressive features in most of measured variables, including decreased locomotor activity, decreased immobility and increased swim in tail suspension test; compared with B6 mice, however. B6A1 mice also reversed immobility in the early phase of the swim test. In summary, B6 mice exhibited depressive attributes compared with A/J mice, including increased locomotor activity, greater immobility, and decreased brain orexins, these were largely reversed in B6A1 mice. We conclude that orexin levels modulate these B6 behaviors, likely due to expression of A/J alleles on Chromosome 1.

  18. Reduced Vglut2/Slc17a6 Gene Expression Levels throughout the Mouse Subthalamic Nucleus Cause Cell Loss and Structural Disorganization Followed by Increased Motor Activity and Decreased Sugar Consumption

    PubMed Central

    Smith-Anttila, Casey J.A.; Nordenankar, Karin; Arvidsson, Emma; Mahmoudi, Souha; Zampera, André; Wärner Jonsson, Hanna; Bergquist, Jonas; Lévesque, Daniel; Andersson, Malin; Dumas, Sylvie

    2016-01-01

    The subthalamic nucleus (STN) plays a central role in motor, cognitive, and affective behavior. Deep brain stimulation (DBS) of the STN is the most common surgical intervention for advanced Parkinson’s disease (PD), and STN has lately gained attention as target for DBS in neuropsychiatric disorders, including obsessive compulsive disorder, eating disorders, and addiction. Animal studies using STN-DBS, lesioning, or inactivation of STN neurons have been used extensively alongside clinical studies to unravel the structural organization, circuitry, and function of the STN. Recent studies in rodent STN models have exposed different roles for STN neurons in reward-related functions. We have previously shown that the majority of STN neurons express the vesicular glutamate transporter 2 gene (Vglut2/Slc17a6) and that reduction of Vglut2 mRNA levels within the STN of mice [conditional knockout (cKO)] causes reduced postsynaptic activity and behavioral hyperlocomotion. The cKO mice showed less interest in fatty rewards, which motivated analysis of reward-response. The current results demonstrate decreased sugar consumption and strong rearing behavior, whereas biochemical analyses show altered dopaminergic and peptidergic activity in the striatum. The behavioral alterations were in fact correlated with opposite effects in the dorsal versus the ventral striatum. Significant cell loss and disorganization of the STN structure was identified, which likely accounts for the observed alterations. Rare genetic variants of the human VGLUT2 gene exist, and this study shows that reduced Vglut2/Slc17a6 gene expression levels exclusively within the STN of mice is sufficient to cause strong modifications in both the STN and the mesostriatal dopamine system. PMID:27699212

  19. Evaluation of preventive and therapeutic activity of novel non-steroidal anti-inflammatory drug, CG100649, in colon cancer: Increased expression of TNF-related apoptosis-inducing ligand receptors enhance the apoptotic response to combination treatment with TRAIL.

    PubMed

    Woo, Jong Kyu; Kang, Ju-Hee; Jang, Yeong-Su; Ro, Seonggu; Cho, Joong Myung; Kim, Hwan-Mook; Lee, Sang-Jin; Oh, Seung Hyun

    2015-04-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been suggested as the potential new class of preventive or therapeutic antitumor agents. The aim of the present study was to evaluate the antitumor activity of the novel NSAID, CG100649. CG100649 is a novel NSAID dual inhibitor for COX-2 and carbonic anhydrase (CA)-I/-II. In the present study, we investigated the alternative mechanism by which CG100649 mediated suppression of the colon cancer growth and development. The anchorage‑dependent and -independent clonogenic assay showed that CG100649 inhibited the clonogenicity of human colon cancer cells. The flow cytometric analysis showed that CG100649 induced the G2/M cell cycle arrest in colon cancer cells. Animal studies showed that CG100649 inhibited the tumor growth in colon cancer xenograft in nude mice. Furthermore, quantitative PCR and FACS analysis demonstrated that CG100649 upregulated the expression of TNF-related apoptosis-inducing ligand (TRAIL) receptors (DR4 and DR5) but decreased the expression of decoy receptors (DcR1 and DcR2) in colon cancer cells. The results showed that CG100649 treatment sensitized TRAIL‑mediated growth suppression and apoptotic cell death. The combination treatment resulted in significant repression of the intestinal polyp formation in APCmin/+ mice. Our data clearly demonstrated that CG100649 contains preventive and therapeutic activity for colon cancer. The present study may be useful for identification of the potential benefit of the NSAID CG100649, for the achievement of a better treatment response in colon cancer.

  20. Hypermaintenance and hypofunction of aged spermatogonia: insight from age-related increase of Plzf expression.

    PubMed

    Ferder, Ianina C; Wang, Ning

    2015-06-30

    Like stem cells in other tissues, spermatogonia, including spermatogonial stem cells (SSCs) at the foundation of differentiation hierarchy, undergo age-related decline in function. The promyelocytic leukemia zinc finger (Plzf) protein plays an essential role in spermatogonia maintenance by preventing their differentiation. To evaluate whether there is an age-related change in Plzf expression, we found that aged mouse testes exhibited a robust "Plzf overexpression" phenotype, in that they showed not only a higher frequency of Plzf-expressing cells but also an increased level of Plzf expression in these cells. Moreover, some Plzf-expressing cells in aged testes even aberrantly appeared in the differentiating spermatogonia compartment, which is usually low or negative for Plzf expression. Importantly, ectopic Plzf expression in F9 cells suppressed retinoic acid (RA)-induced Stra8 activation, a gene required for meiosis initiation. These data, together with our observation of a lack of meiosis-initiating spermatocytes associated with high Plzf-expressing spermatogonia in the aged testes, particularly in the degenerative seminiferous tubules, suggest that age-related increase in Plzf expression represents a novel molecular signature of spermatogonia aging by functionally arresting their differentiation.

  1. Deimination level and peptidyl arginine deiminase 2 expression are elevated in astrocytes with increased incubation temperature.

    PubMed

    Enriquez-Algeciras, Mabel; Bhattacharya, Sanjoy K; Serra, Horacio M

    2015-09-01

    Astrocytes respond to environmental cues, including changes in temperatures. Increased deimination, observed in many progressive neurological diseases, is thought to be contributed by astrocytes. We determined the level of deimination and expression of peptidyl arginine deiminase 2 (PAD2) in isolated primary astrocytes in response to changes on either side (31°C and 41°C) of the optimal temperature (37°C). We investigated changes in the astrocytes by using a number of established markers and accounted for cell death with the CellTiter-Blue assay. We found increased expression of glial fibrillary acidic protein, ALDH1L1, and J1-31, resulting from increased incubation temperature and increased expression of TSP1, S100β, and AQP4, resulting from decreased incubation temperature vs. optimal temperature, suggesting activation of different biochemical pathways in astrocytes associated with different incubation temperatures. Mass spectrometric analyses support such trends. The PAD2 level was increased only as a result of increased incubation temperature with a commensurate increased level of deimination. Actin cytoskeleton and iso[4]LGE, a lipid peroxidase modification, also showed an increase with higher incubation temperature. Altogether, these results suggest that temperature, as an environmental cue, activates astrocytes in a different manner on either side of the optimal temperature and that increase in deimination is associated only with the higher temperature side of the spectrum.

  2. Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells.

    PubMed

    Zhao, Chun-Peng; Guo, Xiao; Chen, Si-Jia; Li, Chang-Zheng; Yang, Yun; Zhang, Jun-He; Chen, Shao-Nan; Jia, Yan-Long; Wang, Tian-Yun

    2017-02-20

    Matrix attachment regions (MARs) are cis-acting DNA elements that can increase transgene expression levels in a CHO cell expression system. To investigate the effects of MAR combinations on transgene expression and the underlying regulatory mechanisms, we generated constructs in which the enhanced green fluorescent protein (eGFP) gene flanked by different combinations of human β-interferon and β-globin MAR (iMAR and gMAR, respectively), which was driven by the cytomegalovirus (CMV) or simian virus (SV) 40 promoter. These were transfected into CHO-K1 cells, which were screened with geneticin; eGFP expression was detected by flow cytometry. The presence of MAR elements increased transfection efficiency and transient and stably expression of eGFP expression under both promoters; the level was higher when the two MARs differed (i.e., iMAR and gMAR) under the CMV but not the SV40 promoter. For the latter, two gMARs showed the highest activity. We also found that MARs increased the ratio of stably transfected positive colonies. These results indicate that combining the CMV promoter with two different MAR elements or the SV40 promoter with two gMARs is effective for inducing high expression level and stability of transgenes.

  3. Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells

    PubMed Central

    Zhao, Chun-Peng; Guo, Xiao; Chen, Si-Jia; Li, Chang-Zheng; Yang, Yun; Zhang, Jun-He; Chen, Shao-Nan; Jia, Yan-Long; Wang, Tian-Yun

    2017-01-01

    Matrix attachment regions (MARs) are cis-acting DNA elements that can increase transgene expression levels in a CHO cell expression system. To investigate the effects of MAR combinations on transgene expression and the underlying regulatory mechanisms, we generated constructs in which the enhanced green fluorescent protein (eGFP) gene flanked by different combinations of human β-interferon and β-globin MAR (iMAR and gMAR, respectively), which was driven by the cytomegalovirus (CMV) or simian virus (SV) 40 promoter. These were transfected into CHO-K1 cells, which were screened with geneticin; eGFP expression was detected by flow cytometry. The presence of MAR elements increased transfection efficiency and transient and stably expression of eGFP expression under both promoters; the level was higher when the two MARs differed (i.e., iMAR and gMAR) under the CMV but not the SV40 promoter. For the latter, two gMARs showed the highest activity. We also found that MARs increased the ratio of stably transfected positive colonies. These results indicate that combining the CMV promoter with two different MAR elements or the SV40 promoter with two gMARs is effective for inducing high expression level and stability of transgenes. PMID:28216629

  4. Stromal p16 expression is significantly increased in endometrial carcinoma.

    PubMed

    Yoon, Gun; Koh, Chang Won; Yoon, Nara; Kim, Ji-Ye; Kim, Hyun-Soo

    2017-01-17

    p16 is a negative regulator of cell proliferation and is considered a tumor suppressor protein. Alterations in p16 protein expression are associated with tumor development and progression. However, the p16 expression status in the peritumoral stroma has not been investigated in the endometrium. Therefore, we evaluated stromal p16 expression in different types of endometrial lesions using immunohistochemistry. Differences in the p16 expression status according to the degree of malignancy and histological type were analyzed. This study included 62, 26, and 36 cases of benign, precancerous, and malignant endometrial lesions, respectively. Most benign lesions showed negative or weak expression, whereas precancerous lesions showed a variable degree of staining proportion and intensity. Atypical hyperplasia/endometrial intraepithelial neoplasia (AH/EIN) and serous endometrial intraepithelial carcinoma (SEIC) had significantly higher stromal p16 expression levels than benign lesions. Endometrioid carcinoma (EC), serous carcinoma (SC), and carcinosarcoma showed significantly elevated stromal p16 expression levels compared with benign and precancerous lesions. In addition, there were significant differences in stromal p16 expression between AH/EIN and SEIC and between EC and SC. In contrast, differences in stromal p16 expression among nonpathological endometrium, atrophic endometrium, endometrial polyp, and hyperplasia without atypia were not statistically significant. Our observations suggest that stromal p16 expression is involved in the development and progression of endometrial carcinoma, and raise the possibility that p16 overexpression in the peritumoral stroma is associated with aggressive oncogenic behavior of endometrial SC.

  5. Increased Phosphoenolpyruvate Carboxykinase Gene Expression and Steatosis during Hepatitis C Virus Subgenome Replication

    PubMed Central

    Qadri, Ishtiaq; Choudhury, Mahua; Rahman, Shaikh Mizanoor; Knotts, Trina A.; Janssen, Rachel C.; Schaack, Jerome; Iwahashi, Mieko; Puljak, Livia; Simon, Francis R.; Kilic, Gordan; Fitz, J. Gregory; Friedman, Jacob E.

    2012-01-01

    Chronic hepatitis C virus (HCV) infection greatly increases the risk for type 2 diabetes and nonalcoholic steatohepatitis; however, the pathogenic mechanisms remain incompletely understood. Here we report gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) transcription and associated transcription factors are dramatically up-regulated in Huh.8 cells, which stably express an HCV subgenome replicon. HCV increased activation of cAMP response element-binding protein (CREB), CCAAT/enhancer-binding protein (C/EBPβ), forkhead box protein O1 (FOXO1), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and involved activation of the cAMP response element in the PEPCK promoter. Infection with dominant-negative CREB or C/EBPβ-shRNA significantly reduced or normalized PEPCK expression, with no change in PGC-1α or FOXO1 levels. Notably, expression of HCV nonstructural component NS5A in Huh7 or primary hepatocytes stimulated PEPCK gene expression and glucose output in HepG2 cells, whereas a deletion in NS5A reduced PEPCK expression and lowered cellular lipids but was without effect on insulin resistance, as demonstrated by the inability of insulin to stimulate mobilization of a pool of insulin-responsive vesicles to the plasma membrane. HCV-replicating cells demonstrated increases in cellular lipids with insulin resistance at the level of the insulin receptor, increased insulin receptor substrate 1 (Ser-312), and decreased Akt (Ser-473) activation in response to insulin. C/EBPβ-RNAi normalized lipogenic genes sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor γ, and liver X receptor α but was unable to reduce accumulation of triglycerides in Huh.8 cells or reverse the increase in ApoB expression, suggesting a role for increased lipid retention in steatotic hepatocytes. Collectively, these data reveal an important role of NS5A, C/EBPβ, and pCREB in promoting HCV-induced gluconeogenic gene expression

  6. Dexamethasone increases aquaporin-2 protein expression in ex vivo inner medullary collecting duct suspensions

    PubMed Central

    Chen, Minguang; Cai, Hui; Klein, Janet D.; Laur, Oskar; Chen, Guangping

    2015-01-01

    Aquaporin-2 (AQP2) is the vasopressin-regulated water channel that controls renal water reabsorption and plays an important role in the maintenance of body water homeostasis. Excessive glucocorticoid as often seen in Cushing's syndrome causes water retention. However, whether and how glucocorticoid regulates AQP2 remains unclear. In this study, we examined the direct effect of dexamethasone on AQP2 protein expression and activity. Dexamethasone increased AQP2 protein abundance in rat inner medullary collecting duct (IMCD) suspensions. This was confirmed in HEK293 cells transfected with AQP2 cDNA. Cell surface protein biotinylation showed an increase of dexamethasone-induced cell membrane AQP2 expression and this effect was blocked by glucocorticoid receptor antagonist RU486. Functionally, dexamethasone treatment of oocytes injected with an AQP2 cRNA increased water transport activity as judged by cell rupture time in a hypo-osmotic solution (66 ± 13 s in dexamethasone vs. 101 ± 11 s in control, n = 15). We further found that dexamethasone treatment reduced AQP2 protein degradation, which could result in an increase of AQP2 protein. Interestingly, dexamethasone promoted cell membrane AQP2 moving to less buoyant lipid raft submicrodomains. Taken together, our data demonstrate that dexamethasone promotes AQP2 protein expression and increases water permeability mainly via inhibition of AQP2 protein degradation. The increase in AQP2 activity promotes water reabsorption, which may contribute to glucocorticoid-induced water retention and hypertension. PMID:26578982

  7. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    PubMed Central

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  8. Constitutive androstane receptor activation evokes the expression of glycolytic genes.

    PubMed

    Yarushkin, Andrei A; Kazantseva, Yuliya A; Prokopyeva, Elena A; Markova, Diana N; Pustylnyak, Yuliya A; Pustylnyak, Vladimir O

    2016-09-23

    It is well-known that constitutive androstane receptor (CAR) activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases the liver-to-body weight ratio. CAR-mediated liver growth is correlated with increased expression of the pleiotropic transcription factor cMyc, which stimulates cell cycle regulatory genes and drives proliferating cells into S phase. Because glycolysis supports cell proliferation and cMyc is essential for the activation of glycolytic genes, we hypothesized that CAR-mediated up-regulation of cMyc in mouse livers might play a role in inducing the expression of glycolytic genes. The aim of the present study was to examine the effect of long-term CAR activation on glycolytic genes in a mouse model not subjected to metabolic stress. We demonstrated that long-term CAR activation by TCPOBOP increases expression of cMyc, which was correlated with reduced expression of gluconeogenic genes and up-regulation of glucose transporter, glycolytic and mitochondrial pyruvate metabolising genes. These changes in gene expression after TCPOBOP treatment were strongly correlated with changes in levels of glycolytic intermediates in mouse livers. Moreover, we demonstrated a significant positive regulatory effect of TCPOBOP-activated CAR on both mRNA and protein levels of Pkm2, a master regulator of glucose metabolism and cell proliferation. Thus, our findings provide evidence to support the conclusion that CAR activation initiates a transcriptional program that facilitates the coordinated metabolic activities required for cell proliferation.

  9. Deletion of Rictor in brain and fat alters peripheral clock gene expression and increases blood pressure.

    PubMed

    Drägert, Katja; Bhattacharya, Indranil; Pellegrini, Giovanni; Seebeck, Petra; Azzi, Abdelhalim; Brown, Steven A; Georgiopoulou, Stavroula; Held, Ulrike; Blyszczuk, Przemyslaw; Arras, Margarete; Humar, Rok; Hall, Michael N; Battegay, Edouard; Haas, Elvira

    2015-08-01

    The mammalian target of rapamycin complex 2 (mTORC2) contains the essential protein RICTOR and is activated by growth factors. mTORC2 in adipose tissue contributes to the regulation of glucose and lipid metabolism. In the perivascular adipose tissue, mTORC2 ensures normal vascular reactivity by controlling expression of inflammatory molecules. To assess whether RICTOR/mTORC2 contributes to blood pressure regulation, we applied a radiotelemetry approach in control and Rictor knockout (Rictor(aP2KO)) mice generated using adipocyte protein-2 gene promoter-driven CRE recombinase expression to delete Rictor. The 24-hour mean arterial pressure was increased in Rictor(aP2KO) mice, and the physiological decline in mean arterial pressure during the dark period was impaired. In parallel, heart rate and locomotor activity were elevated during the dark period with a pattern similar to blood pressure changes. This phenotype was associated with mild cardiomyocyte hypertrophy, decreased cardiac natriuretic peptides, and their receptor expression in adipocytes. Moreover, clock gene expression was reduced or phase-shifted in perivascular adipose tissue. No differences in clock gene expression were observed in the master clock suprachiasmatic nucleus, although Rictor gene expression was also lower in brain of Rictor(aP2KO) mice. Thus, this study highlights the importance of RICTOR/mTORC2 for interactions between vasculature, adipocytes, and brain to tune physiological outcomes, such as blood pressure and locomotor activity.

  10. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors

    PubMed Central

    Boer, Karin; Crino, Peter B.; Gorter, Jan A.; Nellist, Mark; Jansen, Floor E.; Spliet, Wim G.M.; van Rijen, Peter C.; Wittink, Floyd R.A.; Breit, Timo M.; Troost, Dirk; Wadman, Wytse J.; Aronica, Eleonora

    2009-01-01

    Cortical tubers in patients with tuberous sclerosis complex are associated with disabling neurological manifestations, including intractable epilepsy. While these malformations are believed to result from the effects of TSC1 or TSC2 gene mutations, the molecular mechanisms leading to tuber formation, as well as the onset of seizures remain largely unknown. We used the Affymetrix Gene Chip platform to provide the first genome wide investigation of gene expression in surgically resected tubers, compared with histological normal perituberal tissue from the same patients or autopsy control tissue. We identified 2501 differentially expressed genes in cortical tubers compared with autopsy controls. Expression of genes associated with cell adhesion e.g., VCAM1, integrins and CD44, or with the inflammatory response, including complement factors, serpinA3, CCL2 and several cytokines, was increased in cortical tubers, whereas genes related to synaptic transmission e.g., the glial glutamate transporter GLT-1, and voltage-gated channel activity, exhibited lower expression. Gene expression in perituberal cortex was distinct from autopsy control cortex suggesting that even in the absence of tissue pathology the transcriptome is altered in TSC. Changes in gene expression yield insights into new candidate genes that may contribute to tuber formation or seizure onset, representing new targets for potential therapeutic development. PMID:19912235

  11. Hyperoxia increases hepatic arginase expression and ornithine production in mice

    SciTech Connect

    Malleske, Daniel T.; Rogers, Lynette K.; Velluci, Sean M.; Young, Tamara L.; Park, Min S.; Long, Donald W.; Welty, Stephen E.; Smith, Charles V.; Nelin, Leif D. . E-mail: NelinL@pediatrics.ohio-state.edu

    2006-08-15

    Hyperoxic exposure affects the levels and activities of some hepatic proteins. We tested the hypothesis that hyperoxic exposure would result in greater hepatic .NO concentrations. C3H/HeN mice were exposed to >95% O{sub 2} for 72 or 96 h and compared to room air-breathing controls. In contrast to our working hypothesis, exposure to >95% O{sub 2} for 96 h decreased hepatic nitrite/nitrate NO {sub X} concentrations (10.9 {+-} 2.2 nmol/g liver versus 19.3 {+-} 2.4 nmol/g liver in room air, P < 0.05). The hepatic levels of endothelial NO synthase (eNOS) and inducible NOS (iNOS) proteins were not different among the groups. The arginases, which convert L-arginine to urea and L-ornithine, may affect hepatic NOS activities by decreasing L-arginine bioavailability. Hepatic ornithine concentrations were greater in hyperoxic animals than in controls (318 {+-} 18 nmol/g liver in room air, and 539 {+-} 64, and 475 {+-} 40 at 72 and 96 h of hyperoxia, respectively, P < 0.01). Hepatic arginase I protein levels were greater in hyperoxic animals than in controls. Hepatic carbamoyl phosphate synthetase (CPS) protein levels and activities were not different among groups. These results indicate that increases in hepatic levels of arginase I in mice exposed to hyperoxia may diminish .NO production, as reflected by lower liver levels of NO {sub X}. The resultant greater hepatic ornithine concentrations may represent a mechanism to facilitate tissue repair, by favoring the production of polyamines and/or proline.

  12. miR-155 regulates HGAL expression and increases lymphoma cell motility

    PubMed Central

    Dagan, Liat Nadav; Jiang, Xiaoyu; Bhatt, Shruti; Cubedo, Elena; Rajewsky, Klaus

    2012-01-01

    HGAL, a prognostic biomarker in patients with diffuse large B-cell lymphoma and classic Hodgkin lymphoma, inhibits lymphocyte and lymphoma cell motility by activating the RhoA signaling cascade and interacting with actin and myosin proteins. Although HGAL expression is limited to germinal center (GC) lymphocytes and GC-derived lymphomas, little is known about its regulation. miR-155 is implicated in control of GC reaction and lymphomagenesis. We demonstrate that miR-155 directly down-regulates HGAL expression by binding to its 3′-untranslated region, leading to decreased RhoA activation and increased spontaneous and chemoattractant-induced lymphoma cell motility. The effects of miR-155 on RhoA activation and cell motility can be rescued by transfection of HGAL lacking the miR-155 binding site. This inhibitory effect of miR-155 suggests that it may have a key role in the loss of HGAL expression on differentiation of human GC B cells to plasma cell. Furthermore, this effect may contribute to lymphoma cell dissemination and aggressiveness, characteristic of activated B cell–like diffuse large B-cell lymphoma typically expressing high levels of miR-155 and lacking HGAL expression. PMID:22096245

  13. Tianeptine increases brain-derived neurotrophic factor expression in the rat amygdala.

    PubMed

    Reagan, Lawrence P; Hendry, Robert M; Reznikov, Leah R; Piroli, Gerardo G; Wood, Gwendolyn E; McEwen, Bruce S; Grillo, Claudia A

    2007-06-22

    Chronic restraint stress affects hippocampal and amygdalar synaptic plasticity as determined by electrophysiological, morphological and behavioral measures, changes that are inhibited by some but not all antidepressants. The efficacy of some classes of antidepressants is proposed to involve increased phosphorylation of cAMP response element binding protein (CREB), leading to increased expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF). Conversely, some studies suggest that acute and chronic stress downregulate BDNF expression and activity. Accordingly, the aim of the current study was to examine total and phosphorylated CREB (pCREB), as well as BDNF mRNA and protein levels in the hippocampus and amygdala of rats subjected to chronic restraint stress in the presence and absence of the antidepressant tianeptine. In the hippocampus, chronic restraint stress increased pCREB levels without affecting BDNF mRNA or protein expression. Tianeptine administration had no effect upon these measures in the hippocampus. In the amygdala, BDNF mRNA expression was not modulated in chronic restraint stress rats given saline in spite of increased pCREB levels. Conversely, BDNF mRNA levels were increased in the amygdala of chronic restraint stress/tianeptine rats in the absence of changes in pCREB levels when compared to non-stressed controls. Amygdalar BDNF protein increased while pCREB levels decreased in tianeptine-treated rats irrespective of stress conditions. Collectively, these results demonstrate that tianeptine concomitantly decreases pCREB while increasing BDNF expression in the rat amygdala, increases in neurotrophic factor expression that may participate in the enhancement of amygdalar synaptic plasticity mediated by tianeptine.

  14. Surface L-type Ca2+ channel expression levels are increased in aged hippocampus

    PubMed Central

    Núñez-Santana, Félix Luis; Oh, Myongsoo Matthew; Antion, Marcia Diana; Lee, Amy; Hell, Johannes Wilhelm; Disterhoft, John Francis

    2014-01-01

    Age-related increase in L-type Ca2+ channel (LTCC) expression in hippocampal pyramidal neurons has been hypothesized to underlie the increased Ca2+ influx and subsequent reduced intrinsic neuronal excitability of these neurons that lead to age-related cognitive deficits. Here, using specific antibodies against Cav1.2 and Cav1.3 subunits of LTCCs, we systematically re-examined the expression of these proteins in the hippocampus from young (3 to 4 month old) and aged (30 to 32 month old) F344xBN rats. Western blot analysis of the total expression levels revealed significant reductions in both Cav1.2 and Cav1.3 subunits from all three major hippocampal regions of aged rats. Despite the decreases in total expression levels, surface biotinylation experiments revealed significantly higher proportion of expression on the plasma membrane of Cav1.2 in the CA1 and CA3 regions and of Cav1.3 in the CA3 region from aged rats. Furthermore, the surface biotinylation results were supported by immunohistochemical analysis that revealed significant increases in Cav1.2 immunoreactivity in the CA1 and CA3 regions of aged hippocampal pyramidal neurons. In addition, we found a significant increase in the level of phosphorylated Cav1.2 on the plasma membrane in the dentate gyrus of aged rats. Taken together, our present findings strongly suggest that age-related cognitive deficits cannot be attributed to a global change in L-type channel expression nor to the level of phosphorylation of Cav1.2 on the plasma membrane of hippocampal neurons. Rather, increased expression and density of LTCCs on the plasma membrane may underlie the age-related increase in L-type Ca2+ channel activity in CA1 pyramidal neurons. PMID:24033980

  15. Increased proliferation and chemosensitivity of human mesenchymal stromal cells expressing fusion yeast cytosine deaminase.

