Science.gov

Sample records for activity laboratory experience

  1. Using Microcomputers in the Physical Chemistry Laboratory: Activation Energy Experiment.

    ERIC Educational Resources Information Center

    Touvelle, Michele; Venugopalan, Mundiyath

    1986-01-01

    Describes a computer program, "Activation Energy," which is designed for use in physical chemistry classes and can be modified for kinetic experiments. Provides suggestions for instruction, sample program listings, and information on the availability of the program package. (ML)

  2. Student Reciprocal Peer Teaching as a Method for Active Learning: An Experience in an Electrotechnical Laboratory

    NASA Astrophysics Data System (ADS)

    Muñoz-García, Miguel A.; Moreda, Guillermo P.; Hernández-Sánchez, Natalia; Valiño, Vanesa

    2012-10-01

    Active learning is one of the most efficient mechanisms for learning, according to the psychology of learning. When students act as teachers for other students, the communication is more fluent and knowledge is transferred easier than in a traditional classroom. This teaching method is referred to in the literature as reciprocal peer teaching. In this study, the method is applied to laboratory sessions of a higher education institution course, and the students who act as teachers are referred to as "laboratory monitors." A particular way to select the monitors and its impact in the final marks is proposed. A total of 181 students participated in the experiment, experiences with laboratory monitors are discussed, and methods for motivating and training laboratory monitors and regular students are proposed. The types of laboratory sessions that can be led by classmates are discussed. This work is related to the changes in teaching methods in the Spanish higher education system, prompted by the Bologna Process for the construction of the European Higher Education Area

  3. Undergraduate Laboratory Experiment Facilitating Active Learning of Concepts in Transport Phenomena: Experiment with a Subliming Solid

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.

    2015-01-01

    An experiment based on the sublimation of a solid was introduced in the undergraduate Transport Phenomena course. The experiment required the students to devise their own apparatus and measurement techniques. The theoretical basis, assignment of the experiment, experimental results, and student/instructor observations are described in this paper.…

  4. Design of an active helicopter control experiment at the Princeton Rotorcraft Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Marraffa, Andrew M.; Mckillip, R. M., Jr.

    1989-01-01

    In an effort to develop an active control technique for reducing helicopter vibrations stemming from the main rotor system, a helicopter model was designed and tested at the Princeton Rotorcraft Dynamics Laboratory (PRDL). A description of this facility, including its latest data acquisition upgrade, are given. The design procedures for the test model and its Froude scaled rotor system are also discussed. The approach for performing active control is based on the idea that rotor states can be identified by instrumenting the rotor blades. Using this knowledge, Individual Blade Control (IBC) or Higher Harmonic Control (HHC) pitch input commands may be used to impact on rotor dynamics in such a way as to reduce rotor vibrations. Discussed here is an instrumentation configuration utilizing miniature accelerometers to measure and estimate first and second out-of-plane bending mode positions and velocities. To verify this technique, the model was tested, and resulting data were used to estimate rotor states as well as flap and bending coefficients, procedures for which are discussed. Overall results show that a cost- and time-effective method for building a useful test model for future active control experiments was developed. With some fine-tuning or slight adjustments in sensor configuration, prospects for obtaining good state estimates look promising.

  5. The plasma dynamics of hypersonic spacecraft: Applications of laboratory simulations and active in situ experiments

    NASA Technical Reports Server (NTRS)

    Stone, N. H.; Samir, Uri

    1986-01-01

    Attempts to gain an understanding of spacecraft plasma dynamics via experimental investigation of the interaction between artificially synthesized, collisionless, flowing plasmas and laboratory test bodies date back to the early 1960's. In the past 25 years, a number of researchers have succeeded in simulating certain limited aspects of the complex spacecraft-space plasma interaction reasonably well. Theoretical treatments have also provided limited models of the phenomena. Several active experiments were recently conducted from the space shuttle that specifically attempted to observe the Orbiter-ionospheric interaction. These experiments have contributed greatly to an appreciation for the complexity of spacecraft-space plasma interaction but, so far, have answered few questions. Therefore, even though the plasma dynamics of hypersonic spacecraft is fundamental to space technology, it remains largely an open issue. A brief overview is provided of the primary results from previous ground-based experimental investigations and the preliminary results of investigations conducted on the STS-3 and Spacelab 2 missions. In addition, several, as yet unexplained, aspects of the spacecraft-space plasma interaction are suggested for future research.

  6. An Organoleptic Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Risley, John M.

    1996-12-01

    Flavorings in foods and fragrances in personal care products is a topic often discussed in chemistry classes designed for the general education of non-science majors. A laboratory experiment has been designed to accompany the lecture topic. Compounds in ten different classes of organic molecules that are used in the fragrance and food industry are provided to students. Students whiff the vapors of each compound and describe the organoleptic properties using a set of terms utilized in the fragrance and food industry. A set of questions guides students to an understanding of the relationship between structure of molecules and smell. Students are permitted to create their own fragrance based on the results of the experiment. Student response has been favorable. The experiment rectifies misconceptions students have about structure and odor, and gives positive reinforcement to the lecture material.

  7. An Activation Energy Experiment for a Second-Order Reaction in a Single Laboratory Period.

    ERIC Educational Resources Information Center

    Barile, Raymond C.; Michiels, Leo P.

    1983-01-01

    Describes modification of a chemical reaction to a single 4 1/2-hour laboratory period. Reaction kinetics between 2, 4-initrochlorobenzene and piperidine to form 2, 4-dinitrophenyl-piperidine and piperidinium hydrochloride are followed conductometrically at three temperatures to obtain data to calculate activation parameters. (Author/JN)

  8. A Laboratory Experiment Investigating Different Aspects of Catalase Activity in an Inquiry - Based Approach

    NASA Astrophysics Data System (ADS)

    Kimbrough, Doris R.; Magoun, Mary Ann; Langfur, Meg

    1997-02-01

    The action of the enzyme catalase on aqueous hydrogen peroxide to generate oxygen gas is a well-established demonstration (1-3). Catalase is typically obtained by aqueous extraction of a potato, and the potato extract is mixed together with 3% hydrogen peroxide. The oxygen that is produced can be collected over water. Variations on the procedure can demonstrate the dependence of catalytic activity on temperature or the presence of inhibitors (1, 2). The University of Colorado at Denver has used a version of this procedure as a laboratory in its second-semester course for nonmajors. Recently, students have been allowed to expand upon the procedures prescribed in the laboratory handout in an open-ended project format. We explored some of these variations in detail, and the results provided here offer ideas, centered around this laboratory, for open-ended projects that can be used in an inquiry-based approach.

  9. Improving the Laboratory Experience for Introductory Geology Students Using Active Learning and Evidence-Based Reform

    NASA Astrophysics Data System (ADS)

    Oien, R. P.; Anders, A. M.; Long, A.

    2014-12-01

    We present the initial results of transitioning laboratory activities in an introductory physical geology course from passive to active learning. Educational research demonstrates that student-driven investigations promote increased engagement and better retention of material. Surveys of students in introductory physical geology helped us identify lab activities which do not engage students. We designed new lab activities to be more collaborative, open-ended and "hands-on". Student feedback was most negative for lab activities which are computer-based. In response, we have removed computers from the lab space and increased the length and number of activities involving physical manipulation of samples and models. These changes required investment in lab equipment and supplies. New lab activities also include student-driven exploration of data with open-ended responses. Student-evaluations of the new lab activities will be compiled during Fall 2014 and Spring 2015 to allow us to measure the impact of the changes on student satisfaction and we will report on our findings to date. Modification of this course has been sponsored by NSF's Widening Implementation & Demonstration of Evidence Based Reforms (WIDER) program through grant #1347722 to the University of Illinois. The overall goal of the grant is to increase retention and satisfaction of STEM students in introductory courses.

  10. Laboratory Activities in Israel

    ERIC Educational Resources Information Center

    Mamlok-Naaman, Rachel; Barnea, Nitza

    2012-01-01

    Laboratory activities have long had a distinctive and central role in the science curriculum, and science educators have suggested that many benefits accrue from engaging students in science laboratory activities. Many research studies have been conducted to investigate the educational effectiveness of laboratory work in science education in…

  11. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    NASA Astrophysics Data System (ADS)

    Möhler, O.; Georgakopoulos, D. G.; Morris, C. E.; Benz, S.; Ebert, V.; Hunsmann, S.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2008-10-01

    The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of Snomax™ were investigated in the temperature range between -5 and -15°C. Water suspensions of these bacteria were directly sprayed into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of -5.7°C. At this temperature, about 1% of the Snomax™ cells induced immersion freezing of the spray droplets before the droplets evaporated in the cloud chamber. The living cells didn't induce any detectable immersion freezing in the spray droplets at -5.7°C. After evaporation of the spray droplets the bacterial cells remained as aerosol particles in the cloud chamber and were exposed to typical cloud formation conditions in experiments with expansion cooling to about -11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets. Then, only a minor fraction of the cells acted as heterogeneous ice nuclei either in the condensation or the immersion mode. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between -7 and -11°C with an ice nucleation (IN) active fraction of the order of 10-4. In agreement to previous literature results, the ice nucleation efficiency of Snomax™ cells was much larger with an IN active fraction of 0.2 at temperatures around -8°C.

  12. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    NASA Astrophysics Data System (ADS)

    Möhler, O.; Georgakopoulos, D. G.; Morris, C. E.; Benz, S.; Ebert, V.; Hunsmann, S.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2008-04-01

    The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of SnomaxTM were investigated in the temperature range between -5 and -15°C. Water suspensions of these bacteria were directly spray into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of -5.7°. At this temperature, about 1% of the SnomaxTM cells induced freezing of the spray droplets before they evaporated in the cloud chamber. The other suspensions of living cells didn't induce any measurable ice concentration during spray formation at -5.7°. The remaining aerosol was exposed to typical cloud activation conditions in subsequent experiments with expansion cooling to about -11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets and then eventually acted as ice nuclei to freeze the droplets. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between -7 and -11°C with an INA fraction of the order of 10-4. The ice nucleation efficiency of SnomaxTM cells was much larger with an INA fraction of 0.2 at temperatures around -8°C.

  13. Organic Laboratory Experiments.

    ERIC Educational Resources Information Center

    Smith, Sherrel

    1990-01-01

    Detailed is a method in which short pieces of teflon tubing may be used for collection tubes for collecting preparative fractions from gas chromatographs. Material preparation, laboratory procedures, and results of this method are discussed. (CW)

  14. Expression, Purification, and Characterization of a Carbohydrate-Active Enzyme: A Research-Inspired Methods Optimization Experiment for the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Willbur, Jaime F.; Vail, Justin D.; Mitchell, Lindsey N.; Jakeman, David L.; Timmons, Shannon C.

    2016-01-01

    The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern…

  15. Laboratory experiments on fronts

    NASA Astrophysics Data System (ADS)

    Chia, F.; Griffiths, R. W.; Linden, P. F.

    We describe a laboratory model of an upwelling front in a two-layer stratification. In the model the interface between the two layers slopes upwards toward a vertical boundary (or coastline) and can intersect the free surface to produce a front. Fluid motion in each layer is density driven and, in the undisturbed state, is in quasi-geostrophic balance. The front is observed to be unstable to (ageostrophic) disturbances with an along-front wavelength proportional to the Rossby radius of deformation. At very large amplitudes these unstable waves form closed circulations. However, in contrast to the behaviour of fronts far from vertical boundaries, where cyclone-anticyclone vortex pairs are formed, the presence of the coastline inhibits formation of anticyclonic eddies in the upper layer and enhances cyclonic rings of upper layer fluid which lie above cyclonic eddies in the lower layer. The cyclones move away from the vertical boundary and (as is also the case when no vertical boundary is present) they appear at the surface as eddies containing lower layer fluid on the seaward side of the mean frontal position.

  16. Boltzmann's constant: A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Kruglak, Haym

    1989-03-01

    The mean-square displacement of a latex microsphere is determined from its projection on a TV monitor. The distribution of displacement is shown to be Gaussian. Boltzmann's constant, calculated from the pooled data of several observers, is in excellent agreement with the accepted value. The experiment is designed for one laboratory period in the advanced undergraduate laboratory.

