Dorsch, Simone; Ada, Louise; Alloggia, Daniella
2018-04-01
Does progressive resistance training improve strength and activity after stroke? Does any increase in strength carry over to activity? Systematic review of randomised trials with meta-analysis. Adults who have had a stroke. Progressive resistance training compared with no intervention or placebo. The primary outcome was change in strength. This measurement had to be of maximum voluntary force production and performed in muscles congruent with the muscles trained in the intervention. The secondary outcome was change in activity. This measurement had to be a direct measure of performance that produced continuous or ordinal data, or with scales that produced ordinal data. Eleven studies involving 370 participants were included in this systematic review. The overall effect of progressive resistance training on strength was examined by pooling change scores from six studies with a mean PEDro score of 5.8, representing medium quality. The effect size of progressive resistance training on strength was 0.98 (95% CI 0.67 to 1.29, I 2 =0%). The overall effect of progressive resistance training on activity was examined by pooling change scores from the same six studies. The effect size of progressive resistance training on activity was 0.42 (95% CI -0.08 to 0.91, I 2 =54%). After stroke, progressive resistance training has a large effect on strength compared with no intervention or placebo. There is uncertainty about whether these large increases in strength carry over to improvements in activity. PROSPERO CRD42015025401. [Dorsch S, Ada L, Alloggia D (2018) Progressive resistance training increases strength after stroke but this may not carry over to activity: a systematic review. Journal of Physiotherapy 64: 84-90]. Copyright © 2018 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Christensen, Jeppe Romme; Börnsen, Lars; Ratzer, Rikke; Piehl, Fredrik; Khademi, Mohsen; Olsson, Tomas; Sørensen, Per Soelberg; Sellebjerg, Finn
2013-01-01
Pathology studies of progressive multiple sclerosis (MS) indicate a major role of inflammation including Th17-cells and meningeal inflammation with ectopic lymphoid follicles, B-cells and plasma cells, the latter indicating a possible role of the newly identified subset of follicular T-helper (TFH) cells. Although previous studies reported increased systemic inflammation in progressive MS it remains unclear whether systemic inflammation contributes to disease progression and intrathecal inflammation. This study aimed to investigate systemic inflammation in progressive MS and its relationship with disease progression, using flow cytometry and gene expression analysis of CD4+ and CD8+T-cells, B-cells, monocytes and dendritic cells. Furthermore, gene expression of cerebrospinal fluid cells was studied. Flow cytometry studies revealed increased frequencies of ICOS+TFH-cells in peripheral blood from relapsing-remitting (RRMS) and secondary progressive (SPMS) MS patients. All MS subtypes had decreased frequencies of Th1 TFH-cells, while primary progressive (PPMS) MS patients had increased frequency of Th17 TFH-cells. The Th17-subset, interleukin-23-receptor+CD4+T-cells, was significantly increased in PPMS and SPMS. In the analysis of B-cells, we found a significant increase of plasmablasts and DC-SIGN+ and CD83+B-cells in SPMS. ICOS+TFH-cells and DC-SIGN+B-cells correlated with disease progression in SPMS patients. Gene expression analysis of peripheral blood cell subsets substantiated the flow cytometry findings by demonstrating increased expression of IL21, IL21R and ICOS in CD4+T-cells in progressive MS. Cerebrospinal fluid cells from RRMS and progressive MS (pooled SPMS and PPMS patients) had increased expression of TFH-cell and plasmablast markers. In conclusion, this study is the first to demonstrate the potential involvement of activated TFH-cells in MS. The increased frequencies of Th17-cells, activated TFH- and B-cells parallel findings from pathology studies which, along with the correlation between activated TFH- and B-cells and disease progression, suggest a pathogenic role of systemic inflammation in progressive MS. These observations may have implications for the treatment of progressive MS. PMID:23469245
Defining active progressive multiple sclerosis.
Sellebjerg, Finn; Börnsen, Lars; Ammitzbøll, Cecilie; Nielsen, Jørgen Erik; Vinther-Jensen, Tua; Hjermind, Lena Elisabeth; von Essen, Marina; Ratzer, Rikke Lenhard; Soelberg Sørensen, Per; Romme Christensen, Jeppe
2017-11-01
It is unknown whether disease activity according to consensus criteria (magnetic resonance imaging activity or clinical relapses) associate with cerebrospinal fluid (CSF) changes in progressive multiple sclerosis (MS). To compare CSF biomarkers in active and inactive progressive MS according to consensus criteria. Neurofilament light chain (NFL), myelin basic protein (MBP), IgG-index, chitinase-3-like-1 (CHI3L1), matrix metalloproteinase-9 (MMP-9), chemokine CXCL13, terminal complement complex, leukocyte counts and nitric oxide metabolites were measured in primary ( n = 26) and secondary progressive MS ( n = 26) and healthy controls ( n = 24). Progressive MS patients had higher CSF cell counts, IgG-index, CHI3L1, MMP-9, CXCL13, NFL and MBP concentrations. Active patients were younger and had higher NFL, CXCL13 and MMP-9 concentrations than inactive patients. Patients with active disease according to consensus criteria or detectable CXCL13 or MMP-9 in CSF were defined as having combined active progressive MS. These patients had increased CSF cell counts, IgG-index and MBP, NFL and CHI3L1 concentrations. Combined inactive patients only had increased IgG-index and MBP concentrations. Patients with combined active progressive MS show evidence of inflammation, demyelination and neuronal/axonal damage, whereas the remaining patients mainly show evidence of active demyelination. This challenges the idea that neurodegeneration independent of inflammation is crucial in disease progression.
Chk1 promotes replication fork progression by controlling replication initiation
Petermann, Eva; Woodcock, Mick; Helleday, Thomas
2010-01-01
DNA replication starts at initiation sites termed replication origins. Metazoan cells contain many more potential origins than are activated (fired) during each S phase. Origin activation is controlled by the ATR checkpoint kinase and its downstream effector kinase Chk1, which suppresses origin firing in response to replication blocks and during normal S phase by inhibiting the cyclin-dependent kinase Cdk2. In addition to increased origin activation, cells deficient in Chk1 activity display reduced rates of replication fork progression. Here we investigate the causal relationship between increased origin firing and reduced replication fork progression. We use the Cdk inhibitor roscovitine or RNAi depletion of Cdc7 to inhibit origin firing in Chk1-inhibited or RNAi-depleted cells. We report that Cdk inhibition and depletion of Cdc7 can alleviate the slow replication fork speeds in Chk1-deficient cells. Our data suggest that increased replication initiation leads to slow replication fork progression and that Chk1 promotes replication fork progression during normal S phase by controlling replication origin activity. PMID:20805465
Navsaria, Rishi; Ryder, Dionne M; Lewis, Jeremy S; Alexander, Caroline M
2015-03-01
Tennis elbow or lateral epicondylopathy (LE) is experienced as the lateral elbow has a reported prevalence of 1.3%, with symptoms lasting up to 18 months. LE is most commonly attributed to tendinopathy involving the extensor carpi radialis brevis (ECRB) tendon. The aim of tendinopathy management is to alleviate symptoms and restore function that initially involves relative rest followed by progressive therapeutic exercise. To assess the effectiveness of two prototype exercises using commonly available clinical equipment to progressively increase resistance and activity of the ECRB. Eighteen healthy participants undertook two exercise progressions. Surface electromyography was used to record ECRB activity during the two progressions, involving eccentric exercises of the wrist extensors and elbow pronation exercises using a prototype device. The two progressions were assessed for their linearity of progression using repeated ANOVA and linear regression analysis. Five participants repeated the study to assess reliability. The exercise progressions led to an increase in ECRB electromyographic (EMG) activity (p<0.001). A select progression of exercises combining the two protocols increased EMG activity in a linear fashion (p<0.001). The ICC values indicated good reliability (ICC>0.7) between the first and second tests for five participants. Manipulation of resistance and leverage with the prototype exercises was effective in creating significant increases of ECRB normalised EMG activity in a linear manner that may, with future research, become useful to clinicians treating LE. In addition, between trial reliability for the device to generate a consistent load was acceptable. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Dynamics of Simian Immunodeficiency Virus SIVmac239 Infection in Pigtail Macaques
Klatt, Nichole R.; Canary, Lauren A.; Vanderford, Thomas H.; Vinton, Carol L.; Engram, Jessica C.; Dunham, Richard M.; Cronise, Heather E.; Swerczek, Joanna M.; Lafont, Bernard A. P.; Picker, Louis J.; Silvestri, Guido
2012-01-01
Pigtail macaques (PTM) are an excellent model for HIV research; however, the dynamics of simian immunodeficiency virus (SIV) SIVmac239 infection in PTM have not been fully evaluated. We studied nine PTM prior to infection, during acute and chronic SIVmac239 infections, until progression to AIDS. We found PTM manifest clinical AIDS more rapidly than rhesus macaques (RM), as AIDS-defining events occurred at an average of 42.17 weeks after infection in PTM compared to 69.56 weeks in RM (P = 0.0018). However, increased SIV progression was not associated with increased viremia, as both peak and set-point plasma viremias were similar between PTM and RM (P = 0.7953 and P = 0.1006, respectively). Moreover, this increased disease progression was not associated with rapid CD4+ T cell depletion, as CD4+ T cell decline resembled other SIV/human immunodeficiency virus (HIV) models. Since immune activation is the best predictor of disease progression during HIV infection, we analyzed immune activation by turnover of T cells by BrdU decay and Ki67 expression. We found increased levels of turnover prior to SIV infection of PTM compared to that observed with RM, which may contribute to their increased disease progression rate. These data evaluate the kinetics of SIVmac239-induced disease progression and highlight PTM as a model for HIV infection and the importance of immune activation in SIV disease progression. PMID:22090099
Dynamics of simian immunodeficiency virus SIVmac239 infection in pigtail macaques.
Klatt, Nichole R; Canary, Lauren A; Vanderford, Thomas H; Vinton, Carol L; Engram, Jessica C; Dunham, Richard M; Cronise, Heather E; Swerczek, Joanna M; Lafont, Bernard A P; Picker, Louis J; Silvestri, Guido; Brenchley, Jason M
2012-01-01
Pigtail macaques (PTM) are an excellent model for HIV research; however, the dynamics of simian immunodeficiency virus (SIV) SIVmac239 infection in PTM have not been fully evaluated. We studied nine PTM prior to infection, during acute and chronic SIVmac239 infections, until progression to AIDS. We found PTM manifest clinical AIDS more rapidly than rhesus macaques (RM), as AIDS-defining events occurred at an average of 42.17 weeks after infection in PTM compared to 69.56 weeks in RM (P = 0.0018). However, increased SIV progression was not associated with increased viremia, as both peak and set-point plasma viremias were similar between PTM and RM (P = 0.7953 and P = 0.1006, respectively). Moreover, this increased disease progression was not associated with rapid CD4(+) T cell depletion, as CD4(+) T cell decline resembled other SIV/human immunodeficiency virus (HIV) models. Since immune activation is the best predictor of disease progression during HIV infection, we analyzed immune activation by turnover of T cells by BrdU decay and Ki67 expression. We found increased levels of turnover prior to SIV infection of PTM compared to that observed with RM, which may contribute to their increased disease progression rate. These data evaluate the kinetics of SIVmac239-induced disease progression and highlight PTM as a model for HIV infection and the importance of immune activation in SIV disease progression.
Dunlop, Dorothy D; Song, Jing; Semanik, Pamela A; Sharma, Leena; Bathon, Joan M; Eaton, Charles B; Hochberg, Marc C; Jackson, Rebecca D; Kwoh, C Kent; Mysiw, W Jerry; Nevitt, Michael C; Chang, Rowland W
2014-04-29
To investigate whether objectively measured time spent in light intensity physical activity is related to incident disability and to disability progression. Prospective multisite cohort study from September 2008 to December 2012. Baltimore, Maryland; Columbus, Ohio; Pittsburgh, Pennsylvania; and Pawtucket, Rhode Island, USA. Disability onset cohort of 1680 community dwelling adults aged 49 years or older with knee osteoarthritis or risk factors for knee osteoarthritis; the disability progression cohort included 1814 adults. Physical activity was measured by accelerometer monitoring. Disability was ascertained from limitations in instrumental and basic activities of daily living at baseline and two years. The primary outcome was incident disability. The secondary outcome was progression of disability defined by a more severe level (no limitations, limitations to instrumental activities only, 1-2 basic activities, or ≥3 basic activities) at two years compared with baseline. Greater time spent in light intensity activities had a significant inverse association with incident disability. Less incident disability and less disability progression were each significantly related to increasing quartile categories of daily time spent in light intensity physical activities (hazard ratios for disability onset 1.00, 0.62, 0.47, and 0.58, P for trend=0.007; hazard ratios for progression 1.00, 0.59, 0.50, and 0.53, P for trend=0.003) with control for socioeconomic factors (age, sex, race/ethnicity, education, income) and health factors (comorbidities, depressive symptoms, obesity, smoking, lower extremity pain and function, and knee assessments: osteoarthritis severity, pain, symptoms, prior injury). This finding was independent of time spent in moderate-vigorous activities. These prospective data showed an association between greater daily time spent in light intensity physical activities and reduced risk of onset and progression of disability in adults with osteoarthritis of the knee or risk factors for knee osteoarthritis. An increase in daily physical activity time may reduce the risk of disability, even if the intensity of that additional activity is not increased.
Telang, Jaya M; Lane, Brian R; Cher, Michael L; Miller, David C; Dupree, James M
2017-10-01
Active surveillance (AS) is an increasingly prevalent treatment choice for low grade prostate cancer. Eligibility criteria for AS are varied and it is unclear if family history of prostate cancer should be used as an exclusion criterion when considering men for AS. To determine whether family history plays a significant role in the progression of prostate cancer for men undergoing active surveillance, PubMed searches of 'family history and prostate cancer', 'family history and prostate cancer progression' and 'factors of prostate cancer progression' were used to identify research publications about the relationship between family history and prostate cancer progression. These searches generated 536 papers that were screened and reviewed. Six publications were ultimately included in this analysis. Review of the six publications suggests that family history does not increase the risk of prostate cancer progression, whilst a subgroup analysis in one study found that family history increases the risk of prostate cancer progression only in African-Americans. A family history of prostate cancer does not appear to increase a patient's risk of having more aggressive prostate cancer and is therefore unlikely to be an important factor in determining eligibility for AS. Further studies are needed to better understand the relationship between race, family history, and eligibility for AS. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.
Making progress: the role of cancer councils in Australia in indigenous cancer control.
Thompson, Sandra C; Shahid, Shaouli; DiGiacomo, Michelle; Pilkington, Leanne; Davidson, Patricia M
2014-04-11
Indigenous Australians have poorer outcomes from cancer for a variety of reasons including poorer participation in screening programs, later diagnosis, higher rates of cancer with poor prognosis and poorer uptake and completion of treatment. Cancer prevention and support for people with cancer is part of the core business of the State and Territory Cancer Councils. To support sharing of lessons learned, this paper reports an environmental scan undertaken in 2010 in cancer councils (CCs) nationwide that aimed to support Indigenous cancer control. The methods replicated the approach used in a 2006 environmental scan of Indigenous related activity in CCs. The Chief Executive Officer of each CC nominated individuals for interview. Interviews explored staffing, projects, programs and activities to progress cancer control issues for Indigenous Australians, through phone or face-to-face interviews. Reported initiatives were tabulated using predetermined categories of activity and summaries were returned to interviewees, the Aboriginal and Torres Strait Islander Subcommittee and Chief Executive Officers for verification. All CCs participated and modest increases in activity had occurred in most states since 2006 through different means. Indigenous staff numbers were low and no Indigenous person had yet been employed in smaller CCs; no CC had an Indigenous Board member and efforts at capacity building were often directed outside of the organisation. Developing partnerships with Indigenous organisations were ongoing. Acknowledgement and specific mention of Indigenous people in policy was increasing. Momentum increased following the establishment of a national subcommittee which increased the profile of Indigenous issues and provided collegial and practical support for those committed to reducing Indigenous cancer disparities. Government funding of "Closing the Gap" and research in the larger CCs have been other avenues for increasing knowledge and activity in Indigenous cancer control. This environmental scan measured progress, allowed sharing of information and provided critical assessment of progress across areas of importance for increasing Indigenous cancer control. Structured examination of policies, institutional support systems, programs and interventions is a useful means of highlighting opportunities for progress with minority groups relevant for many organisations. Progress has occurred with momentum likely to increase in the future and benefit from commitment to long-term monitoring and sharing of achievements.
Song, Jing; Semanik, Pamela A; Sharma, Leena; Bathon, Joan M; Eaton, Charles B; Hochberg, Marc C; Jackson, Rebecca D; Kwoh, C Kent; Mysiw, W Jerry; Nevitt, Michael C; Chang, Rowland W
2014-01-01
Objective To investigate whether objectively measured time spent in light intensity physical activity is related to incident disability and to disability progression. Design Prospective multisite cohort study from September 2008 to December 2012. Setting Baltimore, Maryland; Columbus, Ohio; Pittsburgh, Pennsylvania; and Pawtucket, Rhode Island, USA. Participants Disability onset cohort of 1680 community dwelling adults aged 49 years or older with knee osteoarthritis or risk factors for knee osteoarthritis; the disability progression cohort included 1814 adults. Main outcome measures Physical activity was measured by accelerometer monitoring. Disability was ascertained from limitations in instrumental and basic activities of daily living at baseline and two years. The primary outcome was incident disability. The secondary outcome was progression of disability defined by a more severe level (no limitations, limitations to instrumental activities only, 1-2 basic activities, or ≥3 basic activities) at two years compared with baseline. Results Greater time spent in light intensity activities had a significant inverse association with incident disability. Less incident disability and less disability progression were each significantly related to increasing quartile categories of daily time spent in light intensity physical activities (hazard ratios for disability onset 1.00, 0.62, 0.47, and 0.58, P for trend=0.007; hazard ratios for progression 1.00, 0.59, 0.50, and 0.53, P for trend=0.003) with control for socioeconomic factors (age, sex, race/ethnicity, education, income) and health factors (comorbidities, depressive symptoms, obesity, smoking, lower extremity pain and function, and knee assessments: osteoarthritis severity, pain, symptoms, prior injury). This finding was independent of time spent in moderate-vigorous activities. Conclusion These prospective data showed an association between greater daily time spent in light intensity physical activities and reduced risk of onset and progression of disability in adults with osteoarthritis of the knee or risk factors for knee osteoarthritis. An increase in daily physical activity time may reduce the risk of disability, even if the intensity of that additional activity is not increased. PMID:24782514
Rodent model of activity-based anorexia.
Carrera, Olaia; Fraga, Ángela; Pellón, Ricardo; Gutiérrez, Emilio
2014-04-10
Activity-based anorexia (ABA) consists of a procedure that involves the simultaneous exposure of animals to a restricted feeding schedule, while free access is allowed to an activity wheel. Under these conditions, animals show a progressive increase in wheel running, a reduced efficiency in food intake to compensate for their increased activity, and a severe progression of weight loss. Due to the parallelism with the clinical manifestations of anorexia nervosa including increased activity, reduced food intake and severe weight loss, the ABA procedure has been proposed as the best analog of human anorexia nervosa (AN). Thus, ABA research could both allow a better understanding of the mechanisms underlying AN and generate useful leads for treatment development in AN. Copyright © 2014 John Wiley & Sons, Inc.
Adissu, Hibret A; McKerlie, Colin; Di Grappa, Marco; Waterhouse, Paul; Xu, Qiang; Fang, Hui; Khokha, Rama; Wood, Geoffrey A
2015-12-01
Altered expression and activity of proteases is implicated in inflammation and cancer progression. An important negative regulator of protease activity is TIMP3 (tissue inhibitor of metalloproteinase 3). TIMP3 expression is lacking in many cancers including advanced prostate cancer, and this may facilitate invasion and metastasis by allowing unrestrained protease activity. To investigate the role of TIMP3 in prostate cancer progression, we crossed TIMP3-deficient mice (Timp3(-/-)) to mice with prostate-specific deletion of the tumor suppressor Pten (Pten(-/-)), a well-established mouse model of prostate cancer. Tumor growth and progression were compared between Pten(-/-), Timp3(-/-) and control (Pten(-/-), Timp3(+/+)) mice at 16 weeks of age by histopathology and markers of proliferation, vascularity, and tumor invasion. Metalloproteinase activity within the tumors was assessed by gelatin zymography. Inflammatory infiltrates were assessed by immunohistochemistry for macrophages and lymphocytes whereas expression of cytokines and other inflammatory mediators was assessed by quantitative real time PCR and multiplex ELISA. Increased tumor growth, proliferation index, increased microvascular density, and invasion was observed in Pten(-/-), Timp3(-/-) prostate tumors compared to Pten(-/-), Timp3(+/+) tumors. Tumor cell invasion in Pten(-/-), Timp3(-/-) mice was associated with increased expression of matrix metalloprotease (MMP)-9 and activation of MMP-2. There was markedly increased inflammatory cell infiltration into the TIMP3-deficient prostate tumors along with increased expression of monocyte chemoattractant protein-1, cyclooxygenase-2, TNF-α, and interleukin-1β; all of which are implicated in inflammation and cancer. This study provides important insights into the role of altered protease activity in promoting prostate cancer invasion and implicates prostate inflammation as an important promoting factor in prostate cancer progression. © 2015 Wiley Periodicals, Inc.
MAPK Usage in Periodontal Disease Progression
Li, Qiyan; Valerio, Michael S.; Kirkwood, Keith L.
2012-01-01
In periodontal disease, host recognition of bacterial constituents, including lipopolysaccharide (LPS), induces p38 MAPK activation and subsequent inflammatory cytokine expression, favoring osteoclastogenesis and increased net bone resorption in the local periodontal environment. In this paper, we discuss evidence that the p38/MAPK-activated protein kinase-2 (MK2) signaling axis is needed for periodontal disease progression: an orally administered p38α inhibitor reduced the progression of experimental periodontal bone loss by reducing inflammation and cytokine expression. Subsequently, the significance of p38 signaling was confirmed with RNA interference to attenuate MK2-reduced cytokine expression and LPS-induced alveolar bone loss. MAPK phosphatase-1 (MKP-1), a negative regulator of MAPK activation, was also critical for periodontal disease progression. In MPK-1-deficient mice, p38-sustained activation increased osteoclast formation and bone loss, whereas MKP-1 overexpression dampened p38 signaling and subsequent cytokine expression. Finally, overexpression of the p38/MK2 target RNA-binding tristetraprolin (TTP) decreased mRNA stability of key inflammatory cytokines at the posttranscriptional level, thereby protecting against periodontal inflammation. Collectively, these studies highlight the importance of p38 MAPK signaling in immune cytokine production and periodontal disease progression. PMID:22315682
Trost, Zoran; Sok, Miha; Marc, Janja; Cerne, Darko
2009-07-01
Cumulative evidence suggests the involvement of lipoprotein lipase (LPL) in tumor progression. We tested the hypothesis that increased LPL activity in resectable non-small cell lung cancer (NSCLC) tissue and the increased LPL gene expression in the surrounding non-cancer lung tissue found in our previous study are predictors of patient survival. Forty two consecutive patients with resected NSCLC were enrolled in the study. Paired samples of lung cancer tissue and adjacent non-cancer lung tissue were collected from resected specimens for baseline LPL activity and gene expression estimation. During a 4-year follow-up, 21 patients died due to tumor progression. One patient died due to a non-cancer reason and was not included in Cox regression analysis. High LPL activity in cancer tissue (relative to the adjacent non-cancer lung tissue) predicted shorter survival, independently of standard prognostic factors (p=0.003). High gene expression in the non-cancer lung tissue surrounding the tumor had no predictive value. Our study further underlines the involvement of cancer tissue LPL activity in tumor progression.
Making progress: the role of cancer councils in Australia in indigenous cancer control
2014-01-01
Background Indigenous Australians have poorer outcomes from cancer for a variety of reasons including poorer participation in screening programs, later diagnosis, higher rates of cancer with poor prognosis and poorer uptake and completion of treatment. Cancer prevention and support for people with cancer is part of the core business of the State and Territory Cancer Councils. To support sharing of lessons learned, this paper reports an environmental scan undertaken in 2010 in cancer councils (CCs) nationwide that aimed to support Indigenous cancer control. Methods The methods replicated the approach used in a 2006 environmental scan of Indigenous related activity in CCs. The Chief Executive Officer of each CC nominated individuals for interview. Interviews explored staffing, projects, programs and activities to progress cancer control issues for Indigenous Australians, through phone or face-to-face interviews. Reported initiatives were tabulated using predetermined categories of activity and summaries were returned to interviewees, the Aboriginal and Torres Strait Islander Subcommittee and Chief Executive Officers for verification. Results All CCs participated and modest increases in activity had occurred in most states since 2006 through different means. Indigenous staff numbers were low and no Indigenous person had yet been employed in smaller CCs; no CC had an Indigenous Board member and efforts at capacity building were often directed outside of the organisation. Developing partnerships with Indigenous organisations were ongoing. Acknowledgement and specific mention of Indigenous people in policy was increasing. Momentum increased following the establishment of a national subcommittee which increased the profile of Indigenous issues and provided collegial and practical support for those committed to reducing Indigenous cancer disparities. Government funding of “Closing the Gap” and research in the larger CCs have been other avenues for increasing knowledge and activity in Indigenous cancer control. Conclusions This environmental scan measured progress, allowed sharing of information and provided critical assessment of progress across areas of importance for increasing Indigenous cancer control. Structured examination of policies, institutional support systems, programs and interventions is a useful means of highlighting opportunities for progress with minority groups relevant for many organisations. Progress has occurred with momentum likely to increase in the future and benefit from commitment to long-term monitoring and sharing of achievements. PMID:24725974
Lupia, Enrico; Zheng, Feng; Grosjean, Fabrizio; Tack, Ivan; Doublier, Sophie; Elliot, Sharon J; Vlassara, Helen; Striker, Gary E
2012-02-01
Pentosan polysulfate (PPS), a heparinoid compound essentially devoid of anticoagulant activity, modulates cell growth and decreases inflammation. We investigated the effect of PPS on the progression of established atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. After severe atherosclerosis developed on an atherogenic diet, WHHL rabbits were treated with oral PPS or tap water for 1 month. The aortic intima-to-media ratio and macrophage infiltration were reduced, plaque collagen content was increased, and plaque fibrous caps were preserved by PPS treatment. Plasma lipid levels and post-heparin hepatic lipase activity remained unchanged. However, net collagenolytic activity in aortic extracts was decreased, and the levels of matrix metalloproteinase (MMP)-2 and tissue inhibitor of metalloproteinase (TIMP) activity were increased by PPS. Moreover, PPS treatment decreased tumor necrosis factor α (TNFα)-stimulated proinflammatory responses, in particular activation of nuclear factor-κB and p38, and activation of MMPs in macrophages. In conclusion, oral PPS treatment prevents progression of established atherosclerosis in WHHL rabbits. This effect may be partially mediated by increased MMP-2 and TIMP activities in the aortic wall and reduced TNFα-stimulated inflammation and MMP activation in macrophages. Thus, PPS may be a useful agent in inhibiting the progression of atherosclerosis.
Lupia, Enrico; Zheng, Feng; Grosjean, Fabrizio; Tack, Ivan; Doublier, Sophie; Elliot, Sharon J; Vlassara, Helen; Striker, Gary E
2013-01-01
Pentosan polysulfate (PPS), a heparinoid compound essentially devoid of anticoagulant activity, modulates cell growth and decreases inflammation. We investigated the effect of PPS on the progression of established atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. After severe atherosclerosis developed on an atherogenic diet, WHHL rabbits were treated with oral PPS or tap water for 1 month. The aortic intima-to-media ratio and macrophage infiltration were reduced, plaque collagen content was increased, and plaque fibrous caps were preserved by PPS treatment. Plasma lipid levels and post-heparin hepatic lipase activity remained unchanged. However, net collagenolytic activity in aortic extracts was decreased, and the levels of matrix metalloproteinase (MMP)-2 and tissue inhibitor of metalloproteinase (TIMP) activity were increased by PPS. Moreover, PPS treatment decreased tumor necrosis factor α (TNFα)-stimulated proinflammatory responses, in particular activation of nuclear factor-κB and p38, and activation of MMPs in macrophages. In conclusion, oral PPS treatment prevents progression of established atherosclerosis in WHHL rabbits. This effect may be partially mediated by increased MMP-2 and TIMP activities in the aortic wall and reduced TNFα-stimulated inflammation and MMP activation in macrophages. Thus, PPS may be a useful agent in inhibiting the progression of atherosclerosis. PMID:22042083
Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.
Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A
2015-10-01
Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. © 2014 Wiley Periodicals, Inc.
Progress in physical activity over the Olympic quadrennium.
Sallis, James F; Bull, Fiona; Guthold, Regina; Heath, Gregory W; Inoue, Shigeru; Kelly, Paul; Oyeyemi, Adewale L; Perez, Lilian G; Richards, Justin; Hallal, Pedro C
2016-09-24
On the eve of the 2012 summer Olympic Games, the first Lancet Series on physical activity established that physical inactivity was a global pandemic, and global public health action was urgently needed. The present paper summarises progress on the topics covered in the first Series. In the past 4 years, more countries have been monitoring the prevalence of physical inactivity, although evidence of any improvements in prevalence is still scarce. According to emerging evidence on brain health, physical inactivity accounts for about 3·8% of cases of dementia worldwide. An increase in research on the correlates of physical activity in low-income and middle-income countries (LMICs) is providing a better evidence base for development of context-relevant interventions. A finding specific to LMICs was that physical inactivity was higher in urban (vs rural) residents, which is a cause for concern because of the global trends toward urbanisation. A small but increasing number of intervention studies from LMICs provide initial evidence that community-based interventions can be effective. Although about 80% of countries reported having national physical activity policies or plans, such policies were operational in only about 56% of countries. There are important barriers to policy implementation that must be overcome before progress in increasing physical activity can be expected. Despite signs of progress, efforts to improve physical activity surveillance, research, capacity for intervention, and policy implementation are needed, especially among LMICs. Copyright © 2016 Elsevier Ltd. All rights reserved.
White, James P.; Baynes, John W.; Welle, Stephen L.; Kostek, Matthew C.; Matesic, Lydia E.; Sato, Shuichi; Carson, James A.
2011-01-01
Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The ApcMin/+ mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the ApcMin/+ mouse is not known. Cachexia progression was studied in ApcMin/+ mice that were either weight stable (WS) or had initial (≤5%), intermediate (6–19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process. PMID:21949739
Eller, Michael A.; Opollo, Marc S.; Liu, Michelle; Redd, Andrew D.; Eller, Leigh Anne; Kityo, Cissy; Kayiwa, Joshua; Laeyendecker, Oliver; Wawer, Maria J.; Milazzo, Mark; Kiwanuka, Noah; Gray, Ronald H.; Serwadda, David; Sewankambo, Nelson K.; Quinn, Thomas C.; Michael, Nelson L.; Wabwire-Mangen, Fred; Sandberg, Johan K.; Robb, Merlin L.
2015-01-01
Background. Untreated human immunodeficiency virus type 1 (HIV) infection is associated with persistent immune activation, which is an independent driver of disease progression in European and United States cohorts. In Uganda, HIV-1 subtypes A and D and recombinant AD viruses predominate and exhibit differential rates of disease progression. Methods. HIV-1 seroconverters (n = 156) from rural Uganda were evaluated to assess the effects of T-cell activation, viral load, and viral subtype on disease progression during clinical follow-up. Results. The frequency of activated T cells was increased in HIV-1–infected Ugandans, compared with community matched uninfected individuals, but did not differ significantly between viral subtypes. Higher HIV-1 load, subtype D, older age, and high T-cell activation levels were associated with faster disease progression to AIDS or death. In a multivariate Cox regression analysis, HIV-1 load was the strongest predictor of progression, with subtype also contributing. T-cell activation did not emerge an independent predictor of disease progression from this particular cohort. Conclusions. These findings suggest that the independent contribution of T-cell activation on morbidity and mortality observed in European and North American cohorts may not be directly translated to the HIV epidemic in East Africa. In this setting, HIV-1 load appears to be the primary determinant of disease progression. PMID:25404522
Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury.
Hong, Quan; Zhang, Lu; Das, Bhaskar; Li, Zhengzhe; Liu, Bohan; Cai, Guangyan; Chen, Xiangmei; Chuang, Peter Y; He, John Cijiang; Lee, Kyung
2018-06-01
Podocyte injury and loss contribute to the progression of glomerular diseases, including diabetic kidney disease. We previously found that the glomerular expression of Sirtuin-1 (SIRT1) is reduced in human diabetic glomeruli and that the podocyte-specific loss of SIRT1 aggravated albuminuria and worsened kidney disease progression in diabetic mice. SIRT1 encodes an NAD-dependent deacetylase that modifies the activity of key transcriptional regulators affected in diabetic kidneys, including NF-κB, STAT3, p53, FOXO4, and PGC1-α. However, whether the increased glomerular SIRT1 activity is sufficient to ameliorate the pathogenesis of diabetic kidney disease has not been explored. We addressed this by inducible podocyte-specific SIRT1 overexpression in diabetic OVE26 mice. The induction of SIRT1 overexpression in podocytes for six weeks in OVE26 mice with established albuminuria attenuated the progression of diabetic glomerulopathy. To further validate the therapeutic potential of increased SIRT1 activity against diabetic kidney disease, we developed a new, potent and selective SIRT1 agonist, BF175. In cultured podocytes BF175 increased SIRT1-mediated activation of PGC1-α and protected against high glucose-mediated mitochondrial injury. In vivo, administration of BF175 for six weeks in OVE26 mice resulted in a marked reduction in albuminuria and in glomerular injury in a manner similar to podocyte-specific SIRT1 overexpression. Both podocyte-specific SIRT1 overexpression and BT175 treatment attenuated diabetes-induced podocyte loss and reduced oxidative stress in glomeruli of OVE26 mice. Thus, increased SIRT1 activity protects against diabetes-induced podocyte injury and effectively mitigates the progression of diabetic kidney disease. Published by Elsevier Inc.
Park, Yune-Jung; Yoo, Seung-Ah; Kim, Ga-Ram; Cho, Chul-Soo; Kim, Wan-Uk
2016-10-12
Previously, we demonstrated that the urine proteome signature of patients with rheumatoid arthritis (RA) reflects inflammation-related cellular processes. Here, we measured interleukin (IL)-6, IL-8, and chemokine ligand 2 (CCL2) concentrations in the urine of RA patients and prospectively investigated their role in predicting RA activity and prognosis. One hundred seventy-three RA patients and 62 non-RA controls were recruited. Urinary IL-6, CCL2, and IL-8 levels were elevated in RA patients and correlated well with disease activity. Urinary IL-6 level at presentation was an independent risk factor of radiographic progression at 1 and 3 years. High urinary IL-6 level increased the risk ratio of radiographic progression by 2.9-fold, which was comparable to high serum CRP. Moreover, combination of urinary IL-6 and serum CRP measures synergistically increased the predictability of radiographic progression. In a subgroup with normal ESR, patients with the highest tertile of urinary IL-6 were at 6.4-fold greater risk of radiographic progression. Conclusively, high urinary IL-6 level at presentation is an independent risk factor for radiographic progression of RA, reflecting disease activity. Urinary IL-6 in combination with serum CRP may be a useful parameter for estimating RA prognosis.
Rubia, Katya; Lim, Lena; Ecker, Christine; Halari, Rozmin; Giampietro, Vincent; Simmons, Andrew; Brammer, Michael; Smith, Anna
2013-12-01
Functional inhibitory neural networks mature progressively with age. However, nothing is known about the impact of gender on their development. This study employed functional magnetic resonance imaging (fMRI) to investigate the effects of age, sex, and sex by age interactions on the brain activation of 63 healthy males and females, between 13 and 38 years, performing a Stop task. Increasing age was associated with progressively increased activation in typical response inhibition areas of right inferior and dorsolateral prefrontal and temporo-parietal regions. Females showed significantly enhanced activation in left inferior and superior frontal and striatal regions relative to males, while males showed increased activation relative to females in right inferior and superior parietal areas. Importantly, left frontal and striatal areas that showed increased activation in females, also showed significantly increased functional maturation in females relative to males, while the right inferior parietal activation that was increased in males showed significantly increased functional maturation relative to females. The findings demonstrate for the first time that sex-dimorphic activation patterns of enhanced left fronto-striatal activation in females and enhanced right parietal activation in males during motor inhibition appear to be the result of underlying gender differences in the functional maturation of these brain regions. © 2013. Published by Elsevier Inc. All rights reserved.
A 4-year prospective study of the progression of periodontal disease in a rural Chinese population.
Pei, Xiyan; Ouyang, Xiangying; He, Lu; Cao, Caifang; Luan, Qingxian; Suda, Reiko
2015-02-01
The natural progression of periodontitis in the Chinese population is not well researched. We investigated the progression of periodontal disease over 4 years in 15-44-year-old Chinese villagers with no access to regular dental care. In 1992, 486 villagers were enrolled, and in 1996, 413 villagers were re-examined. Probing depth (PD) and clinical attachment level (CAL) were examined at six sites per tooth. Sites with ΔCAL ≥3 mm were defined as active sites. Cross-sectional and longitudinal analyses were performed using means and percentile plots. The mean CAL increased by 0.26 mm over 4 years. The incidence of periodontitis (at least one site with CAL ≥3 mm) was 8%. The incidence of periodontitis among those with no periodontal disease at baseline was 44.9%. Seventy-eight percent of the subjects had at least one active site. In the 15-24-year group, 244 of 401 active sites had gingival recession, while only 51 active sites had both gingival recession and deeper pockets. In the 25-34-year and 35-44-year groups, almost one-third of the active sites (329/1087) and more than one-third of the active sites (580/1312) respectively had a combination of gingival recession and deeper pockets. In this study, we demonstrated that in Chinese population without regular dental care, both the initiation of periodontitis and progression of previously existed periodontitis contributed to the natural progression of periodontitis and periodontal pocketing played a greater role with age increasing. This rare study reports the natural progression of periodontal disease in a group of Chinese villagers (15-44 years) with virtually no access to regular dental care. Copyright © 2014 Elsevier Ltd. All rights reserved.
Graham, Susan M; Rajwans, Nimerta; Jaoko, Walter; Estambale, Benson B A; McClelland, R Scott; Overbaugh, Julie; Liles, W Conrad
2013-07-17
We aimed to determine whether endothelial activation biomarkers increase after HIV-1 acquisition, and whether biomarker levels measured in chronic infection would predict disease progression and death in HIV-1 seroconverters. HIV-1-seronegative Kenyan women were monitored monthly for seroconversion, and followed prospectively after HIV-1 acquisition. Plasma levels of angiopoietin-1 and angiopoietin-2 (ANG-1, ANG-2) and soluble vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were tested in stored samples from pre-infection, acute infection, and two chronic infection time points. We used nonparametric tests to compare biomarkers before and after HIV-1 acquisition, and Cox proportional-hazards regression to analyze associations with disease progression (CD4 < 200 cells/μl, stage IV disease, or antiretroviral therapy initiation) or death. Soluble ICAM-1 and VCAM-1 were elevated relative to baseline in all postinfection periods assessed (P < 0.0001). Soluble E-selectin and the ANG-2:ANG-1 ratio increased in acute infection (P = 0.0001), and ANG-1 decreased in chronic infection (P = 0.0004). Among 228 participants followed over 1028 person-years, 115 experienced disease progression or death. Plasma VCAM-1 levels measured during chronic infection were independently associated with time to HIV progression or death (adjusted hazard ratio 5.36, 95% confidence interval 1.99-14.44 per log10 increase), after adjustment for set point plasma viral load, age at infection, and soluble ICAM-1 levels. HIV-1 acquisition was associated with endothelial activation, with sustained elevations of soluble ICAM-1 and VCAM-1 postinfection. Soluble VCAM-1 may be an informative biomarker for predicting the risk of HIV-1 disease progression, morbidity, and mortality.
GRAHAM, Susan M.; RAJWANS, Nimerta; JAOKO, Walter; ESTAMBALE, Benson B.A.; MCCLELLAND, R. Scott; OVERBAUGH, Julie; LILES, W. Conrad
2013-01-01
Objective We aimed to determine whether endothelial activation biomarkers increase after HIV-1 acquisition, and whether biomarker levels measured in chronic infection would predict disease progression and death in HIV-1 seroconverters. Design HIV-1-seronegative Kenyan women were monitored monthly for seroconversion, and followed prospectively after HIV-1 acquisition. Methods Plasma levels of angiopoietins-1 and -2 (ANG-1, ANG-2) and soluble vascular cell adhesion marker-1 (VCAM-1), intercellular adhesion marker-1 (ICAM-1), and E-selectin were tested in stored samples from before infection, acute infection, and at two points during chronic infection. We used non-parametric tests to compare biomarkers before and after HIV-1 acquisition, and Cox proportional-hazards regression to analyze associations with disease progression (CD4 <200 cells/μL, Stage IV disease, or ART initiation) or death. Results Soluble ICAM-1 and VCAM-1 were elevated relative to baseline in all post-infection periods assessed (p<0.0001). Soluble E-selectin and the ANG-2:ANG-1 ratio increased in acute infection (p=0.0001), and ANG-1 decreased in chronic infection (p=0.0004). Among 228 subjects followed over 1,028 person-years, 115 experienced disease progression or death. Plasma VCAM-1 levels measured during chronic infection were independently associated with time to HIV progression or death (aHR 5.36, 95% confidence interval 1.99–14.44 per log10 increase), after adjustment for set point plasma viral load, age at infection, and soluble ICAM-1 levels. Conclusions HIV-1 acquisition was associated with endothelial activation, with sustained elevations of soluble ICAM-1 and VCAM-1 post-infection. Soluble VCAM-1 may be an informative biomarker for predicting the risk of HIV-1 disease progression, morbidity, and mortality. PMID:23807276
Incio, Joao; Tam, Josh; Rahbari, Nuh N; Suboj, Priya; McManus, Dan T; Chin, Shan M; Vardam, Trupti D; Batista, Ana; Babykutty, Suboj; Jung, Keehoon; Khachatryan, Anna; Hato, Tai; Ligibel, Jennifer A; Krop, Ian E; Puchner, Stefan B; Schlett, Christopher L; Hoffmman, Udo; Ancukiewicz, Marek; Shibuya, Masabumi; Carmeliet, Peter; Soares, Raquel; Duda, Dan G; Jain, Rakesh K; Fukumura, Dai
2016-06-15
Obesity promotes pancreatic and breast cancer progression via mechanisms that are poorly understood. Although obesity is associated with increased systemic levels of placental growth factor (PlGF), the role of PlGF in obesity-induced tumor progression is not known. PlGF and its receptor VEGFR-1 have been shown to modulate tumor angiogenesis and promote tumor-associated macrophage (TAM) recruitment and activity. Here, we hypothesized that increased activity of PlGF/VEGFR-1 signaling mediates obesity-induced tumor progression by augmenting tumor angiogenesis and TAM recruitment/activity. We established diet-induced obese mouse models of wild-type C57BL/6, VEGFR-1 tyrosine kinase (TK)-null, or PlGF-null mice, and evaluated the role of PlGF/VEGFR-1 signaling in pancreatic and breast cancer mouse models and in human samples. We found that obesity increased TAM infiltration, tumor growth, and metastasis in pancreatic cancers, without affecting vessel density. Ablation of VEGFR-1 signaling prevented obesity-induced tumor progression and shifted the tumor immune environment toward an antitumor phenotype. Similar findings were observed in a breast cancer model. Obesity was associated with increased systemic PlGF, but not VEGF-A or VEGF-B, in pancreatic and breast cancer patients and in various mouse models of these cancers. Ablation of PlGF phenocopied the effects of VEGFR-1-TK deletion on tumors in obese mice. PlGF/VEGFR-1-TK deletion prevented weight gain in mice fed a high-fat diet, but exacerbated hyperinsulinemia. Addition of metformin not only normalized insulin levels but also enhanced antitumor immunity. Targeting PlGF/VEGFR-1 signaling reprograms the tumor immune microenvironment and inhibits obesity-induced acceleration of tumor progression. Clin Cancer Res; 22(12); 2993-3004. ©2016 AACR. ©2016 American Association for Cancer Research.
FLORIDA MIGRANT HEALTH PROJECT. FOURTH ANNUAL PROGRESS REPORT, 1966-1967.
ERIC Educational Resources Information Center
Florida State Board of Health, Jacksonville.
THE FOURTH ANNUAL PROGRESS REPORT OF THE FLORIDA MIGRANT HEALTH PROJECT INDICATES THAT IN 1966-67 THERE WAS AN APPRECIABLE INCREASE IN THE AMOUNT AND VARIETY OF MIGRANT HEALTH SERVICES RENDERED, THE NUMBER OF MIGRANTS CONTACTED, AND THE ACTIVITIES PERFORMED BY PROJECT PERSONNEL. MIGRANT HEALTH SERVICE REFERRALS INCREASED BY 1,222 OVER THE SAME…
Torres, Manuel; Jimenez, Sebastian; Sanchez-Varo, Raquel; Navarro, Victoria; Trujillo-Estrada, Laura; Sanchez-Mejias, Elisabeth; Carmona, Irene; Davila, Jose Carlos; Vizuete, Marisa; Gutierrez, Antonia; Vitorica, Javier
2012-11-22
Axonal pathology might constitute one of the earliest manifestations of Alzheimer disease. Axonal dystrophies were observed in Alzheimer's patients and transgenic models at early ages. These axonal dystrophies could reflect the disruption of axonal transport and the accumulation of multiple vesicles at local points. It has been also proposed that dystrophies might interfere with normal intracellular proteolysis. In this work, we have investigated the progression of the hippocampal pathology and the possible implication in Abeta production in young (6 months) and aged (18 months) PS1(M146L)/APP(751sl) transgenic mice. Our data demonstrated the existence of a progressive, age-dependent, formation of axonal dystrophies, mainly located in contact with congophilic Abeta deposition, which exhibited tau and neurofilament hyperphosphorylation. This progressive pathology was paralleled with decreased expression of the motor proteins kinesin and dynein. Furthermore, we also observed an early decrease in the activity of cathepsins B and D, progressing to a deep inhibition of these lysosomal proteases at late ages. This lysosomal impairment could be responsible for the accumulation of LC3-II and ubiquitinated proteins within axonal dystrophies. We have also investigated the repercussion of these deficiencies on the APP metabolism. Our data demonstrated the existence of an increase in the amyloidogenic pathway, which was reflected by the accumulation of hAPPfl, C99 fragment, intracellular Abeta in parallel with an increase in BACE and gamma-secretase activities. In vitro experiments, using APPswe transfected N2a cells, demonstrated that any imbalance on the proteolytic systems reproduced the in vivo alterations in APP metabolism. Finally, our data also demonstrated that Abeta peptides were preferentially accumulated in isolated synaptosomes. A progressive age-dependent cytoskeletal pathology along with a reduction of lysosomal and, in minor extent, proteasomal activity could be directly implicated in the progressive accumulation of APP derived fragments (and Abeta peptides) in parallel with the increase of BACE-1 and gamma-secretase activities. This retard in the APP metabolism seemed to be directly implicated in the synaptic Abeta accumulation and, in consequence, in the pathology progression between synaptically connected regions.
Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension
De Man, Frances; Tu, Ly; Handoko, Louis; Rain, Silvia; Ruiter, Gerrina; François, Charlène; Schalij, Ingrid; Dorfmüller, Peter; Simonneau, Gérald; Fadel, Elie; Perros, Frederic; Boonstra, Anco; Postmus, Piet; Van Der Velden, Jolanda; Vonk-Noordegraaf, Anton; Humbert, Marc; Eddahibi, Saadia; Guignabert, Christophe
2012-01-01
Rationale Patients with idiopathic pulmonary arterial hypertension (iPAH) often have a low cardiac output. To compensate, neurohormonal systems like renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system are upregulated but this may have long-term negative effects on the progression of iPAH. Objectives Assess systemic and pulmonary RAAS-activity in iPAH-patients and determine the efficacy of chronic RAAS-inhibition in experimental PAH. Measurements and Main Results We collected 79 blood samples from 58 iPAH-patients in the VU University Medical Center Amsterdam (between 2004–2010), to determine systemic RAAS-activity. We observed increased levels of renin, angiotensin (Ang) I and AngII, which was associated with disease progression (p<0.05) and mortality (p<0.05). To determine pulmonary RAAS-activity, lung specimens were obtained from iPAH-patients (during lung transplantation, n=13) and controls (during lobectomy or pneumonectomy for cancer, n=14). Local RAAS-activity in pulmonary arteries of iPAH-patients was increased, demonstrated by elevated ACE-activity in pulmonary endothelial cells and increased AngII type 1 (AT1) receptor expression and signaling. In addition, local RAAS- upregulation was associated with increased pulmonary artery smooth muscle cell proliferation via enhanced AT1-receptor signaling in iPAH-patients compared to controls. Finally, to determine the therapeutic potential of RAAS-activity, we assessed the chronic effects of an AT1-receptor antagonist (losartan) in the monocrotaline PAH-rat model (60 mg/kg). Losartan delayed disease progression, decreased RV afterload and pulmonary vascular remodeling and restored right ventricular-arterial coupling in PAH-rats. Conclusions Systemic and pulmonary RAAS-activities are increased in iPAH-patients and associated with increased pulmonary vascular remodeling. Chronic inhibition of RAAS by losartan is beneficial in experimental PAH. PMID:22859525
Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention
2009-01-01
CYP1A1 is one of the main cytochrome P450 enzymes, examined extensively for its capacity to activate compounds with carcinogenic properties. Continuous exposure to inhalation chemicals and environmental carcinogens is thought to increase the level of CYP1A1 expression in extrahepatic tissues, through the aryl hydrocarbon receptor (AhR). Although the latter has long been recognized as a ligand-induced transcription factor, which is responsible for the xenobiotic activating pathway of several phase I and phase II metabolizing enzymes, recent evidence suggests that the AhR is involved in various cell signaling pathways critical to cell cycle regulation and normal homeostasis. Disregulation of these pathways is implicated in tumor progression. In addition, it is becoming increasingly evident that CYP1A1 plays an important role in the detoxication of environmental carcinogens, as well as in the metabolic activation of dietary compounds with cancer preventative activity. Ultimately the contribution of CYP1A1 to cancer progression or prevention may depend on the balance of procarcinogen activation/detoxication and dietary natural product extrahepatic metabolism. PMID:19531241
Complement is activated in progressive multiple sclerosis cortical grey matter lesions.
Watkins, Lewis M; Neal, James W; Loveless, Sam; Michailidou, Iliana; Ramaglia, Valeria; Rees, Mark I; Reynolds, Richard; Robertson, Neil P; Morgan, B Paul; Howell, Owain W
2016-06-22
The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the irreversible progression of MS.
Coke, Lola A; Staffileno, Beth A; Braun, Lynne T; Gulanick, Meg
2008-01-01
The purpose of this study was to examine the impact of moderate-intensity, progressive, upper-body resistance training (RT) on muscle strength and perceived performance of household physical activities (HPA) among women in cardiac rehabilitation. The 10-week, pretest-posttest, experiment randomized women to either usual care (UC) aerobic exercise or RT. Muscle strength for 5 upper-body RT exercises (chest press, shoulder press, biceps curl, lateral row, and triceps extension) was measured using the 1-Repetition Maximum Assessment. The RT group progressively increased weight lifted using 40%, 50%, and 60% of obtained 1-Repetition Maximum Assessment at 3-week intervals. Perceived performance of HPA was measured with the Kimble Household Activities Scale. The RT group (n = 16, mean age 64 +/- 11) significantly increased muscle strength in all 5 exercises in comparison with the UC group (n = 14, mean age 65 +/- 10) (chest press, 18% vs 11%; shoulder press, 24% vs 14%; biceps curl, 21% vs 12%; lateral row, 32% vs 9%; and triceps extension, 28% vs 20%, respectively). By study end, Household Activities Scale scores significantly increased (F = 13.878, P = .001) in the RT group (8.75 +/- 3.19 vs 11.25 +/- 2.14), whereas scores in the UC group decreased (8.60 +/- 3.11 vs 6.86 +/- 4.13). Progressive upper-body RT in women shows promise as an effective tool to increase muscle strength and improve the ability to perform HPA after a cardiac event. Beginning RT early after a cardiac event in a monitored cardiac rehabilitation environment can maximize the strengthening benefit.
Annexin V-induced rat Leydig cell proliferation involves Ect2 via RhoA/ROCK signaling pathway.
Jing, Jun; Chen, Li; Fu, Hai-Yan; Fan, Kai; Yao, Qi; Ge, Yi-Feng; Lu, Jin-Chun; Yao, Bing
2015-03-24
This study investigated the effect of annexin V on the proliferation of primary rat Leydig cells and the potential mechanism. Our results showed that annexin V promoted rat Leydig cell proliferation and cell cycle progression in a dose- and time-dependent manner. Increased level of annexin V also enhanced Ect2 protein expression. However, siRNA knockdown of Ect2 attenuated annexin V-induced proliferation of rat Leydig cells. Taken together, these data suggest that increased level of annexin V induced rat Leydig cell proliferation and cell cycle progression via Ect2. Since RhoA activity was increased following Ect2 activation, we further investigated whether Ect2 was involved in annexin V-induced proliferation via the RhoA/ROCK pathway, and the results showed that annexin V increased RhoA activity too, and this effect was abolished by the knockdown of Ect2. Moreover, inhibition of the RhoA/ROCK pathway by a ROCK inhibitor, Y27632, also attenuated annexin V-induced proliferation and cell cycle progression. We thus conclude that Ect2 is involved in annexin V-induced rat Leydig cell proliferation through the RhoA/ROCK pathway.
Activation of Müller cells occurs during retinal degeneration in RCS rats.
Zhao, Tong Tao; Tian, Chun Yu; Yin, Zheng Qin
2010-01-01
Müller cells can be activated and included in different functions under many kinds of pathological conditions, however, the status of Müller cells in retinitis pigmentosa are still unknown. Using immunohistochemisty, Western blots and co-culture, we found that Müller cells RCS rats, a classic model of RP, could be activated during the progression of retinal degeneration. After being activated at early stage, Müller cells began to proliferate and hypertrophy, while at later stages, they formed a local 'glial seal' in the subretinal space. As markers of Müller cells activation, the expression of GFAP and ERK increased significantly with progression of retinal degeneration. Co-cultures of normal rat Müller cells and mixed RCS rat retinal cells show that Müller cells significantly increase GFAP and ERK in response to diffusable factors from the degenerting retina, which implies that Müller cells activation is a secondary response to retinal degeneration.
Beyond Therapy Dogs: Coordinating Large-Scale Finals Week Activities
ERIC Educational Resources Information Center
Flynn, Holly
2017-01-01
Finals week activities have become increasingly popular in academic libraries in the last few years, but what is a library to do when it is not allowed to have therapy dogs? This column examines a progression of increasingly popular activities at Michigan State University Libraries. Included is an assessment of what makes them popular, our…
Women in physics in Nigeria: Status, actions, and progress (2011-2014)
NASA Astrophysics Data System (ADS)
Fuwape, Ibiyinka A.; Rabiu, Babatunde; Ogunjo, Samuel
2015-12-01
In Nigeria the number of women taking up a career in physics is increasing. The progress made by Nigerian women in physics is presented. The Nigerian Women in Physics working group continues to organize activities to encourage more girls and women into physics. One of such activity is the biannual conference of women in physics in Nigeria. Through this event, many Nigerian women in physics attend and a few women from educationally disadvantaged parts of Nigeria attend and present their research. In this report we present progress that has been made to bring in more women into physics in Nigeria.
Hernández Ríos, Marcela; Sorsa, Timo; Obregón, Fabián; Tervahartiala, Taina; Valenzuela, María Antonieta; Pozo, Patricia; Dutzan, Nicolás; Lesaffre, Emmanuel; Molas, Marek; Gamonal, Jorge
2009-12-01
Matrix metalloproteinases (MMP)-13 can initiate bone resorption and activate proMMP-9 in vitro, and both these MMPs have been widely implicated in tissue destruction associated with chronic periodontitis. We studied whether MMP-13 activity and TIMP-1 levels in gingival crevicular fluid (GCF) associated with progression of chronic periodontitis assessed clinically and by measuring carboxy-terminal telopeptide of collagen I (ICTP) levels. We additionally addressed whether MMP-13 could potentiate gelatinase activation in diseased gingival tissue. In this prospective study, GCF samples from subjects undergoing clinical progression of chronic periodontitis and healthy controls were screened for ICTP levels, MMP-13 activity and TIMP-1. Diseased gingival explants were cultured, treated or not with MMP-13 with or without adding CL-82198, a synthetic MMP-13 selective inhibitor, and assayed by gelatin zymography and densitometric analysis. Active sites demonstrated increased ICTP levels and MMP-13 activity (p<0.05) in progression subjects. The MMP-9 activation rate was elevated in MMP-13-treated explants (p<0.05) and MMP-13 inhibitor prevented MMP-9 activation. MMP-13 could be implicated in the degradation of soft and hard supporting tissues and proMMP-9 activation during progression of chronic periodontitis. MMP-13 and -9 can potentially form an activation cascade overcoming the protective TIMP-1 shield, which may become useful for diagnostic aims and a target for drug development.
Molnar, Christoph; Scherer, Almut; de Hooge, Manouk; Micheroli, Raphael; Exer, Pascale; Kissling, Rudolf O; Tamborrini, Giorgio; Wildi, Lukas M; Nissen, Michael J; Zufferey, Pascal; Bernhard, Jürg; Weber, Ulrich; Landewé, Robert B M; Ciurea, Adrian
2018-01-01
Objectives To analyse the impact of tumour necrosis factor inhibitors (TNFis) on spinal radiographic progression in ankylosing spondylitis (AS). Methods Patients with AS in the Swiss Clinical Quality Management cohort with up to 10 years of follow-up and radiographic assessments every 2 years were included. Radiographs were scored by two readers according to the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) with known chronology. The relationship between TNFi use before a 2-year radiographic interval and progression within the interval was investigated using binomial generalised estimating equation models with adjustment for potential confounding and multiple imputation of missing values. Ankylosing Spondylitis Disease Activity Score (ASDAS) was regarded as mediating the effect of TNFi on progression and added to the model in a sensitivity analysis. Results A total of 432 patients with AS contributed to data for 616 radiographic intervals. Radiographic progression was defined as an increase in ≥2 mSASSS units in 2 years. Mean (SD) mSASSS increase was 0.9 (2.6) units in 2 years. Prior use of TNFi reduced the odds of progression by 50% (OR 0.50, 95% CI 0.28 to 0.88) in the multivariable analysis. While no direct effect of TNFi on progression was present in an analysis including time-varying ASDAS (OR 0.61, 95% CI 0.34 to 1.08), the indirect effect, via a reduction in ASDAS, was statistically significant (OR 0.75, 95% CI 0.59 to 0.97). Conclusion TNFis are associated with a reduction of spinal radiographic progression in patients with AS. This effect seems mediated through the inhibiting effect of TNFi on disease activity. PMID:28939631
Akakura, Shin; Bouchard, Rene; Bshara, Wiam; Morrison, Carl; Gelman, Irwin H.
2011-01-01
The ability of SSeCKS/Gravin/AKAP12 (SSeCKS) to negatively regulate cell cycle progression is thought to relate to its spatiotemporal scaffolding activity for key signaling molecules such as protein kinase A and C, calmodulin, and cyclins. SSeCKS is downregulated upon progression to malignancy in many cancer types, including melanoma and non-melanoma skin cancer. The forced re-expression of SSeCKS is especially potent in suppressing metastasis through the inhibition of VEGF-mediated neovascularization. We have previously shown that SSeCKS-null (KO) mice exhibit hyperplasia and focal dysplasia in the prostate marked by activated Akt. To address whether KO-mice exhibit increased skin carcinogenesis, WT and KO C57BL/6 mice were treated topically with 12-O-tetradecanoylphorbol-13-acetate and 7,12-dimethylbenzanthracene. Compared to WT mice, KO mice developed squamous papillomas more rapidly and in greater numbers, and also exhibited significantly increased progression to squamous cell carcinoma. Untreated KO epidermal layers were thicker than those in age-matched WT mice, and exhibited significantly increased levels of FAK and phospho-ERK1/2, known mediators of carcinogen-induced squamous papilloma progression to carcinoma. Compared to protein levels in WT mouse embryo fibroblasts (MEF), SSeCKS levels were increased in FAK-null cells whereas FAK levels were increased in SSeCKS-null cells. RNAi studies in WT MEF cells suggest that SSeCKS and FAK attenuate each other’s expression. Our study implicates a role for SSeCKS in preventing of skin cancer progression possibly through negatively regulating FAK expression. PMID:21128249
Colciaghi, Francesca; Finardi, Adele; Nobili, Paola; Locatelli, Denise; Spigolon, Giada; Battaglia, Giorgio Stefano
2014-01-01
Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE) and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i) is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii) changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii) induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv) activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.
Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression.
Wezel, Anouk; Lagraauw, H Maxime; van der Velden, Daniël; de Jager, Saskia C A; Quax, Paul H A; Kuiper, Johan; Bot, Ilze
2015-08-01
Activated mast cells have been identified in the intima and perivascular tissue of human atherosclerotic plaques. As mast cells have been described to release a number of chemokines that mediate leukocyte fluxes, we propose that activated mast cells may play a pivotal role in leukocyte recruitment during atherosclerotic plaque progression. Systemic IgE-mediated mast cell activation in apoE(-/-)μMT mice resulted in an increase in atherosclerotic lesion size as compared to control mice, and interestingly, the number of neutrophils was highly increased in these lesions. In addition, peritoneal mast cell activation led to a massive neutrophil influx into the peritoneal cavity in C57Bl6 mice, whereas neutrophil numbers in mast cell deficient Kit(W(-sh)/W(-sh)) mice were not affected. Within the newly recruited neutrophil population, increased levels of CXCR2(+) and CXCR4(+) neutrophils were observed after mast cell activation. Indeed, mast cells were seen to contain and release CXCL1 and CXCL12, the ligands for CXCR2 and CXCR4. Intriguingly, peritoneal mast cell activation in combination with anti-CXCR2 receptor antagonist resulted in decreased neutrophil recruitment, thus establishing a prominent role for the CXCL1/CXCR2 axis in mast cell-mediated neutrophil recruitment. Our data suggest that chemokines, and in particular CXCL1, released from activated mast cells induce neutrophil recruitment to the site of inflammation, thereby aggravating the ongoing inflammatory response and thus affecting plaque progression and destabilization. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
2012-01-01
Background Axonal pathology might constitute one of the earliest manifestations of Alzheimer disease. Axonal dystrophies were observed in Alzheimer’s patients and transgenic models at early ages. These axonal dystrophies could reflect the disruption of axonal transport and the accumulation of multiple vesicles at local points. It has been also proposed that dystrophies might interfere with normal intracellular proteolysis. In this work, we have investigated the progression of the hippocampal pathology and the possible implication in Abeta production in young (6 months) and aged (18 months) PS1(M146L)/APP(751sl) transgenic mice. Results Our data demonstrated the existence of a progressive, age-dependent, formation of axonal dystrophies, mainly located in contact with congophilic Abeta deposition, which exhibited tau and neurofilament hyperphosphorylation. This progressive pathology was paralleled with decreased expression of the motor proteins kinesin and dynein. Furthermore, we also observed an early decrease in the activity of cathepsins B and D, progressing to a deep inhibition of these lysosomal proteases at late ages. This lysosomal impairment could be responsible for the accumulation of LC3-II and ubiquitinated proteins within axonal dystrophies. We have also investigated the repercussion of these deficiencies on the APP metabolism. Our data demonstrated the existence of an increase in the amyloidogenic pathway, which was reflected by the accumulation of hAPPfl, C99 fragment, intracellular Abeta in parallel with an increase in BACE and gamma-secretase activities. In vitro experiments, using APPswe transfected N2a cells, demonstrated that any imbalance on the proteolytic systems reproduced the in vivo alterations in APP metabolism. Finally, our data also demonstrated that Abeta peptides were preferentially accumulated in isolated synaptosomes. Conclusion A progressive age-dependent cytoskeletal pathology along with a reduction of lysosomal and, in minor extent, proteasomal activity could be directly implicated in the progressive accumulation of APP derived fragments (and Abeta peptides) in parallel with the increase of BACE-1 and gamma-secretase activities. This retard in the APP metabolism seemed to be directly implicated in the synaptic Abeta accumulation and, in consequence, in the pathology progression between synaptically connected regions. PMID:23173743
Kryza, Thomas; Silva, Lakmali M; Bock, Nathalie; Fuhrman-Luck, Ruth A; Stephens, Carson R; Gao, Jin; Samaratunga, Hema; Lawrence, Mitchell G; Hooper, John D; Dong, Ying; Risbridger, Gail P; Clements, Judith A
2017-10-01
The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer-associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein-related peptidase-4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF-like features in the prostate-derived WPMY1 normal stromal cell line, including increased expression of alpha-smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease-activated receptor-1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient-derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial-derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Influence of indoor and outdoor activities on progression of myopia during puberty.
Öner, Veysi; Bulut, Asker; Oruç, Yavuz; Özgür, Gökhan
2016-02-01
The purpose of this study was to investigate whether time spent on indoor and outdoor activities or the other possible risk factors including age, gender, parental history, and initial refraction was associated with progression of myopia, during puberty. Fifty eyes of 50 myopic children aged 9-14 years were enrolled in the study. The parents were interviewed to determine the amounts of time in hours per day spent on reading and writing, using computer, watching TV, and outdoor activities (i.e., sports, games, or being outdoor with no activities) on an average day. The annual myopia progression rate (diopters per year) was calculated for each subject and was used in the statistical analyses. The mean initial age of the subjects was 10.9 ± 1.5 (ranging from 9 to 14) years. The mean follow-up period was 33.3 ± 10.3 (ranging from 17 to 55) months. There was a significant increase in the mean myopia value of the subjects after follow-up period (p < 0.001). The mean daily time spent on reading and writing and initial refraction value were independently associated with annual myopic progression rate. On the other hand, age, gender, parental myopia, and the mean daily times spent on computer use, watching TV, and outdoor activities had no correlations with annual myopia progression rate. The present study showed that myopia progression was associated with time spent on reading and writing and initial refraction value, during puberty. However, myopia progression was not associated with parental myopia, age, gender, and daily times spent on using computer, watching TV, and outdoor activities.
Is long-term physical activity safe for older adults with knee pain?: a systematic review.
Quicke, J G; Foster, N E; Thomas, M J; Holden, M A
2015-09-01
To determine whether long-term physical activity is safe for older adults with knee pain. A comprehensive systematic review and narrative synthesis of existing literature was conducted using multiple electronic databases from inception until May 2013. Two reviewers independently screened, checked data extraction and carried out quality assessment. Inclusion criteria for study designs were randomised controlled trials (RCTs), prospective cohort studies or case control studies, which included adults of mean age over 45 years old with knee pain or osteoarthritis (OA), undertaking physical activity over at least 3 months and which measured a safety related outcome (adverse events, pain, physical functioning, structural OA imaging progression or progression to total knee replacement (TKR)). Of the 8614 unique references identified, 49 studies were included in the review, comprising 48 RCTs and one case control study. RCTs varied in quality and included an array of low impact therapeutic exercise interventions of varying cardiovascular intensity. There was no evidence of serious adverse events, increases in pain, decreases in physical function, progression of structural OA on imaging or increased TKR at group level. The case control study concluded that increasing levels of regular physical activity was associated with lower risk of progression to TKR. Long-term therapeutic exercise lasting 3 to 30 months is safe for most older adults with knee pain. This evidence supports current clinical guideline recommendations. However, most studies investigated selected, consenting older adults carrying out low impact therapeutic exercise which may affect result generalizability. PROSPERO 2014:CRD42014006913. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NF-κB gene signature predicts prostate cancer progression
Jin, Renjie; Yi, Yajun; Yull, Fiona E.; Blackwell, Timothy S.; Clark, Peter E.; Koyama, Tatsuki; Smith, Joseph A.; Matusik, Robert J.
2014-01-01
In many prostate cancer (PCa) patients, the cancer will be recurrent and eventually progress to lethal metastatic disease after primary treatment, such as surgery or radiation therapy. Therefore, it would be beneficial to better predict which patients with early-stage PCa would progress or recur after primary definitive treatment. In addition, many studies indicate that activation of NF-κB signaling correlates with PCa progression; however, the precise underlying mechanism is not fully understood. Our studies show that activation of NF-κB signaling via deletion of one allele of its inhibitor, IκBα, did not induce prostatic tumorigenesis in our mouse model. However, activation of NF-κB signaling did increase the rate of tumor progression in the Hi-Myc mouse PCa model when compared to Hi-Myc alone. Using the non-malignant NF-κB activated androgen depleted mouse prostate, a NF-κB Activated Recurrence Predictor 21 (NARP21) gene signature was generated. The NARP21 signature successfully predicted disease-specific survival and distant metastases-free survival in patients with PCa. This transgenic mouse model derived gene signature provides a useful and unique molecular profile for human PCa prognosis, which could be used on a prostatic biopsy to predict indolent versus aggressive behavior of the cancer after surgery. PMID:24686169
Pronk, Nicolaas P; Remington, Patrick L
2015-09-15
Community Preventive Services Task Force recommendation on the use of combined diet and physical activity promotion programs to reduce progression to type 2 diabetes in persons at increased risk. The Task Force commissioned an evidence review that assessed the benefits and harms of programs to promote and support individual improvements in diet, exercise, and weight and supervised a review on the economic efficiency of these programs in clinical trial, primary care, and primary care-referable settings. Adolescents and adults at increased risk for progression to type 2 diabetes. The Task Force recommends the use of combined diet and physical activity promotion programs by health care systems, communities, and other implementers to provide counseling and support to clients identified as being at increased risk for type 2 diabetes. Economic evidence indicates that these programs are cost-effective.
Bao, Zhengzheng; Malki, Mohammad I.; Forootan, Shiva S.; Adamson, Janet; Forootan, Farzad S.; Chen, Danqing; Foster, Christopher S.; Rudland, Philip S.
2013-01-01
Cutaneous fatty acid–binding protein (C-FABP), a cancer promoter and metastasis inducer, is overexpressed in the majority of prostatic carcinomas. Investigation of molecular mechanisms involved in tumor-promoting activity of C-FABP has established that there is a fatty acid–initiated signaling pathway leading to malignant progression of prostatic cancer cells. Increased C-FABP expression plays an important role in this novel signaling pathway. Thus, when C-FABP expression is increased, excessive amounts of fatty acids are transported into the nucleus where they act as signaling molecules to stimulate their nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ). The activated PPARγ then modulates the expression of its downstream target regulatory genes, which eventually lead to enhanced tumor expansion and aggressiveness caused by an overgrowth of cells with reduced apoptosis and an increased angiogenesis. PMID:24167657
Ribeiro, Luisa; Bandello, Francesco; Tejerina, Amparo Navea; Vujosevic, Stela; Varano, Monica; Egan, Catherine; Sivaprasad, Sobha; Menon, Geeta; Massin, Pascale; Verbraak, Frank D; Lund-Andersen, Henrik; Martinez, Jose P; Jürgens, Ignasi; Smets, Erica; Coriat, Caroline; Wiedemann, Peter; Ágoas, Victor; Querques, Giuseppe; Holz, Frank G; Nunes, Sandrina; Neves, Catarina; Cunha-Vaz, José
2015-08-01
To identify eyes of patients with diabetes type 2 that show progression of retinal disease within a 1-year period using noninvasive techniques. Three hundred seventy-four type 2 diabetic patients with mild nonproliferative diabetic retinopathy (Early Treatment Diabetic Retinopathy Study [ETDRS] level 20 or 35) were included in a 12-month prospective observational study to identify retinopathy progression. Four visits were scheduled at 0, 3, 6, and 12 months. Microaneurysm (MA) activity using the RetmarkerDR and retinal thickness using spectral-domain optical coherence tomography (SD-OCT) were assessed by a central reading center at all visits and ETDRS severity level in the first and last visits. Three hundred thirty-one eyes/patients completed the study. Microaneurysm formation rate greater than or equal to 2 was present in 68.1% of the eyes and MA turnover greater than or equal to 6 in 54.0% at month 6. Higher MA turnover values were registered in eyes that showed progression in ETDRS severity level (P < 0.03). There were also significant correlations between increased microaneurysm activity and increases in retinal thickness. Spectral-domain OCT identified clinical macular edema in 24 eyes/patients (6.7%) and subclinical macular edema in 104 eyes/patients (28.9%) at baseline. Progression of retinal thickening was registered in eyes that had either subclinical or clinical macular edema at baseline. Changes in MA activity measured with RetmarkerDR and in central retinal thickness in eyes with mild nonproliferative diabetic retinopathy and diabetes type 2 are able to identify eyes at risk of progression. These eyes/patients should be selected for inclusion in future clinical trials of drugs targeted to prevent diabetic retinopathy progression to vision-threatening complications. (ClinicalTrials.gov number, NCT01145599.)
Molecular Mechanisms of Prostate Cancer Progression
2005-01-01
Beijersbergen RL, Knoll JH, Meyerson M, Weinberg RA (1999) Inhibition of telomerase limits the growth of human cancer cells. Nat Med 5:1164-70. Hayflick ...nontumorigenic cells and show an increase in p23 without a concomitant increase in telomerase activity, suggesting that p23 is not limiting in these cells...without an increase in assembly as chaperones are limiting . Interestingly, we observe a significant increase in activity after hTERT expression (see
Bogosian, Angeliki; Morgan, Myfanwy; Bishop, Felicity L; Day, Fern; Moss-Morris, Rona
2017-03-01
We examined cognitive and behavioural challenges and adaptations for people with progressive multiple sclerosis (MS) and developed a preliminary conceptual model of changes in adjustment over time. Using theoretical sampling, 34 semi-structured interviews were conducted with people with MS. Participants were between 41 and 77 years of age. Thirteen were diagnosed with primary progressive MS and 21 with secondary progressive MS. Data were analysed using a grounded theory approach. Participants described initially bracketing the illness off and carrying on their usual activities but this became problematic as the condition progressed and they employed different adjustment modes to cope with increased disabilities. Some scaled back their activities to live a more comfortable life, others identified new activities or adapted old ones, whereas at times, people disengaged from the adjustment process altogether and resigned to their condition. Relationships with partners, emotional reactions, environment and perception of the environment influenced adjustment, while people were often flexible and shifted among modes. Adjusting to a progressive condition is a fluid process. Future interventions can be tailored to address modifiable factors at different stages of the condition and may involve addressing emotional reactions concealing/revealing the condition and perceptions of the environment.
Tumor infiltrating lymphocytes in ovarian cancer
Santoiemma, Phillip P; Powell, Daniel J
2015-01-01
The accumulation of tumor infiltrating lymphocytes (TILs) in ovarian cancer is prognostic for increased survival while increases in immunosuppressive regulatory T-cells (Tregs) are associated with poor outcomes. Approaches that bolster tumor-reactive TILs may limit tumor progression. However, identifying tumor-reactive TILs in ovarian cancer has been challenging, though adoptive TIL therapy in patients has been encouraging. Other forms of TIL immunomodulation remain under investigation including Treg depletion, antibody-based checkpoint modification, activation and amplification using dendritic cells, antigen presenting cells or IL-2 cytokine culture, adjuvant cytokine injections, and gene-engineered T-cells. Many approaches to TIL manipulation inhibit ovarian cancer progression in preclinical or clinical studies as monotherapy. Here, we review the impact of TILs in ovarian cancer and attempts to mobilize TILs to halt tumor progression. We conclude that effective TIL therapy for ovarian cancer is at the brink of translation and optimal TIL activity may require combined methodologies to deliver clinically-relevant treatment. PMID:25894333
Baba, Asuka; Tachi, Masahiro; Ejima, Yutaka; Endo, Yasuhiro; Toyama, Hiroaki; Saito, Kazutomo; Abe, Nozomu; Yamauchi, Masanori; Miura, Chieko; Kazama, Itsuro
2017-02-01
Chronic renal failure (CRF) is histopathologically characterized by tubulointerstitial fibrosis in addition to glomerulosclerosis. Although mast cells are known to infiltrate into the kidneys with chronic inflammation, we know little about their contribution to the pathogenesis of renal fibrosis associated with CRF. The aim of this study was to reveal the involvement of mast cells in the progression of renal fibrosis in CRF. Using a rat model with CRF resulting from 5/6 nephrectomy, we examined the histopathological features of the kidneys and the infiltration of mast cells into the renal interstitium. By treating the rats with a potent mast cell stabilizer, tranilast, we also examined the involvement of mast cells in the progression of renal fibrosis associated with CRF. The CRF rat kidneys were characterized by the wide staining of collagen III and increased number of myofibroblasts, indicating the progression of renal fibrosis. Compared to T-lymphocytes or macrophages, the number of tryptase-positive mast cells was much smaller within the fibrotic kidneys and they did not proliferate in situ. The mRNA expression of mast cell-derived fibroblast-activating factors was not increased in the renal cortex isolated from CRF rat kidneys. Treatment with tranilast did not suppress the progression of renal fibrosis, nor did it ameliorate the progression of glomerulosclerosis and the interstitial proliferation of inflammatory leukocytes. This study demonstrated for the first time that mast cells are neither increased nor activated in the fibrotic kidneys of CRF rats. Compared to T-lymphocytes or macrophages that proliferate in situ within the fibrotic kidneys, mast cells were less likely to contribute to the progression of renal fibrosis associated with CRF. © 2016 Asian Pacific Society of Nephrology.
Majidi-Zolbanin, J; Doosti, M-H; Kosari-Nasab, M; Salari, A-A
2015-05-21
Multiple sclerosis (MS) is thought to result from a combination of genetics and environmental factors. Several lines of evidence indicate that significant prevalence of anxiety and depression-related disorders in MS patients can influence the progression of the disease. Although we and others have already reported the consequences of prenatal maternal immune activation on anxiety and depression, less is known about the interplay between maternal inflammation, MS and gender. We here investigated the effects of maternal immune activation with Poly I:C during mid-gestation on the progression of clinical symptoms of experimental autoimmune encephalomyelitis (EAE; a mouse model of MS), and then anxiety- and depressive-like behaviors in non-EAE and EAE-induced offspring were evaluated. Stress-induced corticosterone and tumor necrosis factor-alpha (TNF-α) levels in EAE-induced offspring were also measured. Maternal immune activation increased anxiety and depression in male offspring, but not in females. This immune challenge also resulted in an earlier onset of the EAE clinical signs in male offspring and enhanced the severity of the disease in both male and female offspring. Interestingly, the severity of the disease was associated with increased anxiety/depressive-like behaviors and elevated corticosterone or TNF-α levels in both sexes. Overall, these data suggest that maternal immune activation with Poly I:C during mid-pregnancy increases anxiety- and depressive-like behaviors, and the clinical symptoms of EAE in a sex-dependent manner in non-EAE or EAE-induced offspring. Finally, the progression of EAE in offspring seems to be linked to maternal immune activation-induced dysregulation in neuro-immune-endocrine system. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Ethanol and liver: Recent insights into the mechanisms of ethanol-induced fatty liver
Liu, Jinyao
2014-01-01
Alcoholic fatty liver disease (AFLD), a potentially pathologic condition, can progress to steatohepatitis, fibrosis, and cirrhosis, leading to an increased probability of hepatic failure and death. Alcohol induces fatty liver by increasing the ratio of reduced form of nicotinamide adenine dinucleotide to oxidized form of nicotinamide adenine dinucleotide in hepatocytes; increasing hepatic sterol regulatory element-binding protein (SREBP)-1, plasminogen activator inhibitor (PAI)-1, and early growth response-1 activity; and decreasing hepatic peroxisome proliferator-activated receptor-α activity. Alcohol activates the innate immune system and induces an imbalance of the immune response, which is followed by activated Kupffer cell-derived tumor necrosis factor (TNF)-α overproduction, which is in turn responsible for the changes in the hepatic SREBP-1 and PAI-1 activity. Alcohol abuse promotes the migration of bone marrow-derived cells (BMDCs) to the liver and then reprograms TNF-α expression from BMDCs. Chronic alcohol intake triggers the sympathetic hyperactivity-activated hepatic stellate cell (HSC) feedback loop that in turn activates the HSCs, resulting in HSC-derived TNF-α overproduction. Carvedilol may block this feedback loop by suppressing sympathetic activity, which attenuates the progression of AFLD. Clinical studies evaluating combination therapy of carvedilol with a TNF-α inhibitor to treat patients with AFLD are warranted to prevent the development of alcoholic liver disease. PMID:25356030
Stoppel, Christian Michael; Vielhaber, Stefan; Eckart, Cindy; Machts, Judith; Kaufmann, Jörn; Heinze, Hans-Jochen; Kollewe, Katja; Petri, Susanne; Dengler, Reinhard; Hopf, Jens-Max; Schoenfeld, Mircea Ariel
2014-01-01
Previous studies have shown that in amyotrophic lateral sclerosis (ALS) multiple motor and extra-motor regions display structural and functional alterations. However, their temporal dynamics during disease-progression are unknown. To address this question we employed a longitudinal design assessing motor- and novelty-related brain activity in two fMRI sessions separated by a 3-month interval. In each session, patients and controls executed a Go/NoGo-task, in which additional presentation of novel stimuli served to elicit hippocampal activity. We observed a decline in the patients' movement-related activity during the 3-month interval. Importantly, in comparison to controls, the patients' motor activations were higher during the initial measurement. Thus, the relative decrease seems to reflect a breakdown of compensatory mechanisms due to progressive neural loss within the motor-system. In contrast, the patients' novelty-evoked hippocampal activity increased across 3 months, most likely reflecting the build-up of compensatory processes typically observed at the beginning of lesions. Consistent with a stage-dependent emergence of hippocampal and motor-system lesions, we observed a positive correlation between the ALSFRS-R or MRC-Megascores and the decline in motor activity, but a negative one with the hippocampal activation-increase. Finally, to determine whether the observed functional changes co-occur with structural alterations, we performed voxel-based volumetric analyses on magnetization transfer images in a separate patient cohort studied cross-sectionally at another scanning site. Therein, we observed a close overlap between the structural changes in this cohort, and the functional alterations in the other. Thus, our results provide important insights into the temporal dynamics of functional alterations during disease-progression, and provide support for an anatomical relationship between functional and structural cerebral changes in ALS. PMID:25161894
USDA-ARS?s Scientific Manuscript database
Dietary contribution to breast cancer risk, recurrence, and progression remains incompletely understood. Increased consumption of soy and soy isoflavones is associated with reduced mammary cancer susceptibility in women and in rodent models of carcinogenesis. In rats treated with N-Methyl-N-Nitrosou...