    PubMed

    Kucerova, Lucia; Poturnajova, Martina; Tyciakova, Silvia; Matuskova, Miroslava

    2012-03-01

    Mesenchymal stromal cells (MSCs) are considered to be suitable vehicles for cellular therapy in various conditions. The expression of reporter and/or effector protein(s) enabled both the identification of MSCs within the organism and the exploitation in targeted tumor therapies. The aim of this study was to evaluate cellular changes induced by retrovirus-mediated transgene expression in MSCs in vitro. Human Adipose Tissue-derived MSCs (AT-MSCs) were transduced to express (i) the enhanced green fluorescent protein (EGFP) reporter transgene, (ii) the fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CDy::UPRT) enzyme along with the expression of dominant positive selection gene NeoR or (iii) the selection marker NeoR alone (MOCK). CDy::UPRT expression resulted in increased proliferation of CDy::UPRT-MSCs versus naïve AT-MSCs, MOCK-MSCs or EGFP-MSCs. Furthermore, CDy::UPRT-MSCs were significantly more sensitive to 5-fluorouracil (5FU), cisplatin, cyclophosphamide and cytosine arabinoside as determined by increased Caspase 3/7 activation and/or decreased relative proliferation. CDy::UPRT-MSCs in direct cocultures with breast cancer cells MDA-MB-231 increased tumor cell killing induced by low concentrations of 5FU. Our data demonstrated the changes in proliferation and chemoresistance in engineered MSCs expressing transgene with enzymatic function and suggested the possibilities for further augmentation of targeted MSC-mediated antitumor therapy.

  16. Expression of BMP and Actin Membrane Bound Inhibitor Is Increased during Terminal Differentiation of MSCs

    PubMed Central

    Karl, Alexandra; Berner, Arne; Schmitz, Paul; Koch, Matthias; Nerlich, Michael; Mueller, Michael B.

    2016-01-01

    Chondrogenic differentiating mesenchymal stem cells (MSCs) are mimicking embryonal endochondral ossification and become hypertrophic. BMP (bone morphogenetic protein) and Activin Membrane Bound Inhibitor (BAMBI) is a pseudoreceptor that regulates the activity of transforming growth factor-β (TGF-β) and BMP signalling during chondrogenesis. Both TGF-β and BMP signalling are regulators of chondrogenic cell differentiation. Human bone marrow derived MSCs were chondrogenically predifferentiated in aggregate culture for 14 days. Thereafter, one group was subjected to hypertrophy enhancing media conditions while controls were kept in chondrogenic medium until day 28. Histological evaluation, gene expression by PCR, and Western blot analysis were carried out at days 1, 3, 7, 14, 17, 21, and 28. A subset of cultures was treated with the BMP inhibitor Noggin to test for BMP dependent expression of BAMBI. Hypertrophic differentiated pellets showed larger cells with increased collagen 10 and alkaline phosphatase staining. There was significantly increased expression of BAMBI on gene expression and protein level in hypertrophic cultures compared to the chondrogenic control and increased BMP4 gene expression. Immunohistochemistry showed intense staining of BAMBI in hypertrophic cells. BAMBI expression was dose-dependently downregulated by Noggin. The pseudoreceptor BAMBI is upregulated upon enhancement of hypertrophy in MSC chondrogenic differentiation by a BMP dependent mechanism. PMID:27843458

  17. Dopamine denervation of the prefrontal cortex increases expression of the astrocytic glutamate transporter GLT-1.

    PubMed

    Vollbrecht, Peter J; Simmler, Linda D; Blakely, Randy D; Deutch, Ariel Y

    2014-07-01

    Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT-1 is responsible for > 90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) remains unknown. In an effort to determine if astrocytes are a locus of cortical dopamine-glutamate interactions, we examined the effects of chronic dopamine denervation on PFC protein and mRNA levels of glutamate transporters. PFC dopamine denervation elicited a marked increase in GLT-1 protein levels, but had no effect on levels of other glutamate transporters; high-affinity glutamate transport was positively correlated with the extent of dopamine depletion. GLT-1 gene expression was not altered. Our data suggest that dopamine depletion may lead to post-translational modifications that result in increased expression and activity of GLT-1 in PFC astrocytes. The glutamate transporter GLT-1 is expressed by astrocytes, which also express dopamine receptors. Regulation of prefrontal cortical (PFC) GLT-1 potentially offers a novel treatment approach to the cognitive deficits of schizophrenia. Partial PFC dopamine deafferentation increased membrane expression of GLT-1 protein and glutamate uptake, but did not alter levels of the other two neocortical glutamate transporters, GLAST and EAAC1.

  18. A protein disulfide isomerase gene fusion expression system that increases the extracellular productivity of Bacillus brevis.

    PubMed

    Kajino, T; Ohto, C; Muramatsu, M; Obata, S; Udaka, S; Yamada, Y; Takahashi, H

    2000-02-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system.

  19. Increased expression of argininosuccinate synthetase protein predicts poor prognosis in human gastric cancer.

    PubMed

    Shan, Yan-Shen; Hsu, Hui-Ping; Lai, Ming-Derg; Yen, Meng-Chi; Luo, Yi-Pey; Chen, Yi-Ling

    2015-01-01

    Aberrant expression of argininosuccinate synthetase (ASS1, also known as ASS) has been found in cancer cells and is involved in the carcinogenesis of gastric cancer. The aim of the present study was to investigate the level of ASS expression in human gastric cancer and to determine the possible correlations between ASS expression and clinicopathological findings. Immunohistochemistry was performed on paraffin‑embedded tissues to determine whether ASS was expressed in 11 of 11 specimens from patients with gastric cancer. The protein was localized primarily to the cytoplasm of cancer cells and normal epithelium. In the Oncomine cancer microarray database, expression of the ASS gene was significantly increased in gastric cancer tissues. To investigate the clinicopathological and prognostic roles of ASS expression, we performed western blot analysis of 35 matched specimens of gastric adenocarcinomas and normal tissue obtained from patients treated at the National Cheng Kung University Hospital. The ratio of relative ASS expression (expressed as the ASS/β-actin ratio) in tumor tissues to that in normal tissues was correlated with large tumor size (P=0.007) and with the tumor, node, metastasis (TNM) stage of the American Joint Committee on Cancer staging system (P=0.031). Patients whose cancer had increased the relative expression of ASS were positive for perineural invasion and had poor recurrence-free survival. In summary, ASS expression in gastric cancer was associated with a poor prognosis. Further study of mechanisms to silence the ASS gene or decrease the enzymatic activity of ASS protein has the potential to provide new treatments for patients with gastric cancer.

  20. Expression of the p20 Gene from Bacillus thuringiensis H-14 Increases Cry11A Toxin Production and Enhances Mosquito-Larvicidal Activity in Recombinant Gram-Negative Bacteria

    PubMed Central

    Xu, Y.; Nagai, M.; Bagdasarian, M.; Smith, T. W.; Walker, E. D.

    2001-01-01

    Experimental analyses with recombinant Escherichia coli and Pseudomonas putida transformed with plasmids bearing genes coding for the Cry11A toxin and P20 protein from Bacillus thuringiensis H-14 showed that cells producing both proteins were more toxic when fed to third-instar Aedes aegypti larvae than were cells expressing cry11A alone; the 50% lethal concentrations were in the range of 104 to 105 cells/ml. Western blots revealed a higher production of Cry11A when the p20 gene was coexpressed. Cry11A was detected primarily in insoluble form in recombinant cells. Cry11A was not detected in P. putida when P20 was not coproduced, and these recombinants were not toxic to larvae, whereas P. putida recombinants producing both proteins were toxic at concentrations similar to those for E. coli. A coelution experiment was conducted, in which a p20 gene construct producing the P20 protein with an extension of six histidines on the C terminus was mixed with the Cry11A protein. The results showed that Cry11A bound to the P20(His6) on a nickel chelating column, whereas Cry11A produced without the P20(His6) protein was washed through the column, thus indicating that Cry11A and P20 physically interact. Thus, P20 protein either stabilizes Cry11A or helps it attain the folding important for its toxic activity. PMID:11425714

  1. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    SciTech Connect

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  2. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    PubMed Central

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Oude Elferink, Ronald P. J.; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPARδ) is involved in regulation of energy homeostasis. Activation of PPARδ markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased hepatobiliary cholesterol secretion, nor by reduced cholesterol absorption. To test the hypothesis that PPARδ activation leads to stimulation of transintestinal cholesterol efflux (TICE), we quantified it by intestine perfusions in FVB mice treated with PPARδ agonist GW610742. To exclude the effects on cholesterol absorption, mice were also treated with cholesterol absorption inhibitor ezetimibe or ezetimibe/GW610742. GW601742 treatment had little effect on plasma lipid levels but stimulated both fecal neutral sterol excretion (∼200%) and TICE (∼100%). GW610742 decreased intestinal Npc1l1 expression but had no effect on Abcg5/Abcg8. Interestingly, expression of Rab9 and LIMPII, encoding proteins involved in intracellular cholesterol trafficking, was increased upon PPARδ activation. Although treatment with ezetimibe alone had no effect on TICE, it reduced the effect of GW610742 on TICE. These data show that activation of PPARδ stimulates fecal cholesterol excretion in mice, primarily by the two-fold increase in TICE, indicating that this pathway provides an interesting target for the development of drugs aiming at the prevention of atherosclerosis. PMID:19439761

  3. Increased expression of fibroblast growth factors in a rabbit skeletal muscle model of exercise conditioning.

    PubMed Central

    Morrow, N G; Kraus, W E; Moore, J W; Williams, R S; Swain, J L

    1990-01-01

    Increased tonic contractile activity from exercise or electrical stimulation induces a variety of changes in skeletal muscle, including vascular growth, myoblast proliferation, and fast to slow fiber type conversion. Little is known about the cellular control of such changes, but pleiotropic biochemical modulators such as fibroblast growth factors (FGFs) may be involved in this response and thus may be regulated in response to such stimuli. We examined the regulation of FGF expression in an in vivo model of exercise conditioning previously shown to exhibit vascular growth and fast to slow fiber conversion. FGFs were extracted by heparin-affinity chromatography from extensor digitorum longus muscles of adult rabbits subjected to chronic motor nerve stimulation at 10 Hz. Growth factor activity (expressed in growth factor units [GFUs]) of muscle stimulated for 3 and 21 d was assayed by [3H]thymidine incorporation in 3T3 fibroblasts and compared with that present in the contralateral unstimulated muscle. A small increase in heparin-binding mitogenic activity was observed as early as 3 d of stimulation, and by 21 d mitogenic activity increased significantly when normalized to either wet weight (stimulated, 287 +/- 61 GFU/g; unstimulated, 145 +/- 39 GFU/g) or to protein (stimulated, 5.3 +/- 1.1 GFU/mg; unstimulated, 2.2 +/- 0.6 GFU/mg) (+/- SE, P less than 0.05). Western analysis demonstrated increased amounts of peptides with immunological identity to acidic and basic FGFs in stimulated muscle. The increase in FGF content observed in this study is synchronous with neovascularization, myoblast proliferation, and fast to slow fiber type conversion previously shown in this model. These results demonstrate that increased expression of FGFs is associated with motor nerve stimulation and increased tonic contractile activity of skeletal muscle, and suggests that these proteins may play a regulatory role in the cellular changes that occur during exercise conditioning. Images

  4. Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries

    PubMed Central

    Terrón-González, L.; Medina, C.; Limón-Mortés, M. C.; Santero, E.

    2013-01-01

    The extraordinary potential of metagenomic functional analyses to identify activities of interest present in uncultured microorganisms has been limited by reduced gene expression in surrogate hosts. We have developed vectors and specialized E. coli strains as improved metagenomic DNA heterologous expression systems, taking advantage of viral components that prevent transcription termination at metagenomic terminators. One of the systems uses the phage T7 RNA-polymerase to drive metagenomic gene expression, while the other approach uses the lambda phage transcription anti-termination protein N to limit transcription termination. A metagenomic library was constructed and functionally screened to identify genes conferring carbenicillin resistance to E. coli. The use of these enhanced expression systems resulted in a 6-fold increase in the frequency of carbenicillin resistant clones. Subcloning and sequence analysis showed that, besides β-lactamases, efflux pumps are not only able contribute to carbenicillin resistance but may in fact be sufficient by themselves to convey carbenicillin resistance. PMID:23346364

  5. Increased HOX C13 expression in metastatic melanoma progression

    PubMed Central

    2012-01-01

    Background The process of malignant transformation, progression and metastasis of melanoma is not completely understood. Recently, the microarray technology has been used to survey transcriptional differences that might provide insight into the metastatic process, but the validation of changing gene expression during metastatic transition period is poorly investigated. A large body of literature has been produced on the role of the HOX genes network in tumour evolution, suggesting the involvement of HOX genes in several types of human cancers. Deregulated paralogous group 13 HOX genes expression has been detected in melanoma, cervical cancer and odonthogenic tumors. Among these, Hox C13 is also involved in the expression control of the human keratin genes hHa5 and hHa2, and recently it was identified as a member of human DNA replication complexes. Methods In this study, to investigate HOX C13 expression in melanoma progression, we have compared its expression pattern between naevi, primary melanoma and metastasis. In addition HOXC13 profile pattern of expression has been evaluated in melanoma cell lines. Results Our results show the strong and progressive HOX C13 overexpression in metastatic melanoma tissues and cytological samples compared to nevi and primary melanoma tissues and cells. Conclusions The data presentated in the paper suggest a possible role of HOX C13 in metastatic melanoma switch. PMID:22583695

  6. Dopamine denervation of the prefrontal cortex increases expression of the astrocytic glutamate transporter GLT-1

    PubMed Central

    Vollbrecht, Peter J.; Simmler, Linda D.; Blakely, Randy D.; Deutch, Ariel Y.

    2014-01-01

    Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT-1 is responsible for >90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) is unknown. In an effort to determine if astrocytes are a locus of cortical dopamine-glutamate interactions, we examined the effects of chronic dopamine denervation on PFC protein and mRNA levels of glutamate transporters. PFC dopamine denervation elicited a marked increase in GLT-1 protein levels, but had no effect on levels of other glutamate transporters; high affinity glutamate transport was positively correlated with the extent of dopamine depletion. GLT-1 gene expression was not altered. Our data suggests that dopamine depletion may lead to post-translational modifications that result in increased expression and activity of GLT-1 in PFC astrocytes. PMID:24611756

  7. Increased FNDC5/Irisin expression in human hepatocellular carcinoma.

    PubMed

    Gaggini, Melania; Cabiati, Manuela; Del Turco, Serena; Navarra, Teresa; De Simone, Paolo; Filipponi, Franco; Del Ry, Silvia; Gastaldelli, Amalia; Basta, Giuseppina

    2017-02-01

    The fibronectin type III domain containing 5 (FNDC5)/Irisin, a novel energy-regulating hormone, is associated with lipid and carbohydrate metabolism. It is produced in low amounts by normal hepatic tissue, while in human hepatocellular carcinoma (HCC), in which aberrant de novo lipogenesis (DNL) occurs, the hepatic expression of FNDC5/Irisin is still unknown. The gene expression of FNDC5/Irisin, associated to key regulators of DNL, inflammation and cancer progression was evaluated in liver tissue of 18 patients with HCC undergoing liver transplantation and of 18 deceased donors. Hepatic mRNA expression of FNDC5/Irisin and stearoyl-CoA desaturase (SCD-1), main enzymatic regulator of DNL, were significantly higher in HCC patients than in donors (p<0.0001 and p=0.015, respectively). The hepatic mRNA expression of the neurogenic locus notch homolog protein 1 (NOTCH1) tended to be higher in HCC patients than in donors (p=0.06). Only in HCC patients, hepatic FNDC5/Irisin strongly correlated with the transcription factor sterol regulatory element-binding factor 1, SCD-1, NOTCH1, tumor necrosis factor-α and Interleukin-6 mRNA expression. Further, in HCC patients, FNDC5/Irisin mRNA tended to correlate to plasma lipid profile namely triglycerides, palmitic/linoleic acid and polyunsaturated fatty acid/saturated fatty acid ratios. In conclusion, HCC-liver tissue over-expressed FNDC5/Irisin in association with gene expression of mediators involved in lipogenesis, inflammation and cancer, suggesting a possible protective role of the hormone from the liver damage.

  8. Increased microglial catalase activity in multiple sclerosis grey matter.

    PubMed

    Gray, Elizabeth; Kemp, Kevin; Hares, Kelly; Redondo, Julianna; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2014-04-22

    Chronic demyelination, on-going inflammation, axonal loss and grey matter neuronal injury are likely pathological processes that contribute to disease progression in multiple sclerosis (MS). Although the precise contribution of each process and their aetiological substrates is not fully known, recent evidence has implicated oxidative damage as a major cause of tissue injury in MS. The degree of tissue injury caused by oxidative molecules, such as reactive oxygen species (ROS), is balanced by endogenous anti-oxidant enzymes which detoxify ROS. Understanding endogenous mechanisms which protect the brain against oxidative injury in MS is important, since enhancing anti-oxidant responses is a major therapeutic strategy for preventing irreversible tissue injury in the disease. Our aims were to determine expression and activity levels of the hydrogen peroxide-reducing enzyme catalase in MS grey matter (GM). In MS GM, a catalase enzyme activity was elevated compared to control GM. We measured catalase protein expression by immune dot-blotting and catalase mRNA by a real-time polymerase chain reaction (RT-PCR). Protein analysis studies showed a strong positive correlation between catalase and microglial marker IBA-1 in MS GM. In addition, calibration of catalase mRNA level with reference to the microglial-specific transcript AIF-1 revealed an increase in this transcript in MS. This was reflected by the extent of HLA-DR immunolabeling in MS GM which was significantly elevated compared to control GM. Collectively, these observations provide evidence that microglial catalase activity is elevated in MS grey matter and may be an important endogenous anti-oxidant defence mechanism in MS.

  9. How Active Are Your Students? Increasing Physical Activity in Schools

    ERIC Educational Resources Information Center

    Avery, Marybell; Brandt, Janet

    2010-01-01

    The U. S. Department of Health and Human Services recommends that youth engage in at least 60 minutes of physical activity each day, most of which should be either moderate- or vigorous-intensity aerobic physical activity. Half of this amount (30 minutes) should be achieved during the school day. NASPE provides guidance in the form of a…

  10. Increased hepatic expression of nitric oxide synthase type II in cirrhotic rats

    PubMed Central

    Wang, Hai; Chen, Xiao-Ping; Qiu, Fa-Zu

    2004-01-01

    AIM: To determine the role and effect of nitric oxide synthase type II (NOS II) in cirrhotic rats. METHODS: Expression of NOS II mRNA was detected by real time RT-PCR. The activity of nitric oxide synthase and serum levels of NO, systemic and portal hemodynamics and degrees of cirrhosis were measured with high sensitive methods. Chinese traditional medicine tetrandrine was used to treat cirrhotic rats and to evaluate the function of NO. Double-blind method was applied during the experiment. RESULTS: The concentration of NO and the activity of NOS were increased markedly at all stages of cirrhosis, and iNOSmRNA was greatly expressed. Meanwhile the portal-venous-pressure (PVP), and portal-venous-flow (PVF) were significantly increased. NO, NOS and iNOSmRNA were positively correlated to the quantity of hepatic fibrosis. Tetrandrine significantly inhibited NO production and the expression of iNOSmRNA. CONCLUSION: Increased hepatic expression of NOS II is one of the important causes of hepatic cirrhosis and portal hypertension. PMID:15222038

  11. Phosphatase activities analyzed by in vivo expressions.

    PubMed

    Schweighofer, Alois; Ayatollahi, Zahra; Meskiene, Irute

    2009-01-01

    Protein phosphatases act to reverse phosphorylation-related modifications induced by protein kinases. Type 2C protein phosphatases (PP2C) are monomeric Ser/Thr phosphatases that require a metal for their activity and are abundant in prokaryotes and eukaryotes. In plants, such as Medicago and Arabidopsis PP2Cs control several essential processes, including ABA signaling, development, and wound-induced mitogen-activated protein kinase (MAPK) pathways. In vitro assays with recombinant proteins and yeast two-hybrid systems usually provide initial information about putative PP2C substrates; however, these observations have to be verified in vivo. Therefore, a method for transient expression in isolated Arabidopsis suspension cell protoplasts was developed to assay PP2C action in living cells. This system has proven to be very useful in producing active enzymes and their substrates and in performing enzymatic reactions in vivo. Transient gene expression in isolated cells enabled assembly of functional protein kinase cascades and the creation of phosphorylated targets for PP2Cs. The method is based on the co-transformation and transient co-expression of different PP2C proteins with MAPK. It shows that epitope-tagged PP2C and MAPK proteins exhibit high enzymatic activities and produce substantial protein amounts easily monitored by Western blot analysis. Additionally, PP2C phosphatase activities can be directly tested in protein extracts from protoplasts, suggesting a possibility for analysis of activities of new PP2C family members.

  12. Regret Expression and Social Learning Increases Delay to Sexual Gratification

    PubMed Central

    Quisenberry, Amanda J.; Eddy, Celia R.; Patterson, David L.; Franck, Christopher T.; Bickel, Warren K.

    2015-01-01

    Objective Modification and prevention of risky sexual behavior is important to individuals’ health and public health policy. This study employed a novel sexual discounting task to elucidate the effects of social learning and regret expression on delay to sexual gratification in a behavioral task. Methods Amazon Mechanical Turk Workers were assigned to hear one of three scenarios about a friend who engages in similar sexual behavior. The scenarios included a positive health consequence, a negative health consequence or a negative health consequence with the expression of regret. After reading one scenario, participants were asked to select from 60 images, those with whom they would have casual sex. Of the selected images, participants chose one image each for the person they most and least want to have sex with and person most and least likely to have a sexually transmitted infection. They then answered questions about engaging in unprotected sex now or waiting some delay for condom-protected sex in each partner condition. Results Results indicate that the negative health outcome scenario with regret expression resulted in delayed sexual gratification in the most attractive and least STI partner conditions, whereas in the least attractive and most STI partner conditions the negative health outcome with and without regret resulted in delayed sexual gratification. Conclusions Results suggest that the sexual discounting task is a relevant laboratory measure and the framing of information to include regret expression may be relevant for prevention of risky sexual behavior. PMID:26280349

  13. Agouti expression in human adipose tissue: functional consequences and increased expression in type 2 diabetes.

    PubMed

    Smith, Steven R; Gawronska-Kozak, Barbara; Janderová, Lenka; Nguyen, Taylor; Murrell, Angela; Stephens, Jacqueline M; Mynatt, Randall L

    2003-12-01

    It is well recognized that the agouti/melanocortin system is an important regulator of body weight homeostasis. Given that agouti is expressed in human adipose tissue and that the ectopic expression of agouti in adipose tissue results in moderately obese mice, the link between agouti expression in human adipose tissue and obesity/type 2 diabetes was investigated. Although there was no apparent relationship between agouti mRNA levels and BMI, agouti mRNA levels were significantly elevated in subjects with type 2 diabetes. The regulation of agouti in cultured human adipocytes revealed that insulin did not regulate agouti mRNA, whereas dexamethasone treatment potently increased the levels of agouti mRNA. Experiments with cultured human preadipocytes and with cells obtained from transgenic mice that overexpress agouti demonstrated that melanocortin receptor (MCR) signaling in adipose tissue can regulate both preadipocyte proliferation and differentiation. Taken together, these results reveal that agouti can regulate adipogenesis at several levels and suggest that there are functional consequences of elevated agouti levels in human adipose tissue. The influence of MCR signaling on adipogenesis combined with the well-established role of MCR signaling in the hypothalamus suggest that adipogenesis is coordinately regulated with food intake and energy expenditure.

  14. Interleukin-6 increases expression and secretion of cathepsin B by breast tumor-associated monocytes.

    PubMed

    Mohamed, Mona M; Cavallo-Medved, Dora; Rudy, Deborah; Anbalagan, Arulselvi; Moin, Kamiar; Sloane, Bonnie F

    2010-01-01

    In the tumor microenvironment, monocytes respond to paracrine stimuli from breast cancer cells by secreting molecules that participate in breast cancer growth, invasion, intravasation and metastasis. Here we examined the effects of media conditioned by MDA-MB-231 human breast carcinoma cells (231-CM) on expression and secretion of proteases and secretion of cytokines by U937 human monocytes. We found that 231-CM increased U937: 1) proliferation; 2) expression, activity and secretion of the cysteine protease cathepsin B (CTSB); 3) secretion of matrix metalloproteinases (MMP)-2 and -9; and 4) secretion of interleukin-6 (IL-6) and insulin-like growth factor binding protein-1 (IGFBP-1). We further demonstrated by western blotting and enzymatic activity assays that the increases in CTSB secretion and activity induced by 231-CM could be reduced by neutralizing antibodies against IL-6. Our data suggest a role for IL-6 in increased monocyte expression and secretion of CTSB in response to soluble factors secreted by breast cancer cells.

  15. Iron regulatory protein-2 knockout increases perihematomal ferritin expression and cell viability after intracerebral hemorrhage.

    PubMed

    Chen, Mai; Awe, Olatilewa O; Chen-Roetling, Jing; Regan, Raymond F

    2010-06-14

    Iron is deposited in perihematomal tissue after an intracerebral hemorrhage (ICH), and may contribute to oxidative injury. Cell culture studies have demonstrated that enhancing ferritin expression by targeting iron regulatory protein (IRP) binding activity reduces cellular vulnerability to iron and hemoglobin. In order to assess the therapeutic potential of this approach after striatal ICH, the effect of IRP1 or IRP2 gene knockout on ferritin expression and injury was quantified. Striatal ferritin in IRP1 knockout mice was similar to that in wild-type controls 3 days after stereotactic injection of artificial CSF or autologous blood. Corresponding levels in IRP2 knockouts were increased by 11-fold and 8.4-fold, respectively, compared with wild-type. Protein carbonylation, a sensitive marker of hemoglobin neurotoxicity, was increased by 2.4-fold in blood-injected wild-type striata, was not altered by IRP1 knockout, but was reduced by approximately 60% by IRP2 knockout. Perihematomal cell viability in wild-type mice, assessed by MTT assay, was approximately half of that in contralateral striata at 3 days, and was significantly increased in IRP2 knockouts but not in IRP1 knockouts. Protection was also observed when hemorrhage was induced by collagenase injection. These results suggest that IRP2 binding activity reduces ferritin expression in the striatum after ICH, preventing an optimal response to elevated local iron concentrations. IRP2 binding activity may be a novel therapeutic target after hemorrhagic CNS injuries.

  16. Iron Regulatory Protein-2 Knockout Increases Perihematomal Ferritin Expression and Cell Viability after Intracerebral Hemorrhage

    PubMed Central

    Chen, Mai; Awe, Olatilewa O.; Chen-Roetling, Jing; Regan, Raymond F.

    2010-01-01

    Iron is deposited in perihematomal tissue after an intracerebral hemorrhage (ICH), and may contribute to oxidative injury. Cell culture studies have demonstrated that enhancing ferritin expression by targeting iron regulatory protein (IRP) binding activity reduces cellular vulnerability to iron and hemoglobin. In order to assess the therapeutic potential of this approach after striatal ICH, the effect of IRP1 or IRP2 gene knockout on ferritin expression and injury was quantified. Striatal ferritin in IRP1 knockout mice was similar to that in wild-type controls three days after stereotactic injection of artificial CSF or autologous blood. Corresponding levels in IRP2 knockouts were increased by 11-fold and 8.4-fold, respectively, compared with wild-type. Protein carbonylation, a sensitive marker of hemoglobin neurotoxicity, was increased by 2.4-fold in blood-injected wild-type striata, was not altered by IRP1 knockout, but was reduced by approximately 60% by IRP2 knockout. Perihematomal cell viability in wild-type mice, assessed by MTT assay, was approximately half of that in contralateral striata at three days, and was significantly increased in IRP2 knockouts but not in IRP1 knockouts. Protection was also observed when hemorrhage was induced by collagenase injection. These results suggest that IRP2 binding activity reduces ferritin expression in the striatum after ICH, preventing an optimal response to elevated local iron concentrations. IRP2 binding activity may be a novel therapeutic target after hemorrhagic CNS injuries. PMID:20399759

  17. Increased apolipoprotein E and c-fms gene expression without elevated interleukin 1 or 6 mRNA levels indicates selective activation of macrophage functions in advanced human atheroma.