  17. Condensed Laboratory Experiences for Nonmajors

    ERIC Educational Resources Information Center

    Thorne, James M.

    1975-01-01

    Describes the use of laboratory experiments termed hands-on demonstrations that are designed to reinforce the concepts covered in lecture with emphasis on maximizing the sense content (sight, smell, hearing) to improve retention by the student. (GS)

  18. Synthesis and Catalytic Activity of Ruthenium-Indenylidene Complexes for Olefin Metathesis: Microscale Experiments for the Undergraduate Inorganic or Organometallic Laboratories

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Hermanson, David L.; Ekerholm, Daniel P.; Lilliquist, Stacie L.; Mekoli, Megan L.

    2007-01-01

    A series of experiments for undergraduate laboratory courses (e.g., inorganic, organometallic or advanced organic) have been developed. These experiments focus on understanding the design and catalytic activity of ruthenium-indenylidene complexes for olefin metathesis. Included in the experiments are the syntheses of two ruthenium-indenylidene…

  19. Student Reciprocal Peer Teaching as a Method for Active Learning: An Experience in an Electrotechnical Laboratory

    ERIC Educational Resources Information Center

    Muñoz-García, Miguel A.; Moreda, Guillermo P.; Hernández-Sánchez, Natalia; Valiño, Vanesa

    2013-01-01

    Active learning is one of the most efficient mechanisms for learning, according to the psychology of learning. When students act as teachers for other students, the communication is more fluent and knowledge is transferred easier than in a traditional classroom. This teaching method is referred to in the literature as reciprocal peer teaching. In…

  20. [Activity and cost analysis in surgical pathology. Experience of a French university laboratory using the activity-based costing method].

    PubMed

    Bellocq, J P; Biron, N; Kessler, S; Penaud, M; Faujour, V; Ospel, J; Supper, E; Barthel, A; Roussel, J F; Méchine-Neuville, A; Marcellin, L; Lang-Avérous, G; Chenard, M P

    2001-06-01

    Good self-knowledge enables us to have a well- reasoned adaptation to our environment. Starting from this precept based on simple common sense, activity and cost analysis, when applied to medical departments in a university hospital setting, represents a necessary phase in their scientific progression and in the continuation of their university vocation. This is all the more true given the present climate of economic and organizational restructuring of medical facilities. This paper relates the experience of a French surgical pathology department which was assessed for cost effectiveness using the Activity-Based Costing (ABC) method in 1999. This method, which originated in the business world and of which the general concepts are presented here, has given us a keener understanding of the diverse processes involved, their costs and how these costs are arrived at. Moreover, this method has identified the proportion of costs imputable to diagnostic work and of those linked to work specific to a university hospital, in particular teaching and research and development. The results can then be used for a clearer analysis of the figures required by prescribers and health care funding agencies, and, within the department, to enhance perception of work carried out by the entire staff in order to initiate a new type of management centered on activity (Activity-Based Management). Adaptable to any medical department, whatever its organizational structure, independent of the significance of any given code letter and regardless of the rating method used to grade activities, the ABC method also allows for comparisons between structures of a similar nature. The thoughts it inspires on economic performance must take into account the rules of good medical practice, the imperatives of quality assurance, the need for "breathing space" which are indispensable to research and a humanist conception of working relations. PMID:11468559

  1. [Activity and cost analysis in surgical pathology. Experience of a French university laboratory using the activity-based costing method].

    PubMed

    Bellocq, J P; Biron, N; Kessler, S; Penaud, M; Faujour, V; Ospel, J; Supper, E; Barthel, A; Roussel, J F; Méchine-Neuville, A; Marcellin, L; Lang-Avérous, G; Chenard, M P

    2001-06-01

    Good self-knowledge enables us to have a well- reasoned adaptation to our environment. Starting from this precept based on simple common sense, activity and cost analysis, when applied to medical departments in a university hospital setting, represents a necessary phase in their scientific progression and in the continuation of their university vocation. This is all the more true given the present climate of economic and organizational restructuring of medical facilities. This paper relates the experience of a French surgical pathology department which was assessed for cost effectiveness using the Activity-Based Costing (ABC) method in 1999. This method, which originated in the business world and of which the general concepts are presented here, has given us a keener understanding of the diverse processes involved, their costs and how these costs are arrived at. Moreover, this method has identified the proportion of costs imputable to diagnostic work and of those linked to work specific to a university hospital, in particular teaching and research and development. The results can then be used for a clearer analysis of the figures required by prescribers and health care funding agencies, and, within the department, to enhance perception of work carried out by the entire staff in order to initiate a new type of management centered on activity (Activity-Based Management). Adaptable to any medical department, whatever its organizational structure, independent of the significance of any given code letter and regardless of the rating method used to grade activities, the ABC method also allows for comparisons between structures of a similar nature. The thoughts it inspires on economic performance must take into account the rules of good medical practice, the imperatives of quality assurance, the need for "breathing space" which are indispensable to research and a humanist conception of working relations.

  2. Neuroscience Laboratory and Classroom Activities.

    ERIC Educational Resources Information Center

    Bellamy, Mary Louise Ed.; Frame, Kathy Ed.

    This publication is part of a larger project involving partnerships between high school biology teachers and neuroscientists. It contains neuroscience laboratories and classroom activities, most of which provide opportunities for students to design and conduct their own experiments. Each lab contains directions for both teachers and students and…

  3. Brownian motion - a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Kruglak, Haym

    1988-09-01

    The availability of latex microspheres, compact television cameras and electronic calculators make it possible to perform an experiment on Brownian movement in one laboratory period. A more accurate value of N can be determined by other methods. However, the experiment described above has several valuable pedagogical outcomes. Undergraduate students get experience with several experimental techniques: (i) recording a `random walk' of a microphere; (ii) plotting a histogram of displacements; (iii) fitting a Gaussian curve to the histogram; (iv) checking the goodness of fit analytically or with probability graph paper; (v) calibrating screen displacements with a diffraction grating; (vi) calculating Avogadro's number from the experimental data; (vii) verifying data validity with the Einstein - Smoluchowski Law. The experiment also provides valuable practice in unit conversion and error analysis. Another instructive feature: the experiment makes the students aware of Einstein's work other than relativity. The students' reactions to the experiment were positive: `interesting', `challenging', `fun'.

  4. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -First Mission Results from the Active DOSTEL Instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Kortmann, Onno; Labrenz, Johannes; Reitz, Guenther

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the DLR experiment DOSIS (Dose Distribution Inside the ISS) was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists in a first part of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory. The second part are two active radiation detectors (DOSTELs) with a DDPU (DOSIS Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module (EPM) inside COLUMBUS. After the successful installation the active part has been activated on the 18th July 2009. Each of the DOSTEL units consists of two 6.93 cm PIPS silicon detectors forming a telescope with an opening angle of 120. The two DOSTELs are mounted with their telescope axis perpendicular to each other to investigate anisotropies of the radiation field inside the COLUMBUS module especially during the passes through the South Atlantic Anomaly (SAA) and during Solar Particle Events (SPEs). The data from the DOSTEL units are transferred to ground via the EPM rack which is activated

  5. Simulating intracrater ash recycling during mid-intensity explosive activity: high temperature laboratory experiments on natural basaltic ash

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Pompilio, Massimo; Bertagnini, Antonella; Cioni, Raffaello; Pichavant, Michel

    2010-05-01

    Direct observations of mid-intensity eruptions, in which a huge amount of ash is generated, indicate that ash recycling is quite common. The recognition of juvenile vs. recycled fragments is not straightforward, and no unequivocal, widely accepted criteria exist to support this. The presence of recycled glassy fragments can hide primary magmatic information, introducing bias in the interpretations of the ongoing magmatic and volcanic activity. High temperature experiments were performed at atmospheric pressure on natural samples to investigate the effects of reheating on morphology, texture and composition of volcanic ash. Experiments simulate the transformation of juvenile glassy fragments that, falling into the crater or in the upper part of the conduit, are recycled by following explosions. Textural and compositional modifications obtained in laboratory are compared with similar features observed in natural samples in order to identify some main general criteria to be used for the discrimination of recycled material. Experiments were carried out on tephra produced during Strombolian activity, fire fountains and continuous ash emission at Etna, Stromboli and Vesuvius. Coarse glassy clasts were crushed in a nylon mortar in order to create an artificial ash, and then sieved to select the size interval of 1-0.71 mm. Ash shards were put in a sealed or open quartz tube, in order to prevent or to reproduce effects of air oxidation. The tube was suspended in a HT furnace at INGV-Pisa and kept at different temperatures (up to to 1110°C) for increasing time (0.5-12 hours). Preliminary experiments were also performed under gas flux conditions. Optical and electron microscope observations indicate that high temperature and exposure to the air induce large modifications on clast surface, ranging from change in color, to incipient plastic deformation till complete sintering. Significant change in color of clasts is strictly related to the presence of air, irrespective of

  6. A Guided Inquiry Experiment for the Measurement of Activation Energies in the Biophysical Chemistry Laboratory: Decarboxylation of Pyrrole-2-Carboxylate

    ERIC Educational Resources Information Center

    Hutchinson, Kelly M.; Bretz, Stacey Lowery; Mettee, Howard D.; Smiley, Jeffrey A.

    2005-01-01

    A laboratory experiment for undergraduate biophysical chemistry is described, in which the acid concentration and temperature dependences of the decarboxylation of pyrrole-2-carboxylate are measured using a continuous ultraviolet (UV) spectrophotometric assay. Data collection and analysis are structured using principles of guided inquiry. Data…

  7. Laboratory experiments in atmospheric optics.

    PubMed

    Vollmer, M; Tammer, R

    1998-03-20

    Old and new laboratory experiments on atmospheric optics with a focus on mirages, rainbows, and halos are presented. Some qualitative demonstrations serve primarily didactical purposes, e.g., by proving the existence of curved light rays in media with a gradient of the index of refraction, by directly visualizing the minimum-deviation curve for rainbow paths in water droplets, or by helping to elucidate the ray classes in hexagons that contribute to a specific halo. In addition, quantitative experiments allow a direct comparison of angular positions and intensities with analytical computations or Monte Carlo simulations of light scattering from small water droplets or ice hexagons. In particular, the latter can help us to understand complex halo phenomena. PMID:18268748

  8. Laboratory experiments in atmospheric optics.

    PubMed

    Vollmer, M; Tammer, R

    1999-08-16

    Old and new laboratory experiments on atmospheric optics with a focus on mirages, rainbows, and halos are presented. Some qualitative demonstrations serve primarily didactical purposes, e.g., by proving the existence of curved light rays in media with a gradient of the index of refraction, by directly visualizing the minimum-deviation curve for rainbow paths in water droplets, or by helping to elucidate the ray classes in hexagons that contribute to a specific halo. In addition, quantitative experiments allow a direct comparison of angular positions and intensities with analytical computations or Monte Carlo simulations of light scattering from small water droplets or ice hexagons. In particular, the latter can help us to understand complex halo phenomena. PMID:19399049

  9. Two LANL laboratory astrophysics experiments

    SciTech Connect

    Intrator, Thomas P.

    2014-01-24

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The overarching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a driven and dissipative single flux rope that spontaneously self-saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown. The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.

  10. Expression, purification, and characterization of a carbohydrate-active enzyme: A research-inspired methods optimization experiment for the biochemistry laboratory.

    PubMed

    Willbur, Jaime F; Vail, Justin D; Mitchell, Lindsey N; Jakeman, David L; Timmons, Shannon C

    2016-01-01

    The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern techniques and instrumentation commonly found in a research laboratory. Unlike in a traditional cookbook-style experiment, students generate their own hypotheses regarding expression conditions and quantify the amount of protein isolated using their selected variables. Over the course of three 3-hour laboratory periods, students learn to use sterile technique to express a protein using recombinant DNA in E. coli, purify the resulting enzyme via affinity chromatography and dialysis, analyze the success of their purification scheme via SDS-PAGE, assess the activity of the enzyme via an HPLC-based assay, and quantify the amount of protein isolated via a Bradford assay. Following the completion of this experiment, students were asked to evaluate their experience via an optional survey. All students strongly agreed that this laboratory module was more interesting to them than traditional experiments because of its lack of a pre-determined outcome and desired additional opportunities to participate in the experimental design process. This experiment serves as an example of how research-inspired, discovery-based experiences can benefit both the students and instructor; students learned important skills necessary for real-world biochemistry research and a more concrete understanding of the research process, while generating new knowledge to enhance the scholarly endeavors of the instructor. PMID:26710673

  11. Expression, purification, and characterization of a carbohydrate-active enzyme: A research-inspired methods optimization experiment for the biochemistry laboratory.