Gomes, Katia M.S.; Bechara, Luiz R.G.; Lima, Vanessa M.; Ribeiro, Márcio A.C.; Campos, Juliane C.; Dourado, Paulo M.; Kowaltowski, Alicia J.; Mochly-Rosen, Daria; Ferreira, Julio C.B.
2015-01-01
Background/Objectives We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy is unknown and should be established to determine the optimal time window for drug treatment. Methods Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. Results We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24hrs after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. Conclusion Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction cardiomyopathy. PMID:25464432
Zheng, Dong; Chen, Ziang; Chen, Jingfu; Zhuang, Xiaomin; Feng, Jianqiang; Li, Juan
2016-10-01
Hydrogen sulfide (H2S), regarded as the third gaseous transmitter, mediates and induces various biological effects. The present study investigated the effects of H2S on multiple myeloma cell progression via amplifying the activation of Akt pathway in multiple myeloma cells. The level of H2S produced in multiple myeloma (MM) patients and healthy subjects was measured using enzyme-linked immunosorbent assay (ELISA). MM cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated-Akt (p-Akt), Bcl-2 and caspase-3 were measured by western blot assay. Cell viability was detected by Cell Counting Kit 8 (CCK-8). The cell cycle was analyzed by flow cytometry. Our results show that the concentration of H2S was higher in MM patients and that it increased in parallel with disease progression. Treating MM cells with 500 µmol/l NaHS for 24 h markedly increased the expression level of Bcl-2 and the activation of p-Akt, however, the expression level of caspase-3 was decreased, cell viability was increased, and cell cycle progression was accelerated in MM cells. NaHS also induced migration in MM cells in transwell migration assay. Furthermore, co-treatment of MM cells with 500 µmol/l NaHS and 50 µmol/l LY294002 for 24 h significantly overset these effects. In conclusion, our findings demonstrate that the Akt pathway contributes to NaHS-induced cell proliferation, migration and acceleration of cell cycle progression in MM cells.
Nutrient enrichment enhances black band disease progression in corals
NASA Astrophysics Data System (ADS)
Voss, Joshua D.; Richardson, Laurie L.
2006-11-01
Infectious diseases are recognized as significant contributors to the dramatic loss of corals observed worldwide. However, the causes of increased coral disease prevalence and severity are not well understood. One potential factor is elevated nutrient concentration related to localized anthropogenic activities such as inadequate waste water treatment or terrestrial runoff. In this study the effect of nutrient enrichment on the progression of black band disease (BBD) was investigated using both in situ and laboratory experiments. Experimental increases in localized nutrient availability using commercial time release fertilizer in situ resulted in doubling of BBD progression and coral tissue loss in the common reef framework coral Siderastrea siderea. Laboratory experiments in which artificially infected S. siderea colonies were exposed to increased nitrate concentrations (up to 3 μM) demonstrated similar increases in BBD progression. These findings provide evidence that the impacts of this disease on coral populations are exacerbated by nutrient enrichment and that management to curtail excess nutrient loading may be important for reducing coral cover loss due to BBD.
Transforming Growth Factor-β1 activates ΔNp63/c-Myc to promote Oral Squamous cell carcinoma
Hu, Lihua; Li, Zhi; Liu, Jingpeng; Wang, Chunling; Nawshad, Ali
2016-01-01
Objective During the development of oral squamous cell carcinoma (OSCC), the transformed epithelial cells undergo increased proliferation resulting in tumor growth and invasion. Interestingly, throughout all phases of differentiation and progression of OSCC, TGFβ1 induces cell cycle arrest/apoptosis, however; the role of TGFβ1 in promoting cancer cell proliferation has not been explored in detail. The purpose of this study was to identify the effect of TGFβ1 on OSCC cell proliferation. Methods Using both human OSCC samples and cell lines (UMSCC38 and UMSCC 11B), we employed biochemical experiments to show protein, mRNA, gene expression and protein-DNA interactions during OSCC progression. Results Our results showed that TGFβ1 increased OSCC cell proliferation by up-regulating the expression of ΔNp63 and c-Myc oncogenes. While the basal OSCC cell proliferation is sustained by activating ΔNp63, increased induction of c-Myc causes unregulated OSCC cell proliferation. Following induction of the cell cycle by ΔNp63 and c-Myc, cancer cells that halt c-Myc activity undergo EMT/invasion while those that continue to express ΔNp63/c-Myc undergo unlimited progression through the cell cycle. Conclusion We conclude that OSCC proliferation is manifested by the induction of c-Myc in response to TGFβ1 signaling, which is essential for OSCC growth. Our data highlights the potential role of TGFβ1 in the induction of cancer progression and invasion of OSCC. PMID:27567435
Yamamoto, Nobuyuki; Mineta, Mitsuyoshi; Kawakami, Jun; Sano, Hirotaka; Itoi, Eiji
2017-09-01
The risk factors for tear progression in symptomatic rotator cuff tears have not been clarified yet. It is important for orthopaedic surgeons to know the natural course of tear progression when nonoperative management is to be chosen. Tears in younger patients, high-activity patients, or heavy laborers would progress in size more than those in older patients, low-activity patients, or light laborers. Case-control study; Level of evidence, 3. Two hundred twenty-five consecutive patients with symptomatic rotator cuff tears visited our institute between 2009 and 2015. Of these, 174 shoulders of 171 patients (mean age, 66.9 years) who underwent at least 2 magnetic resonance imaging (MRI) examinations were prospectively enrolled. The mean follow-up was 19 months. Tear progression was defined as positive when the tear size increased by ≥2 mm. The demographic factors that were analyzed by multivariate analysis included age, sex, hand dominance, smoking, alcohol drinking, hypercholesterolemia, sports participation, job type, tear size, and tear type (full or partial thickness). Of the 174 shoulders, 82 shoulders (47%) showed tear progression. The mean (±SD) tear length and width in the progression group on final MRI were 23.1 ± 12.5 mm and 17.3 ± 9.6 mm, respectively; the tear size progressed by a mean 5.8 ± 5.6 mm in length and 3.1 ± 5.2 mm in width. The mean propagation speed was 3.8 mm/y in length and 2.0 mm/y in width. The size of full-thickness tears significantly increased compared with that of articular-sided partial-thickness tears ( P = .0215). The size of medium tears significantly increased compared with that of other tears ( P < .0001). According to the logistic regression analysis, smoking was significantly correlated with tear progression ( P = .026). Subgroup analyses showed that male sex, hand dominance, and trauma were correlated with tear progression. Age, alcohol drinking, hypercholesterolemia, sports participation, and job type did not show any correlation with tear progression. The tear size of symptomatic rotator cuff tears progressed in 47% of the shoulders during a mean of 19 months, and the speed of progression was 3.8 mm/y in length and 2.0 mm/y in width. The risk factors for tear progression were (1) a medium-sized tear, (2) a full-thickness tear, and (3) smoking.
Hua, Kuo-Feng; Yang, Shun-Min; Kao, Tzu-Yang; Chang, Jia-Ming; Chen, Hui-Ling; Tsai, Yung-Jen; Chen, Ann; Yang, Sung-Sen; Chao, Louis Kuoping; Ka, Shuk-Man
2013-01-01
Renal reactive oxygen species (ROS) and mononuclear leukocyte infiltration are involved in the progressive stage (exacerbation) of IgA nephropathy (IgAN), which is characterized by glomerular proliferation and renal inflammation. The identification of the mechanism responsible for this critical stage of IgAN and the development of a therapeutic strategy remain a challenge. Osthole is a pure compound isolated from Cnidiummonnieri (L.) Cusson seeds, which are used as a traditional Chinese medicine, and is anti-inflammatory, anti-apoptotic, and anti-fibrotic both in vitro and in vivo. Recently, we showed that osthole acts as an anti-inflammatory agent by reducing nuclear factor-kappa B (NF-κB) activation in and ROS release by activated macrophages. In this study, we examined whether osthole could prevent the progression of IgAN using a progressive IgAN (Prg-IgAN) model in mice. Our results showed that osthole administration resulted in prevention of albuminuria, improved renal function, and blocking of renal progressive lesions, including glomerular proliferation, glomerular sclerosis, and periglomerular mononuclear leukocyte infiltration. These findings were associated with (1) reduced renal superoxide anion levels and increased Nrf2 nuclear translocation, (2) inhibited renal activation of NF-κB and the NLRP3 inflammasome, (3) decreased renal MCP-1 expression and mononuclear leukocyte infiltration, (4) inhibited ROS production and NLRP3 inflammasome activation in cultured, activated macrophages, and (5) inhibited ROS production and MCP-1 protein levels in cultured, activated mesangial cells. The results suggest that osthole exerts its reno-protective effects on the progression of IgAN by inhibiting ROS production and activation of NF-κB and the NLRP3 inflammasome in the kidney. Our data also confirm that ROS generation and activation of NF-κB and the NLRP3 inflammasome are crucial mechanistic events involved in the progression of the renal disorder. PMID:24204969
Oxidative stress markers in aqueous humor of patients with senile cataracts.
Sawada, Hideko; Fukuchi, Takeo; Abe, Haruki
2009-01-01
To investigate the levels of oxidative stress markers in human eyes with senile cataracts. We conducted a retrospective, case-controlled study of 57 patients with senile cataracts. To assess oxidative stress markers in the eye, we measured the enzymatic activities of superoxide dismutase (SOD) and catalase (CAT) as well as the total protein levels in aqueous humor. In aqueous humor, SOD and CAT activity levels were 0.133 +/- 0.020 and 1.223 +/- 0.081 U/ml, respectively; protein levels were 2.372 +/- 0.166 mg/ml (means +/- SEM). We observed a significant increase in SOD activity and the protein level in progressed nuclear cataracts. No significant age-associated difference in antioxidant enzyme levels was detected. Significant increases in the levels of SOD activity and total protein correlated with the severity of the cataract but not with patient age, suggesting that progressed cataract is associated with molecules leaking from the lens capsule.
Mechanisms to explain wasting of muscle and fat in cancer cachexia.
Argilés, Josep M; López-Soriano, Francisco J; Busquets, Sílvia
2007-12-01
To describe the most relevant recent findings concerning the molecular mechanisms involved in both fat and muscle tissues in cachectic cancer patients. Relevant progress has been made in the mechanism of signalling protein metabolism in skeletal muscle. PI3K has a dual role inhibiting protein degradation by inhibition of Atrogin-1 and MuRF1 gene expression and facilitating AKT phosphorylation, leading to increased protein synthesis. Interestingly, Caspase-3 activity is intimately associated with myofibrillar protein degradation in muscle tissue. With respect to fat metabolism, increased lipolysis in human cancer cachexia seems to be directly connected to increased hormone-sensitive lipase activity. The results and findings described in this review represent important progress in wasting disease mechanisms and may provide hints for future therapeutic approaches in cancer cachexia.
Hamelin, Lorraine; Lagarde, Julien; Dorothée, Guillaume; Potier, Marie Claude; Corlier, Fabian; Kuhnast, Bertrand; Caillé, Fabien; Dubois, Bruno; Fillon, Ludovic; Chupin, Marie; Bottlaender, Michel; Sarazin, Marie
2018-06-01
Although brain neuroinflammation may play an instrumental role in the pathophysiology of Alzheimer's disease, its actual impact on disease progression remains controversial, being reported as either detrimental or protective. This work aimed at investigating the temporal relationship between microglial activation and clinical progression of Alzheimer's disease. First, in a large cohort of patients with Alzheimer's disease we analysed the predictive value of microglial activation assessed by 18F-DPA-714 PET imaging on functional, cognitive and MRI biomarkers outcomes after a 2-year follow-up. Second, we analysed the longitudinal progression of 18F-DPA-714 binding in patients with Alzheimer's disease by comparison with controls, and assessed its influence on clinical progression. At baseline, all participants underwent a clinical assessment, brain MRI, 11C-PiB, 18F-DPA-714 PET imaging and TSPO genotyping. Participants were followed-up annually for 2 years. At the end of the study, subjects were asked to repeat a second 18F-DPA-714-PET imaging. Initial 18F-DPA-714 binding was higher in prodromal (n = 33) and in demented patients with Alzheimer's disease (n = 19) compared to controls (n = 17). After classifying patients into slow and fast decliners according to functional (Clinical Dementia Rating change) or cognitive (Mini-Mental State Examination score decline) outcomes, we found a higher initial 18F-DPA-714 binding in slow than fast decliners. Negative correlations were observed between initial 18F-DPA-714 binding and the Clinical Dementia Rating Sum of Boxes score increase, the MMSE score loss and the progression of hippocampal atrophy. This suggests that higher initial 18F-DPA-714 binding is associated with better clinical prognosis. Twenty-four patients with Alzheimer's disease and 15 control subjects performed a second DPA-PET. We observed an increase of 18F-DPA-714 in patients with Alzheimer's disease as compared with controls (mean 13.2% per year versus 4.2%) both at the prodromal (15.8%) and at the demented stages (8.3%). The positive correlations between change in 18F-DPA-714 binding over time and the three clinical outcome measures (Clinical Dementia Rating, Mini-Mental State Examination, hippocampal atrophy) suggested a detrimental effect on clinical Alzheimer's disease progression of increased neuroinflammation after the initial PET examination, without correlation with PiB-PET uptake at baseline. High initial 18F-DPA-714 binding was correlated with a low subsequent increase of microglial activation and favourable clinical evolution, whereas the opposite profile was observed when initial 18F-DPA-714 binding was low, independently of disease severity at baseline. Taken together, our results support a pathophysiological model involving two distinct profiles of microglial activation signatures with different dynamics, which differentially impact on disease progression and may vary depending on patients rather than disease stages.
Markus, Hugh S; Hunt, Beverley; Palmer, Kiran; Enzinger, Christian; Schmidt, Helena; Schmidt, Reinhold
2005-07-01
The pathogenesis of cerebral small vessel disease (SVD) is poorly understood, but endothelial activation and dysfunction may play a causal role. Cross-sectional studies have found increased circulating markers of endothelial activation, but this study design cannot exclude causality from secondary elevations. Confluent white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) appear to represent asymptomatic cerebral SVD. In a prospective study, we determined whether circulating markers of endothelial activation predicted progression of WMH. In the community-based Austrian Stroke Prevention Study, MRI was performed at baseline in 296 subjects and repeated at 3 and 6 years. The following were measured on baseline plasma samples: intercellular adhesion molecule (ICAM), thrombomodulin, tissue factor plasma inhibitor, prothrombin fragments 1 and 2, and D-dimers. ICAM was associated with age- and gender-adjusted WMH lesion progression at both 3 and 6 years, respectively; (odds ratio [OR], 1.007; 95% confidence interval [CI], 1.002 to 1.012; P=0.004; and OR, 1.004; 95% CI, 1.000 to 1.009 per ng/mL; P=0.057). After multivariate analysis controlling for other cardiovascular risk factors and C-reactive protein, 3-year OR was 1.010 (95% CI, 1.004 to 1.017; P=0.001) and 6-year OR was 1.008 (1.002 to 1.014 per ng/mL; P=0.006). Baseline log lesion volume was a strong independent predictor of progression but associations remained after controlling for this (3-year OR, 1.011; 95% CI, 1.002 to 1.020; P=0.013; and 6-year OR, 1.009; 95% CI, 1.000 to 1.017; P=0.039 per ng/mL). There was no association between WMH progression and other markers. ICAM levels are related to progression of WMH on MRI. The prospective study design increases the likelihood that this association is causal and supports a role of endothelial cell activation in disease pathogenesis. In contrast, we found no evidence for coagulation activation being important.
Molnar, Christoph; Scherer, Almut; Baraliakos, Xenofon; de Hooge, Manouk; Micheroli, Raphael; Exer, Pascale; Kissling, Rudolf O; Tamborrini, Giorgio; Wildi, Lukas M; Nissen, Michael J; Zufferey, Pascal; Bernhard, Jürg; Weber, Ulrich; Landewé, Robert B M; van der Heijde, Désirée; Ciurea, Adrian
2018-01-01
To analyse the impact of tumour necrosis factor inhibitors (TNFis) on spinal radiographic progression in ankylosing spondylitis (AS). Patients with AS in the Swiss Clinical Quality Management cohort with up to 10 years of follow-up and radiographic assessments every 2 years were included. Radiographs were scored by two readers according to the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) with known chronology. The relationship between TNFi use before a 2-year radiographic interval and progression within the interval was investigated using binomial generalised estimating equation models with adjustment for potential confounding and multiple imputation of missing values. Ankylosing Spondylitis Disease Activity Score (ASDAS) was regarded as mediating the effect of TNFi on progression and added to the model in a sensitivity analysis. A total of 432 patients with AS contributed to data for 616 radiographic intervals. Radiographic progression was defined as an increase in ≥2 mSASSS units in 2 years. Mean (SD) mSASSS increase was 0.9 (2.6) units in 2 years. Prior use of TNFi reduced the odds of progression by 50% (OR 0.50, 95% CI 0.28 to 0.88) in the multivariable analysis. While no direct effect of TNFi on progression was present in an analysis including time-varying ASDAS (OR 0.61, 95% CI 0.34 to 1.08), the indirect effect, via a reduction in ASDAS, was statistically significant (OR 0.75, 95% CI 0.59 to 0.97). TNFis are associated with a reduction of spinal radiographic progression in patients with AS. This effect seems mediated through the inhibiting effect of TNFi on disease activity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Uterine activty and plasma progesterone levels in pregnant goats.
Jones, D E; Kinfton, A
1977-01-01
Uterine activity was recorded during the last few weeks of pregnacy in goats, and related to changes in plasma progesterone concentration. In six of the 14 pregnancies, there was little activity until immediately pre-partum, but the remainder showed a progressive increase in uterine motility, particularly during the last seven days of pregnancy. There was a significant correlation between increased uterine activity and decline of peripheral plasma progesterone levels.
Physical activity in primary and secondary prevention of cardiovascular disease: Overview updated.
Alves, Alberto J; Viana, João L; Cavalcante, Suiane L; Oliveira, Nórton L; Duarte, José A; Mota, Jorge; Oliveira, José; Ribeiro, Fernando
2016-10-26
Although the observed progress in the cardiovascular disease treatment, the incidence of new and recurrent coronary artery disease remains elevated and constitutes the leading cause of death in the developed countries. Three-quarters of deaths due to cardiovascular diseases could be prevented with adequate changes in lifestyle, including increased daily physical activity. New evidence confirms that there is an inverse dose-response relationship between physical activity and cardiovascular disease and mortality risk. However, participation in moderate to vigorous physical activity may not fully attenuate the independent effect of sedentary activities on increased risk for cardiovascular diseases. Physical activity also plays an important role in secondary prevention of cardiovascular diseases by reducing the impact of the disease, slowing its progress and preventing recurrence. Nonetheless, most of eligible cardiovascular patients still do not benefit from secondary prevention/cardiac rehabilitation programs. The present review draws attention to the importance of physical activity in the primary and secondary prevention of cardiovascular diseases. It also addresses the mechanisms by which physical activity and regular exercise can improve cardiovascular health and reduce the burden of the disease.
Baltgalvis, Kristen A; White, Kathy; Li, Wei; Claypool, Mark D; Lang, Wayne; Alcantara, Raniel; Singh, Baljit K; Friera, Annabelle M; McLaughlin, John; Hansen, Derek; McCaughey, Kelly; Nguyen, Henry; Smith, Ira J; Godinez, Guillermo; Shaw, Simon J; Goff, Dane; Singh, Rajinder; Markovtsov, Vadim; Sun, Tian-Qiang; Jenkins, Yonchu; Uy, Gerald; Li, Yingwu; Pan, Alison; Gururaja, Tarikere; Lau, David; Park, Gary; Hitoshi, Yasumichi; Payan, Donald G; Kinsella, Todd M
2014-04-15
Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5'-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD.
Medrano, Estela E
2003-05-19
Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.
Arnold, Shanna A.; Rivera, Lee B.; Carbon, Juliet G.; Toombs, Jason E.; Chang, Chi-Lun; Bradshaw, Amy D.; Brekken, Rolf A.
2012-01-01
Pancreatic adenocarcinoma, a desmoplastic disease, is the fourth leading cause of cancer-related death in the Western world due, in large part, to locally invasive primary tumor growth and ensuing metastasis. SPARC is a matricellular protein that governs extracellular matrix (ECM) deposition and maturation during tissue remodeling, particularly, during wound healing and tumorigenesis. In the present study, we sought to determine the mechanism by which lack of host SPARC alters the tumor microenvironment and enhances invasion and metastasis of an orthotopic model of pancreatic cancer. We identified that levels of active TGFβ1 were increased significantly in tumors grown in SPARC-null mice. TGFβ1 contributes to many aspects of tumor development including metastasis, endothelial cell permeability, inflammation and fibrosis, all of which are altered in the absence of stromal-derived SPARC. Given these results, we performed a survival study to assess the contribution of increased TGFβ1 activity to tumor progression in SPARC-null mice using losartan, an angiotensin II type 1 receptor antagonist that diminishes TGFβ1 expression and activation in vivo. Tumors grown in SPARC-null mice progressed more quickly than those grown in wild-type littermates leading to a significant reduction in median survival. However, median survival of SPARC-null animals treated with losartan was extended to that of losartan-treated wild-type controls. In addition, losartan abrogated TGFβ induced gene expression, reduced local invasion and metastasis, decreased vascular permeability and altered the immune profile of tumors grown in SPARC-null mice. These data support the concept that aberrant TGFβ1-activation in the absence of host SPARC contributes significantly to tumor progression and suggests that SPARC, by controlling ECM deposition and maturation, can regulate TGFβ availability and activation. PMID:22348081
Methylphenidate therapy improves cognition, mood, and function of brain tumor patients.
Meyers, C A; Weitzner, M A; Valentine, A D; Levin, V A
1998-07-01
Patients with malignant glioma develop progressive neurobehavioral deficits over the course of their illness. These are caused both by the effects of the disease and the effects of radiation and chemotherapy. We sought to determine whether methylphenidate treatment would improve these patients' neurobehavioral functioning despite their expected neurologic deterioration. Thirty patients with primary brain tumors underwent neuropsychologic assessment before and during treatment with methylphenidate. Ability to function in activities of daily living and magnetic resonance imaging (MRI) findings were also documented. Patients were assessed on 10, 20, and 30 mg of methylphenidate twice daily. Significant improvements in cognitive function were observed on the 10-mg twice-daily dose. Functional improvements included improved gait, increased stamina and motivation to perform activities, and in one case, increased bladder control. Adverse effects were minimal and immediately resolved when treatment was discontinued. There was no increase in seizure frequency and the majority of patients on glucocorticoid therapy were able to decrease their dose. Gains in cognitive function and ability to perform activities were observed in the setting of progressive neurologic injury documented by MRI in half of the subjects. This study demonstrated improved patient function in the setting of a progressive neurologic illness. Methylphenidate should be more widely considered as adjuvant brain tumor therapy.
Jones, Karra A; Gilder, Andrew S; Lam, Michael S; Du, Na; Banki, Michael A; Merati, Aran; Pizzo, Donald P; VandenBerg, Scott R; Gonias, Steven L
2016-05-01
In glioblastoma (GBM), the gene for epidermal growth factor receptor (EGFR) is frequently amplified. EGFR mutations also are common, including a truncation mutation that yields a constitutively active variant called EGFR variant (v)III. EGFRvIII-positive GBM progresses rapidly; however, the reason for this is not clear because the activity of EGFRvIII is attenuated compared with EGF-ligated wild-type EGFR. We hypothesized that EGFRvIII-expressing GBM cells selectively express other oncogenic receptors that support tumor progression. Mining of The Cancer Genome Atlas prompted us to test whether GBM cells in culture, which express EGFRvIII, selectively express vascular endothelial growth factor receptor (VEGFR)2. We also studied human GBM propagated as xenografts. We then applied multiple approaches to test the effects of VEGFR2 on GBM cell growth, apoptosis, and cellular senescence. In human GBM, EGFR overexpression and EGFRvIII positivity were associated with increased VEGFR2 expression. In GBM cells in culture, EGFRvIII-initiated cell signaling increased expression of VEGFR2, which prevented cellular senescence and promoted cell cycle progression. The VEGFR-selective tyrosine kinase inhibitor cediranib decreased tumor DNA synthesis, increased staining for senescence-associated β-galactosidase, reduced retinoblastoma phosphorylation, and increased p27(Kip1), all markers of cellular senescence. Similar results were obtained when VEGFR2 was silenced. VEGFR2 expression by GBM cells supports cell cycle progression and prevents cellular senescence. Coexpression of VEGFR2 by GBM cells in which EGFR signaling is activated may contribute to the aggressive nature of these cells. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Klein, Jenna C.; Schwartz, Christopher E.
2010-01-01
Recent studies report that the menstrual cycle alters sympathetic neural responses to orthostatic stress in young, eumenorrheic women. The purpose of the present study was to determine whether oral contraceptives (OC) influence sympathetic neural activation during an orthostatic challenge. Based on evidence that sympathetic baroreflex sensitivity (BRS) is increased during the “low hormone” (LH) phase (i.e., placebo pills) in women taking OC, we hypothesized an augmented muscle sympathetic nerve activity (MSNA) response to orthostatic stress during the LH phase. MSNA, mean arterial pressure (MAP), and heart rate (HR) were recorded during progressive lower body negative pressure (LBNP; −5, −10, −15, −20, −30, −40 mmHg; 3 min/stage) in 12 healthy women taking OC (age 22 ± 1 years). Sympathetic BRS was assessed by examining relations between spontaneous fluctuations of diastolic arterial pressure and MSNA. Subjects were examined twice: once during LH phase and once ∼3 wk after LH during the “high hormone” phase (randomized order). Resting MSNA (10 ± 2 vs. 13 ± 2 bursts/min), MAP (85 ± 3 vs. 84 ± 3 mmHg), and HR (62 ± 2 vs. 65 ± 3 beats/min) were not different between phases. MSNA and HR increased during progressive LBNP (P < 0.001), and these increases were similar between phases. Progressive LBNP did not change MAP during either phase. Sympathetic BRS increased during progressive LBNP, but these responses were not different between LH and high hormone phases. In conclusion, our results demonstrate that OCs do not alter cardiovascular and sympathetic neural responses to an orthostatic challenge in young, healthy women. PMID:19828840
2012-10-01
8217 Affiliatio athology an e, Philadelp ponding Au ysiology, D MS 488, P 2-2299; E-m .1158/1078- American A ancer Respose : Platelet-derived growth factor...their metastatic growth. The resulting increase in tu- ass will recruit and activate a progressively higher er of osteoclasts, thereby generating a self
Williams, Kathryn H; Vieira De Ribeiro, Ana Júlia; Prakoso, Emilia; Veillard, Anne-Sophie; Shackel, Nicholas A; Brooks, Belinda; Bu, Yangmin; Cavanagh, Erika; Raleigh, Jim; McLennan, Susan V; McCaughan, Geoffrey W; Keane, Fiona M; Zekry, Amany; Gorrell, Mark D; Twigg, Stephen M
2015-11-01
Intrahepatic expression of dipeptidyl peptidase-4 (DPP4), and circulating DPP4 (cDPP4) levels and its enzymatic activity, are increased in non-alcoholic fatty liver disease (NAFLD) and in type 2 diabetes mellitus and/or obesity. DPP4 has been implicated as a causative factor in NAFLD progression but few studies have examined associations between cDPP4 activity and NAFLD severity in humans. This study aimed to examine the relationship of cDPP4 activity with measures of liver disease severity in NAFLD in subjects with diabetes and/or obesity. cDPP4 was measured in 106 individuals with type 2 diabetes who had transient elastography (Cohort 1) and 145 individuals with morbid obesity who had liver biopsy (Cohort 2). Both cohorts had caspase-cleaved keratin-18 (ccK18) measured as a marker of apoptosis. Natural log increases in cDPP4 activity were associated with increasing quartiles of ccK18 (Cohorts 1 and 2) and with median liver stiffness ≥10.3 kPa (Cohort 1) and significant fibrosis (F ≥ 2) on liver biopsy (Cohort 2). In diabetes and/or obesity, cDPP4 activity is associated with current apoptosis and liver fibrosis. Given the pathogenic mechanisms by which DPP4 may progress NAFLD, measurement of cDPP4 activity may have utility to predict disease progression and DPP4 inhibition may improve liver histology over time. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
All Physical Activity May Not Be Associated with a Lower Likelihood of Adolescent Smoking Uptake
Audrain-McGovern, Janet; Rodriguez, Daniel
2015-01-01
Objective Research has documented that physical activity is associated with a lower risk of adolescent smoking uptake, yet it is unclear whether this relationship exists for all types of physical activity. We sought to determine whether certain types of physical activity are associated with a decreased or an increased risk of adolescent smoking uptake. Methods In this longitudinal cohort study, adolescents (n=1,356) were surveyed every six months for four years (age 14 – 18 years old). Smoking and physical activity were measured at each of the eight time-points. Physical activity that was negatively associated with smoking across the eight waves was considered positive physical activities (i.e., PPA; linked to not smoking such as racquet sports, running, and swimming laps). Physical activity that was positively associated with smoking across the eight waves were considered negative physical activities (i.e., NPA; linked to smoking such as skating, walking, bicycling, sport fighting, and competitive wrestling). Results Associative Processes Latent Growth Curve Modeling revealed that each 30-minute increase in NPA per week at baseline was associated with a 4-fold increased odds of smoking progression (OR=4.10, 95% CI=2.14, 7.83). By contrast, each 30-minute increase in PPA at baseline was associated with a 51% decrease in the odds of smoking progression (OR=.49, 95% CI=.25, .93). Conclusions The type of physical activity that an adolescent engages appears to be important for the uptake of cigarette smoking among adolescents. These associative relationships warrant consideration in interventions to increase overall physical activity and those promoting physical activity to prevent smoking uptake. PMID:26280377
All physical activity may not be associated with a lower likelihood of adolescent smoking uptake.
Audrain-McGovern, Janet; Rodriguez, Daniel
2015-12-01
Research has documented that physical activity is associated with a lower risk of adolescent smoking uptake, yet it is unclear whether this relationship exists for all types of physical activity. We sought to determine whether certain types of physical activity are associated with a decreased or an increased risk of adolescent smoking uptake. In this longitudinal cohort study, adolescents (n=1356) were surveyed every six months for four years (age 14-18years old). Smoking and physical activity were measured at each of the eight time-points. Physical activity that was negatively associated with smoking across the eight waves was considered positive physical activities (i.e., PPA; linked to not smoking such as racquet sports, running, and swimming laps). Physical activity that was positively associated with smoking across the eight waves were considered negative physical activities (i.e., NPA; linked to smoking such as skating, walking, bicycling, sport fighting, and competitive wrestling). Associative Processes Latent Growth Curve Modeling revealed that each 30-minute increase in NPA per week at baseline was associated with a 4-fold increased odds of smoking progression (OR=4.10, 95% CI=2.14, 7.83). By contrast, each 30-minute increase in PPA at baseline was associated with a 51% decrease in the odds of smoking progression (OR=.49, 95% CI=.25, .93). The type of physical activity that an adolescent engages appears to be important for the uptake of cigarette smoking among adolescents. These associative relationships warrant consideration in interventions to increase overall physical activity and those promoting physical activity to prevent smoking uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of two techniques of robot-aided upper limb exercise training after stroke.
Stein, Joel; Krebs, Hermano Igo; Frontera, Walter R; Fasoli, Susan E; Hughes, Richard; Hogan, Neville
2004-09-01
This study examined whether incorporating progressive resistive training into robot-aided exercise training provides incremental benefits over active-assisted robot-aided exercise for the upper limb after stroke. A total of 47 individuals at least 1 yr poststroke were enrolled in this 6-wk training protocol. Paretic upper limb motor abilities were evaluated using clinical measures and a robot-based assessment to determine eligibility for robot-aided progressive resistive training at study entry. Subjects capable of participating in resistance training were randomized to receive either active-assisted robot-aided exercises or robot-aided progressive resistance training. Subjects who were incapable of participating in resistance training underwent active-assisted robotic therapy and were again screened for eligibility after 3 wks of robotic therapy. Those subjects capable of participating in resistance training at 3 wks were then randomized to receive either robot-aided resistance training or to continue with robot-aided active-assisted training. One subject withdrew due to unrelated medical issues, and data for the remaining 46 subjects were analyzed. Subjects in all groups showed improvement in measures of motor control (mean increase in Fugl-Meyer of 3.3; 95% confidence interval, 2.2-4.4) and maximal force (mean increase in maximal force of 3.5 N, P = 0.027) over the course of robot-aided exercise training. No differences in outcome measures were observed between the resistance training groups and the matched active-assisted training groups. Subjects' ability to perform the robotic task at the time of group assignment predicted the magnitude of the gain in motor control. The incorporation of robot-aided progressive resistance exercises into a program of robot-aided exercise did not favorably or negatively affect the gains in motor control or strength associated with this training, though interpretation of these results is limited by sample size. Individuals with better motor control at baseline experienced greater increases in motor control with robotic training.
Kutryb-Zajac, Barbara; Mateuszuk, Lukasz; Zukowska, Paulina; Jasztal, Agnieszka; Zabielska, Magdalena A; Toczek, Marta; Jablonska, Patrycja; Zakrzewska, Agnieszka; Sitek, Barbara; Rogowski, Jan; Lango, Romuald; Slominska, Ewa M; Chlopicki, Stefan; Smolenski, Ryszard T
2016-11-01
Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular inflammation and improved endothelial function. This study highlights the importance of extracellular nucleotides and adenosine metabolism in the atherosclerotic vessel in both experimental and clinical setting. The increased eADA activity marks an early stage of atherosclerosis, contributes to its progression and could represent a novel target for therapy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.
Budi, Erine H.; Muthusamy, Baby Periyanayaki; Derynck, Rik
2015-01-01
Increased activity of transforming growth factor β (TGF-β), which binds to and stimulates cell surface receptors, contributes to cancer progression and fibrosis by driving epithelial cells toward a migratory mesenchymal phenotype and increasing the abundance of extracellular matrix proteins. The abundance of TGF-β receptors at the cell surface determines cellular responsiveness to TGF-β, which is often produced by the same cells that have the receptors, and thus serves as an autocrine signal. We found that Akt-mediated phosphorylation of AS160, a RabGAP [guanosine triphosphatase (GTPase)-activating protein] promoted the translocation of TGF-β receptors from intracellular stores to the plasma membrane of mouse embryonic fibroblasts (MEFs) and NMuMG epithelial cells. Consequently, insulin, which is commonly used to treat hyperglycemia and activates Akt signaling, increased the amount of TGF-β receptors at the cell surface, thereby enhancing TGF-β responsiveness. This insulin-induced increase in autocrine TGF-β signaling contributed to insulin-induced gene expression responses, attenuated the epithelial phenotype, and promoted the migration of NMuMG cells. Furthermore, the enhanced delivery of TGF-β receptors at the cell surface enabled insulin to increase TGF-β-induced gene responses. The enhancement of TGF-β responsiveness in response to Akt activation may help to explain the biological effects of insulin, the progression of cancers in which Akt is activated, and the increased incidence of fibroses in diabetes. PMID:26420907
DOT National Transportation Integrated Search
2009-02-12
Research, development, and technology (RD&T) activities are vital to meeting the Department of Transportation's (DOT) priorities, such as increasing safety, enhancing mobility, and supporting the nation's economic growth. In fiscal year 2008, the dep...
Mechanisms of fibrosis in acute liver failure.
He, Yingli; Jin, Li; Wang, Jing; Yan, Zhi; Chen, Tianyan; Zhao, Yingren
2015-07-01
Acute liver failure (ALF) is a condition with high mortality and morbidity. Fibrosis in chronic liver disease was extensively researched, whereas fibrosis and underlying mechanism in acute liver failure remains unclear. Hepatitis B virus related ALF patients were recruited to investigate if there was ongoing fibrosis by liver histology and liver stiffness measurement(LSM) analysis as well as fibrosis markers assay. Sera HMGB1 were kinetically detected in progression and remission stage of ALF. Hepatic stellate cell(HSC) activation by HMGB1 was explored by testing mRNA and protein level of α-SMA and collagen 1a1 by using qPCR and western blot. Autophagy induction by HMGB1 was explored by LC3-II conversion, autophagy flux and fluorescence. Firstly, ongoing fibrosis in progression stage of ALF was confirmed by histological analysis, LS measurement as well as fibrosis markers detection. HSC activation and autophagy induction in explanted liver tissue also revealed. Next, kinetic monitoring sera HMGB1 revealed elevated HMGB1 in progression stage of ALF vs HBsAg carrier, and drop back to base level in remission stage. Thirdly, rHMGB1 dose dependently activated HSCs, as indicated by increased mRNA and proteins level in α-SMA and collagen 1a1. Moreover, autophagy was induced in HSC treated with rHMGB1, as illustrated by increased LC3 lipidation, elevated autophagy flux and GFP-LC3 puncta. Acute liver failure is accompanied by ongoing fibrosis, HSC activation and autophagy induction. Increased HMGB1 activates HSC via autophagy induction. Those findings integrate HMGB1, HSCs activation, autophagy into a common framework that underlies the fibrosis in ALF. © 2014 The Authors. Liver International Published by John Wiley & Sons Ltd.
TES inhibits colorectal cancer progression through activation of p38.
Li, Huili; Huang, Kun; Gao, Lu; Wang, Lixia; Niu, Yanfeng; Liu, Hongli; Wang, Zheng; Wang, Lin; Wang, Guobin; Wang, Jiliang
2016-07-19
The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site - a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy.
TES inhibits colorectal cancer progression through activation of p38
Gao, Lu; Wang, Lixia; Niu, Yanfeng; Liu, Hongli; Wang, Zheng; Wang, Lin; Wang, Guobin; Wang, Jiliang
2016-01-01
The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site – a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy. PMID:27323777
Parasaram, Vaideesh; Nosoudi, Nasim; Chowdhury, Aniqa; Vyavahare, Naren
2018-04-30
Emphysema is characterized by degradation of lung alveoli that leads to poor airflow in lungs. Irreversible elastic fiber degradation by matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity leads to loss of elasticity and drives the progression of this disease. We investigated if a polyphenol, pentagalloyl glucose (PGG) can increase elastin production in pulmonary fibroblasts. We also studied the effect of PGG treatment in reducing MMP activity and ROS levels in cells. We exposed rat pulmonary fibroblasts to two different types of inflammatory environments i.e., tumor necrosis factor-α (TNF-α) and cigarette smoke extract (CSE) to mimic the disease. Parameters like lysyl oxidase (LOX) and elastin gene expression, MMP-9 activity in the medium, lysyl oxidase (LOX) activity and ROS levels were studied to assess the effect of PGG on pulmonary fibroblasts. CSE inhibited lysyl oxidase (LOX) enzyme activity that resulted in a decreased elastin formation. Similarly, TNF-α treated cells showed less elastin in the cell layers. Both these agents caused increase in MMP activity and ROS levels in cells. However, when supplemented with PGG treatment along with these two inflammatory agents, we saw a significant increase in elastin deposition, reduction in both MMP activity and ROS levels. Thus PGG, which has anti-inflammatory, anti-oxidant properties coupled with its ability to aid in elastic fiber formation, can be a multifunctional drug to potentially arrest the progression of emphysema. Copyright © 2018 Elsevier Inc. All rights reserved.
Core muscle activity in a series of balance exercises with different stability conditions.
Calatayud, Joaquin; Borreani, Sebastien; Martin, Julio; Martin, Fernando; Flandez, Jorge; Colado, Juan C
2015-07-01
Literature that provides progression models based on core muscle activity and postural manipulations is scarce. The purpose of this study was to investigate the core muscle activity in a series of balance exercises with different stability levels and additional elastic resistance. A descriptive study of electromyography (EMG) was performed with forty-four healthy subjects that completed 12 exercises in a random order. Exercises were performed unipedally or bipedally with or without elastic tubing as resistance on various unstable (uncontrolled multiaxial and uniaxial movement) and stable surfaces. Surface EMG on the lumbar multífidus spinae (LM), thoracic multífidus spinae (TM), lumbar erector spinae (LE), thoracic erector spinae (TE) and gluteus maximus (GM), on the dominant side of the body were collected to quantify the amount of muscle activity and were expressed as a % of the maximum voluntary isometric contraction (MVIC). Significant differences (p<.001) were found between exercises. The three unipedal standing exercises with additional elastic resistance generated the greatest EMG values, ranging from 19% MVIC to 30% MVIC. Postural manipulations with additional elastic resistance and/or unstable devices increase core muscle activity. An adequate exercise progression based on global core EMG could start with seated positions, progressing to bipedal standing stance (i.e., from either multiaxial or stable surface to uniaxial surface). Following this, unipedal standing positions may be performed (i.e., from either multiaxial or stable surface to uniaxial surface) and finally, elastic resistance must be added in order to increase EMG levels (i.e., from stable surface progressing to any of the used unstable surfaces). Copyright © 2015 Elsevier B.V. All rights reserved.
HDAC6 interacts with PTPN1 to enhance melanoma cells progression.
Liu, Jiaqi; Luan, Wenjie; Zhang, Yong; Gu, Jianying; Shi, Yuedong; Yang, Yanwen; Feng, Zihao; Qi, Fazhi
2018-01-22
Histone deacetylase 6 (HDAC6) plays an important role in oncogenic transformation and cancer metastasis. Our previous study has demonstrated that HDAC6 was highly expressed in melanoma cells, and contributed to the proliferation and metastasis of melanoma cells. However, the underlying mechanism of HDAC6 in melanoma metastasis and progression remains largely unclear. In this study, we reported that HDAC6 directly interacted with Tyrosine-protein phosphatase non-receptor type 1 (PTPN1) by performing co-immunoprecipitation (Co-IP) combined with liquid chromatography tandem mass spectrometry (LC-MS/MS). HDAC6 increased the protein level of PTPN1 independent of histone modifying activity. In addition, PTPN1 promoted proliferation, colony formation and migration while decreased apoptosis of melanoma cells through activating extracellular signal-regulated kinase 1/2 (ERK1/2). Furthermore, we found that matrix metallopeptidase 9 (MMP9) was increased by HDAC6/PTPN1/ERK1/2 axis, which might serve as a mechanism for melanoma invasion and metastasis. In conclusion, HDAC6 might enhance aggressive melanoma cells progression via interacting with PTPN1, which was independent of its histone modifying activity. Copyright © 2017. Published by Elsevier Inc.
The measurement conundrum in exercise adherence research.
Dishman, R K
1994-11-01
This paper has two purposes. It first prefaces a symposium titled "Exercise adherence and behavior change: prospects, problems, and future directions." The symposium describes the progress made during the past 5 years toward understanding the adoption and maintenance of physical activity and exercise. Specifically, research is discussed that has tested the applicability to physical activity of four psychological models of behavior: Reasoned Action, Planned Behavior, Social-Cognitive Theory, and the Transtheoretical Model of stages of change. Recent exercise interventions in clinical/community settings also are discussed to illustrate how theoretical models can be implemented to increase and maintain exercise. The second purpose of this paper is to provide a brief summary of the contemporary literatures on the determinants of physical activity and interventions designed to increase and maintain physical activity. The summary focuses on the measurement problems that have limited the advances made in theory and application in these areas of research. Progress toward resolving the measurement problems during the past 5 years is contrasted with earlier scientific consensus.
Giampieri, Francesca; Alvarez-Suarez, Josè M; Cordero, Mario D; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Afrin, Sadia; Santos-Buelga, Celestino; González-Paramás, Ana M; Astolfi, Paola; Rubini, Corrado; Zizzi, Antonio; Tulipani, Sara; Quiles, Josè L; Mezzetti, Bruno; Battino, Maurizio
2017-11-01
Dietary polyphenols have been recently proposed as activators of the AMP-activated protein kinase (AMPK) signaling pathway and this fact might explain the relationship between the consumption of polyphenol-rich foods and the slowdown of the progression of aging. In the present work, the effects of strawberry consumption were evaluated on biomarkers of oxidative damage and on aging-associated reductions in mitochondrial function and biogenesis for 8weeks in old rats. Strawberry supplementation increased antioxidant enzyme activities, mitochondrial biomass and functionality, and decreased intracellular ROS levels and biomarkers of protein, lipid and DNA damage (P<0.05). Furthermore, a significant (P<0.05) increase in the expression of the AMPK cascade genes, involved in mitochondrial biogenesis and antioxidant defences, was also detected after strawberry intake. These in vivo results were then verified in vitro on HepG2 cells, confirming the involvement of AMPK in the beneficial effects exerted by strawberry against aging progression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Abbott, Daniel E; Margaryan, Naira V; Jeruss, Jacqueline S; Khan, Seema; Kaklamani, Virginia; Winchester, David J; Hansen, Nora; Rademaker, Alfred; Khalkhali-Ellis, Zhila; Hendrix, Mary J C
2010-01-01
Cathepsin D is a lysosomal hydrolase involved in intra- and extracellular proteolysis. This enzyme is aberrantly produced and processed in malignancy, and most notably is over-secreted into the tumor cell microenvironment. This hyper-secretion may lead to excessive degradation of the extracellular matrix, and contribute to tumor progression and metastases. These phenomena have been established in vitro, and there is evidence that Cathepsin D is similarly dysregulated in human breast cancer patients. Because breast cancer lacks an effective screening or surveillance biomarker, here we address the hypothesis that serum Cathepsin D activity may be useful to assess the presence or progression of breast cancer in females. While representative histologic sections from various disease-specific cohorts confirm previous findings that increased Cathepsin D production and secretion correlate with tumor progression, we report no difference in serum Cathepsin D activity between patients who are disease free, patients with pre-invasive or limited invasive disease, and patients with metastatic disease. Furthermore, in patients with known metastatic disease, there were no clinical variables associated with significantly different serum Cathepsin D activity. However, the immunohistochemical localization of Cathepsin D expression in histopathologic sections from breast cancer patients correlates with disease progression. Based on the serum results, and in contradistinction to Cathepsin D localization in breast cancer tissues, our findings support using Cathepsin D as a reliable histopathology biomarker for disease progression, but not for serum screening.
Johansson, P I; Ostrowski, S R
2010-12-01
Acute coagulopathy of trauma predicts a poor clinical outcome. Tissue trauma activates the sympathoadrenal system resulting in high circulating levels of catecholamines that influence hemostasis dose-dependently through immediate effects on the two major compartments of hemostasis, i.e., the circulating blood and the vascular endothelium. There appears to be a dose-dependency with regards to injury severity and the hemostatic response to trauma evaluated in whole blood by viscoelastic assays like thrombelastography (TEG), changing from normal to hypercoagulable, to hypocoagulable and finally hyperfibrinolytic in severely injured patients. Since high catecholamine levels may directly damage the endothelium and thereby promote systemic coagulation activation, we hypothesize that the progressive hypocoagulability and ultimate hyperfibrinolysis observed in whole blood with increasing injury severity, is an evolutionary developed response that counterbalances the injury and catecholamine induced endothelial activation and damage. Given this, the rise in circulating catecholamines in trauma patients may favor a switch from hyper- to hypocoagulability in the blood to keep the progressively more procoagulant microvasculature open. The hypothesis delineated in the present paper thus infers that the state of the fluid phase, including its cellular elements, is a consequence of the degree of the tissue injury and importantly, critically related to the degree of endothelial damage, with a progressively more procoagulant endothelium inducing a gradient of increasing anticoagulation towards the fluid phase. The implications of this hypothesis may include targeted treatment strategies according to the degree of sympathoadrenal response as evaluated by whole blood viscoelastical hemostatic assays in trauma patients. Copyright © 2010 Elsevier Ltd. All rights reserved.
Chronic sympathetic activation: consequence and cause of age-associated obesity?
Seals, Douglas R; Bell, Christopher
2004-02-01
Primary aging in adult humans is associated with a progressive, tonic activation of the peripheral sympathetic nervous system (SNS). The purpose of this SNS activation and its physiological impact are, however, unknown. We hypothesize that the chronic stimulation of the SNS with aging is driven in part by a progressive accumulation of body fat. This "error" is sensed by the central nervous system via increases in adiposity-sensitive humoral signals (e.g., leptin, insulin) that cross the blood-brain barrier, activate subcortical areas involved in the regulation of energy balance (e.g., ventromedial hypothalamus), and stimulate SNS outflow to peripheral tissues. The SNS activation is intended to increase beta-adrenergic thermogenesis in order to expend excess energy as heat rather than by storage of fat. Recent evidence, however, indicates that these adjustments are not effective in augmenting energy expenditure with aging. Indeed, older sedentary adults demonstrate reduced, not increased, beta-adrenergic stimulation of metabolic rate because of reduced tissue responsiveness, presumably mediated by SNS-induced impairment of beta-adrenergic signaling. As a result, age-associated SNS activation, initiated as a consequence of accumulating adiposity with the intent of preventing further fat storage, ironically, may in time evolve into a potential mechanism contributing to the development of obesity with aging.
Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R.
2016-01-01
Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages. PMID:26934296
Molecular profiling of dilated cardiomyopathy that progresses to heart failure
Burke, Michael A.; Chang, Stephen; Wakimoto, Hiroko; Gorham, Joshua M.; Conner, David A.; Christodoulou, Danos C.; Parfenov, Michael G.; DePalma, Steve R.; Eminaga, Seda; Konno, Tetsuo; Seidman, Jonathan G.; Seidman, Christine E.
2016-01-01
Dilated cardiomyopathy (DCM) is defined by progressive functional and structural changes. We performed RNA-seq at different stages of disease to define molecular signaling in the progression from pre-DCM hearts to DCM and overt heart failure (HF) using a genetic model of DCM (phospholamban missense mutation, PLNR9C/+). Pre-DCM hearts were phenotypically normal yet displayed proliferation of nonmyocytes (59% relative increase vs. WT, P = 8 × 10–4) and activation of proinflammatory signaling with notable cardiomyocyte-specific induction of a subset of profibrotic cytokines including TGFβ2 and TGFβ3. These changes progressed through DCM and HF, resulting in substantial fibrosis (17.6% of left ventricle [LV] vs. WT, P = 6 × 10–33). Cardiomyocytes displayed a marked shift in metabolic gene transcription: downregulation of aerobic respiration and subsequent upregulation of glucose utilization, changes coincident with attenuated expression of PPARα and PPARγ coactivators -1α (PGC1α) and -1β, and increased expression of the metabolic regulator T-box transcription factor 15 (Tbx15). Comparing DCM transcriptional profiles with those in hypertrophic cardiomyopathy (HCM) revealed similar and distinct molecular mechanisms. Our data suggest that cardiomyocyte-specific cytokine expression, early fibroblast activation, and the shift in metabolic gene expression are hallmarks of cardiomyopathy progression. Notably, key components of these profibrotic and metabolic networks were disease specific and distinguish DCM from HCM. PMID:27239561
Amankwatia, E B; Chakravarty, P; Carey, F A; Weidlich, S; Steele, R J C; Munro, A J; Wolf, C R; Smith, G
2015-01-01
Background: Colorectal cancers arise from benign adenomas, although not all adenomas progress to cancer and there are marked interpatient differences in disease progression. We have previously associated KRAS mutations with disease progression and reduced survival in colorectal cancer patients. Methods: We used TaqMan low-density array (TLDA) qRT–PCR analysis to identify miRNAs differentially expressed in normal colorectal mucosa, adenomas and cancers and in isogeneic KRAS WT and mutant HCT116 cells, and used a variety of phenotypic assays to assess the influence of miRNA expression on KRAS activity, chemosensitivity, proliferation and invasion. Results: MicroRNA-224 was differentially expressed in dysplastic colorectal disease and in isogeneic KRAS WT and mutant HCT116 cells. Antagomir-mediated miR-224 silencing in HCT116 KRAS WT cells phenocopied KRAS mutation, increased KRAS activity and ERK and AKT phosphorylation. 5-FU chemosensitivity was significantly increased in miR-224 knockdown cells, and in NIH3T3 cells expressing KRAS and BRAF mutant proteins. Bioinformatics analysis of predicted miR-224 target genes predicted altered cell proliferation, invasion and epithelial–mesenchymal transition (EMT) phenotypes that were experimentally confirmed in miR-224 knockdown cells. Conclusions: We describe a novel mechanism of KRAS regulation, and highlight the clinical utility of colorectal cancer-specific miRNAs as disease progression or clinical response biomarkers. PMID:25919696
Hypoxia-activated prodrug enhances therapeutic effect of sunitinib in melanoma
Liu, Shujing; Tetzlaff, Michael T.; Wang, Tao; Chen, Xiang; Yang, Ruifeng; Kumar, Suresh M.; Vultur, Adina; Li, Pengxiang; Martin, James S.; Herlyn, Meenhard; Amaravadi, Ravi
2017-01-01
Angiogenesis is a critical step during tumor progression. Anti-angiogenic therapy has only provided modest benefits in delaying tumor progression despite its early promise in cancer treatment. It has been postulated that anti-angiogenic therapy may promote the emergence of a more aggressive cancer cell phenotype by generating increased tumor hypoxia—a well-recognized promoter of tumor progression. TH-302 is a 2-nitroimidazole triggered hypoxia-activated prodrug (HAP) which has been shown to selectively target the hypoxic tumor compartment and reduce tumor volume. Here, we show that melanoma cells grown under hypoxic conditions exhibit increased resistance to a wide variety of therapeutic agents in vitro and generate larger and more aggressive tumors in vivo than melanoma cells grown under normoxic conditions. However, hypoxic melanoma cells exhibit a pronounced sensitivity to TH-302 which is further enhanced by the addition of sunitinib. Short term sunitinib treatment fails to prolong the survival of melanoma bearing genetically engineered mice (Tyr::CreER; BRafCA;Ptenlox/lox) but increases tumor hypoxia. Long term TH-302 alone modestly prolongs the overall survival of melanoma bearing mice. Combination therapy of TH-302 with sunitinib further increases the survival of treated mice. These studies provide a translational rationale for combining hypoxic tumor cell targeted therapies with anti-angiogenics for treatment of melanoma. PMID:29383148
Neural correlates underlying micrographia in Parkinson’s disease
Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu
2016-01-01
Micrographia is a common symptom in Parkinson’s disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. PMID:26525918
Studer, Valeria; Rocchi, Camilla; Motta, Caterina; Lauretti, Benedetta; Perugini, Jacopo; Brambilla, Laura; Pareja-Gutierrez, Lorena; Camera, Giorgia; Barbieri, Francesca Romana; Marfia, Girolama A; Centonze, Diego; Rossi, Silvia
2017-01-01
Sympathovagal imbalance has been associated with poor prognosis in chronic diseases, but there is conflicting evidence in multiple sclerosis. The objective of this study was to investigate the autonomic nervous system dysfunction correlation with inflammation and progression in multiple sclerosis. Heart rate variability was analysed in 120 multiple sclerosis patients and 60 healthy controls during supine rest and head-up tilt test; the normalised units of low frequency and high frequency power were considered to assess sympathetic and vagal components, respectively. Correlation analyses with clinical and radiological markers of disease activity and progression were performed. Sympathetic dysfunction was closely related to the progression of disability in multiple sclerosis: progressive patients showed altered heart rate variability with respect to healthy controls and relapsing-remitting patients, with higher rest low frequency power and lacking the expected low frequency power increase during the head-up tilt test. In relapsing-remitting patients, disease activity, even subclinical, was associated with lower rest low frequency power, whereas stable relapsing-remitting patients did not differ from healthy controls. Less sympathetic reactivity and higher low frequency power at rest were associated with incomplete recovery from relapse. Autonomic balance appears to be intimately linked with both the inflammatory activity of multiple sclerosis, which is featured by an overall hypoactivity of the sympathetic nervous system, and its compensatory plastic processes, which appear inefficient in case of worsening and progressive multiple sclerosis.
Shaw, Alice T.; Gandhi, Leena; Gadgeel, Shirish; Riely, Gregory J.; Cetnar, Jeremy; West, Howard; Camidge, D. Ross; Socinski, Mark A.; Chiappori, Alberto; Mekhail, Tarek; Chao, Bo H.; Borghaei, Hossein; Gold, Kathryn A.; Zeaiter, Ali; Bordogna, Walter; Balas, Bogdana; Puig, Oscar; Henschel, Volkmar; Ignatius Ou, Sai-Hong
2016-01-01
Summary Background Alectinib, a highly selective, central nervous system (CNS)-active anaplastic lymphoma kinase (ALK) inhibitor, demonstrated promising clinical activity in crizotinib-naïve and crizotinib-resistant ALK-positive non-small-cell lung cancer (NSCLC). This phase 2 study evaluated the safety and efficacy of alectinib in ALK-positive NSCLC patients who progressed on previous crizotinib. Methods This ongoing North American study (NCT01871805) enrolled patients with stage IIIB/IV ALK-positive NSCLC, who had progressed following crizotinib. Patients were treated with oral alectinib 600 mg twice daily until progression, death or withdrawal. Primary endpoint was overall response rate (ORR) by independent review committee (IRC) using RECIST v1.1. Secondary endpoints included progression-free survival (PFS), duration of response (DOR), intracranial ORR and DOR, safety, and patient-reported outcomes. The intent-to-treat population was used for efficacy and safety analyses, with the response evaluable population used for response endpoints. Findings A total of 87 patients were enrolled in the intent-to-treat population. All patients had received prior crizotinib therapy, and 64 patients (74%) had also received prior chemotherapy. Fifty-two patients (60%) had baseline CNS metastases, of whom 18 (35%) had received no prior brain radiation therapy. At the time of primary analysis (median follow-up 4.8 months), ORR by IRC was 48% (95% CI 36–60). Adverse events were predominantly grade 1 or 2, most commonly constipation, fatigue, myalgia and peripheral edema. The most common grade ≥3 AEs were changes in laboratory values, including increased blood creatine phosphokinase (in 8%, n=7), increased alanine aminotransferase (in 6% n=5), and increased aspartate aminotransferase (in 5% n=4). Interpretation Alectinib demonstrated clinical efficacy and was well tolerated in patients with ALK-positive NSCLC who had progressed on crizotinib. Alectinib was active in the CNS, as demonstrated by durable responses in the majority of crizotinib-resistant patients with CNS disease. Therefore, alectinib could be a suitable treatment for patients with ALK-positive disease who have progressed on crizotinib. PMID:26708155
ERIC Educational Resources Information Center
Kahan, David; Nicaise, Virginie; Reuben, Karen
2013-01-01
Purpose: More than one fifth of American preschool-aged children are classified as overweight/obese. Increasing physical activity is one means of slowing/reversing progression to overweight or obesity. Measurement of physical activity in this age group relies heavily on motion sensors such as accelerometers. Output is typically interpreted through…
Da Cruz, Sandrine; Parone, Philippe A; Lopes, Vanda S; Lillo, Concepción; McAlonis-Downes, Melissa; Lee, Sandra K; Vetto, Anne P; Petrosyan, Susanna; Marsala, Martin; Murphy, Anne N; Williams, David S; Spiegelman, Bruce M; Cleveland, Don W
2012-05-02
The transcriptional coactivator PGC-1α induces multiple effects on muscle, including increased mitochondrial mass and activity. Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, adult-onset neurodegenerative disorder characterized by selective loss of motor neurons and skeletal muscle degeneration. An early event is thought to be denervation-induced muscle atrophy accompanied by alterations in mitochondrial activity and morphology within muscle. We now report that elevation of PGC-1α levels in muscles of mice that develop fatal paralysis from an ALS-causing SOD1 mutant elevates PGC-1α-dependent pathways throughout disease course. Mitochondrial biogenesis and activity are maintained through end-stage disease, accompanied by retention of muscle function, delayed muscle atrophy, and significantly improved muscle endurance even at late disease stages. However, survival was not extended. Therefore, muscle is not a primary target of mutant SOD1-mediated toxicity, but drugs increasing PGC-1α activity in muscle represent an attractive therapy for maintaining muscle function during progression of ALS. Copyright © 2012 Elsevier Inc. All rights reserved.
Reich, Martin M; Brumberg, Joachim; Pozzi, Nicolò G; Marotta, Giorgio; Roothans, Jonas; Åström, Mattias; Musacchio, Thomas; Lopiano, Leonardo; Lanotte, Michele; Lehrke, Ralph; Buck, Andreas K; Volkmann, Jens; Isaias, Ioannis U
2016-11-01
Thalamic deep brain stimulation is a mainstay treatment for severe and drug-refractory essential tremor, but postoperative management may be complicated in some patients by a progressive cerebellar syndrome including gait ataxia, dysmetria, worsening of intention tremor and dysarthria. Typically, this syndrome manifests several months after an initially effective therapy and necessitates frequent adjustments in stimulation parameters. There is an ongoing debate as to whether progressive ataxia reflects a delayed therapeutic failure due to disease progression or an adverse effect related to repeated increases of stimulation intensity. In this study we used a multimodal approach comparing clinical stimulation responses, modelling of volume of tissue activated and metabolic brain maps in essential tremor patients with and without progressive ataxia to disentangle a disease-related from a stimulation-induced aetiology. Ten subjects with stable and effective bilateral thalamic stimulation were stratified according to the presence (five subjects) of severe chronic-progressive gait ataxia. We quantified stimulated brain areas and identified the stimulation-induced brain metabolic changes by multiple 18 F-fluorodeoxyglucose positron emission tomography performed with and without active neurostimulation. Three days after deactivating thalamic stimulation and following an initial rebound of symptom severity, gait ataxia had dramatically improved in all affected patients, while tremor had worsened to the presurgical severity, thus indicating a stimulation rather than disease-related phenomenon. Models of the volume of tissue activated revealed a more ventrocaudal stimulation in the (sub)thalamic area of patients with progressive gait ataxia. Metabolic maps of both patient groups differed by an increased glucose uptake in the cerebellar nodule of patients with gait ataxia. Our data suggest that chronic progressive gait ataxia in essential tremor is a reversible cerebellar syndrome caused by a maladaptive response to neurostimulation of the (sub)thalamic area. The metabolic signature of progressive gait ataxia is an activation of the cerebellar nodule, which may be caused by inadvertent current spread and antidromic stimulation of a cerebellar outflow pathway originating in the vermis. An anatomical candidate could be the ascending limb of the uncinate tract in the subthalamic area. Adjustments in programming and precise placement of the electrode may prevent this adverse effect and help fine-tuning deep brain stimulation to ameliorate tremor without negative cerebellar signs. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Meniscus repair: the role of accelerated rehabilitation in return to sport.
Kozlowski, Erick J; Barcia, Anthony M; Tokish, John M
2012-06-01
With increasing understanding of the detrimental effects of the meniscectomized knee on outcomes and long-term durability, there is an ever increasing emphasis on meniscal preservation through repair. Repair in the young athlete is particularly challenging given the goals of returning to high-level sports. A healed meniscus is only the beginning of successful return to activity, and the understanding of "protection with progression" must be emphasized to ensure optimal return to performance. The principles of progression from low to high loads, single to multiplane activity, slow to high speeds, and stable to unstable platforms are cornerstones to this process. Emphasis on the kinetic chain environment that the knee will function within cannot be overemphasized. Communication between the operating surgeon and rehabilitation specialist is critical to optimizing effective return to sports.
Ghosh, Sayan; Mukherjee, Sudeshna; Choudhury, Sreetama; Gupta, Payal; Adhikary, Arghya; Baral, Rathindranath; Chattopadhyay, Sreya
2015-07-01
Macrophages are projected as one of the key players responsible for the progression of cancer. Classically activated (M1) macrophages are pro-inflammatory and have a central role in host defense, while alternatively activated (M2) macrophages are associated with immunosuppression. Macrophages residing at the site of neoplastic growth are alternately activated and are referred to as tumor-associated macrophages (TAMs). These "cooperate" with tumor tissue, promoting increased proliferation and immune escape. Selective serotonin reuptake inhibitors like fluoxetine have recently been reported to possess anti-inflammatory activity. We used fluoxetine to target tumor-associated inflammation and consequent alternate polarization of macrophages. We established that murine peritoneal macrophages progressed towards an altered activation state when exposed to cell-free tumor fluid, as evidenced by increased IL-6, IL-4 and IL-10 levels. These polarized macrophages showed significant pro-oxidant bias and increased p65 nuclear localization. It was further observed that these altered macrophages could induce oxidative insult and apoptosis in cultured mouse CD3(+) T cells. To validate these findings, we replicated key experiments in vivo, and observed that there was increased serum IL-6, IL-4 and IL-10 in tumor-bearing animals, with increased % CD206(+) cells within the tumor niche. TAMs showed increased nuclear localization of p65 with decreased Nrf2 expression in the nucleus. These results were associated with increase in apoptosis of CD3(+) T cells co-cultured with TAM-spent media. We could establish that fluoxetine treatment could specifically re-educate the macrophages both in vitro and in vivo by skewing their phenotype such that immune suppression mediated by tumor-dictated macrophages was successfully mitigated. Copyright © 2015 Elsevier Inc. All rights reserved.
Liao, Zhiming; Wang, Shihua; Boileau, Thomas W-M; Erdman, John W; Clinton, Steven K
2005-07-01
Characterization of molecular events during N-methyl-N-nitrosourea (MNU)-induced rat prostate carcinogenesis enhances the utility of this model for the preclinical assessment of preventive strategies. Androgen independence is typical of advanced human prostate cancer and may occur through multiple mechanisms including the loss of androgen receptor (AR) expression and the activation of alternative signaling pathways. We examined the interrelationships between AR and p-AKT expression by immunohistochemical staining during MNU-androgen-induced prostate carcinogenesis in male Wistar-Unilever rats. Histone nuclear staining and image analysis was employed to assess parallel changes in chromatin and nuclear structure. The percentage of AR positive nuclei decreased (P < 0.01) as carcinogenesis progressed: hyperplasia (92%), atypical hyperplasia (92%), well-differentiated adenocarcinoma (57%), moderately-differentiated adenocarcinoma (19%), and poorly-differentiated adenocarcinoma (10%). Conversely, p-AKT staining increased significantly during carcinogenesis. Sparse staining was observed in normal tissues (0.2% of epithelial area) and hyperplastic lesions (0.1%), while expression increased significantly (P < 0.001) in atypical hyperplasia (7.6%), well-differentiated adenocarcinoma (16.7%), moderately-differentiated adenocarcinoma (19.6%), and poorly-differentiated adenocarcinoma (17.4%). In parallel, nuclear morphometry revealed increased nuclear size, greater irregularity, and lower DNA compactness as cancers became more poorly differentiated. In the MNU model, the progressive evolution of dominant tumor cell populations showing an increase in p-AKT in parallel with a decline in AR staining suggests that activation of AKT signaling may be one of several mechanisms contributing to androgen insensitivity during prostate cancer progression. Our observations mimic findings suggested by human studies and support the relevance of the MNU model in preclinical studies of preventive strategies. (c) 2005 Wiley-Liss, Inc.
Nox2-derived ROS in PPARγ signaling and cell-cycle progression of lung alveolar epithelial cells
Tickner, Jennifer; Fan, Lampson M.; Du, Junjie; Meijles, Daniel; Li, Jian-Mei
2011-01-01
Reactive oxygen species (ROS) play important roles in peroxisome proliferator-activated receptor γ (PPARγ) signaling and cell-cycle regulation. However, the PPARγ redox-signaling pathways in lung alveolar epithelial cells remain unclear. In this study, we investigated the in vivo and in vitro effects of PPARγ activation on the levels of lung ROS production and cell-cycle progression using C57BL/6J wild-type and Nox2 knockout mice (n = 10) after intraperitoneal injection of a selective PPARγ agonist (GW1929, 5 mg/kg body wt, daily) for 14 days. Compared to vehicle-treated mice, GW1929 increased significantly the levels of ROS production in wild-type lungs, and this was accompanied by significant up-regulation of PPARγ, Nox2, PCNA, and cyclin D1 and phosphorylation of ERK1/2 and p38MAPK. These effects were absent in Nox2 knockout mice. In cultured alveolar epithelial cells, GW1929 (5 μM for 24 h) increased ROS production and promoted cell-cycle progression from G0/G1 into S and G2/M phases, and these effects were abolished by (1) adding a PPARγ antagonist (BADGE, 1 μM), (2) knockdown of PPARγ using siRNA, or (3) knockout of Nox2. In conclusion, PPARγ activation through Nox2-derived ROS promotes cell-cycle progression in normal mouse lungs and in cultured normal alveolar epithelial cells. PMID:21664456
Caromile, Leslie Ann; Dortche, Kristina; Rahman, M. Mamunur; Grant, Christina L.; Stoddard, Christopher; Ferrer, Fernando A.; Shapiro, Linda H.
2017-01-01
Increased abundance of the prostate-specific membrane antigen (PSMA) on prostate epithelium is a hallmark of advanced metastatic prostate cancer (PCa) and correlates negatively with prognosis. However, direct evidence that PSMA functionally contributes to PCa progression remains elusive. We generated mice bearing PSMA-positive or PSMA-negative PCa by crossing PSMA-deficient mice with transgenic PCa (TRAMP) models, enabling direct assessment of PCa incidence and progression in the presence or absence of PSMA. Compared with PSMA-positive tumors, PSMA-negative tumors were smaller, lower-grade, and more apoptotic with fewer blood vessels, consistent with the recognized proangiogenic function of PSMA. Relative to PSMA-positive tumors, tumors lacking PSMA had less than half the abundance of type 1 insulin-like growth factor receptor (IGF-1R), less activity in the survival pathway mediated by PI3K-AKT signaling, and more activity in the proliferative pathway mediated by MAPK-ERK1/2 signaling. Biochemically, PSMA interacted with the scaffolding protein RACK1, disrupting signaling between the β1 integrin and IGF-1R complex to the MAPK pathway, enabling activation of the AKT pathway instead. Manipulation of PSMA abundance in PCa cell lines recapitulated this signaling pathway switch. Analysis of published databases indicated that IGF-1R abundance, cell proliferation, and expression of transcripts for antiapoptotic markers positively correlated with PSMA abundance in patients, suggesting that this switch may be relevant to human PCa. Our findings suggest that increase in PSMA in prostate tumors contributes to progression by altering normal signal transduction pathways to drive PCa progression and that enhanced signaling through the IGF-1R/β1 integrin axis may occur in other tumors. PMID:28292957
Assessing Decision Making in Young Adult Romantic Relationships
ERIC Educational Resources Information Center
Vennum, Amber; Fincham, Frank D.
2011-01-01
Romantic relationships among young adults are rich with ambiguity and without a clear, universal progression emphasizing the need for active decision making. Lack of active decision making in romantic relationships can lead to increases in constraints (e.g. pregnancy, shared living space or finances) that promote the continuation of relationships…
Functional brain imaging across development.
Rubia, Katya
2013-12-01
The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to a more mature and controlled cognition.
Imaging Features of Patients Undergoing Active Surveillance for Ductal Carcinoma in Situ.
Grimm, Lars J; Ghate, Sujata V; Hwang, E Shelley; Soo, Mary Scott
2017-11-01
The aim of this study was to describe the imaging appearance of patients undergoing active surveillance for ductal carcinoma in situ (DCIS). We retrospectively identified 29 patients undergoing active surveillance for DCIS from 2009 to 2014. Twenty-two patients (group 1) refused surgery or were not surgical candidates. Seven patients (group 2) enrolled in a trial of letrozole and deferred surgical excision for 6-12 months. Pathology and imaging results at the initial biopsy and follow-up were recorded. In group 1, the median follow-up was 2.7 years (range: 0.6-13.9 years). Fifteen patients (68%) remained stable. Seven patients (32%) underwent additional biopsies with invasive ductal carcinoma diagnosed in two patients after 3.9 and 3.6 years who developed increasing calcifications and new masses. In group 2, one patient (14%) was upstaged to microinvasive ductal carcinoma at surgery. Among the patients in both groups with calcifications (n = 26), there was no progression to invasive disease among those with stable (50%, 13/26) or decreased (19%, 5/26) calcifications. Among a DCIS active surveillance cohort, invasive disease progression presented as increasing calcifications and a new mass following more than 3.5 years of stable imaging. In contrast, there was no progression to invasive disease among cases of DCIS with stable or decreasing calcifications. Close imaging is a key follow-up component in active surveillance. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Kim-Fuchs, Corina; Le, Caroline P.; Pimentel, Matthew A.; Shackleford, David; Ferrari, Davide; Angst, Eliane; Hollande, Frédéric; Sloan, Erica K.
2014-01-01
Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer. PMID:24650449
Joseph, Jane E.; Gathers, Ann D.; Bhatt, Ramesh S.
2010-01-01
Face processing undergoes a fairly protracted developmental time course but the neural underpinnings are not well understood. Prior fMRI studies have only examined progressive changes (i.e., increases in specialization in certain regions with age), which would be predicted by both the Interactive Specialization (IS) and maturational theories of neural development. To differentiate between these accounts, the present study also examined regressive changes (i.e., decreases in specialization in certain regions with age), which is predicted by the IS but not maturational account. The fMRI results show that both progressive and regressive changes occur, consistent with IS. Progressive changes mostly occurred in occipital-fusiform and inferior frontal cortex whereas regressive changes largely emerged in parietal and lateral temporal cortices. Moreover, inconsistent with the maturational account, all of the regions involved in face viewing in adults were active in children, with some regions already specialized for face processing by 5 years of age and other regions activated in children but not specifically for faces. Thus, neurodevelopment of face processing involves dynamic interactions among brain regions including age-related increases and decreases in specialization and the involvement of different regions at different ages. These results are more consistent with IS than maturational models of neural development. PMID:21399706
Matoso, Andres; Hassan, Oudai; Petrozzino, Florencia; Rao, B Vishal; Carter, H Ballentine; Epstein, Jonathan I
2015-09-01
We studied adverse radical prostatectomy findings in men on an active surveillance program with different entry and exit criteria. The study included 80 men with biopsy progression, 33 who opted out for personal reasons and 24 who initially did not meet entry criteria mainly due to increased prostate specific antigen density. Of men who opted out 78.8% had a higher Gleason score of 6 than men who progressed on biopsy (46.2%, p = 0.002) and men with high prostate specific antigen density (45.8%, p = 0.02). Men with high prostate specific antigen density had less organ confined disease than the group that opted out (p <0.006) and a trend compared to the biopsy progression group (p = 0.07). Mean dominant tumor volume was lower in men who opted out than in those with biopsy progression (0.56 vs 1.1 cc, p = 0.03). The incidence of insignificant cancer was higher in men who opted out (48.4%) than in those with biopsy progression (28.4%, p = 0.05) and those with high prostate specific antigen density (20.8%, p = 0.035). There was a higher incidence of anterior tumor in men with high prostate specific antigen density (55.0%) than with biopsy progression (21.3%, p = 0.009) and a trend compared to those who opted out (27.3%, p = 0.06). The majority of men with biopsy progression still had tumors with features of curable disease. Men who opted out without biopsy progression had even less adverse findings, which supports counseling men to stay on active surveillance while they meet followup criteria. Men with elevated prostate specific antigen density had more anterior tumors and less organ confined cancer, substantiating that the ideal patients for active surveillance are those who meet all entry criteria. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Genetic mouse models of brain ageing and Alzheimer's disease.
Bilkei-Gorzo, Andras
2014-05-01
Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.
Gladman, Stacy; Biggio, Maria Luigia; Marino, Marianna; Jayasinghe, Maduka; Ullah, Farhan; Dyall, Simon C.; Malaspina, Andrea; Bendotti, Caterina; Michael-Titus, Adina
2013-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease characterised by loss of motor neurons that currently has no cure. Omega-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), have many health benefits including neuroprotective and myoprotective potential. We tested the hypothesis that a high level of dietary EPA could exert beneficial effects in ALS. The dietary exposure to EPA (300 mg/kg/day) in a well-established mouse model of ALS expressing the G93A superoxide dismutase 1 (SOD1) mutation was initiated at a pre-symptomatic or symptomatic stage, and the disease progression was monitored until the end stage. Daily dietary EPA exposure initiated at the disease onset did not significantly alter disease presentation and progression. In contrast, EPA treatment initiated at the pre-symptomatic stage induced a significantly shorter lifespan. In a separate group of animals sacrificed before the end stage, the tissue analysis showed that the vacuolisation detected in G93A-SOD1 mice was significantly increased by exposure to EPA. Although EPA did not alter motor neurone loss, EPA reversed the significant increase in activated microglia and the astrocytic activation seen in G93A-SOD1 mice. The microglia in the spinal cord of G93A-SOD1 mice treated with EPA showed a significant increase in 4-hydroxy-2-hexenal, a highly toxic aldehydic oxidation product of omega-3 fatty acids. These data show that dietary EPA supplementation in ALS has the potential to worsen the condition and accelerate the disease progression. This suggests that great caution should be exerted when considering dietary omega-3 fatty acid supplements in ALS patients. PMID:23620776
Frentzou, Georgia A; Drinkhill, Mark J; Turner, Neil A; Ball, Stephen G; Ainscough, Justin F X
2015-08-01
Cardiac dysfunction is commonly associated with high-blood-pressure-induced cardiomyocyte hypertrophy, in response to aberrant renin-angiotensin system (RAS) activity. Ensuing pathological remodelling promotes cardiomyocyte death and cardiac fibroblast activation, leading to cardiac fibrosis. The initiating cellular mechanisms that underlie this progressive disease are poorly understood. We previously reported a conditional mouse model in which a human angiotensin II type-I receptor transgene (HART) was expressed in differentiated cardiomyocytes after they had fully matured, but not during development. Twelve-month-old HART mice exhibited ventricular dysfunction and cardiomyocyte hypertrophy with interstitial fibrosis following full receptor stimulation, without affecting blood pressure. Here, we show that chronic HART activity in young adult mice causes ventricular dysfunction without hypertrophy, fibrosis or cardiomyocyte death. Dysfunction correlated with reduced expression of pro-hypertrophy markers and increased expression of pro-angiogenic markers in the cardiomyocytes experiencing increased receptor load. This stimulates responsive changes in closely associated non-myocyte cells, including the downregulation of pro-angiogenic genes, a dampened inflammatory response and upregulation of Tgfβ. Importantly, this state of compensated dysfunction was reversible. Furthermore, increased stimulation of the receptors on the cardiomyocytes caused a switch in the secondary response from the non-myocyte cells. Progressive cardiac remodelling was stimulated through hypertrophy and death of individual cardiomyocytes, with infiltration, proliferation and activation of fibroblast and inflammatory cells, leading to increased angiogenic and inflammatory signalling. Together, these data demonstrate that a state of pre-hypertrophic compensated dysfunction can exist in affected individuals before common markers of heart disease are detectable. The data also suggest that there is an initial response from the housekeeping cells of the heart to signals emanating from distressed neighbouring cardiomyocytes to suppress those changes most commonly associated with progressive heart disease. We suggest that the reversible nature of this state of compensated dysfunction presents an ideal window of opportunity for personalised therapeutic intervention. © 2015. Published by The Company of Biologists Ltd.