    PubMed Central

    Salomon, R N; Underwood, R; Doyle, M V; Wang, A; Libby, P

    1992-01-01

    human atheroma appear to exhibit a selective program of activation as they express high levels of apoE, whereas overall levels of interleukin 1 or 6 mRNAs in plaques are not elevated. Images PMID:1557388

  18. Heterologous expression of mitochondria-targeted microbial nitrilase enzymes increases cyanide tolerance in Arabidopsis.

    PubMed

    Molojwane, E; Adams, N; Sweetlove, L J; Ingle, R A

    2015-07-01

    Anthropogenic activities have resulted in cyanide (CN) contamination of both soil and water in many areas of the globe. While plants possess a detoxification pathway that serves to degrade endogenously generated CN, this system is readily overwhelmed, limiting the use of plants in bioremediation. Genetic engineering of additional CN degradation pathways in plants is one potential strategy to increase their tolerance to CN. Here we show that heterologous expression of microbial nitrilase enzymes targeted to the mitochondria increases CN tolerance in Arabidopsis. Root length in seedlings expressing either a CN dihydratase from Bacillus pumilis or a CN hydratase from Neurospora crassa was increased by 45% relative in wild-type plants in the presence of 50 μm KCN. We also demonstrate that in contrast to its strong inhibitory effects on seedling establishment, seed germination of the Col-0 ecotype of Arabidopsis is unaffected by CN.

  19. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    SciTech Connect

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.; Takahashi, Nobuyuki; Harp, Joyce B. . E-mail: jharp@unc.edu

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in the cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.

  20. Fenofibrate Increases Heme Oxygenase 1 Expression and Astrocyte Proliferation While Limits Neuronal Injury During Intracerebral Hemorrhage.

    PubMed

    Wang, Yan; Yu, Min; Ma, Yue; Wang, Ruoping; Liu, Wei; Xia, Wei; Guan, Aili; Xing, Conghui; Lu, Fei; Ji, Xiaoping

    2017-01-01

    Peroxisome proliferator-activated receptors alpha (PPARα) is a therapy target in atherosclerosis and cardiovascular diseases. However, anti-inflammatory effects of PPARα in intracerebral hemorrhage (ICH) remain unknown. We investigated the anti-inflammatory effects of fenofibrate, a ligand of PPARα, in ICH rat model. We found that engagement of fenofibrate increased nissl body and astrocytes, and reduced the neuronal damage, which was observed in paraffin section of ICH rat brain. Fenofibrate also promoted the proliferation of astrocytes that were isolated from adult rat brain. Fenofibrate significantly upregulated heme oxygenase 1 (HO-1) at protein and mRNA levels in human glioblastoma LN-18 cells and rat brain astrocytes respectively, but nuclear factor kappalight- chain-enhancer of activated B cells (NFκB) was downregulated after fenofibrate treatment. Results showed that fenofibrate-induced upregulation of HO-1 expression were inhibited after LN-18 cells were transfected with 50nM small interfering RNA (siRNAs) for 48 hours to knockdown PPARα. Further studies in rat astrocytes confirmed the rescue effects of PPARα silence against fenofibrate induced upregulation of HO-1 expression. Our data indicated that fenofibrate benefits neuronal protection through increasing HO-1 expression level and decreasing NFκB expression in PPARα-dependent manner. In conclusion, PPARα and HO-1 may function as significant targets to protect the brain during ICH.

  1. Increased expression of estrogen-related receptor β during adaptation of adult cardiomyocytes to sustained hypoxia

    PubMed Central

    Cunningham, Kathryn F; Beeson, Gyda C; Beeson, Craig C; McDermott, Paul J

    2016-01-01

    Estrogen-related Receptors (ERR) are members of the steroid hormone receptor superfamily of transcription factors that regulate expression of genes required for energy metabolism including mitochondrial biogenesis, fatty acid oxidation and oxidative phosphorylation. While ERRα and EPPγ isoforms are known to share a wide array of target genes in the adult myocardium, the function of ERRβ has not been characterized in cardiomyocytes. The purpose of this study was to determine the role of ERRβ in regulating energy metabolism in adult cardiomyocytes in primary culture. Adult feline cardiomyocytes were electrically stimulated to contract in either hypoxia (0.5% O2) or normoxia (21% O2). As compared to baseline values measured in normoxia, ERRβ mRNA levels increased significantly after 8 hours of hypoxia and remained elevated over 24 h. Conversely, ERRβ mRNA decreased to normoxic levels after 4 hours of reoxygenation. Hypoxia increased expression of the α and β isoforms of Peroxisome Proliferator-Activated Receptor γ Coactivator-1 (PGC-1) mRNA by 6-fold and 3-fold, respectively. Knockdown of ERRβ expression via adenoviral-mediated delivery of ERRβ shRNA blocked hypoxia-induced increases in PGC-1β mRNA, but not PGC-1α mRNA. Loss of ERRβ had no effect on mtDNA content as measured after 24 h of hypoxia. To determine whether loss of ERRβ affected mitochondrial function, oxygen consumption rates (OCR) were measured in contracting versus quiescent cardiomyocytes in normoxia. OCR was significantly lower in contracting cardiomyocytes expressing ERRβ shRNA than scrambled shRNA controls. Maximal OCR also was reduced by ERRβ knockdown. In conclusion: 1) hypoxia increases in ERRβ mRNA expression in contracting cardiomyocytes; 2) ERRβ is required for induction of the PGC-1β isoform in response to hypoxia; 3) ERRβ expression is required to sustain OCR in normoxic conditions. PMID:27335690

  2. Fight or flight? - Flight increases immune gene expression but does not help to fight an infection.

    PubMed

    Woestmann, L; Kvist, J; Saastamoinen, M

    2017-03-01

    Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life-history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15-min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight-induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity-related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight-induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade-off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up-regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats.

  3. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    SciTech Connect

    Singh, Raman Deep Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L. Pagano, Richard E.

    2013-05-10

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily

  4. Nicotinamide increases thyroid radiosensitivity by stimulating nitric oxide synthase expression and the generation of organic peroxides.

    PubMed

    Agote Robertson, M; Finochietto, P; Gamba, C A; Dagrosa, M A; Viaggi, M E; Franco, M C; Poderoso, J J; Juvenal, G J; Pisarev, M A

    2006-01-01

    Differentiated thyroid cancer and hyperthyroidism are treated with radioiodine. However, when the radioisotope dose exceeds certain limits, the patient must be hospitalized to avoid contact with people that would otherwise be exposed to radiation. It would be desirable to obtain a similar therapeutic effect using lower radioiodine doses. Radiosensitizers can be utilized for this purpose. Nicotinamide (NA) increases thyroid radiosensitivity to 131I in both normal and goitrous glands. NA causes a significant increase in thyroid blood flow, which would increase tissue oxygenation and tissue damage via free radicals. Wistar rats were treated with either nicotinamide (NA), 131I or both. The expression of the three isoforms of nitric oxide synthase (NOS) in the thyroid (Western blot) and the activities of SOD, GPx, catalase and organic peroxides were determined. Treatment with NA or 131I increased the expression of eNOS and the generation of organic peroxides. When administered jointly, they showed a synergistic effect. No changes were observed in the other NOS isoforms or in the activities of catalase, glutathione peroxidase and superoxide dismutase. NA potentiates the effect of 131I by increasing eNOS, which would in turn stimulate NO production, increasing thyroid blood flow and tissue damage via organic peroxides.

  5. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    SciTech Connect

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  6. Decreased expression of APAF-1 and increased expression of cathepsin B in invasive pituitary adenoma

    PubMed Central

    Tanase, Cristiana; Albulescu, Radu; Codrici, Elena; Calenic, Bogdan; Popescu, Ionela Daniela; Mihai, Simona; Necula, Laura; Cruceru, Maria Linda; Hinescu, Mihail Eugen

    2015-01-01

    Purpose Apoptotic protease-activating factor-1 (APAF-1) and cathepsin B are important functional proteins in apoptosis; the former is involved in the intrinsic (mitochondrial) pathway, while the latter is associated with both intrinsic and extrinsic pathways. Changes in the expression of apoptosome-related proteins could be useful indicators of tumor development since a priori defects in the mitochondrial pathway might facilitate the inception and progression of human neoplasms. Our aim was to evaluate the profiles of APAF-1 and cathepsin B in relation with other molecules involved in apoptosis/proliferation and to correlate them with the aggressive behavior of invasive pituitary adenomas. Materials and methods APAF-1 and cathepsin B were assessed in tissue samples from 30 patients with pituitary adenomas, of which 16 were functional adenomas and 22 were invasive adenomas. Results A positive relationship between high proliferation and invasiveness was observed in invasive pituitary adenomas when compared to their noninvasive counterparts (Ki-67 labeling index – 4.72% versus 1.75%). Decreased expression of APAF-1 was recorded in most of the invasive adenomas with a high proliferation index, while the cathepsin B level was elevated in this group. We have noticed a negative correlation between the low level of APAF-1 and invasiveness (63.63%; P<0.01); at the same time, a positive correlation between cathepsin B expression and invasiveness (59.09%; P<0.01) was found. In all, 81.25% out of the total APAF-1-positive samples were cathepsin B negative (P<0.01); 76.92% out of the total cathepsin B-positive samples were APAF-1-negative (P<0.01). These results were reinforced by an apoptosis protein array examination, which showed inhibition of the extrinsic apoptotic pathway in an invasive pituitary adenoma. Conclusion A bidirectional–inverted relationship between APAF-1 and cathepsin B expressions was noticed. One might hypothesize that shifting the balance between

  7. Expression and Activity of Metalloproteinases in Depression

    PubMed Central

    Bobińska, Kinga; Szemraj, Janusz; Czarny, Piotr; Gałecki, Piotr

    2016-01-01

    Background Depression is one of the most common mental disorders and often co-exists with somatic diseases. The most probable cause of comorbidity is a generalized inflammatory process that occurs in both depression and somatic diseases. Matrix metalloproteinases MMPs play a role in modulating inflammation and their impact in many inflammatory diseases has been investigated. The purpose of this study was to evaluate gene expression for selected polymorphisms of MMP-2 (C-735T), MMP-7 (A-181G), and MMP-9 (T-1702A, C1562T), which have been confirmed to participate in development of depression, and TIMP-2 (G-418C, tissue inhibitor of MMP). Activity variability of pro-MMP-2 and pro-MMP-9 was measured in a group of people with depression and a group of healthy individuals. Material/Methods The examined population comprised 142 individuals suffering from depression and 100 individuals who formed a control group (CG). Designations were carried out for MMP-2 (C-735T), MMP-7 (A-181G), MMP-9 (T-1702A, C1562T), and TIMP-2 (G-418C). Results For all examined and tested MMPs and for TIMP-2, gene expression at the mRNA level was higher in patients with depression than in the CG. Similar results were recorded for gene expression at the protein level, while expression on the protein level for TIMP-2 was higher in the CG. Change in activity of MMP-2 and pro-MMP-2 was statistically more significant in the group with depression. The opposite result was recorded for MMP-9 and pro-MMP-9, in which the change in activity was statistically more significant in the CG. Conclusions Changes in MMPs and TIMP expression may be a common element in, or perhaps even a marker for, recurrent depressive disorders and somatic diseases. PMID:27098106

  8. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  9. Increased expressions of ADAMTS-13 and apoptosis contribute to neuropathology during Toxoplasma gondii encephalitis in mice.

    PubMed

    Dincel, Gungor Cagdas; Atmaca, Hasan Tarik

    2016-06-01

    Toxoplasma gondii (T. gondii) is a protozoan parasite with the potential of causing severe encephalitis among immunocompromised humans and animals. Our previous study showed that T. gondii induces high nitric oxide (NO) production, high glial activation (GFAP) and neurofilament expressions, leading to severe neurodegeneration in toxoplasma encephalitis (TE) in the central nervous system (CNS). The aim of this experimental study was to investigate ADAMTS-13 expression and apoptosis in CNS and to identify whether they have any correlation with toxoplasmosis neuropathology and neurodegeneration. Mice were infected with ME49 strain T. gondii and the levels of ADAMTS-13, caspase 3, caspase 8, caspase 9, TNFR1 and Bcl-xL expressions were examined in brain tissues by immunohistochemistry, during the development and establishment of chronic infections at 10, 30 and 60 days post-infection. Results of the study revealed that the levels of ADAMTS-13 (P < 0.005), caspase 3 (P < 0.05), caspase 8 (P < 0.05), caspase 9 (P < 0.005) and TNFR1 (P < 0.05) expressions in the brain markedly increased while Bcl-xL expression decreased (P < 0.005). The most prominent finding from our study was that 10, 30 and 60 days post-infection ADAMTS-13 increased significantly and this may play an important role in the regulation and protection of the blood-brain barrier integrity and CNS microenvironment in TE. These results also suggest that T. gondii-mediated apoptosis might play a pivotal role and a different type of role in the mechanism of neurodegeneration and neuropathology in the process of TE. Furthermore, expression of ADAMTS-13 might give an idea of the progress and is critical for diagnosis of this disease. To the best of the authors' knowledge, this is the first report on ADAMTS-13 expression in the CNS of T. gondii-infected mice.

  10. Expression of a Toll Signaling Regulator Serpin in a Mycoinsecticide for Increased Virulence

    PubMed Central

    Yang, Linzhi; Keyhani, Nemat O.; Tang, Guirong; Tian, Chuang; Lu, Ruipeng; Wang, Xin; Pei, Yan

    2014-01-01

    Serpins are ubiquitously distributed serine protease inhibitors that covalently bind to target proteases to exert their activities. Serpins regulate a wide range of activities, particularly those in which protease-mediated cascades are active. The Drosophila melanogaster serpin Spn43Ac negatively controls the Toll pathway that is activated in response to fungal infection. The entomopathogenic fungus Beauveria bassiana offers an environmentally friendly alternative to chemical pesticides for insect control. However, the use of mycoinsecticides remains limited in part due to issues of efficacy (low virulence) and the recalcitrance of the targets (due to strong immune responses). Since Spn43Ac acts to inhibit Toll-mediated activation of defense responses, we explored the feasibility of a new strategy to engineer entomopathogenic fungi with increased virulence by expression of Spn43Ac in the fungus. Compared to the 50% lethal dose (LD50) for the wild-type parent, the LD50 of B. bassiana expressing Spn43Ac (strain Bb::S43Ac-1) was reduced ∼3-fold, and the median lethal time against the greater wax moth (Galleria mellonella) was decreased by ∼24%, with the more rapid proliferation of hyphal bodies being seen in the host hemolymph. In vitro and in vivo assays showed inhibition of phenoloxidase (PO) activation in the presence of Spn43Ac, with Spn43Ac-mediated suppression of activation by chymotrypsin, trypsin, laminarin, and lipopolysaccharide occurring in the following order: chymotrypsin and trypsin > laminarin > lipopolysaccharide. Expression of Spn43Ac had no effect on the activity of the endogenous B. bassiana-derived cuticle-degrading protease (CDEP-1). These results expand our understanding of Spn43Ac function and confirm that suppression of insect immune system defenses represents a feasible approach to engineering entomopathogenic fungi for greater efficacy. PMID:24837378

  11. Polyphenol Oxidase Activity Expression in Ralstonia solanacearum

    PubMed Central

    Hernández-Romero, Diana; Solano, Francisco; Sanchez-Amat, Antonio

    2005-01-01

    Sequencing of the genome of Ralstonia solanacearum revealed several genes that putatively code for polyphenol oxidases (PPOs). To study the actual expression of these genes, we looked for and detected all kinds of PPO activities, including laccase, cresolase, and catechol oxidase activities, in cellular extracts of this microorganism. The conditions for the PPO assays were optimized for the phenolic substrate, pH, and sodium dodecyl sulfate concentration used. It was demonstrated that three different PPOs are expressed. The genes coding for the enzymes were unambiguously correlated with the enzymatic activities detected by generation of null mutations in the genes by using insertional mutagenesis with a suicide plasmid and estimating the changes in the levels of enzymatic activities compared to the levels in the wild-type strain. The protein encoded by the RSp1530 locus is a multicopper protein with laccase activity. Two other genes, RSc0337 and RSc1501, code for nonblue copper proteins exhibiting homology to tyrosinases. The product of RSc0337 has strong tyrosine hydroxylase activity, and it has been shown that this enzyme is involved in melanin synthesis by R. solanacearum. The product of the RSc1501 gene is an enzyme that shows a clear preference for oxidation of o-diphenols. Preliminary characterization of the mutants obtained indicated that PPOs expressed by R. solanacearum may participate in resistance to phenolic compounds since the mutants exhibited higher sensitivity to l-tyrosine than the wild-type strain. These results suggest a possible role in the pathogenic process to avoid plant resistance mechanisms involving the participation of phenolic compounds. PMID:16269713

  12. Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli.

    PubMed

    Zhang, Lu; Alfano, James R; Becker, Donald F

    2015-02-01

    The oxidation of l-proline to glutamate in Gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase domains in a single polypeptide. Previous studies have suggested that aside from providing energy, proline metabolism influences oxidative stress resistance in different organisms. To explore this potential role and the mechanism, we characterized the oxidative stress resistance of wild-type and putA mutant strains of Escherichia coli. Initial stress assays revealed that the putA mutant strain was significantly more sensitive to oxidative stress than the parental wild-type strain. Expression of PutA in the putA mutant strain restored oxidative stress resistance, confirming that depletion of PutA was responsible for the oxidative stress phenotype. Treatment of wild-type cells with proline significantly increased hydroperoxidase I (encoded by katG) expression and activity. Furthermore, the ΔkatG strain failed to respond to proline, indicating a critical role for hydroperoxidase I in the mechanism of proline protection. The global regulator OxyR activates the expression of katG along with several other genes involved in oxidative stress defense. In addition to katG, proline increased the expression of grxA (glutaredoxin 1) and trxC (thioredoxin 2) of the OxyR regulon, implicating OxyR in proline protection. Proline oxidative metabolism was shown to generate hydrogen peroxide, indicating that proline increases oxidative stress tolerance in E. coli via a preadaptive effect involving endogenous hydrogen peroxide production and enhanced catalase-peroxidase activity.

  13. Dipeptides Increase Functional Activity of Human Skin Fibroblasts.

    PubMed

    Malinin, V V; Durnova, A O; Polyakova, V O; Kvetnoi, I M

    2015-05-01

    We analyzed the effect of dipeptide Glu-Trp and isovaleroyl-Glu-Trp in concentrations of 0.2, 2 and 20 μg/ml and Actovegin preparation on functional activity of human skin fibroblasts. Dipeptides, especially Glu-Trp, produce a stimulating effect on human skin fibroblasts and their effect is equivalent to that of Actovegin. Dipeptides stimulate cell renewal processes by activating synthesis of Ki-67 and reducing expression of caspase-9 and enhance antioxidant function of the cells by stimulating the expression of Hsp-90 and inducible NO-synthase. These findings suggest that dipeptides are promising candidates for preparations stimulating reparative processes.

  14. Ammonium Increases TRPC1 Expression Via Cav-1/PTEN/AKT/GSK3β Pathway.

    PubMed

    Wang, Wei; Gu, Li; Verkhratsky, Alexei; Peng, Liang

    2017-03-01

    Hyperammonemia occurring following acute liver failure is the primary cause of hepatic encephalopathy. In the brain, ammonium is catabolised by glutamine synthetase expressed exclusively in astroglia; ammonium overload impairs astroglial homeostatic systems. Previously, we had reported that chronic treatment with 3 mM ammonia increased expression of transient receptor potential canonic 1 (TRPC1) channels and Ca(2+) release from intracellular Ca(2+) stores (Liang et al. in Neurochem Res 39:2127-2135, 2014). Glycogen synthase kinase 3β (GSK-3β) has a key role in several astroglial signalling pathways and is known to be affected in various CNS diseases. We have studied the involvement of Cav-1/PTEN/AKT/GSK-3β signalling system in regulation of TRPC1 gene expression by ammonium. Effects of chronic (1-5 days) treatment with ammonium chloride (ammonium), at pathologically relevant concentrations of 1-5 mM were investigated on primary cultures of mouse cerebral astrocytes. We quantified expression of caveolin-1 (Cav-1), membrane content of phosphatase and tensin homologue (PTEN), phosphorylation of AKT and GSK-3β, and expression of TRPC1 channels. Ammonium significantly increased expression of Cav-1 mRNA and protein, mRNA of TRPC1 as well as membrane content of PTEN; conversely phosphorylation of AKT and GSK-3β were significantly decreased. These changes were abolished following astrocytes treatment with siRNA specific to Cav-1, indicating the involvement of Cav-1/PTEN/PI3K/AKT pathway. Similar results were found in the brains of adult mice subjected to intraperitoneal injection of urease (a model for hyperammoniemia) for 1-5 days. In transgenic mice tagged with an astrocyte-specific or neurone-specific markers (used for fluorescence-activated cell sorting of astrocytes vs. neurones) and treated with intraperitoneal injections of urease for 3 days, the Cav-1 gene mRNA expression was up-regulated in astrocytes, but not in neurones. The up-regulation of TRPC1 gene

  15. Increased hydrophobicity in Malassezia species correlates with increased proinflammatory cytokine expression in human keratinocytes.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Takeoka, Shiori; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko

    2012-11-01

    Malassezia cells stimulate cytokine production by keratinocytes, although this ability differs among Malassezia species for unknown reasons. The aim of this study was to clarify the factors determining the ability to induce cytokine production by human keratinocytes in response to Malassezia species. M. furfur NBRC 0656, M. sympodialis CBS 7222, M. dermatis JCM 11348, M. globosa CBS 7966, M. restricta CBS 7877, and three strains each of M. globosa, M. restricta, M. dermatis, M. sympodialis, and M. furfur maintained under various culture conditions were used. Normal human epidermal keratinocytes (NHEKs) (1 × 10(5) cells) and the Malassezia species (1 × 10(6) cells) were co-cultured, and IL-1α, IL-6, and IL-8 mRNA levels were determined. Moreover, the hydrophobicity and β-1,3-glucan expression at the surface of Malassezia cells were analyzed. The ability of Malassezia cells to trigger the mRNA expression of proinflammatory cytokines in NHEKs differed with the species and conditions and was dependent upon the hydrophobicity of Malassezia cells not β-1,3-glucan expression.

  16. Both harmful and (some) helpful behaviours from others are associated with increased expression of schizotypal traits.

    PubMed

    Badcock, Johanna C; Panton, Kirsten; Cohen, Alex; Badcock, David R

    2016-05-30

    Negative treatment from others is related to elevated levels of trait schizotypy, signifying increased risk for psychosis, but associations with helpful behaviour have been much less studied. Using the Stereotype Content Model we tested the hypothesis that passive and active forms of help would be associated with increased and decreased expression of schizotypy, respectively. Schizotypal traits were assessed in students (N=631) using positive (Perceptual Aberration) and negative (Social Anhedonia) subscales of the Wisconsin Schizotypy Scales-Brief. Experiences of active (intentional) and passive (less deliberative) harm and help were assessed with the Behaviour from Intergroup Affect and Stereotypes Treatment Scale. As predicted, the results showed that experiences of passive help from others were associated with a 2-3 fold increase in scores on schizotypy scales, whilst reports of active help tended to be associated with a decrease in scores on these scales. Results also showed that increased reports of active and passive harm were associated with elevated scores on negative and positive schizotypy subscales, consistent with prior research. These findings, bridging research on social stereotyping and schizotypal personality, challenge the assumption that helpful behaviour from others is always beneficial for individuals with schizotypal traits who are at increased risk for psychosis.

  17. Exendin-4 increases oxygen consumption and thermogenic gene expression in muscle cells.

    PubMed

    Choung, Jin-Seung; Lee, Young-Sun; Jun, Hee-Sook

    2017-02-01

    Glucagon-like peptide-1 (GLP1) has many anti-diabetic actions and also increases energy expenditure in vivo As skeletal muscle is a major organ controlling energy metabolism, we investigated whether GLP1 can affect energy metabolism in muscle. We found that treatment of differentiated C2C12 cells with exendin-4 (Ex-4), a GLP1 receptor agonist, reduced oleate:palmitate-induced lipid accumulation and triglyceride content compared with cells without Ex-4 treatment. When we examined the oxygen consumption rate (OCR), not only the basal OCR but also the OCR induced by oleate:palmitate addition was significantly increased in Ex-4-treated differentiated C2C12 cells, and this was inhibited by exendin-9, a GLP1 receptor antagonist. The expression of uncoupling protein 1 (UCP1), β3-adrenergic receptor, peroxisome proliferator-activator receptor a (PPARa) and farnesoid X receptor mRNA was significantly upregulated in Ex-4-treated differentiated C2C12 cells, and the upregulation of these mRNA was abolished by treatment with adenylate cyclase inhibitor (2'5'-dideoxyadenosine) or PKA inhibitor (H-89). As well, intramuscular injection of Ex-4 into diet-induced obese mice significantly increased the expression of UCP1, PPARa and p-AMPK in muscle. We suggest that exposure to GLP1 increases energy expenditure in muscle through the upregulation of fat oxidation and thermogenic gene expression, which may contribute to reducing obesity and insulin resistance.

  18. Ectopic expression of new alternative splice variant of Smac/DIABLO increases mammospheres formation

    PubMed Central

    Martinez-Ruiz, Gustavo U; Victoria-Acosta, Georgina; Vazquez-Santillan, Karla I; Jimenez-Hernandez, Luis; Muñoz-Galindo, Laura; Ceballos-Cancino, Gisela; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2014-01-01

    Smac-α is a mitochondrial protein that, during apoptosis, is translocated to the cytoplasm, where it negatively regulates members of the inhibitor of apoptosis (IAP) family via the IAP-binding motif (IBM) contained within its amino-terminus. Here, we describe a new alternative splice variant from Smac gene, which we have named Smac-ε. Smac-ε lacks both an IBM and a mitochondrial-targeting signal (MTS) element. Smac-ε mRNA exhibits a tissue-specific expression pattern in healthy human tissues as well as in several cancer cell lines. The steady-state levels of endogenous Smac-ε protein is regulated by the proteasomal pathway. When ectopically expressed, this isoform presents a cytosolic localization and is unable to associate with or to regulate the expression of X-linked Inhibitor of apoptosis protein, the best-studied member of IAP family. Nevertheless, over-expression of Smac-ε increases mammosphere formation. Whole genome expression analyses from these mammospheres show activation of several pro-survival and growth pathways, including Estrogen-Receptor signaling. In conclusion, our results support the functionality of this new Smac isoform. PMID:25337193

  19. Ectopic expression of new alternative splice variant of Smac/DIABLO increases mammospheres formation.

    PubMed

    Martinez-Ruiz, Gustavo U; Victoria-Acosta, Georgina; Vazquez-Santillan, Karla I; Jimenez-Hernandez, Luis; Muñoz-Galindo, Laura; Ceballos-Cancino, Gisela; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2014-01-01

    Smac-α is a mitochondrial protein that, during apoptosis, is translocated to the cytoplasm, where it negatively regulates members of the inhibitor of apoptosis (IAP) family via the IAP-binding motif (IBM) contained within its amino-terminus. Here, we describe a new alternative splice variant from Smac gene, which we have named Smac-ε. Smac-ε lacks both an IBM and a mitochondrial-targeting signal (MTS) element. Smac-ε mRNA exhibits a tissue-specific expression pattern in healthy human tissues as well as in several cancer cell lines. The steady-state levels of endogenous Smac-ε protein is regulated by the proteasomal pathway. When ectopically expressed, this isoform presents a cytosolic localization and is unable to associate with or to regulate the expression of X-linked Inhibitor of apoptosis protein, the best-studied member of IAP family. Nevertheless, over-expression of Smac-ε increases mammosphere formation. Whole genome expression analyses from these mammospheres show activation of several pro-survival and growth pathways, including Estrogen-Receptor signaling. In conclusion, our results support the functionality of this new Smac isoform.