    PubMed

    Willbur, Jaime F; Vail, Justin D; Mitchell, Lindsey N; Jakeman, David L; Timmons, Shannon C

    2016-01-01

    The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern techniques and instrumentation commonly found in a research laboratory. Unlike in a traditional cookbook-style experiment, students generate their own hypotheses regarding expression conditions and quantify the amount of protein isolated using their selected variables. Over the course of three 3-hour laboratory periods, students learn to use sterile technique to express a protein using recombinant DNA in E. coli, purify the resulting enzyme via affinity chromatography and dialysis, analyze the success of their purification scheme via SDS-PAGE, assess the activity of the enzyme via an HPLC-based assay, and quantify the amount of protein isolated via a Bradford assay. Following the completion of this experiment, students were asked to evaluate their experience via an optional survey. All students strongly agreed that this laboratory module was more interesting to them than traditional experiments because of its lack of a pre-determined outcome and desired additional opportunities to participate in the experimental design process. This experiment serves as an example of how research-inspired, discovery-based experiences can benefit both the students and instructor; students learned important skills necessary for real-world biochemistry research and a more concrete understanding of the research process, while generating new knowledge to enhance the scholarly endeavors of the instructor.

  12. Laboratory experiments and space phenomena

    NASA Astrophysics Data System (ADS)

    Podgornyi, I.

    It is noted that two types of convection have been observed in the laboratory model of the magnetosphere: viscous convection and convection arising from field lines common to both the magnetosphere and artificial solar wind. With a southward field component in the solar wind, convection from the sun is observed in the polar cap, but with a large northward component, convection is directed toward the sun. A merging of the field lines is found to occur in the cleft. With the southward component, a visor appears in front of the boundary of the magnetosphere. The decay of the visor into a small magnetic structure is observed. The formation of an induced magnetosphere having a magnetic tail is shown in the experiments of the simulated conditions near nonmagnetic bodies with a plasma shell. Also investigated is a combined induced-intrinsic magnetosphere.

  13. Laboratory Activities for Introductory Astronomy

    ERIC Educational Resources Information Center

    Kruglak, Haym

    1973-01-01

    Presents sample laboratory activities designed for use in astronomy teaching, including naked eye observations, instrument construction, student projects, and cloudy weather activities. Appended are bibliographies of journal articles and reference books and lists of films, laboratory manuals, and distributors of apparatus and teaching aids. (CC)

  14. Fluid Flow Experiment for Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Vilimpochapornkul, Viroj; Obot, Nsima T.

    1986-01-01

    The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)

  15. Pre-Student Teaching Laboratory Experiences.

    ERIC Educational Resources Information Center

    Verduin, John R., Jr.; Heinz, Charles R.

    This book (paperback), developed for preservice teachers in pre-student teaching laboratory experiences at Southern Illinois University, is intended also for wider use. The first half (text section) has three parts. Part 1 includes rationale for educational laboratory experiences and discussion of student, administrator, and classroom teacher…

  16. Communication Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Sutherland, Barbara, Ed.

    This communication systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, a list of objectives, a course description, and a content outline. The guide contains 32 modules on the following topics: story…

  17. Production Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    This production systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, domains and objectives, a course description, and a content outline. The guide contains 30 modules on the following topics: production…

  18. Summer Research Experiences with a Laboratory Tokamak

    NASA Astrophysics Data System (ADS)

    Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.

    1998-11-01

    Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.

  19. A Kinetic Experiment for the Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Palmer, Richard E.

    1986-01-01

    Discusses the use of specific reactions of metabolic pathways to make measurements in the laboratory. Describes an adaptation of an experiment used in undergraduate biochemistry laboratories involving the induction of an enzyme in E. coli, as well as its partial purification and characterization. (TW)

  20. Laboratory Experience for Teaching Sensory Physiology

    ERIC Educational Resources Information Center

    Albarracin, Ana L.; Farfan, Fernando D.; Felice, Carmelo J.

    2009-01-01

    The major challenge in laboratory teaching is the application of abstract concepts in simple and direct practical lessons. However, students rarely have the opportunity to participate in a laboratory that combines practical learning with a realistic research experience. In the Bioengineering Department, we started an experiential laboratory…

  1. Engineering Water Analysis Laboratory Activity.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    The purposes of water treatment in a marine steam power plant are to prevent damage to boilers, steam-operated equipment, and steam and condensate lives, and to keep all equipment operating at the highest level of efficiency. This laboratory exercise is designed to provide students with experiences in making accurate boiler water tests and to…

  2. Laboratory experiments on columnar jointing

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Morris, S. W.

    2003-12-01

    The mechanism causing columnar jointing has remained an enticing mystery since the basalt columns of the Giant's Causeway in N. Ireland were first reported to science in the 17th century. This phenomenon, in which shrinkage cracks form a quasi-hexagonal arrangement, has been shown to produce columns in starch, glass, coal, sandstone, and ice, as well as in a variety of lava flows. This suggests that this pattern-forming process is very general in nature. However, most studies of columnar jointing have been confined to field studies of basalt flows. Following Muller, we have experimented with desiccating corn starch in an effort to understand this pattern from a more general point of view. The diffusion and evaporation of water in starch is thought to be analogous to the diffusion and extraction of heat from a basalt flow. By combining direct sampling and x-ray tomography, fully 3D descriptions of columnar jointing were obtained with starch samples. We have characterized the pattern with several statistical indices, which describe its structure and relative disorder. These methods can resolve the ordering of the colonnade near the free surface. We identified two distinct mechanisms by which the mean column area increases during pattern evolution. We found both a slow, almost power-law increase in column area, as well as episodes of sudden catastrophic jumps in scale. The latter suggests that the column scale is not a simple single-valued function of drying rate, but rather a metastable state subject to hysteresis. Such metastable behaviour might explain a fundamental question about columnar jointing -- why the columns are so regular in the direction of their growth. Moreover, these experiments may help discriminate between the various theoretical models of this pattern forming process. Finally, our results lead to predictions that could be tested by field measurements on basaltic colonnades.

  3. Professional Laboratory Experiences at the Preservice Level.

    ERIC Educational Resources Information Center

    Gayles, Anne Richardson

    This monograph presents a completely theoretical analysis of data pertaining to professional laboratory experiences at the preservice level. The intention is to bring together in a useful pattern what is known and what is asserted about these experiences and to make specific functional proposals that, if implemented, may be conducive to enhancing…

  4. Determining the Quantum Efficiency for Activation of an Organometallic Photoinitiator for Cationic Polymerization: An Experiment for the Physical or Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir

    2007-01-01

    We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…

  5. Research and Development. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    Research and Development is a laboratory-oriented course that includes the appropriate common essential elements for industrial technology education plus concepts and skills related to research and development. This guide provides teachers of the course with learning activities for secondary students. Introductory materials include an…

  6. Laboratory Exercise on Active Transport.

    ERIC Educational Resources Information Center

    Stalheim-Smith, Ann; Fitch, Greg K.

    1985-01-01

    Describes a laboratory exercise which demonstrates qualitatively the specificity of the transport mechanism, including a consideration of the competitive inhibition, and the role of adenosine triphosphate (ATP) in active transport. The exercise, which can be completed in two to three hours by groups of four students, consistently produces reliable…

  7. Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives, and humans.

    PubMed

    Lorenzo, Norma; Wan, TianLang; Harper, Ross J; Hsu, Ya-Li; Chow, Michael; Rose, Stefan; Furton, Kenneth G

    2003-08-01

    This paper describes the use of headspace solid-phase microextraction (SPME) combined with gas chromatography to identify the signature odors that law enforcement-certified detector dogs alert to when searching for drugs, explosives, and humans. Background information is provided on the many types of detector dog available and specific samples highlighted in this paper are the drugs cocaine and 3,4-methylenedioxy- N-methylamphetamine (MDMA or Ecstasy), the explosives TNT and C4, and human remains. Studies include the analysis and identification of the headspace "fingerprint" of a variety of samples, followed by completion of double-blind dog trials of the individual components in an attempt to isolate and understand the target compounds that dogs alert to. SPME-GC/MS has been demonstrated to have a unique capability for the extraction of volatiles from the headspace of forensic specimens including drugs and explosives and shows great potential to aid in the investigation and understanding of the complicated process of canine odor detection. Major variables evaluated for the headspace SPME included fiber chemistry and a variety of sampling times ranging from several hours to several seconds and the resultant effect on ratios of isolated volatile components. For the drug odor studies, the CW/DVB and PDMS SPME fibers proved to be the optimal fiber types. For explosives, the results demonstrated that the best fibers in field and laboratory applications were PDMS and CW/DVB, respectively. Gas chromatography with electron capture detector (GC/ECD) and mass spectrometry (GC/MS) was better for analysis of nitromethane and TNT odors, and C-4 odors, respectively. Field studies with detector dogs have demonstrated possible candidates for new pseudo scents as well as the potential use of controlled permeation devices as non-hazardous training aids providing consistent permeation of target odors.

  8. The laboratory experience in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Di Stefano, Maria C.

    1997-03-01

    The last two decades or so have witnessed intense efforts to improve the teaching and learning of physics. Scholarly studies have provided the grounding for many projects which reform the structure of introductory courses. A number of these innovations, however, are resource intensive, or depend on the ability to introduce changes in areas which are beyond the control of the faculty (e.g., scheduling), thus inhibiting their implementation. An alternative strategy that overcomes these obstacles is to modify the nature of the laboratory experience (a component that practically nobody disputes is an essential part of the introductory course), to provide hands-on learning opportunities that differ from the traditional "follow-this-recipe-to-verify-this-law" approach. I have chosen to implement a variety of activities that support the overall objectives of the course: developing conceptual understanding and transferable skills, and providing practice in the ways scientists actually do science. Given the audience in this two-semester, algebra-based course, mostly biology majors and pre-professionals (health-related careers, such as medicine, physical therapy, and veterinary), these goals were identified as the most important and lasting contribution that a physics course can make to the students intellectual development. I offer here examples of the types of hands on activities that I have implemented, organized for the sake of this presentation in four rather loose categories, depending on which subset of the course objectives the activities mostly address: self-designed lab activities, discussion of demo-type activities, building concepts from simple to complex, and out-of-lab physical phenomena.

  9. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  10. A laboratory experiment on internal solitary waves

    NASA Astrophysics Data System (ADS)

    Bourgault, Daniel; Richards, Clark

    2007-07-01

    A simple laboratory experiment is designed to show the properties of internal solitary waves. The procedure and analysis are suited for a senior undergraduate laboratory course, though the techniques described may also be used for demonstration purposes in a fluid mechanics course. The measurements collected can be compared to the weakly nonlinear Korteweg-deVries (KdV) theory for the wave shape, lengthscale-amplitude relationship, and phase speed. The experiment provides a good introduction to internal solitary waves in the ocean, along with an exploration of error analysis and the limits of applicability of a theory.