Lehne, Gesa; Bolte, Gabriele
2017-02-10
Physical activity is one of the most important contributors to healthy aging. Public health strategies aiming to promote physical activity among older adults are increasingly being implemented. However, little is known about their impact on social inequalities. Purpose of the study was to analyze whether and how studies of interventions consider effects on social inequalities in physical activity among older adults. Nine electronic databases were searched to identify quantitative studies evaluating the effects of interventions on self-reported or objectively measured physical activity among the general population of older adults (≥50 years). English and German language peer-reviewed journal articles published between 2005 and 2015 were included. Using the PROGRESS-Plus framework, data on whether and how social factors were considered both for describing participants' baseline characteristics and for measuring intervention effects were systematically extracted. Studies examining differential intervention effects by at least one PROGRESS-Plus factor were quality assessed. Results were presented in narrative synthesis. Fifty-nine studies were included. Beside age and sex, 44 studies used at least 1 further PROGRESS-Plus factor for the description of participants' baseline characteristics. When measuring intervention effects, 22 studies considered PROGRESS-Plus factors as control variables. Eleven studies reported having analyzed potential effects on inequalities by testing interaction effects, stratifying effect analyses, or exploring associations between PROGRESS-Plus factors and increases in physical activity following an intervention. Effects were most often analyzed by gender/sex (n = 9) and age (n = 9), followed by education (n = 3), marital status (n = 2), and race/ethnicity (n = 2). Five studies pointed to gender/sex- or age-specific intervention effects, indicating that some interventions affect males and females, and younger and older individuals differently. Many studies evaluating the effects of interventions on physical activity among older adults have not exploited the potential for assessing effects on social inequalities so far. There is an urgent need for systematic application of appropriate methodological approaches and transparent reporting of social inequalities-related findings which can provide important indications for the design of those interventions most likely to be effective across all social groups of older adults. PROSPERO registration number: CRD42015025066.
Huynh, Thu P.; Mah, Vei; Sampson, Valerie B.; Chia, David; Fishbein, Michael C.; Horvath, Steve; Alavi, Mohammad; Wu, Debbie C.; Harper, Jeffrey; Sarafian, Ted; Dubinett, Steven M.; Langhans, Sigrid A.; Goodglick, Lee
2012-01-01
Diminished Na,K-ATPase expression has been reported in several carcinomas and has been linked to tumor progression. However, few studies have determined whether Na,K-ATPase function and expression are altered in lung malignancies. Because cigarette smoke (CS) is a major factor underlying lung carcinogenesis and progression, we investigated whether CS affects Na,K-ATPase activity and expression in lung cell lines. Cells exposed to CS in vitro showed a reduction of Na,K-ATPase activity. We detected the presence of reactive oxygen species (ROS) in cells exposed to CS before Na,K-ATPase inhibition, and neutralization of ROS restored Na,K-ATPase activity. We further determined whether Na,K-ATPase expression correlated with increasing grades of lung adenocarcinoma and survival of patients with smoking history. Immunohistochemical analysis of lung adenocarcinoma tissues revealed reduced Na,K-ATPase expression with increasing tumor grade. Using tissue microarray containing lung adenocarcinomas of patients with known smoking status, we found that high expression of Na,K-ATPase correlated with better survival. For the first time, these data demonstrate that CS is associated with loss of Na,K-ATPase function and expression in lung carcinogenesis, which might contribute to disease progression. PMID:22345575
Li, Peiyue; Tian, Rui; Xue, Chenyang; Wu, Jianhua
2017-05-01
Groundwater quality research is extremely important for supporting the safety of the water supply and human health in arid and semi-arid areas of China. This review article was constructed to report the latest research progress of groundwater quality in western China where groundwater quality is undergoing fast deterioration because of fast economic development and extensive anthropogenic activities. The opportunities brought by increasing public awareness of groundwater quality protection were also highlighted and discussed. To guide and promote further development of groundwater quality research in China, especially in western China, ten key groundwater quality research fields were proposed. The review shows that the intensification of human activities and the associated impacts on groundwater quality in China, especially in western China, has made groundwater quality research increasingly important, and has caught the attention of local, national, and international agencies and scholars. China has achieved some progress in groundwater quality research in terms of national and regional laws, regulations, and financial supports. The future of groundwater quality research in China, especially in western China, is promising reflected by the opportunities highlighted. The key research fields proposed in this article may also inform groundwater quality protection and management at the national and international level.
Sugimura, Mitsutaka; Hirose, Yohsuke; Hanamoto, Hiroshi; Okada, Kenji; Boku, Aiji; Morimoto, Yoshinari; Taki, Kunitaka; Niwa, Hitoshi
2008-01-01
The purpose of this study is to examine the influence of acute progressive hypoxia on cardiovascular variability and striatal dopamine (DA) levels in conscious, spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). After preparation for measurement, the inspired oxygen concentration of rats was decreased to 10% within 5 min (descent stage), maintained at 10% for 10 min (fixed stage), and then elevated back to 20% over 5 min (recovery stage). The systolic blood pressure (SBP) and heart rate (HR) variability at each stage was calculated to evaluate the autonomic nervous system response using the wavelet method. Striatal DA during each stage was measured using in vivo microdialysis. We found that SHR showed a more profound hemodynamic response to progressive hypoxia as compared to WKY. Cardiac parasympathetic activity in SHR was significantly inhibited by acute progressive hypoxia during all stages, as shown by the decrease in the high frequency band of HR variability (HR-HF), along with transient increase in sympathetic activity during the early hypoxic phase. This decrease in the HR-HF continued even when SBP was elevated. Striatal DA levels showed the transient similar elevation in both groups. These findings suggest that acute progressive hypoxic stress in SHR inhibits cardiac parasympathetic activity through reduction of baroreceptor reflex sensitivity, with potentially severe deleterious effects on circulation, in particular on HR and circulatory control. Furthermore, it is thought that the influence of acute progressive hypoxia on striatal DA levels is similar in SHR and WKY. PMID:18599365
Understanding activity participation among individuals with Wolfram Syndrome.
Bumpus, Emily; Hershey, Tamara; Doty, Tasha; Ranck, Samantha; Gronski, Meredith; Urano, Fumihko; Foster, Erin R
2018-06-01
Wolfram Syndrome (WFS) is a rare genetic disease associated with a variety of progressive metabolic and neurologic impairments. Previous research has focused on WFS-related impairments and biomarkers for disease progression; however, information about how WFS impacts participation in daily activities is lacking. WFS (n=45; 20 children, 25 adults) participants completed an online questionnaire about activity participation. Thirty-six non-WFS comparison participants (11 children; 25 adults) completed a portion of the questionnaire. Symptom data from a subset of WFS participants (n=20) were also examined in relation to participation data. WFS children and adults had lower participation than non-WFS children and adults in almost all activity domains, and social and exercise-related activities were the most problematic. In the subset of WFS adults with symptom data, poorer vision, balance, gait, hearing, and overall symptom severity related to lower participation. WFS appears to negatively impact participation in a variety of activities, and this effect may increase as people age and/or WFS progresses. The most functionally-pertinent WFS symptoms are those associated with neurodegeneration especially vision loss and walking and balance problems. This study revealed symptoms and activity domains that are most relevant for people with WFS and, thus, can inform current practice and treatment development research.
Wu, Lijun; Zhang, Xu; Zhang, Bin; Shi, Hui; Yuan, Xiao; Sun, Yaoxiang; Pan, Zhaoji; Qian, Hui; Xu, Wenrong
2016-09-01
Exosomes are nano-sized membrane vesicles secreted by both normal and cancer cells. Emerging evidence indicates that cancer cells derived exosomes contribute to cancer progression through the modulation of tumor microenvironment. However, the effects of exosomes derived from gastric cancer cells on macrophages are not well understood. In this study, we investigated the biological role of gastric cancer cells derived exosomes in the activation of macrophages. We demonstrated that gastric cancer cells derived exosomes activated macrophages to express increased levels of proinflammatory factors, which in turn promoted tumor cell proliferation and migration. In addition, gastric cancer cells derived exosomes remarkably upregulated the phosphorylation of NF-κB in macrophages. Inhibiting the activation of NF-κB reversed the upregulation of proinflammatory factors in macrophages and blocked their promoting effects on gastric cancer cells. Moreover, we found that gastric cancer cells derived exosomes could also activate macrophages from human peripheral blood monocytes through the activation of NF-κB. In conclusion, our results suggest that gastric cancer cells derived exosomes stimulate the activation of NF-κB pathway in macrophages to promote cancer progression, which provides a potential therapeutic approach for gastric cancer by interfering with the interaction between exosomes and macrophages in tumor microenvironment.
Ferrara, Filippo; Meli, Francesco; Raimondi, Francesco; Montalto, Salvatore; Cospite, Valentina; Novo, Giuseppina; Novo, Salvatore
2013-04-01
The objective of this study was to evaluate whether the presence of a plasminogen activator inhibitor type 1 (PAI-1) promoter polymorphism 4G/5G could significantly influence the proximal extension of vein thrombosis in spite of anticoagulant treatment in patients with calf vein thrombosis (CVT) following orthopaedic, urological and abdominal surgery. We studied 168 patients with CVT, who had undergone orthopaedic, urological and abdominal surgery, subdivided as follows: first, 50 patients with thrombosis progression; second, 118 patients without thrombosis progression. The 4G/5G polymorphism of the plasminogen activator inhibitor 1 was evaluated in all patients and in 70 healthy matched controls. We also studied PAI-1 activity in plasma. The presence of 4G/5G genotype was significantly increased in the group of patients with the extension of thrombotic lesions and was associated with an increase in CVT extension risk (odds ratio adjusted for sex 2.692; 95% confidence interval 1.302-4.702). Moreover, we observed a significant increase of PAI-1 plasma activity in patients with extension of thrombotic lesion vs. patients without extension (P=0.0001). Patients with 4G/5G genotype in the promoter of the plasminogen activator inhibitor - 1 gene present a higher risk of extension of thrombotic lesions.
Hybrid Spreading Mechanisms and T Cell Activation Shape the Dynamics of HIV-1 Infection
Zhang, Changwang; Zhou, Shi; Groppelli, Elisabetta; Pellegrino, Pierre; Williams, Ian; Borrow, Persephone; Chain, Benjamin M.; Jolly, Clare
2015-01-01
HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spreading mechanism, which is also a characteristic of some important computer worm outbreaks, to HIV-1 progression in vivo remains unknown. Here we present a new mathematical model that explicitly incorporates the ability of HIV-1 to use hybrid spreading mechanisms and evaluate the consequences for HIV-1 pathogenenesis. The model captures the major phases of the HIV-1 infection course of a cohort of treatment naive patients and also accurately predicts the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) trial. Using this model we find that hybrid spreading is critical to seed and establish infection, and that cell-to-cell spread and increased CD4+ T cell activation are important for HIV-1 progression. Notably, the model predicts that cell-to-cell spread becomes increasingly effective as infection progresses and thus may present a considerable treatment barrier. Deriving predictions of various treatments’ influence on HIV-1 progression highlights the importance of earlier intervention and suggests that treatments effectively targeting cell-to-cell HIV-1 spread can delay progression to AIDS. This study suggests that hybrid spreading is a fundamental feature of HIV infection, and provides the mathematical framework incorporating this feature with which to evaluate future therapeutic strategies. PMID:25837979
[Kidney transplantation epidemiology in France].
Hiesse, Christian
2013-11-01
Kidney transplantation activity in France is among the most important worldwide: in 2011, 2976 transplants have been performed (47.5 per million population), and the number of patients living with a functional graft is estimated around 30,000, representing 44.7% of all patients (n = 67,270) treated for end-stage renal failure. However, the rate of preemptive kidney transplants remains very low, only 3.3% of incident patients starting renal replacement therapy. The analysis of demand showed a progressive increase in recent years, as demonstrated by the registration rate on the kidney transplantation waiting list, increasing by 5% yearly between 2006 and 2010, but with huge differences according to age categories and regional registration areas, reflecting discrepant appreciations in indications for kidney transplantation. The median waiting time between registration and transplantation increased progressively in recent years, reaching 22.3 months with considerable variations according to regional areas and transplantation teams. Kidney transplantation activity, while increasing continuously, is far to cover the rising demand, and inexorably patients accumulate on the waiting list (around 9000 patients were registered by January 2012). This situation is the consequence of insufficient organ procurement activity. The deceased organ procurement rate remained high: 1572 harvested donors in 2011 (24.1 per million population), but the proportion of older donors rose in recent years, to reach the rate of 26% of donors older than 65 years in 2011. The procurement activity of donors after cardiac arrest was reintroduced in 2006, but increased slowly: 65 transplants were performed in 2011 using kidney procured in non heart-beating donors. The living donor kidney transplantation activity has markedly increased recently: 302 living donor transplantations were performed in 2011, representing 10.1% of the kidney transplantations. Facing the predictable increase in the number of candidates, all efforts should be put together, by increasing the living donor transplantation activity and by supporting and promoting the deceased donor procurement activity. Copyright © 2013 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.
Habgood, Anthony N; Tatler, Amanda L; Porte, Joanne; Wahl, Sharon M; Laurent, Geoffrey J; John, Alison E; Johnson, Simon R; Jenkins, Gisli
2016-06-01
Idiopathic pulmonary fibrosis is a progressive, fatal disease with limited treatment options. Protease-mediated transforming growth factor-β (TGF-β) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi(-/-) mice following injury. Slpi(-/-), and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase (MMP)-2 and MMP-9 were measured. Lung fibrosis was determined by collagen subtype-specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-β activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-β activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi(-/-) animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-β activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post bleomycin. In contrast Slpi(-/-) mice showed no significant increase of alveolar TGF-β activity following bleomycin, above their already elevated levels, although global TGF-β activity did increase. Slpi(-/-) mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-β activation, and inhibits sustained Col1α1, Col3α1, and Col4α1 gene expression following lung injury. However, these changes do not prevent the development of lung fibrosis. Overall, these data suggest that the absence of Slpi does not markedly modify the development of lung fibrosis following bleomycin-induced lung injury.
Thomas, L K; Hislop, H J; Waters, R L
1980-04-01
Fifteen patients were tested before and after treatment in a multifaceted inpatient program for chronic low back pain to determine if a gradually progressive activity program affected gait performance and physiological capacity. Before treatment, all patients demonstrated decreased physiological conditioning by higher-than-expected values for oxygen consumption and heart rate and by lower-than-normal gait velocity, stride length, and cadence. After treatment, an increase in mean walking velocity of 19 meters/minute reflected parallel gains in cadence and stride length. Improved mechanical performance resulted in improved "energetics." Energy spent per unit of distance walked decreased by 18 percent after treatment, providing a useful measure of increased physiological efficiency. Results indicated that patients with chronic low back disability can derive significant conditioning effects from an exercise program based on general function.
Progressive hypoxia decouples activity and aerobic performance of skate embryos
Di Santo, Valentina; Tran, Anna H.; Svendsen, Jon C.
2016-01-01
Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, Scrit). Below Scrit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation. PMID:27293746
Progressive hypoxia decouples activity and aerobic performance of skate embryos.
Di Santo, Valentina; Tran, Anna H; Svendsen, Jon C
2016-01-01
Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, S crit). Below S crit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation.
Liver Inflammation and Metabolic Signaling in ApcMin/+ Mice: The Role of Cachexia Progression
Narsale, Aditi A.; Enos, Reilly T.; Puppa, Melissa J.; Chatterjee, Saurabh; Murphy, E. Angela; Fayad, Raja; Pena, Majorette O’; Durstine, J. Larry; Carson, James A.
2015-01-01
The ApcMin/+ mouse exhibits an intestinal tumor associated loss of muscle and fat that is accompanied by chronic inflammation, insulin resistance and hyperlipidemia. Since the liver governs systemic energy demands through regulation of glucose and lipid metabolism, it is likely that the liver is a pathological target of cachexia progression in the ApcMin/+ mouse. The purpose of this study was to determine if cancer and the progression of cachexia affected liver endoplasmic reticulum (ER)-stress, inflammation, metabolism, and protein synthesis signaling. The effect of cancer (without cachexia) was examined in wild-type and weight-stable ApcMin/+ mice. Cachexia progression was examined in weight-stable, pre-cachectic, and severely-cachectic ApcMin/+ mice. Livers were analyzed for morphology, glycogen content, ER-stress, inflammation, and metabolic changes. Cancer induced hepatic expression of ER-stress markers BiP (binding immunoglobulin protein), IRE-1α (endoplasmic reticulum to nucleus signaling 1), and inflammatory intermediate STAT-3 (signal transducer and activator of transcription 3). While gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression was suppressed by cancer, glycogen content or protein synthesis signaling remained unaffected. Cachexia progression depleted liver glycogen content and increased mRNA expression of glycolytic enzyme PFK (phosphofrucktokinase) and gluconeogenic enzyme PEPCK. Cachexia progression further increased pSTAT-3 but suppressed p-65 and JNK (c-Jun NH2-terminal kinase) activation. Interestingly, progression of cachexia suppressed upstream ER-stress markers BiP and IRE-1α, while inducing its downstream target CHOP (DNA-damage inducible transcript 3). Cachectic mice exhibited a dysregulation of protein synthesis signaling, with an induction of p-mTOR (mechanistic target of rapamycin), despite a suppression of Akt (thymoma viral proto-oncogene 1) and S6 (ribosomal protein S6) phosphorylation. Thus, cancer induced ER-stress markers in the liver, however cachexia progression further deteriorated liver ER-stress, disrupted protein synthesis regulation and caused a differential inflammatory response related to STAT-3 and NF-κB (Nuclear factor—κB) signaling. PMID:25789991
Bellussi, F; Alcamisi, L; Guizzardi, G; Parma, D; Pilu, G
2018-03-13
To investigate the usefulness of visual biofeedback using transperineal ultrasound to improve coached pushing during the active second stage of labor in nulliparous women. This was a randomized controlled trial of low-risk nulliparous women in the active second stage of labor. Patients were allocated to either coached pushing aided by visual demonstration on transperineal ultrasound of the progress of the fetal head (sonographic coaching) or traditional coaching. Patients in both groups were coached by an obstetrician for the first 20 min of the active second stage of labor and, subsequently, the labor was supervised by a midwife. Primary outcomes were duration of the active second stage and increase in the angle of progression at the end of the coaching process. Secondary outcomes included the incidence of operative delivery and complications of labor. Forty women were recruited into the study. Those who received sonographic coaching had a shorter active phase of the second stage (30 min (interquartile range (IQR), 24-42 min) vs 45 min (IQR, 39-55 min); P = 0.01) and a greater increase in the angle of progression (13.5° (IQR, 9-20°) vs 5° (IQR, 3-9.5°); P = 0.01) in the first 20 min of the active second stage of labor than did those who had traditional coaching. No differences were found in the secondary outcomes between the two groups. Our preliminary data suggest that transperineal ultrasound may be a useful adjunct to coached pushing during the active second stage of labor. Further studies are required to confirm these findings and better define the benefits of this approach. Copyright © 2018 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2018 ISUOG. Published by John Wiley & Sons Ltd.
Kumaraswamy, Easwari; Shiekhattar, Ramin
2007-01-01
BACH1 (also known as FANCJ and BRIP1) is a DNA helicase that directly interacts with the C-terminal BRCT repeat of the breast cancer susceptibility protein BRCA1. Previous biochemical and functional analyses have suggested a role for the BACH1 homolog in Caenorhabditis elegans during DNA replication. Here, we report the association of BACH1 with a distinct BRCA1/BRCA2-containing complex during the S phase of the cell cycle. Depletion of BACH1 or BRCA1 using small interfering RNAs results in delayed entry into the S phase of the cell cycle. Such timely progression through S phase requires the helicase activity of BACH1. Importantly, cells expressing a dominant negative mutation in BACH1 that results in a defective helicase displayed increased activation of DNA damage checkpoints and genomic instability. BACH1 helicase is silenced during the G1 phase of the cell cycle and is activated through a dephosphorylation event as cells enter S phase. These results point to a critical role for BACH1 helicase activity not only in the timely progression through the S phase but also in maintaining genomic stability. PMID:17664283
Pupil Inquiry Behavior Analysis and Change Activity. Interim Project Report.
ERIC Educational Resources Information Center
Manion, Raymond C.
This interim report discusses progress toward three major goals of the Pupil Inquiry Behavior Analysis and Change Activity: increased pupil inquiry, changed teacher behavior to facilitate pupil inquiry, and the development of a 32-week course of instruction to provide for these behavioral changes. Data currently available deals with the emotional…
Effect of prolonged hypodynamia on certain physiological functions in dogs
NASA Technical Reports Server (NTRS)
Yaremenko, B. R.
1979-01-01
The behavior of 20 dogs whose mobility was restricted was experimentally investigated. Their reactions to hypodynamia were either active behavior or progressive general depression and increased muscular weakness. Arterial pressure, pressor sinocarotid reflex valve, body weight, pulse rate, body temperature, and plasma cholinesterase activity were monitered for 28 days. Results are reported.
Liu, Jing; Ma, Kun Ling; Gao, Min; Wang, Chang Xian; Ni, Jie; Zhang, Yang; Zhang, Xiao Liang; Liu, Hong; Wang, Yan Li; Liu, Bi Cheng
2012-01-01
Chronic inflammation plays a crucial role in the progression of vascular calcification (VC). This study was designed to investigate whether the low-density lipoprotein receptor (LDLr) pathway is involved in the progression of VC in patients with end-stage renal disease (ESRD) during inflammation. Twenty-eight ESRD patients were divided into control and inflamed groups according to plasma C-reactive protein (CRP) level. Surgically removed tissues from the radial arteries of patients receiving arteriovenostomy were used in the experiments. The expression of tumour necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1) of the radial artery were increased in the inflamed group. Hematoxylin-eosin and alizarin red S staining revealed parallel increases in foam cell formation and calcium deposit formation in continuous cross-sections of radial arteries in the inflamed group compared to the control, which were closely correlated with increased LDLr, sterol regulatory element binding protein-2 (SREBP-2), bone morphogenetic proteins-2 (BMP-2), and collagen I protein expression, as shown by immunohistochemical and immunofluorescent staining. Confocal microscopy confirmed that inflammation enhanced the translocation of the SREBP cleavage-activating protein (SCAP)/SREBP-2 complex from the endoplasmic reticulum to the Golgi, thereby activating LDLr gene transcription. Inflammation increased alkaline phosphatase protein expression and reduced α-smooth muscle actin protein expression, contributing to the conversion of the vascular smooth muscle cells in calcified vessels from the fibroblastic to the osteogenic phenotype; osteogenic cells are the main cellular components involved in VC. Further analysis showed that the inflammation-induced disruption of the LDLr pathway was significantly associated with enhanced BMP-2 and collagen I expression. Inflammation accelerated the progression of VC in ESRD patients by disrupting the LDLr pathway, which may represent a novel mechanism involved in the progression of both VC and atherosclerosis.
MC1R and cAMP signaling inhibit cdc25B activity and delay cell cycle progression in melanoma cells
Lyons, Jesse; Bastian, Boris C.; McCormick, Frank
2013-01-01
The melanocortin 1 receptor (MC1R) mediates the tanning response through induction of cAMP and downstream pigmentary enzymes. Diminished function alleles of MC1R are associated with decreased tanning and increased melanoma risk, which has been attributed to increased rates of mutation. We have found that MC1R or cAMP signaling also directly decreases proliferation in melanoma cell lines. MC1R overexpression, treatment with the MC1R ligand, or treatment with small-molecule activators of cAMP signaling causes delayed progression from G2 into mitosis. This delay is caused by phosphorylation and inhibition of cdc25B, a cyclin dependent kinase 1-activating phosphatase, and is rescued by expression of a cdc25B mutant that cannot be phosphorylated at the serine 323 residue. These results show that MC1R and cAMP signaling can directly inhibit melanoma growth through regulation of the G2/M checkpoint. PMID:23908401
Li, Xuejiao; Jiang, Zhongxiu; Li, Xiangmin; Zhang, Xiaoye
2018-01-01
Osteopontin (OPN) is a promoter for tumor progression. It has been reported to promote non-small cell lung cancer (NSCLC) progression via the activation of nuclear factor-κB (NF-κB) signaling. As the increased acetylation of NF-κB p65 is linked to NF-κB activation, the regulation of NF-κB p65 acetylation could be a potential treatment target for OPN-induced NSCLC progression. Sirtuin 1 (SIRT1) is a deacetylase, and the role of SIRT1 in tumor progression is still controversial. The effect and mechanism of SIRT1 on OPN-induced tumor progression remains unknown. The results presented in this research demonstrated that OPN inhibited SIRT1 expression and promoted NF-κB p65 acetylation in NSCLC cell lines (A549 and NCI-H358). In this article, overexpression of SIRT1 was induced by infection of SIRT1-overexpressing lentiviral vectors. The overexpression of SIRT1 protected NSCLC cells against OPN-induced NF-κB p65 acetylation and epithelial-mesenchymal transition (EMT), as indicated by the reduction of OPN-induced changes in the expression levels of EMT-related markers and cellular morphology. Furthermore, SIRT1 overexpression significantly attenuated OPN-induced cell proliferation, migration and invasion. Moreover, overexpression of SIRT1 inhibited OPN-induced NF-κB activation. As OPN induced NSCLC cell EMT through activation of NF-κB signaling, OPN-induced SIRT1 downregulation may play an important role in NSCLC cell EMT via NF-κB signaling. The results suggest that SIRT1 could be a tumor suppressor to attenuate OPN-induced NSCLC progression through the regulation of NF-κB signaling.
The Role ERG and CXCR4 in Prostate Cancer Progression
2011-06-01
axis functions in PC progression to enhance invasion and metastasis. To address the regulation of CXCR4 expression, we identified several putative ERG...interaction between ERG factor and CXCR4 gene promoter and link these activities with TMPRSS2-ERG translocations and enhanced metastasis of tumor cells via...and increased VCaP nuclear extract protein in assay enhanced the intensity of bands (Figure 1D). Inclusion of anti-ERG antibodies super shifted
2006-09-01
NM, Joyner MJ. Influence of increased central venous pressure on baroreflex control of sympathetic activity in humans. Am J Physiol Heart Circ Physiol...Arterial Pulse Pressure and Its Association With Reduced Stroke Volume During Progressive Central Hypovolemia Victor A. Convertino, PhD, William H...reduction of SV and change in MSNA during graded central hypovolemia in humans. Methods: After a 12-minute baseline data collection period, 13 men were
Morel, Agnieszka; Bijak, Michał; Miller, Elżbieta; Rywaniak, Joanna; Miller, Sergiusz; Saluk, Joanna
2015-01-01
Multiple sclerosis (MS) is the autoimmune disease of the central nervous system with complex pathogenesis, different clinical courses and recurrent neurological relapses and/or progression. Despite various scientific papers that focused on early stage of MS, our study targets selective group of late stage secondary progressive MS patients. The presented work is concerned with the reactivity of blood platelets in primary hemostasis in SP MS patients. 50 SP MS patients and 50 healthy volunteers (never diagnosed with MS or other chronic diseases) were examined to evaluate the biological activity of blood platelets (adhesion, aggregation), especially their response to the most important physiological agonists (thrombin, ADP, and collagen) and the effect of oxidative stress on platelet activity. We found that the blood platelets from SP MS patients were significantly more sensitive to all used agonists in comparison with control group. Moreover, the platelet hemostatic function was advanced in patients suffering from SP MS and positively correlated with increased production of O2 (-∙) in these cells, as well as with Expanded Disability Status Scale. We postulate that the increased oxidative stress in blood platelets in SP MS may be primarily responsible for the altered haemostatic properties of blood platelets.
Bijak, Michał; Miller, Elżbieta; Miller, Sergiusz
2015-01-01
Multiple sclerosis (MS) is the autoimmune disease of the central nervous system with complex pathogenesis, different clinical courses and recurrent neurological relapses and/or progression. Despite various scientific papers that focused on early stage of MS, our study targets selective group of late stage secondary progressive MS patients. The presented work is concerned with the reactivity of blood platelets in primary hemostasis in SP MS patients. 50 SP MS patients and 50 healthy volunteers (never diagnosed with MS or other chronic diseases) were examined to evaluate the biological activity of blood platelets (adhesion, aggregation), especially their response to the most important physiological agonists (thrombin, ADP, and collagen) and the effect of oxidative stress on platelet activity. We found that the blood platelets from SP MS patients were significantly more sensitive to all used agonists in comparison with control group. Moreover, the platelet hemostatic function was advanced in patients suffering from SP MS and positively correlated with increased production of O2 −∙ in these cells, as well as with Expanded Disability Status Scale. We postulate that the increased oxidative stress in blood platelets in SP MS may be primarily responsible for the altered haemostatic properties of blood platelets. PMID:26064417
Pandey, Vijay; Zhang, Min; Chong, Qing-Yun; You, Mingliang; Raquib, Ainiah Rushdiana; Pandey, Amit K; Liu, Dong-Xu; Liu, Liang; Ma, Lan; Jha, Sudhakar; Wu, Zheng-Sheng; Zhu, Tao; Lobie, Peter E
2017-09-29
Tamoxifen (TAM) is widely used as an adjuvant therapy for women with breast cancer (BC). However, TAM possesses partial oestrogenic activity in the uterus and its use has been associated with an increased incidence of endometrial carcinoma (EC). The molecular mechanism for these observations is not well understood. Herein, we demonstrated that forced expression of Trefoil factor 3 ( TFF3) , in oestrogen receptor-positive (ER+) EC cells significantly increased cell cycle progression, cell survival, anchorage-independent growth, invasiveness and tumour growth in xenograft models. Clinically, elevated TFF3 protein expression was observed in EC compared with normal endometrial tissue, and its increased expression in EC was significantly associated with myometrial invasion. TAM exposure increased expression of TFF3 in ER+ EC cells and its elevated expression resulted in increased oncogenicity and invasiveness. TAM-stimulated expression of TFF3 in EC cells was associated with hypomethylation of the TFF3 promoter sequence and c-JUN/SP1-dependent transcriptional activation. In addition, small interfering ( si) RNA -mediated depletion or polyclonal antibody inhibition of TFF3 significantly abrogated oncogenicity and invasiveness in EC cells consequent to TAM induction or forced expression of TFF3. Hence, TAM-stimulated upregulation of TFF3 in EC cells was critical in promoting EC progression associated with TAM treatment. Importantly, inhibition of TFF3 function might be an attractive molecular modality to abrogate the stimulatory effects of TAM on endometrial tissue and to limit the progression of EC.
The COMET Initiative database: progress and activities update (2015).
Gargon, E; Williamson, P R; Altman, D G; Blazeby, J M; Tunis, S; Clarke, M
2017-02-03
This letter describes the substantial activity on the Core Outcome Measure in Effectiveness Trials (COMET) website in 2015, updating our earlier progress reports for the period from the launch of the COMET website and database in August 2011 to December 2014. As in previous years, 2015 saw further increases in the annual number of visits to the website, the number of pages viewed and the number of searches undertaken. The sustained growth in use of the website and database suggests that COMET is continuing to gain interest and prominence, and that the resources are useful to people interested in the development of core outcome sets.
Kim, Ryungsa; Emi, Manabu; Tanabe, Kazuaki; Uchida, Yoko; Toge, Tetsuya
2004-06-01
Despite the fact that expression of Fas ligand (FasL) in cytotoxic T lymphocytes (CTLs) and in natural killer (NK) cells plays an important role in Fas-mediated tumor killing, During tumor progression FasL-expressing tumor cells are involved in counterattacking to kill tumor-infiltrating lymphocytes (TILs). Soluble FasL levels also increase with tumor progression in solid tumors, and this increase inhibits Fas-mediated tumor killing by CTLs and NK cells. The increased expression of FasL in tumor cells is associated with decreased expression of Fas; and the promoter region of the FASL gene is regulated by transcription factors, such as neuronal factor kappaB (NF-kappaB) and AP-1, in the tumor microenvironment. Although the ratio of FasL expression to Fas expression in tumor cells is not strongly related to the induction of apoptosis in TILs, increased expression of FasL is associated with decreased Fas levels in tumor cells that can escape immune surveillance and facilitate tumor progression and metastasis. Transforming growth factor beta (TGF-beta) is a potent growth inhibitor and has tumor-suppressing activity in the early phases of carcinogenesis. During subsequent tumor progression, the increased secretion of TGF-beta by both tumor cells and, in a paracrine fashion, stromal cells, is involved in the enhancement of tumor invasion and metastasis accompanied by immunosuppression. Herein, the authors review the clinical significance of FasL and TGF-beta expression patterns as features of immune privilege accompanying tumor progression in the tumor microenvironment. Potential strategies for identifying which molecules can serve as targets for effective antitumor therapy also are discussed. Copyright 2004 American Cancer Society.
Coughlan, Karen S; Mitchem, Mollie R; Hogg, Marion C; Prehn, Jochen H M
2015-02-01
Adenosine 5'-monophosphate-activated protein kinase (AMPK) is a master regulator of energy balance. As energy imbalance is documented as a key pathologic feature of amyotrophic lateral sclerosis (ALS), we investigated AMPK as a pharmacologic target in SOD1(G93A) mice. We noted a strong activation of AMPK in lumbar spinal cords of SOD1(G93A) mice. Pharmacologic activation of AMPK has shown protective effects in neuronal "preconditioning" models. We tested the hypothesis that "preconditioning" with a small molecule activator of AMPK, latrepirdine, exerts beneficial effects on disease progression. SOD1(G93A) mice (n = 24 animals per group; sex and litter matched) were treated with latrepirdine (1 μg/kg, intraperitoneal) or vehicle from postnatal day 70 to 120. Treatment with latrepirdine increased AMPK activity in primary mouse motor neuron cultures and in SOD1(G93A) lumbar spinal cords. Mice "preconditioned" with latrepirdine showed a delayed symptom onset and a significant increase in life span (p < 0.01). Our study suggests that "preconditioning" with latrepirdine may represent a possible therapeutic strategy for individuals harboring ALS-associated gene mutations who are at risk for developing ALS. Copyright © 2015 Elsevier Inc. All rights reserved.
del Nogal, María; Luengo, Alicia; Olmos, Gemma; Lasa, Marina; Rodriguez-Puyol, Diego; Rodriguez-Puyol, Manuel; Calleros, Laura
2012-12-01
Renal fibrosis is the final outcome of many clinical conditions that lead to chronic renal failure, characterized by a progressive substitution of cellular elements by extracellular-matrix proteins, in particular collagen type I. The aim of this study was to identify the mechanisms responsible for human mesangial cell survival, conditioned by changes in extracellular-matrix composition. Our results indicate that collagen I induces apoptosis in cells but only after inactivation of the pro-survival factor NFκB by either the super-repressor IκBα or the PDTC inhibitor. Collagen I activates a death pathway, through ILK/GSK-3β-dependent Bim expression. Moreover, collagen I significantly increases NFκB-dependent transcription, IκBα degradation and p65/NFκB translocation to the nucleus; it activates β1 integrin and this is accompanied by increased activity of ILK which leads to AKT activation. Knockdown of ILK or AKT with small interfering RNA suppresses the increase in NFκB activity. NFκB mediates cell survival through the antiapoptotic protein Bcl-xL. Our data suggest that human mesangial cells exposed to abnormal collagen I are protected against apoptosis by a complex mechanism involving integrin β1/ILK/AKT-dependent NFκB activation with consequent Bcl-xL overexpression, that opposes a simultaneously activated ILK/GSK-3β-dependent Bim expression and this dual mechanism may play a role in the progression of glomerular dysfunction.
Wytra̦żek, Marcin; Huber, Juliusz; Lisiński, Przemysław
Summary Spine-related muscle pain can affect muscle strength and motor unit activity. This study was undertaken to investigate whether surface electromyographic (sEMG) recordings performed during relaxation and maximal contraction reveal differences in the activity of muscles with or without trigger points (TRPs). We also analyzed the possible coexistence of characteristic spontaneous activity in needle electromyographic (eEMG) recordings with the presence of TRPs. Thirty patients with non-specific cervical and back pain were evaluated using clinical, neuroimaging and electroneurographic examinations. Muscle pain was measured using a visual analog scale (VAS), and strength using Lovett’s scale; trigger points were detected by palpation. EMG was used to examine motor unit activity. Trigger points were found mainly in the trapezius muscles in thirteen patients. Their presence was accompanied by increased pain intensity, decreased muscle strength, increased resting sEMG amplitude, and decreased sEMG amplitude during muscle contraction. eEMG revealed characteristic asynchronous discharges in TRPs. The results of EMG examinations point to a complexity of muscle pain that depends on progression of the myofascial syndrome PMID:22152435
Behrouzfar, Kiarash; Alaee, Mohammad; Nourbakhsh, Mitra; Gholinejad, Zafar; Golestani, Abolfazl
2017-08-01
Visfatin, which is secreted as an adipokine and cytokine, has been implicated in cancer development and progression. In this study, we investigated the NAD-producing ability of visfatin and its relationship with SIRT1 (silent information regulator 2) and p53 to clarify the role of visfatin in breast cancer. MCF-7 breast cancer cells were cultured and treated with visfatin. SIRT1 activity was assessed by measuring fluorescence intensity from fluoro-substrate peptide. To investigate the effect of visfatin on p53 acetylation, SDS-PAGE followed by western blotting was performed using specific antibodies against p53 and its acetylated form. Total NAD was measured both in cell lysate and the extracellular medium by colorimetric method. Visfatin increased both extracellular and intracellular NAD concentrations. It also induced proliferation of breast cancer cells, an effect that was abolished by inhibition of its enzymatic activity. Visfatin significantly increased SIRT1 activity, accompanied by induction of p53 deacetylation. In conclusion, the results show that extracellular visfatin produces NAD that causes upregulation of SIRT1 activity and p53 deacetylation. These findings explain the relationship between visfatin and breast cancer progression. Copyright © 2017 John Wiley & Sons, Ltd.
Theofilas, Panos; Ehrenberg, Alexander J; Nguy, Austin; Thackrey, Julia M; Dunlop, Sara; Mejia, Maria B; Alho, Ana T; Paraizo Leite, Renata Elaine; Rodriguez, Roberta Diehl; Suemoto, Claudia K; Nascimento, Camila F; Chin, Marcus; Medina-Cleghorn, Daniel; Cuervo, Ana Maria; Arkin, Michelle; Seeley, William W; Miller, Bruce L; Nitrini, Ricardo; Pasqualucci, Carlos Augusto; Filho, Wilson Jacob; Rueb, Udo; Neuhaus, John; Heinsen, Helmut; Grinberg, Lea T
2018-01-01
Clarifying the mechanisms connecting neurofibrillary tangle (NFT) neurotoxicity to neuronal dysfunction in humans is likely to be pivotal for developing effective treatments for Alzheimer's disease (AD). To model the temporal progression of AD in humans, we used a collection of brains with controls and individuals from each Braak stage to quantitatively investigate the correlation between intraneuronal caspase activation or macroautophagy markers, NFT burden, and neuronal loss, in the dorsal raphe nucleus and locus coeruleus, the earliest vulnerable areas to NFT accumulation. We fit linear regressions with each count as outcomes, with Braak score and age as the predictors. In progressive Braak stages, intraneuronal active caspase-6 positivity increases both alone and overlapping with NFTs. Likewise, the proportion of NFT-bearing neurons showing autophagosomes increases. Overall, caspases may be involved in upstream cascades in AD and are associated with higher NFTs. Macroautophagy changes correlate with increasing NFT burden from early AD stages. Copyright © 2017 Elsevier Inc. All rights reserved.
Su, Ming; Lee, Daniel; Ganss, Bernhard; Sodek, Jaro
2006-04-14
Basal transcription of the bone sialoprotein gene is mediated by highly conserved inverted CCAAT (ICE; ATTGG) and TATA elements (TTTATA) separated by precisely 21 nucleotides. Here we studied the importance of the relative position and orientation of the CCAAT and TATA elements in the proximal promoter by measuring the transcriptional activity of a series of mutated reporter constructs in transient transfection assays. Whereas inverting the TTTATA (wild type) to a TATAAA (consensus TATA) sequence increased transcription slightly, transcription was reduced when the flanking dinucleotides were also inverted. In contrast, reversing the ATTGG (wild type; ICE) to a CCAAT (RICE) sequence caused a marked reduction in transcription, whereas both transcription and NF-Y binding were progressively increased with the simultaneous inversion of flanking nucleotides (f-RICE-f). Reducing the distance between the ICE and TATA elements produced cyclical changes in transcriptional activity that correlated with progressive alterations in the relative positions of the CCAAT and TATA elements on the face of the DNA helix. Minimal transcription was observed after 5 nucleotides were deleted (equivalent to approximately one half turn of the helix), whereas transcription was fully restored after deleting 10 nucleotides (approximately one full turn of the DNA helix), transcriptional activity being progressively lost with deletions beyond 10 nucleotides. In comparison, when deletions were made with the ICE in the reversed (f-RICE-f) orientation transcriptional activity was progressively lost with no recovery. These results show that, although transcription can still occur when the CCAAT box is reversed and/or displaced relative to the TATA box, the activity is dependent upon the flexibility of the intervening DNA helix needed to align the NF-Y complex on the CCAAT box with preinitiation complex proteins that bind to the TATA box. Thus, the precise location and orientation of the CCAAT element is necessary for optimizing basal transcription of the bone sialoprotein gene.
Widemann, Brigitte C; Babovic-Vuksanovic, Dusica; Dombi, Eva; Wolters, Pamela L; Goldman, Stewart; Martin, Staci; Goodwin, Anne; Goodspeed, Wendy; Kieran, Mark W; Cohen, Bruce; Blaney, Susan M; King, Allison; Solomon, Jeffrey; Patronas, Nicholas; Balis, Frank M; Fox, Elizabeth; Steinberg, Seth M; Packer, Roger J
2014-09-01
Pirfenidone, an oral anti-inflammatory, antifibrotic agent with activity in idiopathic pulmonary fibrosis, may mediate anti-tumor activity in neurofibromatosis type 1 (NF1) and plexiform neurofibromas (PN) by inhibition of fibroblast proliferation and collagen synthesis. The primary objective of this open label, single arm phase II trial was to evaluate the activity of pirfenidone in children and young adults with inoperable PN. Patients (3-21 years) with NF1-related progressive PN received pirfenidone at the previously determined optimal dose (500 mg/m(2) orally, q8h) on a continuous dosing schedule (one cycle = 28 days). Volumetric MRI analysis was used to assess response. Progression was defined as ≥ 20% PN volume increase compared to baseline. Pirfenidone would be considered active if it doubled the median time to progression (TTP) compared to the TTP on the placebo arm of a phase II trial with the farnesyltransferase inhibitor tipifarnib, which used near identical eligibility criteria. Toxicities, objective response rate, and quality of life (QOL) also were evaluated. Thirty-six patients were enrolled and tolerated pirfenidone well with intermittent nausea and vomiting as the most frequent toxicities. A dose reduction was required in only three patients. The median TTP for pirfenidone was 13.2 months compared to 10.6 months for the placebo control group from the tipifarnib trial (two-tailed P = 0.92; one-tailed P = 0.46). No objective responses were observed. Pirfenidone was well tolerated, but did not demonstrate activity as defined in this trial and does not warrant further evaluation in children with NF1 and progressive PN. © 2014 Wiley Periodicals, Inc.
Luciani, M Gloria; Campregher, Christoph; Fortune, John M; Kunkel, Thomas A; Gasche, Christoph
2007-01-01
Individuals with inflammatory bowel disease are at risk of developing colorectal cancer (CRC). Epidemiologic, animal, and laboratory studies suggest that 5-amino-salicylic acid (5-ASA) protects from the development of CRC by altering cell cycle progression and by inducing apoptosis. Our previous results indicate that 5-ASA improves replication fidelity in colorectal cells, an effect that is active in reducing mutations. In this study, we hypothesized that 5-ASA restrains cell cycle progression by activating checkpoint pathways in colorectal cell lines, which would prevent tumor development and improve genomic stability. CRC cells with different genetic backgrounds such as HT29, HCT116, HCT116(p53-/-), HCT116+chr3, and LoVo were treated with 5-ASA for 2-96 hours. Cell cycle progression, phosphorylation, and DNA binding of cell cycle checkpoint proteins were analyzed. We found that 5-ASA at concentrations between 10 and 40 mmol/L affects cell cycle progression by inducing cells to accumulate in the S phase. This effect was independent of the hMLH1, hMSH2, and p53 status because it was observed to a similar extent in all cell lines under investigation. Moreover, wash-out experiments demonstrated reversibility within 48 hours. Although p53 did not have a causative role, p53 Ser15 was strongly phosphorylated. Proteins involved in the ATM-and-Rad3-related kinase (ATR)-dependent S-phase checkpoint response (Chk1 and Rad17) were also phosphorylated but not ataxia telengectasia mutated kinase. Our data demonstrate that 5-ASA causes cells to reversibly accumulate in S phase and activate an ATR-dependent checkpoint. The activation of replication checkpoint may slow down DNA replication and improve DNA replication fidelity, which increases the maintenance of genomic stability and counteracts carcinogenesis.
Yoshimura, Makoto; Shiomi, Yoshihiro; Ohira, Yuta; Takei, Mineo; Tanaka, Takao
2017-09-15
Cancer cachexia is a progressive wasting syndrome characterized by anorexia and weight loss, specifically muscle wasting and fat depletion. There is no therapeutic agent for treatment of this syndrome. We investigated the anti-cachexia effects of Z-505 hydrochloride (Z-505), a new oral growth hormone secretagogue receptor 1a (GHSR1a) agonist, using a mouse model of cancer cachexia. We performed a calcium flux assay in Chinese hamster ovary (CHO-K1) cells stably expressing human GHSR1a to quantify the agonistic activity of Z-505. In Colon 26 tumor-bearing mice, Z-505 (300mg/kg, p.o., twice daily) was administered for 7 days to assess its anti-cachexia effects. Body weight and food intake were monitored during the period, and the skeletal muscle and epididymal fat weights were measured. Serum levels of insulin, insulin-like growth factor 1 (IGF-1), interleukin-6 (IL-6), and corticosterone were measured to confirm the mechanism of the anti-cachexia action of Z-505. Z-505 showed strong agonistic activity similar to that of human ghrelin, with a half maximal effective concentration (EC 50 ) value of 0.45nM. Z-505 treatment significantly increased food intake and inhibited the progression of weight loss. Z-505 also significantly attenuated muscle wasting and fat loss, and increased circulating levels of anabolic factors such as insulin and IGF-1, but not catabolic factors such as IL-6 and corticosterone. These findings suggest that Z-505 might be effective in the treatment of cachexia via the increased anabolic hormone levels stimulated by the activation of the ghrelin receptor, GHSR1a. Copyright © 2017 Elsevier B.V. All rights reserved.
Sternberg, R A; Pondenis, H C; Yang, X; Mitchell, M A; O'Brien, R T; Garrett, L D; Helferich, W G; Hoffmann, W E; Fan, T M
2013-01-01
In dogs with appendicular osteosarcoma (OSA), increased pretreatment serum bone-specific alkaline phosphatase (BALP) activity is a negative prognostic factor, associated with shorter disease-free intervals and survival times, but a biologic basis for observed differential serum BALP activities in canine OSA patients remains incompletely defined. Serum BALP activity will correlate with absolute tumor burden in dogs with OSA. This study included 96 client-owned dogs with appendicular OSA. In canine OSA cell lines, the expression and membranous release of BALP was evaluated in vitro. The correlation between serum BALP activity and radiographic primary tumor size was evaluated in OSA-bearing dogs. In dogs developing visceral OSA metastases, serial changes in serum BALP activities were evaluated in relation to progression of macroscopic metastases, and visceral metastatic OSA cells were evaluated for BALP expression. In vitro, BALP expression was not associated with either tumorigenic or metastatic phenotype, rather the quantity of membranous BALP released was proportional with cell density. In dogs devoid of macroscopic metastases, there was a positive correlation between serum BALP activity and absolute primary tumor size. In dogs with progressive OSA metastases, serum BALP activity increased and coincided with the development of macroscopic metastases. OSA cells derived from visceral metastatic lesions retained BALP expression. Tumor burden is a determinant of serum BALP activity in dogs with appendicular OSA. The association between increased pretreatment BALP activity and negative clinical prognosis may simply be attributed to greater initial tumor burden, and consequently more advanced tumor stage. Copyright © 2013 by the American College of Veterinary Internal Medicine.
Schelbergen, R F P; de Munter, W; van den Bosch, M H J; Lafeber, F P J G; Sloetjes, A; Vogl, T; Roth, J; van den Berg, W B; van der Kraan, P M; Blom, A B; van Lent, P L E M
2016-01-01
Alarmins S100A8 and S100A9 are major products of activated macrophages regulating cartilage damage and synovial activation during murine and human osteoarthritis (OA). In the current study, we investigated whether S100A8 and S100A9 are involved in osteophyte formation during experimental OA and whether S100A8/A9 predicts osteophyte progression in early human OA. OA was elicited in S100A9-/- mice in two experimental models that differ in degree of synovial activation. Osteophyte size, S100A8, S100A9 and VDIPEN neoepitope was measured histologically. Chondrogenesis was induced in murine mesenchymal stem cells in the presence of S100A8. Levels of S100A8/A9 were determined in plasma of early symptomatic OA participants of the Cohort Hip and Cohort Knee (CHECK) cohort study and osteophytes measured after 2 and 5 years. Osteophyte size was drastically reduced in S100A9-/- mice in ligaments and at medial femur and tibia on days 21 and 42 of collagenase-induced OA, in which synovial activation is high. In contrast, osteophyte size was not reduced in S100A9-/- mice during destabilised medial meniscus OA, in which synovial activation is scant. S100A8 increased expression and activation of matrix metalloproteinases during micromass chondrogenesis, thereby possibly increasing cartilage matrix remodelling allowing for larger osteophytes. Interestingly, early symptomatic OA participants of the CHECK study with osteophyte progression after 2 and 5 years had elevated S100A8/A9 plasma levels at baseline, while C-reactive protein, erythrocyte sedimentation rate and cartilage oligomeric matrix protein were not elevated at baseline. S100A8/A9 aggravate osteophyte formation in experimental OA with high synovial activation and may be used to predict osteophyte progression in early symptomatic human OA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrenhoerster, Lori S.; Leuthner, Tess C.; Tate, Everett R.
2015-03-01
Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively activemore » Notch1 transgene (Notch{sup ICN-TG}). Following exposure of adult Notch{sup ICN-TG} mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3 μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch{sup ICN-TG} offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch{sup ICN-TG} offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression. - Highlights: • Adult mice exposed to 30 μg/kg TCDD have higher efficiency of CD8 thymocyte generation. • Mice carrying a constitutively active Notch transgene were exposed to 3 μg/kg TCDD throughout development. • Progression of Notch-induced thymoma was different in offspring exposed to TCDD developmentally. • Developmental AHR activation attenuates later-life Notch1-dependent impacts on T cell differentiation.« less
Bhatia, Ayesha; O'Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T; Li, Wei
2016-01-01
Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5-treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.
Selective activation of heme oxygenase-2 by menadione.
Vukomanovic, Dragic; McLaughlin, Brian E; Rahman, Mona N; Szarek, Walter A; Brien, James F; Jia, Zongchao; Nakatsu, Kanji
2011-11-01
While substantial progress has been made in elucidating the roles of heme oxygenases-1 (HO-1) and -2 (HO-2) in mammals, our understanding of the functions of these enzymes in health and disease is still incomplete. A significant amount of our knowledge has been garnered through the use of nonselective inhibitors of HOs, and our laboratory has recently described more selective inhibitors for HO-1. In addition, our appreciation of HO-1 has benefitted from the availability of tools for increasing its activity through enzyme induction. By comparison, there is a paucity of information about HO-2 activation, with only a few reports appearing in the literature. This communication describes our observations of the up to 30-fold increase in the in-vitro activation of HO-2 by menadione. This activation was due to an increase in Vmax and was selective, in that menadione did not increase HO-1 activity.
Influence of age on adaptability of human mastication.
Peyron, Marie-Agnès; Blanc, Olivier; Lund, James P; Woda, Alain
2004-08-01
The objective of this work was to study the influence of age on the ability of subjects to adapt mastication to changes in the hardness of foods. The study was carried out on 67 volunteers aged from 25 to 75 yr (29 males, 38 females) who had complete healthy dentitions. Surface electromyograms of the left and right masseter and temporalis muscles were recorded simultaneously with jaw movements using an electromagnetic transducer. Each volunteer was asked to chew and swallow four visco-elastic model foods of different hardness, each presented three times in random order. The number of masticatory cycles, their frequency, and the sum of all electromyographic (EMG) activity in all four muscles were calculated for each masticatory sequence. Multiple linear regression analyses were used to assess the effects of hardness, age, and gender. Hardness was associated to an increase in the mean number of cycles and mean summed EMG activity per sequence. It also increased mean vertical amplitude. Mean vertical amplitude and mean summed EMG activity per sequence were higher in males. These adaptations were present at all ages. Age was associated with an increase of 0.3 cycles per sequence per year of life and with a progressive increase in mean summed EMG activity per sequence. Cycle and opening duration early in the sequence also fell with age. We concluded that although the number of cycles needed to chew a standard piece of food increases progressively with age, the capacity to adapt to changes in the hardness of food is maintained.
Rheb/mTORC1 Signaling Promotes Kidney Fibroblast Activation and Fibrosis
Jiang, Lei; Xu, Lingling; Mao, Junhua; Li, Jianzhong; Fang, Li; Zhou, Yang; Liu, Wei; He, Weichun; Zhao, Allan Zijian
2013-01-01
Ras homolog enriched in brain (Rheb) is a small GTPase that regulates cell growth, differentiation, and survival by upregulating mammalian target of rapamycin complex 1 (mTORC1) signaling. The role of Rheb/mTORC1 signaling in the activation of kidney fibroblasts and the development of kidney fibrosis remains largely unknown. In this study, we found that Rheb/mTORC1 signaling was activated in interstitial myofibroblasts from fibrotic kidneys. Treatment of rat kidney interstitial fibroblasts (NRK-49F cell line) with TGFβ1 also activated Rheb/mTORC1 signaling. Blocking Rheb/mTORC1 signaling with rapamycin or Rheb small interfering RNA abolished TGFβ1-induced fibroblast activation. In a transgenic mouse, ectopic expression of Rheb activated kidney fibroblasts. These Rheb transgenic mice exhibited increased activation of mTORC1 signaling in both kidney tubular and interstitial cells as well as progressive interstitial renal fibrosis; rapamycin inhibited these effects. Similarly, mice with fibroblast-specific deletion of Tsc1, a negative regulator of Rheb, exhibited activated mTORC1 signaling in kidney interstitial fibroblasts and increased renal fibrosis, both of which rapamycin abolished. Taken together, these results suggest that Rheb/mTORC1 signaling promotes the activation of kidney fibroblasts and contributes to the development of interstitial fibrosis, possibly providing a therapeutic target for progressive renal disease. PMID:23661807
Nosyk, Bohdan; Min, Jeong; Lima, Viviane D; Yip, Benita; Hogg, Robert S; Montaner, Julio S G
2013-08-15
Accurately estimating rates of disease progression is of central importance in developing mathematical models used to project outcomes and guide resource allocation decisions. Our objective was to specify a multivariate regression model to estimate changes in disease progression among individuals on highly active antiretroviral treatment in British Columbia, Canada, 1996-2011. We used population-level data on disease progression and antiretroviral treatment utilization from the BC HIV Drug Treatment Program. Disease progression was captured using longitudinal CD4 and plasma viral load testing data, linked with data on antiretroviral treatment. The study outcome was categorized into (CD4 count ≥ 500, 500-350, 350-200, <200 cells/mm, and mortality). A 5-state continuous-time Markov model was used to estimate covariate-specific probabilities of CD4 progression, focusing on temporal changes during the study period. A total of 210,083 CD4 measurements among 7421 individuals with HIV/AIDS were included in the study. Results of the multivariate model suggested that current highly active antiretroviral treatment at baseline, lower baseline CD4 (<200 cells/mm), and extended durations of elevated plasma viral load were each associated with accelerated progression. Immunological improvement was accelerated significantly from 2004 onward, with 23% and 46% increases in the probability of CD4 improvement from the fourth CD4 stratum (CD4 < 200) in 2004-2008 and 2008-2011, respectively. Our results demonstrate the impact of innovations in antiretroviral treatment and treatment delivery at the population level. These results can be used to estimate a transition probability matrix flexible to changes in the observed mix of clients in different clinical stages and treatment regimens over time.
Park, Jung-Jin; Park, Mee-Hee; Oh, Eun Hye; Soung, Nak-Kyun; Lee, Soo Jae; Jung, Jae-Kyung; Lee, Ok-Jun; Yun, Seok Joong; Kim, Wun-Jae; Shin, Eun-Young; Kim, Eung-Gook
2018-05-30
Epithelial-mesenchymal transition (EMT) facilitates cancer invasion and metastasis and thus accelerates cancer progression. p21-activated kinase 4 (PAK4) is a critical regulator of prostate cancer (PC) progression. Here, we report that PAK4 activation promotes PC progression through the EMT regulator Slug. We find that phosphorylated PAK4 S474 (pPAK4) levels, an index of PAK4 activation, were tightly associated with Gleason score (p < 0.001), a clinical indicator of PC progression, but not with prostate serum antigen levels or tumor stage. Stable silencing of PAK4 in PC cells reduced their potential for EMT, cellular invasion, and metastasis in vivo. PAK4 bound and directly phosphorylated Slug at two previously unknown sites, S158 and S254, which resulted in its stabilization. The non-phosphorylatable form Slug S158A/S254A upregulated transcription of CDH1, which encodes E-cadherin, and thus suppressed EMT and invasion, to a greater extent than did wild-type Slug. The strong EMT inducer TGF-β elevated pPAK4 and pSlug S158 levels; PAK4 knockdown or introduction of a dominant-negative form of PAK4 inhibited both TGF-β-stimulated EMT and an increase in pSlug S158 levels. Finally, immunohistochemistry revealed a positive correlation between pPAK4 and pSlug S158 but an inverse correlation between pSlug S158 and E-cadherin. The results suggest that the PAK4-Slug axis represents a novel pathway that promotes PC progression.
Review of levoglucosan in glacier snow and ice studies: Recent progress and future perspectives.
You, Chao; Xu, Chao
2018-03-01
Levoglucosan (LEV) in glacier snow and ice layers provides a fingerprint of fire activity, ranging from modern air pollution to ancient fire emissions. In this study, we review recent progress in our understanding and application of LEV in glaciers, including analytical methods, transport and post-depositional processes, and historical records. We firstly summarize progress in analytical methods for determination of LEV in glacier snow and ice. Then, we discuss the processes influencing the records of LEV in snow and ice layers. Finally, we make some recommendations for future work, such as assessing the stability of LEV and obtaining continuous records, to increase reliability of the reconstructed ancient fire activity. This review provides an update for researchers working with LEV and will facilitate the further use of LEV as a biomarker in paleo-fire studies based on ice core records. Copyright © 2017 Elsevier B.V. All rights reserved.
Beckwée, David; Vaes, Peter; Shahabpour, Maryam; Muyldermans, Ronald; Rommers, Nikki; Bautmans, Ivan
2015-12-01
Bone marrow lesions (BMLs) are considered as predictors of pain, disability, and structural progression of knee osteoarthritis. The relationship between knee loading and BMLs is not yet completely understood. To summarize the available evidence regarding the relationship between joint loading and the prevalence and progression of BMLs in the tibiofemoral joint. Meta-analysis. Three databases (PubMed, Web of Science, and The Cochrane Library) were systematically screened for studies encompassing BMLs and changes in knee loading. A methodological quality assessment was conducted, and a meta-analysis computing overall odds ratios (ORs) was performed where possible. A total of 29 studies involving 7641 participants were included. Mechanical loading was categorized as body weight and composition, compartmental load, structural lesion, and physical activity. High compartmental loads and structural lesions increased the risk for BMLs (overall ORs ranging from 1.56 [95% CI, 1.13-2.15] to 8.2 [95% CI, 4.4-15.1]; P = .006). Body weight increased the risk for BMLs to a lesser extent (overall OR, 1.03; 95% CI, 1.01-1.05; P = .007). Contradictory results for the effect of physical activity on BMLs were found. Augmented compartmental loads and structural lesions increased the risk of the presence or progression of BMLs. Body weight increased the risk for BMLs to a lesser extent. Contradictory results for the effect of physical activity on BMLs may be explained by a dose-response relationship, knee alignment, and structural lesions. It has been shown that unloading the knee temporarily may induce beneficial effects on osteoarthritis-related structural changes. Therefore, an early recognition of BMLs in the aging athlete's knee may provide information to counter the onset and aggravation of symptomatic knee osteoarthritis by reducing the knee load. © 2015 The Author(s).
LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment.
Peña, Christopher G; Nakada, Yuji; Saatcioglu, Hatice D; Aloisio, Gina M; Cuevas, Ileana; Zhang, Song; Miller, David S; Lea, Jayanthi S; Wong, Kwok-Kin; DeBerardinis, Ralph J; Amelio, Antonio L; Brekken, Rolf A; Castrillon, Diego H
2015-11-02
Endometrial cancer is the most common gynecologic malignancy and the fourth most common malignancy in women. For most patients in whom the disease is confined to the uterus, treatment results in successful remission; however, there are no curative treatments for tumors that have progressed beyond the uterus. The serine/threonine kinase LKB1 has been identified as a potent suppressor of uterine cancer, but the biological modes of action of LKB1 in this context remain incompletely understood. Here, we have shown that LKB1 suppresses tumor progression by altering gene expression in the tumor microenvironment. We determined that LKB1 inactivation results in abnormal, cell-autonomous production of the inflammatory cytokine chemokine (C-C motif) ligand 2 (CCL2) within tumors, which leads to increased recruitment of macrophages with prominent tumor-promoting activities. Inactivation of Ccl2 in an Lkb1-driven mouse model of endometrial cancer slowed tumor progression and increased survival. In human primary endometrial cancers, loss of LKB1 protein was strongly associated with increased CCL2 expression by tumor cells as well as increased macrophage density in the tumor microenvironment. These data demonstrate that CCL2 is a potent effector of LKB1 loss in endometrial cancer, creating potential avenues for therapeutic opportunities.
Zong, Liang; Chen, Jin; Zhu, Yan; Zhao, Hong-Bo
2017-07-22
Mutations of Connexin 26 (Cx26, GJB2), which is a predominant gap junction isoform in the cochlea, can induce high incidence of nonsyndromic hearing loss. We previously found that targeted-deletion of Cx26 in supporting Deiters cells and outer pillar cells in the cochlea can influence outer hair cell (OHC) electromotility and reduce active cochlear amplification leading to hearing loss, even though there are no gap junction connexin expressions in the auditory sensory hair cells. Here, we further report that hearing loss and the reduction of active amplification in the Cx26 targeted-deletion mice are progressive and different at high and low frequency regions, first occurring in the high frequency region and then progressively extending to the middle and low frequency regions with mouse age increased. The speed of hearing loss extending was fast in the basal high frequency region and slow in the apical low frequency region, showing a logarithmic function with mouse age. Before postnatal day 25, there were no significant hearing loss and the reduction of active cochlear amplification in the low frequency region. Hearing loss and the reduction of active cochlear amplification also had frequency difference, severe and large in the high frequency regions. These new data indicate that the effect of gap junction on active cochlear amplification is progressive, but, consistent with our previous report, exists in both high and low frequency regions in adulthood. These new data also suggest that cochlear gap junctions may have an important role in age-related hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.
The Effects of Systematic Changes to a Business Course over a Three Year Period
ERIC Educational Resources Information Center
Cobian, William J.; Newberry, C. Robert
2009-01-01
The purpose of this study is to examine the measurable impacts of shortening lectures and increasing engaged learning activities in an undergraduate marketing course. Class pedagogy is progressively changed over six semesters from a lecture-based format to a hybrid of lecture and engaged learning activities. The researchers ask whether these…
Mullins, Stefanie R; Sameni, Mansoureth; Blum, Galia; Bogyo, Matthew; Sloane, Bonnie F; Moin, Kamiar
2012-12-01
The expression of the cysteine protease cathepsin B is increased in early stages of human breast cancer.To assess the potential role of cathepsin B in premalignant progression of breast epithelial cells, we employed a 3D reconstituted basement membrane overlay culture model of MCF10A human breast epithelial cells and isogenic variants that replicate the in vivo phenotypes of hyper plasia(MCF10AneoT) and atypical hyperplasia (MCF10AT1). MCF10A cells developed into polarized acinar structures with central lumens. In contrast, MCF10AneoT and MCF10AT1 cells form larger structures in which the lumens are filled with cells. CA074Me, a cell-permeable inhibitor selective for the cysteine cathepsins B and L,reduced proliferation and increased apoptosis of MCF10A, MCF10AneoT and MCF10AT1 cells in 3D culture. We detected active cysteine cathepsins in the isogenic MCF10 variants in 3D culture with GB111, a cell-permeable activity based probe, and established differential inhibition of cathepsin B in our 3D cultures. We conclude that cathepsin B promotes proliferation and premalignant progression of breast epithelial cells. These findings are consistent with studies by others showing that deletion of cathepsin B in the transgenic MMTV-PyMT mice, a murine model that is predisposed to development of mammary cancer, reduces malignant progression.
Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression
Liberati, Sonia; Morelli, Maria Beatrice; Amantini, Consuelo; Farfariello, Valerio; Santoni, Matteo; Conti, Alessandro; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio
2014-01-01
Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs), in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas), induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy. PMID:24709905
Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression.
Liberati, Sonia; Morelli, Maria Beatrice; Amantini, Consuelo; Farfariello, Valerio; Santoni, Matteo; Conti, Alessandro; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio
2014-02-19
Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs), in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas), induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy.
In female rat heart mitochondria, oophorectomy results in loss of oxidative phosphorylation.
Pavón, Natalia; Cabrera-Orefice, Alfredo; Gallardo-Pérez, Juan Carlos; Uribe-Alvarez, Cristina; Rivero-Segura, Nadia A; Vazquez-Martínez, Edgar Ricardo; Cerbón, Marco; Martínez-Abundis, Eduardo; Torres-Narvaez, Juan Carlos; Martínez-Memije, Raúl; Roldán-Gómez, Francisco-Javier; Uribe-Carvajal, Salvador
2017-02-01
Oophorectomy in adult rats affected cardiac mitochondrial function. Progression of mitochondrial alterations was assessed at one, two and three months after surgery: at one month, very slight changes were observed, which increased at two and three months. Gradual effects included decrease in the rates of oxygen consumption and in respiratory uncoupling in the presence of complex I substrates, as well as compromised Ca 2+ buffering ability. Malondialdehyde concentration increased, whereas the ROS-detoxifying enzyme Mn 2+ superoxide dismutase (MnSOD) and aconitase lost activity. In the mitochondrial respiratory chain, the concentration and activity of complex I and complex IV decreased. Among other mitochondrial enzymes and transporters, adenine nucleotide carrier and glutaminase decreased. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase also decreased. Data strongly suggest that in the female rat heart, estrogen depletion leads to progressive, severe mitochondrial dysfunction. © 2017 Society for Endocrinology.
Retailing research: increasing the role of evidence in clinical services for childbirth.
Lomas, J
1993-01-01
A current review of the structures and assumptions of research transfer for clinical care reveals some progress from "passive diffusion" to "active dissemination" models, but little or no progress has been made toward targeting local influences on practitioner behavior for "coordinated implementation" of clinically relevant research into childbirth (or other) medical practices. The implementation of scientifically valid research syntheses, such as Effective Care in Pregnancy and Childbirth (ECPC), is therefore constrained by a poorly developed marketplace for retailing research information to practitioners. A survey in Canada of the four most significant potential retailing groups demonstrated that whereas clinical and community groups were adopting the necessary knowledge and attitudes, public policy makers and administrators trailed well behind them. To increase the probability of thorough retailing of ECPC, a three-phase plan could be instituted that would identify product champions within potential retailing groups, develop implementation activities for each retailing group, and convene annual conferences.
Pornography and the United States Army: Ethical Considerations and Policy Implications
1991-07-12
progressed from simple female nudity to adi.lt/ child sex, sado-masochism, rape scenes, bestiality, and degradation of women.’ Depictions of sexual and...Washington, D.C., 10. 1 child abuse have also increased, as well as portrayals of sexual and nonsexual violence. 2 These and other changes in the military...may depict heterosexual activity, homosexual activity, child /adult sexual activity, bestiality, masturbation, sado-masochism, or other sexual
The role of knee alignment in disease progression and functional decline in knee osteoarthritis.
Sharma, L; Song, J; Felson, D T; Cahue, S; Shamiyeh, E; Dunlop, D D
2001-07-11
Knee osteoarthritis (OA) is a leading cause of disability in older persons. Few risk factors for disease progression or functional decline have been identified. Hip-knee-ankle alignment influences load distribution at the knee; varus and valgus alignment increase medial and lateral load, respectively. To test the hypotheses that (1) varus alignment increases risk of medial knee OA progression during the subsequent 18 months, (2) valgus alignment increases risk of subsequent lateral knee OA progression, (3) greater severity of malalignment is associated with greater subsequent loss of joint space, and (4) greater burden of malalignment is associated with greater subsequent decline in physical function. Prospective longitudinal cohort study conducted March 1997 to March 2000 at an academic medical center in Chicago, Ill. A total of 237 persons recruited from the community with primary knee OA, defined by presence of definite tibiofemoral osteophytes and at least some difficulty with knee-requiring activity; 230 (97%) completed the study. Progression of OA, defined as a 1-grade increase in severity of joint space narrowing on semiflexed, fluoroscopically confirmed knee radiographs; change in narrowest joint space width; and change in physical function between baseline and 18 months, compared by knee alignment at baseline. Varus alignment at baseline was associated with a 4-fold increase in the odds of medial progression, adjusting for age, sex, and body mass index (adjusted odds ratio [OR], 4.09; 95% confidence interval [CI], 2.20-7.62). Valgus alignment at baseline was associated with a nearly 5-fold increase in the odds of lateral progression (adjusted OR, 4.89; 95% CI, 2.13-11.20). Severity of varus correlated with greater medial joint space loss during the subsequent 18 months (R = 0.52; 95% CI, 0.40-0.62 in dominant knees), and severity of valgus correlated with greater subsequent lateral joint space loss (R = 0.35; 95% CI, 0.21-0.47 in dominant knees). Having alignment of more than 5 degrees (in either direction) in both knees at baseline was associated with significantly greater functional deterioration during the 18 months than having alignment of 5 degrees or less in both knees, after adjusting for age, sex, body mass index, and pain. This is, to our knowledge, the first demonstration that in primary knee OA varus alignment increases risk of medial OA progression, that valgus alignment increases risk of lateral OA progression, that burden of malalignment predicts decline in physical function, and that these effects can be detected after as little as 18 months of observation.
2011-06-01
contribute to CR growth. Inhibition of PKA attenuated RLN2-mediated AR activity, inhibited proliferation and caused a small but significant increase in...detection of p53 abnormalities and increases their predictive value. BJU Int 94: 996–1002. Silvertown JD, Geddes BJ, Summerlee AJ. (2003). Adenovirus ...in facilitating H2 relaxin-mediated CR growth of CaP cells. Inhibition of PKA attenuated RLN2-mediated AR activity, inhibited proliferation and
Bhardwaj, Supriya; Rani, Seema; Srivastava, Niharika; Kumar, Ravinder; Parsad, Davinder
2017-03-01
Non-segmental vitiligo (NSV) results from autoimmune destruction of melanocytes. The altered levels of various cytokines have been proposed in the pathogenesis of vitiligo. However, the exact immune mechanisms have not yet been fully elucidated. To investigate the role of epidermal and systemic cytokines in active and stable NSV patients. Serum levels of inflammatory cytokines were checked in 42 active and 30 stable NSV patients with 30 controls. The lesional, perilesional and normal skin sections were subjected to H&E staining. The mRNA expression of inflammatory cytokines and their respective receptors were assessed by quantitative PCR in lesional skin of both active and stable NSV skin. The MITF and IL-17A were immunolocalized in lesional, perilesional and normal skin tissue. Significant increase in the expression of inflammatory cytokines, IL-17A, IL-1β and TGF-β was observed in active patients, whereas no change was observed in stable patients. A marked reduction in epidermal thickness was observed in lesional skin sections. Significant increase in IL-17A and significant decrease in microphthalmia associated transcription factor (MITF) expression was observed in lesional and perilesional skin sections. Moreover, qPCR analysis showed significant alterations in the mRNA levels of IL-17A, IL-1β, IFN-γ, TGF-β and their respective receptors in active and stable vitiligo patient samples. Increased levels of IL-17A and IL-1β cytokines and decreased expression of MITF suggested a possible role of these cytokines in dysregulation of melanocytic activity in the lesional skin and hence might be responsible for the progression of active vitiligo. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ratai, Eva-Maria; Annamalai, Lakshmanan; Burdo, Tricia; Joo, Chan-Gyu; Bombardier, Jeffrey P.; Fell, Robert; Hakimelahi, Reza; He, Julian; Lentz, Margaret R.; Campbell, Jennifer; Curran, Elizabeth; Halpern, Elkan F.; Masliah, Eliezer; Westmoreland, Susan. V.; Williams, Kenneth C.; González, R. Gilberto
2011-01-01
Proton magnetic resonance spectroscopy (1H MRS) has emerged as one of the most informative neuroimaging modalities for studying the effect of HIV infection in the brain, providing surrogate markers by which to assess disease progression and monitor treatment. Reductions in the level of N-Acetylaspartate (NAA) and NAA/creatine (NAA/Cr) are established markers of neuronal injury or loss. However, the biochemical basis of altered creatine levels in neuroAIDS is not well understood. This study used a rapid progression macaque model of neuroAIDS to elucidate the changes in creatine. As the disease progressed 1H MRS revealed a decrease in NAA, indicative of neuronal injury, and an increase in creatine yet to be elucidated. Subsequently, immunohistochemistry and stereology measures of decreased synaptophysin, microtubule-associated protein 2, and neuronal density confirmed neuronal injury. Furthermore, increases in ionized calcium binding adaptor molecule 1 and glial fibrillary acidic protein indicated microglial and astroglial activation, respectively. Given these data, elevated creatine may reflect enhanced high-energy phosphate turnover in highly metabolizing activated astrocytes and microglia. PMID:21381104
Curcumin inhibits cancer progression through regulating expression of microRNAs.
Zhou, Siying; Zhang, Sijie; Shen, Hongyu; Chen, Wei; Xu, Hanzi; Chen, Xiu; Sun, Dawei; Zhong, Shanliang; Zhao, Jianhua; Tang, Jinhai
2017-02-01
Curcumin, a major yellow pigment and spice in turmeric and curry, is a powerful anti-cancer agent. The anti-tumor activities of curcumin include inhibition of tumor proliferation, angiogenesis, invasion and metastasis, induction of tumor apoptosis, increase of chemotherapy sensitivity, and regulation of cell cycle and cancer stem cell, indicating that curcumin maybe a strong therapeutic potential through modulating various cancer progression. It has been reported that microRNAs as small noncoding RNA molecules are related to cancer progression, which can be regulated by curcumin. Dysregulated microRNAs play vital roles in tumor biology via regulating expressions of target genes and then influencing multiple cancer-related signaling pathways. In this review, we focused on the inhibition effect of curcumin on various cancer progression by regulating expression of multiple microRNAs. Curcumin-induced dysregulation of microRNAs may activate or inactivate a set of signaling pathways, such as Akt, Bcl-2, PTEN, p53, Notch, and Erbb signaling pathways. A better understanding of the relation between curcumin and microRNAs may provide a potential therapeutic target for various cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru
Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CARmore » and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell cycle and apoptosis target genes. • DDT produced increases in cell cycle and anti-apoptosis proteins and decrease in p53. • DDT mixture was unable to stimulate the β-catenin signalling pathway in mouse livers.« less
Park, Eun Hye; Kim, Seokho; Jo, Ji Yoon; Kim, Su Jin; Hwang, Yeonsil; Kim, Jin-Man; Song, Si Young; Lee, Dong-Ki; Koh, Sang Seok
2013-03-01
Collagen triple helix repeat containing-1 (CTHRC1) is a secreted protein involved in vascular remodeling, bone formation and developmental morphogenesis. CTHRC1 has recently been shown to be expressed in human cancers such as breast cancer and melanoma. In this study, we show that CTHRC1 is highly expressed in human pancreatic cancer tissues and plays a role in the progression and metastasis of the disease. CTHRC1 promoted primary tumor growth and metastatic spread of cancer cells to distant organs in orthotopic xenograft tumor mouse models. Overexpression of CTHRC1 in cancer cells resulted in increased motility and adhesiveness, whereas these cellular activities were diminished by down-regulation of the protein. CTHRC1 activated several key signaling molecules, including Src, focal adhesion kinase, paxillin, mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase and Rac1. Treatment with chemical inhibitors of Src, MEK or Rac1 and expression of dominant-negative Rac1 attenuated CTHRC1-induced cell migration and adhesion. Collectively, our results suggest that CTHRC1 has a role in pancreatic cancer progression and metastasis by regulating migration and adhesion activities of cancer cells.
Glutathione Efflux and Cell Death
2012-01-01
Abstract Significance: Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). Recent Advances: There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. Critical Issues: In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. Future Directions: The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux. Antioxid. Redox Signal. 17, 1694–1713. PMID:22656858
High altitude simulation, substance P and airway rapidly adapting receptor activity in rabbits.
Bhagat, R; Yasir, A; Vashisht, A; Kulshreshtha, R; Singh, S B; Ravi, K
2011-09-15
To investigate whether there is a change in airway rapidly adapting receptor (RAR) activity during high altitude exposure, rabbits were placed in a high altitude simulation chamber (barometric pressure, 429 mm Hg). With 12 h exposure, when there was pulmonary congestion, an increase in basal RAR activity was observed. With 36 h exposure, when there was alveolar edema, there was a further increase in basal RAR activity. In these backgrounds, there was an increase in the sensitivity of the RARs to substance P (SP). To assess whether there was an increase in lung SP level, neutral endopeptidase activity was determined which showed a decrease in low barometric pressure exposed groups. It is concluded that along with the SP released, pulmonary congestion and edema produced, respectively by different durations of low barometric pressure exposure cause a progressive increase in RAR activity which may account for the respiratory symptoms reported in climbers who are unacclimatized. Copyright © 2011 Elsevier B.V. All rights reserved.
Modulation of TGF-beta signaling during progression of chronic liver diseases.
Matsuzaki, Koichi
2009-01-01
A large body of work has established roles for epithelial cells as important mediators of progressive fibrosis and carcinogenesis. Transforming growth factor-beta (TGF-beta) and pro-inflammatory cytokines are important inducers of fibro-carcinogenesis. TGF-beta signaling involves phosphorylation of Smad3 at middle linker and/or C-terminal regions. Reversible shifting of Smad3-dependent signaling between tumor-suppression and oncogenesis in hyperactive Ras-expressing epithelial cells indicates that Smad3 phosphorylated at the C-terminal region (pSmad3C) transmits a tumor-suppressive TGF-beta signal, while oncogenic activities such as cell proliferation and invasion are promoted by Smad3 phosphorylated at the linker region (pSmad3L). Notably, pSmad3L-mediated signaling promotes extracellular matrix deposition by activated mesenchymal cells. During progression of chronic liver diseases, hepatic epithelial hepatocytes undergo transition from the tumor-suppressive pSmad3C pathway to the fibrogenic/oncogenic pSmad3L pathway, accelerating liver fibrosis and increasing risk of hepatocellular carcinoma. c-Jun N-terminal kinase activated by pro-inflammatory cytokines is mediating this perturbed hepatocytic TGF-beta signaling. Thus, TGF-beta signaling of hepatocytes affected by chronic inflammation offers a general framework for understanding the molecular mechanisms of human fibro-carcinogenesis during progression of chronic liver diseases.
Evidence for a neural law of effect.