  20. Increased Serotonin Transporter Expression Reduces Fear and Recruitment of Parvalbumin Interneurons of the Amygdala.

    PubMed

    Bocchio, Marco; Fucsina, Giulia; Oikonomidis, Lydia; McHugh, Stephen B; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2015-12-01

    Genetic association studies suggest that variations in the 5-hydroxytryptamine (5-HT; serotonin) transporter (5-HTT) gene are associated with susceptibility to psychiatric disorders such as anxiety or posttraumatic stress disorder. Individuals carrying high 5-HTT-expressing gene variants display low amygdala reactivity to fearful stimuli. Mice overexpressing the 5-HTT (5-HTTOE), an animal model of this human variation, show impaired fear, together with reduced fear-evoked theta oscillations in the basolateral amygdala (BLA). However, it is unclear how variation in 5-HTT gene expression impacts on the microcircuitry of the BLA to change behavior. We addressed this issue by investigating the activity of parvalbumin (PV)-expressing interneurons (PVINs), the biggest IN population in the basal amygdala (BA). We found that increased 5-HTT expression impairs the recruitment of PVINs (measured by their c-Fos immunoreactivity) during fear. Ex vivo patch-clamp recordings demonstrated that the depolarizing effect of 5-HT on PVINs was mediated by 5-HT2A receptor. In 5-HTTOE mice, 5-HT-evoked depolarization of PVINs and synaptic inhibition of principal cells, which provide the major output of the BA, were impaired. This deficit was because of reduced 5-HT2A function and not because of increased 5-HT uptake. Collectively, these findings provide novel cellular mechanisms that are likely to contribute to differences in emotional behaviors linked with genetic variations of the 5-HTT.

  1. Advanced glycation end products increase carbohydrate responsive element binding protein expression and promote cancer cell proliferation.

    PubMed

    Chen, Hanbei; Wu, Lifang; Li, Yakui; Meng, Jian; Lin, Ning; Yang, Dianqiang; Zhu, Yemin; Li, Xiaoyong; Li, Minle; Xu, Ye; Wu, Yuchen; Tong, Xuemei; Su, Qing

    2014-09-01

    Diabetic patients have increased levels of advanced glycation end products (AGEs) and the role of AGEs in regulating cancer cell proliferation is unclear. Here, we found that treating colorectal and liver cancer cells with AGEs promoted cell proliferation. AGEs stimulated both the expression and activation of a key transcription factor called carbohydrate responsive element binding protein (ChREBP) which had been shown to promote glycolytic and anabolic activity as well as proliferation of colorectal and liver cancer cells. Using siRNAs or the antagonistic antibody for the receptor for advanced glycation end-products (RAGE) blocked AGEs-induced ChREBP expression or cell proliferation in cancer cells. Suppressing ChREBP expression severely impaired AGEs-induced cancer cell proliferation. Taken together, these results demonstrate that AGEs-RAGE signaling enhances cancer cell proliferation in which AGEs-mediated ChREBP induction plays an important role. These findings may provide new explanation for increased cancer progression in diabetic patients.

  2. Activation of the PI3K-Akt pathway by human T cell leukemia virus type 1 (HTLV-1) oncoprotein Tax increases Bcl3 expression, which is associated with enhanced growth of HTLV-1-infected T cells

    SciTech Connect

    Saito, Kousuke; Saito, Mineki; Taniura, Naoko; Okuwa, Takako; Ohara, Yoshiro

    2010-08-01

    Bcl3 is a member of the I{kappa}B family that regulates genes involved in cell proliferation and apoptosis. Recent reports indicated that Bcl3 is overexpressed in HTLV-1-infected T cells via Tax-mediated transactivation, and acts as a negative regulator of viral transcription. However, the role of Bcl3 in cellular signal transduction and the growth of HTLV-1-infected T cells have not been reported. In this study, we showed that the knockdown of Bcl3 by short hairpin RNA inhibited the growth of HTLV-1-infected T cells. Although phosphatidylinositol-3 kinase (PI3K) inhibitor reduced Bcl3 expression, inactivation of glycogen synthase kinase 3 (GSK3), an effector kinase of the PI3K/Akt signaling pathway, restored Bcl3 expression in Tax-negative but not in Tax-positive T cells. Our results indicate that the overexpression of Bcl3 in HTLV-1-infected T cells is regulated not only by transcriptional but also by post-transcriptional mechanisms, and is involved in overgrowth of HTLV-1-infected T cells.

  3. The Older Woman: Increased Psychosocial Benefits from Physical Activity.

    ERIC Educational Resources Information Center

    Wakat, Diane; Odom, Sarah

    1982-01-01

    Older women who participate in physical activity programs find physical benefits in the improvement of cardiovascular and musculoskeletal systems. The psychosocial benefits which result from physical activity include an increase in self-esteem, increased social contacts, a counteraction to depression, and improved stress management. Suggestions…

  4. Increased catalase expression improves muscle function in mdx mice.

    PubMed

    Selsby, Joshua T

    2011-02-01

    It has been well established that oxidative stress contributes to pathology associated with Duchenne muscular dystrophy (DMD). I hypothesized that overexpression of the antioxidant enzyme catalase would improve muscle function in the mdx mouse, the mouse model of DMD. To test this hypothesis, neonatal mdx mice were injected with a recombinant adeno-associated virus driving the catalase transgene. Animals were killed 4 or 6 weeks or 6 months following injection. Muscle function was generally improved by catalase overexpression. Four weeks following injection, extensor digitorum longus specific tension was improved twofold, while soleus was similar between groups. Resistance to contraction-induced injury was similar between groups; however, resistance to fatigue was increased 25% in catalase-treated soleus compared with control muscle. Six weeks following injection, extensor digitorum longus specific tension was increased 15%, while soleus specific tension was similar between treated and untreated limbs. Catalase overexpression reduced contraction-induced injury by 30-45% and fatigue by 20% compared with control limbs. Six months following injection, diaphragm specific tension was similar between groups, but resistance to contraction-induced injury was improved by 35% and fatigue by 25%. Taken together, these data indicate that catalase can improve a subset of parameters of muscle function in dystrophin-deficient skeletal muscle.

  5. Increased Expression of Hepatocyte Nuclear Factor 6 Stimulates Hepatocyte Proliferation during Mouse Liver Regeneration

    PubMed Central

    Tan, Yongjun; Yoshida, Yuichi; Hughes, Douglas E.; Costa, Robert H.

    2005-01-01

    Background & Aims The Hepatocyte Nuclear Factor 6 (HNF6 or ONECUT-1) protein is a cell-type specific transcription factor that regulates expression of hepatocyte-specific genes. Using hepatocytes for Chromatin Immunoprecipitation (ChIP) assays, the HNF6 protein was shown to associate with cell cycle regulatory promoters. Here, we examined whether increased levels of HNF6 stimulate hepatocyte proliferation during mouse liver regeneration. Methods Tail vein injection of adenovirus expressing the HNF6 cDNA (AdHNF6) was used to increase hepatic HNF6 levels during mouse liver regeneration induced by partial hepatectomy, and DNA replication was determined by Bromodeoxyuridine incorporation. Cotransfection and ChIP assays were used to determine transcriptional target promoters. Results Elevated expression of HNF6 during mouse liver regeneration causes a significant increase in the number of hepatocytes entering DNA replication (S-phase) and mouse hepatoma Hepa1-6 cells diminished for HNF6 levels by siRNA transfection exhibit a 50% reduction in S-phase following serum stimulation. This stimulation in hepatocyte S-phase progression was associated with increased expression of the hepatocyte mitogen Tumor Growth Factor α (TGFα) and the cell cycle regulators Cyclin D1 and Forkhead Box m1 (Foxm1) transcription factor. Cotransfection and ChIP assays show that TGFα, Cyclin D1, and HNF6 promoter regions are direct transcriptional targets of the HNF6 protein. Co-immunoprecipitation assays with regenerating mouse liver extracts reveal association between HNF6 and Foxm1 proteins and cotransfection assays show that HNF6 stimulates Foxm1 transcriptional activity. Conclusion These mouse liver regeneration studies show that increased HNF6 levels stimulate hepatocyte proliferation through transcriptional induction of cell cycle regulatory genes. PMID:16618419

  6. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

    PubMed

    Chen, Qian; Xiao, De-Sheng

    2014-01-30

    Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO.

  7. Best Practices and Recommendations for Increasing Physical Activity in Youth

    ERIC Educational Resources Information Center

    Erwin, Heather; Beets, Michael W.; Centeio, Erin; Morrow, James R., Jr.

    2014-01-01

    Many efforts to increase the physical activity levels of Americans have been introduced and implemented over the past 20 years. National Physical Activity Guidelines have been established, and the National Physical Activity Plan (NPAP) is now in place, which includes a specific sector dedicated to education. This article addresses the Education…

  8. School-Based Health Promotion Initiative Increases Children's Physical Activity

    ERIC Educational Resources Information Center

    Cluss, Patricia; Lorigan, Devin; Kinsky, Suzanne; Nikolajski, Cara; McDermott, Anne; Bhat, Kiran B.

    2016-01-01

    Background: Childhood obesity increases health risk, and modest physical activity can impact that risk. Schools have an opportunity to help children become more active. Purpose: This study implemented a program offering extra school-day activity opportunities in a rural school district where 37% of students were obese or overweight in 2005 and…

  9. Reduced expression of 15-hydroxy prostaglandin dehydrogenase in chorion during labor is associated with decreased PRB and increased PRA and GR expression.

    PubMed

    Li, Yuan; He, Ping; Sun, Qianqian; Liu, Jie; Gao, Lu; You, Xingji; Gu, Hang; Ni, Xin

    2013-05-01

    The chorion laeve controls the levels of active prostaglandins within the uterus by NAD-dependent 15-hydroxy prostaglandin dehydrogenase (PGDH). The expression of PGDH in chorion is modulated by glucocorticoids and progesterone. In this study, we investigated glucocorticoid receptor (GR) and progesterone receptor A and B (PRA and PRB) in the regulation of PGDH expression in chorion, and we determined whether reduced PGDH expression in chorion during labor is associated with the changes in GR and PR expression by real-time RT-PCR and Western blot analysis. Dexamethasone (DEX) inhibited PGDH expression whereas progesterone stimulated PGDH expression in chorionic trophoblasts. DEX suppressed PGDH expression in GR overexpression and PR knockdown cells. The inhibitory effect of DEX did not occur in GR knockdown cells. Progesterone inhibited PGDH in GR overexpression and PR knockdown cells and it stimulated PGDH in PRB overexpression cells whereas it suppressed PGDH in PRA overexpression cells. Knockdown of c-Jun resulted in a loss of progesterone- and DEX-induced effects. PGDH was down-regulated in chorion tissues during labor. PRB was decreased whereas PRA and GR were increased in chorion during labor. Glucocorticoids inhibit PGDH expression via GR in chorionic trophoblasts. Progesterone enhances PGDH expression through PRB, whereas it inhibits PGDH expression via GR and PRA. Decreased PGDH expression is associated with increased GR and PRA, although decreased PRB, in chorion during labor.

  10. Smooth muscle-selective CPI-17 expression increases vascular smooth muscle contraction and blood pressure

    PubMed Central

    Su, Wen; Xie, Zhongwen; Liu, Shu; Calderon, Lindsay E.; Guo, Zhenheng

    2013-01-01

    Recent data revealed that protein kinase C-potentiated myosin phosphatase inhibitor of 17 kDa (CPI-17), a myosin phosphatase inhibitory protein preferentially expressed in smooth muscle, is upregulated/activated in several diseases but whether this CPI-17 increase plays a causal role in pathologically enhanced vascular smooth muscle contractility and blood pressure remains unclear. To address this possibility, we generated a smooth muscle-specific CPI-17 transgenic mouse model (CPI-17-Tg) and demonstrated that the CPI-17 transgene was selectively expressed in smooth muscle-enriched tissues, including mesenteric arteries. The isometric contractions in the isolated second-order branch of mesenteric artery helical strips from CPI-17-Tg mice were significantly enhanced compared with controls in response to phenylephrine, U-46619, serotonin, ANG II, high potassium, and calcium. The perfusion pressure increases in isolated perfused mesenteric vascular beds in response to norepinephrine were also enhanced in CPI-17-Tg mice. The hypercontractility was associated with increased phosphorylation of CPI-17 and 20-kDa myosin light chain under basal and stimulated conditions. Surprisingly, the protein levels of rho kinase 2 and protein kinase Cα/δ were significantly increased in CPI-17-Tg mouse mesenteric arteries. Radiotelemetry measurements demonstrated that blood pressure was significantly increased in CPI-17-Tg mice. However, no vascular remodeling was detected by morphometric analysis. Taken together, our results demonstrate that increased CPI-17 expression in smooth muscle promotes vascular smooth muscle contractility and increases blood pressure, implicating a pathological significant role of CPI-17 upregulation. PMID:23604714

  11. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.

    PubMed

    Abid, Nabeela; Khatoon, Asia; Maqbool, Asma; Irfan, Muhammad; Bashir, Aftab; Asif, Irsa; Shahid, Muhammad; Saeed, Asma; Brinch-Pedersen, Henrik; Malik, Kauser A

    2017-02-01

    Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.

  12. Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins

    PubMed Central

    Wang, Hui; Zhao, Jun-Xing; Hu, Nan; Ren, Jun; Du, Min; Zhu, Mei-Jun

    2012-01-01

    AIM: To investigate the effect of side-stream smoking on gut microflora composition, intestinal inflammation and expression of tight junction proteins. METHODS: C57BL/6 mice were exposed to side-stream cigarette smoking for one hour daily over eight weeks. Cecal contents were collected for microbial composition analysis. Large intestine was collected for immunoblotting and quantitative reverse transcriptase polymerase chain reaction analyses of the inflammatory pathway and tight junction proteins. RESULTS: Side-stream smoking induced significant changes in the gut microbiota with increased mouse intestinal bacteria, Clostridium but decreased Fermicutes (Lactoccoci and Ruminococcus), Enterobacteriaceae family and Segmented filamentous baceteria compared to the control mice. Meanwhile, side-stream smoking inhibited the nuclear factor-κB pathway with reduced phosphorylation of p65 and IκBα, accompanied with unchanged mRNA expression of tumor necrosis factor-α or interleukin-6. The contents of tight junction proteins, claudin3 and ZO2 were up-regulated in the large intestine of mice exposed side-stream smoking. In addition, side-stream smoking increased c-Jun N-terminal kinase and p38 MAPK kinase signaling, while inhibiting AMP-activated protein kinase in the large intestine. CONCLUSION: Side-stream smoking altered gut microflora composition and reduced the inflammatory response, which was associated with increased expression of tight junction proteins. PMID:22611310

  13. Compound C Increases Sestrin2 Expression via Mitochondria-Dependent ROS Production.

    PubMed

    Seo, Kyuhwa; Seo, Suho; Ki, Sung Hwan; Shin, Sang Mi

    2016-01-01

    Compound C is a widely used chemical inhibitor that down-regulates AMP-activated protein kinase (AMPK) activity. However, it has been suggested that compound C exerts AMPK-independent effects in various cells. Here, we investigated whether compound C induces Sestrin2 (SESN2), an antioxidant enzyme induced by diverse stress. In addition, the mechanism responsible for SESN2 induction by compound C was determined. Our results showed that compound C increased SESN2 protein expression in HepG2 cells in a concentration- and time-dependent manner. The induction of SESN2 mRNA was also observed in cells treated with compound C. Increase of SESN2 luciferase activity confirmed transcriptional regulation by compound C and this substance also increased nuclear factor erythroid 2 (NF-E2)-related factor-2 (Nrf2) phosphorylation, which implies that Nrf2 was involved in SESN2 induction. Next, we sought to demonstrate whether production of reactive oxygen species (ROS) accompanied SESN2 expression. Compound C increased ROS production, but this effect was prevented by pretreatment with antioxidants or the mitochondrial complex I inhibitor. Moreover, cyclosporin A, an inhibitor of pore formation in the mitochondrial membrane, attenuated compound C-induced SESN2 induction. However, overexpression of a constitutively active form of AMPK was not able to abolish SESN2 induction by compound C, which implies that its action is independent of AMPK inhibition. In conclusion, this is the first study demonstrating that compound C alters mitochondrial function and induces ROS production, which ultimately leads to phosphorylation of Nrf2 and induction of SESN2.

  14. Serum factor induces selective increase in Na-channel expression in cultured skeletal muscle

    SciTech Connect

    Brodie, C.; Sampson, S.R. )

    1991-07-01

    The authors have examined effects of horse serum (HS) and various fractions (1 million-1M, 300K, 100K, and 30K nominal molecular weight limit) obtained by ultrafiltration on expression of TTX-sensitive Na-channels and on activities of the Na-K pump and glucose transport systems in cultured myotubes obtained from 1-2-day-old neonatal rat pups. Five-day-old cells were transferred to serum-free medium with no hormone or growth factor supplements (DMEM) for 24 hr and then treated with the various serum fractions for 48 hr. Measurements were made of specific (3H)-saxitoxin (STX) binding, action potential properties, 86Rb-uptake and 2-deoxyglucose (2-DG) uptake. HS significantly increased all parameters compared to DMEM (increases in STX-binding, 69%; Rb-uptake, 65%; 2-DG uptake, 93%). Results of treatment with the separate fractions showed that the 300K fraction caused a significantly greater increase in STX-binding than either HS or the other fractions. In contrast, the increases in Rb and 2-DG uptakes induced by the different fractions were not different from that obtained with HS. They conclude that serum contains a factor that selectively increases expression of TTX-sensitive Na-channels in skeletal muscle.

  15. Lotus hairy roots expressing inducible arginine decarboxylase activity.

    PubMed

    Chiesa, María A; Ruiz, Oscar A; Sánchez, Diego H

    2004-05-01

    Biotechnological uses of plant cell-tissue culture usually rely on constitutive transgene expression. However, such expression of transgenes may not always be desirable. In those cases, the use of an inducible promoter could be an alternative approach. To test this hypothesis, we developed two binary vectors harboring a stress-inducible promoter from Arabidopsis thaliana, driving the beta-glucuronidase reporter gene and the oat arginine decarboxylase. Transgenic hairy roots of Lotus corniculatus were obtained with osmotic- and cold-inducible beta-glucuronidase and arginine decarboxylase activities. The increase in the activity of the latter was accompanied by a significant rise in total free polyamines level. Through an organogenesis process, we obtained L. corniculatus transgenic plants avoiding deleterious phenotypes frequently associated with the constitutive over-expression of arginine decarboxylation and putrescine accumulation.

  16. Berberine Inhibits Doxorubicin-Triggered Cardiomyocyte Apoptosis via Attenuating Mitochondrial Dysfunction and Increasing Bcl-2 Expression

    PubMed Central

    Lv, Xiuxiu; Yu, Xiaohui; Wang, Yiyang; Wang, Faqiang; Li, Hongmei; Wang, Yanping; Lu, Daxiang; Qi, Renbin; Wang, Huadong

    2012-01-01

    Cardiomyocyte apoptosis is an important event in doxorubicin (DOX)-induced cardiac injury. The aim of the present study was to investigate the protection of berberine (Ber) against DOX- triggered cardiomyocyte apoptosis in neonatal rat cardiomyocytes and rats. In neonatal rat cardiomyocytes, Ber attenuated DOX-induced cellular injury and apoptosis in a dose-dependent manner. However, Ber has no significant effect on viability of MCF-7 breast cancer cells treated with DOX. Ber reduced caspase-3 and caspase-9, but not caspase-8 activity in DOX-treated cardiomyocytes. Furthermore, Ber decreased adenosine monophosphate-activated protein kinase α (AMPKα) and p53 phosphorylation at 2 h, cytosolic cytochrome c and mitochondrial Bax levels and increased Bcl-2 level at 6 h in DOX-stimulated cardiomyocytes. Pretreatment with compound C, an AMPK inhibitor, also suppressed p53 phosphorylation and apoptosis in DOX-treated cardiomyocytes. DOX stimulation for 30 min led to a loss of mitochondrial membrane potential and a rise in the AMP/ATP ratio. Ber markedly reduced DOX-induced mitochondrial membrane potential loss and an increase in the AMP/ATP ratio at 1 h and 2 h post DOX exposure. In in vivo experiments, Ber significantly improved survival, increased stroke volume and attenuated myocardial injury in DOX-challenged rats. TUNEL and Western blot assays showed that Ber not only decreased myocardial apoptosis, caspase-3 activation, AMPKα and p53 phosphorylation, but also increased Bcl-2 expression in myocardium of rats exposed to DOX for 84 h. These findings indicate that Ber attenuates DOX-induced cardiomyocyte apoptosis via protecting mitochondria, inhibiting an increase in the AMP/ATP ratio and AMPKα phosphorylation as well as elevating Bcl-2 expression, which offer a novel mechanism responsible for protection of Ber against DOX-induced cardiomyopathy. PMID:23077597

  17. Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle.

    PubMed

    Lira, Vitor A; Soltow, Quinlyn A; Long, Jodi H D; Betters, Jenna L; Sellman, Jeff E; Criswell, David S

    2007-10-01

    Nitric oxide (NO) and 5'-AMP-activated protein kinase (AMPK) are involved in glucose transport and mitochondrial biogenesis in skeletal muscle. Here, we examined whether NO regulates the expression of the major glucose transporter in muscle (GLUT4) and whether it influences AMPK-induced upregulation of GLUT4. At low levels, the NO donor S-nitroso-N-penicillamine (SNAP, 1 and 10 microM) significantly increased GLUT4 mRNA ( approximately 3-fold; P < 0.05) in L6 myotubes, and cotreatment with the AMPK inhibitor compound C ablated this effect. The cGMP analog 8-bromo-cGMP (8-Br-cGMP, 2 mM) increased GLUT4 mRNA by approximately 50% (P < 0.05). GLUT4 protein expression was elevated 40% by 2 days treatment with 8-Br-cGMP, whereas 6 days treatment with 10 microM SNAP increased GLUT4 expression by 65%. Cotreatment of cultures with the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one prevented the SNAP-induced increase in GLUT4 protein. SNAP (10 microM) also induced significant phosphorylation of alpha-AMPK and acetyl-CoA carboxylase and translocation of phosphorylated alpha-AMPK to the nucleus. Furthermore, L6 myotubes exposed to 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) for 16 h presented an approximately ninefold increase in GLUT4 mRNA, whereas cotreatment with the non-isoform-specific NOS inhibitor N(G)-nitro-l-arginine methyl ester, prevented approximately 70% of this effect. In vivo, GLUT4 mRNA was increased 1.8-fold in the rat plantaris muscle 12 h after AICAR injection, and this induction was reduced by approximately 50% in animals cotreated with the neuronal and inducible nitric oxide synthases selective inhibitor 1-(2-trifluoromethyl-phenyl)-imidazole. We conclude that, in skeletal muscle, NO increases GLUT4 expression via a cGMP- and AMPK-dependent mechanism. The data are consistent with a role for NO in the regulation of AMPK, possibly via control of cellular activity of AMPK kinases and/or AMPK phosphatases.

  18. Transmissible Gastroenteritis Virus Infection Enhances SGLT1 and GLUT2 Expression to Increase Glucose Uptake

    PubMed Central

    Dai, Lei; Hu, Wei Wei; Xia, Lu; Xia, Mi; Yang, Qian

    2016-01-01

    Transmissible gastroenteritis virus (TGEV) is a coronavirus that causes villus atrophy, followed by crypt hyperplasia, reduces the activities of intestinal digestive enzymes, and disrupts the absorption of intestinal nutrients. In vivo, TGEV primarily targets and infects intestinal epithelial cells, which play an important role in glucose absorption via the apical and basolateral transporters Na+-dependent glucose transporter 1 (SGLT1) and facilitative glucose transporter 2 (GLUT2), respectively. In this study, we therefore sought to evaluate the effects of TGEV infection on glucose uptake and SGLT1 and GLUT2 expression. Our data demonstrate that infection with TGEV resulted in increased glucose uptake and augmented expression of EGFR, SGLT1 and GLUT2. Moreover, inhibition studies showed that EGFR modulated glucose uptake in control and TGEV infected cells. Finally, high glucose absorption was subsequently found to promote TGEV replication. PMID:27851758

  19. INCREASED EXPRESSION OF AT2 RECEPTORS IN THE SOLITARY-VAGAL COMPLEX BLUNTS RENOVASCULAR HYPERTENSION

    PubMed Central

    Blanch, Graziela Torres; Freiria-Oliveira, André Henrique; Speretta, Guilherme Fina Fleury; Carrera, Eduardo J.; Li, Hongwei; Speth, Robert C.; Colombari, Eduardo; Sumners, Colin; Colombari, Débora S. A.

    2014-01-01

    Angiotensin II increases and decreases arterial pressure by acting at angiotensin type 1 and type 2 receptors respectively. Renovascular hypertensive rats exhibit a high level of activity of the peripheral and central renin-angiotensin system. Therefore, in the present study we evaluated the effect of increasing the expression of angiotensin type 2 receptors in the solitary-vagal complex [nucleus of the solitary tract/dorsal motor nucleus of the vagus], a key brainstem region for cardiovascular regulation, on the development of renovascular hypertension. Holtzman normotensive rats were implanted with a silver clip around the left renal artery to induce 2 kidney-1 clip renovascular hypertension. Three weeks later, rats were microinjected in the solitary-vagal complex with either an adeno-associated virus to increase the expression of angiotensin type 2 receptors, or with a control vector. We observed that increasing angiotensin type 2 receptor expression in the solitary-vagal complex attenuated the development of renovascular hypertension and also reversed the impairment of the baroreflex and the increase in the low frequency component of systolic blood pressure observed in renovascular hypertensive rats. Further, an observed decrease in mRNA levels of angiotensin converting enzyme 2 in the solitary-vagal complex of renovascular hypertensive rats was restored to control levels following viral-mediated increases in angiotensin type 2 receptors at this site. Collectively, these data demonstrate specific and beneficial effects of angiotensin type 2 receptors via the brain of hypertensive rats, and suggest that central angiotensin type 2 receptors may be a potential target for therapeutics in renovascular hypertension. PMID:24958505

  20. Technology to promote and increase physical activity in heart failure.

    PubMed

    Franklin, Nina C

    2015-01-01

    Regular physical activity is firmly recommended as part of a multifaceted approach to heart failure (HF) self-management. Unfortunately, research indicates that most patients are less likely to engage in and adhere to such activities. The widespread use of information and communication technology tools and resources offers an innovative and potentially beneficial avenue for increasing physical activity levels in HF patients. This article presents specific ways in which advances in information and communication technologies, including Internet- and mobile-based communications, social media platforms, and self-monitoring health devices, can serve as a means to broadly promote increasing levels of physical activity to improve health outcomes in the HF population.

  1. Activating frataxin expression by repeat-targeted nucleic acids

    PubMed Central

    Li, Liande; Matsui, Masayuki; Corey, David R.