  11. Modeling a Thermal Seepage Laboratory Experiment

    SciTech Connect

    Y. Zhang; J. Birkholzer

    2004-07-30

    A thermal seepage model has been developed to evaluate the potential for seepage into the waste emplacement drifts at the proposed high-level radioactive materials repository at Yucca Mountain when the rock is at elevated temperature. The coupled-process-model results show that no seepage occurs as long as the temperature at the drift wall is above boiling. This important result has been incorporated into the Total System Performance Assessment of Yucca Mountain. We have applied the same conceptual model to a laboratory heater experiment conducted by the Center for Nuclear Waste Regulatory Analyses. This experiment involves a fractured-porous rock system, composed of concrete slabs, heated by an electric heater placed in a 0.15 m diameter ''drift''. A substantial volume of water was released above the boiling zone over a time period of 135 days, giving rise to vaporization around the heat source. In this study, two basic conceptual models, similar to the thermal seepage models used in the Yucca Mountain Project, a dual-permeability model and an active-fracture model, are set up to predict evolution of temperature and saturation at the ''drift'' crown, and thereby to estimate potential for thermal seepage. Preliminary results from the model show good agreement with temperature profiles as well as with the potential seepage indicated in the lab experiments. These results build confidence in the thermal seepage models used in the Yucca Mountain Project. Different approaches are considered in our conceptual model to implement fracture-matrix interaction. Sensitivity analyses of fracture properties are conducted to help evaluation of uncertainty.

  12. Plume Electrification: Laboratory and Numerical Experiments

    NASA Astrophysics Data System (ADS)

    Mendez, J. S.; Dufek, J.

    2012-12-01

    The spectacular lightning strokes observed during eruptions testify to the enormous potentials that can be generated within plumes. Related to the charging of individual ash particles, large electric fields and volcanic lightning have been observed at Eyjafjallajokull, Redoubt, and Chaiten, among other volcanoes. A number of mechanisms have been proposed for plume electrification, including triboelectric charging, charging from the brittle failure of rock, and charging due to phase change as material is carried aloft. While the overall electrification of the plume likely results from a combination of these processes, in the following work we focus on triboelectric charging—how a plume charges as particles collide with each other. To explore the role of triboelectric effects in plume charging we have conducted a number of small scale laboratory experiments similar to those designed by Forward et al (2009). Succinctly, the experiments consist of fluidizing an ash bed with nitrogen and monitoring the resulting currents induced by the moving particles. It is important to note that the reaction chamber only allows particle-particle interactions. The entire experimental setup is enclosed in a vacuum chamber, allowing us to carefully control the environment during experiments. Runs were carried out for different ash compositions, and driving pressures. We particularly focused on natural grain size distributions of ash and on quantifying not only the net charge but also the charging rate. Furthermore, we report on our progress to incorporate the collected data, namely charging rates, into a large eularian-eularian-lagrangian multiphase eruption dynamic model. Finally, to validate these results, we present our plans to deploy a large wireless sensor network of electrometers and magnetometers around active volcanoes to directly map the overhead E- and M-fields as an eruption occurs.

  13. Discovery & Interaction in Astro 101 Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Maloney, Frank Patrick; Maurone, Philip; DeWarf, Laurence E.

    2016-01-01

    The availability of low-cost, high-performance computing hardware and software has transformed the manner by which astronomical concepts can be re-discovered and explored in a laboratory that accompanies an astronomy course for arts students. We report on a strategy, begun in 1992, for allowing each student to understand fundamental scientific principles by interactively confronting astronomical and physical phenomena, through direct observation and by computer simulation. These experiments have evolved as :a) the quality and speed of the hardware has greatly increasedb) the corresponding hardware costs have decreasedc) the students have become computer and Internet literated) the importance of computationally and scientifically literate arts graduates in the workplace has increased.We present the current suite of laboratory experiments, and describe the nature, procedures, and goals in this two-semester laboratory for liberal arts majors at the Astro 101 university level.

  14. Microscale Experiments in the Organic Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Williamson, Kenneth L.

    1991-01-01

    Discusses the advent of microscale experiments within undergraduate organic chemistry laboratories mainly resulting from environmental safety concerns involving waste disposal. Considers the cost savings in purchasing less reagents and chemicals, the typical glassware and apparatus, the reduced hazards from elimination of open flames, and other…

  15. Ultrafiltration of Protein Solutions: A Laboratory Experiment

    ERIC Educational Resources Information Center

    Pansare, Vikram J.; Tien, Daniel; Prud'homme, Robert K.

    2015-01-01

    Biology is playing an increasingly important role in the chemical engineering curriculum. We describe a set of experiments we have implemented in our Undergraduate Laboratory course giving students practical insights into membrane separation processes for protein processing. The goal of the lab is to optimize the purification and concentration of…

  16. Value of Laboratory Experiments for Code Validations

    SciTech Connect

    Wawersik, W.R.

    1998-12-14

    Numerical codes have become indispensable for designing underground structures and interpretating the behavior of geologic systems. Because of the complexities of geologic systems, however, code calculations often are associated with large quantitative uncertainties. This papers presents three examples to demonstrate the value of laboratory(or bench scale) experiments to evaluate the predictive capabilities of such codes with five major conclusions: Laboratory or bench-scale experiments are a very cost-effective, controlled means of evaluating and validating numerical codes, not instead of but before or at least concurrent with the implementation of in situ studies. The design of good laboratory validation tests must identifj what aspects of a code are to be scrutinized in order to optimize the size, geometry, boundary conditions, and duration of the experiments. The design of good and sometimes difficult numerical analyses and sensitivity studies. Laboratory validation tests must involve: Good validation experiments will generate independent data sets to identify the combined effect of constitutive models, model generalizations, material parameters, and numerical algorithms. Successfid validations of numerical codes mandate a close collaboration between experimentalists and analysts drawing from the full gamut of observations, measurements, and mathematical results.

  17. Making Sparklers: An Introductory Laboratory Experiment.

    ERIC Educational Resources Information Center

    Keeney, Allen; Walters, Christina; Cornelius, Richard D.

    1995-01-01

    Describes a basic introductory chemistry experiment for science majors which departs from synthesis and moves instead into the realm of formulation. As part of a project that reorganizes the introductory chemistry sequence according to subjects with which students are acquainted, this laboratory makes use of oxidation-reduction chemistry to make…

  18. Laboratory experiments on arc deflection and instability

    SciTech Connect

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  19. Laboratory and Field Experiments in Motor Learning.

    ERIC Educational Resources Information Center

    Singer, Robert N.; And Others

    This manual for research in motor learning was written for scientifically based physical educators, experimental psychologists, and others interested in the investigation of learning and performance phenomena associated with skill acquisition. Laboratory and field experiments are presented that can be run with or without the presence of a formal…

  20. Computer Based Simulation of Laboratory Experiments.

    ERIC Educational Resources Information Center

    Edward, Norrie S.

    1997-01-01

    Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…

  1. Laser Mode Structure Experiments for Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Phillips, Richard A.; Gehrz, Robert D.

    Experiments dealing with laser mode structure are presented which are suitable for an upper division undergraduate laboratory. The theory of cavity modes is summarized. The mode structure of the radiation from a helium-neon laser is measured by using a photodiode detector and spectrum analyzer to detect intermode beating. Off-axial modes can be…

  2. Gigabar shock wave in a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu.

    2016-03-01

    The current status of research on generating a powerful shock wave with a pressure of up to several gigabars in a laboratory experiment is reviewed. The focus is on results which give a possibility of shock-wave experiments to study an equation of state of matter (EOS) at the level of gigabar pressure. The proposals are discussed to achieve a plane record-pressure shock wave driven by laser-accelerated fast electrons with respect to EOS-experiment as well as to prospective method of inertial fusion target (ICF) ignition as shock ignition.

  3. The HAPPEX experiment at Jefferson Laboratory

    SciTech Connect

    Krishna Kumar; Paul Souder

    1997-10-01

    A new experimental program is under way at Jefferson Laboratory to probe the strange structure of the nucleon via parity violating electron scattering, HAPPEX is the first experiment from this program to run Jefferson Laboratory. We describe the physics motivation, provide an experimental overview and report on the results from the first data run. The asymmetry for the elastic scattering of 3.3 GeV electrons off target protons at a scattering angle of 12.5 degrees was measured to a precision of 15% of itself. The contribution from strange quark form factors was found to be zero within the experimental and theoretical uncertainties.

  4. Active SWIR laboratory testing methodology

    NASA Astrophysics Data System (ADS)

    Webb, Curtis M.; White, Steve; Rich, Brian

    2013-06-01

    Active Short Wave InfraRed (SWIR) imaging presents unique challenges to laboratory testing. It is always important to have laboratory testing that will directly relate to field performance. This paper will present the modeling and corresponding laboratory testing that was developed for these types of systems. The paper will present the modeling that was used to derive the lab metric used for verification testing of the system and provide details into the design of the lab equipment that was necessary to ensure accurate lab testing. The Noise Limited Resolution (NLR) test, first developed for low light imaging systems in the 1960s, serves as the basic lab metric for the evaluation of the active SWIR system. This test serves well for a quick test (go-no go) and is used to evaluate this system during production testing. The test derivation will be described and shown how it relates to the modeling results. The test equipment developed by Santa Barbara InfraRed (SBIR) for this application allows for accurate uniform radiance levels from an integrating sphere for both 1.06um and 1.57um imaging applications. The source has the ability to directly mimic any laser system and can provide pulsed laser source radiation from 20 nanoseconds to 500 nanoseconds resulting in levels from 0.4 to 85 nJ/cm2/sr, peak radiance levels. The light source can be triggered to replicate a laser return at any range from 100m to 100,000m. Additionally, the source provides the ability to output Mid Wave IR (MWIR) illumination through the use of a small extended area IR source in the integrating sphere. This is useful for boresighting the active SWIR sensor with other sensors such as Forward Looking IR (FLIR).

  5. The student perspective of high school laboratory experiences

    NASA Astrophysics Data System (ADS)

    Lambert, R. Mitch

    High school science laboratory experiences are an accepted teaching practice across the nation despite a lack of research evidence to support them. The purpose of this study was to examine the perspective of students---stakeholders often ignored---on these experiences. Insight into the students' perspective was explored progressively using a grounded theory methodology. Field observations of science classrooms led to an open-ended survey of high school science students, garnering 665 responses. Twelve student interviews then focused on the data and questions evolving from the survey. The student perspective on laboratory experiences revealed varied information based on individual experience. Concurrent analysis of the data revealed that although most students like (348/665) or sometimes like (270/665) these experiences, some consistent factors yielded negative experiences and prompted suggestions for improvement. The category of responses that emerged as the core idea focused on student understanding of the experience. Students desire to understand the why do, the how to, and the what it means of laboratory experiences. Lacking any one of these, the experience loses educational value for them. This single recurring theme crossed the boundaries of age, level in school, gender, and even the student view of lab experiences as positive or negative. This study suggests reflection on the current laboratory activities in which science teachers engage their students. Is the activity appropriate (as opposed to being merely a favorite), does it encourage learning, does it fit, does it operate at the appropriate level of inquiry, and finally what can science teachers do to integrate these activities into the classroom curriculum more effectively? Simply stated, what can teachers do so that students understand what to do, what's the point, and how that point fits into what they are learning outside the laboratory?

  6. CSI flight experiment projects of the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fisher, Shalom

    1993-01-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  7. Preparation of Buffers. An Experiment for Quantitative Analysis Laboratory

    NASA Astrophysics Data System (ADS)

    Buckley, P. T.

    2001-10-01

    In our experience, students who have a solid grounding in the theoretical aspects of buffers, buffer preparation, and buffering capacity are often at a loss when required to actually prepare a buffer in a research setting. However, there are very few published laboratory experiments pertaining to buffers. This laboratory experiment for the undergraduate quantitative analysis lab gives students hands-on experience in the preparation of buffers. By preparing a buffer to a randomly chosen pH value and comparing the theoretical pH to the actual pH, students apply their theoretical understanding of the Henderson-Hasselbalch equation, activity coefficients, and the effect of adding acid or base to a buffer. This experiment gives students experience in buffer preparation for research situations and helps them in advanced courses such as biochemistry where a fundamental knowledge of buffer systems is essential.

  8. Systems integration test laboratory application & experiences

    NASA Astrophysics Data System (ADS)

    Rimer, Melvyn; Falco, Michael; Solan, Michael J.