Athalye, Vivek R; Santos, Fernando J; Carmena, Jose M; Costa, Rui M
2018-03-02
Thorndike's law of effect states that actions that lead to reinforcements tend to be repeated more often. Accordingly, neural activity patterns leading to reinforcement are also reentered more frequently. Reinforcement relies on dopaminergic activity in the ventral tegmental area (VTA), and animals shape their behavior to receive dopaminergic stimulation. Seeking evidence for a neural law of effect, we found that mice learn to reenter more frequently motor cortical activity patterns that trigger optogenetic VTA self-stimulation. Learning was accompanied by gradual shaping of these patterns, with participating neurons progressively increasing and aligning their covariance to that of the target pattern. Motor cortex patterns that lead to phasic dopaminergic VTA activity are progressively reinforced and shaped, suggesting a mechanism by which animals select and shape actions to reliably achieve reinforcement. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Castro-Ferreira, Ricardo; Neves, João Sérgio; Ladeiras-Lopes, Ricardo; Leite-Moreira, André M; Neiva-Sousa, Manuel; Almeida-Coelho, João; Ferreira-Martins, João; F Leite-Moreira, Adelino
2014-09-01
The myocardial response to acute stretch consists of a two-phase increase in contractility: an acute increase by the Frank-Starling mechanism and a gradual and time-dependent increase in force generated known as the slow force response (SFR). The SFR is actively modulated by different signaling pathways, but the role of protein kinase G (PKG) signaling is unknown. In this study we aim to characterize the role of the PKG signaling pathway in the SFR under normal and ischemic conditions. Rabbit papillary muscles were stretched from 92 to 100% of maximum length (Lmax) under basal conditions, in the absence (1) or presence of: a PKG agonist (2) and a PKG inhibitor (3); under ischemic conditions in the absence (4) or presence of: a PKG agonist (5); a nitric oxide (NO) donor (6) and a phosphodiesterase 5 (PDE5) inhibitor (7). Under normoxia, the SFR was significantly attenuated by inhibition of PKG and remained unaltered with PKG activation. Ischemia induced a progressive decrease in myocardial contractility after stretch. Neither the PKG agonist nor the NO donor altered the myocardial response to stretch under ischemic conditions. However, the use of a PDE5 inhibitor in ischemia partially reversed the progressive deterioration in contractility. PKG activity is essential for the SFR. During ischemia, a progressive decline in the force is observed in response to acute myocardial stretch. This dysfunctional response can be partially reversed by the use of PDE5 inhibitors. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Jacobs, Jeremy M.; Evanson, J. Richard; Pniewski, Josh; Dickston, Michelle L.; Mueller, Terry; Bojescul, John A.
2017-01-01
Introduction Hip arthroscopy allows surgeons to address intra-articular pathology of the hip while avoiding more invasive open surgical dislocation. However the post-operative rehabilitation protocols have varied greatly in the literature, with many having prolonged periods of limited motion and weight bearing. Purpose The purpose of this study was to describe a criterion-based early weight bearing protocol following hip arthroscopy and investigate functional outcomes in the subjects who were active duty military. Methods Active duty personnel undergoing hip arthroscopy for symptomatic femoroacetabular impingement were prospectively assessed in a controlled environment for the ability to incorporate early postoperative weight-bearing with the following criteria: no increased pain complaint with weight bearing and normalized gait pattern. Modified Harris Hip (HHS) and Hip Outcome score (HOS) were performed preoperatively and at six months post-op. Participants were progressed with a standard hip arthroscopy protocol. Hip flexion was limited to not exceed 90 degrees for the first three weeks post-op, with progression back to running beginning at three months. Final discharge was dependent upon the ability to run two miles at military specified pace and do a single leg broad jump within six inches of the contralateral leg without an increase in pain. Results Eleven participants met inclusion criteria over the study period. Crutch use was discontinued at an average of five days following surgery based on established weight bearing criteria. Only one participant required continued crutch use at 15 days. Participants’ functional outcome was improved postoperatively, as demonstrated by significant increases in HOS and HHS. At the six month follow up, eight of 11 participants were able to take and complete a full Army Physical Fitness Test. Conclusions Following completion of the early weight bearing rehabilitation protocol, 81% of participants were able to progress to full weight bearing by four days post-operative, with normalized pain-free gait patterns. Active duty personnel utilizing an early weight bearing protocol following hip arthroscopy demonstrated significant functional improvement at six months. Level of Evidence Level 4, Case-series PMID:29181261
Shaw, K Aaron; Jacobs, Jeremy M; Evanson, J Richard; Pniewski, Josh; Dickston, Michelle L; Mueller, Terry; Bojescul, John A
2017-10-01
Hip arthroscopy allows surgeons to address intra-articular pathology of the hip while avoiding more invasive open surgical dislocation. However the post-operative rehabilitation protocols have varied greatly in the literature, with many having prolonged periods of limited motion and weight bearing. The purpose of this study was to describe a criterion-based early weight bearing protocol following hip arthroscopy and investigate functional outcomes in the subjects who were active duty military. Active duty personnel undergoing hip arthroscopy for symptomatic femoroacetabular impingement were prospectively assessed in a controlled environment for the ability to incorporate early postoperative weight-bearing with the following criteria: no increased pain complaint with weight bearing and normalized gait pattern. Modified Harris Hip (HHS) and Hip Outcome score (HOS) were performed preoperatively and at six months post-op. Participants were progressed with a standard hip arthroscopy protocol. Hip flexion was limited to not exceed 90 degrees for the first three weeks post-op, with progression back to running beginning at three months. Final discharge was dependent upon the ability to run two miles at military specified pace and do a single leg broad jump within six inches of the contralateral leg without an increase in pain. Eleven participants met inclusion criteria over the study period. Crutch use was discontinued at an average of five days following surgery based on established weight bearing criteria. Only one participant required continued crutch use at 15 days. Participants' functional outcome was improved postoperatively, as demonstrated by significant increases in HOS and HHS. At the six month follow up, eight of 11 participants were able to take and complete a full Army Physical Fitness Test. Following completion of the early weight bearing rehabilitation protocol, 81% of participants were able to progress to full weight bearing by four days post-operative, with normalized pain-free gait patterns. Active duty personnel utilizing an early weight bearing protocol following hip arthroscopy demonstrated significant functional improvement at six months. Level 4, Case-series.
Guaita-Esteruelas, Sandra; Bosquet, Alba; Saavedra, Paula; Gumà, Josep; Girona, Josefa; Lam, Eric W-F; Amillano, Kepa; Borràs, Joan; Masana, Lluís
2017-01-01
Adipose tissue plays an important role in tumor progression, because it provides nutrients and adipokines to proliferating cells. Fatty acid binding protein 4 (FABP4) is a key adipokine for fatty acid transport. In metabolic pathologies, plasma levels of FABP4 are increased. However, the role of this circulating protein is unknown. Recent studies have demonstrated that FABP4 might have a role in tumor progression, but the molecular mechanisms involved are still unclear. In this study, we analysed the role of eFABP4 (exogenous FABP4) in breast cancer progression. MCF-7 and MDA-MB-231 breast cancer cells did not express substantial levels of FABP4 protein, but intracellular FABP4 levels increased after eFABP4 incubation. Moreover, eFABP4 enhanced the proliferation of these breast cancer cells but did not have any effect on MCF-7 and MDA-MB-231 cell migration. Additionally, eFABP4 induced the AKT and MAPK signaling cascades in breast cancer cells, and the inhibition of these pathways reduced the eFBAP4-mediated cell proliferation. Interestingly, eFABP4 treatment in MCF-7 cells increased levels of the transcription factor FoxM1 and the fatty acid transport proteins CD36 and FABP5. In summary, we showed that eFABP4 plays a key role in tumor proliferation and activates the expression of fatty acid transport proteins in MCF-7 breast cancer cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Margulis, Alexander; Zhang, Weitian; Alt-Holland, Addy; Crawford, Howard C; Fusenig, Norbert E; Garlick, Jonathan A
2005-03-01
We studied the link between loss of E-cadherin-mediated adhesion and acquisition of malignant properties in three-dimensional, human tissue constructs that mimicked the initial stages of squamous cell cancer progression. Suppression of E-cadherin expression in early-stage, skin-derived tumor cells (HaCaT-II-4) was induced by cytoplasmic sequestration of beta-catenin upon stable expression of a dominant-negative E-cadherin fusion protein (H-2Kd-Ecad). In monolayer cultures, expression of H-2Kd-Ecad resulted in decreased levels of E-cadherin, redistribution of beta-catenin to the cytoplasm, and complete loss of intercellular adhesion when compared with control II-4 cells. This was accompanied by a 7-fold decrease in beta-catenin-mediated transcription and a 12-fold increase in cell migration. In three-dimensional constructs, E-cadherin-deficient tissues showed disruption of architecture, loss of adherens junctional proteins from cell contacts, and focal tumor cell invasion. Invasion was linked to activation of matrix metalloproteinase (MMP)-mediated degradation of basement membrane in H-2Kd-Ecad-expressing tissue constructs that was blocked by MMP inhibition (GM6001). Quantitative reverse transcription-PCR showed a 2.5-fold increase in MMP-2 and an 8-fold increase in MMP-9 in cells expressing the H-2Kd-Ecad fusion protein when compared with controls, and gel zymography showed increased MMP protein levels. Following surface transplantation of three-dimensional tissues, suppression of E-cadherin expression greatly accelerated tumorigenesis in vivo by inducing a switch to high-grade carcinomas that resulted in a 5-fold increase in tumor size after 4 weeks. Suppression of E-cadherin expression and loss of its function fundamentally modified squamous cell carcinoma progression by activating a highly invasive, aggressive tumor phenotype, whereas maintenance of E-cadherin prevented invasion in vitro and limited tumor progression in vivo.
Methamphetamine Regulation of Firing Activity of Dopamine Neurons
Lin, Min; Sambo, Danielle
2016-01-01
Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca2+ homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca2+-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane. SIGNIFICANCE STATEMENT Methamphetamine (METH) competes with dopamine uptake, increases dopamine efflux via the dopamine transporter, and affects the excitability of dopamine neurons. Here, we identified an unexpected property of METH on dopamine neuron firing activity. METH transiently increased the spontaneous spike activity of dopamine neurons followed by a progressive reduction of the spontaneous spike activity. METH broadened the action potentials, increased coefficients of variation of the interspike interval, and decreased the amplitude of afterhyperpolarization, which are consistent with changes in the activity of Ca2+-activated potassium (BK) channels. We found that METH decreased the activity of BK channels by stimulating BK-α subunit trafficking. Thus, METH modulation of dopamine neurotransmission and resulting behavioral responses is, in part, due to METH regulation of BK channel activity. PMID:27707972
STAT3 inhibition attenuates the progressive phenotypes of Alport syndrome mouse model.
Yokota, Tsubasa; Omachi, Kohei; Suico, Mary Ann; Kamura, Misato; Kojima, Haruka; Fukuda, Ryosuke; Motomura, Keishi; Teramoto, Keisuke; Kaseda, Shota; Kuwazuru, Jun; Takeo, Toru; Nakagata, Naomi; Shuto, Tsuyoshi; Kai, Hirofumi
2018-02-01
Alport syndrome (AS) is a hereditary, progressive nephritis caused by mutation of type IV collagen. Previous studies have shown that activation of signal transducer and activator of transcription 3 (STAT3) exacerbates other renal diseases, but whether STAT3 activation exacerbates AS pathology is still unknown. Here we aim to investigate the involvement of STAT3 in the progression of AS. Phosphorylated STAT3 expression was assessed by immunoblotting analysis of kidneys and glomeruli of an AS mouse model (Col4a5 G5X mutant). To determine the effect of blocking STAT3 signaling, we treated AS mice with the STAT3 inhibitor stattic (10 mg/kg i.p., three times per week for 10 weeks; n = 10). We assessed the renal function [proteinuria, blood urea nitrogen (BUN), serum creatinine] and analyzed the glomerular injury score, fibrosis and inflammatory cell invasion by histological staining. Moreover, we analyzed the gene expression of nephritis-associated molecules. Phosphorylated STAT3 was upregulated in AS kidneys and glomeruli. Treatment with stattic ameliorated the progressive renal dysfunction, such as increased levels of proteinuria, BUN and serum creatinine. Stattic also significantly suppressed the gene expression levels of renal injury markers (Lcn2, Kim-1), pro-inflammatory cytokines (Il-6, KC), pro-fibrotic genes (Tgf-β, Col1a1, α-Sma) and Mmp9. Stattic treatment decreased the renal fibrosis congruently with the decrease of transforming growth factor beta (TGF-β) protein and increase of antifibrosis-associated markers p-Smad1, 5 and 8, which are negative regulators of TGF-β signaling. STAT3 inhibition significantly ameliorated the renal dysfunction in AS mice. Our finding identifies STAT3 as an important regulator in AS progression and provides a promising therapeutic target for AS. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Serial Magnetic Resonance Imaging in Active Surveillance of Prostate Cancer: Incremental Value.
Felker, Ely R; Wu, Jason; Natarajan, Shyam; Margolis, Daniel J; Raman, Steven S; Huang, Jiaoti; Dorey, Fred; Marks, Leonard S
2016-05-01
We assessed whether changes in serial multiparametric magnetic resonance imaging can help predict the pathological progression of prostate cancer in men on active surveillance. A retrospective cohort study was conducted of 49 consecutive men with Gleason 6 prostate cancer who underwent multiparametric magnetic resonance imaging at baseline and again more than 6 months later, each followed by a targeted prostate biopsy, between January 2011 and May 2015. We evaluated whether progression on multiparametric magnetic resonance imaging (an increase in index lesion suspicion score, increase in index lesion volume or decrease in index lesion apparent diffusion coefficient) could predict pathological progression (Gleason 3 + 4 or greater on subsequent biopsy, in systematic or targeted cores). Diagnostic performance of multiparametric magnetic resonance imaging was determined with and without clinical data using a binary logistic regression model. The mean interval between baseline and followup multiparametric magnetic resonance imaging was 28.3 months (range 11 to 43). Pathological progression occurred in 19 patients (39%). The sensitivity, specificity, positive predictive value and negative predictive value of multiparametric magnetic resonance imaging was 37%, 90%, 69% and 70%, respectively. Area under the receiver operating characteristic curve was 0.63. A logistic regression model using clinical information (maximum cancer core length greater than 3 mm on baseline biopsy or a prostate specific antigen density greater than 0.15 ng/ml(2) at followup biopsy) had an AUC of 0.87 for predicting pathological progression. The addition of serial multiparametric magnetic resonance imaging data significantly improved the AUC to 0.91 (p=0.044). Serial multiparametric magnetic resonance imaging adds incremental value to prostate specific antigen density and baseline cancer core length for predicting Gleason 6 upgrading in men on active surveillance. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Role of mTOR in podocyte function and diabetic nephropathy in humans and mice
Gödel, Markus; Hartleben, Björn; Herbach, Nadja; Liu, Shuya; Zschiedrich, Stefan; Lu, Shun; Debreczeni-Mór, Andrea; Lindenmeyer, Maja T.; Rastaldi, Maria-Pia; Hartleben, Götz; Wiech, Thorsten; Fornoni, Alessia; Nelson, Robert G.; Kretzler, Matthias; Wanke, Rüdiger; Pavenstädt, Hermann; Kerjaschki, Dontscho; Cohen, Clemens D.; Hall, Michael N.; Rüegg, Markus A.; Inoki, Ken; Walz, Gerd; Huber, Tobias B.
2011-01-01
Chronic glomerular diseases, associated with renal failure and cardiovascular morbidity, represent a major health issue. However, they remain poorly understood. Here we have reported that tightly controlled mTOR activity was crucial to maintaining glomerular podocyte function, while dysregulation of mTOR facilitated glomerular diseases. Genetic deletion of mTOR complex 1 (mTORC1) in mouse podocytes induced proteinuria and progressive glomerulosclerosis. Furthermore, simultaneous deletion of both mTORC1 and mTORC2 from mouse podocytes aggravated the glomerular lesions, revealing the importance of both mTOR complexes for podocyte homeostasis. In contrast, increased mTOR activity accompanied human diabetic nephropathy, characterized by early glomerular hypertrophy and hyperfiltration. Curtailing mTORC1 signaling in mice by genetically reducing mTORC1 copy number in podocytes prevented glomerulosclerosis and significantly ameliorated the progression of glomerular disease in diabetic nephropathy. These results demonstrate the requirement for tightly balanced mTOR activity in podocyte homeostasis and suggest that mTOR inhibition can protect podocytes and prevent progressive diabetic nephropathy. PMID:21606591
Sezgin, Efe; Van Natta, Mark L.; Ahuja, Alka; Lyon, Alice; Srivastava, Sunil; Troyer, Jennifer L.; O’Brien, Stephen J.; Jabs, Douglas A.
2010-01-01
Purpose To evaluate the effects of previously reported host genetics factors that influence cytomegalovirus (CMV) retinitis incidence, progression to AIDS, and efficacy of highly active antiretroviral therapy (HAART) for mortality, retinitis progression, and retinal detachment in patients with CMV retinitis and AIDS in the era of HAART. Design Prospective, multicenter, observational study. Methods Cox proportional hazards model based genetic association tests examined the influence of IL-10R1_S420L, CCR5Δ32, CCR2-V64I, CCR5 P1, and SDF-3`A polymorphisms among patients with mortality, retinitis progression, and retinal detachment. Participants were 203 European American and 117 African American patients with AIDS and CMV retinitis. Results European American patients with the CCR5 +.P1.+ promoter haplotype showed increased risk for mortality (HR=1.83; 95% CI: 1.00–3.40; P=0.05). Although the same haplotype also trended for increased risk for mortality in African American patients, the result was not significant (HR=2.28; 95% CI: 0.93–5.60; P=0.07). However, this haplotype was associated with faster retinitis progression in African Americans (HR=5.22; 95% CI: 1.54–17.71; P=0.007). Increased risk of retinitis progression was also evident for African American patients with the SDF1-3′A variant (HR=3.89; 95% CI: 1.42–10.60; P=0.008). In addition, the SDF1-3′A variant increased the retinal detachment risk in this patient group (HR=3.05; 95% CI: 1.01–9.16; P=0.05). Conclusion Besides overall immune health, host genetic factors influence mortality, retinitis progression, and retinal detachment in patients with AIDS and CMV retinitis that are receiving HAART. PMID:21396623
Progression of degenerative mitral stenosis: insights from a cohort of 254 patients.
Tyagi, Gaurav; Dang, Patricia; Pasca, Ioana; Patel, Reena; Pai, Ramdas G
2014-11-01
Degenerative mitral stenosis (DMS) is an increasingly common echocardiographic finding, yet the clinical and biological behavior and rate of progression of the condition are unknown. A total of 254 patients was identified from the authors' echocardiographic database with DMS, defined as severe mitral annular calcification with extension into the mitral leaflets resulting in transmitral flow acceleration with a mean diastolic gradient of >2 mmHg in the absence of commissural fusion. Each patient required paired echocardiograms to have been recorded at least three months apart. Clinical, biochemical and pharmacological data were collected from each patient and related to the annualized rate of increase in mean diastolic mitral gradient and stenosis severity on a scale of 0 to 3. The characteristics of the patients were as follows: mean age 71 +/- 15 years; female gender 73%; and left ventricular ejection fraction 66 +/- 13%. Diabetes was present in 50% of patients, renal insufficiency in 40%, and coronary artery disease in 50%. Over a follow up period of 2.6 +/- 2.2 years, the mean gradient was increased by 0.8 +/- 2.4 mmHg (range: 0-15 mmHg) per year, while the stenosis grade was increased by 0.18 +/- 0.5 (range: 0-3) per year. The rate of progression was faster in patients with lesser degrees of stenosis (p = 0.01) and low serum albumen levels (p = 0.04), and slower in those receiving beta-blockers (p = 0.01). Milder stenosis, diabetes mellitus and lack of beta-blocker use were independent predictors of faster DMS progression. DMS progression is highly variable, but generally slow; its progression is accelerated in the presence of diabetes mellitus, but is retarded by beta-blocker use. DMS may be an active biological process offering potentially modifiable targets for intervention.
[Clinical risk factors for progressive myopia].
Schaeffel, F
2012-08-01
The average worldwide frequency of myopia is approximately 30 % and is traditionally subdivided into school myopia and pathological myopia. A further distinction is made between progressive myopia and stationary myopia. There is a high correlation between the frequency of myopia and urbanization and training. Risk factors for development of myopia are close-up work, lack of outdoor activity, biometrical variables of the eye and genetic risk factors. Development of myopia can be positively influenced by peripheral focusing, increased exposure to light and in the future possibly pharmacologically.
Léger, Karolin; Hopp, Ann-Katrin; Fey, Monika; Hottiger, Michael O
2016-08-02
ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G1/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of cyclin E during cell cycle re-entry and G1/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27(Kip 1) protein levels increased in G1 upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G1/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G1/S progression via cyclin E expression and p27(Kip 1) stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism.
Han, Wenchao; Zhao, Hui; Jiao, Bo; Liu, Fange
2014-04-01
Fish oil containing n-3 polyunsaturated fatty acids (n-3 PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to prevent the progression of nephropathy and retard the progression of kidney disease. This study sought to investigate the underlying mechanisms of EPA and DHA in terms of peroxisome proliferator-activated receptor γ (PPARγ), integrin-linked kinase (ILK), and integrin β1 expression in glomerular mesangial cells (GMCs) because of their critical roles in the development and progression of nephropathy. Lipopolysaccharide (LPS) significantly reduced the expression of PPARγand increased the expression of ILK at the mRNA level and at the protein level in GMCs as indicated by real-time PCR and Western blotting. In addition, LPS increased integrin β1 expression in GMCs at the mRNA level. Treatment with EPA and DHA significantly increased the expression of PPARγ and decreased the expression of ILK and integrin β1 in GMCs. These data suggest that the renoprotective effects of EPA and DHA may be related to their potential to increase the expression of PPARγ and decrease the expression of ILK and integrin β1.
Bai, Yang; Chen, Qiang; Sun, Yun-Peng; Wang, Xuan; Lv, Li; Zhang, Li-Ping; Liu, Jin-Sha; Zhao, Song; Wang, Xiao-Lu
2017-10-01
Doxorubicin (DOX) is an anthracycline antitumor drug. However, its clinical use is limited by dose-dependent cardiotoxicity and even progresses to chronic heart failure (CHF). This study aims to investigate whether the Nrf2 activator, sulforaphane (SFN), can prevent DOX-induced CHF. Male Sprague-Dawley rats which received treatment for 6 weeks were divided into four groups (n=30 per group): control, SFN, DOX and DOX plus SFN group. Results revealed that DOX induced progressive cardiac damage as indicated by increased cardiac injury markers, cardiac inflammation, fibrosis and oxidative stress. SFN significantly prevented DOX-induced progressive cardiac dysfunction between 2-6 weeks and prevented DOX-induced cardiac function deterioration. Furthermore, it significantly decreased ejection fraction and increased the expression of brain natriuretic peptide. SFN also almost completely prevented DOX-induced cardiac oxidative stress, inflammation and fibrosis. SFN upregulated NF-E2-related factor 2 (Nrf2) expression and transcription activity, which was reflected by the increased mRNA expression of Nrf2 and its downstream genes. Furthermore, in cultured H9c2 cardiomyocytes, the protective effect of SFN against DOX-induced fibrotic and inflammatory responses was abolished by Nrf2 silencing. We arrived at the conclusion that DOX-induced CHF can be prevented by SFN through the upregulation of Nrf2 expression and transcriptional function. © 2017 John Wiley & Sons Ltd.
2012-01-01
Paroxysmal nocturnal hemoglobinuria (PNH) is a progressive, life-threatening disorder characterized by chronic intravascular hemolysis caused by uncontrolled complement activation. Hepatic vein thrombosis (Budd-Chiari syndrome) is common in PNH patients. This case report describes the response to eculizumab (a humanized monoclonal antibody that inhibits terminal complement activation) in a 25-year-old male with progressive liver function deterioration despite standard anticoagulation therapy and transjugular intrahepatic porto-systemic shunt. The patient presented with anemia, severe thrombocytopenia, headache, abdominal pain, and distention. He was diagnosed with PNH, cerebral vein thrombosis, and Budd-Chiari syndrome. Despite adequate anticoagulation, diuretic administration, and placement of a transjugular shunt, additional thrombotic events and progressive liver damage were observed. Eculizumab therapy was initiated, resulting in rapid blockade of intravascular hemolysis, increased platelet counts, ascites resolution, and liver function recovery, all of which are presently sustained. Since starting eculizumab the patient has had no further thrombotic events and his quality of life has dramatically improved. This is the first report to confirm the role of complement-mediated injury in the progression of Budd-Chiari syndrome in a patient with PNH. This case shows that terminal complement blockade with eculizumab can reverse progressive thromboses and hepatic failure that is unresponsive to anticoagulation therapy and suggests that early initiation of eculizumab should be included in the therapeutic regimen of patients with PNH-related Budd-Chiari syndrome. PMID:23210433
Lee, Lung-Yi; Köhler, Ulrike A.; Zhang, Li; Roenneburg, Drew; Werner, Sabine; Johnson, Jeffrey A.; Foley, David P.
2014-01-01
Oxidative stress is implicated in the development of non-alcoholic steatohepatitis (NASH). The Nrf2-antioxidant response element pathway protects cells from oxidative stress. Studies have shown that global Nrf2 deficiency hastens the progression of NASH. The purpose of this study was to determine whether long-term hepatocyte-specific activation of Nrf2 mitigates NASH progression. Transgenic mice expressing a constitutively active Nrf2 construct in hepatocytes (AlbCre+/caNrf2+) and littermate controls were generated. These mice were fed standard or methionine-choline-deficient (MCD) diet, a diet used to induce NASH development in rodents. After 28 days of MCD dietary feeding, mice developed significant increases in steatosis, inflammation, oxidative stress, and HSC activation compared with those mice on standard diet. AlbCre+/caNrf2+ animals had significantly decreased serum transaminases and reduced steatosis when compared with the AlbCre+/caNrf2− animals. This significant reduction in steatosis was associated with increased expression of genes involved in triglyceride export (MTTP) and β-oxidation (CPT2). However, there were no differences in the increased oxidative stress, inflammation, and HSC activation from MCD diet administration between the AlbCre+/caNrf2− and AlbCre+/caNrf2+ animals. We conclude that hepatocyte-specific activation of Nrf2-mediated gene expression decreased hepatocellular damage and steatosis in a dietary model of NASH. However, hepatocyte-specific induction of Nrf2-mediated gene expression alone is insufficient to mitigate inflammation, oxidative stress, and HSC activation in this nutritional NASH model. PMID:25294219
Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients.
Ehinger, Johannes K; Morota, Saori; Hansson, Magnus J; Paul, Gesine; Elmér, Eskil
2015-06-01
Mitochondrial dysfunction is implicated in amyotrophic lateral sclerosis, where the progressive degeneration of motor neurons results in muscle atrophy, paralysis and death. Abnormalities in both central nervous system and muscle mitochondria have previously been demonstrated in patient samples, indicating systemic disease. In this case-control study, venous blood samples were acquired from 24 amyotrophic lateral sclerosis patients and 21 age-matched controls. Platelets and peripheral blood mononuclear cells were isolated and mitochondrial oxygen consumption measured in intact and permeabilized cells with additions of mitochondrial substrates, inhibitors and titration of an uncoupler. Respiratory values were normalized to cell count and for two markers of cellular mitochondrial content, citrate synthase activity and mitochondrial DNA, respectively. Mitochondrial function was correlated with clinical staging of disease severity. Complex IV (cytochrome c-oxidase)-activity normalized to mitochondrial content was decreased in platelets from amyotrophic lateral sclerosis patients both when normalized to citrate synthase activity and mitochondrial DNA copy number. In mononuclear cells, complex IV-activity was decreased when normalized to citrate synthase activity. Mitochondrial content was increased in amyotrophic lateral sclerosis patient platelets. In mononuclear cells, complex I activity declined and mitochondrial content increased progressively with advancing disease stage. The findings are, however, based on small subsets of patients and need to be confirmed. We conclude that when normalized to mitochondria-specific content, complex IV-activity is reduced in blood cells from amyotrophic lateral sclerosis patients and that there is an apparent compensatory increase in cellular mitochondrial content. This supports systemic involvement in amyotrophic lateral sclerosis and suggests further study of mitochondrial function in blood cells as a future biomarker for the disease.
van Herwaarden, Noortje; van der Maas, Aatke; Minten, Michiel J M; van den Hoogen, Frank H J; Kievit, Wietske; van Vollenhoven, Ronald F; Bijlsma, Johannes W J; van den Bemt, Bart J F; den Broeder, Alfons A
2015-04-09
To evaluate whether a disease activity guided strategy of dose reduction of two tumour necrosis factor (TNF) inhibitors, adalimumab or etanercept, is non-inferior in maintaining disease control in patients with rheumatoid arthritis compared with usual care. Randomised controlled, open label, non-inferiority strategy trial. Two rheumatology outpatient clinics in the Netherlands, from December 2011 to May 2014. 180 patients with rheumatoid arthritis and low disease activity using adalimumab or etanercept; 121 allocated to the dose reduction strategy, 59 to usual care. Disease activity guided dose reduction (advice to stepwise increase the injection interval every three months, until flare of disease activity or discontinuation) or usual care (no dose reduction advice). Flare was defined as increase in DAS28-CRP (a composite score measuring disease activity) greater than 1.2, or increase greater than 0.6 and current score of at least 3.2. In the case of flare, TNF inhibitor use was restarted or escalated. Difference in proportions of patients with major flare (DAS28-CRP based flare longer than three months) between the two groups at 18 months, compared against a non-inferiority margin of 20%. Secondary outcomes included TNF inhibitor use at study end, functioning, quality of life, radiographic progression, and adverse events. Dose reduction of adalimumab or etanercept was non-inferior to usual care (proportion of patients with major flare at 18 months, 12% v 10%; difference 2%, 95% confidence interval -12% to 12%). In the dose reduction group, TNF inhibitor use could successfully be stopped in 20% (95% confidence interval 13% to 28%), the injection interval successfully increased in 43% (34% to 53%), but no dose reduction was possible in 37% (28% to 46%). Functional status, quality of life, relevant radiographic progression, and adverse events did not differ between the groups, although short lived flares (73% v 27%) and minimal radiographic progression (32% v 15%) were more frequent in dose reduction than usual care. A disease activity guided, dose reduction strategy of adalimumab or etanercept to treat rheumatoid arthritis is non-inferior to usual care with regard to major flaring, while resulting in the successful dose reduction or stopping in two thirds of patients.Trial registration Dutch trial register (www.trialregister.nl), NTR 3216. © van Herwaarden et al 2015.
Terao, Yasuo; Fukuda, Hideki; Yugeta, Akihiro; Hikosaka, Okihide; Nomura, Yoshiko; Segawa, Masaya; Hanajima, Ritsuko; Tsuji, Shoji; Ugawa, Yoshikazu
2011-06-01
The cardinal pathophysiology of Parkinson's disease (PD) is considered to be the increase in the activities of basal ganglia (BG) output nuclei, which excessively inhibits the thalamus and superior colliculus (SC) and causes preferential impairment of internal over external movements. Here we recorded saccade performance in 66 patients with PD and 87 age-matched controls, and studied how the abnormality changed with disease progression. PD patients were impaired not only in memory guided saccades, but also in visually guided saccades, beginning in the relatively early stages of the disease. On the other hand, they were impaired in suppressing reflexive saccades (saccades to cue). All these changes deteriorated with disease progression. The frequency of reflexive saccades showed a negative correlation with the latency of visually guided saccades and Unified Parkinson's Disease Rating Scale motor subscores reflecting dopaminergic function. We suggest that three major drives converging on SC determine the saccade abnormalities in PD. The impairment in visually and memory guided saccades may be caused by the excessive inhibition of the SC due to the increased BG output and the decreased activity of the frontal cortex-BG circuit. The impaired suppression of reflexive saccades may be explained if the excessive inhibition of SC is "leaky." Changes in saccade parameters suggest that frontal cortex-BG circuit activity decreases with disease progression, whereas SC inhibition stays relatively mild in comparison throughout the course of the disease. Finally, SC disinhibition due to leaky suppression may represent functional compensation from neural structures outside BG, leading to hyper-reflexivity of saccades and milder clinical symptoms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Iannetta, Marco; Bellizzi, Anna; Lo Menzo, Sara; Anzivino, Elena; D'Abramo, Alessandra; Oliva, Alessandra; D'Agostino, Claudia; d'Ettorre, Gabriella; Pietropaolo, Valeria; Vullo, Vincenzo; Ciardi, Maria Rosa
2013-06-01
John Cunningham virus (JCV), the etiological agent of progressive multifocal leukoencephalopathy (PML), contains a hyper-variable non-coding control region usually detected in urine of healthy individuals as archetype form and in the brain and cerebrospinal fluid (CSF) of PML patients as rearranged form. We report a case of HIV-related PML with clinical, immunological and virological data longitudinally collected. On admission (t0), after 8-week treatment with a rescue highly active antiretroviral therapy (HAART), the patient showed a CSF-JCV load of 16,732 gEq/ml, undetectable HIV-RNA and an increase of CD4+ cell count. Brain magnetic resonance imaging (MRI) showed PML-compatible lesions without contrast enhancement. We considered PML-immune reconstitution inflammatory syndrome as plausible because of the sudden onset of neurological symptoms after the effective HAART. An experimental JCV treatment with mefloquine and mirtazapine was added to steroid boli. Two weeks later (t1), motor function worsened and MRI showed expanded lesions with cytotoxic oedema. CSF JCV-DNA increased (26,263 gEq/ml) and JCV viremia was detected. After 4 weeks (t2), JCV was detected only in CSF (37,719 gEq/ml), and 8 weeks after admission (t3), JC viral load decreased in CSF and JCV viremia reappeared. The patient showed high level of immune activation both in peripheral blood and CSF. He died 4 weeks later. Considering disease progression, combined therapy failure and immune hyper-activation, we finally classified the case as classical PML. The archetype variant found in CSF at t0/t3 and a rearranged sequence detected at t1/t2 suggest that PML can develop from an archetype virus and that the appearance of rearranged genotypes contribute to faster disease progression.
Ahmadi-Abhari, Sara; Sabia, Severine; Shipley, Martin J; Kivimäki, Mika; Singh-Manoux, Archana; Tabak, Adam; McEniery, Carmel; Wilkinson, Ian B; Brunner, Eric J
2017-08-07
Physical activity is associated with reduced cardiovascular disease risk, mainly through effects on atherosclerosis. Aortic stiffness may be an alternative mechanism. We examined whether patterns of physical activity and sedentary behavior are associated with rate of aortic stiffening. Carotid-femoral pulse wave velocity (PWV) was measured twice using applanation tonometry at mean ages 65 (in 2008/2009) and 70 (in 2012/2013) years in the Whitehall-II study (N=5196). Physical activity was self-reported at PWV baseline (2008/2009) and twice before (in 1997/1999 and 2002/2003). Sedentary time was defined as sitting time watching television or at work/commute. Linear mixed models adjusted for metabolic and lifestyle risk factors were used to analyze PWV change. Mean (SD) PWV (m/s) was 8.4 (2.4) at baseline and 9.2 (2.7) at follow-up, representing a 5-year increase of 0.76 m/s (95% CI 0.69, 0.83). A smaller 5-year increase in PWV was observed for each additional hour/week spent in sports activity (-0.02 m/s [95% CI -0.03, -0.001]) or cycling (-0.02 m/s [-0.03, -0.008]). Walking, housework, gardening, or do-it-yourself activities were not significantly associated with aortic stiffening. Each additional hour/week spent sitting was associated with faster PWV progression in models adjusted for physical activity (0.007 m/s [95% CI 0.001, 0.013]). Increasing physical activity over time was associated with a smaller subsequent increase in PWV (-0.16 m/s [-0.32, -0.002]) compared with not changing activity levels. Higher levels of moderate-to-vigorous physical activity and avoidance of sedentary behavior were each associated with a slower age-related progression of aortic stiffness independent of conventional vascular risk factors. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Bushi, Doron; Stein, Efrat Shavit; Golderman, Valery; Feingold, Ekaterina; Gera, Orna; Chapman, Joab; Tanne, David
2017-01-01
Brain thrombin activity is increased following acute ischemic stroke and may play a pathogenic role through the protease-activated receptor 1 (PAR1). In order to better assess these factors, we obtained a novel detailed temporal and spatial profile of thrombin activity in a mouse model of permanent middle cerebral artery occlusion (pMCAo). Thrombin activity was measured by fluorescence spectroscopy on coronal slices taken from the ipsilateral and contralateral hemispheres 2, 5, and 24 h following pMCAo ( n = 5, 6, 5 mice, respectively). Its spatial distribution was determined by punch samples taken from the ischemic core and penumbra and further confirmed using an enzyme histochemistry technique ( n = 4). Levels of PAR1 were determined using western blot. Two hours following pMCAo, thrombin activity in the stroke core was already significantly higher than the contralateral area (11 ± 5 vs. 2 ± 1 mU/ml). At 5 and 24 h, thrombin activity continued to rise linearly ( r = 0.998, p = 0.001) and to expand in the ischemic hemisphere beyond the ischemic core reaching deleterious levels of 271 ± 117 and 123 ± 14 mU/ml (mean ± SEM) in the basal ganglia and ischemic cortex, respectively. The peak elevation of thrombin activity in the ischemic core that was confirmed by fluorescence histochemistry was in good correlation with the infarcts areas. PAR1 levels in the ischemic core decreased as stroke progressed and thrombin activity increased. In conclusion, there is a time- and space-related increase in brain thrombin activity in acute ischemic stroke that is closely related to the progression of brain damage. These results may be useful in the development of therapeutic strategies for ischemic stroke that involve the thrombin-PAR1 pathway in order to prevent secondary thrombin related brain damage.
Emelyanova, Larisa; Ashary, Zain; Cosic, Milanka; Negmadjanov, Ulugbek; Ross, Gracious; Rizvi, Farhan; Olet, Susan; Kress, David; Sra, Jasbir; Tajik, A Jamil; Holmuhamedov, Ekhson L; Shi, Yang; Jahangir, Arshad
2016-07-01
Mitochondria are critical for maintaining normal cardiac function, and a deficit in mitochondrial energetics can lead to the development of the substrate that promotes atrial fibrillation (AF) and its progression. However, the link between mitochondrial dysfunction and AF in humans is still not fully defined. The aim of this study was to elucidate differences in the functional activity of mitochondrial oxidative phosphorylation (OXPHOS) complexes and oxidative stress in right atrial tissue from patients without (non-AF) and with AF (AF) who were undergoing open-heart surgery and were not significantly different for age, sex, major comorbidities, and medications. The overall functional activity of the electron transport chain (ETC), NADH:O2 oxidoreductase activity, was reduced by 30% in atrial tissue from AF compared with non-AF patients. This was predominantly due to a selective reduction in complex I (0.06 ± 0.007 vs. 0.09 ± 0.006 nmol·min(-1)·citrate synthase activity(-1), P = 0.02) and II (0.11 ± 0.012 vs. 0.16 ± 0.012 nmol·min(-1)·citrate synthase activity(-1), P = 0.003) functional activity in AF patients. Conversely, complex V activity was significantly increased in AF patients (0.21 ± 0.027 vs. 0.12 ± 0.01 nmol·min(-1)·citrate synthase activity(-1), P = 0.005). In addition, AF patients exhibited a higher oxidative stress with increased production of mitochondrial superoxide (73 ± 17 vs. 11 ± 2 arbitrary units, P = 0.03) and 4-hydroxynonenal level (77.64 ± 30.2 vs. 9.83 ± 2.83 ng·mg(-1) protein, P = 0.048). Our findings suggest that AF is associated with selective downregulation of ETC activity and increased oxidative stress that can contribute to the progression of the substrate for AF. Copyright © 2016 the American Physiological Society.
Reissig, Kathrin; Silver, Andrew; Hartig, Roland; Schinlauer, Antje; Walluscheck, Diana; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert; Poehlmann-Nitsche, Angela
2017-01-01
Dysregulation of c-Jun N -terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression.
Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression.
Lee, Yoonjin; Dominy, John E; Choi, Yoon Jong; Jurczak, Michael; Tolliday, Nicola; Camporez, Joao Paulo; Chim, Helen; Lim, Ji-Hong; Ruan, Hai-Bin; Yang, Xiaoyong; Vazquez, Francisca; Sicinski, Piotr; Shulman, Gerald I; Puigserver, Pere
2014-06-26
Insulin constitutes a principal evolutionarily conserved hormonal axis for maintaining glucose homeostasis; dysregulation of this axis causes diabetes. PGC-1α (peroxisome-proliferator-activated receptor-γ coactivator-1α) links insulin signalling to the expression of glucose and lipid metabolic genes. The histone acetyltransferase GCN5 (general control non-repressed protein 5) acetylates PGC-1α and suppresses its transcriptional activity, whereas sirtuin 1 deacetylates and activates PGC-1α. Although insulin is a mitogenic signal in proliferative cells, whether components of the cell cycle machinery contribute to its metabolic action is poorly understood. Here we report that in mice insulin activates cyclin D1-cyclin-dependent kinase 4 (Cdk4), which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high-throughput chemical screen, we identify a Cdk4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK-3β (glycogen synthase kinase 3-beta) signalling induces cyclin D1 protein stability by sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 messenger RNA transcripts. Activated cyclin D1-Cdk4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycaemia. In diabetic models, cyclin D1-Cdk4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycaemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division.
Effects of phosphate binders in moderate CKD.
Block, Geoffrey A; Wheeler, David C; Persky, Martha S; Kestenbaum, Bryan; Ketteler, Markus; Spiegel, David M; Allison, Matthew A; Asplin, John; Smits, Gerard; Hoofnagle, Andrew N; Kooienga, Laura; Thadhani, Ravi; Mannstadt, Michael; Wolf, Myles; Chertow, Glenn M
2012-08-01
Some propose using phosphate binders in the CKD population given the association between higher levels of phosphorus and mortality, but their safety and efficacy in this population are not well understood. Here, we aimed to determine the effects of phosphate binders on parameters of mineral metabolism and vascular calcification among patients with moderate to advanced CKD. We randomly assigned 148 patients with estimated GFR=20-45 ml/min per 1.73 m(2) to calcium acetate, lanthanum carbonate, sevelamer carbonate, or placebo. The primary endpoint was change in mean serum phosphorus from baseline to the average of months 3, 6, and 9. Serum phosphorus decreased from a baseline mean of 4.2 mg/dl in both active and placebo arms to 3.9 mg/dl with active therapy and 4.1 mg/dl with placebo (P=0.03). Phosphate binders, but not placebo, decreased mean 24-hour urine phosphorus by 22%. Median serum intact parathyroid hormone remained stable with active therapy and increased with placebo (P=0.002). Active therapy did not significantly affect plasma C-terminal fibroblast growth factor 23 levels. Active therapy did, however, significantly increase calcification of the coronary arteries and abdominal aorta (coronary: median increases of 18.1% versus 0.6%, P=0.05; abdominal aorta: median increases of 15.4% versus 3.4%, P=0.03). In conclusion, phosphate binders significantly lower serum and urinary phosphorus and attenuate progression of secondary hyperparathyroidism among patients with CKD who have normal or near-normal levels of serum phosphorus; however, they also promote the progression of vascular calcification. The safety and efficacy of phosphate binders in CKD remain uncertain.
Cheng, Xiang-Xu; Yu, Min; Zhang, Nan; Zhou, Zhu-Qing; Xu, Qiu-Tao; Mei, Fang-Zhu; Qu, Liang-Huan
2016-03-01
Previous studies have proved that waterlogging stress accelerates the programmed cell death (PCD) progress of wheat endosperm cells. A highly waterlogging-tolerant wheat cultivar Hua 8 and a waterlogging susceptible wheat cultivar Hua 9 were treated with different waterlogging durations, and then, dynamic changes of reactive oxygen species (ROS), gene expressions, and activities of antioxidant enzymes in endosperm cells were detected. The accumulation of ROS increased considerably after 7 days of waterlogging treatment (7 DWT) and 12 DWT in both cultivars compared with control group (under non-waterlogged conditions), culminated at 12 DAF (days after flowering) and reduced hereafter. Waterlogging resulted in a great increase of H2O2 and O2 (-) in plasma membranes, cell walls, mitochondrias, and intercellular spaces with ultracytochemical localization. Moreover, the deformation and rupture of cytomembranes as well as the swelling and distortion of mitochondria were obvious. Under waterlogging treatment conditions, catalase (CAT) gene expression increased in endosperm of Hua 8 but activity decreased. In addition, Mn superoxide dismutase (MnSOD) gene expression and superoxide dismutase (SOD) activity increased. Compared with Hua 8, both CAT, MnSOD gene expressions and CAT, SOD activities decreased in Hua 9. Moreover, ascorbic acid and mannitol relieve the intensifying of PCD processes in Hua 8 endosperm cells induced by waterlogging. These results indicate that ROS have important roles in the PCD of endosperm cells, the changes both CAT, MnSOD gene expressions and CAT, SOD activities directly affected the accumulation of ROS in two different wheat cultivars under waterlogging, ultimately led to the PCD acceleration of endosperm.
Saxena, Rohit; Vashist, Praveen; Tandon, Radhika; Pandey, Ravindra M; Bhardawaj, Amit; Gupta, Vivek; Menon, Vimala
2017-01-01
To evaluate the incidence and progression of myopia and factors associated with progression of myopia in school going children in Delhi. Prospective longitudinal study of 10,000 school children aged 5 to 15 years screened after an interval of 1 year to identify new myopes (Spherical Equivalent≤ -0.5D) and progression of myopia in previously diagnosed myopic children. Association between risk factors and progression was analyzed using adjusted odds ratio. Of the 9,616 children re-screened (97.3% coverage), annual incidence of myopia was 3.4%with mean dioptric change of -1.09 ± 0.55. There was a significant higher incidence of myopia in younger children compared to older children (P = 0.012) and among girls compared to boys (P = 0.002). Progression was observed in 49.2%children with mean dioptric change of -0.27 ± 0.42 diopters. The demographic and behavioral risk factors were analyzed for children with progression (n = 629) and adjusted odds ratio values were estimated. Hours of reading-writing/week (p<0.001), use of computers/ video games (P<0.001) and watching television (P = 0.048) were significant risk factors for progression of myopia. Outdoor activities / time spent outdoors> 2 hours in a day were protective with an inverse association with progression of myopia (P< 0.001). Myopia is an important health issue in India and is associated with long hours of reading and screen time with use of computers and video games. An annual eye vision screening should be conducted, and outdoor activities be promoted to prevent the increase of myopia among school children.
NASA Astrophysics Data System (ADS)
Meng, Jie; Yang, Man; Jia, Fumin; Kong, Hua; Zhang, Weiqi; Wang, Chaoying; Xing, Jianmin; Xie, Sishen; Xu, Haiyan
2010-04-01
The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.
Vitamin E and regression of hypercholesterolemia-induced oxidative stress in kidney.
Prasad, Kailash
2014-01-01
Hypercholesterolemia (HC) is an independent risk factor for the onset and progression of renal disease. HC induces oxidative stress (OS) in the kidney; Vitamin E (Vit.E), an antioxidant, slows the progression of OS in the kidney. This study was to investigate if Vit.E regresses the HC-induced OS, and the regression is associated with an increase in the antioxidant reserve (AR). The studies were carried out in four groups of rabbits. The kidneys were removed under anesthesia. OS and AR in the renal tissue were assessed by measuring malondialdetyde (MDA) and chemiluminescent (CL) activity, respectively. High-cholesterol diet elevated the serum total cholesterol (TC), and the regular diet with or without Vit.E following a high-cholesterol diet reduced the serum TC to control levels. HC increased the MDA levels of kidney by 5.54-fold compared to control. The MDA contents of the kidneys in groups on regular diet with or without Vit.E were, respectively, 56 and 53 % lower than the control group. The CL activity in the control group was 12.15 ± 0.73 × 10(6) RLU/mg protein. The CL activity in HC group was 45.26 % lower than that in control, indicating an increase in AR. The regular diet with or without Vit.E following high-cholesterol diet normalized the CL activity/AR. In conclusion, HC increases OS in the kidney; reduction of serum cholesterol by regular diet regresses the renal OS but Vit.E does not regress HC-induced OS in kidney.
Jeong, Ae Lee; Han, Sora; Lee, Sunyi; Su Park, Jeong; Lu, Yiling; Yu, Shuangxing; Li, Jane; Chun, Kyung-Hee; Mills, Gordon B.; Yang, Young
2016-01-01
Mutation of PPP2R1A has been observed at high frequency in endometrial serous carcinomas but at low frequency in ovarian clear cell carcinoma. However, the biological role of mutation of PPP2R1A in ovarian and endometrial cancer progression remains unclear. In this study, we found that PPP2R1A expression is elevated in high-grade primary tumor patients with papillary serous tumors of the ovary. To determine whether increased levels or mutation of PPP2R1A might contribute to cancer progression, the effects of overexpression or mutation of PPP2R1A on cell proliferation, migration, and PP2A phosphatase activity were investigated using ovarian and endometrial cancer cell lines. Among the mutations, PPP2R1A-W257G enhanced cell migration in vitro through activating SRC-JNK-c-Jun pathway. Overexpression of wild type (WT) PPP2R1A increased its binding ability with B56 regulatory subunits, whereas PPP2R1A-mutations lost the ability to bind to most B56 subunits except B56δ. Total PP2A activity and PPP2R1A-associated PP2Ac activity were significantly increased in cells overexpressing PPP2R1A-WT. In addition, overexpression of PPP2R1A-WT increased cell proliferation in vitro and tumor growth in vivo. PMID:27272709
Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages
Stout, Robert D.; Watkins, Stephanie K.; Suttles, Jill
2009-01-01
The extent to which the functional heterogeneity of Mϕs is dependent on the differentiation of functional sublineages remains unresolved. One alternative hypothesis proposes that Mϕs are functionally plastic cells, which are capable of altering their functional activities progressively in response to progressively changing signaling molecules generated in their microenvironment. This “functional plasticity” hypothesis predicts that the functionally polarized Mϕs in chronic pathologies do not represent Mϕ sublineages but rather, are mutable phenotypes sustained by chronic signaling from the pathological environment. Solid TAMϕs are chronically polarized to provide activities that support tumor growth and metastasis and suppress adaptive immune responses. In support of the functional plasticity hypothesis, administration of slow-release microsphere-encapsulated IL-12 successfully reprogrammed TAMϕs in situ, reducing Mϕ support of tumor growth and metastasis and enhancing Mϕ proimmunogenic activities. Increased knowledge of how Mϕ function is regulated and how polarized Mϕs can be reprogrammed in situ will increase our ability to control Mϕ function in a variety of pathological states, including cancer and chronic inflammatory disease. PMID:19605698
Seven, Yasin B.; Mantilla, Carlos B.; Zhan, Wen-Zhi; Sieck, Gary C.
2012-01-01
We hypothesized that diaphragm muscle (DIAm) by a shift in the EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O2-5% CO2), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p<0.05). The non-stationary period at the onset of EMG activity ranged from ~70 ms during airway occlusion to ~150 ms during eupnea. Within the initial non-stationary period of EMG activity 80–95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. PMID:22986086
Zhang, Ying; Ertl, Hildegund C.J.
2016-01-01
The tumor stroma, which is essential to support growth and metastasis of malignant cells, provides targets for active immunotherapy of cancer. Previous studies have shown that depleting fibroblast activation protein (FAP)-expressing stromal cells reduces tumor progression and concomitantly increases tumor antigen (TA)-specific T cell responses. However the underlying pathways remain ill defined. Here we identify that immunosuppressive cells (ISCs) from tumor-bearing mice impose metabolic stress on CD8+T cells, which is associated with increased expression of the co-inhibitor PD-1. In two mouse melanoma models, depleting FAP+ stroma cells from the tumor microenvironment (TME) upon vaccination with an adenoviral-vector reduces frequencies and functions of ISCs. This is associated with changes in the cytokine/chemokine milieu in the TME and decreased activity of STAT6 signaling within ISCs. Decreases in ISCs upon FAP+stromal cell depletion is associated with reduced metabolic stress of vaccine-induced tumor infiltrating CD8+T cells and their delayed progression towards functional exhaustion, resulting in prolonged survival of tumor-bearing mice. PMID:26943036
Zhang, Ying; Ertl, Hildegund C J
2016-04-26
The tumor stroma, which is essential to support growth and metastasis of malignant cells, provides targets for active immunotherapy of cancer. Previous studies have shown that depleting fibroblast activation protein (FAP)-expressing stromal cells reduces tumor progression and concomitantly increases tumor antigen (TA)-specific T cell responses. However the underlying pathways remain ill defined. Here we identify that immunosuppressive cells (ISCs) from tumor-bearing mice impose metabolic stress on CD8+T cells, which is associated with increased expression of the co-inhibitor PD-1. In two mouse melanoma models, depleting FAP+ stroma cells from the tumor microenvironment (TME) upon vaccination with an adenoviral-vector reduces frequencies and functions of ISCs. This is associated with changes in the cytokine/chemokine milieu in the TME and decreased activity of STAT6 signaling within ISCs. Decreases in ISCs upon FAP+stromal cell depletion is associated with reduced metabolic stress of vaccine-induced tumor infiltrating CD8+T cells and their delayed progression towards functional exhaustion, resulting in prolonged survival of tumor-bearing mice.
Sengupta, Debashree; Guha, Anirban; Reddy, Attipalli Ramachandra
2013-10-05
The present study investigates the interdependence of plant water status with foliar and root responses in Vigna radiata L.Wilczek under progressive drought. Vegetatively-mature V. radiata plants were subjected to water withdrawal for 3 and 6days (D3 and D6, respectively) and then re-watered subsequently for 6days (6R) for stress-recovery. Changes in plant water status were expressed in terms of leaf and root moisture contents (LMC and RMC, respectively) and leaf relative water content (LRWC). Progressive drought caused apparent decrease in LRWC, LMC and RMC depicting significant level of dehydration of leaf and root tissues. Stomatal limitation alone could not account for the observed decrease in net CO2 assimilation rates (Pn) due to comparatively less decrease in sub-stomatal CO2 (Ci) concentrations with respect to other gas exchange parameters indicating possible involvement of non-stomatal limitations. Analysis of polyphasic chl a fluorescence kinetics during progressive drought showed decreased energy connectivity among PSII units as defined by a positive L-band with highest amplitude during D6. Efficiency of electron flux from OEC towards PSII acceptor side was not significantly affected during drought conditions as evidenced by the absence of a positive K-band. Increasing root-level water-limitation enforced a gradual oxidative stress through H2O2 accumulation and membrane lipid peroxidation in V. radiata roots exhibiting drastic enhancement of proline content and a significant but gradual increase in ascorbic acid content as well as guaiacol peroxidase activity under progressive drought. Expression analysis of Δ(1) pyrroline-5-carboxylate synthetase (P5CS) through real time PCR and enzyme activity studies showed a strong positive correlation between VrP5CS gene expression, enzyme activity and proline accumulation in the roots of V. radiata under progressive drought and recovery. Drought-induced changes in root moisture content (RMC) showed positive linear correlations with leaf water content, stomatal conductance as well as transpirational water loss dynamics and a significant negative correlation with the corresponding drought-induced expression patterns of ascorbate, guaiacol peroxidase and proline in roots of V. radiata. The study provides new insights into the plant water status-dependent interrelationship between photosynthetic performance and major root defense responses of V. radiata under progressive drought conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
Ciamei, Alessandro; Detloff, Peter J; Morton, A Jennifer
2015-09-15
In Huntington's disease (HD) depression is observed before the disease is diagnosed, and is likely to be a component of the disease, rather than a consequence. Depression in HD patients does not progress in parallel with other symptoms; rather it peaks at early- to mid-stages of the disease and declines thereafter. In mice, depressive-like behaviours can be measured as an increase in behavioural despair (floating) observed in the forced swim test (FST). Floating in the FST is modulated differently by antidepressants with different mechanisms of action. Drugs that increase levels of serotonin inhibit floating by promoting horizontal swimming, whereas drugs that increase levels of noradrenaline inhibit floating by enhancing vertical swimming (climbing). We compared the FST behavioural profiles of two different allelic series of HD mice, a fragment model (R6/2 mice carrying 120, 250, or 350 CAG repeats), and a knock-in model (Hdh mice carrying 50, 150, or 250 CAG repeats). The FST behavioural profile was similar in both lines. It was characterized by an early-stage increase in floating, and then, as the mice aged, floating decreased, whereas active behaviours of swimming and climbing increased. Our results show that, as with depression in HD patients, floating in HD mice does not progress linearly, suggesting that, at the late stages of the disease, an increase in serotonergic and noradrenergic activity might contribute to lower floating levels in HD mice. If similar compensatory changes occur in humans, this should be taken into account when considering the treatment of depression in HD patients. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Kung-Yen; Lin, Jui-An; Yao, Han-Yun; Hsu, An-Chih; Tai, Yu-Ting; Chen, Jui-Tai; Hsieh, Mao-Chih; Shen, Tang-Long; Hsu, Ren-Yi; Wu, Hong-Tan; Wang, Guey Horng; Ho, Bing-Ying; Chen, Yu-Pei
2018-04-01
Arctigenin (ATG), a lignin extracted from Arctium lappa (L.), exerts antioxidant and anti-inflammatory effects. We hypothesized that ATG exerts a protective effect on hepatocytes by preventing nonalcoholic fatty liver disease (NAFLD) progression associated with lipid oxidation-associated lipotoxicity and inflammation. We established an in vitro NAFLD cell model by using normal WRL68 hepatocytes to investigate oleic acid (OA) accumulation and the potential bioactive role of ATG. The results revealed that ATG inhibited OA-induced lipid accumulation, lipid peroxidation, and inflammation in WRL68 hepatocytes, as determined using Oil Red O staining, thiobarbituric acid reactive substance assay, and inflammation antibody array assays. Quantitative RT-PCR analysis demonstrated that ATG significantly mitigated the expression of acetylcoenzyme A carboxylase 1 and sterol regulatory element-binding protein-1 and significantly increased the expression of carnitine palmitoyltransferase 1 and peroxisome proliferator-activated receptor alpha. The 40 targets of the Human Inflammation Antibody Array indicated that ATG significantly inhibited the elevation of the U937 lymphocyte chemoattractant, ICAM-1, IL-1β, IL-6, IL-6sR, IL-7, and IL-8. ATG could activate the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and AMP-activated protein kinase (AMPK) pathways and could increase the phosphorylation levels of Akt and AMPK to mediate cell survival, lipid metabolism, oxidation stress, and inflammation. Thus, we demonstrated that ATG could inhibit NAFLD progression associated with lipid oxidation-associated lipotoxicity and inflammation, and we provided insights into the underlying mechanisms and revealed potential targets to enable a thorough understanding of NAFLD progression. Copyright © 2018 Elsevier Inc. All rights reserved.
Sugimoto, Chie; Merino, Kristen M; Hasegawa, Atsuhiko; Wang, Xiaolei; Alvarez, Xavier A; Wakao, Hiroshi; Mori, Kazuyasu; Kim, Woong-Ki; Veazey, Ronald S; Didier, Elizabeth S; Kuroda, Marcelo J
2017-09-01
Infant humans and rhesus macaques infected with the human or simian immunodeficiency virus (HIV or SIV), respectively, express higher viral loads and progress more rapidly to AIDS than infected adults. Activated memory CD4 + T cells in intestinal tissues are major primary target cells for SIV/HIV infection, and massive depletion of these cells is considered a major cause of immunodeficiency. Monocytes and macrophages are important cells of innate immunity and also are targets of HIV/SIV infection. We reported previously that a high peripheral blood monocyte turnover rate was predictive for the onset of disease progression to AIDS in SIV-infected adult macaques. The purpose of this study was to determine if earlier or higher infection of monocytes/macrophages contributes to the more rapid progression to AIDS in infants. We observed that uninfected infant rhesus macaques exhibited higher physiologic baseline monocyte turnover than adults. Early after SIV infection, the monocyte turnover further increased, and it remained high during progression to AIDS. A high percentage of terminal deoxynucleotidyltransferase dUTP nick end label (TUNEL)-positive macrophages in the lymph nodes (LNs) and intestine corresponded with an increasing number of macrophages derived from circulating monocytes (bromodeoxyuridine positive [BrdU + ] CD163 + ), suggesting that the increased blood monocyte turnover was required to rapidly replenish destroyed tissue macrophages. Immunofluorescence analysis further demonstrated that macrophages were a significant portion of the virus-producing cells found in LNs, intestinal tissues, and lungs. The higher baseline monocyte turnover in infant macaques and subsequent macrophage damage by SIV infection may help explain the basis of more rapid disease progression to AIDS in infants. IMPORTANCE HIV infection progresses much more rapidly in pediatric cases than in adults; however, the mechanism for this difference is unclear. Using the rhesus macaque model, this work was performed to address why infants infected with SIV progress more quickly to AIDS than do adults. Earlier we reported that in adult rhesus macaques, increasing monocyte turnover reflected tissue macrophage damage by SIV and was predictive of terminal disease progression to AIDS. Here we report that uninfected infant rhesus macaques exhibited a higher physiological baseline monocyte turnover rate than adults. Furthermore, once infected with SIV, infants displayed further increased monocyte turnover that may have facilitated the accelerated progression to AIDS. These results support a role for monocytes and macrophages in the pathogenesis of SIV/HIV and begin to explain why infants are more prone to rapid disease progression. Copyright © 2017 American Society for Microbiology.
Sugimoto, Chie; Merino, Kristen M.; Hasegawa, Atsuhiko; Wang, Xiaolei; Alvarez, Xavier A.; Wakao, Hiroshi; Kim, Woong-Ki; Veazey, Ronald S.; Didier, Elizabeth S.
2017-01-01
ABSTRACT Infant humans and rhesus macaques infected with the human or simian immunodeficiency virus (HIV or SIV), respectively, express higher viral loads and progress more rapidly to AIDS than infected adults. Activated memory CD4+ T cells in intestinal tissues are major primary target cells for SIV/HIV infection, and massive depletion of these cells is considered a major cause of immunodeficiency. Monocytes and macrophages are important cells of innate immunity and also are targets of HIV/SIV infection. We reported previously that a high peripheral blood monocyte turnover rate was predictive for the onset of disease progression to AIDS in SIV-infected adult macaques. The purpose of this study was to determine if earlier or higher infection of monocytes/macrophages contributes to the more rapid progression to AIDS in infants. We observed that uninfected infant rhesus macaques exhibited higher physiologic baseline monocyte turnover than adults. Early after SIV infection, the monocyte turnover further increased, and it remained high during progression to AIDS. A high percentage of terminal deoxynucleotidyltransferase dUTP nick end label (TUNEL)-positive macrophages in the lymph nodes (LNs) and intestine corresponded with an increasing number of macrophages derived from circulating monocytes (bromodeoxyuridine positive [BrdU+] CD163+), suggesting that the increased blood monocyte turnover was required to rapidly replenish destroyed tissue macrophages. Immunofluorescence analysis further demonstrated that macrophages were a significant portion of the virus-producing cells found in LNs, intestinal tissues, and lungs. The higher baseline monocyte turnover in infant macaques and subsequent macrophage damage by SIV infection may help explain the basis of more rapid disease progression to AIDS in infants. IMPORTANCE HIV infection progresses much more rapidly in pediatric cases than in adults; however, the mechanism for this difference is unclear. Using the rhesus macaque model, this work was performed to address why infants infected with SIV progress more quickly to AIDS than do adults. Earlier we reported that in adult rhesus macaques, increasing monocyte turnover reflected tissue macrophage damage by SIV and was predictive of terminal disease progression to AIDS. Here we report that uninfected infant rhesus macaques exhibited a higher physiological baseline monocyte turnover rate than adults. Furthermore, once infected with SIV, infants displayed further increased monocyte turnover that may have facilitated the accelerated progression to AIDS. These results support a role for monocytes and macrophages in the pathogenesis of SIV/HIV and begin to explain why infants are more prone to rapid disease progression. PMID:28566378
Paliouras, Miltiadis; Diamandis, Eleftherios P
2008-06-01
The androgen receptor (AR) plays an important role in early prostate cancer by activating transcription of a number of genes participating in cell proliferation and growth and cancer progression. However, as the cancer progresses, prostate cancer cells transform from an androgen-dependent to an androgen-independent state. Androgen-independent prostate cancer can manifest itself in several forms, including a percentage of cancers that show reduced levels of prostate-specific antigen (PSA) and can progress without the need for the ligand or active receptor. Therefore, our goal was to examine the role of intracellular signaling pathways in an androgen-independent prostate cancer in vitro model. Using the cell line PC3(AR)(2), we stimulated cells with 5-alpha-dihydrotestosterone (DHT) and epidermal growth factor (EGF) and then analyzed PSA expression. We observed lower PSA expression when cells were jointly stimulated with DHT and EGF, and this was associated with an increase in AKT activity. We examined the role of AKT in AR activity and PSA expression by creating stable PC3(AR)(2) cell lines transfected with a PI3K-Ras-effector loop mutant. These cell lines showed lower DHT-stimulated PSA expression that correlated to changes in the phosphorylated state of AR. Therefore, we propose an in vitro androgen-independent model in which a PI3K/AKT activity threshold and subsequent AR transactivation regulate PSA expression.
Service-Learning and Mathematics
ERIC Educational Resources Information Center
Roemer, Cynthia Anne
2009-01-01
Contemporary educational theory has given increased attention to service-learning as valuable pedagogy. Ever-changing technology progress and applications demand a quantitatively literate population, supporting the need for experiential activities in mathematics. This study addresses service-learning pedagogy in mathematics through a study of the…
Morel, Agnieszka; Miller, Elzbieta; Bijak, Michal; Saluk, Joanna
2016-09-01
Platelet activation is increasingly postulated as a possible component of the pathogenesis of multiple sclerosis (MS), especially due to the increased risk of cardiovascular events in MS. Arachidonic acid cascade metabolized by cyclooxygenase (COX) is a key pathway of platelet activation. The aim of our study was to investigate the COX-dependent arachidonic acid metabolic pathway in blood platelets from secondary progressive multiple sclerosis (SP MS) patients. The blood samples were obtained from 50 patients (man n = 22; female n = 28), suffering from SP MS, diagnosed according to the revised McDonald criteria. Platelet aggregation was measured in platelet-rich plasma after arachidonic acid stimulation. The level of COX activity and thromboxane B2 concentration were determined by ELISA method. Lipid peroxidation was assessed by measuring the level of malondialdehyde. The results were compared with a control group of healthy volunteers. We found that blood platelets obtained from SP MS patients were more sensitive to arachidonic acid and their response measured as platelet aggregation was stronger (about 14 %) relative to control. We also observed a significantly increased activity of COX (about 40 %) and synthesis of thromboxane B2 (about 113 %). The generation of malondialdehyde as a marker of lipid peroxidation was about 10 % higher in SP MS than in control. Cyclooxygenase-dependent arachidonic acid metabolism is significantly increased in blood platelets of patients with SP MS. Future clinical studies are required to recommend the use of low-dose aspirin, and possibly other COX inhibitors in the prevention of cardiovascular risk in MS.
Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue.
Vromans, Maria; Faghri, Pouran
2017-12-05
This investigation aimed to determine the force and muscle surface electromyography (EMG) responses to different frequencies of electrical stimulation (ES) in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions) during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB) and vastus lateralis (VL) when activated by ES at three frequencies (10, 35, and 50Hz). Ten healthy adults (mean age: 23.2 ± 3.0 years) were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1) identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC) at each ES frequency and 2) evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05). However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition) should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.
PKA/AMPK signaling in relation to adiponectin's antiproliferative effect on multiple myeloma cells.
Medina, E A; Oberheu, K; Polusani, S R; Ortega, V; Velagaleti, G V N; Oyajobi, B O
2014-10-01
Obesity increases the risk of developing multiple myeloma (MM). Adiponectin is a cytokine produced by adipocytes, but paradoxically decreased in obesity, that has been implicated in MM progression. Herein, we evaluated how prolonged exposure to adiponectin affected the survival of MM cells as well as putative signaling mechanisms. Adiponectin activates protein kinase A (PKA), which leads to decreased AKT activity and increased AMP-activated protein kinase (AMPK) activation. AMPK, in turn, induces cell cycle arrest and apoptosis. Adiponectin-induced apoptosis may be mediated, at least in part, by the PKA/AMPK-dependent decline in the expression of the enzyme acetyl-CoA-carboxylase (ACC), which is essential to lipogenesis. Supplementation with palmitic acid, the preliminary end product of fatty acid synthesis, rescues MM cells from adiponectin-induced apoptosis. Furthermore, 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an ACC inhibitor, exhibited potent antiproliferative effects on MM cells that could also be inhibited by fatty acid supplementation. Thus, adiponectin's ability to reduce survival of MM cells appears to be mediated through its ability to suppress lipogenesis. Our findings suggest that PKA/AMPK pathway activators, or inhibitors of ACC, may be useful adjuvants to treat MM. Moreover, the antimyeloma effect of adiponectin supports the concept that hypoadiponectinemia, as occurs in obesity, promotes MM tumor progression.
Glutathione system participation in thoracic aneurysms from patients with Marfan syndrome.
Zúñiga-Muñoz, Alejandra María; Pérez-Torres, Israel; Guarner-Lans, Verónica; Núñez-Garrido, Elías; Velázquez Espejel, Rodrigo; Huesca-Gómez, Claudia; Gamboa-Ávila, Ricardo; Soto, María Elena
2017-05-01
Aortic dilatation in Marfan syndrome (MFS) is progressive. It is associated with oxidative stress and endothelial dysfunction that contribute to the early acute dissection of the vessel and can result in rupture of the aorta and sudden death. We evaluated the participation of the glutathione (GSH) system, which could be involved in the mechanisms that promote the formation and progression of the aortic aneurysms in MFS patients. Aortic aneurysm tissue was obtained during chest surgery from eight control subjects and 14 MFS patients. Spectrophotometrical determination of activity of glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), lipid peroxidation (LPO) index, carbonylation, total antioxidant capacity (TAC), and concentration of reduced and oxidized glutathione (GSH and GSSG respectively), was performed in the homogenate from aortic aneurysm tissue. LPO index, carbonylation, TGF-β1, and GR activity were increased in MFS patients (p < 0.04), while TAC, GSH/GSSG ratio, GPx, and GST activity were significantly decreased (p < 0.04). The depletion of GSH, in spite of the elevated activity of GR, not only diminished the activity of GSH-depend GST and GPx, but increased LPO, carbonylation and decreased TAC. These changes could promote the structural and functional alterations in the thoracic aorta of MFS patients.
Tissue redox activity as a hallmark of carcinogenesis: from early to terminal stages of cancer.
Bakalova, Rumiana; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo
2013-05-01
The study aimed to clarify the dynamics of tissue redox activity (TRA) in cancer progression and assess the importance of this parameter for therapeutic strategies. The experiments were carried out on brain tissues of neuroblastoma-bearing, glioma-bearing, and healthy mice. TRA was visualized in vivo by nitroxide-enhanced MRI on anesthetized animals or in vitro by electron paramagnetic resonance spectroscopy on isolated tissue specimens. Two biochemical parameters were analyzed in parallel: tissue total antioxidant capacity (TTAC) and plasma levels of matrix metalloproteinases (MMP). In the early stage of cancer, the brain tissues were characterized by a shorter-lived MRI signal than that from healthy brains (indicating a higher reducing activity for the nitroxide radical), which was accompanied by an enhancement of TTAC and MMP9 plasma levels. In the terminal stage of cancer, tissues in both hemispheres were characterized by a longer-lived MRI signal than in healthy brains (indicating a high-oxidative activity) that was accompanied by a decrease in TTAC and an increase in the MMP2/MMP9 plasma levels. Cancer progression also affected the redox potential of tissues distant from the primary tumor locus (liver and lung). Their oxidative status increased in both stages of cancer. The study shows that tissue redox balance is very sensitive to the progression of cancer and can be used as a diagnostic marker of carcinogenesis. The study also suggests that the noncancerous tissues of a cancer-bearing organism are susceptible to oxidative damage and should be considered a therapeutic target. ©2013 AACR.
Jojima, Teruo; Uchida, Kohsuke; Akimoto, Kazumi; Tomotsune, Takanori; Yanagi, Kazunori; Iijima, Toshie; Suzuki, Kunihiro; Kasai, Kikuo; Aso, Yoshimasa
2017-06-01
Several studies have demonstrated that both native glucagon-like peptide-1 (GLP-1) and GLP-1 receptor agonists suppress the progression of atherosclerosis in animal models. We investigated whether liraglutide, a GLP-1 analogue, could prevent the development of atherosclerosis in apolipoprotein E knockout mice (ApoE -/- ) on a high-fat diet. We also examined the influence of liraglutide on angiotensin II-induced proliferation of rat vascular smooth muscle cells (VSMCs) via enhancement of AMP-activated protein kinase (AMPK) signaling and regulation of cell cycle progression. Treatment of ApoE -/- mice with liraglutide (400 μg/day for 4 weeks) suppressed atherosclerotic lesions and increased AMPK phosphorylation in the aortic wall. Liraglutide also improved the endothelial function of thoracic aortas harvested from ApoE -/- mice in an ex vivo study. Furthermore, liraglutide increased AMPK phosphorylation in rat VSMCs, while liraglutide-induced activation of AMPK was abolished by exendin 9-39, a GLP-1 antagonist. Moreover, angiotensin (Ang) II-induced proliferation of VSMCs was suppressed by liraglutide in a dose-dependent manner, and flow cytometry of Ang II-stimulated VSMCs showed that liraglutide reduced the percentage of cells in G2/M phase (by arrest in G0/G1 phase). These findings suggest that liraglutide may inhibit Ang II-induced VSMC proliferation by activating AMPK signaling and inducing cell cycle arrest, thus delaying the progression of atherosclerosis independently of its glucose-lowering effect. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, S D; Yu, J S; Lee, T T; Ni, M H; Yang, C C; Ho, Y S; Tsen, T Z
1995-10-01
Computer analysis of protein phosphorylation-sites sequence revealed that most transcriptional factors and viral oncoproteins are prime targets for regulation of proline-directed protein phosphorylation, suggesting an association of proline-directed protein kinase (PDPK) family with neoplastic transformation and tumorigenesis. In this report, an immunoprecipitate activity assay of protein kinase FA/glycogen synthase kinase-3alpha (kinase FA/GSK-3alpha) (a particular member of PDPK family) has been optimized for human cervical tissue and used to demonstrate for the first time significantly increased (P < 0.001) activity in poorly differentiated cervical carcinoma (82.8 +/- 6.6 U/mg of protein), moderately differentiated carcinoma (36.2 +/- 3.4 U/mg of protein), and well-differentiated carcinoma (18.3 +/- 2.4 U/mg of protein) from 36 human cervical carcinoma samples when compared to 12 normal controls (4.9 +/- 0.6 U/mg of protein). Immunoblotting analysis further revealed that increased activity of kinase FA/GSK-3alpha in cervical carcinoma is due to overexpression of protein synthesis of the kinase. Taken together, the results provide initial evidence that overexpression of protein synthesis and cellular activity of kinase FA/GSK-3alpha may be involved in human cervical carcinoma dedifferentiation/progression, supporting an association of proline-directed protein kinase with neoplastic transformation and tumorigenesis. Since protein kinase FA/GSK-3alpha may function as a possible regulator of transcription factors/proto-oncogenes, the results further suggest that kinase FA/GSK-3alpha may play a potential role in human cervical carcinogenesis, especially in its dedifferentiation and progression.
Bhatia, Ayesha; O’Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T.; Li, Wei
2016-01-01
Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5–treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing. PMID:27382602
Heerma van Voss, Marise R; Kammers, Kai; Vesuna, Farhad; Brilliant, Justin; Bergman, Yehudit; Tantravedi, Saritha; Wu, Xinyan; Cole, Robert N; Holland, Andrew; van Diest, Paul J; Raman, Venu
2018-06-01
DDX3 is an RNA helicase with oncogenic properties. The small molecule inhibitor RK-33 is designed to fit into the ATP binding cleft of DDX3 and hereby block its activity. RK-33 has shown potent activity in preclinical cancer models. However, the mechanism behind the antineoplastic activity of RK-33 remains largely unknown. In this study we used a dual phosphoproteomic and single cell tracking approach to evaluate the effect of RK-33 on cancer cells. MDA-MB-435 cells were treated for 24 hours with RK-33 or vehicle control. Changes in phosphopeptide abundance were analyzed with quantitative mass spectrometry using isobaric mass tags (Tandem Mass Tags). At the proteome level we mainly observed changes in mitochondrial translation, cell division pathways and proteins related to cell cycle progression. Analysis of the phosphoproteome indicated decreased CDK1 activity after RK-33 treatment. To further evaluate the effect of DDX3 inhibition on cell cycle progression over time, we performed timelapse microscopy of Fluorescent Ubiquitin Cell Cycle Indicators labeled cells after RK-33 or siDDX3 exposure. Single cell tracking indicated that DDX3 inhibition resulted in a global delay in cell cycle progression in interphase and mitosis. In addition, we observed an increase in endoreduplication. Overall, we conclude that DDX3 inhibition affects cells in all phases and causes a global cell cycle progression delay. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Paris, Daniel H; Stephan, Femke; Bulder, Ingrid; Wouters, Diana; van der Poll, Tom; Newton, Paul N; Day, Nicholas P J; Zeerleder, Sacha
2015-01-01
Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil activation, as evidenced by neutrophil-elastase (ELA) complexes, in sympatric Lao patients with scrub typhus and murine typhus. In acute scrub typhus elevated nucleosome levels correlated with lower GCS scores, raised respiratory rate, jaundice and impaired liver function, whereas neutrophil activation correlated with fibrinolysis and high IL-8 plasma levels, a recently identified predictor of severe disease and mortality. Nucleosome and ELA complex levels were associated with a 4.8-fold and 4-fold increased risk of developing severe scrub typhus, beyond cut off values of 1,040 U/ml for nucleosomes and 275 U/ml for ELA complexes respectively. In murine typhus, nucleosome levels associated with pro-inflammatory cytokines and the duration of illness, while ELA complexes correlated strongly with inflammation markers, jaundice and increased respiratory rates. This study found strong correlations between circulating nucleosomes and neutrophil activation in patients with scrub typhus, but not murine typhus, providing indirect evidence that nucleosomes could originate from neutrophil extracellular trap (NET) degradation. High circulating plasma nucleosomes and ELA complexes represent independent risk factors for developing severe complications in scrub typhus. As nucleosomes and histones exposed on NETs are highly cytotoxic to endothelial cells and are strongly pro-coagulant, neutrophil-derived nucleosomes could contribute to vascular damage, the pro-coagulant state and exacerbation of disease in scrub typhus, thus indicating a detrimental role of neutrophil activation. The data suggest that increased neutrophil activation relates to disease progression and severe complications, and increased plasma levels of nucleosomes and ELA complexes represent independent risk factors for developing severe scrub typhus.
Paris, Daniel H.; Stephan, Femke; Bulder, Ingrid; Wouters, Diana; van der Poll, Tom; Newton, Paul N.; Day, Nicholas P. J.; Zeerleder, Sacha
2015-01-01
Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil activation, as evidenced by neutrophil-elastase (ELA) complexes, in sympatric Lao patients with scrub typhus and murine typhus. In acute scrub typhus elevated nucleosome levels correlated with lower GCS scores, raised respiratory rate, jaundice and impaired liver function, whereas neutrophil activation correlated with fibrinolysis and high IL-8 plasma levels, a recently identified predictor of severe disease and mortality. Nucleosome and ELA complex levels were associated with a 4.8-fold and 4-fold increased risk of developing severe scrub typhus, beyond cut off values of 1,040 U/ml for nucleosomes and 275 U/ml for ELA complexes respectively. In murine typhus, nucleosome levels associated with pro-inflammatory cytokines and the duration of illness, while ELA complexes correlated strongly with inflammation markers, jaundice and increased respiratory rates. This study found strong correlations between circulating nucleosomes and neutrophil activation in patients with scrub typhus, but not murine typhus, providing indirect evidence that nucleosomes could originate from neutrophil extracellular trap (NET) degradation. High circulating plasma nucleosomes and ELA complexes represent independent risk factors for developing severe complications in scrub typhus. As nucleosomes and histones exposed on NETs are highly cytotoxic to endothelial cells and are strongly pro-coagulant, neutrophil-derived nucleosomes could contribute to vascular damage, the pro-coagulant state and exacerbation of disease in scrub typhus, thus indicating a detrimental role of neutrophil activation. The data suggest that increased neutrophil activation relates to disease progression and severe complications, and increased plasma levels of nucleosomes and ELA complexes represent independent risk factors for developing severe scrub typhus. PMID:26317419
Durning, Sean P; Preston-Hurlburt, Paula; Clark, Paul R; Xu, Ding; Herold, Kevan C
2016-10-15
The ways in which environmental factors participate in the progression of autoimmune diseases are not known. After initiation, it takes years before hyperglycemia develops in patients at risk for type 1 diabetes (T1D). The receptor for advanced glycation endproducts (RAGE) is a scavenger receptor of the Ig family that binds damage-associated molecular patterns and advanced glycated endproducts and can trigger cell activation. We previously found constitutive intracellular RAGE expression in lymphocytes from patients with T1D. In this article, we show that there is increased RAGE expression in T cells from at-risk euglycemic relatives who progress to T1D compared with healthy control subjects, and in the CD8 + T cells in the at-risk relatives who do versus those who do not progress to T1D. Detectable levels of the RAGE ligand high mobility group box 1 were present in serum from at-risk subjects and patients with T1D. Transcriptome analysis of RAGE + versus RAGE - T cells from patients with T1D showed differences in signaling pathways associated with increased cell activation and survival. Additional markers for effector memory cells and inflammatory function were elevated in the RAGE + CD8 + cells of T1D patients and at-risk relatives of patients before disease onset. These studies suggest that expression of RAGE in T cells of subjects progressing to disease predates dysglycemia. These findings imply that RAGE expression enhances the inflammatory function of T cells, and its increased levels observed in T1D patients may account for the chronic autoimmune response when damage-associated molecular patterns are released after cell injury and killing. Copyright © 2016 by The American Association of Immunologists, Inc.