    2016-01-01

    Friedreich's ataxia is an incurable genetic disorder caused by a mutant expansion of the trinucleotide GAA within an intronic FXN RNA. This expansion leads to reduced expression of frataxin (FXN) protein and evidence suggests that transcriptional repression is caused by an R-loop that forms between the expanded repeat RNA and complementary genomic DNA. Synthetic agents that increase levels of FXN protein might alleviate the disease. We demonstrate that introducing anti-GAA duplex RNAs or single-stranded locked nucleic acids into patient-derived cells increases FXN protein expression to levels similar to analogous wild-type cells. Our data are significant because synthetic nucleic acids that target GAA repeats can be lead compounds for restoring curative FXN levels. More broadly, our results demonstrate that interfering with R-loop formation can trigger gene activation and reveal a new strategy for upregulating gene expression. PMID:26842135

  2. Mechanical stretch increases Smad3-dependent CCN2 expression in inner meniscus cells.

    PubMed

    Furumatsu, Takayuki; Kanazawa, Tomoko; Miyake, Yoshiaki; Kubota, Satoshi; Takigawa, Masaharu; Ozaki, Toshifumi

    2012-11-01

    The intrinsic zone-specific properties of the menisci are determined by biomechanical environments. In this study, we examined mechanical stretch-dependent expression of multifunctional growth factor CYR61/CTGF/NOV (CCN) 2, and investigated the role of CCN2 in meniscus cells. Uni-axial cyclic tensile strain (CTS) was applied using a STB-140 system. CTS-induced expression of CCN2 and α1(I) collagen (COL1A1) was assessed by quantitative real-time PCR analysis. The distribution of CCN2 and Smad2/3 in stretched cells was investigated by immunohistochemical analysis. Smad2/3-dependent CCN2 transactivation was measured by luciferase reporter assay. The relationship between Smad2/3 and CTS-induced CCN2 transcription was investigated by chromatin immunoprecipitation. CTS stimulated gene expression of CCN2 and COL1A1 in inner meniscus cells, but not in outer meniscus cells. Recombinant CCN2 increased COL1A1 expression only in inner meniscus cells. CCN2 synthesis and nuclear translocalization of phosphorylated Smad2/3 in inner meniscus cells were stimulated by CTS. The CCN2 promoter activity was synergistically enhanced by overexpressed Smad3 in stretched inner meniscus cells, but was not by Smad2. Chromatin immunoprecipitation revealed that CTS increased the association between Smad3 and the Smad-binding element on the CCN2 proximal promoter in inner meniscus cells. Our results suggest that stretch-induced CCN2 may have a crucial role in regulating COL1A1 expression in the inner meniscus.

  3. Loss of RUNX3 increases osteopontin expression and promotes cell migration in gastric cancer.

    PubMed

    Cheng, Hui-Chuan; Liu, Yu-Peng; Shan, Yan-Shen; Huang, Chi-Ying; Lin, Forn-Chia; Lin, Li-Ching; Lee, Ling; Tsai, Chen-Hsun; Hsiao, Michael; Lu, Pei-Jung

    2013-11-01

    Loss of RUNX3 expression is frequently observed in gastric cancer and is highly associated with lymph node metastasis and poor prognosis. However, the underlying molecular mechanisms of gastric cancer remain unknown. In this study, we found that the protein levels of RUNX3 and osteopontin (OPN) are inversely correlated in gastric cancer clinical specimens and cell lines. Furthermore, similar inverse trends between RUNX3 and OPN messenger RNA (mRNA) expression were demonstrated in six out of seven normal-tumor-paired gastric cancer clinical specimens. In addition, low RUNX3 and high OPN expression were associated with poor prognosis in gastric cancer patients. Ectopic expression of green fluorescent protein-RUNX3 reduced OPN protein and mRNA expression in the AGS and SCM-1 gastric cancer cell lines. In contrast, knockdown of RUNX3 in GES-1, a normal gastric epithelial cell line, increased OPN expression. Although three RUNX3-binding sequences have been identified in the OPN promoter region, direct binding of RUNX3 to the specific binding site, -142 to -137bp, was demonstrated by chromatin immunoprecipitation assay. The binding of RUNX3 to the OPN promoter significantly decreased OPN promoter activity. The knockdown of OPN or overexpression of RUNX3 inhibited cell migration in AGS and SCM-1 cells; however, the coexpression of RUNX3 and OPN reversed the RUNX3-reduced migration ability in AGS and SCM-1 cells. In contrast, the knockdown of both RUNX3 and OPN inhibited RUNX3-knockdown-induced migration of GES-1 cells. Together, our data demonstrated that RUNX3 is a transcriptional repressor of OPN and that loss of RUNX3 upregulates OPN, which promotes migration in gastric cancer cells.

  4. Fingolimod Increases CD39-Expressing Regulatory T Cells in Multiple Sclerosis Patients

    PubMed Central

    Muls, Nathalie; Dang, Hong Anh; Sindic, Christian J. M.; van Pesch, Vincent

    2014-01-01

    Background Multiple sclerosis (MS) likely results from an imbalance between regulatory and inflammatory immune processes. CD39 is an ectoenzyme that cleaves ATP to AMP and has been suggested as a novel regulatory T cells (Treg) marker. As ATP has numerous proinflammatory effects, its degradation by CD39 has anti-inflammatory influence. The purpose of this study was to explore regulatory and inflammatory mechanisms activated in fingolimod treated MS patients. Methods and Findings Peripheral blood mononuclear cells (PBMCs) were isolated from relapsing-remitting MS patients before starting fingolimod and three months after therapy start. mRNA expression was assessed in ex vivo PBMCs. The proportions of CD8, B cells, CD4 and CD39-expressing cells were analysed by flow cytometry. Treg proportion was quantified by flow cytometry and methylation-specific qPCR. Fingolimod treatment increased mRNA levels of CD39, AHR and CYP1B1 but decreased mRNA expression of IL-17, IL-22 and FOXP3 mRNA in PBMCs. B cells, CD4+ cells and Treg proportions were significantly reduced by this treatment, but remaining CD4+ T cells were enriched in FOXP3+ cells and in CD39-expressing Tregs. Conclusions In addition to the decrease in circulating CD4+ T cells and CD19+ B cells, our findings highlight additional immunoregulatory mechanisms induced by fingolimod. PMID:25411844

  5. Glucose deprivation induces chemoresistance in colorectal cancer cells by increasing ATF4 expression

    PubMed Central

    Hu, Ya-Ling; Yin, Yuan; Liu, He-Yong; Feng, Yu-Yang; Bian, Ze-Hua; Zhou, Le-Yuan; Zhang, Ji-Wei; Fei, Bo-Jian; Wang, Yu-Gang; Huang, Zhao-Hui

    2016-01-01

    AIM: To investigate the role of activating transcription factor 4 (ATF4) in glucose deprivation (GD) induced colorectal cancer (CRC) drug resistance and the mechanism involved. METHODS: Chemosensitivity and apoptosis were measured under the GD condition. Inhibition of ATF4 using short hairpin RNA in CRC cells under the GD condition and in ATF4-overexpressing CRC cells was performed to identify the role of ATF4 in the GD induced chemoresistance. Quantitative real-time RT-PCR and Western blot were used to detect the mRNA and protein expression of drug resistance gene 1 (MDR1), respectively. RESULTS: GD protected CRC cells from drug-induced apoptosis (oxaliplatin and 5-fluorouracil) and induced the expression of ATF4, a key gene of the unfolded protein response. Depletion of ATF4 in CRC cells under the GD condition can induce apoptosis and drug re-sensitization. Similarly, inhibition of ATF4 in the ATF4-overexpressing CRC cells reintroduced therapeutic sensitivity and apoptosis. In addition, increased MDR1 expression was observed in GD-treated CRC cells. CONCLUSION: These data indicate that GD promotes chemoresistance in CRC cells through up-regulating ATF4 expression. PMID:27468213

  6. Increased sternocleidomastoid, but not trapezius, muscle activity in response to increased chewing load.

    PubMed

    Häggman-Henrikson, Birgitta; Nordh, Erik; Eriksson, Per-Olof

    2013-10-01

    Previous findings, during chewing, that boluses of larger size and harder texture result in larger amplitudes of both mandibular and head-neck movements suggest a relationship between increased chewing load and incremental recruitment of jaw and neck muscles. The present report evaluated jaw (masseter and digastric) and neck [sternocleidomastoid (SCM) and trapezius] muscle activity during the chewing of test foods of different sizes and textures by 10 healthy subjects. Muscle activity was recorded by surface electromyography and simultaneous mandibular and head movements were recorded using an optoelectronic technique. Each subject performed continuous jaw-opening/jaw-closing movements whilst chewing small and large boluses of chewing gum and rubber silicone (Optosil). For jaw opening/jaw closing without a bolus, SCM activity was recorded for jaw opening concomitantly with digastric activity. During chewing, SCM activity was recorded for jaw closing concomitantly with masseter activity. Trapezius activity was present in some, but not all, cycles. For the masseter and SCM muscles, higher activity was seen with larger test foods, suggesting increased demand and recruitment of these muscles in response to an increased chewing load. This result reinforces the previous notion of a close functional connection between the jaw and the neck motor systems in jaw actions and has scientific and clinical significance for studying jaw function and dysfunction.

  7. Increase in hepatic expression of SREBP-2 by gemfibrozil administration to rats.

    PubMed

    Roglans, N; Peris, C; Verd, J C; Alegret, M; Vázquez, M; Sánchez, R M; Laguna, J C

    2001-09-15

    It is well known that gemfibrozil increases the biliary output of cholesterol and phospholipids, but we have little knowledge about the impact these changes have on liver cholesterol and phospholipid biosynthetic pathways. In the present study, no changes were detected in liver lipids and CTP:phosphocholine cytidylyltransferase after gemfibrozil administration to rats. On the contrary, 3-hydroxy-3-methylglutaryl-CoA reductase mRNA (9.9-fold) and Rd activity (16.7-fold) and phosphatidate phosphohydrolase activity (1.7-fold) increased, while plasma apo B-cholesterol (40%) and triglyceride (43%) levels decreased. As a part of a compensatory homeostatic response, we report for the first time that gemfibrozil administration to rats increased the hepatic sterol regulatory element binding protein-2 (SREBP-2) mRNA (2.9-fold) and mature protein (2.2-fold) levels. An early increase in the transcriptional activity of SREBP-2 elicited by gemfibrozil administration might be responsible for the observed changes in HMG-CoA reductase, phosphatidate phosphohydrolase, and SREBP-2 expression.

  8. Cyclic stretch of Embryonic Cardiomyocytes Increases Proliferation, Growth, and Expression While Repressing Tgf-β Signaling

    PubMed Central

    Banerjee, Indroneal; Carrion, Katrina; Serrano, Ricardo; Dyo, Jeffrey; Sasik, Roman; Lund, Sean; Willems, Erik; Aceves, Seema; Meili, Rudolph; Mercola, Mark; Chen, Ju; Zambon, Alexander; Hardiman, Gary; Doherty, Taylor A; Lange, Stephan; del Álamo, Juan C.; Nigam, Vishal

    2014-01-01

    Perturbed biomechanical stimuli are thought to be critical for the pathogenesis of a number of congenital heart defects, including Hypoplastic Left Heart Syndrome (HLHS). While embryonic cardiomyocytes experience biomechanical stretch every heart beat, their molecular responses to biomechanical stimuli during heart development are poorly understood. We hypothesized that biomechanical stimuli activate specific signaling pathways that impact proliferation, gene expression and myocyte contraction. The objective of this study was to expose embryonic mouse cardiomyocytes (EMCM) to cyclic stretch and examine key molecular and phenotypic responses. Analysis of RNA-Sequencing data demonstrated that gene ontology groups associated with myofibril and cardiac development were significantly modulated. Stretch increased EMCM proliferation, size, cardiac gene expression, and myofibril protein levels. Stretch also repressed several components belonging to the Transforming Growth Factor-β (Tgf-β) signaling pathway. EMCMs undergoing cyclic stretch had decreased Tgf-β expression, protein levels, and signaling. Furthermore, treatment of EMCMs with a Tgf-β inhibitor resulted in increased EMCM size. Functionally, Tgf-β signaling repressed EMCM proliferation and contractile function, as assayed via dynamic monolayer force microscopy (DMFM). Taken together, these data support the hypothesis that biomechanical stimuli play a vital role in normal cardiac development and for cardiac pathology, including HLHS. PMID:25446186

  9. ALK1 heterozygosity increases extracellular matrix protein expression, proliferation and migration in fibroblasts.

    PubMed

    Muñoz-Félix, José M; Perretta-Tejedor, Nuria; Eleno, Nélida; López-Novoa, José M; Martínez-Salgado, Carlos

    2014-06-01

    Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1(+/+) and ALK1(+/-) mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.

  10. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression.

    PubMed

    Gómez-Sánchez, Rubén; Gegg, Matthew E; Bravo-San Pedro, José M; Niso-Santano, Mireia; Alvarez-Erviti, Lydia; Pizarro-Estrella, Elisa; Gutiérrez-Martín, Yolanda; Alvarez-Barrientos, Alberto; Fuentes, José M; González-Polo, Rosa Ana; Schapira, Anthony H V

    2014-02-01

    Mutations of the PTEN-induced kinase 1 (PINK1) gene are a cause of autosomal recessive Parkinson's disease (PD). This gene encodes a mitochondrial serine/threonine kinase, which is partly localized to mitochondria, and has been shown to play a role in protecting neuronal cells from oxidative stress and cell death, perhaps related to its role in mitochondrial dynamics and mitophagy. In this study, we report that increased mitochondrial PINK1 levels observed in human neuroblastoma SH-SY5Y cells after carbonyl cyanide m-chlorophelyhydrazone (CCCP) treatment were due to de novo protein synthesis, and not just increased stabilization of full length PINK1 (FL-PINK1). PINK1 mRNA levels were significantly increased by 4-fold after 24h. FL-PINK1 protein levels at this time point were significantly higher than vehicle-treated, or cells treated with CCCP for 3h, despite mitochondrial content being decreased by 29%. We have also shown that CCCP dissipated the mitochondrial membrane potential (Δψm) and induced entry of extracellular calcium through L/N-type calcium channels. The calcium chelating agent BAPTA-AM impaired the CCCP-induced PINK1 mRNA and protein expression. Furthermore, CCCP treatment activated the transcription factor c-Fos in a calcium-dependent manner. These data indicate that PINK1 expression is significantly increased upon CCCP-induced mitophagy in a calcium-dependent manner. This increase in expression continues after peak Parkin mitochondrial translocation, suggesting a role for PINK1 in mitophagy that is downstream of ubiquitination of mitochondrial substrates. This sensitivity to intracellular calcium levels supports the hypothesis that PINK1 may also play a role in cellular calcium homeostasis and neuroprotection.

  11. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression.

    PubMed

    Zhang, Hao; Wei, Jing; Xue, Rong; Wu, Jin-Dan; Zhao, Wei; Wang, Zi-Zheng; Wang, Shu-Kui; Zhou, Zheng-Xian; Song, Dan-Qing; Wang, Yue-Ming; Pan, Huai-Ning; Kong, Wei-Jia; Jiang, Jian-Dong

    2010-02-01

    Our previous work demonstrated that berberine (BBR) increases insulin receptor (InsR) expression and improves glucose utility both in vitro and in animal models. Here, we study the InsR-up-regulating and glucose-lowering activities of BBR in humans. Our results showed that BBR increased InsR messenger RNA and protein expression in a variety of human cell lines, including CEM, HCT-116, SW1990, HT1080, 293T, and hepatitis B virus-transfected human liver cells. Accordingly, insulin-stimulated phosphorylations of InsR beta-subunit and Akt were increased after BBR treatment in cultured cells. In the clinical study, BBR significantly lowered fasting blood glucose (FBG), hemoglobin A(1c), triglyceride, and insulin levels in patients with type 2 diabetes mellitus (T2DM). The FBG- and hemoglobin A(1c)-lowering efficacies of BBR were similar to those of metformin and rosiglitazone. In the BBR-treated patients, the percentages of peripheral blood lymphocytes that express InsR were significantly elevated after therapy. Berberine also lowered FBG effectively in chronic hepatitis B and hepatitis C patients with T2DM or impaired fasting glucose. Liver function was improved greatly in these patients by showing reduction of liver enzymes. Our results confirmed the activity of BBR on InsR in humans and its relationship with the glucose-lowering effect. Together with our previous report, we strongly suggest BBR as an ideal medicine for T2DM with a mechanism different from metformin and rosiglitazone.

  12. Mechanism of pyruvate dehydrogenase activation by increased cardiac work.

    PubMed

    Kobayashi, K; Neely, J R

    1983-06-01

    The effects of increased cardiac work, pyruvate and insulin on the state of pyruvate dehydrogenase (PDH) activation and rate of pyruvate decarboxylation was studied in the isolated perfused rat heart. At low levels of cardiac work, 61% of PDH was present in the active form when glucose was the only substrate provided. The actual rate of pyruvate decarboxylation was only 5% of the available capacity calculated from the percent of active PDH. Under this condition, the rate of pyruvate decarboxylation was restricted by the slow rate of pyruvate production from glycolysis. Increasing cardiac work accelerated glycolysis, but production of pyruvate remained rate limiting for pyruvate oxidation and only 40% of the maximal active PDH capacity was used. Addition of insulin along with glucose reduced the percent of active PDH to 16% of the total at low cardiac work. This effect of insulin was associated with increased mitochondria NADH/NAD and acetyl CoA/CoA ratios. With both glucose and insulin the calculated maximum capacity of active PDH was about the same as measured rates of pyruvate oxidation indicating that pyruvate oxidation was limited by the activation state of PDH. In this case, raising the level of cardiac work increased the active PDH to 85% and although pyruvate oxidation was accelerated, measured flux through PDH was only 73% of the maximal activity of active PDH. With pyruvate as added exogenous substrate, PDH was 82% of active at low cardiac work probably due to pyruvate inhibition of PDH kinase. In this case, the measured rate of pyruvate oxidation was 64% of the capacity of active PDH. However, increased cardiac work still caused further activation of PDH to 96% active. Thus, actual rates of pyruvate oxidation in the intact tissue were determined by (1) the supply of pyruvate in hearts receiving glucose alone, (2) by the percent of active PDH in hearts receiving both glucose and insulin at low work and (3) by end-product inhibition in hearts receiving

  13. Increased EMR2 expression on neutrophils correlates with disease severity and predicts overall mortality in cirrhotic patients

    PubMed Central

    Huang, Chien-Hao; Jeng, Wen-Juei; Ho, Yu-Pin; Teng, Wei-; Hsieh, Yi-Chung; Chen, Wei-Ting; Chen, Yi-Cheng; Lin, Hsi-Hsien; Sheen, I-Shyan; Lin, Chun-Yen

    2016-01-01

    Patients with liver cirrhosis are susceptible to infections with high short-term mortalities. One CD97-related EGF-TM7 molecule, EMR2 (EGF-like molecule containing mucin-like hormone receptor 2), had been shown to regulate human neutrophil function, potentiate systemic inflammation. Nevertheless, EMR2 could also suppress neutrophil survival. Studying the role of EMR2 on neutrophil would be intriguing. 48 healthy volunteers and 100 cirrhotic patients were enrolled. Neutrophils were isolated from peripheral blood and cell surface markers were measured by flow cytometry.EMR2 expression levels correlated with CTP scores and increased further in patients with infections. These EMR2-expressed neutrophils were with activated phenotype, but with deranged functions like increased resting oxidative burst and impaired phagocytosis ability. Ligation of EMR2 could increase the phagoburst capacity but not the phagocytosis ability. Furthermore, neutrophils with higher EMR2 expression were more apoptotic and lost the LPS-induced neutrophil survival. Finally, EMR2 expressions on neutrophils correlated with infections and their levels greater than 25 had an AUC = 0.708 for predicting mortality. In conclusion, EMR2 expression levels correlated with CTP scores and increased further in cirrhotic patients with infections. These high EMR2-expressed neutrophils had activated phenotype but with deranged functions. Higher levels of these EMR2-expressed neutrophils correlated with infectious complications and predict mortality. PMID:27905560

  14. Building a better mousetrap (exergame) to increase youth physical activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While exergames have been demonstrated to induce moderate levels of physical activity (PA) if played as designed, there is conflicting evidence on use of exergaming leading to increased habitual PA. Exergames have increased PA in some home and school studies, but not others. Exergames have been us...

  15. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    SciTech Connect

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  16. Increased expression of plasma membrane Ca(2+)ATPase 4b in platelets from hypertensives: a new sign of abnormal thrombopoiesis?

    PubMed

    Dally, Saoussen; Chaabane, Chiraz; Corvazier, Elisabeth; Bredoux, Raymonde; Bobe, Regis; Ftouhi, Bochra; Slimane, Hedia; Raies, Aly; Enouf, Jocelyne

    2007-11-01

    Platelet Ca(2+) homeostasis is controlled by a multi-Ca(2+)ATPase system including two PMCA (plasma membrane Ca(2+)ATPase) and seven SERCA (sarco/endoplasmic reticulum Ca(2+)ATPase) isoforms. Previous studies have shown similar platelet Ca(2+) abnormalities in diabetic and hypertensive patients, including an increase in intracellular [Ca(2+)](I), a possible modulation of PMCA activity and increased PMCA tyrosine phosphorylation. Very recently, we found that platelets from diabetic patients also exhibited increased PMCA4b expression. In the present study we looked for further similarities between diabetic and hypertensive patients. We first confirmed a decrease in Ca(2+)ATPase activity (mean 55 + 7%) in mixed platelet membranes isolated from 10 patients with hypertension compared with those from 10 healthy controls. In addition, the decreased Ca(2+)ATPase activity correlated with the DBP of the different patients, as expected for PMCA activity. Second, we performed a pilot study of six hypertensives to examine their expressions of PMCA and SERCA mRNA and proteins. Like the diabetic patients, 100% of hypertensives were found to present a major increase in PMCA4b expression (mean value of 218 +/- 21%). We thus determined that platelets from diabetic and hypertensive patients showed similar increased PMCA4b isoform. Since increased PMCA4b expression was recently found to be associated with a perturbation of megakaryocytopoiesis, these findings may also point to an abnormality in platelet maturation in hypertension.

  17. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo

    PubMed Central

    McDole, Brittnee; Isgor, Ceylan; Pare, Christopher; Guthrie, Kathleen

    2015-01-01

    Olfactory bulb granule cells are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on granule cell spines. These contacts are established in the distal apical dendritic compartment, while granule cell basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong granule cell neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb granule cell spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF produces a marked increase in granule cell spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on granule cells, suggesting a role for this factor in modulating granule cell functional connectivity within adult olfactory circuitry. PMID:26211445

  18. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    PubMed

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.

  19. cAMP signaling increases histone deacetylase 8 expression via the Epac2–Rap1A–Akt pathway in H1299 lung cancer cells

    PubMed Central

    Park, Ji-Yeon; Juhnn, Yong-Sung

    2017-01-01

    This study was performed to investigate the signaling pathway that mediates cyclic AMP (cAMP)-induced inhibition of histone deacetylase 8 (HDAC8) degradation, and the effect and underlying mechanisms of the resulting increase in HDAC8 expression on cisplatin-induced apoptosis in lung cancer cells. cAMP signaling increased HDAC8 expression via a protein kinase A (PKA)-independent pathway in H1299 non-small cell lung cancer cells. However, treatment with a selective activator of an exchange protein that was activated by cAMP (Epac) increased HDAC8 expression, and Epac2 inhibition abolished the isoproterenol (ISO)-induced increase in HDAC8 expression. ISO and the Epac activator activated Rap1, and Rap1A activation increased HDAC8 expression; moreover, inhibition of Rap1A with a dominant negative Rap1A or by shRNA-mediated knockdown abolished the ISO-induced increase in HDAC8 expression. Activation of cAMP signaling and Rap1A decreased the activating phosphorylation of Akt. Akt inhibition with a pharmacological inhibitor or expression of a dominant negative Akt inhibited the MKK4/JNK pathway and increased HDAC8 expression. The Akt inhibitor-induced increase in HDAC8 expression was abolished by pretreatment with proteasomal or lysosomal inhibitors. The ISO treatment increased cisplatin-induced apoptosis, which was abolished by HDAC8 knockdown. Exogenous HDAC8 expression increased cisplatin-induced apoptosis and decreased TIPRL expression, and the knockdown of TIPRL increased the apoptosis of cisplatin-treated cells. The ISO treatment decreased cisplatin-induced transcription of the TIPRL gene in a HDAC8-dependent manner. In conclusion, the Epac–Rap1–Akt pathway mediates cAMP signaling-induced inhibition of JNK-dependent HDAC8 degradation, and the resulting HDAC8 increase augments cisplatin-induced apoptosis by repressing TIPRL expression in H1299 lung cancer cells. PMID:28232663

  20. cAMP signaling increases histone deacetylase 8 expression via the Epac2-Rap1A-Akt pathway in H1299 lung cancer cells.

    PubMed

    Park, Ji-Yeon; Juhnn, Yong-Sung

    2017-02-24

    This study was performed to investigate the signaling pathway that mediates cyclic AMP (cAMP)-induced inhibition of histone deacetylase 8 (HDAC8) degradation, and the effect and underlying mechanisms of the resulting increase in HDAC8 expression on cisplatin-induced apoptosis in lung cancer cells. cAMP signaling increased HDAC8 expression via a protein kinase A (PKA)-independent pathway in H1299 non-small cell lung cancer cells. However, treatment with a selective activator of an exchange protein that was activated by cAMP (Epac) increased HDAC8 expression, and Epac2 inhibition abolished the isoproterenol (ISO)-induced increase in HDAC8 expression. ISO and the Epac activator activated Rap1, and Rap1A activation increased HDAC8 expression; moreover, inhibition of Rap1A with a dominant negative Rap1A or by shRNA-mediated knockdown abolished the ISO-induced increase in HDAC8 expression. Activation of cAMP signaling and Rap1A decreased the activating phosphorylation of Akt. Akt inhibition with a pharmacological inhibitor or expression of a dominant negative Akt inhibited the MKK4/JNK pathway and increased HDAC8 expression. The Akt inhibitor-induced increase in HDAC8 expression was abolished by pretreatment with proteasomal or lysosomal inhibitors. The ISO treatment increased cisplatin-induced apoptosis, which was abolished by HDAC8 knockdown. Exogenous HDAC8 expression increased cisplatin-induced apoptosis and decreased TIPRL expression, and the knockdown of TIPRL increased the apoptosis of cisplatin-treated cells. The ISO treatment decreased cisplatin-induced transcription of the TIPRL gene in a HDAC8-dependent manner. In conclusion, the Epac-Rap1-Akt pathway mediates cAMP signaling-induced inhibition of JNK-dependent HDAC8 degradation, and the resulting HDAC8 increase augments cisplatin-induced apoptosis by repressing TIPRL expression in H1299 lung cancer cells.

  1. Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes.

    PubMed

    Lee, Tih-Shih; Mane, Shrikant; Eid, Tore; Zhao, Hongyu; Lin, Aiping; Guan, Zhong; Kim, Jung H; Schweitzer, Jeffrey; King-Stevens, David; Weber, Peter; Spencer, Susan S; Spencer, Dennis D; de Lanerolle, Nihal C

    2007-01-01

    Patients with temporal lobe epilepsy (TLE) often have a shrunken hippocampus that is known to be the location in which seizures originate. The role of the sclerotic hippocampus in the causation and maintenance of seizures in temporal lobe epilepsy (TLE) has remained incompletely understood despite extensive neuropathological investigations of this substrate. To gain new insights and develop new testable hypotheses on the role of sclerosis in the pathophysiology of TLE, the differential gene expression profile was studied. To this end, DNA microarray analysis was used to compare gene expression profiles in sclerotic and non-sclerotic hippocampi surgically removed from TLE patients. Sclerotic hippocampi had transcriptional signatures that were different from non-sclerotic hippocampi. The differentially expressed gene set in sclerotic hippocampi revealed changes in several molecular signaling pathways, which included the increased expression of genes associated with astrocyte structure (glial fibrillary acidic protein, ezrin-moesin-radixin, palladin), calcium regulation (S100 calcium binding protein beta, chemokine (C-X-C motif) receptor 4) and blood-brain barrier function (Aquaaporin 4, Chemokine (C-C- motif) ligand 2, Chemokine (C-C- motif) ligand 3, Plectin 1, intermediate filament binding protein 55kDa) and inflammatory responses. Immunohistochemical localization studies show that there is altered distribution of the gene-associated proteins in astrocytes from sclerotic foci compared with non-sclerotic foci. It is hypothesized that the astrocytes in sclerotic tissue have activated molecular pathways that could lead to enhanced release of glutamate by these cells. Such glutamate release may excite surrounding neurons and elicit seizure activity.