    1991-01-01

    The ability to safely control highly dynamic systems is of prime importance to designers. Whether the system is an aircraft, spacecraft, or propulsion system, control system designers must turn to test laboratories not only to verify and validate the control systems, but also to actually use the laboratory as a design and development tool. The use of the laboratory early in the development phase of a system—prior to committing to actual hardware/software (HW/SW)—permits early detection of system anomalies, thereby minimizing program development costs while enhancing safety. Later the laboratory can be used to train system operators (for example, pilots, ground crew) in preparation for flight/ground test. In the case of the statically unstable X-29 forward swept wing aircraft, a comprehensive real-time, hardware-in-the-loop test facility was critical in the development of the aircraft's digital fly-by-wire (FBW) flight control system. The X-29 laboratory initially was used to introduce control laws to a simulated real-time environment to verify control system characteristics. Later, actual flight hardware was introduced to the laboratory, at which point the formal system verification/validation test program began. The test program utilized detailed test plans and procedures derived from system requirements and specifications to map out all tests required. This assured that the maximum number of components of the system were exercised in the laboratory, and all components tested had traceability throughout the test program. The end-to-end hardware-in-the loop simulation provided the environment to perform critical failure modes testing, parameter sensitivity evaluation and ultimately pilot/ground crew training during normal and degraded flight control system operation. The X-29 test experience, applicable to the laboratory testing of all critical control systems, has ingrained the philosophy that successful development of complex systems requires an orderly build

  9. Forensics as a Laboratory Experience in Small Group Communication.

    ERIC Educational Resources Information Center

    Zeuschner, Raymond Bud

    Forensics programs can be laboratories for small group processes, whether or not they are explicitly recognized by either the participants or their teachers. Small group dynamics, as identified by M. Shaw (1981), are present and clearly define the forensic activity as a small group experience. The combination of being a small group, spending…

  10. The BDX experiment at Jefferson Laboratory

    SciTech Connect

    Celentano, Andrea

    2015-06-01

    The existence of MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. The Beam Dump eXperiment (BDX) at Jefferson Laboratory aims to investigate this mass range. Dark matter particles will be detected through scattering on a segmented, plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls. The experiment will collect up to 1022 electrons-on-target (EOT) in a one-year period. For these conditions, BDX is sensitive to the DM-nucleon elastic scattering at the level of a thousand counts per year, and is only limited by cosmogenic backgrounds. The experiment is also sensitive to DM-electron elastic and inelastic scattering, at the level of 10 counts/year. The foreseen signal for these channels is a high-energy (> 100 MeV) electromagnetic shower, with almost no background. The experiment has been presented in form of a Letter of Intent to the laboratory, receiving positive feedback, and is currently being designed.

  11. Experience of maintaining laboratory educational website's sustainability

    PubMed Central

    Dimenstein, Izak B.

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular “niche of knowledge.” This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining “Grossing Technology in Surgical Pathology” (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal. PMID:27688928

  12. Experience of maintaining laboratory educational website's sustainability.

    PubMed

    Dimenstein, Izak B

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular "niche of knowledge." This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal. PMID:27688928

  13. Experience of maintaining laboratory educational website's sustainability.

    PubMed

    Dimenstein, Izak B

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular "niche of knowledge." This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal.

  14. Experience of maintaining laboratory educational website's sustainability

    PubMed Central

    Dimenstein, Izak B.

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular “niche of knowledge.” This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining “Grossing Technology in Surgical Pathology” (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal.

  15. Laboratory experiments from the toy store

    NASA Technical Reports Server (NTRS)

    Mcclelland, H. T.

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. This material could be taught to a typical student of materials science or manufacturing at the high school level or above. The objectives of this experiment are as follows: (1) to qualitatively demonstrate the concepts of elasticity, plasticity, and the strain rate and temperature dependence of the mechanical properties of engineering materials; (2) to qualitatively demonstrate the basics of extrusion including material flow, strain rate dependence of defects, lubrication effects, and the making of hollow shapes by extrusion (the two parts may be two separate experiments done at different times when the respective subjects are covered); and (3) to demonstrate the importance of qualitative observations and the amount of information which can be gathered without quantitative measurements.

  16. Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena

    SciTech Connect

    Ryutov, D; Remington, B

    2005-09-13

    To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.

  17. How Can We Identify the Elimination of Infectious Diseases? Experience From an Active Measles Laboratory Surveillance System in the Republic of Korea.

    PubMed

    Yang, Tae Un; Kang, Hae Ji; Eom, Hye Eun; Park, Young-Joon; Park, Ok; Kim, Su Jin; Nam, Jeong-Gu; Kim, Sung Soon; Jeong, Eun Kyeong

    2015-11-01

    Global efforts have markedly decreased the disease burden of vaccine-preventable diseases. Many countries have made considerable progress toward the elimination of measles. As elimination is approached, the very low incidence achieved by high vaccination coverage has underscored the need for a sensitive and timely surveillance system. In the Republic of Korea, an active laboratory surveillance system (ALSS) was implemented to supplement the existing passive surveillance system in 2006. The ALSS connects 5 major commercial laboratories and the national measles reference laboratory, where referred samples with positive or equivocal results are retested. Annually, from 2009 to 2013, 3714 suspected cases were detected through the ALSS, an expansion of 8- to 57-fold, compared with only the passive surveillance system. The ALSS, with its sensitivity and timeliness, is a reasonable strategy to supplement the existing measles surveillance system and to help identify the elimination of measles.

  18. Recent Laboratory Astrophysics Experiments at LULI

    NASA Astrophysics Data System (ADS)

    Koenig, Michel; Michaut, Claire; Loupias, Bérénice; Falize, Emeric; Gregory, Chris; Kuramitsu, Yasuhiro; Dono, Seiichi; Vinci, Tommaso; Waugh, Jonny; Woolsey, Nigel; Ozaki, Norimasa; Benuzzi-Mounaix, Alessandra; Ravasio, Alessandra; Bouquet, Serge; Goahec, Marc Rabec Le; Nazarov, Wigen; Pikuz, Serguey; Sakawa, Youichi; Takabe, Hideaki; Kodama, Ryosuke

    At the LULI laboratory we developed since a few years a program on several topics related to laboratory astrophysics: high velocity jets, shock waves in density gradients, collisionless shocks, and radiative shocks (RS). In this paper, the latest experiments related to RS’s obtained on the new LULI2000 facility and on GEKKOXII are presented. In particular a strong radiative precursor was observed and its time evolution compared with 2D radiative simulations. The second topic developed at LULI is related to plasma jets which are often observed in Young Stellar Objects (YSO), during their phase of bulk contraction. They interact with the interstellar medium resulting in emission lobes, including the so-called bow shocks. The objective of our experiments was to generate plasma jets propagating through an ambient medium. To this aim, we developed a new target design (a foam filled cone ended with a “nozzle”) in order to generate a plasma jet. A jet-like structure was observed and its time evolution studied by varying the foam density. Interaction with ambient medium was recently performed showing growing instabilities for low density gas.

  19. Effective Laboratory Experiences for Students with Disabilities: The Role of a Student Laboratory Assistant

    NASA Astrophysics Data System (ADS)

    Pence, Laura E.; Workman, Harry J.; Riecke, Pauline

    2003-03-01

    Two separate experiences with students whose disabilities significantly limited the number of laboratory activities they could accomplish independently has given us a general experience base for determining successful strategies for accommodating students facing these situatiuons. For a student who had substantially limited physical mobility and for a student who had no visual ability, employing a student laboratory assistant allowed the students with disabilities to have a productive and positive laboratory experience. One of the priorities in these situations should be to avoid depersonalizing the student with a disability. Interactions with the instructor and with other students should focus on the disabled student rather than the student laboratory assistant who may be carrying out specific tasks. One of the most crucial aspects of a successful project is the selection of a laboratory assistant who has excellent interpersonal skills and who will add his or her creativity to that of the student with a disability to meet unforeseen challenges. Other considerations are discussed, such as the importance of advance notification that a disabled student has enrolled in a course as well as factors that should contribute to choosing an optimum laboratory station for each situation.

  20. Simple Laboratory Experiment for Illustrating Soil Respiration.

    ERIC Educational Resources Information Center

    Hattey, J. A.; Johnson, G. V.

    1997-01-01

    Describes an experiment to illustrate the effect of food source and added nutrients (N) on microbial activity in the soil. Supplies include air-dried soil, dried plant material, sources of carbon and nitrogen, a trap such as KOH, colored water, and a 500-mL Erlenmeyer flask. Includes a diagram of an incubation chamber to demonstrate microbial…

  1. Development of sensorial experiments and their implementation into undergraduate laboratories

    NASA Astrophysics Data System (ADS)

    Bromfield Lee, Deborah Christina

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only eyesight. Multi-sensory learning can benefit all students by actively engaging them in learning through stimulation or an alternative way of experiencing a concept or ideas. Perception of events or concepts usually depends on the information from the different sensory systems combined. The use of multi-sensory learning can take advantage of all the senses to reinforce learning as each sense builds toward a more complete experience of scientific data. Research has shown that multi-sensory representations of scientific phenomena is a valuable tool for enhancing understanding of chemistry as well as displacing misconceptions through experience. Multi-sensory experiences have also been shown to enrich memory performance. There are few experiments published which utilize multiple senses in the teaching laboratory. The sensorial experiments chosen were conceptually similar to experiments currently performed in undergraduate laboratories; however students collect different types of data using multi-sensory observations. The experiments themselves were developed by using chemicals that would provide different sensory changes or capitalizing on sensory observations that were typically overlooked or ignored and obtain similar and precise results as in traditional experiments. Minimizing hazards and using safe practices are especially essential in these experiments as students utilize senses traditionally not allowed to be used in the laboratories. These sensorial experiments utilize typical equipment found in the teaching laboratories as well as inexpensive chemicals in order to aid implementation. All experiments are rigorously tested

  2. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    NASA Astrophysics Data System (ADS)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  3. Laboratory Experiments of Rip Current Generation

    NASA Astrophysics Data System (ADS)

    Garnier, R.; Coco, G.; Lomonaco, P.; Dalrymple, R. A.; Alvarez, A.; Gonzalez, M.; Medina, R.

    2014-12-01

    The hypothesis of rip current generation from purely hydrodynamic processes is here investigated through laboratory experiments. The experiments have been performed at the Cantabria Coastal and Ocean Basin (CCOB) with a segmented wavemaker consisting of 64 waveboards. The basin measures 25m in the cross-shore and 32m in the alongshore direction and the water depth at the wavemaker is 1m. A concrete plane sloping (1:5) beach has been built in the opposite side of the wave machine, its toe is 15m from the waveboards. Reflective lateral walls covered the full length of the basin. The set of instruments consists of 33 wave gauges deployed along two longshore and two cross-shore transects, 7 acoustic Doppler velocimeters and 15 run-up wires. Furthermore a set of two cameras has been synchronized with the data acquisition system. Two types of experiments have been performed to specifically study the generation of rip currents under wave group forcing. First, similarly to the experiments of Fowler and Dalrymple (Proc. 22nd Int. Conf. Coast. Eng.,1990), two intersecting wave trains with opposite directions have been imposed. They give rise to the formation of a non-migrating rip current system with a wavelength that depends on wave frequency and direction. Second, single wave trains with alongshore periodic amplitude attenuation have been imposed. Although the attenuation has been set such that the incident wave field has the same envelope as in the first type of experiments, the rip current system differs due to diffraction and interference processes. The results for different wave conditions (maximum incident wave height from 0.2m to 0.4m, wave period from 1.4s to 2s) will be presented and the intensity of the rip currents will be compared to the alongshore variation in wave set-up. This research is part of the ANIMO project funded by the Spanish Government under contract BIA2012-36822.

  4. Extravehicular activity welding experiment

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin

    1989-01-01

    The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.