Effect of reinforcer magnitude on performance maintained by progressive-ratio schedules.
Rickard, J F; Body, S; Zhang, Z; Bradshaw, C M; Szabadi, E
2009-01-01
This experiment examined the relationship between reinforcer magnitude and quantitative measures of performance on progressive-ratio schedules. Fifteen rats were trained under a progressive-ratio schedule in seven phases of the experiment in which the volume of a 0.6-M sucrose solution reinforcer was varied within the range 6-300 microl. Overall response rates in successive ratios conformed to a bitonic equation derived from Killeen's (1994) Mathematical Principles of Reinforcement. The "specific activation" parameter, a, which is presumed to reflect the incentive value of the reinforcer, was a monotonically increasing function of reinforcer volume; the "response time" parameter, delta, which defines the minimum response time, increased as a function of reinforcer volume; the "currency" parameter, beta, which is presumed to reflect the coupling of responses to the reinforcer, declined as a function of volume. Running response rate (response rate calculated after exclusion of the postreinforcement pause) decayed monotonically as a function of ratio size; the index of curvature of this function increased as a function of reinforcer volume. Postreinforcement pause increased as a function of ratio size. Estimates of a derived from overall response rates and postreinforcement pauses showed a modest positive correlation across conditions and between animals. Implications of the results for the quantification of reinforcer value and for the use of progressive-ratio schedules in behavioral neuroscience are discussed.
Sun, H; Lesche, R; Li, D M; Liliental, J; Zhang, H; Gao, J; Gavrilova, N; Mueller, B; Liu, X; Wu, H
1999-05-25
To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten-/- ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27(KIP1), a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten-/- cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4, 5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.
[Contribution of leptin in the development of insulin resistance in pregnant women with obesity].
Tarasenko, K
2014-03-01
The aim of the present study was to investigate contribution of leptin in the development of insulin resistance in obese pregnant women depending on the obesity class as well as its effect on the progression of pregnancy. 36 pregnant women of I and II obesity classes and 21 pregnant women with normal body mass participated in the study. Concentrations of insulin, leptin and C-reactive protein in blood serum were measured with immunoenzymatic assays. Insulin resistance (IR) was determined with the Caro index. Contribution of leptin to development of IR was assessed with the ratio "leptin/Caro index". An increase of leptin concentration in blood serum was found in pregnant women with obesity compared to healthy controls. Moreover, the ratio "leptin/Caro index" increased with IR progression and reached maximum in the group with obesity class II, where it was 5.8 times higher than in the control group. An increased frequency of gestoses and placentary dysfunction were manifestations of weakening of adaptive mechanisms of the organism associated with the IR progression and increased role of leptin in its development. Therefore, activation of adipocyte function through the increased leptin secretion and increased ratio "leptin/Caro index" reflects the important role of leptin in pathogenesis of IR in pregnant women with obesity.
Liu, Bin; Li, Chenghai; Liu, Zijuan; Dai, Zonghan; Tao, Yunxia
2012-09-11
Polycystic Kidney Disease (PKD) kidneys exhibit increased extracellular matrix (ECM) collagen expression and metalloproteinases (MMPs) activity. We investigated the role of these increases on cystic disease progression in PKD kidneys. We examined the role of type I collagen (collagen I) and membrane bound type 1 MMP (MT1-MMP) on cyst development using both in vitro 3 dimensional (3D) collagen gel culture and in vivo PCK rat model of PKD. We found that collagen concentration is critical in controlling the morphogenesis of MDCK cells cultured in 3D gels. MDCK cells did not form 3D structures at collagen I concentrations lower than 1 mg/ml but began forming tubules when the concentration reaches 1 mg/ml. Significantly, these cells began to form cyst when collagen I concentration reached to 1.2 mg/ml, and the ratios of cyst to tubule structures increased as the collagen I concentration increased. These cells exclusively formed cyst structures at a collagen I concentration of 1.8 mg/ml or higher. Overexpression of MT1-MMP in MDCK cells significantly induced cyst growth in 3D collagen gel culture. Conversely, inhibition of MMPs activity with doxycycline, a FDA approved pan-MMPs inhibitor, dramatically slowed cyst growth. More importantly, the treatment of PCK rats with doxycycline significantly decreased renal tubule cell proliferation and markedly inhibited the cystic disease progression. Our data suggest that increased collagen expression and MMP activity in PKD kidneys may induce cyst formation and expansion. Our findings also suggest that MMPs may serve as a therapeutic target for the treatment of human PKD.
Davis, Thomas B; Yang, Mingli; Schell, Michael J; Wang, Heiman; Ma, Le; Pledger, W Jack; Yeatman, Timothy J
2018-06-18
Colorectal cancer (CRC) growth and progression is frequently driven by RAS pathway activation through upstream growth factor receptor activation or through mutational activation of KRAS or BRAF. Here we describe an additional mechanism by which the RAS pathway may be modulated in CRC. PTPRS, a receptor-type protein tyrosine phosphatase, appears to regulate RAS pathway activation through ERK. PTPRS modulates ERK phosphorylation and subsequent translocation to the nucleus. Native mutations in PTPRS, present in ~10% of CRC, may reduce its phosphatase activity while increasing ERK activation and downstream transcriptional signaling.
No Amelioration of Uromodulin Maturation and Trafficking Defect by Sodium 4-Phenylbutyrate in Vivo
Kemter, Elisabeth; Sklenak, Stefanie; Rathkolb, Birgit; Hrabě de Angelis, Martin; Wolf, Eckhard; Aigner, Bernhard; Wanke, Ruediger
2014-01-01
Uromodulin (UMOD)-associated kidney disease (UAKD) belongs to the hereditary progressive ER storage diseases caused by maturation defects of mutant UMOD protein. Current treatments of UAKD patients are symptomatic and cannot prevent disease progression. Two in vitro studies reported a positive effect of the chemical chaperone sodium 4-phenylbutyrate (4-PBA) on mutant UMOD maturation. Thus, 4-PBA was suggested as a potential treatment for UAKD. This study evaluated the effects of 4-PBA in two mouse models of UAKD. In contrast to previous in vitro studies, treatment with 4-PBA did not increase HSP70 expression or improve maturation and trafficking of mutant UMOD in vivo. Kidney function of UAKD mice was actually deteriorated by 4-PBA treatment. In transfected tubular epithelial cells, 4-PBA did not improve maturation but increased the expression level of both mutant and wild-type UMOD protein. Activation of NF-κB pathway in thick ascending limb of Henle's loop cells of UAKD mice was detected by increased abundance of RelB and phospho-IκB kinase α/β, an indirect activator of NF-κB. Furthermore, the abundance of NF-κB1 p105/p50, NF-κB2 p100/p52, and TRAF2 was increased in UAKD. NF-κB activation was identified as a novel disease mechanism of UAKD and might be a target for therapeutic intervention. PMID:24567330
A STUDY OF THE INDIGOGENIC PRINCIPLE AND IN VITRO MACROPHAGE DIFFERENTIATION
and beta- glucuronidase activities. Moreover, there was a progressive increase in the densities of enzyme reactive centers. Indigo reaction product was...not observed over nuclei; lipid droplets and cell background were free from spurious precipitations. Both galactosidase and glucuronidase were
Accelerated Tumor Cell Death by Angiogenic Modifiers
2003-08-01
complex process Two huge molecules called plasminogen-related growth is regulated by a delicate balance of angiogenesis in- factors ( PRGFs ...Increased activator(s) and/or decreased inhibi- cancer progression. PRGF -1 is also called hepatocyte tor(s) alter the balance and lead to the growth of...new growth factor/scatter factor (HGF/SF). PRGF -2 is also blood vessels (Hanahan, 1997). Several growth factors, known as macrophage-stimulating
Jin, Xin; Pan, Yunqian; Wang, Liguo; Ma, Tao; Zhang, Lizhi; Tang, Amy H.; Billadeau, Daniel D.; Wu, Heshui; Huang, Haojie
2017-01-01
Dysregulation of the MAPK pathway correlates with progression of pancreatic ductal adenocarcinoma (PDAC) progression. IQ motif containing GTPase-activating protein 1 (IQGAP1) is a MAPK scaffold that directly regulates the activation of RAF, MEK, and ERK. Fructose-1,6-bisphosphatase (FBP1), a key enzyme in gluconeogenesis, is transcriptionally downregulated in various cancers, including PDAC. Here, we demonstrate that FBP1 acts as a negative modulator of the IQGAP1–MAPK signaling axis in PDAC cells. FBP1 binding to the WW domain of IQGAP1 impeded IQGAP1-dependent ERK1/2 phosphorylation (pERK1/2) in a manner independent of FBP1 enzymatic activity. Conversely, decreased FBP1 expression induced pERK1/2 levels in PDAC cell lines and correlated with increased pERK1/2 levels in patient specimens. Treatment with gemcitabine caused undesirable activation of ERK1/2 in PDAC cells, but cotreatment with the FBP1-derived small peptide inhibitor FBP1 E4 overcame gemcitabine-induced ERK activation, thereby increasing the anticancer efficacy of gemcitabine in PDAC. These findings identify a primary mechanism of resistance of PDAC to standard therapy and suggest that the FBP1–IQGAP1–ERK1/2 signaling axis can be targeted for effective treatment of PDAC. PMID:28720574
The Role of C-SRC Activation in Prostate Tumor Progression
2006-07-01
cancer cell line PANC -1 and prostrate cancer cell line PC-3 (B2-fold increase relative to control in both cell lines), while the Src inhibitory PP2 blocks...at normoxia in PANC -1 and PC-3 cells, its levels significantly increase in response to hypoxia (B4.5–8-fold induction). Inhibition of endo- genous c...Src activation in PANC -1 and PC-3 cells by PP2 drastically reduced HIF-1a levels to below those levels observed at normoxia (Figure 1a). STAT3 has
Shaw, Alice T; Gandhi, Leena; Gadgeel, Shirish; Riely, Gregory J; Cetnar, Jeremy; West, Howard; Camidge, D Ross; Socinski, Mark A; Chiappori, Alberto; Mekhail, Tarek; Chao, Bo H; Borghaei, Hossein; Gold, Kathryn A; Zeaiter, Ali; Bordogna, Walter; Balas, Bogdana; Puig, Oscar; Henschel, Volkmar; Ou, Sai-Hong Ignatius
2016-02-01
Alectinib--a highly selective, CNS-active, ALK inhibitor-showed promising clinical activity in crizotinib-naive and crizotinib-resistant patients with ALK-rearranged (ALK-positive) non-small-cell lung cancer (NSCLC). We aimed to assess the safety and efficacy of alectinib in patients with ALK-positive NSCLC who progressed on previous crizotinib. We did a phase 2 study at 27 centres in the USA and Canada. We enrolled patients aged 18 years or older with stage IIIB-IV, ALK-positive NSCLC who had progressed after crizotinib. Patients were treated with oral alectinib 600 mg twice daily until progression, death, or withdrawal. The primary endpoint was the proportion of patients achieving an objective response by an independent review committee using Response Evaluation Criteria in Solid Tumors, version 1.1. Response endpoints were assessed in the response-evaluable population (ie, patients with measurable disease at baseline who received at least one dose of study drug), and efficacy and safety analyses were done in the intention-to-treat population (all enrolled patients). This study is registered with ClinicalTrials.gov, number NCT01871805. The study is ongoing and patients are still receiving treatment. Between Sept 4, 2013, and Aug 4, 2014, 87 patients were enrolled into the study (intention-to-treat population). At the time of the primary analysis (median follow-up 4·8 months [IQR 3·3-7·1]), 33 of 69 patients with measurable disease at baseline had a confirmed partial response; thus, the proportion of patients achieving an objective response by the independent review committee was 48% (95% CI 36-60). Adverse events were predominantly grade 1 or 2, most commonly constipation (31 [36%]), fatigue (29 [33%]), myalgia 21 [24%]), and peripheral oedema 20 [23%]). The most common grade 3 and 4 adverse events were changes in laboratory values, including increased blood creatine phosphokinase (seven [8%]), increased alanine aminotransferase (five [6%]), and increased aspartate aminotransferase (four [5%]). Two patients died: one had a haemorrhage (judged related to study treatment), and one had disease progression and a history of stroke (judged unrelated to treatment). Alectinib showed clinical activity and was well tolerated in patients with ALK-positive NSCLC who had progressed on crizotinib. Therefore, alectinib could be a suitable treatment for patients with ALK-positive disease who have progressed on crizotinib. F Hoffmann-La Roche. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marshall, Ian; Thrippleton, Michael J; Bastin, Mark E; Mollison, Daisy; Dickie, David A; Chappell, Francesca M; Semple, Scott I K; Cooper, Annette; Pavitt, Sue; Giovannoni, Gavin; Wheeler-Kingshott, Claudia A M Gandini; Solanky, Bhavana S; Weir, Christopher J; Stallard, Nigel; Hawkins, Clive; Sharrack, Basil; Chataway, Jeremy; Connick, Peter; Chandran, Siddharthan
2018-05-30
Proton magnetic resonance spectroscopy yields metabolic information and has proved to be a useful addition to structural imaging in neurological diseases. We applied short-echo time Spectroscopic Imaging in a cohort of 42 patients with secondary progressive multiple sclerosis (SPMS). Linear modelling with respect to brain tissue type yielded metabolite levels that were significantly different in white matter lesions compared with normal-appearing white matter, suggestive of higher myelin turnover (higher choline), higher metabolic rate (higher creatine) and increased glial activity (higher myo-inositol) within the lesions. These findings suggest that the lesions have ongoing cellular activity that is not consistent with the usual assumption of 'chronic' lesions in SPMS, and may represent a target for repair therapies.
Applying a behavioral economic framework to understanding adolescent smoking.
Audrain-McGovern, Janet; Rodriguez, Daniel; Tercyak, Kenneth P; Epstein, Leonard H; Goldman, Paula; Wileyto, E Paul
2004-03-01
Adolescents' choice to smoke may depend on substitute reinforcers for smoking, complementary activities to smoking, and individual differences in reinforcer value. The influence of these variables on smoking was determined among 983 adolescents. Substitutes were school involvement, academic performance, physical activity, and sports team participation: complements were peer smoking and substance use; delay discounting assessed individual differences in reinforcer value. Latent growth modeling indicated that substitute reinforcers reduced the odds of smoking progression almost two-fold, complementary reinforcers increased the odds by 1.14. and delay discounting indirectly influenced the odds of smoking progression through complementary reinforcers. Adolescents who smoke may have fewer reinforcers that protect against smoking and more reinforcers that promote smoking. Discounting of future rewards affects smoking through reinforcer type.
MacMillan-Crow, L A; Crow, J P; Kerby, J D; Beckman, J S; Thompson, J A
1996-01-01
Inflammatory processes in chronic rejection remain a serious clinical problem in organ transplantation. Activated cellular infiltrate produces high levels of both superoxide and nitric oxide. These reactive oxygen species interact to form peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. We identified enhanced immunostaining for nitrotyrosine localized to tubular epithelium of chronically rejected human renal allografts. Western blot analysis of rejected tissue demonstrated that tyrosine nitration was restricted to a few specific polypeptides. Immunoprecipitation and amino acid sequencing techniques identified manganese superoxide dismutase, the major antioxidant enzyme in mitochondria, as one of the targets of tyrosine nitration. Total manganese superoxide dismutase protein was increased in rejected kidney, particularly in the tubular epithelium; however, enzymatic activity was significantly decreased. Exposure of recombinant human manganese superoxide dismutase to peroxynitrite resulted in a dose-dependent (IC50 = 10 microM) decrease in enzymatic activity and concomitant increase in tyrosine nitration. Collectively, these observations suggest a role for peroxynitrite during development and progression of chronic rejection in human renal allografts. In addition, inactivation of manganese superoxide dismutase by peroxynitrite may represent a general mechanism that progressively increases the production of peroxynitrite, leading to irreversible oxidative injury to mitochondria. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8876227
Leite, Cleo Alcantara Costa; Taylor, E W; Guerra, C D R; Florindo, L H; Belão, T; Rantin, F T
2009-08-01
The role of the vagus nerve in determining heart rate (f(H)) and cardiorespiratory interactions was investigated in a neotropical fish, Piaractus mesopotamicus. During progressive hypoxia f(H) initially increased, establishing a 1:1 ratio with ventilation rate (f(R)). Subsequently there was a hypoxic bradycardia. Injection of atropine abolished a normoxic inhibitory tonus on the heart and the f(H) adjustments during progressive hypoxia, confirming that they are imposed by efferent parasympathetic inputs via the vagus nerve. Efferent activity recorded from the cardiac vagus in lightly anesthetized normoxic fish included occasional bursts of activity related to spontaneous changes in ventilation amplitude, which increased the cardiac interval. Restricting the flow of aerated water irrigating the gills resulted in increased respiratory effort and bursts of respiration-related activity in the cardiac vagus that seemed to cause f(H) to couple with f(R). Cell bodies of cardiac vagal pre-ganglionic neurons were located in two distinct groups within the dorsal vagal motor column having an overlapping distribution with respiratory motor-neurons. A small proportion of cardiac vagal pre-ganglionic neurons (2%) was in scattered positions in the ventrolateral medulla. This division of cardiac vagal pre-ganglionic neurons into distinct motor groups may relate to their functional roles in determining cardiorespiratory interactions.
2014-01-01
RPE and references are also included as part of the CST. DCoE Clinical Recommendation | January 2014 Progressive Return to Activity Following Acute...Recommendation | January 2014 Progressive Return to Activity Following Acute Concussion/Mild Traumatic Brain Injury: Guidance for the Rehabilitation Provider...days Symptoms are worsening 3 DCoE Clinical Recommendation | January 2014 Progressive Return to Activity Following Acute Concussion/Mild Traumatic
McCulloch, Karen L; Goldman, Sarah; Lowe, Lynn; Radomski, Mary Vining; Reynolds, John; Shapiro, Rita; West, Therese A
2015-01-01
Previously published mild traumatic brain injury (mTBI) management guidelines provide very general recommendations to return individuals with mTBI to activity. This lack of specific guidance creates variation in military rehabilitation. The Office of the Army Surgeon General in collaboration with the Defense and Veterans Brain Injury Center, a component center of the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury, convened an expert working group to review the existing literature and propose clinical recommendations that standardize rehabilitation activity progression following mTBI. A Progressive Activity Working Group consisted of 11 Department of Defense representatives across all service branches, 7 Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury representatives, and 8 academic/research/civilian experts with experience assessing and treating individuals with mTBI for return to activity. An expert working group meeting included the Progressive Activity Working Group and 15 additional subject matter experts. In February 2012, the Progressive Activity Working Group was established to determine the need and purpose of the rehabilitation recommendations. Following literature review, a table was created on the basis of the progression from the Zurich consensus statement on concussion in sport. Issues were identified for discussion with a meeting of the larger expert group during a July 2012 conference. Following development of rehabilitation guidance, the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury coordinated a similar process for military primary care providers. End products for rehabilitation and primary care providers include specific recommendations for return to activity after concussion. A 6-stage progression specifies activities in physical, cognitive, and balance/vestibular domains and allows for resumption of activity for those with low-level or preinjury symptom complaints. The clinical recommendations for progressive return to activity represent an important effort to standardize activity progression across functional domains and offer providers duty-specific activities to incorporate into intervention. Recommendations were released in January 2014.
LUCIANI, M. GLORIA; CAMPREGHER, CHRISTOPH; FORTUNE, JOHN M.; KUNKEL, THOMAS A.; GASCHE, CHRISTOPH
2007-01-01
Background & Aims Individuals with inflammatory bowel disease are at risk of developing colorectal cancer (CRC). Epidemiologic, animal, and laboratory studies suggest that 5-amino-salicylic acid (5-ASA) protects from the development of CRC by altering cell cycle progression and by inducing apoptosis. Our previous results indicate that 5-ASA improves replication fidelity in colorectal cells, an effect that is active in reducing mutations. In this study, we hypothesized that 5-ASA restrains cell cycle progression by activating checkpoint pathways in colorectal cell lines, which would prevent tumor development and improve genomic stability. Methods CRC cells with different genetic backgrounds such as HT29, HCT116, HCT116p53−/−, HCT116+chr3, and LoVo were treated with 5-ASA for 2–96 hours. Cell cycle progression, phosphorylation, and DNA binding of cell cycle checkpoint proteins were analyzed. Results We found that 5-ASA at concentrations between 10 and 40 mmol/L affects cell cycle progression by inducing cells to accumulate in the S phase. This effect was independent of the hMLH1, hMSH2, and p53 status because it was observed to a similar extent in all cell lines under investigation. Moreover, wash-out experiments demonstrated reversibility within 48 hours. Although p53 did not have a causative role, p53 Ser15 was strongly phosphorylated. Proteins involved in the ATM-and-Rad3-related kinase (ATR)-dependent S-phase checkpoint response (Chk1 and Rad17) were also phosphorylated but not ataxia telengectasia mutated kinase. Conclusions Our data demonstrate that 5-ASA causes cells to reversibly accumulate in S phase and activate an ATR-dependent checkpoint. The activation of replication checkpoint may slow down DNA replication and improve DNA replication fidelity, which increases the maintenance of genomic stability and counteracts carcinogenesis. PMID:17241873
Laklai, Hanane; Miroshnikova, Yekaterina A.; Pickup, Michael W.; Collisson, Eric A.; Kim, Grace E.; Barrett, Alex S.; Hill, Ryan C.; Lakins, Johnathon N.; Schlaepfer, David D.; Mouw, Janna K.; LeBleu, Valerie S.; Roy, Nilotpal; Novitskiy, Sergey V.; Johansen, Julia S.; Poli, Valeria; Kalluri, Raghu; Iacobuzio-Donahue, Christine A.; Wood, Laura D.; Hebrok, Matthias; Hansen, Kirk; Moses, Harold L.; Weaver, Valerie M.
2016-01-01
Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality yet anti-stromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor β (TGF-β) signaling have elevated epithelial Stat3 activity and develop a stiffer, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several Kras-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby Stat3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial Stat3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated Stat3 associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors, and highlight Stat3 and mechanics as key drivers of this phenotype. PMID:27089513
Tripathi, Anima; PremKumar, Karuppanan V; Pandey, Ashutosh N; Khatun, Sabana; Mishra, Surabhi Kirti; Shrivastav, Tulsidas G; Chaube, Shail K
2011-09-30
The present study was aimed to determine whether clomiphene citrate-induces generation of hydrogen peroxide in ovary, if so, whether melatonin could scavenge hydrogen peroxide and protect against clomiphene citrate-induced morphological apoptotic changes in rat eggs. For this purpose, forty five sexually immature female rats were given single intramuscular injection of 10 IU pregnant mare's serum gonadotropin for 48 h followed by single injections of 10 IU human chorionic gonadotropin and clomiphene citrate (10 mg/kg bw) with or without melatonin (20 mg/kg bw) for 16 h. The histology of ovary, ovulation rate, hydrogen peroxide concentration and catalase activity in ovary and morphological changes in ovulated eggs were analyzed. Co-administration of clomiphene citrate along with human chorionic gonadotropin significantly increased hydrogen peroxide concentration and inhibited catalase activity in ovary, inhibited ovulation rate and induced egg apoptosis. Supplementation of melatonin reduced hydrogen peroxide concentration and increased catalase activity in the ovary, delayed meiotic cell cycle progression in follicular oocytes as well as in ovulated eggs since extrusion of first polar body was still in progress even after ovulation and protected against clomiphene citrate-induced egg apoptosis. These results clearly suggest that the melatonin reduces oxidative stress by scavenging hydrogen peroxide produced in the ovary after clomiphene citrate treatment, slows down meiotic cell cycle progression in eggs and protects against clomiphene citrate-induced apoptosis in rat eggs. Copyright © 2011 Elsevier B.V. All rights reserved.
Systemic inflammation induces axon injury during brain inflammation.
Moreno, Beatriz; Jukes, John-Paul; Vergara-Irigaray, Nuria; Errea, Oihana; Villoslada, Pablo; Perry, V Hugh; Newman, Tracey A
2011-12-01
Axon injury is a key contributor to the progression of disability in multiple sclerosis (MS). Systemic infections, which frequently precede relapses in MS, have been linked to clinical progression in Alzheimer's disease. There is evidence of a role for the innate immune system in MS lesions, as axonal injury is associated with macrophage activation. We hypothesize that systemic inflammation leads to enhanced axonal damage in MS as a consequence of innate immune system activation. Monophasic experimental allergic encephalomyelitis (EAE) was induced in a cohort of Lewis rats. The animals received a systemic challenge with either an inflammagen (lipopolysaccharide [LPS]) or saline as a control, at 1, 3, or 6 weeks into the remission phase of the disease. The clinical outcome, cellular recruitment to lesions, degree of tissue damage, and cytokine profiles were measured. We found that systemic inflammation activates the central nervous system (CNS) innate immune response and results in a switch in the macrophage/microglia phenotype. This switch was accompanied by inducible nitric oxide synthase (iNOS) and interleukin-1β (IL-1β) expression and increased axon injury. This increased injury occurred independently of the re-emergence of overt clinical signs. Our evidence indicates that microglia/macrophages, associated with lesions, respond to circulating cytokines, produced in response to an inflammatory event outside the CNS, by producing immune mediators that lead to tissue damage. This has implications for people with MS, in which prevention and stringent management of systemic infectious diseases may slow disease progression. Copyright © 2011 American Neurological Association.
Mathematical modeling of transmission co-infection tuberculosis in HIV community
NASA Astrophysics Data System (ADS)
Lusiana, V.; Putra, P. S.; Nuraini, N.; Soewono, E.
2017-03-01
TB and HIV infection have the effect of deeply on assault the immune system, since they can afford to weaken host immune respone through a mechanism that has not been fully understood. HIV co-infection is the stongest risk factor for progression of M. tuberculosis to active TB disease in HIV individuals, as well as TB has been accelerated to progression HIV infection. In this paper we create a model of transmission co-infection TB in HIV community, dynamic system with ten compartments built in here. Dynamic analysis in this paper mentioned ranging from disease free equilibrium conditions, endemic equilibrium conditions, basic reproduction ratio, stability analysis and numerical simulation. Basic reproductive ratio were obtained from spectral radius the next generation matrix of the model. Numerical simulations are built to justify the results of the analysis and to see the changes in the dynamics of the population in each compartment. The sensitivity analysis indicates that the parameters affecting the population dynamics of TB in people with HIV infection is parameters rate of progression of individuals from the exposed TB class to the active TB, treatment rate of exposed TB individuals, treatment rate of infectious (active TB) individuals and probability of transmission of TB infection from an infective to a susceptible per contact per unit time. We can conclude that growing number of infections carried by infectious TB in people with HIV infection can lead to increased spread of disease or increase in endemic conditions.
Yang, S D; Yu, J S; Yang, C C; Lee, S C; Lee, T T; Ni, M H; Kuan, C Y; Chen, H C
1996-05-01
Computer analysis of protein phosphorylation sites sequence revealed that transcriptional factors and viral oncoproteins are prime targets for regulation of proline-directed protein phosphorylation, suggesting an association of the proline-directed protein kinase (PDPK) family with neoplastic transformation and tumorigenesis. In this report, an immunoprecipitate activity assay of protein kinase FA/glycogen synthase kinase-3 alpha (kinase F(A)/GSK-3 alpha) (a member of PDPK family) has been optimized for human hepatoma and used to demonstrate for the first time significantly increased (P < 0.01) activity in poorly differentiated SK-Hep-1 hepatoma (24.2 +/- 2.8 units/mg) and moderately differentiated Mahlavu hepatoma (14.5 +/- 2.2 units/mg) when compared to well differentiated Hep 3B hepatoma (8.0 +/- 2.4 units/mg). Immunoblotting analysis revealed that increased activity of kinase FA/GSK-3 alpha is due to overexpression of the protein. Elevated kinase FA/GSK-3 alpha expression in human hepatoma biopsies relative to normal liver tissue was found to be even more profound. This kinase appeared to be fivefold overexpressed in well differentiated hepatoma and 13-fold overexpressed in poorly differentiated hepatoma when compared to normal liver tissue. Taken together, the results provide initial evidence that overexpression of kinase FA/GSK-3 alpha is involved in human hepatoma dedifferentiation/progression. Since kinase FA/GSK-3 alpha is a PDPK, the results further support a potential role of this kinase in human liver tumorigenesis, especially in its dedifferentiation/progression.
Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis.
Marzo, Elena; Vilaplana, Cristina; Tapia, Gustavo; Diaz, Jorge; Garcia, Vanessa; Cardona, Pere-Joan
2014-01-01
Tuberculosis was studied using an experimental model based on the C3HeB/FeJ mouse strain, which mimics the liquefaction of caseous necrosis occurring during active disease in immunocompetent adults. Mice were intravenously infected with 2 × 10(4) Colony Forming Units of Mycobacterium tuberculosis and their histopathology, immune response, bacillary load, and survival were evaluated. The effects of the administration of drugs with anti-inflammatory activity were examined, and the C3H/HeN mouse strain was also included for comparative purposes. Massive intra-alveolar neutrophilic infiltration led to rapid granuloma growth and coalescence of lesions into superlesions. A central necrotic area appeared showing progressive cellular destruction, the alveoli cell walls being initially conserved (caseous necrosis) but finally destroyed (liquefactive necrosis). Increasing levels of pro-inflammatory mediators were detected in lungs. C3HeB/FeJ treated with anti-inflammatory drugs and C3H/HeN animals presented lower levels of pro-inflammatory mediators such as TNF-α, IL-17, IL-6 and CXCL5, a lower bacillary load, better histopathology, and increased survival compared with untreated C3HeB/FeJ. The observation of massive neutrophilic infiltration suggests that inflammation may be a key factor in progression towards active tuberculosis. On the basis of our findings, we consider that the C3HeB/FeJ mouse model would be useful for evaluating new therapeutic strategies against human tuberculosis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Romain, A J; Attalin, V; Sultan, A; Boegner, C; Gernigon, C; Avignon, A
2014-11-01
Although physical activity (PA) is essential, most obese people will not engage in its practice. The transtheoretical model (TTM) and its processes of change (POC) contribute to the understanding of behavior change regarding PA. The present study aimed to test how POC are associated with a progression through the stages of change (SOC) and whether they predict BMI change. Interventional study. A total of 134 subjects participated in an education program, were called at 1 year and 62 of them provided follow-up data. Participants completed the SOC and POC questionnaires at baseline, at 1 year and were classified according to their SOC progression. Participants who progressed through SOC lost more weight (p<0.001). Significant interactions were found for three out of five POC (p<0.05). Progression through SOC was associated with an increased use of POC. Weight loss was predicted by two behavioral POC. Results support the previous cross-sectional studies showing that physically active people use more frequently POC. The present findings support the development of TTM-grounded behavioral interventions targeted to obese patients. Identifying methods to promote POC use to improve adherence to weight guidelines may lead to improved clinical outcomes and quality of life. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Celada, Lindsay J; Rotsinger, Joseph E; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene; Drake, Wonder P
2017-01-01
Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4 + T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4 + T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1 + CD4 + T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = -0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4 + T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression.
Celada, Lindsay J.; Rotsinger, Joseph E.; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene
2017-01-01
Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4+ T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4+ T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1+ CD4+ T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = −0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4+ T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression. PMID:27564547
Stimulation of respiratory changes in alae nasi length by chemoreceptor activation.
Van Lunteren, E; Haxhiu, M A; Cherniack, N S
1986-03-01
Respiratory-related changes in length of the nasal dilator muscle, the alae nasi muscle, were measured using sonomicrometry in ten anesthetized (pentobarbital), tracheostomized, spontaneously breathing dogs. Piezoelectric crystals were inserted 7-25 mm apart along the direction of the alae nasi muscle fibers, and the effects of progressive hyperoxic hypercapnia and a peripheral and central chemoreceptor stimulant, nicotine (10-500 micrograms intravenously), were ascertained. The alae nasi shortened during inspiration in all animals, started to lengthen again towards the end of inspiration, returned to resting length during the first portion of expiration (Te-1), and remained at resting length for the remainder of expiration (Te-2). The amount of alae nasi inspiratory shortening was increased by occluding the airway for a single breath. Progressive hypercapnia caused progressive increases in the amount and velocity of nasal muscle inspiratory shortening during both unoccluded and occluded breaths; similar stimulatory effects on inspiratory shortening were seen following nicotine administration. Furthermore, both chemoreceptor stimulants caused a delay in the return of the muscle to its resting length during expiration, resulting in a significant increase in Te-1 relative to Te (Te-1/Te), and a greater amount of nasal muscle shortening to be present during Te-1. In some animals these agents also caused tonic shortening of the alae nasi, so that the muscle never returned to its resting length. These results suggest that inspiratory shortening of the alae nasi is inhibited by vagal inputs, but that chemoreceptor activation increases the amount of muscle shortening during both inspiration and early expiration.
Crack-cocaine use accelerates HIV disease progression in a cohort of HIV-positive drug users.
Baum, Marianna K; Rafie, Carlin; Lai, Shenghan; Sales, Sabrina; Page, Bryan; Campa, Adriana
2009-01-01
HIV infection is prevalent among substance abusers. The effects of specific illicit drugs on HIV disease progression have not been established. We evaluated the relationship between substances of abuse and HIV disease progression in a cohort of HIV-1-positive active drug users. A prospective, 30-month, longitudinal study was conducted on 222 HIV-1 seropositive drug users in Miami, FL. History of illicit drug, alcohol, and medication use, CD4+ cell count, and viral load were performed every 6 months. Crack-cocaine users were 2.14 times [95% confidence interval (CI): 1.08 to 4.25, P = 0.029] more likely to present a decline of CD4 to
Liu, Liping; Guan, Hongyu; Li, Yun; Ying, Zhe; Wu, Jueheng; Zhu, Xun; Song, Libing
2016-01-01
ABSTRACT Astrocyte elevated gene 1 (AEG-1) is an oncoprotein that strongly promotes the development and progression of cancers. However, the detailed underlying mechanisms through which AEG-1 enhances tumor development and progression remain to be determined. In this study, we identified c-Jun and p300 to be novel interacting partners of AEG-1 in gliomas. AEG-1 promoted c-Jun transcriptional activity by interacting with the c-Jun/p300 complex and inducing c-Jun acetylation. Furthermore, the AEG-1/c-Jun/p300 complex was found to bind the promoter of c-Jun downstream targeted genes, consequently establishing an acetylated chromatin state that favors transcriptional activation. Importantly, AEG-1/p300-mediated c-Jun acetylation resulted in the development of a more aggressive malignant phenotype in gliomas through a drastic increase in glioma cell proliferation and angiogenesis in vitro and in vivo. Consistently, the AEG-1 expression levels in clinical glioma specimens correlated with the status of c-Jun activation. Taken together, our results suggest that AEG-1 mediates a novel epigenetic mechanism that enhances c-Jun transcriptional activity to induce glioma progression and that AEG-1 might be a novel, potential target for the treatment of gliomas. PMID:27956703
Ou, Sai-Hong Ignatius; Klempner, Samuel J; Azada, Michele C; Rausei-Mills, Veronica; Duma, Christopher
2015-06-01
Radiation necrosis presenting as pseudoprogression (PsP) is relatively common after radiation and temozolomide (TMZ) treatment in glioblastoma multiforme (GBM), especially among patients with GBM that harbors intrinsic increased responsiveness to TMZ (methylated O6-methylguanine-DNA methyltransferase [MGMT] promoter). Alectinib is a second generation ALK inhibitor that has significant CNS activity against brain metastases in anaplastic lymphoma kinase (ALK)-rearranged (ALK+) non-small cell lung cancer (NSCLC) patients. We report 2 ALK+ NSCLC patients who met RECIST criteria for progressive disease by central radiologic review due to increased in size from increased contrast enhancement in previously stereotactically radiated brain metastases with ongoing extra-cranial response to alectinib. In both patients alectinib was started within 4 months of completing stereotactic radiosurgery (SRS). The enlarging lesions in both patients were resected and found to have undergone extensive necrosis with no residual tumor pathologically. PsP was incorrectly classified as progressive disease even by central independent imaging review. Treatment-related necrosis of previously SRS-treated brain metastasis during alectinib treatment can present as PsP. It may be impossible to distinguish PsP from true disease progression without a pathologic examination from resected sample. High degree of clinical suspicion, close monitoring and more sensitive imaging modalities may be needed to distinguish PsP versus progression in radiated brain lesions during alectinib treatment especially if there is no progression extra-cranially. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Heller, G; Topakian, T; Altenberger, C; Cerny-Reiterer, S; Herndlhofer, S; Ziegler, B; Datlinger, P; Byrgazov, K; Bock, C; Mannhalter, C; Hörmann, G; Sperr, W R; Lion, T; Zielinski, C C; Valent, P; Zöchbauer-Müller, S
2016-01-01
Little is known about the impact of DNA methylation on the evolution/progression of Ph+ chronic myeloid leukemia (CML). We investigated the methylome of CML patients in chronic phase (CP-CML), accelerated phase (AP-CML) and blast crisis (BC-CML) as well as in controls by reduced representation bisulfite sequencing. Although only ~600 differentially methylated CpG sites were identified in samples obtained from CP-CML patients compared with controls, ~6500 differentially methylated CpG sites were found in samples from BC-CML patients. In the majority of affected CpG sites, methylation was increased. In CP-CML patients who progressed to AP-CML/BC-CML, we identified up to 897 genes that were methylated at the time of progression but not at the time of diagnosis. Using RNA-sequencing, we observed downregulated expression of many of these genes in BC-CML compared with CP-CML samples. Several of them are well-known tumor-suppressor genes or regulators of cell proliferation, and gene re-expression was observed by the use of epigenetic active drugs. Together, our results demonstrate that CpG site methylation clearly increases during CML progression and that it may provide a useful basis for revealing new targets of therapy in advanced CML. PMID:27211271
Blessing, Alicia M.; Rajapakshe, Kimal; Reddy Bollu, Lakshmi; Shi, Yan; White, Mark A.; Pham, Alexander H.; Lin, Chenchu; Jonsson, Philip; Cortes, Constanza J.; Cheung, Edwin; La Spada, Albert R.; Bast, Robert C.; Merchant, Fatima A.; Coarfa, Cristian; Frigo, Daniel E.
2017-01-01
ABSTRACT AR (androgen receptor) signaling is crucial for the development and maintenance of the prostate as well as the initiation and progression of prostate cancer. Despite the AR's central role in prostate cancer progression, it is still unclear which AR-mediated processes drive the disease. Here, we identified 4 core autophagy genes: ATG4B, ATG4D, ULK1, and ULK2, in addition to the transcription factor TFEB, a master regulator of lysosomal biogenesis and function, as transcriptional targets of AR in prostate cancer. These findings were significant in light of our recent observation that androgens promoted prostate cancer cell growth in part through the induction of autophagy. Expression of these 5 genes was essential for maximal androgen-mediated autophagy and cell proliferation. In addition, expression of each of these 5 genes alone or in combination was sufficient to increase prostate cancer cell growth independent of AR activity. Further, bioinformatic analysis demonstrated that the expression of these genes correlated with disease progression in 3 separate clinical cohorts. Collectively, these findings demonstrate a functional role for increased autophagy in prostate cancer progression, provide a mechanism for how autophagy is augmented, and highlight the potential of targeting this process for the treatment of advanced prostate cancer. PMID:27977328
Blessing, Alicia M; Rajapakshe, Kimal; Reddy Bollu, Lakshmi; Shi, Yan; White, Mark A; Pham, Alexander H; Lin, Chenchu; Jonsson, Philip; Cortes, Constanza J; Cheung, Edwin; La Spada, Albert R; Bast, Robert C; Merchant, Fatima A; Coarfa, Cristian; Frigo, Daniel E
2017-03-04
AR (androgen receptor) signaling is crucial for the development and maintenance of the prostate as well as the initiation and progression of prostate cancer. Despite the AR's central role in prostate cancer progression, it is still unclear which AR-mediated processes drive the disease. Here, we identified 4 core autophagy genes: ATG4B, ATG4D, ULK1, and ULK2, in addition to the transcription factor TFEB, a master regulator of lysosomal biogenesis and function, as transcriptional targets of AR in prostate cancer. These findings were significant in light of our recent observation that androgens promoted prostate cancer cell growth in part through the induction of autophagy. Expression of these 5 genes was essential for maximal androgen-mediated autophagy and cell proliferation. In addition, expression of each of these 5 genes alone or in combination was sufficient to increase prostate cancer cell growth independent of AR activity. Further, bioinformatic analysis demonstrated that the expression of these genes correlated with disease progression in 3 separate clinical cohorts. Collectively, these findings demonstrate a functional role for increased autophagy in prostate cancer progression, provide a mechanism for how autophagy is augmented, and highlight the potential of targeting this process for the treatment of advanced prostate cancer.
Yamamoto, Koji; Kawaguchi, Makiko; Shimomura, Takeshi; Izumi, Aya; Konari, Kazuomi; Honda, Arata; Lin, Chen-Yong; Johnson, Michael D; Yamashita, Yoshihiro; Fukushima, Tsuyoshi; Kataoka, Hiroaki
2018-02-20
Hepatocyte growth factor activator inhibitor (HAI)-1/ SPINT1 and HAI-2/ SPINT2 are membrane-anchored protease inhibitors having homologous Kunitz-type inhibitor domains. They regulate membrane-anchored serine proteases, such as matriptase and prostasin. Whereas HAI-1 suppresses the neoplastic progression of keratinocytes to invasive squamous cell carcinoma (SCC) through matriptase inhibition, the role of HAI-2 in keratinocytes is poorly understood. In vitro homozygous knockout of the SPINT2 gene suppressed the proliferation of two oral SCC (OSCC) lines (SAS and HSC3) but not the growth of a non-tumorigenic keratinocyte line (HaCaT). Reversion of HAI-2 abrogated the growth suppression. Matrigel invasion of both OSCC lines was also suppressed by the loss of HAI-2. The levels of prostasin protein were markedly increased in HAI-2-deficient cells, and knockdown of prostasin alleviated the HAI-2 loss-induced suppression of OSCC cell invasion. Therefore, HAI-2 has a pro-invasive role in OSCC cells through suppression of prostasin. In surgically resected OSCC tissues, HAI-2 immunoreactivity increased along with neoplastic progression, showing intense immunoreactivities in invasive OSCC cells. In summary, HAI-2 is required for invasive growth of OSCC cells and may contribute to OSCC progression.
Kwon, Michelle; Pavlov, Tengis S.; Nozu, Kandai; Rasmussen, Shauna A.; Ilatovskaya, Daria V.; Lerch-Gaggl, Alexandra; North, Lauren M.; Kim, Hyunho; Qian, Feng; Sweeney, William E.; Avner, Ellis D.; Blumer, Joe B.; Staruschenko, Alexander; Park, Frank
2012-01-01
Polycystic kidney diseases are the most common genetic diseases that affect the kidney. There remains a paucity of information regarding mechanisms by which G proteins are regulated in the context of polycystic kidney disease to promote abnormal epithelial cell expansion and cystogenesis. In this study, we describe a functional role for the accessory protein, G-protein signaling modulator 1 (GPSM1), also known as activator of G-protein signaling 3, to act as a modulator of cyst progression in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD). A complete loss of Gpsm1 in the Pkd1V/V mouse model of ADPKD, which displays a hypomorphic phenotype of polycystin-1, demonstrated increased cyst progression and reduced renal function compared with age-matched cystic Gpsm1+/+ and Gpsm1+/− mice. Electrophysiological studies identified a role by which GPSM1 increased heteromeric polycystin-1/polycystin-2 ion channel activity via Gβγ subunits. In summary, the present study demonstrates an important role for GPSM1 in controlling the dynamics of cyst progression in an orthologous mouse model of ADPKD and presents a therapeutic target for drug development in the treatment of this costly disease. PMID:23236168
Contribution of peripheral and central chemoreceptors to sympatho‐excitation in heart failure
Toledo, Camilo; Andrade, David C.; Lucero, Claudia; Schultz, Harold D.; Marcus, Noah; Retamal, Mauricio; Madrid, Carlos
2016-01-01
Abstract Chronic heart failure (CHF) is a major public health problem. Tonic hyper‐activation of sympathetic neural outflow is commonly observed in patients with CHF. Importantly, sympatho‐excitation in CHF exacerbates its progression and is strongly related to poor prognosis and high mortality risk. Increases in both peripheral and central chemoreflex drive are considered markers of the severity of CHF. The principal peripheral chemoreceptors are the carotid bodies (CBs) and alteration in their function has been described in CHF. Mainly, during CHF the CB chemosensitivity is enhanced leading to increases in ventilation and sympathetic outflow. In addition to peripheral control of breathing, central chemoreceptors (CCs) are considered a dominant mechanism in ventilatory regulation. Potentiation of the ventilatory and sympathetic drive in response to CC activation has been shown in patients with CHF as well as in animal models. Therefore, improving understanding of the contribution of the peripheral and central chemoreflexes to augmented sympathetic discharge in CHF could help in developing new therapeutic approaches intended to attenuate the progression of CHF. Accordingly, the main focus of this review is to discuss recent evidence that peripheral and central chemoreflex function are altered in CHF and that they contribute to autonomic imbalance and progression of CHF. PMID:27218485
Magnussen, Robert A; Borchers, James R; Pedroza, Angela D; Huston, Laura J; Haas, Amanda K; Spindler, Kurt P; Wright, Rick W; Kaeding, Christopher C; Allen, Christina R; Anderson, Allen F; Cooper, Daniel E; DeBerardino, Thomas M; Dunn, Warren R; Lantz, Brett A; Mann, Barton; Stuart, Michael J; Albright, John P; Amendola, Annunziato; Andrish, Jack T; Annunziata, Christopher C; Arciero, Robert A; Bach, Bernard R; Baker, Champ L; Bartolozzi, Arthur R; Baumgarten, Keith M; Bechler, Jeffery R; Berg, Jeffrey H; Bernas, Geoffrey A; Brockmeier, Stephen F; Brophy, Robert H; Bush-Joseph, Charles A; Butler, J Brad; Campbell, John D; Carey, James L; Carpenter, James E; Cole, Brian J; Cooper, Jonathan M; Cox, Charles L; Creighton, R Alexander; Dahm, Diane L; David, Tal S; Flanigan, David C; Frederick, Robert W; Ganley, Theodore J; Garofoli, Elizabeth A; Gatt, Charles J; Gecha, Steven R; Giffin, James Robert; Hame, Sharon L; Hannafin, Jo A; Harner, Christopher D; Harris, Norman Lindsay; Hechtman, Keith S; Hershman, Elliott B; Hoellrich, Rudolf G; Hosea, Timothy M; Johnson, David C; Johnson, Timothy S; Jones, Morgan H; Kamath, Ganesh V; Klootwyk, Thomas E; Levy, Bruce A; Ma, C Benjamin; Maiers, G Peter; Marx, Robert G; Matava, Matthew J; Mathien, Gregory M; McAllister, David R; McCarty, Eric C; McCormack, Robert G; Miller, Bruce S; Nissen, Carl W; O'Neill, Daniel F; Owens, Brett D; Parker, Richard D; Purnell, Mark L; Ramappa, Arun J; Rauh, Michael A; Rettig, Arthur C; Sekiya, Jon K; Shea, Kevin G; Sherman, Orrin H; Slauterbeck, James R; Smith, Matthew V; Spang, Jeffrey T; Svoboda, Steven J; Taft, Timothy N; Tenuta, Joachim J; Tingstad, Edwin M; Vidal, Armando F; Viskontas, Darius G; White, Richard A; Williams, James S; Wolcott, Michelle L; Wolf, Brian R; York, James J
2018-03-01
Articular cartilage health is an important issue following anterior cruciate ligament (ACL) injury and primary ACL reconstruction. Factors present at the time of primary ACL reconstruction may influence the subsequent progression of articular cartilage damage. Larger meniscus resection at primary ACL reconstruction, increased patient age, and increased body mass index (BMI) are associated with increased odds of worsened articular cartilage damage at the time of revision ACL reconstruction. Case-control study; Level of evidence, 3. Subjects who had primary and revision data in the databases of the Multicenter Orthopaedics Outcomes Network (MOON) and Multicenter ACL Revision Study (MARS) were included. Reviewed data included chondral surface status at the time of primary and revision surgery, meniscus status at the time of primary reconstruction, primary reconstruction graft type, time from primary to revision ACL surgery, as well as demographics and Marx activity score at the time of revision. Significant progression of articular cartilage damage was defined in each compartment according to progression on the modified Outerbridge scale (increase ≥1 grade) or >25% enlargement in any area of damage. Logistic regression identified predictors of significant chondral surface change in each compartment from primary to revision surgery. A total of 134 patients were included, with a median age of 19.5 years at revision surgery. Progression of articular cartilage damage was noted in 34 patients (25.4%) in the lateral compartment, 32 (23.9%) in the medial compartment, and 31 (23.1%) in the patellofemoral compartment. For the lateral compartment, patients who had >33% of the lateral meniscus excised at primary reconstruction had 16.9-times greater odds of progression of articular cartilage injury than those with an intact lateral meniscus ( P < .001). For the medial compartment, patients who had <33% of the medial meniscus excised at the time of the primary reconstruction had 4.8-times greater odds of progression of articular cartilage injury than those with an intact medial meniscus ( P = .02). Odds of significant chondral surface change increased by 5% in the lateral compartment and 6% in the medial compartment for each increased year of age ( P ≤ .02). For the patellofemoral compartment, the use of allograft in primary reconstruction was associated with a 15-fold increased odds of progression of articular cartilage damage relative to a patellar tendon autograft ( P < .001). Each 1-unit increase in BMI at the time of revision surgery was associated with a 10% increase in the odds of progression of articular cartilage damage ( P = .046) in the patellofemoral compartment. Excision of the medial and lateral meniscus at primary ACL reconstruction increases the odds of articular cartilage damage in the corresponding compartment at the time of revision ACL reconstruction. Increased age is a risk factor for deterioration of articular cartilage in both tibiofemoral compartments, while increased BMI and the use of allograft for primary ACL reconstruction are associated with an increased risk of progression in the patellofemoral compartment.
In Search of the Neural Circuits of Intrinsic Motivation
Kaplan, Frederic; Oudeyer, Pierre-Yves
2007-01-01
Children seem to acquire new know-how in a continuous and open-ended manner. In this paper, we hypothesize that an intrinsic motivation to progress in learning is at the origins of the remarkable structure of children's developmental trajectories. In this view, children engage in exploratory and playful activities for their own sake, not as steps toward other extrinsic goals. The central hypothesis of this paper is that intrinsically motivating activities correspond to expected decrease in prediction error. This motivation system pushes the infant to avoid both predictable and unpredictable situations in order to focus on the ones that are expected to maximize progress in learning. Based on a computational model and a series of robotic experiments, we show how this principle can lead to organized sequences of behavior of increasing complexity characteristic of several behavioral and developmental patterns observed in humans. We then discuss the putative circuitry underlying such an intrinsic motivation system in the brain and formulate two novel hypotheses. The first one is that tonic dopamine acts as a learning progress signal. The second is that this progress signal is directly computed through a hierarchy of microcortical circuits that act both as prediction and metaprediction systems. PMID:18982131
Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V
Schmees, C.; Villaseñor, R.; Zheng, W.; Ma, H.; Zerial, M.; Heldin, C.-H.; Hellberg, C.
2012-01-01
Receptor tyrosine kinase (RTK) signaling is frequently increased in tumor cells, sometimes as a result of decreased receptor down-regulation. The extent to which the endocytic trafficking routes can contribute to such RTK hyperactivation is unclear. Here, we show for the first time that fibroblast transformation by H-RasG12V induces the internalization of platelet-derived growth factor β-receptor (PDGFRβ) by macropinocytosis, enhancing its signaling activity and increasing anchorage-independent proliferation. H-RasG12V transformation and PDGFRβ activation were synergistic in stimulating phosphatidylinositol (PI) 3-kinase activity, leading to receptor macropinocytosis. PDGFRβ macropinocytosis was both necessary and sufficient for enhanced receptor activation. Blocking macropinocytosis by inhibition of PI 3-kinase prevented the increase in receptor activity in transformed cells. Conversely, increasing macropinocytosis by Rabankyrin-5 overexpression was sufficient to enhance PDGFRβ activation in nontransformed cells. Simultaneous stimulation with PDGF-BB and epidermal growth factor promoted macropinocytosis of both receptors and increased their activation in nontransformed cells. We propose that H-Ras transformation promotes tumor progression by enhancing growth factor receptor signaling as a result of increased receptor macropinocytosis. PMID:22573884
Bracey, James M; Kurz, Jonathan E; Low, Brian; Churn, Severn B
2009-08-04
Status epilepticus is a life-threatening form of seizure activity that represents a major medical emergency associated with significant morbidity and mortality. Protein Kinase A is an important regulator of synaptic strength that may play an important role in the development of status epilepticus-induced neuronal pathology. This study demonstrated an increase in PKA activity against exogenous and endogenous substrates during later stages of SE. As SE progressed, a significant increase in PKA-mediated phosphorylation of an exogenous peptide substrate was demonstrated in cortical structures. The increased activity was not due to altered expression of either regulatory or catalytic subunits of the enzyme. Through the use of phospho-specific antibodies, this study also investigated the effects of SE on the phosphorylation of the GluR1 subunit of the AMPA subtype of glutamate receptor. After the onset of continuous seizure activity, an increase in phosphorylation of the PKA site on the GluR1 subunit of the AMPA receptor was observed. These data suggest a potential mechanism by which SE may increase neuronal excitability in the cortex, potentially leading to maintenance of seizure activity or long-term neuronal pathology.
Progress Made in Lupus Diagnosis and Treatment | NIH MedlinePlus the Magazine
... what ways can lupus accelerate the challenges of cardiovascular disease in many patients? Lupus patients have significant increases ... for improving vascular health and proper control of disease activity. We need ... best cardiovascular preventive strategies are for these patients and we ...
Esthetic evaluation of timber harvesting in the Northern Rockies - a progressive report
Dennis L. Schweitzer; James R. Ullrich; Robert E. Benson
1976-01-01
Panels of judges have been evaluating the esthetic dimension of harvested areas in the Northern Rockies. Studies conducted in Wyoming and Montana agree with intuition in that forest scenes are generally liked less as the evidence of man's activities increases.
A map of protein dynamics during cell-cycle progression and cell-cycle exit
Gookin, Sara; Min, Mingwei; Phadke, Harsha; Chung, Mingyu; Moser, Justin; Miller, Iain; Carter, Dylan
2017-01-01
The cell-cycle field has identified the core regulators that drive the cell cycle, but we do not have a clear map of the dynamics of these regulators during cell-cycle progression versus cell-cycle exit. Here we use single-cell time-lapse microscopy of Cyclin-Dependent Kinase 2 (CDK2) activity followed by endpoint immunofluorescence and computational cell synchronization to determine the temporal dynamics of key cell-cycle proteins in asynchronously cycling human cells. We identify several unexpected patterns for core cell-cycle proteins in actively proliferating (CDK2-increasing) versus spontaneously quiescent (CDK2-low) cells, including Cyclin D1, the levels of which we find to be higher in spontaneously quiescent versus proliferating cells. We also identify proteins with concentrations that steadily increase or decrease the longer cells are in quiescence, suggesting the existence of a continuum of quiescence depths. Our single-cell measurements thus provide a rich resource for the field by characterizing protein dynamics during proliferation versus quiescence. PMID:28892491
Effects of age and sex on developmental neural networks of visual-spatial attention allocation.
Rubia, Katya; Hyde, Zoe; Halari, Rozmin; Giampietro, Vincent; Smith, Anna
2010-06-01
Compared to our understanding of the functional maturation of brain networks underlying complex cognitive abilities, hardly anything is known of the neurofunctional development of simpler cognitive abilities such as visuo-spatial attention allocation. Furthermore, nothing is known on the effect of gender on the functional development of attention allocation. This study employed event related functional magnetic resonance imaging to investigate effects of age, sex, and sex by age interactions on the brain activation of 63 males and females, between 13 to 38years, during a visual-spatial oddball task. Behaviourally, with increasing age, speed was traded for accuracy, indicative of a less impulsive performance style in older subjects. Increasing age was associated with progressively increased activation in typical areas of selective attention of lateral fronto-striatal and temporo-parietal brain regions. Sex difference analysis showed enhanced activation in right-hemispheric inferior frontal and superior temporal regions in females, and in left-hemispheric inferior temporo-parietal regions in males. Importantly, the age by sex interaction findings showed that these sex-dimorphic patterns of brain activation may be the result of underlying sex differences in the functional maturation of these brain regions, as females had sex-specific progressive age-correlations in the same right inferior fronto-striato-temporal areas, while male-specific age-correlations were in left medial temporal and parietal areas. The findings demonstrate progressive functional maturation of fronto-striato-parieto-temporal networks of the relatively simple function of attention allocation between early adolescence and mid-adulthood. They furthermore show that sex-dimorphic patterns of enhanced reliance on right inferior frontal, striatal and superior temporal regions in females and of left temporo-parietal regions in males during attention allocation may be the result of underlying sex differences in the functional maturation of these brain regions. Copyright 2010 Elsevier Inc. All rights reserved.
A nontranscriptional role for Oct4 in the regulation of mitotic entry
Zhao, Rui; Deibler, Richard W.; Lerou, Paul H.; Ballabeni, Andrea; Heffner, Garrett C.; Cahan, Patrick; Unternaehrer, Juli J.; Kirschner, Marc W.; Daley, George Q.
2014-01-01
Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin–Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry. PMID:25324523
McMahon, Michelle A; Christopher, Kimberly A
2011-08-19
As the complexity of health care delivery continues to increase, educators are challenged to determine educational best practices to prepare BSN students for the ambiguous clinical practice setting. Integrative, active, and student-centered curricular methods are encouraged to foster student ability to use clinical judgment for problem solving and informed clinical decision making. The proposed pedagogical model of progressive complexity in nursing education suggests gradually introducing students to complex and multi-contextual clinical scenarios through the utilization of case studies and problem-based learning activities, with the intention to transition nursing students into autonomous learners and well-prepared practitioners at the culmination of a nursing program. Exemplar curricular activities are suggested to potentiate student development of a transferable problem solving skill set and a flexible knowledge base to better prepare students for practice in future novel clinical experiences, which is a mutual goal for both educators and students.
Yoshida, Masako; Origuchi, Maki; Urayama, Shin-Ichi; Takatsuki, Akira; Kan, Shigeyuki; Aso, Toshihiko; Shiose, Takayuki; Sawamoto, Nobukatsu; Miyauchi, Satoru; Fukuyama, Hidenao; Seiyama, Akitoshi
2014-01-01
To evaluate changes in the visual processing of patients with progressive retinitis pigmentosa (RP) who acquired improved reading capability by eye-movement training (EMT), we performed functional magnetic resonance imaging (fMRI) before and after EMT. Six patients with bilateral concentric contraction caused by pigmentary degeneration of the retina and 6 normal volunteers were recruited. Patients were given EMT for 5 min every day for 8-10 months. fMRI data were acquired on a 3.0-Tesla scanner while subjects were performing reading tasks. In separate experiments (before fMRI scanning), visual performances for readings were measured by the number of letters read correctly in 5 min. Before EMT, activation areas of the primary visual cortex of patients were 48.8% of those of the controls. The number of letters read correctly in 5 min was 36.6% of those by the normal volunteers. After EMT, the activation areas of patients were not changed or slightly decreased; however, reading performance increased in 5 of 6 patients, which was 46.6% of that of the normal volunteers (p< 0.05). After EMT, increased activity was observed in the frontal eye fields (FEFs) of all patients; however, increases in the activity of the parietal eye fields (PEFs) were observed only in patients who showed greater improvement in reading capability. The improvement in reading ability of the patients after EMT is regarded as an effect of the increased activity of FEF and PEF, which play important roles in attention and working memory as well as the regulation of eye movements.
Yoshida, Masako; Origuchi, Maki; Urayama, Shin-ichi; Takatsuki, Akira; Kan, Shigeyuki; Aso, Toshihiko; Shiose, Takayuki; Sawamoto, Nobukatsu; Miyauchi, Satoru; Fukuyama, Hidenao; Seiyama, Akitoshi
2014-01-01
To evaluate changes in the visual processing of patients with progressive retinitis pigmentosa (RP) who acquired improved reading capability by eye-movement training (EMT), we performed functional magnetic resonance imaging (fMRI) before and after EMT. Six patients with bilateral concentric contraction caused by pigmentary degeneration of the retina and 6 normal volunteers were recruited. Patients were given EMT for 5 min every day for 8–10 months. fMRI data were acquired on a 3.0-Tesla scanner while subjects were performing reading tasks. In separate experiments (before fMRI scanning), visual performances for readings were measured by the number of letters read correctly in 5 min. Before EMT, activation areas of the primary visual cortex of patients were 48.8% of those of the controls. The number of letters read correctly in 5 min was 36.6% of those by the normal volunteers. After EMT, the activation areas of patients were not changed or slightly decreased; however, reading performance increased in 5 of 6 patients, which was 46.6% of that of the normal volunteers (p< 0.05). After EMT, increased activity was observed in the frontal eye fields (FEFs) of all patients; however, increases in the activity of the parietal eye fields (PEFs) were observed only in patients who showed greater improvement in reading capability. The improvement in reading ability of the patients after EMT is regarded as an effect of the increased activity of FEF and PEF, which play important roles in attention and working memory as well as the regulation of eye movements. PMID:25068106
Yeh, Chiuan-Ren; Ou, Zheng-Yu; Xiao, Guang-Qian; Guancial, Elizabeth; Yeh, Shuyuan
2015-12-29
Previous studies indicated the T cells, one of the most common types of immune cells existing in the microenvironment of renal cell carcinoma (RCC), may influence the progression of RCC. The potential linkage of T cells and the estrogen receptor beta (ERβ), a key player to impact RCC progression, however, remains unclear. Our results demonstrate that RCC cells can recruit more T cells than non-malignant kidney cells. Using an in vitro matrigel invasion system, we found infiltrating T cells could promote RCC cells invasion via increasing ERβ expression and transcriptional activity. Mechanism dissection suggested that co-culturing T cells with RCC cells released more T cell attraction factors, including IFN-γ, CCL3 and CCL5, suggesting a positive regulatory feed-back mechanism. Meanwhile, infiltrating T cells may also promote RCC cell invasion via increased ERβ and decreased DAB2IP expressions, and knocking down DAB2IP can then reverse the T cells-promoted RCC cell invasion. Together, our results suggest that infiltrating T cells may promote RCC cell invasion via increasing the RCC cell ERβ expression to inhibit the tumor suppressor DAB2IP signals. Further mechanism dissection showed that co-culturing T cells with RCC cells could produce more IGF-1 and FGF-7, which may enhance the ERβ transcriptional activity. The newly identified relationship between infiltrating T cells/ERβ/DAB2IP signals may provide a novel therapeutic target in the development of agents against RCC.
Pons, Tracey; Shipton, Edward A
2011-04-01
There are no comparative randomised controlled trials of physiotherapy modalities for chronic low back and radicular pain associated with multilevel fusion. Physiotherapy-based rehabilitation to control pain and improve activation levels for persistent pain following multilevel fusion can be challenging. This is a case report of a 68-year-old man who was referred for physiotherapy intervention 10 months after a multilevel spinal fusion for spinal stenosis. He reported high levels of persistent postoperative pain with minimal activity as a consequence of his pain following the surgery. The physiotherapy interventions consisted of three phases of rehabilitation starting with pool exercise that progressed to land-based walking. These were all combined with transcutaneous electrical nerve stimulation (TENS) that was used consistently for up to 8 hours per day. As outcome measures, daily pain levels and walking distances were charted once the pool programme was completed (in the third phase). Phase progression was determined by shuttle test results. The pain level was correlated with the distance walked using linear regression over a 5-day average. Over a 5-day moving average, the pain level reduced and walking distance increased. The chart of recorded pain level and walking distance showed a trend toward decreased pain with the increased distance walked. In a patient undergoing multilevel lumbar fusion, the combined use of TENS and a progressive walking programme (from pool to land) reduced pain and increased walking distance. This improvement was despite poor medication compliance and a reported high level of postsurgical pain.
The Functional Role of the Triceps Surae Muscle during Human Locomotion
Honeine, Jean-Louis; Schieppati, Marco; Gagey, Olivier; Do, Manh-Cuong
2013-01-01
Aim Despite numerous studies addressing the issue, it remains unclear whether the triceps surae muscle group generates forward propulsive force during gait, commonly identified as ‘push-off’. In order to challenge the push-off postulate, one must probe the effect of varying the propulsive force while annulling the effect of the progression velocity. This can be obtained by adding a load to the subject while maintaining the same progression velocity. Methods Ten healthy subjects initiated gait in both unloaded and loaded conditions (about 30% of body weight attached at abdominal level), for two walking velocities, spontaneous and fast. Ground reaction force and EMG activity of soleus and gastrocnemius medialis and lateralis muscles of the stance leg were recorded. Centre of mass velocity and position, centre of pressure position, and disequilibrium torque were calculated. Results At spontaneous velocity, adding the load increased disequilibrium torque and propulsive force. However, load had no effect on the vertical braking force or amplitude of triceps activity. At fast progression velocity, disequilibrium torque, vertical braking force and triceps EMG increased with respect to spontaneous velocity. Still, adding the load did not further increase braking force or EMG. Conclusions Triceps surae is not responsible for the generation of propulsive force but is merely supporting the body during walking and restraining it from falling. By controlling the disequilibrium torque, however, triceps can affect the propulsive force through the exchange of potential into kinetic energy. PMID:23341916
Health impact assessment in Australia: A review and directions for progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Patrick, E-mail: patrick.harris@unsw.edu.a; Spickett, Jeff, E-mail: J.Spickett@curtin.edu.a
2011-07-15
This article provides an overview of Health Impact Assessment (HIA) within Australia. We discuss the development and current position of HIA and offer some directions for HIA's progression. Since the early 1990s HIA activity in Australia has increased and diversified in application and practice. This article first highlights the emergent streams of HIA practice across environmental, policy and health equity foci, and how these have developed within Australia. The article then provides summaries of current practice provided by each Australian state and territory. We then offer some insight into current issues that require further progression or resolution if HIA ismore » to progress effectively in Australia. This progress rests both on developing broad system support for HIA across government, led by the health sector, and developing system capacity to undertake, commission or review HIAs. We argue that a unified and clear HIA approach is required as a prerequisite to gaining the understanding and support for HIA in the public and private sectors and the wider community.« less
Adenosine A2A Receptor Activation and Macrophage-mediated Experimental Glomerulonephritis
Garcia, Gabriela E.; Truong, Luan D.; Li, Ping; Zhang, Ping; Du, Jie; Chen, Jiang-Fan; Feng, Lili
2010-01-01
In immune-induced inflammation, leukocytes are key mediators of tissue damage. Since A2A adenosine receptors (A2AR) are endogenous suppressors of inflammation, we examined cellular and molecular mechanisms of kidney damage to determine whether selective activation of A2AR will suppress inflammation in a rat model of glomerulonephritis. Activation of A2AR reduced the degree of kidney injury in both the acute inflammatory phase and the progressive phase of glomerulonephritis. This protection against acute and chronic inflammation was associated with suppression of the glomerular expression of the MDC/CCL22 chemokine and down-regulation of MIP-1α/CCL3, RANTES/CCL5, MIP-1β/CCL4, and MCP-1/CCL2 chemokines. The expression of anti-inflammatory cytokines, IL-4 and IL-10, also increased. The mechanism for these anti-inflammatory responses to the A2AR agonist was suppression of macrophages function. A2AR expression was increased in macrophages, macrophage-derived chemokines were reduced in response to the A2AR agonist, and chemokines not expressed in macrophages did not respond to A2AR activation. Thus, activation of the A2AR on macrophages inhibits immune-associated inflammation. In glomerulonephritis, A2AR activation modulates inflammation and tissue damage even in the progressive phase of glomerulonephritis. Accordingly, pharmacological activation of A2AR could be developed into a novel treatment for glomerulonephritis and other macrophage-related inflammatory diseases. PMID:17898087
Silver, Andrew; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert
2017-01-01
Dysregulation of c-Jun N-terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression. PMID:28751935
Singh, Maneesh; Singh, Pratibha; Vaira, Dolores; Amand, Mathieu; Rahmouni, Souad; Moutschen, Michel
2014-01-01
More than a quarter of a century of research has established chronic immune activation and dysfunctional T cells as central features of chronic HIV infection and subsequent immunodeficiency. Consequently, the search for a new immunomodulatory therapy that could reduce immune activation and improve T-cell function has been increased. However, the lack of small animal models for in vivo HIV study has hampered progress. In the current study, we have investigated a model of cord blood haematopoietic progenitor cells (CB-HPCs) -transplanted humanized NOD/LtsZ-scidIL-2Rγnull mice in which progression of HIV infection is associated with widespread chronic immune activation and inflammation. Indeed, HIV infection in humanized NSG mice caused up-regulation of several T-cell immune activation markers such as CD38, HLA-DR, CD69 and co-receptor CCR5. T-cell exhaustion markers PD-1 and CTLA-4 were found to be significantly up-regulated on T cells. Moreover, increased plasmatic levels of lipopolysaccharide, sCD14 and interleukin-10 were also observed in infected mice. Treatment with minocycline resulted in a significant decrease of expression of cellular and plasma immune activation markers, inhibition of HIV replication and improved T-cell counts in HIV-infected humanized NSG mice. The study demonstrates that minocycline could be an effective, low-cost adjunctive treatment to regulate chronic immune activation and replication of HIV. PMID:24409837
Agricultural pesticide exposure and the molecular connection to lymphomagenesis
Agopian, Julie; Navarro, Jean-Marc; Gac, Anne-Claire; Lecluse, Yannick; Briand, Mélanie; Grenot, Pierre; Gauduchon, Pascal; Ruminy, Philippe; Nadel, Bertrand; Roulland, Sandrine
2009-01-01
The t(14;18) translocation constitutes the initiating event of a causative cascade leading to follicular lymphoma (FL). t(14;18) translocations are present in blood from healthy individuals, but there is a trend of increased prevalence in farmers exposed to pesticides, a group recently associated with higher risk of t(14;18)+ non-Hodgkin's lymphoma development. A direct connection between agricultural pesticide use, t(14;18) in blood, and malignant progression, however, has not yet been demonstrated. We followed t(14;18) clonal evolution over 9 yr in a cohort of farmers exposed to pesticides. We show that exposed individuals bear particularly high t(14;18) frequencies in blood because of a dramatic clonal expansion of activated t(14;18)+ B cells. We further demonstrate that such t(14;18)+ clones recapitulate the hallmark features of developmentally blocked FL cells, with some displaying aberrant activation-induced cytidine deaminase activity linked to malignant progression. Collectively, our data establish that expanded t(14;18)+ clones constitute bona fide precursors at various stages of FL development, and provide a molecular connection between agricultural pesticide exposure, t(14;18) frequency in blood, and clonal progression. PMID:19506050
Croft, Daniel R; Olson, Michael F
2006-06-01
The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. However, the mechanisms by which ROCK signaling promotes cell cycle progression have not been thoroughly characterized. Using a conditionally activated ROCK-estrogen receptor fusion protein, we found that ROCK activation is sufficient to stimulate G1/S cell cycle progression in NIH 3T3 mouse fibroblasts. Further analysis revealed that ROCK acts via independent pathways to alter the levels of cell cycle regulatory proteins: cyclin D1 and p21(Cip1) elevation via Ras and the mitogen-activated protein kinase pathway, increased cyclin A via LIM kinase 2, and reduction of p27(Kip1) protein levels. Therefore, the influence of ROCK on cell cycle regulatory proteins occurs by multiple independent mechanisms.
Festuccia, Claudio; Angelucci, Adriano; Gravina, Giovanni; Eleuterio, Enrica; Vicentini, Carlo; Bologna, Mauro
2002-10-15
Bombesin-like peptides, including the mammalian homologue gastrin-releasing peptide, are highly expressed and secreted by neuroendocrine cells in prostate carcinoma tissues and are likely to be related to the progression of this neoplastic disease. Previously, we demonstrated that bombesin increased migration and protease expression in androgen-independent cells. In this work we show that bombesin is able to activate pro-MMP-9 through a mechanism involving the beta1 integrin subunit. In fact, MMP-9 processing was evident only when beta1 integrin was engaged with specific adhesive substrates, such as type I collagen, or when cells were seeded on dishes coated with antibodies against beta1 integrin, resulting in activation of the surface ligand. When exogenous pro-MMP-9 was added to PC3 cells, MMP-9 active forms were produced within 30 min by bombesin-treated cultures while control cultures expressed activated forms only after a longer time and at lower levels. MMP-9 activation required cytoskeleton integrity since this effect was abolished by cytochalasin D. Engagement of beta1 integrin caused an increased membrane-linked uPA activity which was required for MMP-9 activation. The cross talk between bombesin- and beta1-integrin-engaged signals seems to be crucial for the modulation of both membrane-linked uPA activity and MMP-9 activation and triggers complex intracellular signaling pathways requiring activation of tyrosine kinase activity, including that of src and PI3K. The beta1 integrin may be considered an important mechanism by which bombesin induces MMP-9 activation. This finding supports the idea that cellular responses to growth factors may be driven by cell-matrix interactions and stresses the role of neuroendocrine factors in prostate carcinoma progression.
[Vascular aging, arterial hypertension and physical activity].
Schmidt-Trucksäss, A; Weisser, B
2011-11-01
The present review delineates the significance of intima-media-thickness, arterial stiffness and endothelial function for vascular aging. There is profound evidence for an increase in intima-media-thickness and vascular stiffness not only during healthy aging but induced also by cardiovascular risk factors. There is a central role of arterial hypertension for this progression in both structural factors. In addition, both parameters are strongly associated with cardiovascular risk. Endothelial function measured as postischemic flow-mediated vasodilatation is a functional parameter which is decreased both in healthy aging and by cardiovascular risk factors. Physical activity modifies the influence of aging and risk factors on endothelial function. A positive influence of endurance exercise on vascular stiffness and endothelial function has been demonstrated in numerous studies. In long-term studies, regular physical activity has been shown to reduce the progression of intima-media-thickness. Thus, arterial hypertension accelerates vascular aging, while physical activity has a positive influence on a variety of vascular parameters associated with vascular aging. © Georg Thieme Verlag KG Stuttgart · New York.
Kitamura, Koichiro; Komatsu, Masayuki; Biyani, Madhu; Futakami, Masae; Kawakubo, Tomoyo; Yamamoto, Kenji; Nishigaki, Koichi
2012-12-01
Improving a particular function of molecules is often more difficult than identifying such molecules ab initio. Here, a method to acquire higher affinity and/or more functional peptides was developed as a progressive library selection method. The primary library selection products were utilized to build a secondary library composed of blocks of 4 amino acids, of which selection led to peptides with increased activity. These peptides were further converted to randomly generate paired peptides. Cathepsin E-inhibitors thus obtained exhibited the highest activities and affinities (pM order). This was also the case with cathepsin E-activating peptides, proving the methodological effectiveness. The primary, secondary, and tertiary library selections can be regarded as module-finding, module-shuffling, and module-pairing, respectively, which resembles the progression of the natural evolution of proteins. The mode of peptide binding to their target proteins is discussed in analogy to antibodies and epitopes of an antigen. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Cakir, Nevin Kozcu
2017-01-01
Today, with the development of science and technology and its rapid progress, the importance attached to science education has increased. This increase in interest has led to the development of the methods, techniques, and approaches that enable the students to be active, question and construct knowledge. The 5E learning model is one of them, and…
Yan, Zhao-fen; Gao, Jun-hua; Sun, Li; Huang, Xi-yan; Liu, Zhuo; Yu, Shu-yang; Cao, Chen-Jie; Zuo, Li-jun; Chen, Ze-Jie; Hu, Yang; Wang, Fang; Hong, Jau-shyong; Wang, Xiao-min
2016-01-01
Parkinson’s disease (PD) patients have excessive iron depositions in substantia nigra (SN). Neuroinflammation characterized by microglial activation is pivotal for dopaminergic neurodegeneration in PD. However, the role and mechanism of microglial activation in iron-induced dopaminergic neurodegeneration in SN remain unclear yet. This study aimed to investigate the role and mechanism of microglial β-nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) activation in iron-induced selective and progressive dopaminergic neurodegeneration. Multiple primary midbrain cultures from rat, NOX2+/+ and NOX2−/− mice were used. Dopaminergic neurons, total neurons, and microglia were visualized by immunostainings. Cell viability was measured by MTT assay. Superoxide (O2·−) and intracellular reactive oxygen species (iROS) were determined by measuring SOD-inhibitable reduction of tetrazolium salt WST-1 and DCFH-DA assay. mRNA and protein were detected by real-time PCR and Western blot. Iron induces selective and progressive dopaminergic neurotoxicity in rat neuron–microglia–astroglia cultures and microglial activation potentiates the neurotoxicity. Activated microglia produce a magnitude of O2·− and iROS, and display morphological alteration. NOX2 inhibitor diphenylene iodonium protects against iron-elicited dopaminergic neurotoxicity through decreasing microglial O2·− generation, and NOX2−/− mice are resistant to the neurotoxicity by reducing microglial O2·− production, indicating that iron-elicited dopaminergic neurotoxicity is dependent of NOX2, a O2·−-generating enzyme. NOX2 activation is indicated by the increased mRNA and protein levels of subunits P47 and gp91. Molecules relevant to NOX2 activation include PKC-σ, P38, ERK1/2, JNK, and NF-ΚBP65 as their mRNA and protein levels are enhanced by NOX2 activation. Iron causes selective and progressive dopaminergic neurodegeneration, and microglial NOX2 activation potentiates the neurotoxicity. PKC-σ, P38, ERK1/2, JNK, and NF-ΚBP65 are the potential molecules relevant to microglial NOX2 activation. PMID:24277523
2014-01-01
climbing stairs, putting on boots, and bending tasks • NO video games , driving, resistance training, repetitive lifting, sit-ups, push-ups or...NO video games , driving, combatives or collision sports 25 Stage 4: Moderate Activity Objective • Increase in intensity and complexity of exercise...jogging to running as tolerated, light resistance training or non-contact sports • Cognitive activity with greater demand such as video games , land
Association of proteasomal activity with metastasis in luminal breast cancer
NASA Astrophysics Data System (ADS)
Shashova, E. E.; Fesik, E. A.; Doroshenko, A. V.
2017-09-01
Chimotrypsin-like (ChTL) and caspase-like (CL) proteasomal activities were investigated in different variants of the tumor progression of luminal breast cancer. Patients with primary luminal breast cancer (n = 123) in stage T1-3N0-2M0 who had not received neoadjuvant treatment were included in this study. Proteasome ChTL and CL activities were determined in the samples of tumor and adjacent tissues. The coefficients of chymotrypsin-like (kChTL) and caspase-like (kCL) proteasome activity were also calculated as the ratio of the corresponding activity in the tumor tissue to activity in the adjacent tissue. ChTL, CL, kChTL and kCL in the tissues of luminal A and B breast cancer with lymphogenic metastasis were compared, and their association with hematogenous metastasis was evaluated. On the one hand, CL activity of proteasomes increased in luminal A breast cancer with extensive lymphogenic metastasis (N2), on the other hand it decreased in the luminal B subtype of cancer. The ratio of proteasomal activity in the tumor and adjacent tissues plays a significant role in the hematogenic pathway of breast cancer progression and is associated with poor metastatic-free survival.