  2. Inhibition of a novel specific neuroglial integrin signaling pathway increases STAT3-mediated CNTF expression

    PubMed Central

    2013-01-01

    Background Ciliary neurotrophic factor (CNTF) expression is repressed in astrocytes by neuronal contact in the CNS and is rapidly induced by injury. Here, we defined an inhibitory integrin signaling pathway. Results The integrin substrates laminin, fibronectin and vitronectin, but not collagen, thrombospondin or fibrinogen, reduced CNTF expression in C6 astroglioma cells. Antibodies against αv and β5, but not α6 or β1, integrin induced CNTF. Together, the ligand and antibody specificity suggests that CNTF is repressed by αvβ5 integrin. Antibodies against Thy1, an abundant neuronal surface protein whose function is unclear, induced CNTF in neuron-astrocyte co-cultures indicating that it is a neuroglial CNTF repressor. Inhibition of the integrin signaling molecule Focal Adhesion Kinase (FAK) or the downstream c-Jun N-terminal kinase (JNK), but not extracellular regulated kinase (ERK) or p38 MAPK, greatly induced CNTF mRNA and protein expression within 4 hours. This selective inhibitory pathway phosphorylated STAT3 on its inhibitory ser-727 residue interfering with activity of the pro-transcription Tyr-705 residue. STAT3 can activate CNTF transcription because it bound to its promoter and FAK antagonist-induced CNTF was reduced by blocking STAT3. Microinjection of FAK inhibitor directly into the brain or spinal cord in adult mice rapidly induced CNTF mRNA and protein expression. Importantly, systemic treatment with FAK inhibitors over 3 days induced CNTF in the subventricular zone and increased neurogenesis. Conclusions Neuron-astroglia contact mediated by integrins serves as a sensor to enable rapid neurotrophic responses and provides a new pharmacological avenue to exploit the neuroprotective properties of endogenous CNTF. PMID:23693126

  3. Heparin treatment increases thioredoxin interacting protein expression in hepatocellular carcinoma cells.

    PubMed

    Gunes, Aysim; Iscan, Evin; Topel, Hande; Avci, Sanem Tercan; Gumustekin, Mukaddes; Erdal, Esra; Atabey, Nese

    2015-08-01

    Heparins play an important role in cell growth, differentiation, migration and invasion. However, the molecular mechanisms of heparin mediated cellular behaviors are not well defined. To determine the effect of heparin on gene expression, we performed a cDNA microarray in a hepatocellular carcinoma cell line and found that heparin regulates transcription of genes involved in glucose metabolism. In this study, we showed a new role of heparin in the regulation of thioredoxin interacting protein, which is a major regulator of glucose metabolism, in hepatocellular carcinoma cell lines. We determined the importance of a unique carbohydrate response element located on its promoter for the heparin-induced activation of thioredoxin-interacting protein and the modulatory role of heparin on nuclear accumulation of carbohydrate response element associated proteins. We showed the importance of heparin mediated histone modifications and down-regulation of Enhancer of zeste 2 polycomb repressive complex 2 expression for heparin mediated overexpression of thioredoxin-interacting protein. When we tested biological significance of these data; we observed that cells overexpressing thioredoxin-interacting protein are less adhesive and proliferative, however they have a higher migration and invasion ability. Interestingly, heparin treatment increased thioredoxin-interacting protein expression in liver of diabetic rats. In conclusion, our results show that heparin activates thioredoxin-interacting protein expression in liver and hepatocellular carcinoma cells and provide the first evidences of regulatory roles of heparin on carbohydrate response element associated factors. This study will contribute future understanding of the effect of heparin on glucose metabolism and glucose independent overexpression of thioredoxin-interacting protein during hepatocarcinogenesis.

  4. Increased expression of receptors for orexigenic factors in nodose ganglion of diet-induced obese rats.

    PubMed

    Paulino, Gabriel; Barbier de la Serre, Claire; Knotts, Trina A; Oort, Pieter J; Newman, John W; Adams, Sean H; Raybould, Helen E

    2009-04-01

    The vagal afferent pathway is important in short-term regulation of food intake, and decreased activation of this neural pathway with long-term ingestion of a high-fat diet may contribute to hyperphagic weight gain. We tested the hypothesis that expression of genes encoding receptors for orexigenic factors in vagal afferent neurons are increased by long-term ingestion of a high-fat diet, thus supporting orexigenic signals from the gut. Obesity-prone (DIO-P) rats fed a high-fat diet showed increased body weight and hyperleptinemia compared with low-fat diet-fed controls and high-fat diet-induced obesity-resistant (DIO-R) rats. Expression of the type I cannabinoid receptor and growth hormone secretagogue receptor 1a in the nodose ganglia was increased in DIO-P compared with low-fat diet-fed controls or DIO-R rats. Shifts in the balance between orexigenic and anorexigenic signals within the vagal afferent pathway may influence food intake and body weight gain induced by high fat diets.

  5. Increased expression of receptors for orexigenic factors in nodose ganglion of diet-induced obese rats

    PubMed Central

    Paulino, Gabriel; Barbier de la Serre, Claire; Knotts, Trina A.; Oort, Pieter J.; Newman, John W.; Adams, Sean H.; Raybould, Helen E.

    2009-01-01

    The vagal afferent pathway is important in short-term regulation of food intake, and decreased activation of this neural pathway with long-term ingestion of a high-fat diet may contribute to hyperphagic weight gain. We tested the hypothesis that expression of genes encoding receptors for orexigenic factors in vagal afferent neurons are increased by long-term ingestion of a high-fat diet, thus supporting orexigenic signals from the gut. Obesity-prone (DIO-P) rats fed a high-fat diet showed increased body weight and hyperleptinemia compared with low-fat diet-fed controls and high-fat diet-induced obesity-resistant (DIO-R) rats. Expression of the type I cannabinoid receptor and growth hormone secretagogue receptor 1a in the nodose ganglia was increased in DIO-P compared with low-fat diet-fed controls or DIO-R rats. Shifts in the balance between orexigenic and anorexigenic signals within the vagal afferent pathway may influence food intake and body weight gain induced by high fat diets. PMID:19190260

  6. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize.

    PubMed

    Li, Bei; Liu, Hua; Zhang, Yue; Kang, Tao; Zhang, Li; Tong, Jianhua; Xiao, Langtao; Zhang, Hongxia

    2013-12-01

    Grain size, number and starch content are important determinants of grain yield and quality. One of the most important biological processes that determine these components is the carbon partitioning during the early grain filling, which requires the function of cell wall invertase. Here, we showed the constitutive expression of cell wall invertase-encoding gene from Arabidopsis, rice (Oryza sativa) or maize (Zea mays), driven by the cauliflower mosaic virus (CaMV) 35S promoter, all increased cell wall invertase activities in different tissues and organs, including leaves and developing seeds, and substantially improved grain yield up to 145.3% in transgenic maize plants as compared to the wild-type plants, an effect that was reproduced in our 2-year field trials at different locations. The dramatically increased grain yield is due to the enlarged ears with both enhanced grain size and grain number. Constitutive expression of the invertase-encoding gene also increased total starch content up to 20% in the transgenic kernels. Our results suggest that cell wall invertase gene can be genetically engineered to improve both grain yield and grain quality in crop plants.

  7. Lupus Risk Variant Increases pSTAT1 Binding and Decreases ETS1 Expression

    PubMed Central

    Lu, Xiaoming; Zoller, Erin E.; Weirauch, Matthew T.; Wu, Zhiguo; Namjou, Bahram; Williams, Adrienne H.; Ziegler, Julie T.; Comeau, Mary E.; Marion, Miranda C.; Glenn, Stuart B.; Adler, Adam; Shen, Nan; Nath, Swapan K.; Stevens, Anne M.; Freedman, Barry I.; Tsao, Betty P.; Jacob, Chaim O.; Kamen, Diane L.; Brown, Elizabeth E.; Gilkeson, Gary S.; Alarcón, Graciela S.; Reveille, John D.; Anaya, Juan-Manuel; James, Judith A.; Sivils, Kathy L.; Criswell, Lindsey A.; Vilá, Luis M.; Alarcón-Riquelme, Marta E.; Petri, Michelle; Scofield, R. Hal; Kimberly, Robert P.; Ramsey-Goldman, Rosalind; Joo, Young Bin; Choi, Jeongim; Bae, Sang-Cheol; Boackle, Susan A.; Graham, Deborah Cunninghame; Vyse, Timothy J.; Guthridge, Joel M.; Gaffney, Patrick M.; Langefeld, Carl D.; Kelly, Jennifer A.; Greis, Kenneth D.; Kaufman, Kenneth M.; Harley, John B.; Kottyan, Leah C.

    2015-01-01

    Genetic variants at chromosomal region 11q23.3, near the gene ETS1, have been associated with systemic lupus erythematosus (SLE), or lupus, in independent cohorts of Asian ancestry. Several recent studies have implicated ETS1 as a critical driver of immune cell function and differentiation, and mice deficient in ETS1 develop an SLE-like autoimmunity. We performed a fine-mapping study of 14,551 subjects from multi-ancestral cohorts by starting with genotyped variants and imputing to all common variants spanning ETS1. By constructing genetic models via frequentist and Bayesian association methods, we identified 16 variants that are statistically likely to be causal. We functionally assessed each of these variants on the basis of their likelihood of affecting transcription factor binding, miRNA binding, or chromatin state. Of the four variants that we experimentally examined, only rs6590330 differentially binds lysate from B cells. Using mass spectrometry, we found more binding of the transcription factor signal transducer and activator of transcription 1 (STAT1) to DNA near the risk allele of rs6590330 than near the non-risk allele. Immunoblot analysis and chromatin immunoprecipitation of pSTAT1 in B cells heterozygous for rs6590330 confirmed that the risk allele increased binding to the active form of STAT1. Analysis with expression quantitative trait loci indicated that the risk allele of rs6590330 is associated with decreased ETS1 expression in Han Chinese, but not other ancestral cohorts. We propose a model in which the risk allele of rs6590330 is associated with decreased ETS1 expression and increases SLE risk by enhancing the binding of pSTAT1. PMID:25865496

  8. Exercise increases hexokinase II mRNA, but not activity in obesity and type 2 diabetes.

    PubMed

    Cusi, K J; Pratipanawatr, T; Koval, J; Printz, R; Ardehali, H; Granner, D K; Defronzo, R A; Mandarino, L J

    2001-05-01

    Glucose phosphorylation, catalyzed by hexokinase, is the first committed step in glucose uptake in skeletal muscle. Hexokinase II (HKII) is the isoform that is present in muscle and is regulated by insulin and muscle contraction. Glucose phosphorylation and HKII expression are both reduced in obese and type 2 diabetic subjects. A single bout of exercise increases HKII mRNA and activity in muscle from healthy subjects. The present study was performed to determine if a moderate exercise increases HKII mRNA expression and activity in patients with type 2 diabetes. Muscle biopsies were performed before and 3 hours after a single bout of cycle ergometer exercise in obese and type 2 diabetic patients. HKII mRNA and activity and glycogen synthase activity were determined in the muscle biopsies. Exercise increased HKII mRNA in obese and diabetic subjects by 1.67 +/- 0.34 and 1.87 +/- 0.26-fold, respectively (P <.05 for both). Exercise did not significantly increase HKI mRNA. When HKII mRNA increases were compared with the 2.26 +/- 0.36-fold increase in HKII mRNA previously reported for healthy lean subjects, no statistically significant differences were found. In contrast to the increase in HKII activity observed after exercise by lean healthy controls, exercise did not increase HKII activity in obese nondiabetic or diabetic subjects. Exercise increased glycogen synthase activity (GS(0.1) and GS(FV)) significantly in both obese nondiabetic and type 2 diabetic patients. The present results indicate that there is a posttranscriptional defect in the response of HKII expression to exercise in obese and type 2 diabetic subjects. This defect may contribute to reduced HKII activity and glucose uptake in these patients.

  9. Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue

    PubMed Central

    Sutherland, Lindsey N; Bomhof, Marc R; Capozzi, Lauren C; Basaraba, Susan A U; Wright, David C

    2009-01-01

    The purpose of the present investigation was to explore the effects of exercise and adrenaline on the mRNA expression of PGC-1α, a master regulator of mitochondrial biogenesis, in rat abdominal adipose tissue. We hypothesized that (1) exercise training would increase PGC-1α mRNA expression in association with increases in mitochondrial marker enzymes, (2) adrenaline would increase PGC-1α mRNA expression and (3) the effect of exercise on PGC-1α mRNA expression in white adipose tissue would be attenuated by a β-blocker. Two hours of daily swim training for 4 weeks led to increases in mitochondrial marker proteins and PGC-1α mRNA expression in epididymal and retroperitoneal fat depots. Additionally, a single 2 h bout of exercise led to increases in PGC-1α mRNA expression immediately following exercise cessation. Adrenaline treatment of adipose tissue organ cultures led to dose-dependent increases in PGC-1α mRNA expression. A supra-physiological concentration of adrenaline increased PGC-1α mRNA expression in epididymal but not retroperitoneal adipose tissue. β-Blockade attenuated the effects of an acute bout of exercise on PGC-1α mRNA expression in epididymal but not retroperitoneal fat pads. In summary, this is the first investigation to demonstrate that exercise training, an acute bout of exercise and adrenaline all increase PGC-1α mRNA expression in rat white adipose tissue. Furthermore it would appear that increases in circulating catecholamine levels may be one potential mechanism mediating exercise induced increases in PGC-1α mRNA expression in rat abdominal adipose tissue. PMID:19221126

  10. Wounding of potato tubers induces increases in ABA biosynthesis and catabolism and alters expression of ABA metabolic genes.

    PubMed

    Suttle, Jeffrey C; Lulai, Edward C; Huckle, Linda L; Neubauer, Jonathan D

    2013-04-15

    The effects of physical wounding on ABA biosynthesis and catabolism and expression of genes encoding key ABA metabolic enzymes were determined in potato tubers. An increase in ABA and ABA metabolite content was observed 48h after wounding and remained elevated through 96h. Wounding induced dramatic increases in the expression of the ABA metabolic genes encoding zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase (NCED), and ABA-8'-hydroxylase. Although the patterns of wound-induced expression of individual genes varied, increased gene expression was observed within 3h of wounding and remained elevated through 96h. An apparent correlation between expression of the gene encoding ZEP and the increase in ABA content suggested that the wound-induced increase in ABA biosynthesis was regulated by both substrate availability and increased NCED activity. Suppression of wound-induced jasmonic acid accumulation by rinsing the wounded tissue with water did not inhibit the subsequent increase in ABA content. Exogenous ethylene completely suppressed the wound-induced increase in ABA content and dramatically reduced wound-induced up-regulation of ABA metabolic genes. This study is the first to identify the molecular bases for increased ABA accumulation following physical trauma in potato tubers and highlights the complex physiological interactions between various wound-induced hormones.

  11. Association of increased estrogen receptor beta2 expression with parity-induced alterations in the rat mammary gland.

    PubMed

    Kass, Laura; Durando, Milena; Ramos, Jorge G; Varayoud, Jorgelina; Powell, Charles E; Luque, Enrique H; Muñoz-de-Toro, Mónica

    2004-06-01

    In this study, we investigated the cellular and molecular events involved in parity-related alterations in mammary gland (MG) proliferation and differentiation. Rat MGs were removed on day 9 of either first (nulliparous), second (primiparous) or third (multiparous) pregnancy. Expression of steroid hormone receptors along with cellular biomarkers of proliferation and differentiation were quantified in all MG tissue compartments by immunohistochemistry. Wnt-4 (a Wingless-like morphogenic gene involved in MG development), ERbeta and ERbeta2 mRNA were evaluated by RT-PCR analysis. Serum levels of mammotrophic hormones were measured. In comparison to nulliparous and primiparous rats, multiparous animals exhibited decreased luminal cell proliferation and PR levels, whereas alpha-lactalbumin, ERalpha, ERbeta and ERbeta2 expression were increased. In myoepithelial cells, while parity induced a decrease in proliferative activity, subsequent pregnancies and lactations lead to an increased state of differentiation. Our results showed that at least two periods of pregnancy and lactation were necessary to modify the studied parameters. The lower proliferative activity and higher differentiation state of the multiparous MG are associated with both a decreased PR expression and increased ERalpha and ERbeta expression. Since ERbeta and/or ERbeta2 isoform expression was related to parity history, results suggest that the decreased proliferative activity and PR expression observed in the MG of multiparous animals may be associated with overexpression of ERbeta and/or the ERbeta2 isoform, thereby antagonizing the proliferative effects associated with ERalpha.

  12. LAG3 expression in active Mycobacterium tuberculosis infections.

    PubMed

    Phillips, Bonnie L; Mehra, Smriti; Ahsan, Muhammad H; Selman, Moises; Khader, Shabaana A; Kaushal, Deepak

    2015-03-01

    Mycobacterium tuberculosis (MTB) is a highly successful pathogen because of its ability to persist in human lungs for long periods of time. MTB modulates several aspects of the host immune response. Lymphocyte-activation gene 3 (LAG3) is a protein with a high affinity for the CD4 receptor and is expressed mainly by regulatory T cells with immunomodulatory functions. To understand the function of LAG3 during MTB infection, a nonhuman primate model of tuberculosis, which recapitulates key aspects of natural human infection in rhesus macaques (Macaca mulatta), was used. We show that the expression of LAG3 is highly induced in the lungs and particularly in the granulomatous lesions of macaques experimentally infected with MTB. Furthermore, we show that LAG3 expression is not induced in the lungs and lung granulomas of animals exhibiting latent tuberculosis infection. However, simian immunodeficiency virus-induced reactivation of latent tuberculosis infection results in an increased expression of LAG3 in the lungs. This response is not observed in nonhuman primates infected with non-MTB bacterial pathogens, nor with simian immunodeficiency virus alone. Our data show that LAG3 was expressed primarily on CD4(+) T cells, presumably by regulatory T cells but also by natural killer cells. The expression of LAG3 coincides with high bacterial burdens and changes in the host type 1 helper T-cell response.

  13. Proinflammatory Cytokines Increase Vascular Endothelial Growth Factor Expression in Alveolar Epithelial Cells.

    PubMed

    Maloney, James P; Gao, Li

    2015-01-01

    Vascular endothelial growth factor (VEGF) is an endothelial permeability mediator that is highly expressed in lung epithelium. In nonlung cells proinflammatory cytokines have been shown to increase VEGF expression, but their effects on lung epithelium remain unclear. We hypothesized that increases in alveolar epithelial cell VEGF RNA and protein expression occur after exposure to proinflammatory cytokines. We tested this using human alveolar epithelial cells (A549) stimulated with 5 proinflammatory cytokines. VEGF RNA expression was increased 1.4-2.7-fold in response to IL-1, IL-6, IL-8, TNF-α, or TGF-β over 6 hours, with TGF-β having the largest response. TNF-α increased VEGF RNA as early as 1 hour. A mix of IL-1, IL-6, and IL-8 had effects similar to IL-1. TNF-α increased protein expression as early as 4 hours and had a sustained effect at 16 hours, whereas IL-1 did not increase protein expression. Only VEGF165 was present in cultured A549 cells, yet other isoforms were seen in human lung tissue. Increased expression of VEGF in alveolar epithelial cells occurs in response to proinflammatory cytokines. Increased VEGF expression likely contributes to the pathogenesis of inflammatory lung diseases and to the angiogenic phenotype of lung cancer, a disease typically preceded by chronic inflammation.

  14. Increased synovial expression of nuclear receptors correlates with arthritis protection: a possible novel genetically-regulated homeostatic mechanism

    PubMed Central

    Brenner, Max; Linge, Carl P.; Li, Wentian; Gulko, Pércio S.

    2011-01-01

    Objective To use microarray analyses of gene expression to characterize the synovial molecular pathways regulated by the arthritis regulatory locus Cia25, and how it operates to control disease severity and joint damage. Methods Synovial tissues from DA and DA.ACI(Cia25) rats obtained 21 days post-induction of pristane-induced arthritis were used for RNA extraction and hybridization to Illumina Rat-Ref 12 Beadchips (22,228 genes). A p-value ≤0.01 plus a fold-difference ≥1.5 were considered significant. Results IL-1β (7-fold), IL-6 (67-fold), Ccl2, Cxcl10, Mmp3, Mmp14, and innate immunity genes were expressed in increased levels in DA and in significantly lower levels in congenics. DA.ACI(Cia25) had increased expression of ten nuclear receptors (NR) genes, including those known to interfere with NFκB activity and cytokine expression, such as Lxrα, Pparγ, and Rxrγ. DA.ACI(Cia25) also had increased expression of NR targets suggesting increased NR activity. While the Vdr was not differentially expressed, a Vdr expression signature was detected in congenics, along with up-regulation of mediators of vitamin D synthesis. Conclusions This is the first description of the association between increased synovial levels of NRs and arthritis protection. The expression of NRs was inversely correlated with the expression of key mediators of arthritis suggesting reciprocally opposing effects either via NFκB or at the genomic level in the synovial tissue. We consider that the NR signature may have an important role in maintaining synovial homeostasis and an inflammation-free tissue. These processes are regulated by the Cia25 gene and suggest a new function for this gene. PMID:21702016

  15. MAR-Mediated transgene integration into permissive chromatin and increased expression by recombination pathway engineering.

    PubMed

    Kostyrko, Kaja; Neuenschwander, Samuel; Junier, Thomas; Regamey, Alexandre; Iseli, Christian; Schmid-Siegert, Emanuel; Bosshard, Sandra; Majocchi, Stefano; Le Fourn, Valérie; Girod, Pierre-Alain; Xenarios, Ioannis; Mermod, Nicolas

    2017-02-01

    Untargeted plasmid integration into mammalian cell genomes remains a poorly understood and inefficient process. The formation of plasmid concatemers and their genomic integration has been ascribed either to non-homologous end-joining (NHEJ) or homologous recombination (HR) DNA repair pathways. However, a direct involvement of these pathways has remained unclear. Here, we show that the silencing of many HR factors enhanced plasmid concatemer formation and stable expression of the gene of interest in Chinese hamster ovary (CHO) cells, while the inhibition of NHEJ had no effect. However, genomic integration was decreased by the silencing of specific HR components, such as Rad51, and DNA synthesis-dependent microhomology-mediated end-joining (SD-MMEJ) activities. Genome-wide analysis of the integration loci and junction sequences validated the prevalent use of the SD-MMEJ pathway for transgene integration close to cellular genes, an effect shared with matrix attachment region (MAR) DNA elements that stimulate plasmid integration and expression. Overall, we conclude that SD-MMEJ is the main mechanism driving the illegitimate genomic integration of foreign DNA in CHO cells, and we provide a recombination engineering approach that increases transgene integration and recombinant protein expression in these cells. Biotechnol. Bioeng. 2017;114: 384-396. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.

  16. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia.

    PubMed

    Jaspers, Richard T; Testerink, Janwillem; Della Gaspera, Bruno; Chanoine, Christophe; Bagowski, Christophe P; van der Laarse, Willem J

    2014-07-25

    Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio) adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH) (10% air/90%N2 saturated water). We analyzed cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, capillarization, myonuclear density, myoglobin (Mb) concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001). Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001). In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit) of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus.

  17. Increased expression of Trpv1 in peripheral terminals mediates thermal nociception in Fabry disease mouse model

    PubMed Central

    Lakomá, Jarmila; Rimondini, Roberto; Ferrer Montiel, Antonio; Donadio, Vincenzo; Liguori, Rocco

    2016-01-01

    Fabry disease is a X-linked lysosomal storage disorder caused by deficient function of the alpha-galactosidase A (α-GalA) enzyme. α-GalA deficiency leads to multisystemic clinical manifestations caused by the preferential accumulation of globotriaosylceramide (Gb3) in the endothelium and vascular smooth muscles. A hallmark symptom of Fabry disease patients is neuropathic pain that appears in the early stage of the disease as a result of peripheral small fiber damage. The α-GalA gene null mouse model (α-GalA(−/0)) has provided molecular evidence for the molecular alterations in small type-C nociceptors in Fabry disease that may underlie their hyperexcitability, although the specific mechanism remains elusive. Here, we have addressed this question and report that small type-C nociceptors from α-GalA(−/0) mice exhibit a significant increase in the expression and function of the TRPV1 channel, a thermoTRP channel implicated in painful heat sensation. Notably, male α-GalA(−/0) mice displayed a ≈2-fold higher heat sensitivity than wild-type animals, consistent with the augmented expression levels and activity of TRPV1 in α-GalA(−/0) nociceptors. Intriguingly, blockade of neuronal exocytosis with peptide DD04107, a process that inhibits among others the algesic membrane recruitment of TRPV1 channels in peptidergic nociceptors, virtually eliminated the enhanced heat nociception of α-GalA(−/0) mice. Together, these findings suggest that the augmented expression of TRPV1 in α-GalA(−/0) nociceptors may underly at least in part their increased heat sensitivity, and imply that blockade of peripheral neuronal exocytosis may be a valuable pharmacological strategy to reduce pain in Fabry disease patients, increasing their quality of life. PMID:27531673

  18. Cannabinoids increase type 1 cannabinoid receptor expression in a cell culture model of striatal neurons: implications for Huntington's disease.

    PubMed

    Laprairie, Robert B; Kelly, Melanie E M; Denovan-Wright, Eileen M

    2013-09-01

    The type 1 cannabinoid receptor (CB1) is a G protein-coupled receptor that is expressed at high levels in the striatum. Activation of CB1 increases expression of neuronal trophic factors and inhibits neurotransmitter release from GABA-ergic striatal neurons. CB1 mRNA levels can be elevated by treatment with cannabinoids in non-neuronal cells. We wanted to determine whether cannabinoid treatment could induce CB1 expression in a cell culture model of striatal neurons and, if possible, determine the molecular mechanism by which this occurred. We found that treatment of STHdh(7/7) cells with the cannabinoids ACEA, mAEA, and AEA produced a CB1receptor-dependent increase in CB1 promoter activity, mRNA, and protein expression. This response was Akt- and NF-κB-dependent. Because decreased CB1 expression is thought to contribute to the pathogenesis of Huntington's disease (HD), we wanted to determine whether cannabinoids could increase CB1 expression in STHdh(7/111) and (111/111) cells expressing the mutant huntingtin protein. We observed that cannabinoid treatment increased CB1 mRNA levels approximately 10-fold in STHdh(7/111) and (111/111) cells, compared to vehicle treatment. Importantly, cannabinoid treatment improved ATP production, increased the expression of the trophic factor BDNF-2, and the mitochondrial regulator PGC1α, and reduced spontaneous GABA release, in HD cells. Therefore, cannabinoid-mediated increases in CB1 levels could reduce the severity of some molecular pathologies observed in HD.

  19. Decreased expression of CYP27B1 correlates with the increased aggressiveness of ovarian carcinomas

    PubMed Central

    BROŻYNA, ANNA A.; JÓŹWICKI, WOJCIECH; JOCHYMSKI, CEZARY; SLOMINSKI, ANDRZEJ T.