  5. Laboratory experiments of salt water intrusion

    NASA Astrophysics Data System (ADS)

    Crestani, Elena; Camporese, Matteo; Salandin, Paolo

    2015-04-01

    The problem of saltwater intrusion in coastal aquifers is dealt with by the proper setup of a sand-box device to develop laboratory experiments in a controlled environment. Saline intrusion is a problem of fundamental importance and affects the quality of both surface water and groundwater in coastal areas. In both cases the phenomenon may be linked to anthropogenic (construction of reservoirs, withdrawals, etc.) and/or natural (sea-level excursions, variability of river flows, etc.) changes. In recent years, the escalation of this problem has led to the development of specific projects and studies to identify possible countermeasures, typically consisting of underground barriers. Physical models are fundamental to study the saltwater intrusion problem, since they provide benchmarks for numerical model calibrations and for the evaluation of the effectiveness of solutions to contain the salt wedge. In order to study and describe the evolution of the salt wedge, the effectiveness of underground barriers, and the distance from the coast of a withdrawal that guarantees a continuous supply of fresh water, a physical model has been realized at the University of Padova to represent the terminal part of a coastal aquifer. It consists of a laboratory flume 500 cm long, 30 cm wide and 60 cm high, filled for an height of 45 cm with glass beads with a d50 of 0.6 mm and a uniformity coefficient d60/d10~= 1.5. The material is homogeneous and characterized by a porosity of about 0.37 and by an hydraulic conductivity of about 1.8×10-3 m/s. Upstream from the sand-box, a tank, continuously supplied by a pump, provides fresh water to recharge the aquifer, while the downstream tank, filled with salt water, simulates the sea. The volume of the downstream tank (~= 2 m3) is about five times the upstream one, so that density variations due to the incoming fresh water flow are negligible. The water level in the two tanks is continuously monitored by means of two level probes and is

  6. Magnetized laboratory plasma jets: experiment and simulation.

    PubMed

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 MA, 100 ns current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μm Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ∼1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μs current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics. PMID:25679726

  7. Magnetized laboratory plasma jets: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  8. Organic Laboratory Experiments: Micro vs. Conventional.

    ERIC Educational Resources Information Center

    Chloupek-McGough, Marge

    1989-01-01

    Presents relevant statistics accumulated in a fall organic laboratory course. Discusses laboratory equipment setup to lower the amount of waste. Notes decreased solid wastes were produced compared to the previous semester. (MVL)

  9. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-06-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual student contributions to collaborative group/teamwork throughout the processes of experimental design, data analysis, display and communication of their outcomes in relation to their research question(s). Traditional assessments in the form of laboratory notebooks or experimental reports provide limited insight into the processes of collaborative inquiry-based activities. A wiki environment offers a collaborative domain that can potentially support collaborative laboratory processes and scientific record keeping. In this study, the effectiveness of the wiki in supporting laboratory learning and assessment has been evaluated through analysis of the content and histories for three consenting, participating groups of students. The conversational framework has been applied to map the relationships between the instructor, tutor, students and laboratory activities. Analytics that have been applied to the wiki platform include: character counts, page views, edits, timelines and the extent and nature of the contribution by each student to the wiki. Student perceptions of both the role and the impact of the wiki on their experiences and processes have also been collected. Evidence has emerged from this study that the wiki environment has enhanced co-construction of understanding of both the experimental process and subsequent communication of outcomes and data. A number of features are identified to support success in the use of the wiki platform for laboratory notebooks.

  10. Barometric pressure fluctuations: effects on the activity of laboratory mice.

    PubMed

    Sprott, R L

    1967-09-01

    Fluctuations in naturally occurring levels of barometric pressure appear to be an important determinant of activity in laboratory mice. In three experiments, activity was higher after increases in barometric pressure than it was after decreases. When the barometric pressure remained relatively stable, intermediate levels of activity were observed.

  11. Active seismic experiment

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1972-01-01

    The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.

  12. Essential Laboratory Activities Guide. Secondary Science.

    ERIC Educational Resources Information Center

    Duval County Schools, Jacksonville, FL.

    This teacher's guide was developed for use in junior and senior high schools in Duval County, Jacksonville, Florida, for the purpose of identifying those secondary science laboratory experiences which are essential to the development of science content knowledge and competency in handling science laboratory equipment and consumables. The guide…

  13. Structural health monitoring activities at National Laboratories

    SciTech Connect

    Farrar, C.R.; Doebling, S.W.; James, G.H.; Simmermacher, T.

    1997-09-01

    Sandia National Laboratories and Los Alamos National Laboratory have on-going programs to assess damage in structures and mechanical systems from changes in their dynamic characteristics. This paper provides a summary of how both institutes became involved with this technology, their experience in this field and the directions that their research in this area will be taking in the future.

  14. Meteorological Development Laboratory Student Career Experience Program

    NASA Astrophysics Data System (ADS)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  15. An Introductory Laboratory Exercise on Solution Preparation: A Rewarding Experience

    NASA Astrophysics Data System (ADS)

    Wang, M. Rachel

    2000-02-01

    This exercise provides beginning students a firsthand experience in solution preparation. It can be completed within two hours. The format of the student handout promotes active learning in the laboratory by having text and questions interspersed among laboratory procedures. This exercise has been used successfully in various introductory courses I have taught for more than 14 years. Factors contributing to its effectiveness include (i) students are motivated to prepare solutions for the fascinating Briggs-Rauscher (BR) oscillation reaction; (ii) the exercise involves a variety of situations commonly encountered in solution preparation; (iii) the challenge of demonstrating the BR reaction seems to be at the appropriate level for beginning students, and meeting the challenge is a rewarding experience and serves as a measure of success in solution preparation; (iv) the exercise lends itself to further take-home studies suitable for different types of introductory chemistry courses.

  16. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  17. Density Estimations in Laboratory Debris Flow Experiments

    NASA Astrophysics Data System (ADS)

    Queiroz de Oliveira, Gustavo; Kulisch, Helmut; Malcherek, Andreas; Fischer, Jan-Thomas; Pudasaini, Shiva P.

    2016-04-01

    Bulk density and its variation is an important physical quantity to estimate the solid-liquid fractions in two-phase debris flows. Here we present mass and flow depth measurements for experiments performed in a large-scale laboratory set up. Once the mixture is released and it moves down the inclined channel, measurements allow us to determine the bulk density evolution throughout the debris flow. Flow depths are determined by ultrasonic pulse reflection, and the mass is measured with a total normal force sensor. The data were obtained at 50 Hz. The initial two phase material was composed of 350 kg debris with water content of 40%. A very fine pebble with mean particle diameter of 3 mm, particle density of 2760 kg/m³ and bulk density of 1400 kg/m³ in dry condition was chosen as the solid material. Measurements reveal that the debris bulk density remains high from the head to the middle of the debris body whereas it drops substantially at the tail. This indicates lower water content at the tail, compared to the head and the middle portion of the debris body. This means that the solid and fluid fractions are varying strongly in a non-linear manner along the flow path, and from the head to the tail of the debris mass. Importantly, this spatial-temporal density variation plays a crucial role in determining the impact forces associated with the dynamics of the flow. Our setup allows for investigating different two phase material compositions, including large fluid fractions, with high resolutions. The considered experimental set up may enable us to transfer the observed phenomena to natural large-scale events. Furthermore, the measurement data allows evaluating results of numerical two-phase mass flow simulations. These experiments are parts of the project avaflow.org that intends to develop a GIS-based open source computational tool to describe wide spectrum of rapid geophysical mass flows, including avalanches and real two-phase debris flows down complex natural

  18. Do-It-Yourself Experiments for the Instructional Laboratory

    ERIC Educational Resources Information Center

    Craig, Norman C.; Hill, Cortland S.

    2012-01-01

    A new design for experiments in the general chemistry laboratory incorporates a "do-it-yourself" component for students. In this design, students perform proven experiments to gain experience with techniques for about two-thirds of a laboratory session and then spend the last part in the do-it-yourself component, applying the techniques to an…

  19. Operational Amplifier Experiments for the Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Braun, Robert D.

    1996-01-01

    Provides details of experiments that deal with the use of operational amplifiers and are part of a course in instrumental analysis. These experiments are performed after the completion of a set of electricity and electronics experiments. (DDR)

  20. Laboratory Experiments for Network Security Instruction

    ERIC Educational Resources Information Center

    Brustoloni, Jose Carlos

    2006-01-01

    We describe a sequence of five experiments on network security that cast students successively in the roles of computer user, programmer, and system administrator. Unlike experiments described in several previous papers, these experiments avoid placing students in the role of attacker. Each experiment starts with an in-class demonstration of an…

  1. Database activities at Brookhaven National Laboratory

    SciTech Connect

    Trahern, C.G.

    1995-12-01

    Brookhaven National Laboratory is a multi-disciplinary lab in the DOE system of research laboratories. Database activities are correspondingly diverse within the restrictions imposed by the dominant relational database paradigm. The authors discuss related activities and tools used in RHIC and in the other major projects at BNL. The others are the Protein Data Bank being maintained by the Chemistry department, and a Geographical Information System (GIS)--a Superfund sponsored environmental monitoring project under development in the Office of Environmental Restoration.

  2. Introductory Industrial Technology II. Laboratory Activities.

    ERIC Educational Resources Information Center

    Towler, Alan L.

    This guide contains 29 learning modules intended for use by technology teachers and students in grade 8. Each module includes a student laboratory activity and instructor's resource sheet. Each student activity includes the following: activity topic and overview, challenge statement, objectives, vocabulary/concepts reinforced, equipment/supplies,…

  3. Introductory Industrial Technology I. Laboratory Activities.

    ERIC Educational Resources Information Center

    Towler, Alan L.; And Others

    This guide contains 36 learning modules intended for use by technology teachers and students in grades 7 and 8. Each module includes a student laboratory activity and instructor's resource sheet. Each student activity includes the following: activity topic and overview, challenge statement, objectives, vocabulary/concepts reinforced,…

  4. Practical Enzyme Kinetics: A Biochemical Laboratory Experiment.

    ERIC Educational Resources Information Center

    Rowe, H. Alan; Brown, Morris

    1988-01-01

    Describes an experiment that provides a fundamental understanding of the kinetics of the enzyme papain. Discusses background, materials, procedures and results. Mentions analogous experiments that can be conducted with enzymatic contact-lens cleaning solutions. (CW)

  5. Brownian Motion--a Laboratory Experiment.

    ERIC Educational Resources Information Center

    Kruglak, Haym

    1988-01-01

    Introduces an experiment involving the observation of Brownian motion for college students. Describes the apparatus, experimental procedures, data analysis and results, and error analysis. Lists experimental techniques used in the experiment. Provides a circuit diagram, typical data, and graphs. (YP)

  6. Parallel Combinatorial Synthesis of Azo Dyes: A Combinatorial Experiment Suitable for Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Gung, Benjamin W.; Taylor, Richard T.

    2004-01-01

    An experiment in the parallel synthesis of azo dyes that demonstrates the concepts of structure-activity relationships and chemical diversity with vivid colors is described. It is seen that this experiment is suitable for the second-semester organic chemistry laboratory and also for the one-semester organic laboratory.

  7. Principles of Radio: A Laboratory Experiment

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2002-01-01

    An experiment is proposed for learning the principles of radio. A simple radio receiver illustrates amplitude modulation and demodulation, the selectivity of a receiver and the features of a directional antenna. Both normal and computerized versions of the experiment are described. The computerized experiment employs the "ScienceWorkshop"…

  8. Colorimetric Titration Experiment for the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Lopez, Edwin; Vassos, Basil H.

    1984-01-01

    Describes a colorimetric titration instrument usable in the undergraduate laboratory that fulfills the objectives of ruggedness, freedom from ambient light interference, and low cost. Although accessories can be added (raising the price), the basic instrument is low priced and can be used manually with a simple voltmeter. (JN)

  9. Laboratory Experiment on Electrokinetic Remediation of Soil

    ERIC Educational Resources Information Center

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  10. A Meaningful Experience in Laboratory Investigation

    ERIC Educational Resources Information Center

    Szinai, S. S.; Szinai, N.

    1976-01-01

    The framework of the course "Problems in Pharmaceutical Chemistry" was used to give second- and third-year pharmacy students at the University of Florida an opportunity to obtain an insight into the workings of laboratories dealing with drug-related problems. Goals, outline, and an illustrative project for the course are described. (LBH)

  11. Laboratory Experiences in Marine Biology, Student Edition.

    ERIC Educational Resources Information Center

    Raimist, Roger J.