Datta, R K; Johnson, E A; Bhattacharjee, G; Stenger, R J
1976-03-01
Administration of a single acute dose (20 mg/kg body weight) of methadone hydrochloride to both male and female mice increased the specific activity of NADPH-cytochrome c reductase and did not change much the content of cytochrome P-450 of their liver microsomes. Administration of multiple acute doses of methadone in male mice increased the specific activity of cytochrome c reductase and the content of cytochrome P-450 of their liver microsomes. Chronic administration of progressively increasing doses of methadone (up to 40 mg/kg body weight) to male mice increased the specific activity of c reductase. Similar chronic administration of methadone up to 28 mg/kg body weight also increased the microsomal content of P-450, but with higher doses of methadone, the content of P-450 declined and finally dropped slightly below control levels. The levels of c reductase activity and P-450 content returned to normal about two weeks after discontinuation of methadone administration.
De Marchi, Thiago; Leal Junior, Ernesto Cesar Pinto; Bortoli, Celiana; Tomazoni, Shaiane Silva; Lopes-Martins, Rodrigo Alvaro Brandão; Salvador, Mirian
2012-01-01
The aim of this work was to evaluate the effects of low-level laser therapy (LLLT) on exercise performance, oxidative stress, and muscle status in humans. A randomized double-blind placebo-controlled crossover trial was performed with 22 untrained male volunteers. LLLT (810 nm, 200 mW, 30 J in each site, 30 s of irradiation in each site) using a multi-diode cluster (with five spots - 6 J from each spot) at 12 sites of each lower limb (six in quadriceps, four in hamstrings, and two in gastrocnemius) was performed 5 min before a standardized progressive-intensity running protocol on a motor-drive treadmill until exhaustion. We analyzed exercise performance (VO(2 max), time to exhaustion, aerobic threshold and anaerobic threshold), levels of oxidative damage to lipids and proteins, the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and the markers of muscle damage creatine kinase (CK) and lactate dehydrogenase (LDH). Compared to placebo, active LLLT significantly increased exercise performance (VO(2 max) p = 0.01; time to exhaustion, p = 0.04) without changing the aerobic and anaerobic thresholds. LLLT also decreased post-exercise lipid (p = 0.0001) and protein (p = 0.0230) damages, as well as the activities of SOD (p = 0.0034), CK (p = 0.0001) and LDH (p = 0.0001) enzymes. LLLT application was not able to modulate CAT activity. The use of LLLT before progressive-intensity running exercise increases exercise performance, decreases exercise-induced oxidative stress and muscle damage, suggesting that the modulation of the redox system by LLLT could be related to the delay in skeletal muscle fatigue observed after the use of LLLT.
S4S8-RPA phosphorylation as an indicator of cancer progression in oral squamous cell carcinomas.
Rector, Jeff; Kapil, Sasha; Treude, Kelly J; Kumm, Phyllis; Glanzer, Jason G; Byrne, Brendan M; Liu, Shengqin; Smith, Lynette M; DiMaio, Dominick J; Giannini, Peter; Smith, Russell B; Oakley, Greg G
2017-02-07
Oral cancers are easily accessible compared to many other cancers. Nevertheless, oral cancer is often diagnosed late, resulting in a poor prognosis. Most oral cancers are squamous cell carcinomas that predominantly develop from cell hyperplasias and dysplasias. DNA damage is induced in these tissues directly or indirectly in response to oncogene-induced deregulation of cellular proliferation. Consequently, a DNA Damage response (DDR) and a cell cycle checkpoint is activated. As dysplasia transitions to cancer, proteins involved in DNA damage and checkpoint signaling are mutated or silenced decreasing cell death while increasing genomic instability and allowing continued tumor progression. Hyperphosphorylation of Replication Protein A (RPA), including phosphorylation of Ser4 and Ser8 of RPA2, is a well-known indicator of DNA damage and checkpoint activation. In this study, we utilize S4S8-RPA phosphorylation as a marker for cancer development and progression in oral squamous cell carcinomas (OSCC). S4S8-RPA phosphorylation was observed to be low in normal cells, high in dysplasias, moderate in early grade tumors, and low in late stage tumors, essentially supporting the model of the DDR as an early barrier to tumorigenesis in certain types of cancers. In contrast, overall RPA expression was not correlative to DDR activation or tumor progression. Utilizing S4S8-RPA phosphorylation to indicate competent DDR activation in the future may have clinical significance in OSCC treatment decisions, by predicting the susceptibility of cancer cells to first-line platinum-based therapies for locally advanced, metastatic and recurrent OSCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Suvarthi; Kumar, Ashutosh; Seth, Ratanesh Kumar
Today's developed world faces a major public health challenge in the rise in the obese population and the increased incidence in fatty liver disease. There is a strong association among diet induced obesity, fatty liver disease and development of nonalcoholic steatohepatitis but the environmental link to disease progression remains unclear. Here we demonstrate that in obesity, early steatohepatitic lesions induced by the water disinfection byproduct bromodichloromethane are mediated by increased oxidative stress and leptin which act in synchrony to potentiate disease progression. Low acute exposure to bromodichloromethane (BDCM), in diet-induced obesity produced oxidative stress as shown by increased lipid peroxidation,more » protein free radical and nitrotyrosine formation and elevated leptin levels. Exposed obese mice showed histopathological signs of early steatohepatitic injury and necrosis. Spontaneous knockout mice for leptin or systemic leptin receptor knockout mice had significantly decreased oxidative stress and TNF-α levels. Co-incubation of leptin and BDCM caused Kupffer cell activation as shown by increased MCP-1 release and NADPH oxidase membrane assembly, a phenomenon that was decreased in Kupffer cells isolated from leptin receptor knockout mice. In obese mice that were BDCM-exposed, livers showed a significant increase in Kupffer cell activation marker CD68 and, increased necrosis as assessed by levels of isocitrate dehydrogenase, events that were decreased in the absence of leptin or its receptor. In conclusion, our results show that exposure to the disinfection byproduct BDCM in diet-induced obesity augments steatohepatitic injury by potentiating the effects of leptin on oxidative stress, Kupffer cell activation and cell death in the liver. - Highlights: ► BDCM acute exposure sensitizes liver to increased free radical stress in obesity. ► BDCM-induced higher leptin contributes to early steatohepatitic lesions. ► Increased leptin mediates protein radical and 3-nitrotyrosine formation. ► BDCM exposure in obesity activates Kupffer cells and NADPH oxidase. ► BDCM/leptin synergy promotes necrotic cell-death and augments steatohepatitis.« less
Roudnicky, Filip; Dieterich, Lothar C; Poyet, Cedric; Buser, Lorenz; Wild, Peter; Tang, Dave; Camenzind, Peter; Ho, Chien Hsien; Otto, Vivianne I; Detmar, Michael
2017-06-01
Bladder cancer is a frequently recurring disease with a very poor prognosis once progressed to invasive stages, and tumour-associated blood vessels play a crucial role in this process. In order to identify novel biomarkers associated with progression, we isolated blood vascular endothelial cells (BECs) from human invasive bladder cancers and matched normal bladder tissue, and found that tumour-associated BECs greatly up-regulated the expression of insulin receptor (INSR). High expression of INSR on BECs of invasive bladder cancers was significantly associated with shorter progression-free and overall survival. Furthermore, increased expression of the INSR ligand IGF-2 in invasive bladder cancers was associated with reduced overall survival. INSR may therefore represent a novel biomarker to predict cancer progression. Mechanistically, we observed pronounced hypoxia in human bladder cancer tissue, and found a positive correlation between the expression of the hypoxia marker gene GLUT1 and vascular INSR expression, indicating that hypoxia drives INSR expression in tumour-associated blood vessels. In line with this, exposure of cultured BECs and human bladder cancer cell lines to hypoxia led to increased expression of INSR and IGF-2, respectively, and IGF-2 increased BEC migration through the activation of INSR in vitro. Taken together, we identified vascular INSR expression as a potential biomarker for progression in bladder cancer. Furthermore, our data suggest that IGF-2/INSR mediated paracrine crosstalk between bladder cancer cells and endothelial cells is functionally involved in tumour angiogenesis and may thus represent a new therapeutic target. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Support services relating to geothermal programs. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-08-01
Activities designed to assist in the assessment of processes through which geopressured methane production and geopressure-geothermal power can be increased are discussed. Progress is reported on the following: general support, hot-dry-rock review, R and D plan, and the Edna Delcambre final report. (MHR)
Review of Tax Policy and Reform Issues.
ERIC Educational Resources Information Center
MacPhail-Wilcox, Bettye
1982-01-01
Summarizes the activities of the 97th Congress on taxes. Reviews 1981 enactments and 1982 proposals regarding tax cuts, tax increases, indexing of tax brackets, interest earnings, depreciation, and business incentives. Examines tax administration problems and flat-rate tax proposals and discusses the progressive income tax. (Author/RW)
Anguiano, Lidia; Riera, Marta; Pascual, Julio; Valdivielso, José Manuel; Barrios, Clara; Betriu, Angels; Clotet, Sergi; Mojal, Sergi; Fernández, Elvira; Soler, María José
2016-10-01
Circulating Angiotensin Converting Enzyme 2 (ACE2) activity in chronic kidney disease (CKD) patients without previous history of cardiovascular disease (CVD) has been associated with classical risk factors (older age, diabetes and male gender). Furthermore, silent atherosclerosis has been described as a pathological link between CKD and CVD. We analyzed baseline ACE2 activity in non-dialysis CKD stages 3-5 (CKD3-5) patients as a biomarker of renal progression, silent atherosclerosis and CV events after 2 years of follow-up. Prospective study of 1458 CKD3-5 subjects without any previous CV event included in the Spanish multicenter NEFRONA study. Association between baseline circulating ACE2 activity and renal parameters, carotid/femoral echography, atheromatous disease, ankle-brachial index, intima-media thickness, need of renal replacement therapy, cardiovascular events and mortality at 24 months of follow-up were analyzed. Patients with an increase in the number of territories with plaques at 24 months showed significantly higher levels of baseline ACE2 activity as compared to stable patients (29.6 (20.6-47.6)RFU/μL/h versus 35.7 (24.5-56), p < 0.001). Multivariate linear regression analysis showed that male gender, pathological ankle-brachial index and progressive silent atherosclerosis defined as an increased number of territories with plaques at 24 months were associated with increased baseline ACE2 activity. Male gender, older age, diabetes, smoking and increased baseline circulating ACE2 were independent predictors of atherosclerosis at 24 months of follow-up. In CKD3-5 patients, higher circulating ACE2 activity at baseline is associated with higher risk for silent atherosclerosis, suggesting that ACE2 may serve as a biomarker to predict CV risk before CVD is established. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Blich, Miry; Golan, Amnon; Arvatz, Gil; Sebbag, Anat; Shafat, Itay; Sabo, Edmond; Cohen-Kaplan, Victoria; Petcherski, Sirouch; Avniel-Polak, Shani; Eitan, Amnon; Hammerman, Haim; Aronson, Doron; Axelman, Elena; Ilan, Neta; Nussbaum, Gabriel; Vlodavsky, Israel
2013-02-01
Factors and mechanisms that activate macrophages in atherosclerotic plaques are incompletely understood. We examined the capacity of heparanase to activate macrophages. Highly purified heparanase was added to mouse peritoneal macrophages and macrophage-like J774 cells, and the levels of tumor necrosis factor-α, matrix metalloproteinase-9, interlukin-1, and monocyte chemotactic protein-1 were evaluated by ELISA. Gene expression was determined by RT-PCR. Cells collected from Toll-like receptor-2 and Toll-like receptor-4 knockout mice were evaluated similarly. Heparanase levels in the plasma of patients with acute myocardial infarction, stable angina, and healthy subjects were determined by ELISA. Immunohistochemistry was applied to detect the expression of heparanase in control specimens and specimens of patients with stable angina or acute myocardial infarction. Addition or overexpression of heparanase variants resulted in marked increase in tumor necrosis factor-α, matrix metalloproteinase-9, interlukin-1, and monocyte chemotactic protein-1 levels. Mouse peritoneal macrophages harvested from Toll-like receptor-2 or Toll-like receptor-4 knockout mice were not activated by heparanase. Plasma heparanase level was higher in patients with acute myocardial infarction, compared with patients with stable angina and healthy subjects. Pathologic coronary specimens obtained from vulnerable plaques showed increased heparanase staining compared with specimens of stable plaque and controls. Heparanase activates macrophages, resulting in marked induction of cytokine expression associated with plaque progression toward vulnerability.
Immune system alterations in amyotrophic lateral sclerosis.
Hovden, H; Frederiksen, J L; Pedersen, S W
2013-11-01
Amyotrophic lateral sclerosis is a disease of which the underlying cause and pathogenesis are unknown. Cumulatative data clearly indicates an active participation by the immune system in the disease. An increasingly recognized theory suggests a non-cell autonomous mechanism, meaning that multiple cells working together are necessary for the pathogenesis of the disease. Observed immune system alterations could indicate an active participation in this mechanism. Damaged motor neurons are able to activate microglia, astrocytes and the complement system, which further can influence each other and contribute to neurodegeneration. Infiltrating peripheral immune cells appears to correlate with disease progression, but their significance and composition is unclear. The deleterious effects of this collaborating system of cells appear to outweigh the protective aspects, and revealing this interplay might give more insight into the disease. Markers from the classical complement pathway are elevated where its initiator C1q appears to derive primarily from motor neurons. Activated microglia and astrocytes are found in close proximity to dying motor neurons. Their activation status and proliferation seemingly increases with disease progression. Infiltrating monocytes, macrophages and T cells are associated with these areas, although with mixed reports regarding T cell composition. This literature review will provide evidence supporting the immune system as an important part of ALS disease mechanism and present a hypothesis to direct the way for further studies. © 2013 John Wiley & Sons A/S.
Hong, Xu; Lei, Lu; Glas, Rickard
2003-06-16
Many tumors overexpress members of the inhibitor of apoptosis protein (IAP) family. IAPs contribute to tumor cell apoptosis resistance by the inhibition of caspases, and are degraded by the proteasome to allow further progression of apoptosis. Here we show that tumor cells can alter the specificity of cytosolic proteolysis in order to acquire apoptosis resistance, which promotes formation of rapidly growing tumors. Survival of tumor cells with low proteasomal activity can occur in the presence of high expression of Tri-peptidyl-peptidase II (TPP II), a large subtilisin-like peptidase that complements proteasomal activity. We find that this state leaves tumor cells unable of effectively degrading IAPs, and that cells in this state form rapidly growing tumors in vivo. We also find, in studies of apoptosis resistant cells derived from large in vivo tumors, that these have acquired an altered peptidase activity, with up-regulation of TPP II activity and decreased proteasomal activity. Importantly, we find that growth of subcutaneous tumors is limited by maintenance of the apoptosis resistant phenotype. The apoptosis resistant phenotype was reversed by increased expression of Smac/DIABLO, an antagonist of IAP molecules. Our data suggest a reversible mechanism in regulation of apoptosis resistance that drives tumor progression in vivo. These data are relevant in relation to the multitude of therapy-resistant clinical tumors that have increased levels of IAP molecules.
NASA Technical Reports Server (NTRS)
Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.
2000-01-01
Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.
Dacks, Andrew M.; Siniscalchi, Michael J.; Weiss, Klaudiusz R.
2012-01-01
Behavior is a product of both the stimuli encountered and the current internal state. At the level of the nervous system, the internal state alters the biophysical properties of, and connections between, neurons establishing a “network state”. To establish a network state, the nervous system must be altered from an initial default/resting state, but what remains unclear is the extent to which this process represents induction from a passive default state or the removal of suppression by an active default state. We use repetition priming (a history-dependent improvement of behavioral responses to repeatedly encountered stimuli) to determine the cellular mechanisms underlying the transition from the default to the primed network state. We demonstrate that both removal of active suppression and induction of neuron excitability changes each contribute separately to the production of a primed state. The feeding system of Aplysia californica displays repetition priming via an increase in the activity of the radula closure neuron B8, which results in increased bite strength with each motor program. We found that during priming, B8 received progressively less inhibitory input from the multi-functional neurons B4/5. Additionally, priming enhanced the excitability of B8, but the rate at which B8 activity increased as a result of these changes was regulated by the progressive removal of inhibitory input. Thus, the establishment of the network state involves the induction of processes from a rested state, yet the consequences of these processes are conditional upon critical gating mechanisms actively enforced by the default state. PMID:23223294
Sensitivity of Locus Ceruleus Neurons to Reward Value for Goal-Directed Actions
Richmond, Barry J.
2015-01-01
The noradrenergic nucleus locus ceruleus (LC) is associated classically with arousal and attention. Recent data suggest that it might also play a role in motivation. To study how LC neuronal responses are related to motivational intensity, we recorded 121 single neurons from two monkeys while reward size (one, two, or four drops) and the manner of obtaining reward (passive vs active) were both manipulated. The monkeys received reward under three conditions: (1) releasing a bar when a visual target changed color; (2) passively holding a bar; or (3) touching and releasing a bar. In the first two conditions, a visual cue indicated the size of the upcoming reward, and, in the third, the reward was constant through each block of 25 trials. Performance levels and lipping intensity (an appetitive behavior) both showed that the monkeys' motivation in the task was related to the predicted reward size. In conditions 1 and 2, LC neurons were activated phasically in relation to cue onset, and this activation strengthened with increasing expected reward size. In conditions 1 and 3, LC neurons were activated before the bar-release action, and the activation weakened with increasing expected reward size but only in task 1. These effects evolved as monkeys progressed through behavioral sessions, because increasing fatigue and satiety presumably progressively decreased the value of the upcoming reward. These data indicate that LC neurons integrate motivationally relevant information: both external cues and internal drives. The LC might provide the impetus to act when the predicted outcome value is low. PMID:25740528
Crocodile choline from Crocodylus siamensis induces apoptosis of human gastric cancer.
Mao, Xiao-Mei; Fu, Qi-Rui; Li, Hua-Liang; Zheng, Ya-Hui; Chen, Shu-Ming; Hu, Xin-Yi; Chen, Qing-Xi; Chen, Qiong-Hua
2017-03-01
Crocodile choline, an active compound isolated from Crocodylus siamensis, was found to exert potent anti-cancer activities against human gastric cancer cells in vitro and in vivo. Our study revealed that crocodile choline led to cell cycle arrest at the G2/M phase through attenuating the expressions of cyclins, Cyclin B1, and CDK-1. Furthermore, crocodile choline accelerated apoptosis through the mitochondrial apoptotic pathway with the decrease in mitochondrial membrane potential, the increase in reactive oxygen species production and Bax/Bcl-2 ratio, and the activation of caspase-3 along with the release of cytochrome c. In addition, this study, for the first time, shows that Notch pathway is remarkably deregulated by crocodile choline. The combination of crocodile choline and Notch1 short interfering RNA led to dramatically increased cytotoxicity than observed with either agent alone. Notch1 short interfering RNA sensitized and potentiated the capability of crocodile choline to suppress the cell progression and invasion of gastric cancer. Taken together, these data suggested that crocodile choline was a potent progression inhibitor of gastric cancer cells, which was correlated with mitochondrial apoptotic pathway and Notch pathway. Combining Notch1 inhibitors with crocodile choline might represent a novel approach for gastric cancer.
Seven, Yasin B; Mantilla, Carlos B; Zhan, Wen-Zhi; Sieck, Gary C
2013-01-15
We hypothesized that a shift in diaphragm muscle (DIAm) EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O(2)-5% CO(2)), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p<0.05). The non-stationary period at the onset of EMG activity ranged from ∼80 ms during airway occlusion to ∼150 ms during eupnea. Within the initial non-stationary period of EMG activity 80-95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. Copyright © 2012 Elsevier B.V. All rights reserved.
Hyper-excitability of brainstem pathways in cerebral palsy.
Smith, Allison Teresa; Gorassini, Monica Ann
2018-06-27
Individuals with cerebral palsy (CP) experience impairments in the control of head and neck movements, suggesting dysfunction in brainstem circuitry. To examine if brainstem circuitry is altered in CP we compared reflexes evoked in the sternocleidomastoid (SCM) muscle by trigeminal nerve stimulation in adults with CP and age/sex-matched controls. Increasing the intensity of trigeminal nerve stimulation produced progressive increases in the long-latency suppression of ongoing SCM EMG in controls. In contrast, participants with CP showed progressively increased facilitation around the same reflex window, suggesting heightened excitability of brainstem pathways. We also examined if there was altered activation of cortico-brainstem pathways in response to pre-natal injury of the brain. Motor-evoked potentials (MEPs) in the SCM that were conditioned by a prior trigeminal afferent stimulation were more facilitated in CP compared to controls, especially in ipsilateral MEPs that are likely mediated by cortico-reticulospinal pathways. In some participants with CP, but not in controls, a combined trigeminal nerve and cortical stimulation near threshold intensities produced large, long-lasting responses in both the SCM and biceps brachii muscles. We propose that the enhanced excitatory responses evoked from trigeminal and cortical inputs in CP are produced by heightened excitability of brainstem circuits, resulting in the augmented activation of reticulospinal pathways. Enhanced activation of reticulospinal pathways in response to early injury of the corticospinal tract may provide a compensated activation of the spinal cord, or alternatively, contribute to impairments in the precise control of head and neck functions.
Human Cancer and Platelet Interaction, a Potential Therapeutic Target.
Wang, Shike; Li, Zhenyu; Xu, Ren
2018-04-20
Cancer patients experience a four-fold increase in thrombosis risk, indicating that cancer development and progression are associated with platelet activation. Xenograft experiments and transgenic mouse models further demonstrate that platelet activation and platelet-cancer cell interaction are crucial for cancer metastasis. Direct or indirect interaction of platelets induces cancer cell plasticity and enhances survival and extravasation of circulating cancer cells during dissemination. In vivo and in vitro experiments also demonstrate that cancer cells induce platelet aggregation, suggesting that platelet-cancer interaction is bidirectional. Therefore, understanding how platelets crosstalk with cancer cells may identify potential strategies to inhibit cancer metastasis and to reduce cancer-related thrombosis. Here, we discuss the potential function of platelets in regulating cancer progression and summarize the factors and signaling pathways that mediate the cancer cell-platelet interaction.
Furukawa, Kiminobu; Suzuki, Harue; Fukuda, Jun
2012-11-01
To observe the real-time muscle activity of bilateral hands while subjects draw circles under 2 conditions: with and without using Ramachandran's mirror-box. A total of 24 healthy volunteers. Subjects drew 4 circles sequentially using their dominant hand with the other hand at rest, both with and without looking at a mirror image. Circles were marked by 8 dots on the paper, which subjects connected up to draw the shape. The activity of the bilateral first dorsal interosseus muscles was recorded using surface electromyography. Muscle activity of the dominant hand remained constant during each task. In contrast, muscle activity of the non-dominant hand increased under the condition of watching the image in the mirror, but was low under the non-watching condition. Furthermore, muscle activity of the non-dominant hand increased over the duration of the task. However, wide variation between subjects was observed under the mirror-image condition. Increased muscle action potential of the non-dominant hand may be induced by the circle drawing task of the dominant hand during Ramachandran's mirror-box therapy, which supports previous observations of increased brain activity caused by watching a mirror image.
Okabe, S; Chonan, T; Hida, W; Satoh, M; Kikuchi, Y; Takishima, T
1993-01-01
Upper airway dilating muscle activity increases during apneic episodes in patients with obstructive sleep apnea (OSA). To elucidate the relative contribution of chemical and nonchemical stimuli to augmentation of the upper airway dilating muscle, we measured the response of genioglossus muscle (GG) and inspiratory intercostal muscle (IIM) activities to obstructive apnea during non-REM sleep and compared them with the response to progressive hypoxia and hypercapnia during awake periods in seven male patients with OSA. GG EMG was measured with a wire electrode inserted percutaneously, and IIM EMG was measured with surface electrodes placed in the second intercostal space parasternally. Responses to hypoxia and to hypercapnia were assessed by rebreathing methods in the supine position while awake. Following these measurements, a sleep study was conducted with the EMG electrodes placed in the same locations. The relationship between GG and IIM activities during the cycle of apnea and postapneic ventilation in non-REM sleep was quasi-linear, and the slope of the regression line was significantly greater than those during progressive hypoxia and progressive hypercapnia. The amplitude of GG activity at 70% of maximum IIM activities in the hypoxic test was 140 +/- 20% (mean +/- SEM) during non-REM sleep, which was also significantly greater than that during hypoxia (51 +/- 10%) and that during hypercapnia (59 +/- 15%). These results suggest that nonchemical factors contribute considerably to augmentation of GG activity during obstructive apneic episodes. The nonchemical stimuli may arise from mechanoreceptors activated by upper airway obstruction and behavioral factors associated with change in sleep states.
2012-01-01
Background Haemostatic alterations are commonly detected in human and canine cancer patients. Previous studies have described haemostatic dysfunction in canine patients with haemangiosarcomas and carcinomas, and haemostasis has been assessed in dogs with various malignant and benign neoplasias. Few studies have addressed the effect of cancer type and progression of disease on the presence of haemostatic alterations in canine patients. The objective of the present study was to evaluate haemostatic variables of coagulation and fibrinolysis in a group of canine cancer patients, and to compare haemostatic changes to the cancer type and progression of disease. Methods The study population consisted of 71 dogs with malignant neoplasia presented to the University Hospital for Companion Animals, Faculty of Life Sciences, University of Copenhagen, Denmark. The study was designed as a prospective observational study evaluating the haemostatic function in canine cancer patients stratified according to type of cancer disease and disease progression. The coagulation response was evaluated by thromboelastrography (TEG), platelet count, activated partial thromboplastin time (aPTT), prothombin time (PT), fibrinogen and antithrombin (AT); and fibrinolysis by d-dimer and plasminogen. Results Hypercoagulability was the most common haemostatic dysfunction found. Non mammary carcinomas had increased clot strength (TEG G), aPTT and fibrinogen compared to the other groups. When stratifying the patients according to disease progression dogs with distant metastatic disease exhibited significantly increased fibrinogen, and d-dimer compared to dogs with local invasive and local non-invasive cancers. Conclusion Hypercoagulability was confirmed as the most common haemostatic abnormality in canine cancer patients and haemostatic dysfunction in canine cancer patients was found related to the cancer type and progression of disease. Increase in TEG G, aPTT and fibrinogen were observed in non-mammary carcinomas and were speculated to overall represent a proinflammatory response associated with the disease. Dogs with distant metastatic disease exhibited increased fibrinogen and d-dimer. Future studies are needed to elucidate the clinical importance of these results. PMID:22280938
Blancas, A; González-García, S D; Rodríguez, K; Escobar, C
2014-12-05
Scheduled and restricted access to a palatable snack, i.e. chocolate, elicits a brief and strong anticipatory activation and entrains brain areas related with reward and motivation. This behavioral and neuronal activation persists for more than 7days when this protocol is interrupted, suggesting the participation of a time-keeping system. The process that initiates this anticipation may provide a further understanding of the time-keeping system underlying palatable food entrainment. The aim of this study was to analyze how this entraining protocol starts and to dissect neuronal structures that initiate a chocolate-entrained activation. We assessed the development of anticipation of 5g of chocolate during the first 8days of the entrainment protocol. General activity of control and chocolate-entrained rats was continuously monitored with movement sensors. Moreover, motivation to obtain the chocolate was assessed by measuring approaches and interaction responses toward a wire-mesh box containing chocolate. Neuronal activation was determined with c-Fos in reward-related brain areas. We report a progressive increase in the interaction with a box to obtain chocolate parallel to a progressive neuronal activation. A significant anticipatory activation was observed in the prefrontal cortex on day 3 of entrainment and in the nucleus accumbens on day 5, while the arcuate nucleus and pyriform cortex reached significant activation on day 8. The gradual response observed with this protocol indicates that anticipation of a rewarding food requires repetitive and predictable experiences in order to acquire a temporal estimation. We also confirm that anticipation of palatable food involves diverse brain regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Solomon, Lauren A; Podder, Shreya; He, Jessica; Jackson-Chornenki, Nicholas L; Gibson, Kristen; Ziliotto, Rachel G; Rhee, Jess; DeKoter, Rodney P
2017-05-15
During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1 , an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism. Copyright © 2017 American Society for Microbiology.
Physical activity and cancer prevention : pathways and targets for intervention.
Rogers, Connie J; Colbert, Lisa H; Greiner, John W; Perkins, Susan N; Hursting, Stephen D
2008-01-01
The prevalence of obesity, an established epidemiological risk factor for many cancers, has risen steadily for the past several decades in the US and many other countries. Particularly alarming are the increasing rates of obesity among children, portending continuing increases in the rates of obesity and obesity-related cancers for many years to come. Modulation of energy balance, via increased physical activity, has been shown in numerous comprehensive epidemiological reviews to reduce cancer risk. Unfortunately, the effects and mechanistic targets of physical activity interventions on the carcinogenesis process have not been thoroughly characterized. Studies to date suggest that exercise can exert its cancer-preventive effects at many stages during the process of carcinogenesis, including both tumour initiation and progression. As discussed in this review, exercise may be altering tumour initiation events by modifying carcinogen activation, specifically by enhancing the cytochrome P450 system and by enhancing selective enzymes in the carcinogen detoxification pathway, including, but not limited to, glutathione-S-transferases. Furthermore, exercise may reduce oxidative damage by increasing a variety of anti-oxidant enzymes, enhancing DNA repair systems and improving intracellular protein repair systems. In addition to altering processes related to tumour initiation, exercise may also exert a cancer-preventive effect by dampening the processes involved in the promotion and progression stages of carcinogenesis, including scavenging reactive oxygen species (ROS); altering cell proliferation, apoptosis and differentiation; decreasing inflammation; enhancing immune function; and suppressing angiogenesis. A paucity of data exists as to whether exercise may be working as an anti-promotion strategy via altering ROS in initiated or preneoplastic models; therefore, no conclusions can be made about this possible mechanism. The studies directly examining cell proliferation and apoptosis have shown that exercise can enhance both processes, which is difficult to interpret in the context of carcinogenesis. Studies examining the relationship between exercise and chronic inflammation suggest that exercise may reduce pro-inflammatory mediators and reduce the state of low-grade, chronic inflammation. Additionally, exercise has been shown to enhance components of the innate immune response (i.e. macrophage and natural killer cell function). Finally, only a limited number of studies have explored the relationship between exercise and angiogenesis; therefore, no conclusions can be made currently about the role of exercise in the angiogenesis process as it relates to tumour progression. In summary, exercise can alter biological processes that contribute to both anti-initiation and anti-progression events in the carcinogenesis process. However, more sophisticated, detailed studies are needed to examine each of the potential mechanisms contributing to an exercise-induced decrease in carcinogenesis in order to determine the minimum dose, duration and frequency of exercise needed to yield significant cancer-preventive effects, and whether exercise can be used prescriptively to reverse the obesity-induced physiological changes that increase cancer risk.
NASA Astrophysics Data System (ADS)
Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.
2016-02-01
Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.
ZINRAJH, DAVID; HÖRL, GERD; JÜRGENS, GÜNTHER; MARC, JANJA; SOK, MIHA; CERNE, DARKO
2014-01-01
Lipid mobilization is of great importance for tumor growth and studies have suggested that cancer cells exhibit abnormal choline phospholipid metabolism. In the present study, we hypothesized that phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is increased in non-small-cell lung cancer (NSCLC) tissues and that increased gene expression acts as a predictor of shorter patient survival. Forty-two consecutive patients with resected NSCLC were enrolled in this study. Paired samples of lung cancer tissues and adjacent non-cancer lung tissues were collected from resected specimens for the estimation of PEMT expression. SYBR Green-based real-time polymerase chain reaction was used for quantification of PEMT mRNA in lung cancer tissues. Lipoprotein lipase (LPL) and fatty acid synthase (FASN) activities had already been measured in the same tissues. During a four-year follow-up, 21 patients succumbed to tumor progression. One patient did not survive due to non-cancer reasons and was not included in the analysis. Cox regression analysis was used to assess the prognostic value of PEMT expression. Our findings show that elevated PEMT expression in the cancer tissue, relative to that in the adjacent non-cancer lung tissue, predicts shorter patient survival independently of standard prognostic factors and also independently of increased LPL or FASN activity, the two other lipid-related predictors of shorter patient survival. These findings suggest that active phosphatidylcholine and/or choline metabolism are essential for tumor growth and progression. PMID:24932311
Zinrajh, David; Hörl, Gerd; Jürgens, Günther; Marc, Janja; Sok, Miha; Cerne, Darko
2014-06-01
Lipid mobilization is of great importance for tumor growth and studies have suggested that cancer cells exhibit abnormal choline phospholipid metabolism. In the present study, we hypothesized that phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is increased in non-small-cell lung cancer (NSCLC) tissues and that increased gene expression acts as a predictor of shorter patient survival. Forty-two consecutive patients with resected NSCLC were enrolled in this study. Paired samples of lung cancer tissues and adjacent non-cancer lung tissues were collected from resected specimens for the estimation of PEMT expression. SYBR Green-based real-time polymerase chain reaction was used for quantification of PEMT mRNA in lung cancer tissues. Lipoprotein lipase (LPL) and fatty acid synthase (FASN) activities had already been measured in the same tissues. During a four-year follow-up, 21 patients succumbed to tumor progression. One patient did not survive due to non-cancer reasons and was not included in the analysis. Cox regression analysis was used to assess the prognostic value of PEMT expression. Our findings show that elevated PEMT expression in the cancer tissue, relative to that in the adjacent non-cancer lung tissue, predicts shorter patient survival independently of standard prognostic factors and also independently of increased LPL or FASN activity, the two other lipid-related predictors of shorter patient survival. These findings suggest that active phosphatidylcholine and/or choline metabolism are essential for tumor growth and progression.
Understanding how mass media campaigns impact on smokers.
Borland, R; Balmford, J
2003-09-01
To explore the immediate impact of the 2001 National Tobacco Campaign (NTC) advertising on movement towards quitting in a broadly representative sample of smokers. Repeated measures design with surveys two weeks apart. 1000 current smokers aged 18-40 were interviewed. 250 telephone interviews were conducted in each of Sydney and Melbourne (both unexposed at initial survey) and Brisbane and Adelaide (both exposed at initial survey) to measure frequency of negative thoughts about smoking and passive smoking, positive thoughts about smoking, and thoughts about the conduct of tobacco companies; perspective on change; and thoughts and actions about quitting. At the initial survey, those in regions exposed to the campaign were more advanced in thoughts about quitting. Between surveys, 33% progressed toward cessation and 21% regressed. 69% of participants reported recalling NTC advertising at follow up, which was significantly associated with greater self reported quitting activity and a greater increase in frequency of negative thoughts about smoking. The results show increased frequency of negative thoughts about smoking and an increase in quitting related thoughts and actions following onset of the NTC campaign. There was also evidence of sustained increase in cessation activity for a month following onset of the campaign. This all occurred in the context of considerable naturally occurring smoking cessation activity, suggesting that the challenge of campaigns in Australia is to induce progress toward quitting among people who are generally engaged with the issue at some level, rather than attempt to stimulate fundamentally new consideration of smoking.
Kemter, Elisabeth; Sklenak, Stefanie; Rathkolb, Birgit; Hrabě de Angelis, Martin; Wolf, Eckhard; Aigner, Bernhard; Wanke, Ruediger
2014-04-11
Uromodulin (UMOD)-associated kidney disease (UAKD) belongs to the hereditary progressive ER storage diseases caused by maturation defects of mutant UMOD protein. Current treatments of UAKD patients are symptomatic and cannot prevent disease progression. Two in vitro studies reported a positive effect of the chemical chaperone sodium 4-phenylbutyrate (4-PBA) on mutant UMOD maturation. Thus, 4-PBA was suggested as a potential treatment for UAKD. This study evaluated the effects of 4-PBA in two mouse models of UAKD. In contrast to previous in vitro studies, treatment with 4-PBA did not increase HSP70 expression or improve maturation and trafficking of mutant UMOD in vivo. Kidney function of UAKD mice was actually deteriorated by 4-PBA treatment. In transfected tubular epithelial cells, 4-PBA did not improve maturation but increased the expression level of both mutant and wild-type UMOD protein. Activation of NF-κB pathway in thick ascending limb of Henle's loop cells of UAKD mice was detected by increased abundance of RelB and phospho-IκB kinase α/β, an indirect activator of NF-κB. Furthermore, the abundance of NF-κB1 p105/p50, NF-κB2 p100/p52, and TRAF2 was increased in UAKD. NF-κB activation was identified as a novel disease mechanism of UAKD and might be a target for therapeutic intervention.
Time Course of Risk Factors in Cancer Etiology and Progression
Wei, Esther K.; Wolin, Kathleen Y.; Colditz, Graham A.
2010-01-01
Patients with cancer increasingly ask what they can do to change their lifestyles and improve outcomes. Risk factors for onset of cancer may differ substantially from those that modify survival with implications for counseling. This review focuses on recent data derived from population-based studies of causes of cancer and of patients with cancer to contrast risk factors for etiology with those that impact survival. For different cancer sites, the level of information to inform the timing of lifestyle exposures and risk of disease onset or progression after diagnosis is often limited. For breast cancer, timing of some exposures, such as radiation, is particularly important. For other exposures, such as physical activity, higher levels may prevent onset and also improve survival. For colon cancer, study of precursor polyps has provided additional insight to timing. Extensive data indicate that physical activity reduces risk of colon cancer, and more limited data suggest that exposure after diagnosis improves survival. Dietary factors including folate and calcium may also reduce risk of onset. More limited data on prostate cancer point to obesity increasing risk of aggressive or advanced disease. Timing of change in lifestyle for change in risk of onset and for survival is important but understudied among patients with cancer. Counseling patients with cancer to increase physical activity and avoid weight gain may improve outcomes. Advice to family members on lifestyle may become increasingly important for breast and other cancers where family history is a strong risk factor. PMID:20644083
Quick Tips for Weight Training Exercise
ERIC Educational Resources Information Center
Perez, Saul
2004-01-01
Weight training is one of the single most popular types of fitness activities in the United States. One of the reasons for its popularity is that it dramatically contributes to improved strength, muscle tone, body composition, health and appearance. Weight training is a progressive resistance exercise in which resistance is gradually increased as…
FMRI of visual working memory in high school football players.
Shenk, Trey E; Robinson, Meghan E; Svaldi, Diana O; Abbas, Kausar; Breedlove, Katherine M; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M
2015-01-01
Visual working memory deficits have been observed in at-risk athletes. This study uses a visual N-back working memory functional magnetic resonance imaging task to longitudinally assess asymptomatic football athletes for abnormal activity. Athletes were increasingly "flagged" as the season progressed. Flagging may provide early detection of injury.
Replacement-ready? Succession planning tops health care administrators' priorities.
Husting, P M; Alderman, M
2001-09-01
Nurses' increasing age coupled with health care's rapidly changing environment moves succession planning, originally only a business sector tool, to a top administrative priority. Through active support of your facility's executive leadership and a clear linkage to long range organization objectives, you can implement this progressive procedure.
Small, David M; Sanchez, Washington Y; Roy, Sandrine F; Morais, Christudas; Brooks, Heddwen L; Coombes, Jeff S; Johnson, David W; Gobe, Glenda C
2018-05-01
Oxidative stress and mitochondrial dysfunction exacerbate acute kidney injury (AKI), but their role in any associated progress to chronic kidney disease (CKD) remains unclear. Antioxidant therapies often benefit AKI, but their benefits in CKD are controversial since clinical and preclinical investigations often conflict. Here we examined the influence of the antioxidant N-acetyl-cysteine (NAC) on oxidative stress and mitochondrial function during AKI (20-min bilateral renal ischemia plus reperfusion/IR) and progression to chronic kidney pathologies in mice. NAC (5% in diet) was given to mice 7 days prior and up to 21 days post-IR (21d-IR). NAC treatment resulted in the following: prevented proximal tubular epithelial cell apoptosis at early IR (40-min postischemia), yet enhanced interstitial cell proliferation at 21d-IR; increased transforming growth factor-β1 expression independent of IR time; and significantly dampened nuclear factor-like 2-initiated cytoprotective signaling at early IR. In the long term, NAC enhanced cellular metabolic impairment demonstrated by increased peroxisome proliferator activator-γ serine-112 phosphorylation at 21d-IR. Intravital multiphoton microscopy revealed increased endogenous fluorescence of nicotinamide adenine dinucleotide (NADH) in cortical tubular epithelial cells during ischemia, and at 21d-IR that was not attenuated with NAC. Fluorescence lifetime imaging microscopy demonstrated persistent metabolic impairment by increased free/bound NADH in the cortex at 21d-IR that was enhanced by NAC. Increased mitochondrial dysfunction in remnant tubular cells was demonstrated at 21d-IR by tetramethylrhodamine methyl ester fluorimetry. In summary, NAC enhanced progression to CKD following AKI not only by dampening endogenous cellular antioxidant responses at time of injury but also by enhancing persistent kidney mitochondrial and metabolic dysfunction.
Preferential PPAR-α activation reduces neuroinflammation, and blocks neurodegeneration in vivo
Esmaeili, Mohammad A.; Yadav, Shilpi; Gupta, Ravi Kr.; Waggoner, Garrett R.; Deloach, Abigail; Calingasan, Noel Y.; Beal, M. Flint; Kiaei, Mahmoud
2016-01-01
Neuroinflammation, immune reactivity and mitochondrial abnormalities are considered as causes and/or contributors to neuronal degeneration. Peroxisome proliferator-activated receptors (PPARs) regulate both inflammatory and multiple other pathways that are implicated in neurodegeneration. In the present study, we investigated the efficacy of fenofibrate (Tricor), a pan-PPAR agonist that activates PPAR-α as well as other PPARs. We administered fenofibrate to superoxide dismutase 1 (SOD1G93A) mice daily prior to any detectable phenotypes and then animal behavior, pathology and longevity were assessed. Treated animals showed a significant slowing of the progression of disease with weight loss attenuation, enhanced motor performance, delayed onset and survival extension. Histopathological analysis of the spinal cords showed that neuronal loss was significantly attenuated in fenofibrate-treated mice. Mitochondria were preserved as indicated by Cytochrome c immunostaining in the spinal cord, which maybe partly due to increased expression of the PPAR-γ co-activator 1-α. The total mRNA analysis revealed that neuroprotective and anti-inflammatory genes were elevated, while neuroinflammatory genes were down-regulated. This study demonstrates that the activation of PPAR-α action via fenofibrate leads to neuroprotection by both reducing neuroinflammation and protecting mitochondria, which leads to a significant increase in survival in SOD1G93A mice. Therefore, the development of therapeutic strategies to activate PPAR-α as well as other PPARs may lead to new therapeutic agents to slow or halt the progression of amyotrophic lateral sclerosis. PMID:26604138
Eun Lee, Jee; Kim, Jung Eun; Lee, Mi Hwa; Song, Hye Kyoung; Ghee, Jung Yeon; Kang, Young Sun; Min, Hye Sook; Kim, Hyun Wook; Cha, Jin Joo; Han, Jee Young; Han, Sang Youb; Cha, Dae Ryong
2016-05-01
Although dipeptidyl peptidase IV (DPPIV) inhibitors are known to have renoprotective effects, the mechanism underlying these effects has remained elusive. Here we investigated the effects of DA-1229, a novel DPPIV inhibitor, in two animal models of renal injury including db/db mice and the adriamycin nephropathy rodent model of chronic renal disease characterized by podocyte injury. For both models, DA-1229 was administered at 300 mg/kg/day. DPPIV activity in the kidney was significantly higher in diabetic mice compared with their nondiabetic controls. Although DA-1229 did not affect glycemic control or insulin resistance, DA-1229 did improve lipid profiles, albuminuria and renal fibrosis. Moreover, DA-1229 treatment resulted in decreased urinary excretion of nephrin, decreased circulating and kidney DPPIV activity, and decreased macrophage infiltration in the kidney. In adriamycin-treated mice, DPPIV activity in the kidney and urinary nephrin loss were both increased, whereas glucagon-like peptide-1 concentrations were unchanged. Moreover, DA-1229 treatment significantly improved proteinuria, renal fibrosis and inflammation associated with decreased urinary nephrin loss, and kidney DPP4 activity. In cultured podocytes, DA-1229 restored the high glucose/angiotensin II-induced increase of DPPIV activity and preserved the nephrin levels in podocytes. These findings suggest that activation of DPPIV in the kidney has a role in the progression of renal disease, and that DA-1229 may exert its renoprotective effects by preventing podocyte injury.
Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.
2009-01-01
Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling. PMID:19103595
Developing a Brief Method for the Simultaneous Assessment of Anaerobic and Aerobic Fitness
2007-10-01
production may have a common metabolic basis. Isolated muscle fibers contracting at low frequencies in oxygenated solutions (31, 42) and in vivo muscle active...the rate of stimulation or recruiting additional muscle fibers (24). The progressive increase in neuromuscular activity characteristic of high-force...used (19). During isometric contractions of unfatigued limb muscles , force production is modulated by recruitment for outputs of up to 85% of the
Lagrèze, Wolf A; Schaeffel, Frank
2017-09-04
Nearsightedness (myopia) has become more common around the world recently, mainly because of changes in visual, educational, and recreational behavior. The question arises how the risk of myopia and its progression can be reduced. This would lessen the prevalence and severity of myopia and also lower the risk of secondary diseases that impair visual acuity. The PubMed/Medline database was selectively searched for pertinent literature. The risk of myopia is lowered by exposure to daylight and increased by activities performed at short visual distances (close-up work). A person with little exposure to daylight has a fivefold risk of developing myopia, which can rise as high as a 16-fold risk if that person also performs close-up work. Two meta-analyses and a large randomized clinical trial from Asia have shown that the progression of myopia over two years of observation can be lessened by up to 0.71 diopters by the administration of atropine eye drops in a concentration that has practically no serious side effects. At higher doses, myopia progresses more severely than in the placebo group after the cessation of therapy. This is an off-label treatment. A weaker effect on progression has been shown for multifocal optical corrections that include both a distance correction and a correction for near vision. Effective pharmacological and optical measures are now available to lessen the progression of myopia. The increasing prevalence of myopia should motivate pediatricians, parents, and schools to pay attention to risk factors such as close-up work and lack of daylight exposure, particularly in view of the increased use of digital media.
Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian
2017-11-10
Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Intravenous ω-3 Fatty Acids Plus Gemcitabine.
Arshad, Ali; Isherwood, John; Mann, Christopher; Cooke, Jill; Pollard, Cristina; Runau, Franscois; Morgan, Bruno; Steward, William; Metcalfe, Matthew; Dennison, Ashley
2017-03-01
Marine-derived ω-3 fatty acids (ω-3FAs) have proven antitumor activity in vivo and in vitro and improve quality of life (QOL) in clinical cancer studies. These changes may be mediated by reduction in circulating proangiogenic and proinflammatory factors. In this first study of intravenous ω-3FAs as a therapy in cancer patients, we aimed to assess if it could augment the antitumor activity of gemcitabine in patients with advanced pancreatic cancer and improve QOL. Patients were administered gemcitabine 1000 mg/m 3 weekly followed by up to 100 g (200 mg/mL) of ω-3 rich lipid emulsion for 3 weeks followed by a rest week. This was continued for up to 6 cycles, progression, unacceptable toxicity, patient request, or death. The primary outcome measure was objective response rate, with secondary outcome measures of overall and progression free survival, QOL scores, and adverse events. Fifty patients were recruited. Response rate was 14.3% and disease control rate was 85.7%. Overall and progression free survival were 5.9 and 4.8 months, respectively. Increase in global health of > 10% over baseline was seen in 47.2% of patients. More than 50% of patients had > 10% increase in QOL scores in generic symptom scores and both disease-specific domains. Grade 3/4 adverse events were thrombocytopenia (8%), neutropenia (12%), nausea or vomiting (4%), and chills (6%). Intravenous ω-3FAs in combination with gemcitabine shows evidence of improved activity and benefit to QOL in patients with advanced pancreas cancer and is worthy of investigation in a randomized phase III trial.
Progress toward poliomyelitis eradication--Nigeria, January 2008-July 2009.
2009-10-23
Although wild poliovirus (WPV) cases in Nigeria decreased from 1,129 in 2006 to 285 in 2007, Nigeria had the world's highest polio burden in 2008, with 798 (48%) of 1,651 WPV cases reported globally, including 721 (74%) of 976 WPV type 1 (WPV1) cases. This report provides an update on progress toward polio eradication in Nigeria during 2008-2009 and activities planned to interrupt transmission. During 2008-2009, Nigeria was the source for WPV1 transmission to 11 countries and WPV type 3 (WPV3) transmission to four countries. In addition, transmission of circulating type 2 vaccine-derived poliovirus (cVDPV2) has been ongoing since 2005. WPV1 cases decreased 87%, from 574 during January-July 2008 to 73 for the same period in 2009. However, WPV3 cases rose approximately six-fold, from 51 during January-July 2008 to 303 during the same period in 2009, partly because of the increased emphasis on controlling WPV1. The decline in the proportion of children who have never received oral poliovirus vaccine (OPV) in the highest- incidence northern states, from 31% in 2006 to 11% in the first half of 2009 indicates progress toward eradication. During 2008-2009, activities to accelerate polio eradication included use of mobile teams to vaccinate children not at home during supplemental immunization activities (SIAs), and efforts to increase political oversight and the engagement of community leaders. Sustained support of traditional, religious, and political leaders and improved implementation of SIAs will be needed to interrupt WPV and cVDPV2 transmission.
B cells in chronic obstructive pulmonary disease: moving to center stage
Polverino, Francesca; Seys, Leen J. M.; Bracke, Ken R.
2016-01-01
Chronic inflammatory responses in the lungs contribute to the development and progression of chronic obstructive pulmonary disease (COPD). Although research studies focused initially on the contributions of the innate immune system to the pathogenesis of COPD, more recent studies have implicated adaptive immune responses in COPD. In particular, studies have demonstrated increases in B cell counts and increases in the number and size of B cell-rich lymphoid follicles in COPD lungs that correlate directly with COPD severity. There are also increases in lung levels of mediators that promote B cell maturation, activation, and survival in COPD patients. B cell products such as autoantibodies directed against lung cells, components of cells, and extracellular matrix proteins are also present in COPD lungs. These autoantibodies may contribute to lung inflammation and injury in COPD patients, in part, by forming immune complexes that activate complement components. Studies of B cell-deficient mice and human COPD patients have linked B cells most strongly to the emphysema phenotype. However, B cells have protective activities during acute exacerbations of COPD by promoting adaptive immune responses that contribute to host defense against pathogens. This review outlines the evidence that links B cells and B cell-rich lymphoid follicles to the pathogenesis of COPD and the mechanisms involved. It also reviews the potential and limitations of B cells as therapeutic targets to slow the progression of human COPD. PMID:27542809
Shafiee-Nick, Reza; Vafaee Bagheri, Farzaneh; Rakhshandeh, Hassan
2012-01-01
The effects of a polyherbal compound, containing six plants (Allium sativum, Cinnamomum zeylanicum, Nigella sativa, Punica granatum, Salvia officinalis and Teucrium polium) were tested on biochemical parameters in streptozotocin-induced diabetic rats. Streptozotocin caused an approximately 3-fold increase in fasting blood sugar level after 2 days. The diabetic control rats showed further increase in blood glucose after 30 days (384 ± 25 mg/dl in day 30 versus 280 ± 12 mg/dl in day 2, P < 0.001). Administration of the compound blocked the increase of blood glucose (272 ± 7 and 269 ± 48 mg/dl at day 2 and day 30, respectively). Also, there was significant difference in the level of triglyceride (60 ± 9 versus 158 ± 37 mg/dl, P < 0.01), total cholesterol (55 ± 2 versus 97 ± 11 mg/dl, P < 0.01) and aspartate amino transferase activity (75 ± 12 versus 129 ± 18 U/L, P < 0.05) between treated rats and diabetic control group. In conclusion, the MSEC inhibited the progression of hyperglycemia and decreased serum lipids and hepatic enzyme activity in diabetic rats. Therefore, it has the potential to be used as a natural product for the management of diabetes. PMID:23304131
Clinical Manifestations and the Natural History of HIV Infection in Adults
Piot, Peter; Colebunders, Robert
1987-01-01
The clinical expression of infection with the human immunodeficiency virus (HIV) appears increasingly complex. It includes manifestations due to opportunistic diseases, as well as illness directly caused by HIV itself. Neurologic disease may include involvement of the brain, spinal cord and peripheral nerves and is probably directly caused by HIV, as is lymphocytic interstitial pneumonia. The etiology of the chronic diarrhea and a papular pruritic skin eruption associated with HIV infection is unclear. Between 2% and 8% of HIV-infected persons progress to the acquired immunodeficiency syndrome (AIDS) per year, with no apparent decrease in the rate of disease progression over time. A chronically activated state secondary to chronic microbial antigenic exposure may increase both the susceptibility to HIV infection and development of disease. Increased HIV gene expression, followed by persistent antigenemia, appear to be triggering factors in clinical deterioration. The role, if any, of environmental and/or genetic cofactors remains unclear. Images PMID:3433753
Gentle, M J; Hunter, L N
1991-01-01
Electroencephalographic, cardiovascular and behavioural parameters were examined in Gallus gallus var domesticus in response to feather removal. The progressive removal of feathers resulted in marked changes in the bird's behaviour from an alert agitated response following the initial removals to periods of crouching immobility following successive removals. During the periods of immobility the birds showed a high amplitude low frequency EEG pattern and successive removals resulted in a progressive increase in the total duration of this activity in the two minutes after removal. The heart rate response to feather removal was variable whereas the blood pressure always increased and this increase was followed by a gradual return to pre-stimulus levels. There were no consistent cardiovascular responses related to the immobility. It was concluded that feather removal is likely to be painful to the bird and feather removal by flockmates can be categorised as a welfare problem.
Wirtshafter, David; Stratford, Thomas R
2010-09-01
Microinjections of the inhibitory GABA-A receptor agonist muscimol into the shell region of the nucleus accumbens (AcbSh) have been reported to induce large increases in food intake, but the effect of these injections on motivational processes is less clear. In the current study, bilateral injections of saline, muscimol (50ng/side) or d-amphetamine (10mug/side) were made into the AcbSh of rats trained to lever press on a progressive ratio schedule for food reward. Injections of both muscimol and amphetamine were found to produce a large increase in the breaking point relative to saline injections. This result suggests that inactivation of the AcbSh does not simply drive ingestive behavior, but also affects motivational processes assessed by the progressive ratio schedule. Breaking points were also increased by injections of amphetamine into the AcbSh. Copyright 2010 Elsevier Inc. All rights reserved.
Wirtshafter, David; Stratford, Thomas R.
2011-01-01
Microinjections of the inhibitory GABA-A receptor agonist muscimol into the shell region of the nucleus accumbens (AcbSh) have been reported to induce large increases in food intake, but the effect of these injections on motivational processes is less clear. In the current study, bilateral injections of saline, muscimol (50 ng/side) or D-amphetamine (10 μg/side) were made into the AcbSh of rats trained to lever press on a progressive ratio schedule for food reward. Injections of both muscimol and amphetamine were found to produce a large increase in the breaking point relative to saline injections. This result suggests that inactivation of the AcbSh does not simply drive ingestive behavior, but also affects motivational processes assessed by the progressive ratio schedule. Breaking points were also increased by injections of amphetamine into the AcbSh. PMID:20598739
[Biological mechanisms of myopia].
Schaeffel, F
2017-01-01
Recent studies have confirmed that the prevalence of myopia has increased in most countries, that the increase must be due to environmental factors and that myopia is closely linked to the level of education. Extensive close-up work with short viewing distances, little outdoor activity and continuous exposure to low illumination are currently considered the major factors. It remains unknown how close-up work can stimulate eye growth. Animal models provide the possibility to manipulate visual experiences and to observe subsequent changes in eye growth. They have uncovered a number of unexpected aspects which have led to studies in children. When applied in low doses atropine (0.01 %) is effective against progression of myopia and shows no rebound effect after termination of the treatment, in contrast to treatment with previously used higher doses. While education cannot be limited in our society, there are now an increasing number of options to slow myopia progression so that high myopia is less frequently reached.
Adaptation of the walking pattern to uphill walking in normal and spinal-cord injured subjects.
Leroux, A; Fung, J; Barbeau, H
1999-06-01
Lower-limb movements and muscle-activity patterns were assessed from seven normal and seven ambulatory subjects with incomplete spinal-cord injury (SCI) during level and uphill treadmill walking (5, 10 and 15 degrees). Increasing the treadmill grade from 0 degrees to 15 degrees induced an increasingly flexed posture of the hip, knee and ankle during initial contact in all normal subjects, resulting in a larger excursion throughout stance. This adaptation process actually began in mid-swing with a graded increase in hip flexion and ankle dorsiflexion as well as a gradual decrease in knee extension. In SCI subjects, a similar trend was found at the hip joint for both swing and stance phases, whereas the knee angle showed very limited changes and the ankle angle showed large variations with grade throughout the walking cycle. A distinct coordination pattern between the hip and knee was observed in normal subjects, but not in SCI subjects during level walking. The same coordination pattern was preserved in all normal subjects and in five of seven SCI subjects during uphill walking. The duration of electromyographic (EMG) activity of thigh muscles was progressively increased during uphill walking, whereas no significant changes occurred in leg muscles. In SCI subjects, EMG durations of both thigh and leg muscles, which were already active throughout stance during level walking, were not significantly affected by uphill walking. The peak amplitude of EMG activity of the vastus lateralis, medial hamstrings, soleus, medial gastrocnemius and tibialis anterior was progressively increased during uphill walking in normal subjects. In SCI subjects, the peak amplitude of EMG activity of the medial hamstrings was adapted in a similar fashion, whereas the vastus lateralis, soleus and medial gastrocnemius showed very limited adaptation during uphill walking. We conclude that SCI subjects can adapt to uphill treadmill walking within certain limits, but they use different strategies to adapt to the changing locomotor demands.
Park, Yun Yeon; Nam, Hyun-Ja; Do, Mihyang; Lee, Jae-Ho
2016-01-01
RSK2, also known as RPS6KA3 (ribosomal protein S6 kinase, 90 kDa, polypeptide 3), is a downstream kinase of the mitogen-activated protein kinase (MAPK) pathway, which is important in regulating survival, transcription, growth and proliferation. However, its biological role in mitotic progression is not well understood. In this study, we examined the potential involvement of RSK2 in the regulation of mitotic progression. Interestingly, depletion of RSK2, but not RSK1, caused the accumulation of mitotic cells. Time-lapse analysis revealed that mitotic duration, particularly the duration for metaphase-to-anaphase transition was prolonged in RSK2-depleted cells, suggesting activation of spindle assembly checkpoint (SAC). Indeed, more BubR1 (Bub1-related kinase) was present on metaphase plate kinetochores in RSK2-depleted cells, and depletion of BubR1 abolished the mitotic accumulation caused by RSK2 depletion, confirming BubR1-dependent SAC activation. Along with the shortening of inter-kinetochore distance, these data suggested that weakening of the tension across sister kinetochores by RSK2 depletion led to the activation of SAC. To test this, we analyzed the RSK2 effects on the stability of kinetochore–microtubule interactions, and found that RSK2-depleted cells formed less kinetochore–microtubule fibers. Moreover, RSK2 depletion resulted in the decrease of basal level of microtubule as well as an irregular distribution of mitotic spindles, which might lead to observed several mitotic progression defects such as increase in unaligned chromosomes, defects in chromosome congression and a decrease in pole-to-pole distance in these cells. Taken together, our data reveal that RSK2 affects mitotic progression by regulating the distribution, basal level and the stability of mitotic spindles. PMID:27491410
Kumagai, Toru; Tomita, Yasuhiko; Nakatsuka, Shin-Ichi; Kimura, Madoka; Kunimasa, Kei; Inoue, Takako; Tamiya, Motohiro; Nishino, Kazumi; Susaki, Yoshiyuki; Kusu, Takashi; Tokunaga, Toshiteru; Okami, Jiro; Higashiyama, Masahiko; Imamura, Fumio
2018-04-01
Activating EGFR mutations, HER2, and HER3 are implicated in lung cancer; however, with the exception of EGFR gene amplification in lung adenocarcinoma harboring EGFR mutations, their involvement in disease progression during the early stages is poorly understood. In this paper, we focused on which receptor is correlated with lung adenocarcinoma progression in the presence or absence of EGFR mutation from stage 0 to IA1. HER2 and HER3 expression and activating EGFR mutations in surgically resected lung adenocarcinoma exhibiting ground glass nodules on chest computed tomography and re-classified to stage 0 and IA1 were examined by immunohistochemistry and peptide nucleic acid-locked nucleic acid PCR clamp method, respectively. HER2 and HER3 expression was detected in 22.2% and 86.1% of samples, respectively. The frequency of EGFR mutation was 45.7% and was not significantly different between stage 0 and IA1 (40.0% and 48.0%, respectively), suggesting that EGFR mutation does not correlate with cancer progression from stage 0 to IA1. HER2 expression also did not correlate to progression. However, not only the frequency, but also the intensity of HER3 expression was increased in stage IA1 lung adenocarcinoma, particularly in lung adenocarcinoma without EGFR mutation. HER3 tends to be intensively expressed during the progression of lung adenocarcinoma without EGFR mutation from carcinoma in situ to invasive carcinoma. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Matsuhara, Hirotada; Yamamoto, Ayumu
2016-01-01
Autophagy is a conserved intracellular degradation system, which contributes to development and differentiation of various organisms. Yeast cells undergo meiosis under nitrogen-starved conditions and require autophagy for meiosis initiation. However, the precise roles of autophagy in meiosis remain unclear. Here, we show that autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast. Autophagy-defective strains bearing a mutation in the autophagy core factor gene atg1, atg7, or atg14 exhibit deformed nuclear structures during meiosis. These mutant cells require an extracellular nitrogen supply for meiosis progression following their entry into meiosis and show delayed meiosis progression even with a nitrogen supply. In addition, they show frequent chromosome dissociation from the spindle together with spindle overextension, forming extra nuclei. Furthermore, Aurora kinase, which regulates chromosome segregation and spindle elongation, is significantly increased at the centromere and spindle in the mutant cells. Aurora kinase down-regulation eliminated delayed initiation of meiosis I and II, chromosome dissociation, and spindle overextension, indicating that increased Aurora kinase activity may cause these aberrances in the mutant cells. Our findings show a hitherto unrecognized relationship of autophagy with the nuclear structure, regulation of cell cycle progression, and chromosome segregation in meiosis. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.
Pede, Valerie; Rombout, Ans; Vermeire, Jolien; Naessens, Evelien; Mestdagh, Pieter; Robberecht, Nore; Vanderstraeten, Hanne; Van Roy, Nadine; Vandesompele, Jo; Speleman, Frank; Philippé, Jan; Verhasselt, Bruno
2013-01-01
Chronic lymphocytic leukemia (CLL) is a disease with variable clinical outcome. Several prognostic factors such as the immunoglobulin heavy chain variable genes (IGHV) mutation status are linked to the B-cell receptor (BCR) complex, supporting a role for triggering the BCR in vivo in the pathogenesis. The miRNA profile upon stimulation and correlation with IGHV mutation status is however unknown. To evaluate the transcriptional response of peripheral blood CLL cells upon BCR stimulation in vitro, miRNA and mRNA expression was measured using hybridization arrays and qPCR. We found both IGHV mutated and unmutated CLL cells to respond with increased expression of MYC and other genes associated with BCR activation, and a phenotype of cell cycle progression. Genome-wide expression studies showed hsa-miR-132-3p/hsa-miR-212 miRNA cluster induction associated with a set of downregulated genes, enriched for genes modulated by BCR activation and amplified by Myc. We conclude that BCR triggering of CLL cells induces a transcriptional response of genes associated with BCR activation, enhanced cell cycle entry and progression and suggest that part of the transcriptional profiles linked to IGHV mutation status observed in isolated peripheral blood are not cell intrinsic but rather secondary to in vivo BCR stimulation. PMID:23560086
Cyclin-dependent kinase 2 protects podocytes from apoptosis
Saurus, Pauliina; Kuusela, Sara; Dumont, Vincent; Lehtonen, Eero; Fogarty, Christopher L.; Lassenius, Mariann I.; Forsblom, Carol; Lehto, Markku; Saleem, Moin A.; Groop, Per-Henrik; Lehtonen, Sanna
2016-01-01
Loss of podocytes is an early feature of diabetic nephropathy (DN) and predicts its progression. We found that treatment of podocytes with sera from normoalbuminuric type 1 diabetes patients with high lipopolysaccharide (LPS) activity, known to predict progression of DN, downregulated CDK2 (cyclin-dependent kinase 2). LPS-treatment of mice also reduced CDK2 expression. LPS-induced downregulation of CDK2 was prevented in vitro and in vivo by inhibiting the Toll-like receptor (TLR) pathway using immunomodulatory agent GIT27. We also observed that CDK2 is downregulated in the glomeruli of obese Zucker rats before the onset of proteinuria. Knockdown of CDK2, or inhibiting its activity with roscovitine in podocytes increased apoptosis. CDK2 knockdown also reduced expression of PDK1, an activator of the cell survival kinase Akt, and reduced Akt phosphorylation. This suggests that CDK2 regulates the activity of the cell survival pathway via PDK1. Furthermore, PDK1 knockdown reduced the expression of CDK2 suggesting a regulatory loop between CDK2 and PDK1. Collectively, our data show that CDK2 protects podocytes from apoptosis and that reduced expression of CDK2 associates with the development of DN. Preventing downregulation of CDK2 by blocking the TLR pathway with GIT27 may provide a means to prevent podocyte apoptosis and progression of DN. PMID:26876672
Beer, Philip A.; Knapp, David J. H. F.; Miller, Paul H.; Kannan, Nagarajan; Sloma, Ivan; Heel, Kathy; Babovic, Sonja; Bulaeva, Elizabeth; Rabu, Gabrielle; Terry, Jefferson; Druker, Brian J.; Loriaux, Marc M.; Loeb, Keith R.; Radich, Jerald P.; Erber, Wendy N.
2015-01-01
Without effective therapy, chronic-phase chronic myeloid leukemia (CP-CML) evolves into an acute leukemia (blast crisis [BC]) that displays either myeloid or B-lymphoid characteristics. This transition is often preceded by a clinically recognized, but biologically poorly characterized, accelerated phase (AP). Here, we report that IKAROS protein is absent or reduced in bone marrow blasts from most CML patients with advanced myeloid disease (AP or BC). This contrasts with primitive CP-CML cells and BCR-ABL1–negative acute myeloid leukemia blasts, which express readily detectable IKAROS. To investigate whether loss of IKAROS contributes to myeloid disease progression in CP-CML, we examined the effects of forced expression of a dominant-negative isoform of IKAROS (IK6) in CP-CML patients’ CD34+ cells. We confirmed that IK6 disrupts IKAROS activity in transduced CP-CML cells and showed that it confers on them features of AP-CML, including a prolonged increased output in vitro and in xenografted mice of primitive cells with an enhanced ability to differentiate into basophils. Expression of IK6 in CD34+ CP-CML cells also led to activation of signal transducer and activator of transcription 5 and transcriptional repression of its negative regulators. These findings implicate loss of IKAROS as a frequent step and potential diagnostic harbinger of progressive myeloid disease in CML patients. PMID:25370416
u-PAR expression in cancer associated fibroblast: new acquisitions in multiple myeloma progression.
Ciavarella, S; Laurenzana, A; De Summa, S; Pilato, B; Chillà, A; Lacalamita, R; Minoia, C; Margheri, F; Iacobazzi, A; Rana, A; Merchionne, F; Fibbi, G; Del Rosso, M; Guarini, A; Tommasi, S; Serratì, S
2017-03-24
Multiple Myeloma (MM) is a B-cell malignancy in which clonal plasma cells progressively expand within the bone marrow (BM) as effect of complex interactions with extracellular matrix and a number of microenvironmental cells. Among these, cancer-associated fibroblasts (CAF) mediate crucial reciprocal signals with MM cells and are associated to aggressive disease and poor prognosis. A large body of evidence emphasizes the role of the urokinase plasminogen activator (u-PA) and its receptor u-PAR in potentiating the invasion capacity of tumor plasma cells, but little is known about their role in the biology of MM CAF. In this study, we investigated the u-PA/u-PAR axis in MM-associated fibroblasts and explore additional mechanisms of tumor/stroma interplay in MM progression. CAF were purified from total BM stromal fraction of 64 patients including monoclonal gammopathy of undetermined significance, asymptomatic and symptomatic MM, as well as MM in post-treatment remission. Flow cytometry, Real Time PCR and immunofluorescence were performed to investigate the u-PA/u-PAR system in relation to the level of activation of CAF at different stages of the disease. Moreover, proliferation and invasion assays coupled with silencing experiments were used to prove, at functional level, the function of u-PAR in CAF. We found higher activation level, along with increased expression of pro-invasive molecules, including u-PA, u-PAR and metalloproteinases, in CAF from patients with symptomatic MM compared to the others stages of the disease. Consistently, CAF from active MM as well as U266 cell line under the influence of medium conditioned by active MM CAF, display higher proliferative rate and invasion potential, which were significantly restrained by u-PAR gene expression inhibition. Our data suggest that the stimulation of u-PA/u-PAR system contributes to the activated phenotype and function of CAF during MM progression, providing a biological rationale for future targeted therapies against MM.
Krofič Žel, M; Tozon, N; Nemec Svete, A
2014-01-01
Serum selenium concentrations and the activity of plasma glutathione peroxidase (GPx) decrease with the progression of chronic kidney disease (CKD) in human patients. Selenium is considered a limiting factor for plasma GPx synthesis. Plasma total antioxidant capacity (TAC) is decreased in CKD cats in comparison to healthy cats. Serum selenium concentrations and plasma and erythrocyte GPx activity in cats with CKD are lower than in healthy cats. Serum selenium concentrations, the activity of enzymes, and plasma TAC progressively decrease with the progression of kidney disease according to IRIS (International Renal Interest Society) classification. Twenty-six client-owned cats in IRIS stages I-IV of CKD were compared with 19 client-owned healthy cats. A CBC, serum biochemical profile, urinalysis, plasma and erythrocyte GPx activity, serum selenium concentration, and plasma TAC were measured in each cat. Cats in IRIS stage IV CKD had a significantly higher (P = .025) activity of plasma GPx (23.44 ± 6.28 U/mL) than cats in the control group (17.51 ± 3.75 U/mL). There were no significant differences in erythrocyte GPx, serum selenium concentration, and plasma TAC, either among IRIS stages I-IV CKD cats or between CKD cats and healthy cats. Erythrocyte GPx activity, serum selenium concentration, and plasma TAC do not change in CKD cats compared with healthy cats. Selenium is not a limiting factor in feline CKD. Increased plasma GPx activity in cats with stage IV CKD suggests induction of antioxidant defense mechanisms. Antioxidant defense systems might not be exhausted in CKD in cats. Copyright © 2013 by the American College of Veterinary Internal Medicine.
Progress of research of high-Tc superconductors
NASA Technical Reports Server (NTRS)
Tanaka, Shoji
1991-01-01
Research in the area of of high T(sub c) superconductors has made great progress in the last few years. New materials were found and the systematic investigation of these materials has contributed to understanding the mechanism of high T(sub c) superconductivity. The critical currents in thin films, bulks, and tapes increased drastically, and the origin of flux pinning will be clarified in the near future. The future of high T(sub c) superconductivity, in both the basic and applied research areas, is very optimistic. Recent activities in research of high T(sub c) superconductivity and superconductors in Japan are overviewed.
Olguín, Jonadab E.; Medina-Andrade, Itzel; Molina, Emmanuel; Vázquez, Armando; Pacheco-Fernández, Thalia; Saavedra, Rafael; Pérez-Plasencia, Carlos; Chirino, Yolanda I.; Vaca-Paniagua, Felipe; Arias-Romero, Luis E.; Gutierrez-Cirlos, Emma B.; León-Cabrera, Sonia A.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.
2018-01-01
Colorectal cancer (CRC) is the second most commonly diagnosed cancer in women and the third in men in North America and Europe. CRC is associated with inflammatory responses in which intestinal pathology is caused by different cell populations including a T cell dysregulation that concludes in an imbalance between activated T (Tact) and regulatory T (Treg) cells. Treg cells are CD4+Foxp3+ cells that actively suppress pathological and physiological immune responses, contributing to the maintenance of immune homeostasis. A tumor-promoting function for Treg cells has been suggested in CRC, but the kinetics of Treg cells during CRC development are poorly known. Therefore, using a mouse model of colitis-associated colon cancer (CAC) induced by azoxymethane and dextran sodium sulfate, we observed the dynamic and differential kinetics of Treg cells in blood, spleen and mesenteric lymph nodes (MLNs) as CAC progresses, highlighting a significant reduction in Treg cells in blood and spleen during early CAC development, whereas increasing percentages of Treg cells were detected in late stages in MLNs. Interestingly, when Treg cells were decreased, Tact cells were increased and vice versa. Treg cells from late stages of CAC displayed an activated phenotype by expressing PD1, CD127 and Tim-3, suggesting an increased suppressive capacity. Suppression assays showed that T-CD4+ and T-CD8+ cells were suppressed more efficiently by MLN Treg cells from CAC animals. Finally, an antibody-mediated reduction in Treg cells during early CAC development resulted in a better prognostic value, because animals showed a reduction in tumor progression associated with an increased percentage of activated CD4+CD25+Foxp3- and CD8+CD25+ T cells in MLNs, suggesting that Treg cells suppress T cell activation at early steps during CAC development. PMID:29344269
Dejean, Cyril; Nadjar, Agnes; Le Moine, Catherine; Bioulac, Bernard; Gross, Christian E; Boraud, Thomas
2012-05-01
It is well established that parkinsonian syndrome is associated with alterations of neuronal activity temporal pattern basal ganglia (BG). An increase in synchronized oscillations has been observed in different BG nuclei in Parkinson's disease patients as well as animal models such as 6-hydroxydopamine treated rats. We recently demonstrated that this increase in oscillatory synchronization is present during high-voltage spindles (HVS) probably underpinned by the disorganization of cortex-BG interactions. Here we investigated the time course of both oscillatory and motor alterations. For that purpose we performed daily simultaneous recordings of neuronal activity in motor cortex, striatum and substantia nigra pars reticulata (SNr), before and after 6-hydroxydopamine lesion in awake rats. After a brief non-dopamine-specific desynchronization, oscillatory activity first increased during HVS followed by progressive motor impairment and the shortening of SNr activation delay. While the oscillatory firing increase reflects dopaminergic depletion, response alteration in SNr neurons is closely related to motor symptom. Copyright © 2012 Elsevier Inc. All rights reserved.
Brettschneider, Johannes; Toledo, Jon B.; Van Deerlin, Vivianna M.; Elman, Lauren; McCluskey, Leo; Lee, Virginia M.-Y.; Trojanowski, John Q.
2012-01-01
Background/Aims We evaluated clinicopathological correlates of upper motor neuron (UMN) damage in amyotrophic lateral sclerosis (ALS), and analyzed if the presence of the C9ORF72 repeat expansion was associated with alterations in microglial inflammatory activity. Methods Microglial pathology was assessed by IHC with 2 different antibodies (CD68, Iba1), myelin loss by Kluver-Barrera staining and myelin basic protein (MBP) IHC, and axonal loss by neurofilament protein (TA51) IHC, performed on 59 autopsy cases of ALS including 9 cases with C9ORF72 repeat expansion. Results Microglial pathology as depicted by CD68 and Iba1 was significantly more extensive in the corticospinal tract (CST) of ALS cases with a rapid progression of disease. Cases with C9ORF72 repeat expansion showed more extensive microglial pathology in the medulla and motor cortex which persisted after adjusting for disease duration in a logistic regression model. Higher scores on the clinical UMN scale correlated with increasing microglial pathology in the cervical CST. TDP-43 pathology was more extensive in the motor cortex of cases with rapid progression of disease. Conclusions This study demonstrates that microglial pathology in the CST of ALS correlates with disease progression and is linked to severity of UMN deficits. PMID:22720079
CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jiajia; Zhu, Xi; Zhang, Jie, E-mail: zhangjiebjmu@163.com
2014-03-28
Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCRmore » and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.« less
Sebastian, Rajani; Tsapkini, Kyrana; Tippett, Donna C
2016-06-13
The application of transcranial direct current stimulation (tDCS) in chronic post stroke aphasia is documented in a substantial literature, and there is some new evidence that tDCS can augment favorable language outcomes in primary progressive aphasia. Anodal tDCS is most often applied to the left hemisphere language areas to increase cortical excitability (increase the threshold of activation) and cathodal tDCS is most often applied to the right hemisphere homotopic areas to inhibit over activation in contralesional right homologues of language areas. Outcomes usually are based on neuropsychological and language test performance, following a medical model which emphasizes impairment of function, rather than a model which emphasizes functional communication. In this paper, we review current literature of tDCS as it is being used as a research tool, and discuss future implementation of tDCS as an adjuvant treatment to behavioral speech-language pathology intervention. We review literature describing non-invasive brain stimulation, the mechanism of tDCS, and studies of tDCS in aphasia and neurodegenerative disorders. We discuss future clinical applications. tDCS is a promising adjunct to traditional speech-language pathology intervention to address speech-language deficits after stroke and in the neurodegenerative disease, primary progressive aphasia. Limited data are available regarding how performance on these types of specific tasks translates to functional communication outcomes.
Sebastian, Rajani; Tsapkini, Kyrana; Tippett, Donna C.
2016-01-01
BACKGROUND The application of transcranial direct current stimulation (tDCS) in chronic post stroke aphasia is documented in a substantial literature, and there is some new evidence that tDCS can augment favorable language outcomes in primary progressive aphasia. Anodal tDCS is most often applied to the left hemisphere language areas to increase cortical excitability (increase the threshold of activation) and cathodal tDCS is most often applied to the right hemisphere homotopic areas to inhibit over activation in contralesional right homologues of language areas. Outcomes usually are based on neuropsychological and language test performance, following a medical model which emphasizes impairment of function, rather than a model which emphasizes functional communication. OBJECTIVE In this paper, we review current literature of tDCS as it is being used as a research tool, and discuss future implementation of tDCS as an adjuvant treatment to behavioral speech-language pathology intervention. METHODS We review literature describing non-invasive brain stimulation, the mechanism of tDCS, and studies of tDCS in aphasia and neurodegenerative disorders. We discuss future clinical applications. RESULTS/CONCLUSIONS tDCS is a promising adjunct to traditional speech-language pathology intervention to address speech-language deficits after stroke and in the neurodegenerative disease, primary progressive aphasia. Limited data are available regarding how performance on these types of specific tasks translates to functional communication outcomes. PMID:27314871
Roth, Michael D; Whittaker, Katherine M; Choi, Ruth; Tashkin, Donald P; Baldwin, Gayle Cocita
2005-12-01
Cocaine is associated with an increased risk for, and progression of, clinical disease associated with human immunodeficiency virus (HIV) infection. A human xenograft model, in which human peripheral blood mononuclear cells were implanted into severe combined immunodeficiency mice (huPBL-SCID) and infected with a HIV reporter virus, was used to investigate the biological interactions between cocaine and HIV infection. Systemic administration of cocaine (5 mg/kg/d) significantly increased the percentage of HIV-infected PBL (two- to threefold) and viral load (100- to 300-fold) in huPBL-SCID mice. Despite the capacity for cocaine to increase corticosterone and adrenocorticotropic hormone levels in control mice, the hypothalamic-pituitary-adrenal axis was suppressed in HIV-infected animals, and corticosterone levels were further decreased when animals were exposed to HIV and cocaine. Activating huPBL in vitro in the presence of 10(-8) M cocaine increased expression of CC chemokine receptor 5 (CCR5) and CXC chemokine receptor 4 (CXCR4) coreceptors. Expression of CCR5 was also increased at early time-points in the huPBL-SCID model following systemic exposure to cocaine (54.1+/-9.4% increase over control, P<0.01). This effect preceded the boost in viral infection and waned as HIV infection progressed. Cocaine has been shown to mediate immunosuppressive effects by activating sigma-1 receptors in immune cells in vitro and in vivo. Consistent with these reports, a selective sigma-1 antagonist, BD1047, blocked the effects of cocaine on HIV replication in the huPBL-SCID mouse. Our results suggest that systemic exposure to cocaine can enhance HIV infection in vivo by activating sigma-1 receptors and by modulating the expression of HIV coreceptors.