    2015-01-01

    CYP27B1 hydroxylates 25-hydroxyvitamin D3 in position C1α into biologically active 1,25-dihydroxyvitamin D3, calcitriol. CYP27B1 is expressed in normal tissues and tumors. Since calcitriol indicates anticancer activities and CYP27B1 expression can be deregulated during malignant progression, we analyzed its expression in ovarian cancers in relation to pathomorphological features of tumors and overall survival (OS). Expression of CYP27B1 was evaluated in 61 ovarian tumors, 18 metastases and 10 normal ovaries. Normal ovarian epithelium showed the highest levels CYP27B1 with a significant decrease in its expression in ovarian cancers. Both poorly differentiated primary tumors and metastases showed the lowest level of CYP27B1 expression, while non-metastasizing tumors showed a higher CYP27B1 level than tumors that developed metastases. The expression of CYP27B1 was positively correlated with a lower proliferation rate, lower dynamism of tumor growth and tumor infiltrating lymphocyte response. Furthermore, CYP27B1 expression was negatively correlated with tumor cell modeling of their microenvironment. CYP27B1 expression was also associated with longer OS time. In summary, our results suggest that local expression of CYP27B1 in ovarian tumor cells can modify their behavior and promote a less aggressive phenotype by affecting local concentrations of active of vitamin D levels within the tumor microenvironment. PMID:25501638

  20. Tumor necrosis is associated with increased alphavbeta3 integrin expression and poor prognosis in nodular cutaneous melanomas

    PubMed Central

    Bachmann, Ingeborg M; Ladstein, Rita G; Straume, Oddbjørn; Naumov, George N; Akslen, Lars A

    2008-01-01

    Background Tumor necrosis and apoptotic activity are considered important in cancer progression, but these features have not been much studied in melanomas. Our hypothesis was that rapid growth in cutaneous melanomas of the vertical growth phase might lead to tissue hypoxia, alterations in apoptotic activity and tumor necrosis. We proposed that these tumor characteristics might be associated with changes in expression of cell adhesion proteins leading to increased invasive capacity and reduced patient survival. Methods A well characterized series of nodular melanoma (originally 202 cases) and other benign and malignant melanocytic tumors (109 cases) were examined for the presence of necrosis, apoptotic activity (TUNEL assay), immunohistochemical expression of hypoxia markers (HIF-1 α, CAIX, TNF-α, Apaf-1) and cell adhesion proteins (αvβ3 integrin, CD44/HCAM and osteopontin). We hypothesized that tumor hypoxia and necrosis might be associated with increased invasiveness in melanoma through alterations of tumor cell adhesion proteins. Results Necrosis was present in 29% of nodular melanomas and was associated with increased tumor thickness, tumor ulceration, vascular invasion, higher tumor proliferation and apoptotic index, increased expression of αvβ3 integrin and poor patient outcome by multivariate analysis. Tumor cell apoptosis did also correlate with reduced patient survival. Expression of TNF-α and Apaf-1 was significantly associated with tumor thickness, and osteopontin expression correlated with increased tumor cell proliferation (Ki-67). Conclusion Tumor necrosis and apoptotic activity are important features of melanoma progression and prognosis, at least partly through alterations in cell adhesion molecules such as increased αvβ3 integrin expression, revealing potentially important targets for new therapeutic approaches to be further explored. PMID:19061491

  1. Increasing physical activity of children during school recess.

    PubMed

    Hayes, Lynda B; Van Camp, Carole M

    2015-09-01

    Physical activity is crucial for children's health. Fitbit accelerometers were used to measure steps of 6 elementary students during recess. The intervention included reinforcement, self-monitoring, goal setting, and feedback. Steps taken during the intervention phase (M = 1,956 steps) were 47% higher than in baseline (M = 1,326 steps), and the percentage of recess spent in moderate-to-vigorous physical activity was higher during intervention (M = 25%) than in baseline (M = 4%). These methods successfully increased steps during recess and could be used to increase steps in other settings.

  2. Expression and characterization of a Talaromyces marneffei active phospholipase B expressed in a Pichia pastoris expression system

    PubMed Central

    He, Yan; Li, Linghua; Hu, Fengyu; Chen, Wanshan; Lei, Huali; Chen, Xiejie; Cai, Weiping; Tang, Xiaoping

    2016-01-01

    Phospholipase B is a virulence factor for several clinically important pathogenic fungi, including Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, but its role in the thermally dimorphic fungus Talaromyces marneffei remains unclear. Here, we provide the first report of the expression of a novel phospholipase gene, designated TmPlb1, from T. marneffei in the eukaryotic expression system of Pichia pastoris GS115. Sensitive real-time quantitative reverse-transcription PCR (qRT-PCR) demonstrated that the expression of TmPlb1 increased 1.85-fold in the yeast phase compared with the mycelial phase. TmPlb1 contains an open reading frame (ORF) of 732 bp that encodes a protein of 243 amino acids. The conserved serine, aspartate and histidine catalytic triad and the G-X-S-X-G domain of TmPLB1 provide the structural basis for its molecular activity. The ORF of TmPlb1 was successfully cloned into a pPIC9K vector containing an α-mating factor secretion signal that allowed the secretory expression of TmPLB1 in P. pastoris. The heterologous protein expression began 12 h after methanol induction and peaked at 96 h. Through analysis with SDS–polyacrylamide gel electrophoresis (SDS-PAGE), western blotting and mass spectrometry, we confirmed that TmPLB1 was successfully expressed. Through Ni-affinity chromatography, TmPLB1 was highly purified, and its concentration reached 240.4 mg/L of culture medium. With specific substrates, the phospholipase A1 and phospholipase A2 activities of TmPLB1 were calculated to be 5.96 and 1.59 U/mg, respectively. The high purity and activity of the TmPLB1 obtained here lay a solid foundation for further investigation. PMID:27876784

  3. Nampt expression increases during osteogenic differentiation of multi- and omnipotent progenitors.

    PubMed

    Li, Yan; He, Jiaxue; He, Xu; Li, Yulin; Lindgren, Urban

    2013-04-26

    Despite emerging data showing that metabolic changes occur with stem cell differentiation, the cross-talk between factors governing energy metabolism and epigenetic modification is not understood. Nicotinamide adenine dinucleotide (NAD) participates in both energy metabolism and protein modification processes. Changes of the intracellular NAD concentration have been shown to correlate with differentiation of adult and embryonic stem cells. In the present study, we investigated the expression pattern of Nampt, the rate-limiting enzyme in NAD salvaging pathway, during osteogenic differentiation of the multipotent mouse fibroblast C3H10T1/2 and the omnipotent preosteoblast MC3T3-E1 cells. We found that Nampt was increasingly expressed during differentiation in both cell models. The increase of Nampt was associated with higher NAD concentration and Sirt1 activity. Knockdown of Nampt or addition of its specific inhibitor FK866 leads to lower intracellular NAD concentration and decline in osteogenesis. These findings indicate that osteogenic differentiation correlates with intracellular NAD metabolism in which Nampt plays a regulatory role.

  4. Cerium oxide nanoparticles inhibit the migration and proliferation of gastric cancer by increasing DHX15 expression.

    PubMed

    Xiao, Yu-Feng; Li, Jian-Mei; Wang, Su-Min; Yong, Xin; Tang, Bo; Jie, Meng-Meng; Dong, Hui; Yang, Xiao-Chao; Yang, Shi-Ming

    2016-01-01

    Gastric cancer is one of the leading causes of tumor-related deaths in the world. Current treatment options do not satisfy doctors and patients, and new therapies are therefore needed. Cerium oxide nanoparticles (CNPs) have been studied as a potential therapeutic approach for treating many diseases. However, their effects on human gastric cancer are currently unknown. Therefore, in this study, we aimed to characterize the effects of CNPs on human gastric cancer cell lines (MKN28 and BGC823). Gastric cancer cells were cocultured with different concentrations of CNPs, and proliferation and migration were measured both in vitro and in vivo. We found that CNPs inhibited the migration of gastric cancer cells when applied at different concentrations, but only a relatively high concentration (10 µg/mL) of CNPs suppressed proliferation. Furthermore, we found that CNPs increased the expression of DHX15 and its downstream signaling pathways. We therefore provide evidence showing that CNPs may be a promising approach to suppress malignant activity of gastric cancer by increasing the expression of DHX15.

  5. Retinoic acid increases zif268 early gene expression in rat preosteoblastic cells.

    PubMed Central

    Suva, L J; Ernst, M; Rodan, G A

    1991-01-01

    In this study we demonstrate that retinoic acid (RA) increases the expression of transcription factor zif268 mRNA in primary cultures of fetal rat calvarial cells and in simian virus 40-immortalized clonal rat calvarial preosteoblastic cells (RCT-1), which differentiate in response to RA, but not in the more differentiated RCT-3 and ROS 17/2.8 cells. The increased expression of zif268 mRNA is rapid (maximal within 1 h), transient (returns to basal levels by 3 h), detectable at RA doses of 10(-12)M, and independent of protein synthesis. The relative stimulation of zif268 mRNA by RA was much larger than that of other early genes, including c-fos, c-jun, and junB. The rate of transcription of RA-stimulated RCT-1 cells, estimated by nuclear run-on assays, was elevated, suggesting that RA regulation of zif268 gene transcription was at least in part transcriptional. Moreover, RA stimulated the transcriptional activity of a Zif268CAT (chloramphenicol acetyltransferase) plasmid containing 632 bp of zif268 5' regulatory sequences in RCT-1 cells but not in the more differentiated RCT-3 cells. These in vitro data support the in vivo observations which localize zif268 and RA receptor-gamma transcripts to bone and cartilage during development, suggesting that both RA and zif268 may play a role in osteoblast differentiation. Images PMID:1708092

  6. Local school policies increase physical activity in Norwegian secondary schools

    PubMed Central

    Haug, Ellen; Torsheim, Torbjørn; Samdal, Oddrun

    2010-01-01

    SUMMARY The implementation of school policies to support the adoption of physical activity is one of the main strategies recommended to increase physical activity levels among this age group. However, documentation of the effect of such policies is so far limited. The purpose of this study was to explore policy-related practices to support physical activity in Norwegian secondary schools and their association with recess physical activity. Emphasis was given to examine the association between policies and physical activity, over and beyond, individual level interests and environmental factors and to examine cross-level interaction effects. This cross-sectional study was based on a nationally representative sample of Norwegian secondary schools and grade 8 students who participated in the Health Behaviour in School-aged Children (HBSC) 2005/06 study. The final sample comprised 68 schools and 1347 students. Data were collected through questionnaires. The results showed that schools with a written policy for physical activity and schools offering organized non-curricular physical activity several times a week had a higher proportion of students reporting daily participation in recess physical activity. Multilevel logistic regression analysis demonstrated a cross-level main effect of the policy index after controlling for sex, socio-economic status, individual-level interests and the physical environment. A significant contribution of adding the policy index to the prediction of recess physical activity above that provided by the individual-level interests and the physical environment was demonstrated. The results are encouraging and give scientific support to policy documents recommending the implementation of school policies to increase physical activity. PMID:19884244

  7. Expression of a Truncated ATHB17 Protein in Maize Increases Ear Weight at Silking

    PubMed Central

    Creelman, Robert A.; Griffith, Cara; Ahrens, Jeffrey E.; Taylor, J. Philip; Murphy, Lesley R.; Manjunath, Siva; Thompson, Rebecca L.; Lingard, Matthew J.; Back, Stephanie L.; Larue, Huachun; Brayton, Bonnie R.; Burek, Amanda J.; Tiwari, Shiv; Adam, Luc; Morrell, James A.; Caldo, Rico A.; Huai, Qing; Kouadio, Jean-Louis K.; Kuehn, Rosemarie; Sant, Anagha M.; Wingbermuehle, William J.; Sala, Rodrigo; Foster, Matt; Kinser, Josh D.; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E.; Huang, Mingya G.; Kuriakose, Saritha V.; Skottke, Kyle; Repetti, Peter P.; Reuber, T. Lynne; Ruff, Thomas G.; Petracek, Marie E.; Loida, Paul J.

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize. PMID:24736658

  8. Expression of a truncated ATHB17 protein in maize increases ear weight at silking.

    PubMed

    Rice, Elena A; Khandelwal, Abha; Creelman, Robert A; Griffith, Cara; Ahrens, Jeffrey E; Taylor, J Philip; Murphy, Lesley R; Manjunath, Siva; Thompson, Rebecca L; Lingard, Matthew J; Back, Stephanie L; Larue, Huachun; Brayton, Bonnie R; Burek, Amanda J; Tiwari, Shiv; Adam, Luc; Morrell, James A; Caldo, Rico A; Huai, Qing; Kouadio, Jean-Louis K; Kuehn, Rosemarie; Sant, Anagha M; Wingbermuehle, William J; Sala, Rodrigo; Foster, Matt; Kinser, Josh D; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E; Huang, Mingya G; Kuriakose, Saritha V; Skottke, Kyle; Repetti, Peter P; Reuber, T Lynne; Ruff, Thomas G; Petracek, Marie E; Loida, Paul J

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize.

  9. Using the Web to Increase Physical Activity in College Students

    ERIC Educational Resources Information Center

    Magoc, Dejan; Tomaka, Joe; Bridges-Arzaga, Amber

    2011-01-01

    Objectives: To evaluate the effectiveness of a theoretically based and Web-delivered intervention using common course technology for increasing physical activity in a college student sample. Methods: One hundred four students randomly participated in either a Web-based intervention involving 7 theory-based learning lessons or a control group that…

  10. Texting to increase adolescent physical activity: Feasibility assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feasibility trials assess whether a behavior change program warrants a definite trial evaluation. This paper reports the feasibility of an intervention consisting of Self Determination Theory-informed text messages, pedometers, and goal prompts to increase adolescent physical activity. A 4-group ran...

  11. Reduced Frontal Activation with Increasing 2nd Language Proficiency

    ERIC Educational Resources Information Center

    Stein, Maria; Federspiel, Andrea; Koenig, Thomas; Wirth, Miranka; Lehmann, Christoph; Wiest, Roland; Strik, Werner; Brandeis, Daniel; Dierks, Thomas

    2009-01-01

    The factors influencing the degree of separation or overlap in the neuronal networks responsible for the processing of first and second language are still subject to investigation. This longitudinal study investigates how increasing second language proficiency influences activation differences during lexico-semantic processing of first and second…

  12. Games for increasing physical activity: Mechanisms for change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A small conference was held in Houston, TX, in May 2014, to address how to enhance exergames to increase physical activity. Several leading researchers were asked to address specific topics. Attendees came from across the globe. This Games for Health Journal Special Issue is devoted to sharing the a...

  13. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X

    PubMed Central

    Wang, Jianle; Syrett, Camille M.; Kramer, Marianne C.; Basu, Arindam; Atchison, Michael L.; Anguera, Montserrat C.

    2016-01-01

    Females have a greater immunological advantage than men, yet they are more prone to autoimmune disorders. The basis for this sex bias lies in the X chromosome, which contains many immunity-related genes. Female mammals use X chromosome inactivation (XCI) to generate a transcriptionally silent inactive X chromosome (Xi) enriched with heterochromatic modifications and XIST/Xist RNA, which equalizes gene expression between the sexes. Here, we examine the maintenance of XCI in lymphocytes from females in mice and humans. Strikingly, we find that mature naïve T and B cells have dispersed patterns of XIST/Xist RNA, and they lack the typical heterochromatic modifications of the Xi. In vitro activation of lymphocytes triggers the return of XIST/Xist RNA transcripts and some chromatin marks (H3K27me3, ubiquitin-H2A) to the Xi. Single-cell RNA FISH analysis of female T cells revealed that the X-linked immunity genes CD40LG and CXCR3 are biallelically expressed in some cells. Using knockout and knockdown approaches, we find that Xist RNA-binding proteins, YY1 and hnRNPU, are critical for recruitment of XIST/Xist RNA back to the Xi. Furthermore, we examined B cells from patients with systemic lupus erythematosus, an autoimmune disorder with a strong female bias, and observed different XIST RNA localization patterns, evidence of biallelic expression of immunity-related genes, and increased transcription of these genes. We propose that the Xi in female lymphocytes is predisposed to become partially reactivated and to overexpress immunity-related genes, providing the first mechanistic evidence to our knowledge for the enhanced immunity of females and their increased susceptibility for autoimmunity. PMID:27001848

  14. Increased expression of transforming growth factor α precursors in acute experimental colitis in rats

    PubMed Central

    Hoffmann, P; Zeeh, J; Lakshmanan, J; Wu, V; Procaccino, F; Reinshagen, M; McRoberts, J; Eysselein, V

    1997-01-01

    Background and aim—Epidermal growth factor (EGF) and transforming growth factor α (TGF-α), members of the EGF family of growth factors, protect rat gastric and colonic mucosa against injury. Having shown previously that exogenously applied EGF protects rat colonic mucosa against injury, the aim of the present study was to evaluate the endogenously expressed ligand mediating the protective effect of EGF/TGF-α in vivo. 
Methods—In an experimental model of trinitrobenzene sulphonic acid (TNBS)/ ethanol induced colitis in rats EGF and TGF-α expression was evaluated using a ribonuclease protection assay, northern blot analysis, western blot analysis, and immunohistochemistry. 
Results—TGF-α mRNA increased 3-4 times at 4-8 hours after induction of colitis and returned to control levels within 24 hours. TGF-α immunoreactive protein with a molecular size of about 28kDa representing TGF-α precursors increased markedly after induction of colitis with a peak at 8-12 hours. No fully processed 5.6 kDa TGF-α protein was detected in normal or inflamed colon tissue. Only a weak signal for EGF mRNA expression was detected in the rat colon and no EGF protein was observed by immunohistochemistry or western blot analysis. 
Conclusions—TGF-α precursors are the main ligands for the EGF receptor in acute colitis. It is hypothesised that TGF-α precursors convey the biological activity of endogenous TGF-α peptides during mucosal defence and repair. 

 Keywords: transforming growth factor alpha (TGF-α); epidermal growth factor (EGF); precursor molecules; colitis; rat PMID:9301498

  15. Hypocholesterolemia in chronic anemias with increased erythropoietic activity.

    PubMed

    Shalev, Hanna; Kapelushnik, Joseph; Moser, Asher; Knobler, Hilla; Tamary, Hannah

    2007-03-01

    Hypocholesterolemia of unknown etiology has been previously described in various chronic anemias. Few small studies also suggested that those patients have a lower incidence of atherosclerotic events. The aim of our study was to determine the extent of hypocholesterolemia in various types of anemias. We studied 59 patients with chronic anemias associated with high-erythropoietic activity (thalassemia intermedia, congenital dyserythropoietic anemia type I, congenital spherocytosis), 8 patients with low-erythropoietic activity anemias (acquired aplastic anemia, Fanconi anemia, and Diamond Blackfan anemia), and 20 healthy controls. Mean serum cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides, hemoglobin, serum ferritin, soluble transferrin receptor (STR), and serum erythropoietin levels were determined in each patient. All patients with chronic anemia and increased erythropoietic activity had hypocholesterolemia, whereas none of those with low erythropoietic activity was hypocholesterolemic. Mean serum cholesterol, HDL cholesterol, and LDL cholesterol levels were found to be significantly lower in the high-erythropoietic activity group (80+/-19 mg/dl; 31+/-10 mg/dl; 35+/-14 mg/dl, respectively) compared with the control group (P<0.001; 0.001; 0.001, respectively) and the low-erythropoietic activity group (P<0.001; 0.001; 0.01, respectively). Significant inverse correlation (R2=0.507) was observed between serum cholesterol and STR levels, which in the absence of iron deficiency reflect bone marrow activity. Taken together, our results imply that hypocholesterolemia accompanies anemias with high-erythropoietic activity. We suggest that the high-erythropoitic activity-associated hypocholesterolemia is due to increased cholesterol requirements by the proliferating erythoid cells. Further studies are needed to elucidate the exact mechanism and the possible clinical consequences of this phenomenon.

  16. Increased cholesterol 7α-hydroxylase expression and size of the bile acid pool in the lactating rat

    PubMed Central

    Wooton-Kee, Clavia Ruth; Cohen, David E.; Vore, Mary

    2008-01-01

    Maximal bile acid secretory rates and expression of bile acid transporters in liver and ileum are increased in lactation, possibly to facilitate increased enterohepatic recirculation of bile acids. We determined changes in the size and composition of the bile acid pool and key enzymes of the bile acid synthetic pathway [cholesterol 7α-hydroxylase (Cyp7a1), sterol 27-hydroxylase (Cyp27a1), and sterol 12α-hydroxylase (Cyp8b1)] in lactating rats relative to female virgin controls. The bile acid pool increased 1.9 to 2.5-fold [postpartum (PP) days 10, 14, and 19–23], compared with controls. A 1.5-fold increase in cholic acids and a 14 to 20% decrease in muricholic acids in lactation significantly increased the hydrophobicity index. In contrast, the hepatic concentration of bile acids and small heterodimer partner mRNA were unchanged in lactation. A 2.8-fold increase in Cyp7a1 mRNA expression at 16 h (10 h of light) demonstrated a shift in the diurnal rhythm at day 10 PP; Cyp7a1 protein expression and cholesterol 7α-hydroxylase activity were significantly increased at this time and remained elevated at day 14 PP but decreased to control levels by day 21 PP. There was an overall decrease in Cyp27a1 mRNA expression and a 20% decrease in Cyp27a1 protein expression, but there was no change in Cyp8b1 mRNA or protein expression at day 10 PP. The increase in Cyp7a1 expression PP provides a mechanism for the increase in the bile acid pool. PMID:18292185

  17. Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons.

    PubMed

    Lauterborn, J C; Lynch, G; Vanderklish, P; Arai, A; Gall, C M

    2000-01-01

    This study investigated whether positive modulators of AMPA-type glutamate receptors influence neurotrophin expression by forebrain neurons. Treatments with the ampakine CX614 markedly and reversibly increased brain-derived neurotrophic factor (BDNF) mRNA and protein levels in cultured rat entorhinal/hippocampal slices. Acute effects of CX614 were dose dependent over the range in which the drug increased synchronous neuronal discharges; threshold concentrations for acute responses had large effects on mRNA content when applied for 3 d. Comparable results were obtained with a second, structurally distinct ampakine CX546. Ampakine-induced upregulation was broadly suppressed by AMPA, but not NMDA, receptor antagonists and by reducing transmitter release. Antagonism of L-type voltage-sensitive calcium channels blocked induction in entorhinal cortex but not hippocampus. Prolonged infusions of suprathreshold ampakine concentrations produced peak BDNF mRNA levels at 12 hr and a return to baseline levels by 48 hr. In contrast, BDNF protein remained elevated throughout a 48 hr incubation with the drug. Nerve growth factor mRNA levels also were increased by ampakines but with a much more rapid return to control levels during chronic administration. Finally, intraperitoneal injections of CX546 increased hippocampal BDNF mRNA levels in aged rats and middle-aged mice. The present results provide evidence of regional differences in mechanisms via which activity regulates neurotrophin expression. Moreover, these data establish that changes in synaptic potency produce sufficient network level physiological effects for inducing neurotrophin genes, indicate that the response becomes refractory during prolonged ampakine exposure, and raise the possibility of using positive AMPA modulators to regulate neurotrophin levels in aged brain.

  18. [Four-week simulated weightlessness increases the expression of atrial natriuretic peptide in the myocardium].

    PubMed

    Zhang, Wen-Cheng; Lu, Yuan-Ming; Yang, Huai-Zhang; Xu, Peng-Tao; Chang, Hui; Yu, Zhi-Bin

    2013-04-25

    One of the major circulatory changes that occur in human during space flight and simulated weightlessness is a cerebral redistribution of body fluids, which is accompanied by an increase of blood volume in the upper body. Therefore, atrial myocardium should increase the secretion of atrial natriuretic peptide (ANP), but the researches lack common conclusion until now. The present study was to investigate the expression level of ANP in simulated weightlessness rats, and to confirm the changes of ANP by observing the associated proteins of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The tail-suspended rat model was used to simulate weightlessness. Western blots were carried out to examine the expression levels of ANP and SNARE proteins in atrial and left ventricular myocardium. The results showed that ANP expression in atrial myocardium showed an increase in 4-week tail-suspended rats (SUS) compared with that in the synchronous control rats (CON). We only detected a trace amount of ANP in the left ventricular myocardium of the CON, but found an enhanced expression of ANP in left ventricular myocardium of the SUS. Expression of VAMP-1/2 (vesicle associated SNARE) increased significantly in both atrial and left ventricular myocardium in the SUS compared with that in the CON. There was no difference of the expression of syntaxin-4 (target compartment associated SNARE) between the CON and SUS, but the expression of SNAP-23 showed an increase in atrial myocardium of the SUS compared with that in the CON. Synip and Munc-18c as regulators of SNAREs did not show significant difference between the CON and SUS. These results suggest that the expression of ANP shows an increase in atrial and left ventricular myocardium of 4-week tail-suspended rats. Enhanced expression of VAMP-1/2 associated with ANP vesicles confirms the increased expression of ANP in atrial and left ventricular myocardium.

  19. Methods of increasing secretion of polypeptides having biological activity

    SciTech Connect

    Merino, Sandra

    2013-10-01

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  20. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-10-28

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  1. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-05-27

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  2. Methods of increasing secretion of polypeptides having biological activity

    SciTech Connect

    Merino, Sandra

    2015-04-14

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  3. Increased hTR expression during transition from adenoma to carcinoma is not associated with promoter methylation.

    PubMed

    Nakamura, Atsuo; Suda, Takeshi; Honma, Terasu; Takahashi, Toru; Igarashi, Masato; Waguri, Nobuo; Kawai, Hirokazu; Mita, Yusaku; Aoyagi, Yutaka

    2004-09-01

    Human telomerase RNA component (hTR) expression, which increases in the majority of cancer cells with an acquisition of telomerase activity, was concomitantly evaluated with methylation status and human telomerase reverse transcriptase (hTERT) expression in colorectal cancers and precursor lesions. hTR and hTERT expressions were detected by in situ hybridization and reverse transcription following polymerase chain reaction, respectively, in 15 colonic adenomas, 19 sporadic colonic cancers at various histological stages, and 3 normal colonic mucosa samples. The methylationstatus of hTR was evaluated by methylation-specific polymerase chain reaction following restriction endonuclease digestion and direct sequencing. hTERT expression was detected in 16 of 19 cancers. hTR expression was detected in all cancers including two cases of intramucosal carcinoma. No hTR signals were detected in the normal epithelium or in the adenomas with severe atypism. CpG dinucleotides in the 5'-untranslated region of hTR were completely unmethylated from -204 to -3 and mosaically methylated from -290 to -272, irrespective of the atypism. These results suggest that hTR expression is increased at the adenoma-to-carcinoma transition stage but is not always associated with hTERT expression. Hypomethylation of the hTR promoter region is not likely to be the main mechanism regulating hTR expression.

  4. Hair cell BK channels interact with RACK1, and PKC increases its expression on the cell surface by indirect phosphorylation.

    PubMed

    Surguchev, Alexei; Bai, Jun-Ping; Joshi, Powrnima; Navaratnam, Dhasakumar

    2012-07-15

    Large conductance (BK) calcium activated potassium channels (Slo) are ubiquitous and implicated in a number of human diseases including hypertension and epilepsy. BK channels consist of a pore forming α-subunit (Slo) and a number of accessory subunits. In hair cells of nonmammalian vertebrates these channels play a critical role in electrical resonance, a mechanism of frequency selectivity. Hair cell BK channel clusters on the surface and currents increase along the tonotopic axis and contribute significantly to the responsiveness of these hair cells to sounds of high frequency. In contrast, messenger RNA levels encoding the Slo gene show an opposite decrease in high frequency hair cells. To understand the molecular events underlying this paradox, we used a yeast two-hybrid screen to isolate binding partners of Slo. We identified Rack1 as a Slo binding partner and demonstrate that PKC activation increases Slo surface expression. We also establish that increased Slo recycling of endocytosed Slo is at least partially responsible for the increased surface expression of Slo. Moreover, analysis of several PKC phosphorylation site mutants confirms that the effects of PKC on Slo surface expression are likely indirect. Finally, we show that Slo clusters on the surface of hair cells are also increased by increased PKC activity and may contribute to the increasing amounts of channel clusters on the surface of high-frequency hair cells.