    This manual contains instructions for laboratory exercises using marine organisms. For each exercise a problem is defined, materials are listed, possible ways to solve the problem are suggested, questions are asked to guide the student in interpreting data, and further reading is suggested. The exercises deal with the measurement of oxygen…

  12. A Laboratory Experiment on the Statistical Theory of Nuclear Reactions

    ERIC Educational Resources Information Center

    Loveland, Walter

    1971-01-01

    Describes an undergraduate laboratory experiment on the statistical theory of nuclear reactions. The experiment involves measuring the relative cross sections for formation of a nucleus in its meta stable excited state and its ground state by applying gamma-ray spectroscopy to an irradiated sample. Involves 3-4 hours of laboratory time plus…

  13. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  14. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  15. Industrial Hygiene Laboratory accreditation: The JSC experience

    NASA Technical Reports Server (NTRS)

    Fadner, Dawn E.

    1993-01-01

    The American Industrial Hygiene Association (AIHA) is a society of professionals dedicated to the health and safety of workers and community. With more than 10,000 members, the AIHA is the largest international association serving occupational and environmental health professionals practicing industrial hygiene in private industry, academia, government, labor, and independent organizations. In 1973, AIHA developed a National Industrial Hygiene Laboratory Accreditation Program. The purposes of this program are shown.

  16. Buffer Capacity: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Russo, Steven O.; Hanania, George I. H.

    1987-01-01

    Describes a quantitative experiment designed to demonstrate buffer action and the measurement of buffer capacity. Discusses how to make acetate buffers, determine their buffer capacity, plot the capacity/pH curve, and interpret the data obtained. (TW)

  17. Recycle with Heating: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foord, A.; Mason, G.

    1985-01-01

    Describes an apparatus (built from domestic plumbing pipes and fittings) that uses only water and electricity (as consumables) to investigate basic mass and heat balances in a system with recycle. Also describes experiments using the apparatus. (JN)

  18. Sandia National Laboratories Education Outreach Activities

    SciTech Connect

    Dawes, William R. Jr.

    1999-08-26

    The US Department of Energy and its national laboratories are a major employer of scientists and engineers and consequently have a strong interest in the development and training of a qualified pool of employment candidates. For many years the DOE and its national laboratories have supported education activities devoted to increasing the number and quality of science and engineering graduates. This is part of the DOE mission because of the critical national need for scientists and engineers and the recognized deficiencies in the education system for science and mathematics training. Though funding support for such activities has waxed and waned, strong education programs have survived in spite of budget pressures. This paper reviews a few of the education programs presently supported at Sandia by the Science and Technology Outreach Department. The US DOE Defense Programs Office and Sandia National Laboratories provide financial support for these education activities.

  19. [Our experience with outside laboratory quality control].

    PubMed

    Dochev, D; Arakasheva, V; Nashkov, A; Tsachev, K

    1979-01-01

    The results from the national outside laboratory qualitative control of the clinical diagnostic laboratory investigations for the period September 1975 -- May 1977 were described. The following interlaboratory discrepancy was found on base of a systematic analysis of the data from the last two ring-like check-ups, November 1976 and May 1977, exressed by the variation coefficient (V.C. %); total protein, sodium, potassium and chlorides -- under 10%; cholesterol, urea and total fats -- between 10 and 20%; calcium, phosphorus, iron and creatinine -- over 20%. The highest per cent of admissible results are found with total protein -- to 85%; cholesterol -- to 70.38%; glucosa -- to 73.17%, urea -- to 69.23%, potassium -- to 59.46%, chlorides -- to 57.9%. With sodium, phosphorus, calcium, iron creatinine and uric acid the "admissibility" fluctuates about or under 50 per cent. The values of the qualitative-control indices discussed are comparable with the values obtained from them in the interlaboratory comparisons of other countries. PMID:494628

  20. The Nature of Laboratory Learning Experiences in Secondary Science Online

    NASA Astrophysics Data System (ADS)

    Crippen, Kent J.; Archambault, Leanna M.; Kern, Cindy L.

    2013-06-01

    Teaching science to secondary students in an online environment is a growing international trend. Despite this trend, reports of empirical studies of this phenomenon are noticeably missing. With a survey concerning the nature of laboratory activities, this study describes the perspective of 35-secondary teachers from 15-different U.S. states who are teaching science online. The type and frequency of reported laboratory activities are consistent with the tradition of face-to-face instruction, using hands-on and simulated experiments. While provided examples were student-centered and required the collection of data, they failed to illustrate key components of the nature of science. The features of student-teacher interactions, student engagement, and nonverbal communications were found to be lacking and likely constitute barriers to the enactment of inquiry. These results serve as a call for research and development focused on using existing communication tools to better align with the activity of science such that the nature of science is more clearly addressed, the work of students becomes more collaborative and authentic, and the formative elements of a scientific inquiry are more accessible to all participants.

  1. Laboratory experiments in integrated circuit fabrication

    NASA Technical Reports Server (NTRS)

    Jenkins, Thomas J.; Kolesar, Edward S.

    1993-01-01

    The objectives of the experiment are fourfold: to provide practical experience implementing the fundamental processes and technology associated with the science and art of integrated circuit (IC) fabrication; to afford the opportunity for the student to apply the theory associated with IC fabrication and semiconductor device operation; to motivate the student to exercise engineering decisions associated with fabricating integrated circuits; and to complement the theory of n-channel MOS and diffused devices that are presented in the classroom by actually fabricating and testing them. Therefore, a balance between theory and practice can be realized in the education of young engineers, whose education is often criticized as lacking sufficient design and practical content.

  2. Preservice Teachers' Research Experiences in Scientists' Laboratories

    ERIC Educational Resources Information Center

    Brown, Sherri; Melear, Claudia

    2007-01-01

    To promote the use of scientific inquiry methods in K-12 classrooms, departments of teacher education must provide science teachers with experiences using such methods. To comply with state and national mandates, an apprenticeship course was designed to afford preservice secondary science teachers opportunities to engage in an authentic, extended,…

  3. Laboratory plate tectonics: a new experiment.

    PubMed

    Gans, R F

    1976-03-26

    A "continent" made of a layer of hexagonally packed black polyethylene spheres floating in clear silicon oil breaks into subcontinents when illuminated by an ordinary incandescent light bulb. This experiment may be a useful model of plate tectonics driven by horizontal temperature gradients. Measurements of the spreading rate are made to establish the feasibility of this model.

  4. "Crown Ether" Synthesis: An Organic Laboratory Experiment.

    ERIC Educational Resources Information Center

    Field, Kurt W.; And Others

    1979-01-01

    This experiment is designed to acquaint the student with a macromolecular synthesis of a crown ether type compound. The starting materials are readily available and the product, a cyclic polyether, belongs to a class of compounds that has aroused the interest of chemist and biologist alike. (Author/BB)

  5. Millikan's oil-drop experiment as a remotely controlled laboratory

    NASA Astrophysics Data System (ADS)

    Eckert, Bodo; Gröber, Sebastian; Vetter, Martin; Jodl, Hans-Jörg

    2012-09-01

    The Millikan oil-drop experiment, to determine the elementary electrical charge e and the quantization of charge Q = n · e, is an essential experiment in physics teaching but it is hardly performed in class for several reasons. Therefore, we offer this experiment as a remotely controlled laboratory (RCL). We describe the interactivity of the experiment and the quality of measurements. The added value to offer the Millikan experiment as an RCL is pointed out.

  6. Symmetron dark energy in laboratory experiments.

    PubMed

    Upadhye, Amol

    2013-01-18

    The symmetron scalar field is a matter-coupled dark energy candidate which effectively decouples from matter in high-density regions through a symmetry restoration. We consider a previously unexplored regime, in which the vacuum mass μ~2.4×10(-3) eV of the symmetron is near the dark energy scale, and the matter coupling parameter M~1 TeV is just beyond standard model energies. Such a field will give rise to a fifth force at submillimeter distances which can be probed by short-range gravity experiments. We show that a torsion pendulum experiment such as Eöt-Wash can exclude symmetrons in this regime for all self-couplings λ is < or approximately equal to 7.5.

  7. A Simple Photochemical Experiment for the Advanced Laboratory.

    ERIC Educational Resources Information Center

    Rosenfeld, Stuart M.

    1986-01-01

    Describes an experiment to provide students with: (1) an introduction to photochemical techniques and theory; (2) an experience with semimicro techniques; (3) an application of carbon-14 nuclear magnetic resonance; and (4) a laboratory with some qualities of a genuine experiment. These criteria are met in the photooxidation of 9,…

  8. Millikan's Oil-Drop Experiment as a Remotely Controlled Laboratory

    ERIC Educational Resources Information Center

    Eckert, Bodo; Grober, Sebastian; Vetter, Martin; Jodl, Hans-Jorg

    2012-01-01

    The Millikan oil-drop experiment, to determine the elementary electrical charge e and the quantization of charge Q = n [middle dot] e, is an essential experiment in physics teaching but it is hardly performed in class for several reasons. Therefore, we offer this experiment as a remotely controlled laboratory (RCL). We describe the interactivity…

  9. Thermal Cameras in School Laboratory Activities

    ERIC Educational Resources Information Center

    Haglund, Jesper; Jeppsson, Fredrik; Hedberg, David; Schönborn, Konrad J.

    2015-01-01

    Thermal cameras offer real-time visual access to otherwise invisible thermal phenomena, which are conceptually demanding for learners during traditional teaching. We present three studies of students' conduction of laboratory activities that employ thermal cameras to teach challenging thermal concepts in grades 4, 7 and 10-12. Visualization of…

  10. Activities of the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Work accomplished by the Jet Propulsion Laboratory (JPL) under contract to NASA in 1985 is described. The work took place in the areas of flight projects, space science, geodynamics, materials science, advanced technology, defense and civil programs, telecommunications systems, and institutional activities.

  11. Laboratory Activities for Developing Process Skills.

    ERIC Educational Resources Information Center

    Institute for Services to Education, Inc., Washington, DC.

    This workbook contains laboratory exercises designed for use in a college introductory biology course. Each exercise helps the student develop a basic science skill. The exercises are arranged in a hierarchical sequence suggesting the scientific method. Each skill facilitates the development of succeeding ones. Activities include Use of the…

  12. Agreed Discoveries: Students' Negotiations in a Virtual Laboratory Experiment

    ERIC Educational Resources Information Center

    Karlsson, Goran; Ivarsson, Jonas; Lindstrom, Berner

    2013-01-01

    This paper presents an analysis of the scientific reasoning of a dyad of secondary school students about the phenomenon of dissolution of gases in water as they work on this in a simulated laboratory experiment. A web-based virtual laboratory was developed to provide learners with the opportunity to examine the influence of physical factors on gas…

  13. High Performance Liquid Chromatography Experiments to Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Kissinger, Peter T.; And Others

    1977-01-01

    Reviews the principles of liquid chromatography with electrochemical detection (LCEC), an analytical technique that incorporates the advantages of both liquids chromatography and electrochemistry. Also suggests laboratory experiments using this technique. (MLH)

  14. Analytical study of the Atmospheric Cloud Physics Laboratory (ACPL) experiments

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1977-01-01

    The design specifications of the research laboratory as a Spacelab facility are discussed along with the types of planned experiments. These include cloud formation, freezing and scavenging, and electrical phenomena. A summary of the program conferences is included.

  15. Laboratory Experiments on the Electrochemical Remediation of the Environment

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Tellez-Giron, Monica; Alvarez, Diana

    2004-01-01

    Ferrate, which is a strong iron oxidant for removing pollutants from water, is developed electrochemically in the laboratory, and used for experiments simulating environmental situations. Thus, ferrate is a powerful oxidizing agent capable of destroying an immense variety of contaminants.

  16. Some Experiments with Biological Applications for the Elementary Laboratory

    ERIC Educational Resources Information Center

    Kammer, D. W.; Williams, J. A.

    1975-01-01

    Summarizes physics laboratory experiments with applications in the biological sciences. Includes the following topics: mechanics of the human arm, fluid flow in tubes, physics of learning, the electrocardiograph, nerve impulse conduction, and corrective lenses for eye defects. (Author/MLH)

  17. Reaction Kinetics: An Experiment for Biochemistry and Organic Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Ewing, Sheila

    1982-01-01

    Describes an experiment to examine the kinetics of carbamate decomposition and the effect of buffer catalysis on the reaction. Includes background information, laboratory procedures, evaluation of data, and teaching suggestions. (Author/JN)

  18. Fertilizers mobilization in alluvial aquifer: laboratory experiments

    NASA Astrophysics Data System (ADS)

    Mastrocicco, M.; Colombani, N.; Palpacelli, S.