Aroor, Annayya R; Jackson, Daniel E; Shukla, Shivendra D
2011-12-01
Binge drinking after chronic ethanol consumption is one of the important factors contributing to the progression of steatosis to steatohepatitis. The molecular mechanisms of this effect remain poorly understood. We have therefore examined in rats the effect of single and repeat ethanol binge superimposed on chronic ethanol intake on liver injury, activation of mitogen-activated protein kinases (MAPKs), and gene expression. Rats were chronically treated with ethanol in liquid diet for 4 weeks followed by single ethanol binge (5 gm/kg body weight) or 3 similar repeated doses of ethanol. Serum alcohol and alanine amino transferase (ALT) levels were determined by enzymatic methods. Steatosis was assessed by histology and hepatic triglycerides. Activation of MAPK, 90S ribosomal kinase (RSK), and caspase 3 were evaluated by Western blot. Levels of mRNA for tumor necrosis factor alpha (TNFα), early growth response-1 (egr-1), and plasminogen activator inhibitor-1 (PAI-1) were measured by real-time qRT-PCR. Chronic ethanol treatment resulted in mild steatosis and necrosis, whereas chronic ethanol followed by binge group exhibited marked steatosis and significant increase in necrosis. Chronic binge group also showed significant increase (compared with chronic ethanol alone) in the phosphorylation of extracellular regulated kinase 1 (ERK1), ERK2, and RSK. Phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK did not increase by the binge. Ethanol binge, after chronic ethanol intake, caused increase in mRNA for egr-1 and PAI-1, but not TNFα. Chronic ethanol exposure increases the susceptibility of rat liver to increased injury by 1 or 3 repeat binge. Among other alterations, the activated levels of ERK1, and more so ERK2, were remarkably amplified by binge suggesting a role of these isotypes in the binge amplification of the injury. In contrast, p38 MAPK and JNK1/2 activities were not amplified. These binge-induced changes were also reflected in the increases in the RNA levels for egr-1 and PAI-1. This study offers chronic followed by repeat binge as a model for the study of progression of liver injury by ethanol and highlights the involvement of ERK1 and ERK2 isotypes in the amplification of liver injury by binge ethanol. Copyright © 2011 by the Research Society on Alcoholism.
NASA Technical Reports Server (NTRS)
Mcdonald, B. Edward; Plante, Daniel R.
1989-01-01
The nonlinear progressive wave equation (NPE) model was developed by the Naval Ocean Research and Development Activity during 1982 to 1987 to study nonlinear effects in long range oceanic propagation of finite amplitude acoustic waves, including weak shocks. The NPE model was applied to propagation of a generic shock wave (initial condition provided by Sandia Division 1533) in a few illustrative environments. The following consequences of nonlinearity are seen by comparing linear and nonlinear NPE results: (1) a decrease in shock strength versus range (a well-known result of entropy increases at the shock front); (2) an increase in the convergence zone range; and (3) a vertical meandering of the energy path about the corresponding linear ray path. Items (2) and (3) are manifestations of self-refraction.
Neutrophil dysfunction in rats with natural gingivitis.
Isogai, E; Wakizaka, H; Miura, H; Isogai, H; Hayashi, M
1993-01-01
The functions of polymorphonuclear neutrophils (PMN) from SUS rats with naturally occurring gingivitis were examined by the luminol-dependent chemiluminescence (CL), adherence and bactericidal tests. SUS rats with pre-gingivitis showed lower CL responses of isolated PMNs and whole blood than control rats (RES rats). After plague formation and progression of gingivitis, the CL response gradually increased in SUS rats. RES rats had healthy gingiva and showed no increase in CL responses. Impaired PMN adherence was observed in SUS rats with pre-gingivitis but not in RES rats. PMNs from SUS rats with pre-gingivitis also showed lower bactericidal activity than those from RES rats. Dysfunction of PMNs might induce gingivitis as a result of decreased protection against periodontal pathogens and an elevated level of CL response can be recognized with progression of gingivitis.
Nakamura, Noriko; Miranda-Vizuete, Antonio; Miki, Kiyoshi; Mori, Chisato; Eddy, Edward M.
2008-01-01
During epididymal transit, sperm acquire the ability to initiate rapid forward progressive motility on release into the female reproductive tract or physiological media. Glycolysis is the primary source of the ATP necessary for this motility in the mouse, and several novel glycolytic enzymes have been identified that are localized to the principal piece region of the flagellum. One of these is the spermatogenic cell-specific type 1 hexokinase isozyme (HK1S), the only member of the hexokinase enzyme family detected in sperm. Hexokinase activity was found to be lower in immotile sperm immediately after removal from the cauda epididymis (quiescent) than in sperm incubated in physiological medium for 5 min and showing rapid forward progressive motility (activated). However, incubating sperm in medium containing diamide, an inhibitor of disulfide bond reduction, resulted in lower motility and HK activity than in controls. HK1S was present in dimer and monomer forms in extracts of quiescent sperm but mainly as a monomer in motile sperm. A dimer-size band detected in quiescent sperm with phosphotyrosine antibody was not detected in activated sperm, and the monomer-size band was enhanced. In addition, the general protein oxido-reductase thioredoxin-1 was able to catalyze the in vitro conversion of HK1S dimers to the monomeric form. These results strongly suggest that cleavage of disulfide bonds in HK1S dimers contributes to the increases in HK activity and motility that occur when mouse sperm become activated. PMID:18509164
Mild cognitive impairment: searching for the prodrome of Alzheimer's disease.
Rosenberg, Paul B; Lyketsos, Constantine
2008-01-01
The concept of mild cognitive impairment (MCI) identifies persons who are neither cognitively normal nor demented. There is increasing evidence that MCI defines a group of persons who are at near-term risk of developing dementia and particularly Alzheimer's disease (AD). MCI thus constitutes an attractive target population for preventive treatments of AD. MCI is associated with aging and is more prevalent than dementia. There are several clinical and biological markers that are predictive of MCI prognosis, including depressive symptoms, cognitive deficits, brain imaging and neurochemical findings. The clinician needs to be especially alert to depressive and other mood symptoms which are common in MCI and potentially treatable. Trials of current medications for prevention of MCI progression to dementia have been largely negative. There are observational data suggesting that lifestyle modifications including exercise, leisure activities, cognitive stimulation, and social activities may be effective for prevention of MCI progression. There are many novel therapies currently in trials for early AD, and if effective they may prove to be helpful in prevention of MCI progression as well.
Radbill, Brian D.; Gupta, Ritu; Ramirez, Maria Celeste M.; DiFeo, Analisa; Martignetti, John A.; Alvarez, Carlos E.; Friedman, Scott L.; Narla, Goutham; Vrabie, Raluca; Bowles, Robert; Saiman, Yedidya
2010-01-01
Background and Aims Matrix metalloproteinase-2 (MMP-2), a type IV collagenase secreted by activated hepatic stellate cells (HSCs), is upregulated in chronic liver disease and is considered a profibrotic mediator due to its proliferative effect on cultured HSCs and ability to degrade normal liver matrix. Although associative studies and cell culture findings suggest that MMP-2 promotes hepatic fibrogenesis, no in vivo model has definitively established a pathologic role for MMP-2 in the development and progression of liver fibrosis. We therefore examined the impact of MMP-2 deficiency on liver fibrosis development during chronic CCl4 liver injury and explored the effect of MMP-2 deficiency and overexpression on collagen I expression. Methods Following chronic CCl4 administration, liver fibrosis was analyzed using Sirius Red staining with quantitative morphometry and real-time polymerase chain reaction (PCR) in MMP-2−/− mice and age-matched MMP-2+/+ controls. These studies were complemented by analyses of cultured human stellate cells. Results MMP-2−/− mice demonstrated an almost twofold increase in fibrosis which was not secondary to significant differences in hepatocellular injury, HSC activation or type I collagenase activity; however, type I collagen messenger RNA (mRNA) expression was increased threefold in the MMP-2−/− group by real-time PCR. Furthermore, targeted reduction of MMP-2 in cultured HSCs using RNA interference significantly increased collagen I mRNA and protein, while overexpression of MMP-2 resulted in decreased collagen I mRNA. Conclusions These findings suggest that increased MMP-2 during the progression of liver fibrosis may be an important mechanism for inhibiting type I collagen synthesis by activated HSCs, thereby providing a protective rather than pathologic role. PMID:20563750
Lentle, Roger G; Janssen, Patrick W M; Asvarujanon, Patchana; Chambers, Paul; Stafford, Kevin J; Hemar, Yacine
2008-03-01
Four types of contractile activity were identified and characterised in the isolated triple haustrated proximal colon of the rabbit using high-definition spatiotemporal mapping techniques. Mass peristalses were hexamethonium-sensitive deep circular contractions with associated taenial longitudinal contractile activity that occurred irregularly and propagated rapidly aborad, preceded by a zone of local lumen distension. They were sufficiently sustained for each event to occupy the length of the isolated colonic segment and the contraction persisted longer orally than aborally, the difference being more pronounced when lumen contents were viscous. Haustra were bounded by deep even-spaced ring contractions that progressed slowly aborad (haustral progression). Haustral formation and progression were hexamethonium-sensitive and coordinated across intertaenial domains. Ripples were hexamethonium-resistant phasic circular contractions that propagated predominantly orad at varying rates. In the presence of haustra, they were uncoordinated across intertaenial domains but were more coordinated when haustra were absent. Fast phasic contractions were relatively shallow hexamethonium-resistant contractions that propagated rapidly in a predominantly aborad direction. Fast phasic circular contractions were accompanied by taenial longitudinal muscle contractions which increased in amplitude prior to a mass peristaltic event and following the administration of hexamethonium. On the basis of the concurrence and interaction of these contractile activities, we hypothesise that dual pacemakers are present with fast phasic contractions being modulated by the interstitial cells of Cajal in the Auerbach's plexus (ICC-MY) while ripples are due to the submucosal ICC (ICC-SM). Further, that ICC-SM mediate the enteric motor neurons that generate haustral progression, while the intramuscular ICC (ICC-IM) mediate mass peristalsis. The orad movement of watery fluid was possibly due to ripples in the absence of haustra.
Reversing Melanoma Cross-Resistance to BRAF and MEK Inhibitors by Co-Targeting the AKT/mTOR Pathway
Attar, Narsis; Ng, Charles; Chu, Connie; Guo, Deliang; Nazarian, Ramin; Chmielowski, Bartosz; Glaspy, John A.; Comin-Anduix, Begonya; Mischel, Paul S.; Lo, Roger S.; Ribas, Antoni
2011-01-01
Background The sustained clinical activity of the BRAF inhibitor vemurafenib (PLX4032/RG7204) in patients with BRAFV600 mutant melanoma is limited primarily by the development of acquired resistance leading to tumor progression. Clinical trials are in progress using MEK inhibitors following disease progression in patients receiving BRAF inhibitors. However, the PI3K/AKT pathway can also induce resistance to the inhibitors of MAPK pathway. Methodology/Principal Findings The sensitivity to vemurafenib or the MEK inhibitor AZD6244 was tested in sensitive and resistant human melanoma cell lines exploring differences in activation-associated phosphorylation levels of major signaling molecules, leading to the testing of co-inhibition of the AKT/mTOR pathway genetically and pharmacologically. There was a high degree of cross-resistance to vemurafenib and AZD6244, except in two vemurafenib-resistant cell lines that acquired a secondary mutation in NRAS. In other cell lines, acquired resistance to both drugs was associated with persistence or increase in activity of AKT pathway. siRNA-mediated gene silencing and combination therapy with an AKT inhibitor or rapamycin partially or completely reversed the resistance. Conclusions/Significance Primary and acquired resistance to vemurafenib in these in vitro models results in frequent cross resistance to MEK inhibitors, except when the resistance is the result of a secondary NRAS mutation. Resistance to BRAF or MEK inhibitors is associated with the induction or persistence of activity within the AKT pathway in the presence of these drugs. This resistance can be potentially reversed by the combination of a RAF or MEK inhibitor with an AKT or mTOR inhibitor. These combinations should be available for clinical testing in patients progressing on BRAF inhibitors. PMID:22194965
Isanaka, Sheila; Mugusi, Ferdinand; Hawkins, Claudia; Spiegelman, Donna; Okuma, James; Aboud, Said; Guerino, Chalamilla; Fawzi, Wafaie W
2012-10-17
Large randomized trials have previously shown that high-dose micronutrient supplementation can increase CD4 counts and reduce human immunodeficiency virus (HIV) disease progression and mortality among individuals not receiving highly active antiretroviral therapy (HAART); however, the safety and efficacy of such supplementation has not been established in the context of HAART. To test the hypothesis that high-dose multivitamin supplementation vs standard-dose multivitamin supplementation decreases the risk of HIV disease progression or death and improves immunological, virological, and nutritional parameters in patients with HIV initiating HAART. A randomized, double-blind, controlled trial of high-dose vs standard-dose multivitamin supplementation for 24 months in 3418 patients with HIV initiating HAART between November 2006 and November 2008 in 7 clinics in Dar es Salaam, Tanzania. INTERVENTION The provision of daily oral supplements of vitamin B complex, vitamin C, and vitamin E at high levels or standard levels of the recommended dietary allowance. The composite of HIV disease progression or death from any cause. The study was stopped early in March 2009 because of evidence of increased levels of alanine transaminase (ALT) in patients receiving the high-dose multivitamin supplement. At the time of stopping, 3418 patients were enrolled (median follow-up, 15 months), and there were 2374 HIV disease progression events and 453 observed deaths (2460 total combined events). Compared with standard-dose multivitamin supplementation, high-dose supplementation did not reduce the risk of HIV disease progression or death. The absolute risk of HIV progression or death was 72% in the high-dose group vs 72% in the standard-dose group (risk ratio [RR], 1.00; 95% CI, 0.96-1.04). High-dose supplementation had no effect on CD4 count, plasma viral load, body mass index, or hemoglobin level concentration, but increased the risk of ALT elevations (1239 events per 1215 person-years vs 879 events per 1236 person-years; RR, 1.44; 95% CI, 1.11-1.87) vs standard-dose supplementation. CONCLUSION In adults receiving HAART, use of high-dose multivitamin supplements compared with standard-dose multivitamin supplements did not result in a decrease in HIV disease progression or death but may have resulted in an increase in ALT levels. Clinicaltrials.gov Identifier: NCT00383669.
Porta, Alberto; Faes, Luca; Bari, Vlasta; Marchi, Andrea; Bassani, Tito; Nollo, Giandomenico; Perseguini, Natália Maria; Milan, Juliana; Minatel, Vinícius; Borghi-Silva, Audrey; Takahashi, Anielle C. M.; Catai, Aparecida M.
2014-01-01
The proposed approach evaluates complexity of the cardiovascular control and causality among cardiovascular regulatory mechanisms from spontaneous variability of heart period (HP), systolic arterial pressure (SAP) and respiration (RESP). It relies on construction of a multivariate embedding space, optimization of the embedding dimension and a procedure allowing the selection of the components most suitable to form the multivariate embedding space. Moreover, it allows the comparison between linear model-based (MB) and nonlinear model-free (MF) techniques and between MF approaches exploiting local predictability (LP) and conditional entropy (CE). The framework was applied to study age-related modifications of complexity and causality in healthy humans in supine resting (REST) and during standing (STAND). We found that: 1) MF approaches are more efficient than the MB method when nonlinear components are present, while the reverse situation holds in presence of high dimensional embedding spaces; 2) the CE method is the least powerful in detecting age-related trends; 3) the association of HP complexity on age suggests an impairment of cardiac regulation and response to STAND; 4) the relation of SAP complexity on age indicates a gradual increase of sympathetic activity and a reduced responsiveness of vasomotor control to STAND; 5) the association from SAP to HP on age during STAND reveals a progressive inefficiency of baroreflex; 6) the reduced connection from HP to SAP with age might be linked to the progressive exploitation of Frank-Starling mechanism at REST and to the progressive increase of peripheral resistances during STAND; 7) at REST the diminished association from RESP to HP with age suggests a vagal withdrawal and a gradual uncoupling between respiratory activity and heart; 8) the weakened connection from RESP to SAP with age might be related to the progressive increase of left ventricular thickness and vascular stiffness and to the gradual decrease of respiratory sinus arrhythmia. PMID:24586796
New evidence for antioxidant properties of vitamin C.
Vojdani, A; Bazargan, M; Vojdani, E; Wright, J
2000-01-01
This study was designed to examine the effect of 500 to 5,000 mg of ascorbic acid on DNA adducts, natural killer (NK) cell activity, programmed cell death, and cell cycle analysis of human peripheral blood leukocytes. According to our hypothesis, if ascorbic acid is a pro-oxidant, doses between 500 and 5,000 mg should enhance DNA adduct formation, decrease immune function, change the cell cycle progression, and increase the rate of apoptosis. Twenty healthy volunteers were divided into four groups and given either placebo or daily doses of 500, 1,000 or 5,000 mg of ascorbic acid for a period of 2 weeks. On days 0, 1, 7, 15, and 21, blood was drawn from them, and the leukocytes were separated and examined for intracellular levels of ascorbic acid, the level of 8-hydroxyguanosine, NK cell activity, cell cycle progression, and apoptosis. Depending on the subjects, between a 0% and a 40% increase in cellular absorption of ascorbic acid was observed when daily doses of 500 mg were used. At doses greater than 500 mg, this cellular absorption was not increased further, and all doses produced equivalent increases in ascorbic acid on days 1 to 15. This increase in cellular concentration of ascorbic acid resulted in no statistically meaningful changes in the level of 8-hydroxyguanosine, increased NK cytotoxic activity, a reduced percentage of cells undergoing apoptosis, and switched cell cycle phases from S and G2/M to G0/G1. After a period of 1 week, with no placebo or vitamin washout, ascorbic acid levels along with functional assays returned to the baseline and became equivalent to placebos. In comparison with baseline values, no change (not more than daily assays variation) was seen in ascorbate concentrations or other assays during oral placebo treatment. We concluded that ascorbic acid is an antioxidant and that doses up to 5,000 mg neither induce mutagenic lesions nor have negative effects on NK cell activity, apoptosis, or cell cycle.
Immune-regulating effects of exercise on cigarette smoke-induced inflammation
Madani, Ashkan; Alack, Katharina; Richter, Manuel Jonas; Krüger, Karsten
2018-01-01
Long-term cigarette smoking (LTCS) represents an important risk factor for cardiac infarction and stroke and the central risk factor for the development of a bronchial carcinoma, smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The pathophysiologic development of these diseases is suggested to be promoted by chronic and progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed by a chronic and progressive activation of the immune system. In the pulmonary system of cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recognition receptors are described which are followed by the translocation of the NF-kB, the release of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated molecular patterns. In parallel, smoke pollutants cross directly through the alveolus–capillary interface and spread through the systemic bloodstream targeting different organs. Consequently, LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular system. In blood, these processes promote an increased coagulation and endothelial dysfunction. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were described. Regular exercise training has been shown to be an effective nonpharmacological treatment strategy in smoke-induced pulmonary diseases. It is well established that exercise training exerts immune-regulating effects by activating anti-inflammatory signaling pathways. In this regard, the release of myokines from contracting skeletal muscle, the elevations of cortisol and adrenalin, the reduced expression of Toll-like receptors, and the increased mobilization of immune-regulating leukocyte subtypes might be of vital importance. Exercise training also increases the local and systemic antioxidative capacity and several compensatory mechanisms in tissues such as an increased anabolic signaling in muscle or an increased compliance of the vascular system. Accordingly, regular exercise training seems to protect long-term smokers against some important negative local and systemic consequences of smoking. Data suggest that it seems to be important to start exercise training as early as possible. PMID:29731655
De Brouwer, Bart; Piscaer, Ianthe; Von Der Thusen, Jan H; Grutters, Jan C; Schutgens, Roger Eg; Wouters, Emiel Fm; Janssen, Rob
2018-03-01
There is an ongoing need for additional interventions in idiopathic pulmonary fibrosis (IPF) as antifibrotic drugs currently available only inhibit and do not stall disease progression. Vitamin K is a co-factor for the activation of coagulation factors. However, it is also required to activate proteins with functions outside of the coagulation cascade, such as matrix Gla protein (MGP), a defender against soft tissue calcification. Vitamin K antagonists are anticoagulants that are, for unknown reasons, associated with increased mortality in IPF. Areas covered: We advance the hypothesis that modulation of vitamin K-dependent MGP activation in IPF patients by either vitamin K antagonism or administration may result in acceleration and deceleration of fibrosis progression, respectively. Furthermore, shortfall in vitamin K could be suspected in IPF based on the high prevalence of certain co-morbidities, such as vascular calcification and lung cancer. Expert commentary: We hypothesize that vitamin K status is reduced in IPF patients. This, in combination with studies suggesting that vitamin K may play a role in lung fibrosis pathogenesis, would provide a rationale for conducting a clinical trial assessing the potential mitigating effects of vitamin K administration on progression of lung fibrosis, prevention of co-morbidities and mortality in IPF.
Li, Chung-Pin; Buza, Elizabeth L.; Blomberg, Rachel; Govindaraju, Priya; Avery, Diana; Monslow, James; Hsiao, Michael
2017-01-01
Pancreatic ductal adenocarcinomas (PDAs) are desmoplastic and can undergo epithelial-to-mesenchymal transition to confer metastasis and chemoresistance. Studies have demonstrated that phenotypically and functionally distinct stromal cell populations exist in PDAs. Fibroblast activation protein–expressing (FAP-expressing) cells act to enhance PDA progression, while α–smooth muscle actin myofibroblasts can restrain PDA. Thus, identification of precise molecular targets that mediate the protumorigenic activity of FAP+ cells will guide development of therapy for PDA. Herein, we demonstrate that FAP overexpression in the tumor microenvironment correlates with poor overall and disease-free survival of PDA patients. Genetic deletion of FAP delayed onset of primary tumor and prolonged survival of mice in the KPC mouse model of PDA. While genetic deletion of FAP did not affect primary tumor weight in advanced disease, FAP deficiency increased tumor necrosis and impeded metastasis to multiple organs. Lineage-tracing studies unexpectedly showed that FAP is not only expressed by stromal cells, but can also be detected in a subset of CD90+ mesenchymal PDA cells, representing up to 20% of total intratumoral FAP+ cells. These data suggest that FAP may regulate PDA progression and metastasis in cell-autonomous and/or non-cell-autonomous fashions. Together, these data support pursuing FAP as a therapeutic target in PDA. PMID:28978805
On the role of classical and novel forms of vitamin D in melanoma progression and management.
Slominski, Andrzej T; Brożyna, Anna A; Skobowiat, Cezary; Zmijewski, Michal A; Kim, Tae-Kang; Janjetovic, Zorica; Oak, Allen S; Jozwicki, Wojciech; Jetten, Anton M; Mason, Rebecca S; Elmets, Craig; Li, We; Hoffman, Robert M; Tuckey, Robert C
2018-03-01
Melanoma represents a significant clinical problem affecting a large segment of the population with a relatively high incidence and mortality rate. Ultraviolet radiation (UVR) is an important etiological factor in malignant transformation of melanocytes and melanoma development. UVB, while being a full carcinogen in melanomagenesis, is also necessary for the cutaneous production of vitamin D3 (D3). Calcitriol (1,25(OH) 2 D3) and novel CYP11A1-derived hydroxyderivatives of D3 show anti-melanoma activities and protective properties against damage induced by UVB. The former activities include inhibitory effects on proliferation, plating efficiency and anchorage-independent growth of cultured human and rodent melanomas in vitro, as well as the in vivo inhibition of tumor growth by 20(OH)D3 after injection of human melanoma cells into immunodeficient mice. The literature indicates that low levels of 25(OH)D3 are associated with more advanced melanomas and reduced patient survivals, while single nucleotide polymorphisms of the vitamin D receptor or the D3 binding protein gene affect development or progression of melanoma, or disease outcome. An inverse correlation of VDR and CYP27B1 expression with melanoma progression has been found, with low or undetectable levels of these proteins being associated with poor disease outcomes. Unexpectedly, increased expression of CYP24A1 was associated with better melanoma prognosis. In addition, decreased expression of retinoic acid orphan receptors α and γ, which can also bind vitamin D3 hydroxyderivatives, showed positive association with melanoma progression and shorter disease-free and overall survival. Thus, inadequate levels of biologically active forms of D3 and disturbances in expression of the target receptors, or D3 activating or inactivating enzymes, can affect melanomagenesis and disease progression. We therefore propose that inclusion of vitamin D into melanoma management should be beneficial for patients, at least as an adjuvant approach. The presence of multiple hydroxyderivatives of D3 in skin that show anti-melanoma activity in experimental models and which may act on alternative receptors, will be a future consideration when planning which forms of vitamin D to use for melanoma therapy. Published by Elsevier Ltd.
Shields, Nora; Taylor, Nicholas F; Fernhall, Bo
2010-03-25
Muscle strength is important for young people with Down syndrome as they make the transition to adulthood, because their workplace activities typically emphasise physical rather than cognitive skills. Muscle strength is reduced up to 50% in people with Down syndrome compared to their peers without disability. Progressive resistance training improves muscle strength and endurance in people with Down syndrome. However, there is no evidence on whether it has an effect on work task performance or physical activity levels. The aim of this study is to investigate if a student-led community-based progressive resistance training programme can improve these outcomes in adolescents and young adults with Down syndrome. A randomised controlled trial will compare progressive resistance training with a control group undertaking a social programme. Seventy adolescents and young adults with Down syndrome aged 14-22 years and mild to moderate intellectual disability will be randomly allocated to the intervention or control group using a concealed method. The intervention group will complete a 10-week, twice a week, student-led progressive resistance training programme at a local community gymnasium. The student mentors will be undergraduate physiotherapy students. The control group will complete an arts/social programme with a student mentor once a week for 90 minutes also for 10 weeks to control for the social aspect of the intervention. Work task performance (box stacking, pail carry), muscle strength (1 repetition maximum for chest and leg press) and physical activity (frequency, duration, intensity over 7-days) will be assessed at baseline (Week 0), following the intervention (Week 11), and at 3 months post intervention (Week 24) by an assessor blind to group allocation. Data will be analysed using ANCOVA with baseline measures as covariates. This paper outlines the study protocol for a randomised controlled trial on the effects of progressive resistance training on work task performance and physical activity for adolescents and young adults with Down syndrome. The intervention addresses the impairment of muscle weakness which may improve work task performance and help to increase physical activity levels. Australian New Zealand Clinical Trials Registry ACTRN12609000938202.
Nukui, Akinori; Narimatsu, Takahiro; Kambara, Tsunehito; Abe, Hideyuki; Sakamoto, Setsu; Yoshida, Ken-Ichiro; Kamai, Takao
2018-05-02
There is growing evidence that the transcription factor nuclear factor E2-related factor 2 (Nrf2) is the major participant in regulating antioxidants and pathways for detoxifying reactive oxygen species (ROS), as well as having a vital role in tumor proliferation, invasion, and chemoresistance. It was also recently reported that Nrf2 supports cell proliferation by promoting metabolic activity. Thus, Nrf2 is involved in progression of cancer. Upper urinary tract urothelial carcinoma (UTUC) is a biologically aggressive tumor with high rates of recurrence and progression, resulting in a poor prognosis. However, the role of Nrf2 in UTUC is largely unknown. In order to study the role of Nrf2 in UTUC from the metabolic perspective, we retrospectively assessed Nrf2 expression in the surgical specimen and the preoperative maximum standard glucose uptake (SUVmax) on [ 18 F]fluorodeoxy-glucose positron emission tomography ( 18 F-FDG-PET) of 107 patients with UTUC who underwent radical nephroureterectomy. Increased expression of Nrf2 in the primary lesion was correlated with less differentiated histology, local invasion, and lymph node metastasis, and was also an independent indicator of shorter overall survival according to multivariate analysis. Furthermore, increased expression of Nrf2 was associated with higher preoperative SUVmax by the primary tumor on 18 F-FDG-PET, while Nrf2 expression and SUVmax were also significantly correlated in the metastatic lymph nodes. Among the 18 patients with lymph node metastasis at nephroureterectomy who underwent retroperitoneal lymph node dissection and received adjuvant chemotherapy, the patients with higher Nrf2 expression in the primary tumor had worse recurrence-free survival. These results suggest that constitutive activation of Nrf2 might be linked with tumor aerobic glycolysis and progression of UTUC, indicating that Nrf2 signaling in the tumor microenvironment promotes progression of UTUC.
Lack of gp130 expression in hepatocytes attenuates tumor progression in the DEN model.
Hatting, M; Spannbauer, M; Peng, J; Al Masaoudi, M; Sellge, G; Nevzorova, Y A; Gassler, N; Liedtke, C; Cubero, F J; Trautwein, C
2015-03-05
Chronic liver inflammation is a crucial event in the development and growth of hepatocellular carcinoma (HCC). Compelling evidence has shown that interleukin-6 (IL-6)/gp130-dependent signaling has a fundamental role in liver carcinogenesis. Thus, in the present study we aimed to investigate the role of gp130 in hepatocytes for the initiation and progression of HCC. Hepatocyte-specific gp130 knockout mice (gp130(Δhepa)) and control animals (gp130(f/f)) were treated with diethylnitrosamine (DEN). The role of gp130 for acute injury (0-144 h post treatment), tumor initiation (24 weeks) and progression (40 weeks) was analyzed. After acute DEN-induced liver injury we observed a reduction in the inflammatory response in gp130(Δhepa) animals as reflected by decreased levels of IL-6 and oncostatin M. The loss of gp130 slightly attenuated the initiation of HCC 24 weeks after DEN treatment. In contrast, 40 weeks after DEN treatment, male and female gp130(Δhepa) mice showed smaller tumors and reduced tumor burden, indicating a role for hepatocyte-specific gp130 expression during HCC progression. Oxidative stress and DNA damage were substantially and similarly increased by DEN in both gp130(f/f) and gp130(Δhepa) animals. However, gp130(Δhepa) livers revealed aberrant STAT5 activation and decreased levels of transforming growth factor-β (TGFβ), pSMAD2/3 and SMAD2, whereas phosphorylation of STAT3 at Tyr705 and Ser727 was absent. Our results indicate that gp130 deletion in hepatocytes reduces progression, but not HCC initiation in the DEN model. Gp130 deletion resulted in STAT3 inhibition but increased STAT5 activation and diminished TGF-dependent signaling. Hence, blocking gp130 in hepatocytes might be an interesting therapeutic target to inhibit the growth of HCC.
Nishida, Nobuko; Yamamoto, Yumiko; Tanaka, Muneo; Kataoka, Kosuke; Kuboniwa, Masae; Nakayama, Kunio; Morimoto, Kanehisa; Shizukuishi, Satoshi
2008-12-01
Insufficient data exist regarding the longitudinal influence of involuntary smoking on periodontitis progression. This study examined the relationship between involuntary smoking and periodontitis progression and the effects of involuntary smoking on salivary inflammatory and microbiologic markers related to periodontitis. Participants were recruited during annual health checkups in 2003 and 2005. In 2005, 200 of 273 (73%) Japanese employees examined at baseline underwent periodontal measurements, including clinical attachment level (CAL) and probing depth (PD). Periodontitis progression was identified when a subject displayed one or more teeth with an increase > or = 2.0 mm in CAL and PD during the 2 years. Salivary marker levels, including cotinine, were determined by enzyme assay, including enzyme-linked immunosorbent assay. The proportions of six periodontal pathogens in saliva were assessed using real-time polymerase chain reaction methodology. Based on receiver-operating characteristic analysis, non-, involuntary, and active smokers were defined as subjects exhibiting salivary cotinine levels of 0, 1 to 7, and > or = 8 ng/ml, respectively. By simple logistic regression analysis, age, alcohol consumption, smoking, breakfast habits, and working hours were related to the risk for significant periodontitis progression. Multiple logistic regression analysis revealed significantly higher periodontitis odds ratios (OR) in involuntary (OR = 2.23; 95% confidence interval [CI]: 1.03 to 4.83) and active (OR = 2.27; 95% CI: 1.02 to 5.04) smokers relative to non-smokers following adjustment for covariates. Levels of salivary markers, including albumin, aspartate aminotransferase, and lactoferrin, were significantly elevated in involuntary smokers relative to non-smokers. In contrast, the percentages of periodontal pathogens did not differ between the smoking groups, with the exception of Prevotella nigrescens, which displayed significantly lower levels in involuntary smokers compared to non-smokers. Involuntary smoking increased the inflammatory response and was associated with a greater risk for periodontitis progression.
Center for Modeling of Turbulence and Transition: Research Briefs, 1995
NASA Technical Reports Server (NTRS)
1995-01-01
This research brief contains the progress reports of the research staff of the Center for Modeling of Turbulence and Transition (CMOTT) from July 1993 to July 1995. It also constitutes a progress report to the Institute of Computational Mechanics in Propulsion located at the Ohio Aerospace Institute and the Lewis Research Center. CMOTT has been in existence for about four years. In the first three years, its main activities were to develop and validate turbulence and combustion models for propulsion systems, in an effort to remove the deficiencies of existing models. Three workshops on computational turbulence modeling were held at LeRC (1991, 1993, 1994). At present, CMOTT is integrating the CMOTT developed/improved models into CFD tools which can be used by the propulsion systems community. This activity has resulted in an increased collaboration with the Lewis CFD researchers.
Center for modeling of turbulence and transition: Research briefs, 1995
NASA Astrophysics Data System (ADS)
1995-10-01
This research brief contains the progress reports of the research staff of the Center for Modeling of Turbulence and Transition (CMOTT) from July 1993 to July 1995. It also constitutes a progress report to the Institute of Computational Mechanics in Propulsion located at the Ohio Aerospace Institute and the Lewis Research Center. CMOTT has been in existence for about four years. In the first three years, its main activities were to develop and validate turbulence and combustion models for propulsion systems, in an effort to remove the deficiencies of existing models. Three workshops on computational turbulence modeling were held at LeRC (1991, 1993, 1994). At present, CMOTT is integrating the CMOTT developed/improved models into CFD tools which can be used by the propulsion systems community. This activity has resulted in an increased collaboration with the Lewis CFD researchers.
Molecular Mechanisms of Prostate Cancer Progression
2006-01-01
Weinberg. 1999. Inhibition of telomerase limits the growth of human cancer cells. Nat. Med. 5:1164-1170. 16. Hayflick , L. 1965. The limited in vitro...radicicol 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT u c. THIS PAGE u 17. LIMITATION OF ABSTRACT uu 18. NUMBER OF PAGES 35...P69 nontumorigenic cells and show an increase in p23 without a concomitant increase in telomerase activity, suggesting that p23 is not limiting in
Conserved mechanisms of tumorigenesis in the Drosophila adult midgut.
Martorell, Òscar; Merlos-Suárez, Anna; Campbell, Kyra; Barriga, Francisco M; Christov, Christo P; Miguel-Aliaga, Irene; Batlle, Eduard; Casanova, Jordi; Casali, Andreu
2014-01-01
Whereas the series of genetic events leading to colorectal cancer (CRC) have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and Drosophila's intestines share many similarities, we decided to explore the alterations induced in the Drosophila midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in Drosophila, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
How to Make Our Schools Healthy: Healthy Schools Program. Program Results Progress Report
ERIC Educational Resources Information Center
Brown, Michael H.
2012-01-01
The Healthy Schools Program provides technical assistance to help schools engage administrators, teachers, parents and vendors in increasing access to physical activity and healthier foods for students and staff. Current grants run to September 2013. The program addresses two policy priorities of the Childhood Obesity team: (1) Ensure that all…
Knowledge Activism: Bridging the Research/Policy Divide
ERIC Educational Resources Information Center
Gillies, Donald
2014-01-01
How research can better inform policy and how policy can have a better research base are longstanding issues both in educational research and across public policy generally. Drawing on the work of Hannah Arendt, this article argues that progress in increasing the impact of research can be made through a clearer understanding of the nature of…
Survival of Persons with Alzheimer's Disease: Caregiver Coping Matters
ERIC Educational Resources Information Center
McClendon, McKee J.; Smyth, Kathleen A.; Neundorfer, Marcia M.
2004-01-01
Purpose: Although persons with Alzheimer's disease (AD) require increasingly more assistance with activities of daily living as their disease progresses, the caregiving environment has received little attention as a source of predictors of their survival time. We report here on a study to determine whether variation in survival time of persons…
One and Two Equals Three? The Third Mission of Higher Education Institutions
ERIC Educational Resources Information Center
Pinheiro, Rómulo; Langa, Patricio V.; Pausits, Attila
2015-01-01
In modern, knowledge-based societies, universities play an increasingly important role in achieving economic growth and social progress. Their traditional roles and missions are being broadened as to accommodate activities that facilitate engagement with various stakeholder groups. Universities do not want to be regarded as isolated and separated…
Students' Reflections Using Visualized Learning Outcomes and E-Portfolios
ERIC Educational Resources Information Center
Narumi, Takatsune; Gotoh, Yasushi
2014-01-01
How to guarantee graduate attributes has become an urgent challenge amid the increasing progress in scientific and technological development and the globalization of economic activity. In order to solve these problems, a system is required which can visualize learning outcomes in relation to attainment targets, and store and sample records of the…
Expanding Behavioral Activation to Depressed Adolescents: Lessons Learned in Treatment Development
ERIC Educational Resources Information Center
McCauley, Elizabeth; Schloredt, Kelly; Gudmundsen, Gretchen; Martell, Christopher; Dimidjian, Sona
2011-01-01
Depression during adolescence represents a significant public health concern. It is estimated that up to 20% of adolescents experience an episode of depression that interferes with academic and social functioning and is associated with an increased risk for self-harm. Although significant progress has been made in the last decade in treating…
Air pollution is associated with acute and chronic adverse human health effects related to atherosclerotic pathologies. MMP9 has a crucial role in the progression and ultimate degradation of vascular lesions and polymorphisms of MMP9 are highly associated with increased incidenc...
Peyro Saint Paul, Laure; Debruyne, Danièle; Bernard, Delphine; Mock, Donald M; Defer, Gilles L
2016-01-01
Multiple sclerosis (MS) is a chronic, potentially highly disabling neurological disorder. No disease-modifying treatments are approved in the progressive and not active forms of the disease. High doses of biotin were tested in an open-label pilot study involving 23 patients with progressive MS and reported positive results. A randomized, double-blind, placebo-controlled trial in 154 progressive MS patients confirmed the beneficial effect of MD1003 (high-dose biotin) on reversing or stabilizing disability progression, with a good safety profile. It is proposed that MD1003 in progressive MS 1) increases energy production in demyelinated axons and/or 2) enhances myelin synthesis in oligodendrocytes. Biotin is highly bioavailable; absorption and excretion are rapid. The major route of elimination is urinary excretion. A high oral dose of biotin seems generally well tolerated but a few important safety concerns were identified: 1) teratogenicity in one species and 2) interference with some biotin-based laboratory immunoassays. The animal toxicity data are limited at such high doses. Further preclinical studies would be useful to address the mechanism of action of MD1003. Assessment of clinical benefit duration in responders will be also very important to set. Results of randomized, placebo-controlled trial are reassuring and provide hope for the treatment of progressive MS.
Probing matrix and tumor mechanics with in situ calibrated optical trap based active microrheology
NASA Astrophysics Data System (ADS)
Staunton, Jack Rory; Vieira, Wilfred; Tanner, Kandice; Tissue Morphodynamics Unit Team
Aberrant extracellular matrix deposition and vascularization, concomitant with proliferation and phenotypic changes undergone by cancer cells, alter mechanical properties in the tumor microenvironment during cancer progression. Tumor mechanics conversely influence progression, and the identification of physical biomarkers promise improved diagnostic and prognostic power. Optical trap based active microrheology enables measurement of forces up to 0.5 mm within a sample, allowing interrogation of in vitro biomaterials, ex vivo tissue sections, and small organisms in vivo. We fabricated collagen I hydrogels exhibiting distinct structural properties by tuning polymerization temperature Tp, and measured their shear storage and loss moduli at frequencies 1-15k Hz at multiple amplitudes. Lower Tp gels, with larger pore size but thicker, longer fibers, were stiffer than higher Tp gels; decreasing strain increased loss moduli and decreased storage moduli at low frequencies. We subcutanously injected probes with metastatic murine melanoma cells into mice. The excised tumors displayed storage and loss moduli 40 Pa and 10 Pa at 1 Hz, increasing to 500 Pa and 1 kPa at 15 kHz, respectively.
Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons
Kraft, Andrew D.; Kaltenbach, Linda S.; Lo, Donald C.; Harry, G. Jean
2011-01-01
In Huntington's disease (HD), mutated huntingtin (mhtt) causes striatal neurodegeneration which is paralleled by elevated microglia cell numbers. In vitro cortico-striatal slice and primary neuronal culture models, in which neuronal expression of mhtt fragments drives HD-like neurotoxicity, were employed to examine wild type microglia during both the initiation and progression of neuronal pathology. As neuronal pathology progressed, microglia initially localized in the vicinity of neurons expressing mhtt fragments increased in number, demonstrated morphological evidence of activation, and expressed the proliferation marker, Ki67. These microglia were positioned along irregular neurites, but did not localize with mhtt inclusions nor exacerbate mhtt fragment-induced neurotoxicity. Prior to neuronal pathology, microglia upregulated Iba1, signaling a functional shift. With neurodegeneration, interleukin-6 and complement component 1q were increased. The results suggest a stimulatory, proliferative signal for microglia present at the onset of mhtt fragment-induced neurodegeneration. Thus, microglia effect a localized inflammatory response to neuronal mhtt expression that may serve to direct microglial removal of dysfunctional neurites or aberrant synapses, as is required for reparative actions in vivo. PMID:21482444
Osteogenesis imperfecta: rehabilitation approach with infants and young children.
Binder, H; Hawks, L; Graybill, G; Gerber, N L; Weintrob, J C
1984-09-01
A rehabilitation approach, consisting of initial handling and positioning followed by functional and formal strengthening exercises, was developed for the child with severe progressive osteogenesis imperfecta (OI). The program was developed because of the increased life expectancy for infants and children with severe progressive OI, combined with the lack of published reports dealing with their rehabilitation. The program can be followed easily by parents or therapists with regular monitoring by a psychiatrist. The goals are to improve the life span as well as the quality of life of these children by preventing the following: (1) positional contractures and deformities, (2) muscle weakness and osteoporosis, and (3) malalignment of the lower extremity joints prohibiting weight-bearing. Implementation of the program requires full cooperation of the parents. The initial results in four children between the ages of 3 and 11 years are encouraging. The benefits of increased strength and mobility leading to more age-appropriate activities and behaviors outweigh the only observed negative result, that is trauma-related lower extremity fractures in children with milder disease, and therefore greater mobility and higher activity levels.
Aberrant expression of copper associated genes after copper accumulation in COMMD1-deficient dogs.
Favier, Robert P; Spee, Bart; Fieten, Hille; van den Ingh, Ted S G A M; Schotanus, Baukje A; Brinkhof, Bas; Rothuizen, Jan; Penning, Louis C
2015-01-01
COMMD1-deficient dogs progressively develop copper-induced chronic hepatitis. Since high copper leads to oxidative damage, we measured copper metabolism and oxidative stress related gene products during development of the disease. Five COMMD1-deficient dogs were studied from 6 months of age over a period of five years. Every 6 months blood was analysed and liver biopsies were taken for routine histological evaluation (grading of hepatitis), rubeanic acid copper staining and quantitative copper analysis. Expression of genes involved in copper metabolism (COX17, CCS, ATOX1, MT1A, CP, ATP7A, ATP7B, ) and oxidative stress (SOD1, catalase, GPX1 ) was measured by qPCR. Due to a sudden death of two animals, the remaining three dogs were treated with d-penicillamine from 43 months of age till the end of the study. Presented data for time points 48, 54, and 60 months was descriptive only. A progressive trend from slight to marked hepatitis was observed at histology, which was clearly preceded by an increase in semi-quantitative copper levels starting at 12 months until 42 months of age. During the progression of hepatitis most gene products measured were transiently increased. Most prominent was the rapid increase in the copper binding gene product MT1A mRNA levels. This was followed by a transient increase in ATP7A and ATP7B mRNA levels. In the sequence of events, copper accumulation induced progressive hepatitis followed by a transient increase in gene products associated with intracellular copper trafficking and temporal activation of anti-oxidative stress mechanisms. Copyright © 2014 Elsevier GmbH. All rights reserved.
Zhang, Lili; Zhang, Huiying; Lv, Minli; Jia, Jiantao; Fan, Yimin; Tian, Xiaoxia; Li, Xujiong; Li, Baohong; Ji, Jingquan; Wang, Limin; Zhao, Zhongfu; Han, Dewu; Ji, Cheng
2015-01-01
Aims: This study was to investigate the role and underlying mechanism of 78 kD glucose-regulated protein (GRP78) in cardiomyocyte apoptosis in a rat model of liver cirrhosis. Methods: A rat model of liver cirrhosis was established with multiple pathogenic factors. A total of 42 male SD rats were randomly divided into the liver cirrhosis group and control group. Cardiac structure analysis was performed to assess alterations in cardiac structure. Cardiomyocytes apoptosis was detected by TdT-mediated dUTP nick end labeling method. Expression of GRP78, CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, nuclear factor kappa-light-chain-enhancer of activated B cells p65 subunit (NF-κB p65) and B cell lymphoma-2 (Bcl-2) was detected by immunohistochemical staining. Results: The ratios of left ventricular wall thickness to heart weight and heart weight to body weight were significantly increased with the progression of liver cirrhosis (P < 0.05). Apoptosis index of cardiomyocytes was significantly increased with the progression of liver cirrhosis (P < 0.05). The expression levels of GRP78, CHOP and caspase-12 were significantly increased in the progression of liver cirrhosis (P < 0.05). The expression levels of NF-κB p65 and Bcl-2 were highest in the 4-wk liver cirrhosis, and they were decreased in the 6-wk and 8-wk in the progression of liver cirrhosis. GRP78 expression levels were positively correlated with apoptosis index, CHOP and caspase-12 expression levels (P < 0.05). CHOP expression levels were negatively correlated with NF-κB p65 and Bcl-2 expression levels (P < 0.05). Conclusion: Increased expression of GRP78 promotes cardiomyocyte apoptosis in rats with cirrhotic cardiomyopathy. PMID:26464674
Stepien, Magdalena; Azzout-Marniche, Dalila; Even, Patrick C; Khodorova, Nadezda; Fromentin, Gilles; Tomé, Daniel; Gaudichon, Claire
2016-10-01
We aimed to determine whether oxidative pathways adapt to the overproduction of carbon skeletons resulting from the progressive activation of amino acid (AA) deamination and ureagenesis under a high-protein (HP) diet. Ninety-four male Wistar rats, of which 54 were implanted with a permanent jugular catheter, were fed a normal protein diet for 1 wk and were then switched to an HP diet for 1, 3, 6, or 14 days. On the experimental day, they were given their meal containing a mixture of 20 U-[ 15 N]-[ 13 C] AA, whose metabolic fate was followed for 4 h. Gastric emptying tended to be slower during the first 3 days of adaptation. 15 N excretion in urine increased progressively during the first 6 days, reaching 29% of ingested protein. 13 CO 2 excretion was maximal, as early as the first day, and represented only 16% of the ingested proteins. Consequently, the amount of carbon skeletons remaining in the metabolic pools 4 h after the meal ingestion progressively increased to 42% of the deaminated dietary AA after 6 days of HP diet. In contrast, 13 C enrichment of plasma glucose tended to increase from 1 to 14 days of the HP diet. We conclude that there is no oxidative adaptation in the early postprandial period to an excess of carbon skeletons resulting from AA deamination in HP diets. This leads to an increase in the postprandial accumulation of carbon skeletons throughout the adaptation to an HP diet, which can contribute to the sustainable satiating effect of this diet. Copyright © 2016 the American Physiological Society.
Cancer and Stroma-Targeted Immunotherapy with a Genetically Modified DC Vaccine
2011-05-01
targeting the tumor stroma in addition to breast cancer cells may produce the desired increase in antitumor activity of DC vaccines for breast cancer...vaccination inhibits 4T1-neu progression. We investigated whether DC-shA20-FAP- HER2 may induce more potent anti- stroma and anti-tumor immunity with the...the immunosuppressive tumor microenviroment resulting in potent antitumor activity. Zhu W, Zhou X, Rollins L , Rooney CM, Gottschalk S, Song XT
Tsai, Ching-Yi; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H
2014-03-01
As the most widely used pesticides in the globe, the organophosphate compounds are understandably linked with the highest incidence of suicidal poisoning. Whereas the elicited toxicity is often associated with circulatory depression, the underlying mechanisms require further delineation. Employing the pesticide mevinphos as our experimental tool, we evaluated the hypothesis that transcriptional upregulation of nitric oxide synthase II (NOS II) by NF-κB on activation of the PI3K/Akt cascade in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, underpins the circulatory depressive effects of organophosphate poisons. Microinjection of mevinphos (10 nmol) bilaterally into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension that was accompanied sequentially by an increase (Phase I) and a decrease (Phase II) of an experimental index for the baroreflex-mediated sympathetic vasomotor tone. There were also progressive augmentations in PI3K or Akt enzyme activity and phosphorylation of p85 or Akt(Thr308) subunit in the RVLM that were causally related to an increase in NF-κB transcription activity and elevation in NOS II or peroxynitrite expression. Loss-of-function manipulations of PI3K or Akt in the RVLM significantly antagonized the reduced baroreflex-mediated sympathetic vasomotor tone and hypotension during Phase II mevinphos intoxication, and blunted the increase in NF-κB/NOS II/peroxynitrite signaling. We conclude that activation of the PI3K/Akt cascade, leading to upregulation of NF-κB/NOS II/peroxynitrite signaling in the RVLM, elicits impairment of brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication. Copyright © 2014 Elsevier Inc. All rights reserved.
Bioaccumulation and biodegradation of sulfamethazine in Chlorella pyrenoidosa
NASA Astrophysics Data System (ADS)
Sun, Ming; Lin, Hong; Guo, Wen; Zhao, Fazhen; Li, Jian
2017-12-01
Intensive use of sulfamethazine (SM2) in aquaculture has resulted in some detrimental effects to non-targeted organisms. In order to assess its potential ecological risk, it is crucial to have a good understanding on the bioaccumulation and biodegradation of SM2 in Chlorella pyrenoidosa. The microalgae were treated with 2, 4, and 8 mg L-1 of sulfamethazine for 13 days, respectively, showing that the inhibition effects of sulfamethazine on the growth of Chlorella pyrenoidosa increased progressively as the concentrations of sulfamethazine increasing from 2 to 8 mg L-1. The peak concentrations of sulfamethazine accumulated in C. pyrenoidosa were 0.225, 0.325, and 0.596 ng per mg FW on day 13 for three treatment groups, respectively, showing a great ability to deplete sulfamethazine from the culture media. On day 13, the percentages of biotic degradation were 48.45%, 60.21% and 69.93%, respectively. The EC50 of 10.05 mg L-1 was derived which showed no significant risk for C. pyrenoidosa with a calculated risk quotient < 1. The activities of superoxide dismutase and catalase increased progressively in response to sulfamethazine and showed a positive correlation to the treatment concentrations. The highest superoxide dismutase activity was achieved at the concentration of 8 mg L-1 after 2 d of exposure, which was 1.89 folds higher than that of the control. The activity of catalase has a similar pattern to that of superoxide dismutase with the maximum activity achieved at day 2, which was 3.11 folds higher compared to that of the control. In contrast to superoxide dismutase and catalase, the maximum glutathione S-transferase activity was observed at day 6, showing 2.2 folds higher than that of the control.
Kierszenbaum, F; Majumder, S; Paredes, P; Tanner, M K; Sztein, M B
1998-04-01
Many immunosuppressive effects of Trypanosoma cruzi can be reproduced in vitro by a preparation consisting of molecules spontaneously released by this protozoan (termed trypanosomal immunosuppressive factor (TIF)). In this work, we attempted to establish whether TIF-induced inhibition of lymphoproliferation results from preventing lymphocyte activation or impairing a post-activation process. Although [3H]thymidine uptake and expression of CD25 by normal human T lymphocytes stimulated with a phorbol ester were markedly reduced by T. cruzi or TIF, translocation of cytosolic protein kinase C (PKC) to the cell membrane was not affected. Lymphoproliferation induced by ionomycin was also inhibited by T. cruzi or TIF but the typical elevation of intracellular calcium ions [Ca2+]i caused by this calcium ionophore was not altered. The increase in [Ca2+]i induced with anti-CD3 antibody was also unaffected by TIF. TIF did not preclude lymphocytes stimulated with phytohemagglutinin from accumulating normal mRNA levels of NFAT1 (also known as NFATp) and NFATc. NFAT1 and NFATc are components of the NFAT complex that controls transcription of genes coding for several cytokines and whose translocation to the nucleus is dependent upon PKC activation and increased [Ca2+]i. In contrast, the mRNA levels of cyclin D2 and cdk4, which form a holoenzyme complex known to regulate cell progression through the G1 phase, were markedly reduced by TIF. These results indicated that TIF did not inhibit lymphocyte activation leading to early secondary signaling but curtailed a mechanism controlling cell progression through G1 and necessary for reaching S phase.
Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain.
Raj, Divya; Yin, Zhuoran; Breur, Marjolein; Doorduin, Janine; Holtman, Inge R; Olah, Marta; Mantingh-Otter, Ietje J; Van Dam, Debby; De Deyn, Peter P; den Dunnen, Wilfred; Eggen, Bart J L; Amor, Sandra; Boddeke, Erik
2017-01-01
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [ 11 C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.
Collu-Marchese, Melania; Shuen, Michael; Pauly, Marion; Saleem, Ayesha; Hood, David A
2015-05-19
The ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation. Parallel 2-fold increases in Tfam protein and mRNA were observed, corresponding with 2-3-fold increases in mitochondrial content. Transcriptional activity of a 2051 bp promoter increased during this differentiation period and this was accompanied by a 3-fold greater Tfam mRNA stabilization. Interestingly, truncations of the promoter at 1706 bp, 978 bp and 393 bp promoter all exhibited 2-3-fold higher transcriptional activity than the 2051 bp construct, indicating the presence of negative regulatory elements within the distal 350 bp of the promoter. Activation of AMP kinase augmented Tfam transcription within the proximal promoter, suggesting the presence of binding sites for transcription factors that are responsive to cellular energy state. During differentiation, the accumulating Tfam protein was progressively distributed to the mitochondrial matrix where it augmented the expression of mtDNA and COX (cytochrome c oxidase) subunit I, an mtDNA gene product. Our data suggest that, during muscle differentiation, Tfam protein levels are regulated by the availability of Tfam mRNA, which is controlled by both transcription and mRNA stability. Changes in energy state and Tfam localization also affect Tfam expression and action in differentiating myotubes. © 2015 Authors.
Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito
2015-12-08
Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis.
Péntek, Márta; Szekanecz, Zoltán; Czirják, László; Poór, Gyula; Rojkovich, Bernadette; Polgár, Anna; Genti, György; Kiss, Csaba György; Sándor, Zsuzsa; Májer, István; Brodszky, Valentin; Gulácsi, László
2008-04-20
Rheumatoid arthritis (RA) is a chronic, progressive polyarthritis leading to substantial disability. Standardised data on consequences of disease progression are needed for clinical assessments and also for cost-effectiveness models. To analyse the impact of disease progression on health status, disease specific quality of life and costs in Hungary. A cross-sectional survey was performed between April and August, 2004, involving consecutive RA patients of 6 hospital based rheumatology outpatient centres. Self-completed questionnaires were used to assess functional (HAQ) and health status (EQ-5D), quality of life (RAQoL). Disease activity (DAS) and costs were also surveyed, statistical analysis was performed. 255 patients were involved [mean age 55.5 +/- 12.3 years; disease duration 9.0 +/- 9.3 years; HAQ 1.38 +/- 0.76; EQ-5D 0.46 +/- 0.33; RAQoL 16.2 +/- 8.1; DAS 5.09 +/- 1.42; costs 1,043,163 (+/- 844,750) HUF/patient/year, conversion 1 Euro = 250 HUF]. Correlation was significant between the parameters ( p < 0.01): EQ-5D index = 1.014 - 0.25 x HAQ-0.041 x DAS; HAQ = 0.314 + 0.065 x RAQoL. Analysis by disease severity levels (HAQ groups 0.5 difference) revealed that health status worsens (mean EQ-5D: 0.784; 0.576; 0.504; 0.367; 0.211; 0.022) and costs increase (mean 628,280; 888,187; 953,759; 1,291,218; 1,346,112; 1,371,674 HUF/patient/year) with disease progression. Minimally important worsening of functional ability (0.25 HAQ increase) corresponds to -0.0705 EQ-5D and +1.884 RAQoL change. Lower health status difference (EQ-5D -0.05725) was calculated in patients with lower disease activity (DAS < 5.1). Correlation between disease progression, health status, quality of life and costs does not differ significantly from international results. The amount of costs is much lower in all disease severity levels than in developed European countries. Our study serves baseline data for health economic analysis in RA in Hungary.
Suppression of Inflammatory Demyelinaton and Axon Degeneration through Inhibiting Kv3 Channels
Jukkola, Peter; Gu, Yuanzheng; Lovett-Racke, Amy E.; Gu, Chen
2017-01-01
The development of neuroprotective and repair strategies for treating progressive multiple sclerosis (MS) requires new insights into axonal injury. 4-aminopyridine (4-AP), a blocker of voltage-gated K+ (Kv) channels, is used in symptomatic treatment of progressive MS, but the underlying mechanism remains unclear. Here we report that deleting Kv3.1—the channel with the highest 4-AP sensitivity—reduces clinical signs in experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. In Kv3.1 knockout (KO) mice, EAE lesions in sensory and motor tracts of spinal cord were markedly reduced, and radial astroglia were activated with increased expression of brain derived neurotrophic factor (BDNF). Kv3.3/Kv3.1 and activated BDNF receptors were upregulated in demyelinating axons in EAE and MS lesions. In spinal cord myelin coculture, BDNF treatment promoted myelination, and neuronal firing via altering channel expression. Therefore, suppressing Kv3.1 alters neural circuit activity, which may enhance BNDF signaling and hence protect axons from inflammatory insults. PMID:29123469
Case Report: Aquatic Therapy and End-Stage Dementia.
Becker, Bruce E; Lynch, Stacy
2018-04-01
A 54-year-old woman, retired due to progressive cognitive decline, was diagnosed with early-onset Alzheimer dementia. Conventional medication therapy for dementia had proven futile. Initial evaluation revealed a nonverbal female seated in a wheelchair, dependent on 2-person assist for all transfers and activities of daily living. She had been either nonresponsive or actively resistive for both activities of daily living and transfers in the 6 months before assessment. After a total of 17 1-hour therapy sessions over 19 weeks in a warm water therapy pool, she achieved the ability to tread water for 15 minutes, transfers improved to moderate-to-maximum assist from seated, and ambulation improved to 1000 feet with minimum-to-moderate assist of 2 persons. Communication increased to appropriate "yes," "no," and "okay" appropriate responses, and an occasional "thank you" and "very nice." The authors propose that her clinical progress may be related to her aquatic therapy intervention. IV. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Bechard, Allison R.; Bliznyuk, Nikolay; Lewis, Mark H.
2017-01-01
Little is known about the mechanisms mediating the development of repetitive behaviors in human or animals. Deer mice reared with environmental enrichment (EE) exhibit fewer repetitive behaviors and greater indirect basal ganglia pathway activation as adults than those reared in standard cages. The developmental progression of these behavioral and neural circuitry changes has not been characterized. We assessed the development of repetitive behavior in deer mice using both a longitudinal and cohort design. Repeated testing negated the expected effect of EE, but cohort analyses showed that progression of repetitive behavior was arrested after one week of EE and differed significantly from controls after 3 weeks. Moreover, EE reductions in repetitive behavior were associated with increasing activation of indirect pathway nuclei in males across adolescence, but not females. These findings provide the first assessment of developmental trajectories within EE and support indirect pathway mediation of repetitive behavior in male deer mice. PMID:28181216
Mohsenzadeh, Yalda; Qin, Sheng; Cichy, Radoslaw M; Pantazis, Dimitrios
2018-06-21
Human visual recognition activates a dense network of overlapping feedforward and recurrent neuronal processes, making it hard to disentangle processing in the feedforward from the feedback direction. Here, we used ultra-rapid serial visual presentation to suppress sustained activity that blurs the boundaries of processing steps, enabling us to resolve two distinct stages of processing with MEG multivariate pattern classification. The first processing stage was the rapid activation cascade of the bottom-up sweep, which terminated early as visual stimuli were presented at progressively faster rates. The second stage was the emergence of categorical information with peak latency that shifted later in time with progressively faster stimulus presentations, indexing time-consuming recurrent processing. Using MEG-fMRI fusion with representational similarity, we localized recurrent signals in early visual cortex. Together, our findings segregated an initial bottom-up sweep from subsequent feedback processing, and revealed the neural signature of increased recurrent processing demands for challenging viewing conditions. © 2018, Mohsenzadeh et al.
Al-Mahdawi, Sahar; Pinto, Ricardo Mouro; Varshney, Dhaval; Lawrence, Lorraine; Lowrie, Margaret B; Hughes, Sian; Webster, Zoe; Blake, Julian; Cooper, J Mark; King, Rosalind; Pook, Mark A
2006-11-01
Friedreich ataxia (FRDA) is a neurodegenerative disorder caused by an unstable GAA repeat expansion mutation within intron 1 of the FXN gene. However, the origins of the GAA repeat expansion, its unstable dynamics within different cells and tissues, and its effects on frataxin expression are not yet completely understood. Therefore, we have chosen to generate representative FRDA mouse models by using the human FXN GAA repeat expansion itself as the genetically modified mutation. We have previously reported the establishment of two lines of human FXN YAC transgenic mice that contain unstable GAA repeat expansions within the appropriate genomic context. We now describe the generation of FRDA mouse models by crossbreeding of both lines of human FXN YAC transgenic mice with heterozygous Fxn knockout mice. The resultant FRDA mice that express only human-derived frataxin show comparatively reduced levels of frataxin mRNA and protein expression, decreased aconitase activity, and oxidative stress, leading to progressive neurodegenerative and cardiac pathological phenotypes. Coordination deficits are present, as measured by accelerating rotarod analysis, together with a progressive decrease in locomotor activity and increase in weight. Large vacuoles are detected within neurons of the dorsal root ganglia (DRG), predominantly within the lumbar regions in 6-month-old mice, but spreading to the cervical regions after 1 year of age. Secondary demyelination of large axons is also detected within the lumbar roots of older mice. Lipofuscin deposition is increased in both DRG neurons and cardiomyocytes, and iron deposition is detected in cardiomyocytes after 1 year of age. These mice represent the first GAA repeat expansion-based FRDA mouse models that exhibit progressive FRDA-like pathology and thus will be of use in testing potential therapeutic strategies, particularly GAA repeat-based strategies.
Huang, Wei; Eickhoff, Jens C; Mehraein-Ghomi, Farideh; Church, Dawn R; Wilding, George; Basu, Hirak S
2015-08-01
Prostate cancer (PCa) in many patients remains indolent for the rest of their lives, but in some patients, it progresses to lethal metastatic disease. Gleason score is the current clinical method for PCa prognosis. It cannot reliably identify aggressive PCa, when GS is ≤ 7. It is shown that oxidative stress plays a key role in PCa progression. We have shown that in cultured human PCa cells, an activation of spermidine/spermine N(1) -acetyl transferase (SSAT; EC 2.3.1.57) enzyme initiates a polyamine oxidation pathway and generates copious amounts of reactive oxygen species in polyamine-rich PCa cells. We used RNA in situ hybridization and immunohistochemistry methods to detect SSAT mRNA and protein expression in two tissue microarrays (TMA) created from patient's prostate tissues. We analyzed 423 patient's prostate tissues in the two TMAs. Our data show that there is a significant increase in both SSAT mRNA and the enzyme protein in the PCa cells as compared to their benign counterpart. This increase is even more pronounced in metastatic PCa tissues as compared to the PCa localized in the prostate. In the prostatectomy tissues from early-stage patients, the SSAT protein level is also high in the tissues obtained from the patients who ultimately progress to advanced metastatic disease. Based on these results combined with published data from our and other laboratories, we propose an activation of an autocrine feed-forward loop of PCa cell proliferation in the absence of androgen as a possible mechanism of castrate-resistant prostate cancer growth. © 2015 Wiley Periodicals, Inc.
GPRC6A regulates prostate cancer progression
Pi, Min; Quarles, L. Darryl
2011-01-01
BACKGROUND GPRC6A is a nutrient sensing GPCR that is activated in vitro by a variety of ligands, including amino acids, calcium, zinc, osteocalcin (OC) and testosterone. The association between nutritional factors and risk of prostate cancer, the finding of increased expression of OC in prostate cancer cells and the association between GPRC6A and risk of prostate cancer in Japanese men implicates a role of GPRC6A in prostate cancer. METHODS We examined if GPRC6A is expressed in human prostate cancer cell lines and used siRNA-mediated knockdown GPRC6A expression in prostate cancer cells to explore the function of GPRC6A in vitro. To assess the role GPRC6A in prostate cancer progression in vivo we intercrossed Gprc6a−/− mice onto the TRAMP mouse prostate cancer model. RESULTS GPRC6A transcripts were markedly increased in prostate cancer cell lines 22Rv1, PC-3 and LNCaP, compared to the normal prostate RWPE-1 cell line. In addition, a panel of GPRC6A ligands, including calcium, OC, and arginine, exhibited in prostate cancer cell lines a dose-dependent stimulation of ERK activity, cell proliferation, chemotaxis, and prostate specific antigen and Runx 2 gene expression. These responses were inhibited by siRNA-mediated knockdown of GPRC6A. Finally, transfer of Gprc6a deficiency onto a TRAMP mouse model of prostate cancer significantly retarded prostate cancer progression and improved survival of compound Gprc6a−/−/TRAMP mice. CONCLUSIONS GPRC6A is a novel molecular target for regulating prostate growth and cancer progression. Increments in GPRC6A may augment the ability of prostate cancer cells to proliferate in response to dietary and bone derived ligands. PMID:21681779
Yuan, Ruoxi; Chen, Keqiang; Geng, Shuo; Li, Mingsong; Li, Liwu
2016-01-01
Subclinical circulating bacterial endotoxin lipopolysaccharide (LPS) has been implicated as an important cofactor in the development and progression of nonalcoholic steatohepatitis (NASH), but the underlying mechanisms remain unclear. Here, we demonstrated that 4-week injection with super-low dose LPS significantly promoted neutrophils infiltration and accelerated NASH progression, including exacerbated macro-vesicular steatosis, inflammation and hepatocyte ballooning in high-fat diet fed apolipoprotein E knockout mice. This effect could sustain for a month after stoppage of LPS injection. LPS also significantly increased numbers of apoptotic nuclei in hepatocytes and expressions of pro-apoptotic regulators. Moreover, LPS sustained the low-grade activation of p38 mitogen-activated protein kinase and inhibited the expression of the upstream MAPK phosphatase 7. By applying selective inhibitors, we demonstrated that the activation of p38 MAPKs is required for neutrophil migration induced by super-low dose LPS in vitro. Together, these data suggest that super-low dose LPS may sustain the low-grade activation of p38 MAPKs and neutrophil infiltration, leading to the exacerbation of steatohepatitis. PMID:26810228
Yu, Mi-Hee; Lee, Syng-Ook
2016-03-01
Hydroquinone (HQ) is a well-known environmental carcinogen and exposure of humans to HQ can also occur through plant foods, cosmetics, and tobacco products. Although liver is a major organ metabolizing HQ and susceptible to its toxicity, role of HQ in metastatic progression of human hepatocellular carcinoma (HCC) remains unclear. In this study, we examined the effect of HQ on the invasion of HCC cells and its underlying molecular mechanisms. HQ strongly induced matrix metalloproteinase-9 (MMP-9) expression and secretion in HepG2 human hepatoma cells, which were well correlated with increased cell invasion. Mechanistic studies further demonstrated that HQ induced transcriptional activity of MMP-9 gene by activating activator protein-1 (AP-1), the well-known key element mediating MMP-9 gene expression, via MAP kinase (MAPK) signaling pathways. These results suggest that HQ may promote metastatic progression of HCC, although data on in vivo hydroquinone exposure and risk for HCC are contradictory. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ching, Biyun; Chen, Xiu L.; Yong, Jing H. A.; Wilson, Jonathan M.; Hiong, Kum C.; Sim, Eugene W. L.; Wong, Wai P.; Lam, Siew H.; Chew, Shit F.; Ip, Yuen K.
2013-01-01
This study aimed to test the hypothesis that branchial osmoregulatory acclimation involved increased apoptosis and replacement of mitochdonrion-rich cells (MRCs) in the climbing perch, Anabas testudineus, during a progressive acclimation from freshwater to seawater. A significant increase in branchial caspase-3/-7 activity was observed on day 4 (salinity 20), and an extensive TUNEL-positive apoptosis was detected on day 5 (salinity 25), indicating salinity-induced apoptosis had occurred. This was further supported by an up-regulation of branchial mRNA expression of p53, a key regulator of cell cycle arrest and apoptosis, between day 2 (salinity 10) and day 6 (seawater), and an increase in branchial p53 protein abundance on day 6. Seawater acclimation apparently activated both the extrinsic and intrinsic pathways, as reflected by significant increases in branchial caspase-8 and caspase-9 activities. The involvement of the intrinsic pathway was confirmed by the significant increase in branchial mRNA expression of bax between day 4 (salinity 20) and day 6 (seawater). Western blotting results revealed the presence of a freshwater Na+/K+-ATPase (Nka) α-isoform, Nka α1a, and a seawater isoform, Nka α1b, the protein abundance of which decreased and increased, respectively, during seawater acclimation. Immunofluorescence microscopy revealed the presence of two types of MRCs distinctly different in sizes, and confirmed that the reduction in Nka α1a expression, and the prominent increases in expression of Nka α1b, Na+:K+:2Cl− cotransporter 1, and cystic fibrosis transmembrane conductance regulator Cl− channel coincided with the salinity-induced apoptotic event. Since modulation of existing MRCs alone could not have led to extensive salinity-induced apoptosis, it is probable that some, if not all, freshwater-type MRCs could have been removed through increased apoptosis and subsequently replaced by seawater-type MRCs in the gills of A. testudineus during seawater acclimation. PMID:23760020
Maternal Setdb1 Is Required for Meiotic Progression and Preimplantation Development in Mouse.
Kim, Jeesun; Zhao, Hongbo; Dan, Jiameng; Kim, Soojin; Hardikar, Swanand; Hollowell, Debra; Lin, Kevin; Lu, Yue; Takata, Yoko; Shen, Jianjun; Chen, Taiping
2016-04-01
Oocyte meiotic progression and maternal-to-zygote transition are accompanied by dynamic epigenetic changes. The functional significance of these changes and the key epigenetic regulators involved are largely unknown. Here we show that Setdb1, a lysine methyltransferase, controls the global level of histone H3 lysine 9 di-methyl (H3K9me2) mark in growing oocytes. Conditional deletion of Setdb1 in developing oocytes leads to meiotic arrest at the germinal vesicle and meiosis I stages, resulting in substantially fewer mature eggs. Embryos derived from these eggs exhibit severe defects in cell cycle progression, progressive delays in preimplantation development, and degeneration before reaching the blastocyst stage. Rescue experiments by expressing wild-type or inactive Setdb1 in Setdb1-deficient oocytes suggest that the catalytic activity of Setdb1 is essential for meiotic progression and early embryogenesis. Mechanistically, up-regulation of Cdc14b, a dual-specificity phosphatase that inhibits meiotic progression, greatly contributes to the meiotic arrest phenotype. Setdb1 deficiency also leads to derepression of transposons and increased DNA damage in oocytes, which likely also contribute to meiotic defects. Thus, Setdb1 is a maternal-effect gene that controls meiotic progression and is essential for early embryogenesis. Our results uncover an important link between the epigenetic machinery and the major signaling pathway governing meiotic progression.
Levin, Victor A; Jochec, Jacob L; Shantz, Lisa M; Aldape, Kenneth D
2007-11-15
The purpose of this study was to assess the relationship between progression-free survival (PFS) in patients treated with DFMO + PCV (procarbazine, CCNU, vincristine) chemotherapy for malignant gliomas with tumor cell ornithine decarboxylase (ODC) activity. Formalin-fixed slides were obtained for study patients with anaplastic gliomas (AGs) and glioblastoma treated on protocol DM92-035. ODC levels were measured using an antibody to ODC coupled to Alexa 647 dye (Ab-ODC-Alexa 647). Ab-ODC-Alexa 647 intensity in transgenic murine hearts of differing ODC activity was used to calculate ODC activity in tumor cell nucleoplasm. In total, tumor specimens for 31 of 114 (27%) patients treated on the AG strata and 10 patients from the GBM strata were obtained. We found that tumor ODC level heterogeneity increased with increasing tumor malignancy. In a Cox proportional hazards model, PFS was found to be inversely related to median tumor ODC activity, with an unadjusted hazard ratio for median ODC group (>3.3 vs. =3.3 nmol/30 min/mug protein) of 5.8 (p < 0.0001); a median PFS of 522 weeks for patients with AGs with median ODC activity = 3.3 and 31 weeks for the 8 AG and 10 glioblastoma patients with ODC activity > 3.3 nmol/30 min/mug protein. Of AG tumors in which ODC activity was evaluated, 26% had ODC levels > 3.3 nmol/30 min/mug protein. This study shows that Ab-ODC-Alexa 647 fluorescence intensity can be used as a surrogate marker of ODC biochemical activity in AGs and can predict PFS to DFMO-based chemotherapy. (c) 2007 Wiley-Liss, Inc.
Downregulation of cathepsin G reduces the activation of CD4+ T cells in murine autoimmune diabetes.
Zou, Fang; Lai, Xiaoyang; Li, Jing; Lei, Shuihong; Hu, Lei
2017-01-01
Type 1 diabetes mellitus (T1DM) is an autoimmune disease due to progressive injury of islet cells mediated by T lymphocytes (T cells). Our previous studies have shown that only cathepsin G (CatG), not other proteases, is involved in the antigen presentation of proinsulin, and if the presentation is inhibited, the activation of CD4+ T cells induced by proinsulin is alleviated in T1DM patients, and CatG-specific inhibitor reduces the activation of CD4+ cells induced by proinsulin in T1DM patients. Therefore, we hypothesize that CatG may play an important role in the activation of CD4+ T cells in T1DM. To this end, mouse studies were conducted to demonstrate that CatG impacts the activation of CD4+ T cells in non-obese diabetic (NOD) mice. CatG gene expression and the activation of CD4+ T cells were examined in NOD mice. The effect of CatG inhibitor was investigated in NOD mice on the activation of CD4+ T cells, islet β cell function, islet inflammation and β-cell apoptosis. Furthermore, NOD mice were injected with CatG siRNA in early stage to observe the effect of CatG knockdown on the activation status of CD4+ T cells and the progression of diabetes. During the pathogenesis of diabetes, the expression level of CatG in NOD mice gradually increased and the CD4+ T cells were gradually activated, resulting in more TH1 cells and less TH2 and Treg cells. Treatment with CatG-specific inhibitor reduced the blood glucose level, improved the function of islet β cells and reduced the activation of CD4+ T cells. Early application of CatG siRNA improved the function of islet β cells, reduced islet inflammation and β cell apoptosis, and lowered the activation level of CD4+ T cells, thus slowing down the progression of diabetes.
Downregulation of cathepsin G reduces the activation of CD4+ T cells in murine autoimmune diabetes
Zou, Fang; Lai, Xiaoyang; Li, Jing; Lei, Shuihong; Hu, Lei
2017-01-01
Type 1 diabetes mellitus (T1DM) is an autoimmune disease due to progressive injury of islet cells mediated by T lymphocytes (T cells). Our previous studies have shown that only cathepsin G (CatG), not other proteases, is involved in the antigen presentation of proinsulin, and if the presentation is inhibited, the activation of CD4+ T cells induced by proinsulin is alleviated in T1DM patients, and CatG-specific inhibitor reduces the activation of CD4+ cells induced by proinsulin in T1DM patients. Therefore, we hypothesize that CatG may play an important role in the activation of CD4+ T cells in T1DM. To this end, mouse studies were conducted to demonstrate that CatG impacts the activation of CD4+ T cells in non-obese diabetic (NOD) mice. CatG gene expression and the activation of CD4+ T cells were examined in NOD mice. The effect of CatG inhibitor was investigated in NOD mice on the activation of CD4+ T cells, islet β cell function, islet inflammation and β-cell apoptosis. Furthermore, NOD mice were injected with CatG siRNA in early stage to observe the effect of CatG knockdown on the activation status of CD4+ T cells and the progression of diabetes. During the pathogenesis of diabetes, the expression level of CatG in NOD mice gradually increased and the CD4+ T cells were gradually activated, resulting in more TH1 cells and less TH2 and Treg cells. Treatment with CatG-specific inhibitor reduced the blood glucose level, improved the function of islet β cells and reduced the activation of CD4+ T cells. Early application of CatG siRNA improved the function of islet β cells, reduced islet inflammation and β cell apoptosis, and lowered the activation level of CD4+ T cells, thus slowing down the progression of diabetes. PMID:29218110
Kim, Ki-Hyung; Park, Seong-Hwan; Do, Kee Hun; Kim, Juil; Choi, Kyung Un; Moon, Yuseok
2016-11-01
Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy in developed countries. Chronic endogenous sterile pro-inflammatory responses are strongly linked to EOC progression and chemoresistance to anti-cancer therapeutics. In the present study, the activity of epithelial NF-κB, a key pro-inflammatory transcription factor, was enhanced with the progress of EOC. This result was mechanistically linked with an increased expression of NSAID-Activated Gene 1 (NAG-1) in MyD88-positive type I EOC stem-like cells, compared with that in MyD88-negative type II EOC cells. Elevated NAG-1 as a potent biomarker of poor prognosis in the ovarian cancer was positively associated with the levels of NF-κB activation, chemokines and stemness markers in type I EOC cells. In terms of signal transduction, NAG-1-activated SMAD-linked and non-canonical TGFβ-activated kinase 1 (TAK-1)-activated pathways contributed to NF-κB activation and the subsequent induction of some chemokines and cancer stemness markers. In addition to effects on NF-κB-dependent gene regulation, NAG-1 was involved in expression of EGF receptor and subsequent activation of EGF receptor-linked signaling. The present study also provided evidences for links between NAG-1-linked signaling and chemoresistance in ovarian cancer cells. NAG-1 and pro-inflammatory NF-κB were positively associated with resistance to paclitaxel in MyD88-positive type I EOC cells. Mechanistically, this chemoresistance occurred due to enhanced activation of the SMAD-4- and non-SMAD-TAK-1-linked pathways. All of the present data suggested NAG-1 protein as a crucial mediator of EOC progression and resistance to the standard first-line chemotherapy against EOC, particularly in MyD88-positive ovarian cancer stem-like cells.
Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Chen, Chun-Long; Arneodo, Alain; Goldar, Arach; d'Aubenton-Carafa, Yves; Thermes, Claude; Audit, Benjamin; Hyrien, Olivier
2011-01-01
Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics. PMID:22219720
Murawska-Cialowicz, E; Wojna, J; Zuwala-Jagiello, J
2015-12-01
Brain-derived neurotrophic factor (BDNF) is a protein that stimulates processes of neurogenesis, the survival of neurons and microglia, stimulates neuroplasticity, and takes part in the differentiation of cells developed in the hippocampus. BDNF is also released from skeletal muscles during exercise and can facilitate cross-talk between the nervous and muscular system. Irisin, the exercise hormone, is also released from skeletal muscles and is involved in oxidation processes in the organism. It is a vital issue from the point of view of prophylaxis and treatment through exercise of age-related diseases (e.g. senile dementia), obesity, type-2 diabetes. The aim of the study was to assess the changes in BDNF and irisin levels in young people after a 3-month CrossFit training program. At baseline and after the training, levels of BDNF and irisin were assayed before and after Wingate and progressive tests. Physical performance, body mass and composition, and muscle circumferences were also measured. There were noted: an improvement in aerobic capacity, an increase in VO2max, a reduction in adipose tissue percentage in women and an increase in LBM in all subjects. After CrossFit training the resting BDNF level increased significantly in all subjects while the resting level of irisin decreased in women, without changes in men. The resting level of BDNF at baseline was higher in men than in women. At baseline we observed an increased level of BDNF in women after Wingate and progressive tests, but in men only after the progressive test. After 3 months of CrossFit training the level of BDNF increased in all subjects, and also was higher in men than in women. In women we did not observe significant differences after both tests in comparison to rest. After the training BDNF was lower in men after Wingate and progressive tests than at rest. At baseline irisin level decreased in women after the Wingate and progressive tests. Changes in men were not observed after both tests. There were no differences in irisin levels between the baseline and 3 months after the training after Wingate and progressive tests. A beneficial influence of CrossFit training on the subjects' body composition, anaerobic capacity and cardiovascular fitness as well as an increase in BDNF makes it possible to assume that this type of training could have a very high application value, especially in a therapeutic process leading to improving a patient's wellbeing.