  5. Azidothymidine and cisplatin increase p14ARF expression in OVCAR-3 ovarian cancer cell line

    SciTech Connect

    Vaskivuo, Liisa; Rysae, Jaana; Koivuperae, Johanna; Myllynen, Paeivi; Vaskivuo, Tommi; Chvalova, Katerina; Serpi, Raisa; Savolainen, Eeva-Riitta; Puistola, Ulla; Vaehaekangas, Kirsi . E-mail: kirsi.vahakangas@uku.fi

    2006-10-01

    p14{sup ARF} tumor suppressor protein regulates p53 by interfering with mdm2-p53 interaction. p14{sup ARF} is activated in response to oncogenic stimuli but little is known of the responses of endogenous p14{sup ARF} to different types of cellular stress or DNA damage. Azidothymidine (AZT) is being tested in several clinical trials as an enhancer of anticancer chemotherapy. However, the knowledge of the relationship between AZT and cellular pathways, e.g. p53 pathway, is very limited. In this study, we show that AZT, cisplatin (CDDP) and docetaxel (DTX) all induce unique molecular responses in OVCAR-3 ovarian carcinoma cells carrying a mutated p53, while in A2780, ovarian carcinoma and MCF-7 breast carcinoma cells with wild type p53, all of these drugs cause similar p53 responses. We found that endogenous p14{sup ARF} protein in OVCAR-3 cells is down-regulated by DTX but induced by AZT and a short CDDP pulse treatment. In HT-29 colon carcinoma cells with a mutated p53, all treatments down-regulated p14{sup ARF} protein. Both CDDP and AZT increased the expression of p14ARF mRNA in OVCAR-3 cells. Differences in cell death induced by these drugs did not explain the differences in protein and mRNA expressions. No increase in the level of either c-Myc or H-ras oncoproteins was seen in OVCAR-3 cells after AZT or CDDP-treatment. These results suggest that p14{sup ARF} can respond to DNA damage without oncogene activation in cell lines without functional p53.

  6. TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer

    PubMed Central

    GRIMMIG, TANJA; MATTHES, NIELS; HOELAND, KATHARINA; TRIPATHI, SUDIPTA; CHANDRAKER, ANIL; GRIMM, MARTIN; MOENCH, ROMANA; MOLL, EVA-MARIA; FRIESS, HELMUT; TSAUR, IGOR; BLAHETA, ROMAN A.; GERMER, CRISTOPH T.; WAAGA-GASSER, ANA MARIA; GASSER, MARTIN

    2015-01-01

    Chronic inflammation as an important epigenetic and environmental factor for putative tumorigenesis and tumor progression may be associated with specific activation of Toll-like receptors (TLR). Recently, carcinogenesis has been suggested to be dependent on TLR7 signaling. In the present study, we determined the role of both TLR7 and TLR8 expression and signaling in tumor cell proliferation and chemoresistance in pancreatic cancer. Expression of TLR7/TLR8 in UICC stage I–IV pancreatic cancer, chronic pancreatitis, normal pancreatic tissue and human pancreatic (PANC1) cancer cell line was examined. For in vitro/in vivo studies TLR7/TLR8 overexpressing PANC1 cell lines were generated and analyzed for effects of (un-)stimulated TLR expression on tumor cell proliferation and chemoresistance. TLR expression was increased in pancreatic cancer, with stage-dependent upregulation in advanced tumors, compared to earlier stages and chronic pancreatitis. Stimulation of TLR7/TLR8 overexpressing PANC1 cells resulted in elevated NF-κB and COX-2 expression, increased cancer cell proliferation and reduced chemosensitivity. More importantly, TLR7/TLR8 expression increased tumor growth in vivo. Our data demonstrate a stage-dependent upregulation of both TLR7 and TLR8 expression in pancreatic cancer. Functional analysis in human pancreatic cancer cells point to a significant role of both TLRs in chronic inflammation-mediated TLR7/TLR8 signaling leading to tumor cell proliferation and chemoresistance. PMID:26134824

  7. Plant species richness increases phosphatase activities in an experimental grassland

    NASA Astrophysics Data System (ADS)

    Hacker, Nina; Wilcke, Wolfgang; Oelmann, Yvonne

    2014-05-01

    Plant species richness has been shown to increase aboveground nutrient uptake requiring the mobilization of soil nutrient pools. For phosphorus (P) the underlying mechanisms for increased P release in soil under highly diverse grassland mixtures remain obscure because aboveground P storage and concentrations of inorganic and organic P in soil solution and differently reactive soil P pools are unrelated (Oelmann et al. 2011). The need of plants and soil microorganisms for P can increase the exudation of enzymes hydrolyzing organically bound P (phosphatases) which might represent an important release mechanism of inorganic P in a competitive environment such as highly diverse grassland mixtures. Our objectives were to test the effects of i) plant functional groups (legumes, grasses, non-leguminous tall and small herbs), and of (ii) plant species richness on microbial P (Pmic) and phosphatase activities in soil. In autumn 2013, we measured Pmic and alkaline phosphomonoesterase and phosphodiesterase activities in soil of 80 grassland mixtures comprising different community compositions and species richness (1, 2, 4, 8, 16, 60) in the Jena Experiment. In general, Pmic and enzyme activities were correlated (r = 0.59 and 0.46 for phosphomonoesterase and phosphodiesterase activities, respectively; p

  8. Exercising self-control increases relative left frontal cortical activation.

    PubMed

    Schmeichel, Brandon J; Crowell, Adrienne; Harmon-Jones, Eddie

    2016-02-01

    Self-control refers to the capacity to override or alter a predominant response tendency. The current experiment tested the hypothesis that exercising self-control temporarily increases approach motivation, as revealed by patterns of electrical activity in the prefrontal cortex. Participants completed a writing task that did vs did not require them to exercise self-control. Then they viewed pictures known to evoke positive, negative or neutral affect. We assessed electroencephalographic (EEG) activity while participants viewed the pictures, and participants reported their trait levels of behavioral inhibition system (BIS) and behavioral activation system (BAS) sensitivity at the end of the study. We found that exercising (vs not exercising) self-control increased relative left frontal cortical activity during picture viewing, particularly among individuals with relatively higher BAS than BIS, and particularly during positive picture viewing. A similar but weaker pattern emerged during negative picture viewing. The results suggest that exercising self-control temporarily increases approach motivation, which may help to explain the aftereffects of self-control (i.e. ego depletion).

  9. Zaprinast impairs spatial memory by increasing PDE5 expression in the rat hippocampus.

    PubMed

    Giorgi, Mauro; Pompili, Assunta; Cardarelli, Silvia; Castelli, Valentina; Biagioni, Stefano; Sancesario, Giuseppe; Gasbarri, Antonella

    2015-02-01

    In this work, we report the effect of post-training intraperitoneal administration of zaprinast on rat memory retention in the Morris water maze task that revealed a significant memory impairment at the intermediate dose of 10mg/kg. Zaprinast is capable of inhibiting both striatal and hippocampal PDE activity but to a different extent which is probably due to the different PDE isoforms expressed in these areas. To assess the possible involvement of cyclic nucleotides in rat memory impairment, we compared the effects obtained 30 min after the zaprinast injection with respect to 24h after injection by measuring both cyclic nucleotide levels and PDE activity. As expected, 30 min after the zaprinast administration, we observed an increase of cyclic nucleotides, which returned to a basal level within 24h, with the exception of the hippocampal cGMP which was significantly decreased at the dose of 10mg/kg of zaprinast. This increase in the hippocampal region is the result of a cGMP-specific PDE5 induction, confirmed by sildenafil inhibition, in agreement with literature data that demonstrate transcriptional regulation of PDE5 by cAMP/cGMP intracellular levels. Our results highlight the possible rebound effect of PDE inhibitors.

  10. Expression of biologically active murine interleukin-18 in Lactococcus lactis.

    PubMed

    Feizollahzadeh, Sadegh; Khanahmad, Hossein; Rahimmanesh, Ilnaz; Ganjalikhani-Hakemi, Mazdak; Andalib, Alireza; Sanei, Mohammad Hossein; Rezaei, Abbas

    2016-11-01

    The food-grade bacterium Lactococcus lactis is increasingly used for heterologous protein expression in therapeutic and industrial applications. The ability of L. lactis to secrete biologically active cytokines may be used for the generation of therapeutic cytokines. Interleukin (IL)-18 enhances the immune response, especially on mucosal surfaces, emphasizing its therapeutic potential. However, it is produced as an inactive precursor and has to be enzymatically cleaved for maturation. We genetically manipulated L. lactis to secrete murine IL-18. The mature murine IL-18 gene was inserted downstream of a nisin promoter in pNZ8149 plasmid and the construct was used to transform L. lactis NZ3900. The transformants were selected on Elliker agar and confirmed by restriction enzyme digestion and sequencing. The expression and secretion of IL-18 protein was verified by SDS-PAGE, western blotting and ELISA. The biological activity of recombinant IL-18 was determined by its ability to induce interferon (IFN)-γ production in L. lactis co-cultured with murine splenic T cells. The amounts of IL-18 in bacterial lysates and supernatants were 3-4 μg mL(-1) and 0.6-0.7 ng mL(-1), respectively. The successfully generated L. lactis strain that expressed biologically active murine IL-18 can be used to evaluate the possible therapeutic effects of IL-18 on mucosal surfaces.

  11. Ectopic expression of catalase in Drosophila mitochondria increases stress resistance but not longevity.

    PubMed

    Mockett, Robin J; Bayne, Anne Cécile V; Kwong, Linda K; Orr, William C; Sohal, Rajindar S

    2003-01-15

    The goal of this study was to test the hypothesis that the rate of mitochondrial oxidant production governs the aging process of the fruit fly, Drosophila melanogaster. Catalase, an antioxidative enzyme expressed in the cytosol and peroxisomes of Drosophila, was targetted ectopically to the mitochondrial matrix by fusion of a leader peptide derived from ornithine aminotransferase with its N-terminus. The presence of the transgene encoding this fusion protein was associated with moderate (35 +/- 13%) increases in total catalase activity in most lines, and measurable levels of catalase activity in the mitochondria (30-140 U/mg protein). There was no impact on the life span of the flies at 25 degrees C, even in an exceptional line with a 149% increase in total catalase activity, and there was a small decrease in longevity at 29 degrees C. There were no compensatory changes in the rate of metabolism or physical activity, or in the levels of other major antioxidants, suggesting that the aging process was largely unaffected. Resistance to exogenous hydrogen peroxide, paraquat, and cold stress was enhanced, but there was no appreciable effect on resistance to hyperoxia. The results demonstrate the importance of mitochondrial antioxidant levels in the resistance to oxidative stress at the organismal level, and illustrate that different effects on aging and stress resistance may ensue from a single treatment. The main inferences drawn are that: (i) levels of stress resistance may neither be a cause nor a reliable indicator of the rate of aging, and (ii) bolstering antioxidant levels in Drosophila may not delay or slow down the aging process.

  12. Increasing Arabian dust activity and the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Solmon, F.; Nair, V. S.; Mallet, M.

    2015-07-01

    Over the past decade, aerosol optical depth (AOD) observations based on satellite and ground measurements have shown a significant increase over Arabia and the Arabian Sea, attributed to an intensification of regional dust activity. Recent studies have also suggested that west Asian dust forcing could induce a positive response of Indian monsoon precipitations on a weekly timescale. Using observations and a regional climate model including interactive slab-ocean and dust aerosol schemes, the present study investigates possible climatic links between the increasing June-July-August-September (JJAS) Arabian dust activity and precipitation trends over southern India during the 2000-2009 decade. Meteorological reanalysis and AOD observations suggest that the observed decadal increase of dust activity and a simultaneous intensification of summer precipitation trend over southern India are both linked to a deepening of JJAS surface pressure conditions over the Arabian Sea. In the first part of the study, we analyze the mean climate response to dust radiative forcing over the domain, discussing notably the relative role of Arabian vs. Indo-Pakistani dust regions. In the second part of the study, we show that the model skills in reproducing regional dynamical patterns and southern Indian precipitation trends are significantly improved only when an increasing dust emission trend is imposed on the basis of observations. We conclude that although interannual climate variability might primarily determine the observed regional pattern of increasing dust activity and precipitation during the 2000-2009 decade, the associated dust radiative forcing might in return induce a critical dynamical feedback contributing to enhancing regional moisture convergence and JJAS precipitations over southern India.

  13. Increased antitumor activity of tumor-specific peptide modified thymopentin.

    PubMed

    Lao, Xingzhen; Li, Bin; Liu, Meng; Chen, Jiao; Gao, Xiangdong; Zheng, Heng

    2014-12-01

    Thymopoietin pentapeptide (thymopentin, TP5), an immunomodulatory peptide, has been successfully used as an immune system enhancer for treating immune deficiency, cancer, and infectious diseases. However, poor penetration into tumors remains a key limitation to the efficacy and application of TP5. iRGD (CRGDK/RGPD/EC) has been introduced to certain anticancer agents, and increased specific tumor penetrability of drugs and cell internalization have been observed. In the present study, we fused this iRGD fragment with the C-terminal of TP5 to yield a new product, TP5-iRGD. Cell attachment assay showed that TP5-iRGD exhibits more extensive attachment to the melanoma cell line B16F10 than wild-type TP5. Tumor cell viability assay showed that iRGD conjugation with the TP5 C-terminus increases the basal antiproliferative activity of the pentapeptide against the melanoma cell line B16F10, the human lung cancer cell line H460, and the human breast cancer cell line MCF-7. Subsequent injections of TP5-iRGD inhibited in vivo melanoma progression more efficiently than the native TP5. Murine spleen lymphocyte proliferation assay also showed that TP5-iRGD and the parent pentapeptide feature nearly identical spleen lymphocyte proliferation activities. We built an integrin αvβ3 and TP5-iRGD computational binding model to investigate the mechanism by which TP5-iRGD promotes increased activity further. Conjugation with iRGD promotes binding to integrin αvβ3, thereby increasing the tumor-homing efficiency of the resultant peptide. These experimental and computational observations of increased TP5-iRGD activity help broaden the usage of TP5 and reflect the great application potential of the peptide as an anticancer agent.

  14. Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner.

    PubMed

    Chen, Rui; Dioum, Elhadji M; Hogg, Richard T; Gerard, Robert D; Garcia, Joseph A

    2011-04-22

    Hypoxia-inducible factors (HIFs) are stress-responsive transcriptional regulators of cellular and physiological processes involved in oxygen metabolism. Although much is understood about the molecular machinery that confers HIF responsiveness to oxygen, far less is known about HIF isoform-specific mechanisms of regulation, despite the fact that HIF-1 and HIF-2 exhibit distinct biological roles. We recently determined that the stress-responsive genetic regulator sirtuin 1 (Sirt1) selectively augments HIF-2 signaling during hypoxia. However, the mechanism by which Sirt1 maintains activity during hypoxia is unknown. In this report, we demonstrate that Sirt1 gene expression increases in a HIF-dependent manner during hypoxia in Hep3B and in HT1080 cells. Impairment of HIF signaling affects Sirt1 deacetylase activity as decreased HIF-1 signaling results in the appearance of acetylated HIF-2α, which is detected without pharmacological inhibition of Sirt1. We also find that Sirt1 augments HIF-2 mediated, but not HIF-1 mediated, transcriptional activation of the isolated Sirt1 promoter. These data in summary reveal a bidirectional link of HIF and Sirt1 signaling during hypoxia.

  15. CDX2 increases SLC7A7 expression and proliferation of pig intestinal epithelial cells

    PubMed Central

    Li, Xiang-guang; Xu, Gao-feng; Zhai, Zhen-ya; Gao, Chun-qi; Yan, Hui-chao; Xi, Qian-yun; Guan, Wu-tai; Wang, Song-bo; Wang, Xiu-qi

    2016-01-01

    Nutrient absorption mediated by nutrient transporters expressed in the intestinal epithelium supplies substrates to support intestinal processes, including epithelial cell proliferation. We evaluated the role of Caudal type homeobox 2 (CDX2), an intestine-specific transcription factor, in the proliferation of pig intestinal epithelial cells (IPEC-1) and searched for novel intestinal nutrient transporter genes activated by CDX2. Our cloned pig CDX2 cDNA contains a “homeobox” DNA binding motif, suggesting it is a transcriptional activator. CDX2 overexpression in IPEC-1 cells increased cell proliferation, the percentage of cells in S/G2 phase, and the abundance of transcripts of the cell cycle-related genes Cyclin A2; Cyclin B; Cyclin D2; proliferating cell nuclear antigen; and cell cycle cyclin-dependent kinases 1, 2 and 4, as well as the predicted CDX2 target genes SLC1A1, SLC5A1 and SLC7A7. In addition, luciferase reporter and chromatin immunoprecipitation assays revealed that CDX2 binds directly to the SLC7A7 promoter. This is the first report of CDX2 function in pig intestinal epithelial cells and identifies SLC7A7 as a novel CDX2 target gene. Our findings show that nutrient transporters are activated during CDX2-induced proliferation of normal intestinal epithelial cells. PMID:27121315

  16. Expression of the mef(E) gene encoding the macrolide efflux pump protein increases in Streptococcus pneumoniae with increasing resistance to macrolides.

    PubMed

    Wierzbowski, Aleksandra K; Boyd, Dave; Mulvey, Michael; Hoban, Daryl J; Zhanel, George G

    2005-11-01

    Active macrolide efflux is a major mechanism of macrolide resistance in Streptococcus pneumoniae in many parts of the world, especially North America. In Canada, this active macrolide efflux in S. pneumoniae is predominantly due to acquisition of the mef(E) gene. In the present study, we assessed the mef(E) gene sequence as well as mef(E) expression in variety of low- and high-level macrolide-resistant, clindamycin-susceptible (M-phenotype) S. pneumoniae isolates (erythromycin MICs, 1 to 32 microg/ml; clindamycin MICs, < or = 0.25 microg/ml). Southern blot hybridization with mef(E) probe and EcoRI digestion and relative real-time reverse transcription-PCR were performed to study the mef(E) gene copy number and expression. Induction of mef(E) expression was analyzed by Etest susceptibility testing pre- and postincubation with subinhibitory concentrations of erythromycin, clarithromycin, azithromycin, telithromycin, and clindamycin. The macrolide efflux gene, mef(E), was shown to be a single-copy gene in all 23 clinical S. pneumoniae isolates tested, and expression post-macrolide induction increased 4-, 6-, 20-, and 200-fold in isolates with increasing macrolide resistance (erythromycin MICs 2, 4, 8, and 32 microg/ml, respectively). Sequencing analysis of the macrolide efflux genetic assembly (mega) revealed that mef(E) had a 16-bp deletion 153 bp upstream of the putative start codon in all 23 isolates. A 119-bp intergenic region between mef(E) and mel was sequenced, and a 99-bp deletion was found in 11 of the 23 M-phenotype S. pneumoniae isolates compared to the published mega sequence. However, the mef(E) gene was fully conserved among both high- and low-level macrolide-resistant isolates. In conclusion, increased expression of mef(E) is associated with higher levels of macrolide resistance in macrolide-resistant S. pneumoniae.

  17. Plant diversity increases soil microbial activity and soil carbon storage.

    PubMed

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos A; Bessler, Holger; Engels, Christoph; Griffiths, Robert I; Mellado-Vázquez, Perla G; Malik, Ashish A; Roy, Jacques; Scheu, Stefan; Steinbeiss, Sibylle; Thomson, Bruce C; Trumbore, Susan E; Gleixner, Gerd

    2015-04-07

    Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon.

  18. Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene Expression

    PubMed Central

    Amador, Ariadna; Wang, Yongjun; Banerjee, Subhashis; Kameneka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2016-01-01

    The nuclear receptors REV-ERBα and REV-ERBβ are transcription factors that play pivotal roles in the regulation of the circadian rhythm and various metabolic processes. The circadian rhythm is an endogenous mechanism, which generates entrainable biological changes that follow a 24-hour period. It regulates a number of physiological processes, including sleep/wakeful cycles and feeding behaviors. We recently demonstrated that REV-ERB-specific small molecules affect sleep and anxiety. The orexinergic system also plays a significant role in mammalian physiology and behavior, including the regulation of sleep and food intake. Importantly, orexin genes are expressed in a circadian manner. Given these overlaps in function and circadian expression, we wanted to determine whether the REV-ERBs might regulate orexin. We found that acute in vivo modulation of REV-ERB activity, with the REV-ERB-specific synthetic ligand SR9009, affects the circadian expression of orexinergic genes in mice. Long term dosing with SR9009 also suppresses orexinergic gene expression in mice. Finally, REV-ERBβ-deficient mice present with increased orexinergic transcripts. These data suggest that the REV-ERBs may be involved in the repression of orexinergic gene expression. PMID:26963516

  19. Epinephrine inhibits analgesic tolerance to intrathecal administrated morphine and increases the expression of calcium-calmodulin-dependent protein kinase IIalpha.

    PubMed

    Satarian, Leila; Javan, Mohammad; Fathollahi, Yaghoub

    2008-01-17

    Activation of hypothalamic-pituitary-adrenal (HPA) axis inhibits development of morphine tolerance. Also, the expression of CaMKIIalpha is increased following chronic administration of morphine. In the current study, we tried to examine the effect of epinephrine, on the development of morphine tolerance; and also evaluate the expression of CaMKIIalpha as a molecular index for tolerance development. Analgesic tolerance was induced by intrathecal (i.t.) injection of morphine 15 microg/rat, twice a day for 5 days. To study the effect of epinephrine on development or reversal of morphine tolerance, epinephrine was administrated 20 min before morphine injections. Analgesia was assessed using tail flick test. Gene expression assays were done using RT-PCR. Following 5 days of combined administration of morphine and epinephrine (2, 5 or 10 microg/rat), in day 6, morphine produced potent analgesia. Administration of saline and morphine during days 1-5, caused reduced analgesic effect of morphine on day 6. After tolerance induction during 5 days, co-administration of epinephrine and morphine for another 5 days, significantly reversed the tolerance. Both morphine and epinephrine increased the expression of CaMKIIalpha. The expression of CaMKIIalpha was highly increased following combined administration of epinephrine and morphine. Our results showed the inhibition and reversal of analgesic tolerance to local administrated morphine by epinephrine. We observed the increased expression of CaMKIIalpha without development of morphine tolerance in animals treated with combined epinephrine and morphine.

  20. Active learning increases student performance in science, engineering, and mathematics.

    PubMed

    Freeman, Scott; Eddy, Sarah L; McDonough, Miles; Smith, Michelle K; Okoroafor, Nnadozie; Jordt, Hannah; Wenderoth, Mary Pat

    2014-06-10

    To test the hypothesis that lecturing maximizes learning and course performance, we metaanalyzed 225 studies that reported data on examination scores or failure rates when comparing student performance in undergraduate science, technology, engineering, and mathematics (STEM) courses under traditional lecturing versus active learning. The effect sizes indicate that on average, student performance on examinations and concept inventories increased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes--although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms.

  1. Active learning increases student performance in science, engineering, and mathematics

    PubMed Central

    Freeman, Scott; Eddy, Sarah L.; McDonough, Miles; Smith, Michelle K.; Okoroafor, Nnadozie; Jordt, Hannah; Wenderoth, Mary Pat

    2014-01-01

    To test the hypothesis that lecturing maximizes learning and course performance, we metaanalyzed 225 studies that reported data on examination scores or failure rates when comparing student performance in undergraduate science, technology, engineering, and mathematics (STEM) courses under traditional lecturing versus active learning. The effect sizes indicate that on average, student performance on examinations and concept inventories increased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes—although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms. PMID:24821756

  2. T Lymphocyte Activation Threshold is Increased in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Adams, Charley L.; Gonzalez, M.; Sams, C. F.

    2000-01-01

    There have been substantial advances in molecular and cellular biology that have provided new insight into the biochemical and genetic basis of lymphocyte recognition, activation and expression of distinct functional phenotypes. It has now become evident that for both T and B cells, stimuli delivered through their receptors can result in either clonal expansion or apoptosis. In the case of T cells, clonal expansion of helper cells is accompanied by differentiation into two major functional subsets which regulate the immune response. The pathways between the membrane and the nucleus and their molecular components are an area of very active investigation. This meeting will draw together scientists working on diverse aspects of this problem, including receptor ligand interactions, intracellular pathways that transmit receptor mediated signals and the effect of such signal transduction pathways on gene regulation. The aim of this meeting is to integrate the information from these various experimental approaches into a new synthesis and molecular explanation of T cell activation, differentiation and death.

  3. Simvastatin induces mitochondrial dysfunction and increased atrogin-1 expression in H9c2 cardiomyocytes and mice in vivo.

    PubMed

    Bonifacio, Annalisa; Mullen, Peter J; Mityko, Ileana Scurtu; Navegantes, Luiz C; Bouitbir, Jamal; Krähenbühl, Stephan

    2016-01-01

    Simvastatin is effective and well tolerated, with adverse reactions mainly affecting skeletal muscle. Important mechanisms for skeletal muscle toxicity include mitochondrial impairment and increased expression of atrogin-1. The aim was to study the mechanisms of toxicity of simvastatin on H9c2 cells (a rodent cardiomyocyte cell line) and on the heart of male C57BL/6 mice. After, exposure to 10 μmol/L simvastatin for 24 h, H9c2 cells showed impaired oxygen consumption, a reduction in the mitochondrial membrane potential and a decreased activity of several enzyme complexes of the mitochondrial electron transport chain (ETC). The cellular ATP level was also decreased, which was associated with phosphorylation of AMPK, dephosphorylation and nuclear translocation of FoxO3a as well as increased mRNA expression of atrogin-1. Markers of apoptosis were increased in simvastatin-treated H9c2 cells. Treatment of mice with 5 mg/kg/day simvastatin for 21 days was associated with a 5 % drop in heart weight as well as impaired activity of several enzyme complexes of the ETC and increased mRNA expression of atrogin-1 and of markers of apoptosis in cardiac tissue. Cardiomyocytes exposed to simvastatin in vitro or in vivo sustain mitochondrial damage, which causes AMPK activation, dephosphorylation and nuclear transformation of FoxO3a as well as increased expression of atrogin-1. Mitochondrial damage and increased atrogin-1 expression are associated with apoptosis and increased protein breakdown, which may cause myocardial atrophy.

  4. Increased calcium/calmodulin-dependent protein kinase II activity by morphine-sensitization in rat hippocampus.

    PubMed

    Kadivar, Mehdi; Farahmandfar, Maryam; Ranjbar, Faezeh Esmaeli; Zarrindast, Mohammad-Reza

    2014-07-01

    Repeated exposure to drugs of abuse, such as morphine, elicits a progressive enhancement of drug-induced behavioral responses, a phenomenon termed behavioral sensitization. These changes in behavior may reflect long-lasting changes in some of the important molecules involved in memory processing such as calcium/calmodulin-dependent protein kinase II (CaMKII). In the present study, we investigated the effect of morphine sensitization on mRNA expression of α and β isoforms and activity of CaMKII in the hippocampus of male rats. Animals were treated for 3 days with saline or morphine (20mg/kg) and following