Tian, Geng; Sawashita, Jinko; Kubo, Hiroshi; Nishio, Shin-ya; Hashimoto, Shigenari; Suzuki, Nobuyoshi; Yoshimura, Hidekane; Tsuruoka, Mineko; Wang, Yaoyong; Liu, Yingye; Luo, Hongming; Xu, Zhe; Mori, Masayuki; Kitano, Mitsuaki; Hosoe, Kazunori; Takeda, Toshio; Usami, Shin-ichi; Higuchi, Keiichi
2014-06-01
The present study was conducted to define the relationship between the anti-aging effect of ubiquinol-10 supplementation and mitochondrial activation in senescence-accelerated mouse prone 1 (SAMP1) mice. Here, we report that dietary supplementation with ubiquinol-10 prevents age-related decreases in the expression of sirtuin gene family members, which results in the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a major factor that controls mitochondrial biogenesis and respiration, as well as superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2), which are major mitochondrial antioxidant enzymes. Ubiquinol-10 supplementation can also increase mitochondrial complex I activity and decrease levels of oxidative stress markers, including protein carbonyls, apurinic/apyrimidinic sites, malondialdehydes, and increase the reduced glutathione/oxidized glutathione ratio. Furthermore, ubiquinol-10 may activate Sirt1 and PGC-1α by increasing cyclic adenosine monophosphate (cAMP) levels that, in turn, activate cAMP response element-binding protein (CREB) and AMP-activated protein kinase (AMPK). These results show that ubiquinol-10 may enhance mitochondrial activity by increasing levels of SIRT1, PGC-1α, and SIRT3 that slow the rate of age-related hearing loss and protect against the progression of aging and symptoms of age-related diseases.
Increasing Physical Activity in Patients with Arthritis: A Tailored Health Promotion Program
Ehrlich-Jones, Linda; Mallinson, Trudy; Fischer, Heidi; Bateman, Jillian; Semanik, Pamela A.; Spring, Bonnie; Ruderman, Eric; Chang, Rowland W.
2010-01-01
Objective Despite recent studies showing the benefit of physical activity for people with arthritis, the vast majority of persons with arthritis are not sufficiently physically active. The purpose of this report is to describe a tailored health promotion intervention aimed at increasing physical activity among persons with arthritis. The intervention is designed to be useful for health systems and insurers interested in a chronic disease management program that could be disseminated to large populations of arthritis patients. Methods The intervention is carried out by a clinician who is designated as the client’s physical activity advocate. The approach emphasizes motivational interviewing, individualized goal setting, tailored strategies for increasing physical activity and for monitoring progress, and a plan of 2 years of follow-up. The intervention includes a standardized assessment of barriers to and strengths supporting increased lifestyle physical activity. A randomized, controlled trial is underway to evaluate the efficacy and cost-effectiveness of this intervention. Conclusion This intervention is unique in that it implements a program tailored to the individual that focuses on lifestyle physical activity and long-term monitoring. The approach recognizes that persons with arthritis present with varying levels of motivation for change in physical activity and that behavior change can take a long time to become habitual. PMID:20696695
Cycle Training Increased GLUT4 and Activation of mTOR in Fast Twitch Muscle Fibers
Stuart, Charles A.; Howell, Mary E.A.; Baker, Jonathan D.; Dykes, Rhesa J.; Duffourc, Michelle M.; Ramsey, Michael W.; Stone, Michael H.
2009-01-01
Purpose To determine if cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed six weeks of progressively increasing intensity stationary cycle cycling. Methods In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. Results GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (PGC-1α and phospho-AMPK) were unchanged, but the muscle hypertrophy pathway component, phospho-mTOR increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training, but also increased in Type I fibers (34%). Conclusion Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis. PMID:20010125
Gallium-67 uptake by the thyroid associated with progressive systemic sclerosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoberg, R.J.; Blue, P.W.; Kidd, G.S.
1989-01-01
Although thyroidal uptake of gallium-67 has been described in several thyroid disorders, gallium-67 scanning is not commonly used in the evaluation of thyroid disease. Thyroidal gallium-67 uptake has been reported to occur frequently with subacute thyroiditis, anaplastic thyroid carcinoma, and thyroid lymphoma, and occasionally with Hashimoto's thyroiditis and follicular thyroid carcinoma. A patient is described with progressive systemic sclerosis who, while being scanned for possible active pulmonary involvement, was found incidentally to have abnormal gallium-67 uptake only in the thyroid gland. Fine needle aspiration cytology of the thyroid revealed Hashimoto's thyroiditis. Although Hashimoto's thyroiditis occurs with increased frequency in patientsmore » with progressive systemic sclerosis, thyroidal uptake of gallium-67 associated with progressive systemic sclerosis has not, to our knowledge, been previously described. Since aggressive thyroid malignancies frequently are imaged by gallium-67 scintigraphy, fine needle aspiration cytology of the thyroid often is essential in the evaluation of thyroidal gallium-67 uptake.« less
Role of CB1 cannabinoid receptors on GABAergic neurons in brain aging.
Albayram, Onder; Alferink, Judith; Pitsch, Julika; Piyanova, Anastasia; Neitzert, Kim; Poppensieker, Karola; Mauer, Daniela; Michel, Kerstin; Legler, Anne; Becker, Albert; Monory, Krisztina; Lutz, Beat; Zimmer, Andreas; Bilkei-Gorzo, Andras
2011-07-05
Brain aging is associated with cognitive decline that is accompanied by progressive neuroinflammatory changes. The endocannabinoid system (ECS) is involved in the regulation of glial activity and influences the progression of age-related learning and memory deficits. Mice lacking the Cnr1 gene (Cnr1(-/-)), which encodes the cannabinoid receptor 1 (CB1), showed an accelerated age-dependent deficit in spatial learning accompanied by a loss of principal neurons in the hippocampus. The age-dependent decrease in neuronal numbers in Cnr1(-/-) mice was not related to decreased neurogenesis or to epileptic seizures. However, enhanced neuroinflammation characterized by an increased density of astrocytes and activated microglia as well as an enhanced expression of the inflammatory cytokine IL-6 during aging was present in the hippocampus of Cnr1(-/-) mice. The ongoing process of pyramidal cell degeneration and neuroinflammation can exacerbate each other and both contribute to the cognitive deficits. Deletion of CB1 receptors from the forebrain GABAergic, but not from the glutamatergic neurons, led to a similar neuronal loss and increased neuroinflammation in the hippocampus as observed in animals lacking CB1 receptors in all cells. Our results suggest that CB1 receptor activity on hippocampal GABAergic neurons protects against age-dependent cognitive decline by reducing pyramidal cell degeneration and neuroinflammation.
Potential Regulators Driving the Transition in Nonalcoholic Fatty Liver Disease: a Stage-Based View.
Lou, Yi; Chen, Yi-Dan; Sun, Fu-Rong; Shi, Jun-Ping; Song, Yu; Yang, Jin
2017-01-01
The incidence of nonalcoholic fatty liver disease (NAFLD), ranging from mild steatosis to hepatocellular injury and inflammation, increases with the rise of obesity. However, the implications of transcription factors network in progressive NAFLD remain to be determined. A co-regulatory network approach by combining gene expression and transcription influence was utilized to dissect transcriptional regulators in different NAFLD stages. In vivo, mice models of NAFLD were used to investigate whether dysregulated expression be undertaken by transcriptional regulators. Through constructing a large-scale co-regulatory network, sample-specific regulator activity was estimated. The combinations of active regulators that drive the progression of NAFLD were identified. Next, top regulators in each stage of NAFLD were determined, and the results were validated using the different experiments and bariatric surgical samples. In particular, Adipocyte enhancer-binding protein 1 (AEBP1) showed increased transcription activity in nonalcoholic steatohepatitis (NASH). Further characterization of the AEBP1 related transcription program defined its co-regulators, targeted genes, and functional organization. The dynamics of AEBP1 and its potential targets were verified in an animal model of NAFLD. This study identifies putative functions for several transcription factors in the pathogenesis of NAFLD and may thus point to potential targets for therapeutic interventions. © 2017 The Author(s) Published by S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serafino, A.; Balestrieri, E.; Pierimarchi, P.
2009-03-10
Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derivedmore » non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.« less
Ding, Zhongxiang; Zhang, Han; Lv, Xiao-Fei; Xie, Fei; Liu, Lizhi; Qiu, Shijun; Li, Li; Shen, Dinggang
2018-01-01
Radiation therapy, a major method of treatment for brain cancer, may cause severe brain injuries after many years. We used a rare and unique cohort of nasopharyngeal carcinoma patients with normal-appearing brains to study possible early irradiation injury in its presymptomatic phase before severe, irreversible necrosis happens. The aim is to detect any structural or functional imaging biomarker that is sensitive to early irradiation injury, and to understand the recovery and progression of irradiation injury that can shed light on outcome prediction for early clinical intervention. We found an acute increase in local brain activity that is followed by extensive reductions in such activity in the temporal lobe and significant loss of functional connectivity in a distributed, large-scale, high-level cognitive function-related brain network. Intriguingly, these radiosensitive functional alterations were found to be fully or partially recoverable. In contrast, progressive late disruptions to the integrity of the related far-end white matter structure began to be significant after one year. Importantly, early increased local brain functional activity was predictive of severe later temporal lobe necrosis. Based on these findings, we proposed a dynamic, multifactorial model for radiation injury and another preventive model for timely clinical intervention. Hum Brain Mapp 39:407-427, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise?
Eijsvogels, Thijs M. H.; Fernandez, Antonio B.; Thompson, Paul D.
2015-01-01
Multiple epidemiological studies document that habitual physical activity reduces the risk of atherosclerotic cardiovascular disease (ASCVD), and most demonstrate progressively lower rates of ASCVD with progressively more physical activity. Few studies have included individuals performing high-intensity, lifelong endurance exercise, however, and recent reports suggest that prodigious amounts of exercise may increase markers for, and even the incidence of, cardiovascular disease. This review examines the evidence that extremes of endurance exercise may increase cardiovascular disease risk by reviewing the causes and incidence of exercise-related cardiac events, and the acute effects of exercise on cardiovascular function, the effect of exercise on cardiac biomarkers, including “myocardial” creatine kinase, cardiac troponins, and cardiac natriuretic peptides. This review also examines the effect of exercise on coronary atherosclerosis and calcification, the frequency of atrial fibrillation in aging athletes, and the possibility that exercise may be deleterious in individuals genetically predisposed to such cardiac abnormalities as long QT syndrome, right ventricular cardiomyopathy, and hypertrophic cardiomyopathy. This review is to our knowledge unique because it addresses all known potentially adverse cardiovascular effects of endurance exercise. The best evidence remains that physical activity and exercise training benefit the population, but it is possible that prolonged exercise and exercise training can adversely affect cardiac function in some individuals. This hypothesis warrants further examination. PMID:26607287
Neural mechanisms associated with treatment decision making: An fMRI study.
Abidi, Malek; Bruce, Jared; Le Blanche, Alain; Bruce, Amanda; Jarmolowicz, David P; Csillik, Antonia; Thai, N Jade; Lim, Seung-Lark; Heinzlef, Olivier; de Marco, Giovanni
2018-04-23
Great progress has been made in understanding how people make financial decisions. However, there is little research on how people make health and treatment choices. Our study aimed to examine how participants weigh benefits (reduction in disease progression) and probability of risk (medications' side effects) when making hypothetical treatment decisions, and to identify the neural networks implicated in this process. Fourteen healthy participants were recruited to perform a treatment decision probability discounting task using MRI. Behavioral responses and skin conductance responses (SCRs) were measured. A whole brain analysis were performed to compare activity changes between "mild" and "severe" medications' side effects conditions. Then, orbitofrontal cortex (OFC), ventral striatum (VS), amygdala and insula were chosen for effective connectivity analysis. Behavioral data showed that participants are more likely to refuse medication when side effects are high and efficacy is low. SCRs values were significantly higher when people made medication decisions in the severe compared to mild condition. Functionally, OFC and VS were activated in the mild condition and were associated with increased likehood of choosing to take medication (higher area under the curve "AUC" side effects/efficacy). These regions also demonstrated an increased effective connectivity when participants valued treatment benefits. By contrast, the OFC, insula and amygdala were activated in the severe condition and were associated with and increased likelihood to refuse treatment. These regions showed enhanced effective connectivity when participants were confronted with increased side effects severity. This is the first study to examine the behavioral and neural bases of medical decision making. Copyright © 2018 Elsevier B.V. All rights reserved.
Gerónimo-Olvera, Cristian; Montiel, Teresa; Rincon-Heredia, Ruth; Castro-Obregón, Susana; Massieu, Lourdes
2017-06-29
Autophagy is triggered during nutrient and energy deprivation in a variety of cells as a homeostatic response to metabolic stress. In the CNS, deficient autophagy has been implicated in neurodegenerative diseases and ischemic brain injury. However, its role in hypoglycemic damage is poorly understood and the dynamics of autophagy during the hypoglycemic and the glucose reperfusion periods, has not been fully described. In the present study, we analyzed the changes in the content of the autophagy proteins BECN1, LC3-II and p62/SQSTM1 by western blot, and autophagosome formation was followed through time-lapse experiments, during glucose deprivation (GD) and glucose reintroduction (GR) in cortical cultures. According to the results, autophagosome formation rapidly increased during GD, and was followed by an active autophagic flux early after glucose replenishment. However, cells progressively died during GR and autophagy inhibition reduced neuronal death. Neurons undergoing apoptosis during GR did not form autophagosomes, while those surviving up to late GR showed autophagosomes. Calpain activity strongly increased during GR and remained elevated during progressive neuronal death. Its activation led to the cleavage of LAMP2 resulting in lysosome membrane permeabilization (LMP) and release of cathepsin B to the cytosol. Calpain inhibition prevented LMP and increased the number of neurons containing lysosomes and autophagosomes increasing cell viability. Taken together, the present results suggest that calpain-mediated lysosome dysfunction during GR turns an adaptive autophagy response to energy stress into a defective autophagy pathway, which contributes to neuronal death. In these conditions, autophagy inhibition results in the improvement of cell survival.
Mechanisms Of Hypoxia-Induced Immune Escape In Cancer And Their Regulation By Nitric Oxide.
Graham, Charles; Barsoum, Ivraym; Kim, Judy; Black, Madison; Siemens, Robert D
2015-08-01
The acquired ability of tumour cells to avoid destruction by immune effector mechanisms (immune escape) is important for malignant progression. Also associated with malignant progression is tumour hypoxia, which induces aggressive phenotypes such as invasion, metastasis and drug resistance in cancer cells. Our studies revealed that hypoxia contributes to escape from innate immunity by increasing tumour cell expression of the metalloproteinase ADAM10 in a manner dependent on accumulation of the alpha subunit of the transcription factor hypoxia-inducible factor-1 (HIF-1α). Increased ADAM10 expression leads to shedding of the NK cell-activating ligand, MICA, from the surface of tumour cells, thereby resulting in resistance to NK cell-mediated lysis. Our more recent studies demonstrated that hypoxia, also via HIF-1α accumulation, increases the expression of the inhibitory co-stimulatory ligand PD-L1 on tumour cells. Elevated PD-L1 expression leads to escape from adaptive immunity via increased apoptosis of CD8 + cytotoxic T lymphocytes. Accumulating evidence indicates that hypoxia-induced acquisition of malignant phenotypes, including immune escape, is in part due to impaired nitric oxide (NO)-mediated activation of cGMP signalling and that restoration of cGMP signalling prevents such hypoxic responses. We have shown that NO/cGMP signalling inhibits hypoxia-induced malignant phenotypes likely in part by interfering with HIF-1α accumulation via a mechanism involving calpain. These findings indicate that activation of NO/cGMP signalling may have useful applications in cancer therapy. Copyright © 2015. Published by Elsevier B.V.
xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression.
Ji, Xiangming; Qian, Jun; Rahman, S M Jamshedur; Siska, Peter J; Zou, Yong; Harris, Bradford K; Hoeksema, Megan D; Trenary, Irina A; Heidi, Chen; Eisenberg, Rosana; Rathmell, Jeffrey C; Young, Jamey D; Massion, Pierre P
2018-05-23
Many tumors increase uptake and dependence on glucose, cystine or glutamine. These basic observations on cancer cell metabolism have opened multiple new diagnostic and therapeutic avenues in cancer research. Recent studies demonstrated that smoking could induce the expression of xCT (SLC7A11) in oral cancer cells, suggesting that overexpression of xCT may support lung tumor progression. We hypothesized that overexpression of xCT occurs in lung cancer cells to satisfy the metabolic requirements for growth and survival. Our results demonstrated that 1) xCT was highly expressed at the cytoplasmic membrane in non-small cell lung cancer (NSCLC), 2) the expression of xCT was correlated with advanced stage and predicted a worse 5-year survival, 3) targeting xCT transport activity in xCT overexpressing NSCLC cells with sulfasalazine decreased cell proliferation and invasion in vitro and in vivo and 4) increased dependence on glutamine was observed in xCT overexpressed normal airway epithelial cells. These results suggested that xCT regulate metabolic requirements during lung cancer progression and be a potential therapeutic target in NSCLC.
Palchykova, S.; Achermann, P.; Tobler, I.; Deboer, T.
2017-01-01
Abstract It has been shown previously in Djungarian hamsters that the initial electroencephalography (EEG) slow-wave activity (power in the 0.5–4.0 Hz band; SWA) in non-rapid eye movement (NREM) sleep following an episode of daily torpor is consistently enhanced, similar to the SWA increase after sleep deprivation (SD). However, it is unknown whether the network mechanisms underlying the SWA increase after torpor and SD are similar. EEG slow waves recorded in the neocortex during sleep reflect synchronized transitions between periods of activity and silence among large neuronal populations. We therefore set out to investigate characteristics of individual cortical EEG slow waves recorded during NREM sleep after 4 h SD and during sleep after emergence from an episode of daily torpor in adult male Djungarian hamsters. We found that during the first hour after both SD and torpor, the SWA increase was associated with an increase in slow-wave incidence and amplitude. However, the slopes of single slow waves during NREM sleep were steeper in the first hour after SD but not after torpor, and, in contrast to sleep after SD, the magnitude of change in slopes after torpor was unrelated to the changes in SWA. Furthermore, slow-wave slopes decreased progressively within the first 2 h after SD, while a progressive increase in slow-wave slopes was apparent during the first 2 h after torpor. The data suggest that prolonged waking and torpor have different effects on cortical network activity underlying slow-wave characteristics, while resulting in a similar homeostatic sleep response of SWA. We suggest that sleep plays an important role in network homeostasis after both waking and torpor, consistent with a recovery function for both states. PMID:28168294
Wafa, Latif A; Cheng, Helen; Plaa, Nathan; Ghaidi, Fariba; Fukumoto, Takahiro; Fazli, Ladan; Gleave, Martin E; Cox, Michael E; Rennie, Paul S
2012-06-15
The androgen receptor (AR) plays a central role in prostate cancer progression to the castration-resistant (CR) lethal state. L-Dopa decarboxylase (DDC) is an AR coactivator that increases in expression with disease progression and is coexpressed with the receptor in prostate adenocarcinoma cells, where it may enhance AR activity. Here, we hypothesize that the DDC enzymatic inhibitor, carbidopa, can suppress DDC-coactivation of AR and retard prostate tumor growth. Treating LNCaP prostate cancer cells with carbidopa in transcriptional assays suppressed the enhanced AR transactivation seen with DDC overexpression and decreased prostate-specific antigen (PSA) mRNA levels. Carbidopa dose-dependently inhibited cell growth and decreased survival in LNCaP cell proliferation and apoptosis assays. The inhibitory effect of carbidopa on DDC-coactivation of AR and cell growth/survival was also observed in PC3 prostate cancer cells (stably expressing AR). In vivo studies demonstrated that serum PSA velocity and tumor growth rates elevated ∼2-fold in LNCaP xenografts, inducibly overexpressing DDC, were reverted to control levels with carbidopa administration. In castrated mice, treating LNCaP tumors, expressing endogenous DDC, with carbidopa delayed progression to the CR state from 6 to 10 weeks, while serum PSA and tumor growth decreased 4.3-fold and 5.4-fold, respectively. Our study is a first time demonstration that carbidopa can abrogate DDC-coactivation of AR in prostate cancer cells and tumors, decrease serum PSA, reduce tumor growth and delay CR progression. Since carbidopa is clinically approved, it may be readily used as a novel therapeutic strategy to suppress aberrant AR activity and delay prostate cancer progression. Copyright © 2011 UICC.
Spontaneous and induced aneuploidy, considerations which may influence chromosome malsegregation.
Parry, James M; Al-Obaidly, A; Al-Walhaib, M; Kayani, M; Nabeel, T; Strefford, J; Parry, E M
2002-07-25
Aneuploidy plays a major role in the production of human birth defects and is becoming increasingly recognised as a critical event in the etiology of a wide range of human cancers. Thus, the detection of aneuploidy and the characterisation of the mechanisms which lead to chromosome malsegregation is an important area of genotoxicological research. As an aid to aneuploidy research, methods have been developed to analyse the mechanisms of chromosome malsegregation and to investigate the role of aneuploidy in tumour progression. The presence of aneuploid cells is a common characteristic of many of tumour cell types as illustrated by the wide range of chromosome number changes detected in post-menopausal breast tumours. To investigate the time of occurrence of aneuploidy during tumour progression, we have studied the chromosome number status of Syrian hamster dermal (SHD) cells cultures progressing to morphological transformation. The production of both polyploid and aneuploid cells is a common feature of progressing cells in this model. The elevation of both progression to morphological transformation and aneuploid frequencies can be produced by exposure to a diverse range of carcinogens and tumour promoters. Analysis of the genotoxic activity of the hormone 17-beta oestradiol demonstrated its ability to induce both chromosome loss and non-disjunction in human lymphoblastoid cells implicating aneugenic activity in hormone related cancers. Mutations in the p53 tumour suppressor gene introduced into human fibroblasts produced modifications in chromosome separation at mitosis which may lead to the production of both aneuploidy and polyploid cells. Our studies indicate that the production of aneuploid cells can be influenced by both endogenous and exogenous factors and occur throughout the progression of normal cells to a malignant phenotype.
Pérez-Severiano, Francisca; Escalante, Bruno; Vergara, Paula; Ríos, Camilo; Segovia, José
2002-09-27
Huntington's disease (HD) is an autosomal hereditary neurodegenerative disorder caused by an abnormal expansion of the CAG repeats that code for a polyglutamine tract in a novel protein called huntingtin (htt). Both patients and experimental animals exhibit oxidative damage in specific areas of the brain, particularly the striatum. Nitric oxide (NO) is involved in many different physiological processes, and under pathological conditions it may promote oxidative damage through the formation of the highly reactive metabolite peroxynitrite; however, it may also play a role protecting cells from oxidative damage. We previously showed a correlation between the progression of the neurological phenotype and striatal oxidative damage in a line of transgenic mice, R6/1, which expresses a human mutated htt exon 1 with 116 CAG repeats. The purpose of the present work was to explore the participation of NO in the progressive oxidative damage that occurs in the striata of R6/1 mice. We analyzed the role of NO by measuring the activity of nitric oxide synthase (NOS) in the striata of transgenic and control mice at different ages. There was no difference in NOS activity between transgenic and wild-type mice at 11 weeks of age. In contrast, 19-week-old transgenic mice showed a significant increase in NOS activity, compared with same age controls. By 35 weeks of age, there was a decrease in NOS activity in transgenic mice when compared with wild-type controls. NOS protein expression was also determined in 11-, 19- and 35-week-old transgenic mice and wild-type littermates. Our results show increased neuronal NOS expression in 19-week-old transgenic mice, followed by a decreased level in 35-week-old mice, compared with controls, a phenomenon that parallels the changes in NOS enzyme activity. The present results suggest that NO is involved in the process leading to striatal oxidative damage and that it is associated with the onset of the progressive neurological phenotype in mice transgenic for the HD mutation.
Yi, Feng; DeCan, Evan; Stoll, Kurt; Marceau, Eric; Deisseroth, Karl; Lawrence, J. Josh
2014-01-01
SUMMARY Objective A common rodent model in epilepsy research employs the muscarinic acetylcholine receptor (mAChR) agonist pilocarpine, yet the mechanisms underlying the induction of pilocarpine-induced seizures (PISs) remain unclear. Global M1 mAChR (M1R) knockout mice are resistant to PISs, implying that M1R activation disrupts excitation/inhibition balance. Parvalbumin-positive (PV) inhibitory neurons express M1 mAChRs, participate in cholinergically-induced oscillations, and can enter a state of depolarization block (DB) during epileptiform activity. Here, we test the hypothesis that pilocarpine activation of M1Rs expressed on PV cells contributes to PISs. Methods CA1 PV cells in PV-CRE mice were visualized with a floxed YFP or hM3Dq-mCherry adeno-associated virus, or by crossing PV-CRE mice with the RosaYFP reporter line. To eliminate M1Rs from PV cells, we generated PV-M1KO mice by crossing PV-CRE and floxed M1 mice. Action potential (AP) frequency was monitored during application of pilocarpine (200 µM). In behavioral experiments, locomotion and seizure symptoms were recorded in WT or PV-M1KO mice during PISs. Results Pilocarpine significantly increased AP frequency in CA1 PV cells into the gamma range. In the continued presence of pilocarpine, a subset (5/7) of PV cells progressed to DB, which was mimicked by hM3Dq activation of Gq-receptor signaling. Pilocarpine-induced depolarization, AP firing at gamma frequency, and progression to DB were prevented in CA1 PV cells of PV-M1KO mice. Finally, compared to WT mice, PV-M1KO mice were associated with reduced severity of PISs. Significance Pilocarpine can directly depolarize PV+ cells via M1R activation but a subset of these cells progress to DB. Our electrophysiological and behavioral results suggest that this mechanism is active during PISs, contributing to a collapse of PV-mediated GABAergic inhibition, dysregulation of excitation/inhibition balance, and increased susceptibility to PISs. PMID:25495999
Ribonucleic Acid Synthesis by Cucumber Chromatin
Johnson, Kenneth D.; Purves, William K.
1970-01-01
When intact etiolated 2-day cucumber (Cucumis sativus) embryos were treated with indoleacetic acid (IAA), gibberellin A7 (GA7), or kinetin, chromatin derived from the embryonic axes exhibited an increased capacity to support RNA synthesis in either the presence or the absence of bacterial RNA polymerase. An IAA effect on cucumber RNA polymerase activity was evident after 4 hours of hormone treatment; the IAA effect on DNA template activity (bacterial RNA polymerase added) occurred after longer treatments (12 hours). GA7 also promoted template activity, but again only after a prior stimulation of endogenous chromatin activity. After 12 hours of kinetin treatment, both endogenous chromatin and DNA template activities were substantially above control values, but longer kinetin treatments caused these activities to decline in magnitude. When chromatin was prepared from hypocotyl segments that were floated on a GA7 solution, a GA-induced increase in endogenous chromatin activity occurred, but only if cotyledon tissue was left attached to the segments during the period of hormone treatment. Age of the seedling tissue had a profound influence on the chromatin characteristics. With progression of development from the 2-day to the 4-day stage, the endogenous chromatin activity declined while the DNA template activity increased. PMID:16657509
Koga, Tomohiro; Okada, Akitomo; Fukuda, Takaaki; Hidaka, Toshihiko; Ishii, Tomonori; Ueki, Yukitaka; Kodera, Takao; Nakashima, Munetoshi; Takahashi, Yuichi; Honda, Seiyo; Horai, Yoshiro; Watanabe, Ryu; Okuno, Hiroshi; Aramaki, Toshiyuki; Izumiyama, Tomomasa; Takai, Osamu; Miyashita, Taiichiro; Sato, Shuntaro; Kawashiri, Shin-Ya; Iwamoto, Naoki; Ichinose, Kunihiro; Tamai, Mami; Origuchi, Tomoki; Nakamura, Hideki; Aoyagi, Kiyoshi; Eguchi, Katsumi; Kawakami, Atsushi
2016-04-01
To determine prognostic factors of clinically relevant radiographic progression (CRRP) in patients with rheumatoid arthritis (RA) in clinical practice.We performed a multicenter prospective study in Japan of biological disease-modifying antirheumatic drug (bDMARD)-naive RA patients with moderate to high disease activity treated with conventional synthetic DMARDs (csDMARDs) at study entry. We longitudinally observed 408 patients for 1 year and assessed disease activity every 3 months. CRRP was defined as yearly progression of modified total Sharp score (mTSS) > 3.0 U. We also divided the cohort into 2 groups based on disease duration (<3 vs ≥3 years) and performed a subgroup analysis.CRRP was found in 10.3% of the patients. A multiple logistic regression analysis revealed that the independent variables to predict the development of CRRP were: CRP at baseline (0.30 mg/dL increase, 95% confidence interval [CI] 1.01-1.11), time-integrated Disease Activity Score in 28 joints-erythrocyte sedimentation rate (DAS28-ESR) during the 1 year postbaseline (12.4-unit increase, 95%CI 1.17-2.59), RA typical erosion at baseline (95%CI 1.56-21.1), and the introduction of bDMARDs (95%CI 0.06-0.38). The subgroup analysis revealed that time-integrated DAS28-ESR is not a predictor whereas the introduction of bDMARDs is a significant protective factor for CRRP in RA patients with disease duration <3 years.We identified factors that could be used to predict the development of CRRP in RA patients treated with DMARDs. These variables appear to be different based on the RA patients' disease durations.
Dai, Zhiyu; Qi, Weiwei; Li, Cen; Lu, Juling; Mao, Yuling; Yao, Yachao; Li, Lei; Zhang, Ting; Hong, Honghai; Li, Shuai; Zhou, Ti; Yang, Zhonghan; Yang, Xia; Gao, Guoquan; Cai, Weibin
2013-09-05
Both elevated plasma free fatty acids (FFA) and accumulating triglyceride in adipose tissue are observed in the process of obesity and insulin resistance. This contradictory phenomenon and its underlying mechanisms have not been thoroughly elucidated. Recent studies have demonstrated that pigment epithelium-derived factor (PEDF) contributes to elevated plasma FFA and insulin resistance in obese mice via the activation of adipose triglyceride lipase (ATGL). However, we found that PEDF downregulated adipose ATGL protein expression despite of enhancing lipolysis. Plasma PEDF and FFA were increased in associated with a progressive high-fat-diet, and those outcomes were also accompanied by fat accumulation and a reduction in adipose ATGL. Exogenous PEDF injection downregulated adipose ATGL protein expression and elevated plasma FFA, while endogenous PEDF neutralization significantly rescued the adipose ATGL reduction and also reduced plasma FFA in obese mice. PEDF reduced ATGL protein expression in a time- and dose-dependent manner in differentiated 3T3-L1 cells. Small interfering RNA-mediated PEDF knockdown and antibody-mediated PEDF blockage increased endogenous ATGL expression, and PEDF overexpression downregulated ATGL. PEDF resulted in a decreased half-life of ATGL and regulated ATGL degradation via ubiquitin-dependent proteasomal degradation pathway. PEDF stimulated lipolysis via ATGL using ATGL inhibitor bromoenol lactone, and PEDF also downregulated G0/G1 switch gene 2 (G0S2) expression, which is an endogenous inhibitor of ATGL activation. Overall, PEDF attenuated ATGL protein accumulation via proteasome-mediated degradation in adipocytes, and PEDF also promoted lipolysis by activating ATGL. Elevated PEDF may contribute to progressive obesity and insulin resistance via its dual regulation of ATGL. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Syed, Salahuddin; Desler, Claus; Rasmussen, Lene J; Schmidt, Kristina H
2016-12-01
In response to replication stress cells activate the intra-S checkpoint, induce DNA repair pathways, increase nucleotide levels, and inhibit origin firing. Here, we report that Rrm3 associates with a subset of replication origins and controls DNA synthesis during replication stress. The N-terminal domain required for control of DNA synthesis maps to residues 186-212 that are also critical for binding Orc5 of the origin recognition complex. Deletion of this domain is lethal to cells lacking the replication checkpoint mediator Mrc1 and leads to mutations upon exposure to the replication stressor hydroxyurea. This novel Rrm3 function is independent of its established role as an ATPase/helicase in facilitating replication fork progression through polymerase blocking obstacles. Using quantitative mass spectrometry and genetic analyses, we find that the homologous recombination factor Rdh54 and Rad5-dependent error-free DNA damage bypass act as independent mechanisms on DNA lesions that arise when Rrm3 catalytic activity is disrupted whereas these mechanisms are dispensable for DNA damage tolerance when the replication function is disrupted, indicating that the DNA lesions generated by the loss of each Rrm3 function are distinct. Although both lesion types activate the DNA-damage checkpoint, we find that the resultant increase in nucleotide levels is not sufficient for continued DNA synthesis under replication stress. Together, our findings suggest a role of Rrm3, via its Orc5-binding domain, in restricting DNA synthesis that is genetically and physically separable from its established catalytic role in facilitating fork progression through replication blocks.
Syed, Salahuddin; Desler, Claus; Rasmussen, Lene J.; Schmidt, Kristina H.
2016-01-01
In response to replication stress cells activate the intra-S checkpoint, induce DNA repair pathways, increase nucleotide levels, and inhibit origin firing. Here, we report that Rrm3 associates with a subset of replication origins and controls DNA synthesis during replication stress. The N-terminal domain required for control of DNA synthesis maps to residues 186–212 that are also critical for binding Orc5 of the origin recognition complex. Deletion of this domain is lethal to cells lacking the replication checkpoint mediator Mrc1 and leads to mutations upon exposure to the replication stressor hydroxyurea. This novel Rrm3 function is independent of its established role as an ATPase/helicase in facilitating replication fork progression through polymerase blocking obstacles. Using quantitative mass spectrometry and genetic analyses, we find that the homologous recombination factor Rdh54 and Rad5-dependent error-free DNA damage bypass act as independent mechanisms on DNA lesions that arise when Rrm3 catalytic activity is disrupted whereas these mechanisms are dispensable for DNA damage tolerance when the replication function is disrupted, indicating that the DNA lesions generated by the loss of each Rrm3 function are distinct. Although both lesion types activate the DNA-damage checkpoint, we find that the resultant increase in nucleotide levels is not sufficient for continued DNA synthesis under replication stress. Together, our findings suggest a role of Rrm3, via its Orc5-binding domain, in restricting DNA synthesis that is genetically and physically separable from its established catalytic role in facilitating fork progression through replication blocks. PMID:27923055
Nikiphorou, Elena; Norton, Sam; Young, Adam; Carpenter, Lewis; Dixey, Josh; Walsh, David Andrew; Kiely, Patrick
2016-01-01
Objectives To examine the association between disease activity in early rheumatoid arthritis (RA), functional limitation and long-term orthopaedic episodes. Methods Health Assessment Questionnaire (HAQ) disability scores were collected from two longitudinal early RA inception cohorts in routine care; Early Rheumatoid Arthritis Study and Early Rheumatoid Arthritis Network from 1986 to 2012. The incidence of major and intermediate orthopaedic surgical episodes over 25 years was collected from national data sets. Disease activity was categorised by mean disease activity score (DAS28) annually between years 1 and 5; remission (RDAS≤2.6), low (LDAS>2.6–3.2), low-moderate (LMDAS≥3.2–4.19), high-moderate (HMDAS 4.2–5.1) and high (HDAS>5.1). Results Data from 2045 patients were analysed. Patients in RDAS showed no HAQ progression over 5 years, whereas there was a significant relationship between rising DAS28 category and HAQ at 1 year, and the rate of HAQ progression between years 1 and 5. During 27 986 person-years follow-up, 392 intermediate and 591 major surgeries were observed. Compared with the RDAS category, there was a significantly increased cumulative incidence of intermediate surgery in HDAS (OR 2.59 CI 1.49 to 4.52) and HMDAS (OR 1.8 CI 1.05 to 3.11) categories, and for major surgery in HDAS (OR 2.48 CI 1.5 to 4.11), HMDAS (OR 2.16 CI 1.32 to 3.52) and LMDAS (OR 2.07 CI 1.28 to 3.33) categories. There was no significant difference in HAQ progression or orthopaedic episodes between RDAS and LDAS categories. Conclusions There is an association between disease activity and both poor function and long-term orthopaedic episodes. This illustrates the far from benign consequences of persistent moderate disease activity, and supports European League Against Rheumatism treat to target recommendations to secure low disease activity or remission in all patients. PMID:26979104
Honda, Masao; Takegoshi, Kai; Yamashita, Taro; Nakamura, Mikiko; Shirasaki, Takayoshi; Sakai, Yoshio; Shimakami, Tetsuro; Nagata, Naoto; Takamura, Toshinari; Tanaka, Takuji; Kaneko, Shuichi
2017-01-01
The pathogenesis of non-alcoholic steatohepatitis (NASH) is still unclear and the prevention of the development of hepatocellular carcinoma (HCC) has not been established. We established an atherogenic and high-fat diet mouse model that develops hepatic steatosis, inflammation, fibrosis, and liver tumors at a high frequency. Using two NASH-HCC mouse models, we showed that peretinoin, an acyclic retinoid, significantly improved liver histology and reduced the incidence of liver tumors. Interestingly, we found that peretinoin induced autophagy in the liver of mice, which was characterized by the increased co-localized expression of microtubule-associated protein light chain 3B-II and lysosome-associated membrane protein 2, and increased autophagosome formation and autophagy flux in the liver. These findings were confirmed using primary mouse hepatocytes. Among representative autophagy pathways, the autophagy related (Atg) 5-Atg12-Atg16L1 pathway was impaired; especially, Atg16L1 was repressed at both the mRNA and protein level. Decreased Atg16L1 mRNA expression was also found in the liver of patients with NASH according to disease progression. Promoter analysis revealed that peretinoin activated the promoter of Atg16L1 by increasing the expression of CCAAT/enhancer-binding-protein-alpha. Interestingly, Atg16L1 overexpression in HepG2 cells inhibited palmitate-induced NF-kB activation and interleukin-6-induced STAT3 activation. We showed that Atg16L1 induced the de-phosphorylation of Gp130, a receptor subunit of interleukin-6 family cytokines, which subsequently repressed phosphorylated-STAT3 (Tyr705) levels, and this process might be independent of autophagy function. Thus, peretinoin prevents the progression of NASH and the development of HCC through activating the autophagy pathway by increased Atg16L1 expression, which is an essential regulator of autophagy and anti-inflammatory proteins. PMID:28591717
Waters, S M; Davis, T P
1997-04-24
Work in our laboratory has shown that in addition to previously characterized changes in the level of neuropeptides in SDAT brain, the activity of degradative enzymes responsible for peptide metabolism is also affected. In addition to other reported alterations in peptide metabolism, we have observed that SS-28 degradation is increased in Brodmann area 22 whereas substance P degradation is increased in temporal cortex. Changes in the degradation of these neuropeptides known to be affected in SDAT correlate well with alterations in the activity of specific neuropeptidases. Trypsin-like serine protease activity is increased in SDAT Brodmann area 22 which parallels the increased degradation of SS-28. The activity of MEP 24.15 is decreased in temporal cortex which corresponds to the decreased degradation of substance P. Changes in the activity of these degradative enzymes in SDAT brain can potentially affect the action of other neuropeptide substrates because the neuropeptidases discussed here terminate the action of several neuropeptides. As more neuropeptide and degradative peptidase alterations are discovered in SDAT, greater emphasis may be placed on the role that peptides and neuropeptidases play in the progression of SDAT.
Homocysteine Is an Oncometabolite in Breast Cancer, Which Promotes Tumor Progression and Metastasis
2014-09-01
increase in breast cancer, which results in changes in gene expression in tumor cells helping the tumors to grow and metastasize. The molecular basis...in changes in gene expression in tumor cells helping the tumors to grow and metastasize. The molecular basis for the increase in the levels of this...diseases and also a pregnancy disorder known as preeclampsia . Polymorphisms in MTHFR that decrease the catalytic activity of the enzyme are common in the
Modified L'Episcopo tendon transfers for irreparable rotator cuff tears: 5-year follow-up.
Gerhardt, Christian; Lehmann, Lars; Lichtenberg, Sven; Magosch, Peter; Habermeyer, Peter
2010-06-01
Patients with posterosuperior cuff tears lose functional external rotation of the shoulder. Latissimus dorsi and teres major transfer is performed to restore external rotation. Twenty patients with a mean age was 55.8 +/- 6 years underwent this procedure and were examined at averages of 24.7 (n = 17) and 70.6 (n = 13) months. Two patients did not improve presumably because of failure of the transfer. The Constant and Murley score increased from 55.6 to 90.4 after 2 years and to 87.9 after 5 years. The mean active flexion increased from 119.4 degrees to 169.3 degrees and reached 170 degrees after 5 years, and mean external rotation increased from 12 degrees to 35 degrees , finally reaching 23 degrees . The grade of cuff arthritis progressed from initially Grade 1 in 17% and Grade 2 in 28% to Grade 2 in 8%, Grade 3 in 69%, and Grade 4 in 15% at final followup. The acromiohumeral distance increased from 4.5 mm to 6 mm and decreased to 3.8 mm after 5 years. Electromyographic analysis showed activity during isometric internal and external rotation in the transferred muscle in all patients. The L'Episcopo procedure can restore shoulder function, but cuff arthropathy may progress. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Auxin, ethylene and the regulation of root growth under mechanical impedance
NASA Astrophysics Data System (ADS)
Sharma, Rameshwar; Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju
2012-07-01
Among the multitude functions performed by plant roots, little information is available about the mechanisms that allow roots to overcome the soil resistance, in order to grow in the soil to obtain water and nutrient. Tomato (Solanum lycopersicum) seedlings grown on horizontally placed agar plates showed a progressive decline in the root length with the increasing impedance of agar media. The incubation with 1-methylcyclopropane (1-MCP), an inhibitor of ethylene perception, led to aerial growth of roots. In contrast, in absence of 1-MCP control roots grew horizontally anchored to the agar surface. Though 1-MCP-treated and control seedlings showed differential ability to penetrate in the agar, the inhibition of root elongation was nearly similar for both treatments. While increased mechanical impedance also progressively impaired hypocotyl elongation in 1-MCP treated seedlings, it did not affect the hypocotyl length of control seedlings. The decline in root elongation was also associated with increased expression of DR5::GUS activity in the root tip signifying accumulation of auxin at the root tip. The increased expression of DR5::GUS activity in the root tip was also observed in 1-MCP treated seedlings, indicating independence of this response from ethylene signaling. Our results indicate operation of a sensing mechanism in root that likely operates independently of ethylene but involves auxin to determine the degree of impedance of the substratum.
Su, Shifeng; Parris, Amanda B; Grossman, Gail; Mohler, James L; Wang, Zengjun; Wilson, Elizabeth M
2017-04-01
High affinity androgen binding to the androgen receptor (AR) activates genes required for male sex differentiation and promotes the development and progression of prostate cancer. Human AR transcriptional activity involves interactions with coregulatory proteins that include primate-specific melanoma antigen-A11 (MAGE-A11), a coactivator that increases AR transcriptional activity during prostate cancer progression to castration-resistant/recurrent prostate cancer (CRPC). Microarray analysis and quantitative RT-PCR were performed to identify androgen-regulated MAGE-A11-dependent genes in LAPC-4 prostate cancer cells after lentivirus shRNA knockdown of MAGE-A11. Chromatin immunoprecipitation was used to assess androgen-dependent AR recruitment, and immunocytochemistry to localize an androgen-dependent protein in prostate cancer cells and tissue and in the CWR22 human prostate cancer xenograft. Microarray analysis of androgen-treated LAPC-4 prostate cancer cells indicated follistatin-like 1 (FSTL1) is up-regulated by MAGE-A11. Androgen-dependent up-regulation of FSTL1 was inhibited in LAPC-4 cells by lentivirus shRNA knockdown of AR or MAGE-A11. Chromatin immunoprecipitation demonstrated AR recruitment to intron 10 of the FSTL1 gene that contains a classical consensus androgen response element. Increased levels of FSTL1 protein in LAPC-4 cells correlated with higher levels of MAGE-A11 relative to other prostate cancer cells. FSTL1 mRNA levels increased in CRPC and castration-recurrent CWR22 xenografts in association with predominantly nuclear FSTL1. Increased nuclear localization of FSTL1 in prostate cancer was suggested by predominantly cytoplasmic FSTL1 in benign prostate epithelial cells and predominantly nuclear FSTL1 in epithelial cells in CRPC tissue and the castration-recurrent CWR22 xenograft. AR expression studies showed nuclear colocalization of AR and endogenous FSTL1 in response to androgen. AR and MAGE-A11 cooperate in the up-regulation of FSTL1 to promote growth and progression of CRPC. Prostate 77:505-516, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hirai, Takayuki; Uchida, Kenzo; Nakajima, Hideaki; Guerrero, Alexander Rodriguez; Takeura, Naoto; Watanabe, Shuji; Sugita, Daisuke; Yoshida, Ai; Johnson, William E. B.; Baba, Hisatoshi
2013-01-01
Background Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease. Methods Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass. Results The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) −2 progressively increased. Conclusions Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. PMID:23717624
Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS.
Butovsky, Oleg; Siddiqui, Shafiuddin; Gabriely, Galina; Lanser, Amanda J; Dake, Ben; Murugaiyan, Gopal; Doykan, Camille E; Wu, Pauline M; Gali, Reddy R; Iyer, Lakshmanan K; Lawson, Robert; Berry, James; Krichevsky, Anna M; Cudkowicz, Merit E; Weiner, Howard L
2012-09-01
Amyotrophic lateral sclerosis (ALS) is a progressive disease associated with neuronal cell death that is thought to involve aberrant immune responses. Here we investigated the role of innate immunity in a mouse model of ALS. We found that inflammatory monocytes were activated and that their progressive recruitment to the spinal cord, but not brain, correlated with neuronal loss. We also found a decrease in resident microglia in the spinal cord with disease progression. Prior to disease onset, splenic Ly6Chi monocytes expressed a polarized macrophage phenotype (M1 signature), which included increased levels of chemokine receptor CCR2. As disease onset neared, microglia expressed increased CCL2 and other chemotaxis-associated molecules, which led to the recruitment of monocytes to the CNS by spinal cord-derived microglia. Treatment with anti-Ly6C mAb modulated the Ly6Chi monocyte cytokine profile, reduced monocyte recruitment to the spinal cord, diminished neuronal loss, and extended survival. In humans with ALS, the analogous monocytes (CD14+CD16-) exhibited an ALS-specific microRNA inflammatory signature similar to that observed in the ALS mouse model, linking the animal model and the human disease. Thus, the profile of monocytes in ALS patients may serve as a biomarker for disease stage or progression. Our results suggest that recruitment of inflammatory monocytes plays an important role in disease progression and that modulation of these cells is a potential therapeutic approach.
McMeekin, D. Scott; Sill, Michael W.; Benbrook, Doris; Darcy, Kathleen M.; Stearns-Kurosawa, Deborah J.; Eaton, Lynne; Yamada, S. Diane
2007-01-01
Objectives A phase II trial was conducted to evaluate the anti-tumor activity and adverse effects of thalidomide in persistent or recurrent endometrial cancer refractory to cytotoxic chemotherapy, and to correlate angiogenesis biomarker expression with clinical outcome. Methods Consenting patients were treated until progression or intolerable toxicity with an oral starting dose of 200 mg thalidomide/day that was to increase by 200 mg every 2 weeks to a target dose of 1000 mg/day. Vascular endothelial growth factor (VEGF), basic fibroblastic growth factor (bFGF), and soluble endothelial protein C receptor (sEPCR) were analyzed by ELISA in pre and post-treatment specimens. Results Twenty-four of 27 patients enrolled in the study were eligible, of whom 2 reached the target dose, 8 progressed before achieving the target dose and 14 refused or had toxicity that prohibited escalation. Two patients (8.3%) remained progression-free ≥ 6 months. There were 3 (12.5%) with partial responses, 2 (8.3%) with stable disease, 15 (62.5%) with increasing disease, and 4 (16.7%) who were inevaluable for response. Median progression-free survival and overall survival were 1.7 months and 6.3 months, respectively. No grade 4 toxicities were observed. Common grade 3 toxicities included hematologic (n=3), cardiovascular (n=3), constitutional (n=3), and neurologic (n=4). Thalidomide did not decrease VEGF or bFGF levels but reduced sEPCR levels in serum. Elevated plasma vascular endothelial growth factor levels were associated with increased risk of progression and death. Conclusions Thalidomide demonstrated limited ability to delay progression (as measured by PFS at 6 months), produce objective responses or reduce angiogenic marker levels in chemotherapy refractory endometrial cancer. VEGF level appears to be prognostically significant in such patients, independent of thalidomide treatment. PMID:17306350
[The recent research progress of chemistry of marine natural products].
Shi, Qing-wen; Li, Li-geng; Wang, Yu-fang; Huo, Chang-hong; Zhang, Man-li
2010-10-01
Ocean is a unique and excellent resource that provides a diverse array of intriguing natural products. Marine natural products have demonstrated significant and extremely potent biological activities and have captured the attention of natural products chemists in the past few decades. It is increasingly recognized that a wealth of fascinating natural products and novel chemical entities will play a dominant role in the discovery of useful leads for the development of pharmaceutical agents and provide useful probes to lead to breakthroughs in a variety of life-science fields. This article focused on the research progress of chemistry of marine natural products in recent five years.
Bardoxolone Methyl Decreases Megalin and Activates Nrf2 in the Kidney
Chertow, Glenn M.; Hebbar, Sudarshan; Vaziri, Nosratola D.; Ward, Keith W.; Meyer, Colin J.
2012-01-01
Inflammation and oxidative stress are hallmarks and mediators of the progression of CKD. Bardoxolone methyl, a potent activator of the nuclear factor erythroid 2–related factor 2 (Nrf2)–mediated antioxidant and anti-inflammatory response, increases estimated GFR and decreases BUN, serum phosphorus, and uric acid concentrations in patients with moderate to severe CKD. However, it also increases albuminuria, which is associated with inflammation and disease progression. Therefore, we investigated whether this bardoxolone methyl–induced albuminuria may result from the downregulation of megalin, a protein involved in the tubular reabsorption of albumin and lipid-bound proteins. Administration of bardoxolone methyl to cynomolgus monkeys significantly decreased the protein expression of renal tubular megalin, which inversely correlated with the urine albumin-to-creatinine ratio. Moreover, daily oral administration of bardoxolone methyl to monkeys for 1 year did not lead to any adverse effects on renal histopathologic findings but did reduce serum creatinine and BUN, as observed in patients with CKD. Finally, the bardoxolone methyl–induced decrease in megalin corresponded with pharmacologic induction of renal Nrf2 targets, including NAD(P)H:quinone oxidoreductase 1 enzyme activity and glutathione content. This result indicates that Nrf2 may have a role in megalin regulation. In conclusion, these data suggest that the increase in albuminuria that accompanies bardoxolone methyl administration may result, at least in part, from reduced expression of megalin, which seems to occur without adverse effects and with strong induction of Nrf2 targets. PMID:22859857
Bardoxolone methyl decreases megalin and activates nrf2 in the kidney.
Reisman, Scott A; Chertow, Glenn M; Hebbar, Sudarshan; Vaziri, Nosratola D; Ward, Keith W; Meyer, Colin J
2012-10-01
Inflammation and oxidative stress are hallmarks and mediators of the progression of CKD. Bardoxolone methyl, a potent activator of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant and anti-inflammatory response, increases estimated GFR and decreases BUN, serum phosphorus, and uric acid concentrations in patients with moderate to severe CKD. However, it also increases albuminuria, which is associated with inflammation and disease progression. Therefore, we investigated whether this bardoxolone methyl-induced albuminuria may result from the downregulation of megalin, a protein involved in the tubular reabsorption of albumin and lipid-bound proteins. Administration of bardoxolone methyl to cynomolgus monkeys significantly decreased the protein expression of renal tubular megalin, which inversely correlated with the urine albumin-to-creatinine ratio. Moreover, daily oral administration of bardoxolone methyl to monkeys for 1 year did not lead to any adverse effects on renal histopathologic findings but did reduce serum creatinine and BUN, as observed in patients with CKD. Finally, the bardoxolone methyl-induced decrease in megalin corresponded with pharmacologic induction of renal Nrf2 targets, including NAD(P)H:quinone oxidoreductase 1 enzyme activity and glutathione content. This result indicates that Nrf2 may have a role in megalin regulation. In conclusion, these data suggest that the increase in albuminuria that accompanies bardoxolone methyl administration may result, at least in part, from reduced expression of megalin, which seems to occur without adverse effects and with strong induction of Nrf2 targets.
Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise.
Pinho, Ricardo A; Andrades, Michael E; Oliveira, Marcos R; Pirola, Aline C; Zago, Morgana S; Silveira, Paulo C L; Dal-Pizzol, Felipe; Moreira, José Cláudio F
2006-10-01
The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8-12 months) were randomly separated into two groups (trained n=9 and untrained n=6). Trained rats were treadmill-trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non-described adaptation of skeletal muscle against exercise-induced oxidative stress.
AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis
Li, Ni; Xue, Wei; Yuan, Huairui; Dong, Baijun; Ding, Yufeng; Liu, Yongfeng; Jiang, Min; Kan, Shan; Sun, Tongyu; Ren, Jiale; Pan, Qiang; Li, Xiang; Zhang, Peiyuan; Wang, Yan; Wang, Xiaoming; Li, Qintong
2017-01-01
Loss of phosphatase and tensin homolog (PTEN) and activation of the PI3K/AKT signaling pathway are hallmarks of prostate cancer (PCa). However, these alterations alone are insufficient for cells to acquire metastatic traits. Here, we have shown that the histone dimethyl transferase WHSC1 critically drives indolent PTEN-null tumors to become metastatic PCa. In a PTEN-null murine PCa model, WHSC1 overexpression in prostate epithelium cooperated with Pten deletion to produce a metastasis-prone tumor. Conversely, genetic ablation of Whsc1 prevented tumor progression in PTEN-null mice. Molecular characterization revealed that increased AKT activity due to PTEN loss directly phosphorylates WHSC1 at S172, preventing WHSC1 degradation by CRL4Cdt2 E3 ligase. Increased WHSC1 expression transcriptionally upregulates expression of RICTOR, a pivotal component of mTOR complex 2 (mTORC2), to further enhance AKT activity. Therefore, the AKT/WHSC1/mTORC2 signaling cascade represents a vicious feedback loop that elicits unrestrained AKT signaling. Furthermore, we determined that WHSC1 positively regulates Rac1 transcription to increase tumor cell motility. The biological importance of a WHSC1-mediated signaling cascade is substantiated by patient sample analysis in which WHSC1 signaling is tightly correlated with disease progression and recurrence. Taken together, our findings highlight a pivotal link between an epigenetic regulator, WHSC1, and key intracellular signaling molecules, AKT, RICTOR, and Rac1, to drive PCa metastasis. PMID:28319045
Leyton, M; Stewart, J
1996-07-01
We studied the effect of tail pinch on male sexual behavior and its neurochemical basis. Male rats were gonadectomized and maintained on low doses of testosterone propionate (20.0 micrograms/day). Tail pinch significantly increased the percentage of males that mounted, intromitted, and ejaculated within a 30-min test, and these increases were attenuated by both pimozide (1.0 mg/kg, i.p.) and by naloxone (0.5, 1.0, and 2.0 mg/kg, s.c.). Moreover, tail pinch in the presence of an estrous female led to significantly increased female-directed behavior 48 h later during a test without tail pinch. Repeated tail pinch tests led to progressively more sexual activity, and the development of this behavioral sensitization was prevented by naloxone. These findings suggest that tail pinch increases the salience of the incentive characteristics of the female. Furthermore, during subsequent tests, with or without tail pinch, the increased salience of the female remains, as measured by the continued increases in sexual activity. These acute and sensitized behavioral increases might result from tail pinch-induced activation of the midbrain dopamine system via an opioid mechanism; either preventing tail pinch-induced dopamine activation (by an opioid antagonist) or blocking the effects of dopamine activation (by a dopamine antagonist) attenuated the long-term facilitation of sexual behavior seen after pairing the female with tail pinch.
Bolduc, Jean-François; Hany, Laurent; Barat, Corinne; Ouellet, Michel; Tremblay, Michel J
2017-08-15
In this study, we investigated the effect of acetate, the most concentrated short-chain fatty acid (SCFA) in the gut and bloodstream, on the susceptibility of primary human CD4 + T cells to HIV-1 infection. We report that HIV-1 replication is increased in CD3/CD28-costimulated CD4 + T cells upon acetate treatment. This enhancing effect correlates with increased expression of the early activation marker CD69 and impaired class I/II histone deacetylase (HDAC) activity. In addition, acetate enhances acetylation of histones H3 and H4 and augments HIV-1 integration into the genome of CD4 + T cells. Thus, we propose that upon antigen presentation, acetate influences class I/II HDAC activity that transforms condensed chromatin into a more relaxed structure. This event leads to a higher level of viral integration and enhanced HIV-1 production. In line with previous studies showing reactivation of latent HIV-1 by SCFAs, we provide evidence that acetate can also increase the susceptibility of primary human CD4 + T cells to productive HIV-1 infection. IMPORTANCE Alterations in the fecal microbiota and intestinal epithelial damage involved in the gastrointestinal disorder associated with HIV-1 infection result in microbial translocation that leads to disease progression and virus-related comorbidities. Indeed, notably via production of short-chain fatty acids, bacteria migrating from the lumen to the intestinal mucosa could influence HIV-1 replication by epigenetic regulatory mechanisms, such as histone acetylation. We demonstrate that acetate enhances virus production in primary human CD4 + T cells. Moreover, we report that acetate impairs class I/II histone deacetylase activity and increases integration of HIV-1 DNA into the host genome. Therefore, it can be postulated that bacterial metabolites such as acetate modulate HIV-1-mediated disease progression. Copyright © 2017 American Society for Microbiology.
Aging increases cell-to-cell transcriptional variability upon immune stimulation.
Martinez-Jimenez, Celia Pilar; Eling, Nils; Chen, Hung-Chang; Vallejos, Catalina A; Kolodziejczyk, Aleksandra A; Connor, Frances; Stojic, Lovorka; Rayner, Timothy F; Stubbington, Michael J T; Teichmann, Sarah A; de la Roche, Maike; Marioni, John C; Odom, Duncan T
2017-03-31
Aging is characterized by progressive loss of physiological and cellular functions, but the molecular basis of this decline remains unclear. We explored how aging affects transcriptional dynamics using single-cell RNA sequencing of unstimulated and stimulated naïve and effector memory CD4 + T cells from young and old mice from two divergent species. In young animals, immunological activation drives a conserved transcriptomic switch, resulting in tightly controlled gene expression characterized by a strong up-regulation of a core activation program, coupled with a decrease in cell-to-cell variability. Aging perturbed the activation of this core program and increased expression heterogeneity across populations of cells in both species. These discoveries suggest that increased cell-to-cell transcriptional variability will be a hallmark feature of aging across most, if not all, mammalian tissues. Copyright © 2017, American Association for the Advancement of Science.
ERIC Educational Resources Information Center
Bonggat, Penelope Wong; Hall, Laura J.
2010-01-01
This study addresses the call for increased research on common public school practices and progress monitoring by public school teachers. An alternating treatment design was implemented by a preschool teacher to evaluate the effect of sensory-integration based activities compared with an attention control on the on task behavior of three…
ERIC Educational Resources Information Center
Chad, Paul
2012-01-01
Marketing educators are often faced with poor preclass preparation by students, declining student interest in attending classes as the semester progresses, and student complaints regarding previous bad experiences with team assessment activities. Team-based learning (TBL) is an innovative teaching strategy using semiformalized guidelines aimed to…
Persons Living with HIV/AIDS: Employment as a Social Determinant of Health
ERIC Educational Resources Information Center
Hergenrather, Kenneth C.; Zeglin, Robert J.; Conyers, Liza; Misrok, Mark; Rhodes, Scott D.
2016-01-01
Purpose: For persons living with HIV/AIDS (PLWHA), the advent of highly active antiretroviral therapy has increased their longevity and quality of life. As HIV progresses, many PLWHA present declined domains of functioning that impede their ability to work. The authors explore employment as a social determinant of health to identify issues…
Activity patterns of nesting Mexican Spotted Owls
David K. Delaney; Teryl G. Grubb; Paul Beier
1999-01-01
We collected 2,665 hr of behavioral information using video surveillance on 19 Mexican Spotted Owl (Strix occidentalis lucida) pairs between 25 April and 26 July 1996. Prey deliveries per day increased as the nesting season progressed, with an average of 2.68 prey deliveries during incubation, 4.10 items during brooding, and 4.51 items during the...
ERIC Educational Resources Information Center
Castelló, Montserrat; Kobayashi, Sofie; McGinn, Michelle K.; Pechar, Hans; Vekkaila, Jenna; Wisker, Gina
2015-01-01
Within the current higher education context, early career researchers (ECRs) face a "risk-career" in which predictable, stable academic careers have become increasingly rare. Traditional milestones to signal progress toward a sustainable research career are disappearing or subject to reinterpretation, and ECRs need to attend to new or…
Lerman, Bruce J; Hoffman, Eric P; Sutherland, Margaret L; Bouri, Khaled; Hsu, Daniel K; Liu, Fu-Tong; Rothstein, Jeffrey D; Knoblach, Susan M
2012-01-01
Galectins are pleiotropic carbohydrate-binding lectins involved in inflammation, growth/differentiation, and tissue remodeling. The functional role of galectins in amyotrophic lateral sclerosis (ALS) is unknown. Expression studies revealed increases in galectin-1 mRNA and protein in spinal cords from SOD1G93A mice, and in galectin-3 and -9 mRNAs and proteins in spinal cords of both SOD1G93A mice and sporadic ALS patients. As the increase in galectin-3 appeared in early presymptomatic stages and increased progressively through to end stage of disease in the mouse, it was selected for additional study, where it was found to be mainly expressed by microglia. Galectin-3 antagonists are not selective and do not readily cross the blood–brain barrier; therefore, we generated SOD1G93A/Gal-3−/− transgenic mice to evaluate galectin-3 deletion in a widely used mouse model of ALS. Disease progression, neurological symptoms, survival, and inflammation were assessed to determine the effect of galectin-3 deletion on the SOD1G93A disease phenotype. Galectin-3 deletion did not change disease onset, but resulted in more rapid progression through functionally defined disease stages, more severely impaired neurological symptoms at all stages of disease, and expiration, on average, 25 days earlier than SOD1G93A/Gal-3+/+ cohorts. In addition, microglial staining, as well as TNF-α, and oxidative injury were increased in SOD1G93A/Gal-3−/− mice compared with SOD1G93A/Gal-3+/+ cohorts. These data support an important functional role for microglial galectin-3 in neuroinflammation during chronic neurodegenerative disease. We suggest that elevations in galectin-3 by microglia as disease progresses may represent a protective, anti-inflammatory innate immune response to chronic motor neuron degeneration. PMID:23139902
Michael, Kathleen; Goldberg, Andrew P.; Treuth, Margarita S.; Beans, Jeffrey; Normandt, Peter; Macko, Richard F.
2010-01-01
Purpose We conducted a noncontrolled pilot intervention study in stroke survivors to examine the efficacy of low-intensity adaptive physical activity to increase balance, improve walking function, and increase cardiovascular fitness and to determine whether improvements were carried over into activity profiles in home and community. Method Adaptive physical activity sessions were conducted 3 times/week for 6 months. The main outcomes were Berg Balance Scale, Dynamic Gait Index, 6-Minute Walk Test, cardiovascular fitness (VO2 peak), Falls Efficacy Scale, and 5-day Step Activity Monitoring. Results Seven men and women with chronic ischemic stroke completed the 6-month intervention. The mean Berg Balance baseline score increased from 33.9 ± 8.5 to 46 ± 6.7 at 6 months (mean ± SD; p = .006). Dynamic Gait Index increased from 13.7 ± 3.0 to 19.0 ± 3.5 (p = .01). Six-minute walk distance increased from 840 ± 110 feet to 935 ± 101 feet (p = 0.02). VO2 peak increased from 15.3 ± 4.1 mL/kg/min to 17.5 ± 4.7 mL/kg/min (p = .03). There were no significant changes in falls efficacy or free-living ambulatory activity. Conclusion A structured adaptive physical activity produces improvements in balance, gait, fitness, and ambulatory performance but not in falls efficacy or free-living daily step activity. Randomized studies are needed to determine the cardiovascular health and functional benefits of structured group physical activity programs and to develop behavioral interventions that promote increased free-living physical activity patterns. PMID:19581199
Christov, Mario; Dushanova, Juliana
2016-01-01
The brain as a system with gradually declined resources by age maximizes its performance by neural network reorganization for greater efficiency of neuronal oscillations in a given frequency band. Whether event-related high-frequency band responses are related to plasticity in neural recruitment contributed to the stability of sensory/cognitive mechanisms accompanying aging or are underlined pathological changes seen in aging brain remains unknown. Aged effect on brain electrical activity was studied in auditory discrimination task (low-frequency and high-frequency tone) at particular cortical locations in beta (β1: 12.5-20; β2: 20.5-30 Hz) and gamma frequency bands (γ1: 30.5-49; γ2: 52-69 Hz) during sensory (post-stimulus interval 0-250 ms) and cognitive processing (250-600 ms). Beta1 activity less affected by age during sensory processing. Reduced beta1 activity was more widespread during cognitive processing. This difference increased in fronto-parietal direction more expressed after high-frequency tone stimulation. Beta2 and gamma activity were more pronounced with progressive age during sensory processing. Reducing regional-process specificity with progressing age characterized age-related and tone-dependent beta2 changes during sensory, but not during cognitive processing. Beta2 and gamma activity diminished with age on cognitive processes, except the higher frontal tone-dependent gamma activity during cognitive processing. With increasing age, larger gamma2 activity was more expressed over the frontal brain areas to high tone discrimination and hand reaction choice. These gamma2 differences were shifted from posterior to anterior brain regions with advancing age. The aged influence was higher on cognitive processes than on perceptual ones.
Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness
NASA Technical Reports Server (NTRS)
Cajochen, C.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.
2002-01-01
The separate contribution of circadian rhythmicity and elapsed time awake on electroencephalographic (EEG) activity during wakefulness was assessed. Seven men lived in an environmental scheduling facility for 4 weeks and completed fourteen 42.85-h 'days', each consisting of an extended (28.57-h) wake episode and a 14.28-h sleep opportunity. The circadian rhythm of plasma melatonin desynchronized from the 42.85-h day. This allowed quantification of the separate contribution of circadian phase and elapsed time awake to variation in EEG power spectra (1-32 Hz). EEG activity during standardized behavioral conditions was markedly affected by both circadian phase and elapsed time awake in an EEG frequency- and derivation-specific manner. The nadir of the circadian rhythm in alpha (8-12 Hz) activity in both fronto-central and occipito-parietal derivations occurred during the biological night, close to the crest of the melatonin rhythm. The nadir of the circadian rhythm of theta (4.5-8 Hz) and beta (20-32 Hz) activity in the fronto-central derivation was located close to the onset of melatonin secretion, i.e. during the wake maintenance zone. As time awake progressed, delta frequency (1-4.5 Hz) and beta (20-32 Hz) activity rose monotonically in frontal derivations. The interaction between the circadian and wake-dependent increase in frontal delta was such that the intrusion of delta was minimal when sustained wakefulness coincided with the biological day, but pronounced during the biological night. Our data imply that the circadian pacemaker facilitates frontal EEG activation during the wake maintenance zone, by generating an arousal signal that prevents the intrusion of low-frequency EEG components, the propensity for which increases progressively during wakefulness.
De Vito, Rita; Alisi, Anna; Masotti, Andrea; Ceccarelli, Sara; Panera, Nadia; Citti, Arianna; Salata, Michele; Valenti, Luca; Feldstein, Ariel E; Nobili, Valerio
2012-07-01
Concomitantly to the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become the leading cause of liver disease in children. NAFLD encompasses a spectrum of histological damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), with possible progression to cirrhosis. There is growing evidence that the immune system plays a pivotal role in the initiation and progression to NASH but the cellular nature of the hepatic inflammation is still unknown. The present study includes 34 children with biopsy-proven NAFLD. Liver damage was evaluated by the NAFLD activity score (NAS), and the inflammatory infiltrate was characterized by immunohistochemistry for CD45, CD3 and CD163 which are markers of leukocytes, T cells and activated Kupffer cells/macrophages, respectively. Our results have shown that CD45+ (P<0.0001) and CD163+ (P<0.0001) cells were markedly increased in children with severe histological activity (NAS≥5) compared to children with lower activity (NAS<5), whereas CD3+ cells were significantly lower (P<0.01) in children with severe histological activity. There was a significant association between the numbers of CD45+, CD3+ and CD163+ cells, regarding both the portal tract and liver lobule, and the severity of steatosis, ballooning and fibrosis (P<0.01). These data suggest that the severity and composition of the inflammatory infiltrate correlate with steatosis and the severity of disease in children with NAFLD. Moreover, a decrease in CD3+ cells may be involved in the pathogenesis of liver damage. Future studies should evaluate whether it can predict the progression of liver disease independently of established histological scores.
Alcaín, Francisco J; Villalba, José M
2009-04-01
Sirtuin 1-7 (SIRT1-7) are deacetylases that are dependent on NAD(+) for their activity. SIRT1 down-regulates p53 activity, increasing lifespan, cell survival, and neuroprotection; it also deacetylates peroxisome proliferator-activated receptor-gamma and its coactivator 1alpha, promoting fat mobilization, increasing mitochondrial size and number, and positively regulating insulin secretion. Sirtuins link nutrient availability and energy metabolism. Calorie restriction, which increases lifespan and is beneficial in age-related disorders, activates sirtuin. Major efforts are thus focused to developing sirtuin activators. After discussing the potential involvement of sirtuins in pathophysiological processes, this review looks at new, synthetic sirtuin activators. To date, resveratrol is the most potent natural compound able to activate SIRT1, mimicking the positive effect of calorie restriction. Resveratrol might help in the treatment or prevention of obesity and in preventing the aging-related decline in heart function and neuronal loss. As resveratrol has low bioavailability and interacts with multiple molecular targets, the development of new molecules with better bioavailability and targeting sirtuin at lower concentrations is a promising field of the medicinal chemistry. New SIRT1 activators that are up to 1000 times more effective than resveratrol have recently been identified. These improve the response to insulin and increase the number and activity of mitochondria in obese mice. Human trials with a formulation of resveratrol with improved bioavailability and with a synthetic SIRT1 activator are in progress.
Towards a Future Linear Collider and The Linear Collider Studies at CERN
Heuer, Rolf-Dieter
2018-06-15
During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERNâs linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.
Leszek, Jerzy; Barreto, George E; Gąsiorowski, Kazimierz; Koutsouraki, Euphrosyni; Ávila-Rodrigues, Marco; Aliev, Gjumrakch
2016-01-01
Chronic inflammation is characterized by longstanding microglial activation followed by sustained release of inflammatory mediators, which aid in enhanced nitrosative and oxidative stress. The sustained release of inflammatory mediators propels the inflammatory cycle by increased microglial activation, promoting their proliferation and thus stimulating enhanced release of inflammatory factors. Elevated levels of several cytokines and chronic neuroinflammation have been associated with many neurodegenerative disorders of central nervous system like age-related macular degeneration, Alzheimer disease, multiple sclerosis, Parkinson's disease, Huntington' disease, and tauopathies. This review highlights the basic mechanisms of neuroinflammation, the characteristics of neurodegenerative diseases, and the main immunologic responses in CNS neurodegenerative disorders. A comprehensive outline for the crucial role of microglia in neuroinflammation and neurodegeneration and the role of Toll-like receptor signalling in coexistence of inflammatory mechanisms and oxidative stress as major factors responsible for progression of neurodegeneration have also been presented.
McMurphy, Travis; Xiao, Run; Magee, Daniel; Slater, Andrew; Zabeau, Lennart; Tavernier, Jan; Cao, Lei
2014-01-01
Environmental and genetic activation of a brain-adipocyte axis inhibits cancer progression. Leptin is the primary peripheral mediator of this anticancer effect in a mouse model of melanoma. In this study we assessed the effect of a leptin receptor antagonist on melanoma progression. Local administration of a neutralizing nanobody targeting the leptin receptor at low dose adjacent to tumor decreased tumor mass with no effects on body weight or food intake. In contrast, systemic administration of the nanobody failed to suppress tumor growth. Daily intraperitoneal injection of high-dose nanobody led to weight gain, hyperphagia, increased adiposity, hyperleptinemia, and hyperinsulinemia, and central effects mimicking leptin deficiency. The blockade of central actions of leptin by systemic delivery of nanobody may compromise its anticancer effect, underscoring the need to develop peripherally acting leptin antagonists coupled with efficient cancer-targeting delivery.
NASA Astrophysics Data System (ADS)
Izadi, Dina; Azad, Masoud Torabi; Mahmoudi, Nafiseh; Izadipanah, Nona; Eshghi, Najmeh
2013-03-01
For the 4th IUPAP International Conference of Women in Physics, we report on activities in science and engineering in Iran, and conditions for women in physics, in the three years since the 3rd IUPAP International Conference of Women in Physics was held in 2008. Iran has made prominent advancements and astonishing progress in laser technology, biotechnology, nanotechnology, genetics, computer software and hardware, and robotics. Iranian scientists have been very productive in several experimental fields, such as pharmaceutical, organic, and polymer chemistry. Conditions for women in physics have improved greatly in recent years. A project to improve the environment for learning physics, and science in general, by focusing on real-life applications, and the creation of new student competitions in Iran, have increased the numbers of both women and men in physics and all sciences in recent years.
Towards a Future Linear Collider and The Linear Collider Studies at CERN
Stapnes, Steinar
2017-12-18
During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERNâs linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.
Hernández, M A; Mora, S
2013-01-01
Symptoms of multiple sclerosis (MS) are associated with significant and progressive functional disability and have a profound impact on patients' quality of life (QoL). QoL and daily life activities are two areas that suffer major changes during the course of MS and there are currently no questionnaires specifically designed to evaluate these areas in MS patients. To evaluate QoL of MS patients using the PRIMUS questionnaire and determine the possible relationship between QoL, duration of disease, and disability measured on the EDSS. Multi-centre epidemiological and cross-sectional study including 261 patients with relapsing remitting MS (RRMS) or secondary progressive MS (SPMS) treated with interferon beta-1b for at least 6 months. The validated version of the PRIMUS questionnaire was used for patient reporting of changes in QoL and life activities. Mean age of patients was 41.7±10.3 years; 61.3% were women. Most had RRMS (83.9%). Mean time since MS diagnosis was 7.6±5.8 years, and longer in the SPMS group (11.2±7.4 vs 6.9±5.2, P<.0001). Mean EDSS score was 2.6±1.75 (5.1±1.3 in SPMS vs 2.1±1.4 in RRMS, P<.0001). Mean time since start of treatment was 5.5±3.8 years. The PRIMUS QoL component was higher in the RRMS group: 18.3±6.8 vs 9.9±7.1 (P<.0001); it also decreased with increases in both time since diagnosis (P<.01) and disability scores (from 18.8±6.6 in early stages [EDSS<3.5] to 8.4±6.3 in advanced stages [EDSS>5], P<.0001). The PRIMUS activity limitations component followed the same pattern: activity became more limited with increases in time since diagnosis (P<.0001) and overall disability (P<.0001). QoL in MS patients varies according to the disease type, and it worsens progressively over time and with increasing disability. The PRIMUS questionnaire is a good tool for assessing QoL and activity in patients with MS. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Forrester, Terrence
2013-01-01
For centuries, the challenge has been the maintenance of bodyweight in the face of marginal food availability. Since the industrial revolution, energy expenditure related to economic activity and domestic life has fallen progressively as technological innovation has replaced muscular power with labor-saving devices. This fall in activity energy expenditure however has not been associated over this entire period with population weight gain. In the 1970s and the 1980s, there was an abrupt uptick in the rate of rise of relative weight in industrialized countries followed rapidly by developing countries. This has led to high and increasing rates of overweight and obesity in high-income countries worldwide, but also an alarming inclusion of low- and middle-income populations in this obesity epidemic. The precise drivers of these concurrent epidemics are not agreed, but probably include on the one hand an increase in dietary energy intake resulting from the impact of industrialization and globalization on food availability and price. On the other, there is the facilitating underlying status of a steadily falling activity energy expenditure as muscle power as an input into economic production as well as household and leisure activities has been supplanted. The rise in population weight without accompanying linear growth manifests as obesity. The accretion of fat as well as the response to other environmental exposures during progressive industrialization and modernization has evoked an accompanying epidemic of cardiometabolic pathology that has significant impact on health as well as macroeconomics. Given the power and presumed irreversibility of industrialization and globalization, our ability to reverse these obesity epidemics is heavily dependent on new knowledge being developed which gives insight with prevention and therapeutic implications on the proximal and distal drivers of this progressive positive energy balance. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.
Prats, Clara; Vilaplana, Cristina; Valls, Joaquim; Marzo, Elena; Cardona, Pere-Joan; López, Daniel
2016-01-01
The evolution of a tuberculosis (TB) infection toward active disease is driven by a combination of factors mostly related to the host response. The equilibrium between control of the bacillary load and the pathology generated is crucial as regards preventing the growth and proliferation of TB lesions. In addition, some experimental evidence suggests an important role of both local endogenous reinfection and the coalescence of neighboring lesions. Herein we propose a mathematical model that captures the essence of these factors by defining three hypotheses: (i) lesions grow logistically due to the inflammatory reaction; (ii) new lesions can appear as a result of extracellular bacilli or infected macrophages that escape from older lesions; and (iii) lesions can merge when they are close enough. This model was implemented in Matlab to simulate the dynamics of several lesions in a 3D space. It was also fitted to available microscopy data from infected C3HeB/FeJ mice, an animal model of active TB that reacts against Mycobacterium tuberculosis with an exaggerated inflammatory response. The results of the simulations show the dynamics observed experimentally, namely an initial increase in the number of lesions followed by fluctuations, and an exponential increase in the mean area of the lesions. In addition, further analysis of experimental and simulation results show a strong coincidence of the area distributions of lesions at day 21, thereby highlighting the consistency of the model. Three simulation series removing each one of the hypothesis corroborate their essential role in the dynamics observed. These results demonstrate that three local factors, namely an exaggerated inflammatory response, an endogenous reinfection, and a coalescence of lesions, are needed in order to progress toward active TB. The failure of one of these factors stops induction of the disease. This mathematical model may be used as a basis for developing strategies to stop the progression of infection toward disease in human lungs. PMID:26870005
Prats, Clara; Vilaplana, Cristina; Valls, Joaquim; Marzo, Elena; Cardona, Pere-Joan; López, Daniel
2016-01-01
The evolution of a tuberculosis (TB) infection toward active disease is driven by a combination of factors mostly related to the host response. The equilibrium between control of the bacillary load and the pathology generated is crucial as regards preventing the growth and proliferation of TB lesions. In addition, some experimental evidence suggests an important role of both local endogenous reinfection and the coalescence of neighboring lesions. Herein we propose a mathematical model that captures the essence of these factors by defining three hypotheses: (i) lesions grow logistically due to the inflammatory reaction; (ii) new lesions can appear as a result of extracellular bacilli or infected macrophages that escape from older lesions; and (iii) lesions can merge when they are close enough. This model was implemented in Matlab to simulate the dynamics of several lesions in a 3D space. It was also fitted to available microscopy data from infected C3HeB/FeJ mice, an animal model of active TB that reacts against Mycobacterium tuberculosis with an exaggerated inflammatory response. The results of the simulations show the dynamics observed experimentally, namely an initial increase in the number of lesions followed by fluctuations, and an exponential increase in the mean area of the lesions. In addition, further analysis of experimental and simulation results show a strong coincidence of the area distributions of lesions at day 21, thereby highlighting the consistency of the model. Three simulation series removing each one of the hypothesis corroborate their essential role in the dynamics observed. These results demonstrate that three local factors, namely an exaggerated inflammatory response, an endogenous reinfection, and a coalescence of lesions, are needed in order to progress toward active TB. The failure of one of these factors stops induction of the disease. This mathematical model may be used as a basis for developing strategies to stop the progression of infection toward disease in human lungs.