    2009-02-01

    In alluvial plains, intensive farming with conspicuous use of agrochemicals, can cause land pollution and groundwater contamination. In central Po River plain, paleo-channels are important links between arable lands and the underlaying aquifer, since the latter is often confined by clay sediments that act as a barrier against contaminants migration. Therefore, paleo-channels are recharge zones of particular interest that have to be protected from pollution as they are commonly used for water supply. This paper focuses on fertilizer mobilization next to a sand pit excavated in a paleo-channel near Ferrara (Italy). The problem is approached via batch test leaking and columns elution of alluvial sediments. Results from batch experiments showed fast increase in all major cations and anions, suggesting equilibrium control of dissolution reactions, limited availability of solid phases and geochemical homogeneity of samples. In column experiments, early elution and tailing of all ions breakthrough was recorded due to preferential flow paths. For sediments investigated in this study, dispersion, dilution and chemical reactions can reduce fertilizers at concentration below drinking standards in a reasonable time frame, provided fertilizer loading is halted or, at least, reduced. Thus, the definition of a corridor along paleo-channels is recommended to preserve groundwater quality.

  19. Establishing laboratory standards for biological flight experiments

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Moriarity, Debra M.

    1989-01-01

    The general objective of this research was to assess the effects of exposure to simulated microgravity on ultrastructural aspects of the contractile system in chicken skeletal muscle cells. This general objective had two specific experimental components: (1) the progression of changes in cell morphology, fusion, and patterns of contractile filament organization in muscle cell cultures grown in hollow fibers in the Clinostat were evaluated, with appropriate controls; (2) to initiate experiments in which muscle cells were grown on the surface of microcarrier beads. The ultimate objective of this second portion of the work is to determine if these beads can be rotated in a bioreactor and thereby obtain a more accurate approximation of the effects of simulated microgravity on differentiated muscle cells.

  20. The JPL MSAT mobile laboratory and the pilot field experiments

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Emerson, Richard F.

    1988-01-01

    A Mobile Laboratory/Propagation Measurement Van (PMV) was developed to support the field experiments of the Mobile Satellite Experiment (MSAT-X) Project. This van was designed to provide flexibility, self-sufficiency and data acquisition to allow for both measurement of equipment performance and the mobile environment. The design philosophy and implementation of the PMV are described. The Pilot Field Experiments and an overall description of the three experiments in which the PMV was used are described.

  1. Carbonatisation of Weathered Peridotites in Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Hövelmann, J.; Austrheim, H.; Beinlich, A.; Munz, I. A.

    2010-12-01

    Enhanced in-situ carbonatisation of ultramafic rocks has been proposed as a strategy for a permanent and safe storage of CO2 in order to reduce anthropogenic greenhouse gas emissions (e.g., Kelemen and Matter 2008). This idea emerged from studies of natural examples demonstrating that ultramafic rocks react extensively with CO2 to form ophicarbonates. However, despite their Mg-rich nature, ultramafic rocks are often associated with calcite (CaCO3) rather than magnesite (MgCO3) and dolomite (CaMg(CO3)2). Whether these so-called ophicalcites represent sedimentary or tectonic breccias or are produced during hydrothermal alteration of ultramafic rocks, has been discussed for many years (e.g., Folk and McBride 1976). The view that reactions between hydrothermal fluids and ultramafic rocks can result in the formation of ophicalcite was recently supported by Beinlich et al. (2010), who documented Ca- and CO2-metasomatism and extreme Mg depletion in serpentinised and weathered peridotite clasts from the conglomerates of the Solund basin (SW Norway). This study also suggests that weathering is an important factor for the carbonatisation of ultramafic rocks. We have performed hydrothermal experiments on weathered peridotites in order to better constrain the mechanisms and conditions that trigger Mg-loss from ultramafic rocks and subsequent calcite precipitation. Un-crushed, partly serpentinised and weathered peridotite samples were allowed to react in a Ca-bearing saline solution under CO2 pressure (PCO2: 130-160 bar) at 200°C. We were able to illustrate the textural and chemical evolution during the reaction through a detailed comparison of the solid and fluid samples before and after the experiments. The initial samples showed a typical mesh texture with veins of serpentine surrounding meshes filled either with fresh or weathered olivine. The experimentally treated samples reveal a strongly reacted rim, predominantly composed of calcite, but still showing ghosts of the

  2. Procedure Manuals for the Comparative Systems Laboratory Experiments.

    ERIC Educational Resources Information Center

    Saracevic, Tefko, Ed.; Rothenberg, Leslie, Ed.

    The report deals with experiments in testing and evaluation of an information retrieval system within the Comparative Systems Laboratory (CSL). Section I outlines the approach and the general methodology developed in CSL, the operational design of the experiments, the construction and use of the manuals, and the general significance of the…

  3. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  4. Freeze Drying of Fruits and Vegetables: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Noble, Richard D.

    1979-01-01

    Describes a laboratory experiment for freeze-drying fruits and vegetables which aims to expose college students to the principles of drying and simultaneous heat and mass transfer. The experimental apparatus, procedure of the experiment, and data analysis are also included. (HM)

  5. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  6. Experiment definition phase shuttle laboratory: LDRL-10.6 experiment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Progress is reported in the development of the space shuttle laboratory laser data relay link. The system transmittance of various surfaces was considered in order to examine the coating tradeoffs for the beryllium mirrors. The results of six coating combinations considered are summarized. It is recommended that silver coatings be used throughout the system. Design of the pre-expander and a preliminary alignment procedure implemented to align all optical elements to the reference mechanical axis (the rotational axis of the outer gimbal bearing located between the two Gregorian telescopes) are included. The local oscillator subsystem, consisting of the laser, Stark cell, Stark cell electronics, power supply, starting circuit, and conditioning optics were completed and installed in the optimechanical subsystem and operation against a 10.6 micrometer source was attempted. Preliminary measurements of the HgCdTe mixer showed that this critical element was inoperative and in subsequent tests the receiver front end electronics had also failed. Possible reasons for these failures and corrective action and steps to prevent future recurrence are discussed.

  7. Research and Laboratory Instruction--An Experiment in Teaching

    ERIC Educational Resources Information Center

    Kramm, Kenneth R.

    1976-01-01

    Describes an attempt to incorporate research into laboratory work in an introductory ecology class and a senior seminar. The investigation involves the examination of rhythms of food consumption and circadian activities in humans. (GS)

  8. Measurement and Its Reliability: An Introductory Laboratory Experiment

    ERIC Educational Resources Information Center

    Poultney, Sherman K.

    1971-01-01

    Describes a laboratory activity about measurement and its reliability for general education students. The measurement focuses on automobile speeds and allows for estimates of errors, experimental design, and relativity in addition to kinematical concepts. (DS)

  9. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  10. Rainfall estimation using moving cars as rain gauges - laboratory experiments

    NASA Astrophysics Data System (ADS)

    Rabiei, E.; Haberlandt, U.; Sester, M.; Fitzner, D.

    2013-11-01

    The spatial assessment of short time-step precipitation is a challenging task. Low density of observation networks, as well as the bias in radar rainfall estimation motivated the new idea of exploiting cars as moving rain gauges with windshield wipers or optical sensors as measurement devices. In a preliminary study, this idea has been tested with computer experiments (Haberlandt and Sester, 2010). The results have shown that a high number of possibly inaccurate measurement devices (moving cars) provide more reliable areal rainfall estimations than a lower number of precise measurement devices (stationary gauges). Instead of assuming a relationship between wiper frequency (W) and rainfall intensity (R) with an arbitrary error, the main objective of this study is to derive valid W-R relationships between sensor readings and rainfall intensity by laboratory experiments. Sensor readings involve the wiper speed, as well as optical sensors which can be placed on cars and are usually made for automating wiper activities. A rain simulator with the capability of producing a wide range of rainfall intensities is designed and constructed. The wiper speed and two optical sensors are used in the laboratory to measure rainfall intensities, and compare it with tipping bucket readings as reference. Furthermore, the effect of the car speed on the estimation of rainfall using a car speed simulator device is investigated. The results show that the sensor readings, which are observed from manual wiper speed adjustment according to the front visibility, can be considered as a strong indicator for rainfall intensity, while the automatic wiper adjustment show weaker performance. Also the sensor readings from optical sensors showed promising results toward measuring rainfall rate. It is observed that the car speed has a significant effect on the rainfall measurement. This effect is highly dependent on the rain type as well as the windshield angle.

  11. Experimenting in a constructivist high school physics laboratory

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    Although laboratory activities have long been recognized for their potential to facilitate the learning of science concepts and skills, this potential has yet to be realized. To remediate this problem, researchers have called for constructivist learning environments in which students can pursue open inquiry and frame their own research problems. The present study was designed to describe and understand students' experimenting and problem solving in such an environment. An interpretive research methodology was adopted for the construction of meaning from the data. The data sources included videotapes, their transcripts, student laboratory reports and reflections, interviews with the students, and the teacher's course outline and reflective notes. Forty-six students from three sections of an introductory physics course taught at a private school for boys participated in the study. This article shows the students' remarkable ability and willingness to generate research questions and to design and develop apparatus for data collection. In their effort to frame research questions, students often used narrative explanations to explore and think about the phenomena to be studied. In some cases, blind alleys, students framed research questions and planned experiments that did not lead to the expected results. We observed a remarkable flexibility to deal with problems that arose during the implementation of their plans in the context of the inquiry. These problems, as well as their solutions and the necessary decision-making processes, were characterized by their situated nature. Finally, students pursued meaningful learning during the interpretation of data and graphs to arrive at reasonable answers of their research questions. We concluded that students should be provided with problem-rich learning environments in which they learn to investigate phenomena of their own interest and in which they can develop complex problem-solving skills.

  12. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    ERIC Educational Resources Information Center

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-01-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual…

  13. Operating Experience of the Tritium Laboratory at CRL

    SciTech Connect

    Gallagher, C.L.; McCrimmon, K.D.

    2005-07-15

    The Chalk River Laboratories Tritium Laboratory has been operating safely and reliably for over 20 years. Safe operations are achieved through proper management, supervision, training and using approved operating procedures and techniques. Reliability is achieved through appropriate equipment selection, routine equipment surveillance testing and routine preventative maintenance. This paper summarizes the laboratory's standard operating protocols and formal compliance programs followed to ensure safe operations. The paper will also review the general set-up of the laboratory and will focus on the experience gained with the operation of various types of equipment such as tritium monitors, tritium analyzers, pumps, purification systems and other systems used in the laboratory during its 20 years of operation.

  14. Activity Coefficients of Acetone-Chloroform Solutions: An Undergraduate Experiment. Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Ozog, J. Z.; Morrison, J. A.

    1983-01-01

    Presents information, laboratory procedures, and results of an undergraduate experiment in which activity coefficients for a two-component liquid-vapor system are determined. Working in pairs, students can perform the experiment with 10 solutions in a given three-hour laboratory period. (Author/JN)

  15. On integrating LES and laboratory turbulent flow experiments

    SciTech Connect

    Grinstein, Fernando Franklin

    2008-01-01

    Critical issues involved in large eddy simulation (LES) experiments relate to the treatment of unresolved subgrid scale flow features and required initial and boundary condition supergrid scale modelling. The inherently intrusive nature of both LES and laboratory experiments is noted in this context. Flow characterization issues becomes very challenging ones in validation and computational laboratory studies, where potential sources of discrepancies between predictions and measurements need to be clearly evaluated and controlled. A special focus of the discussion is devoted to turbulent initial condition issues.

  16. Mobile robotics activities in DOE laboratories

    NASA Astrophysics Data System (ADS)

    Lujan, Ron; Harbour, Jerry; Feddema, John; Bailey, Sharon; Barhen, Jacob; Reister, David

    2005-05-01

    This paper will briefly outline major activities in Department of Energy (DOE) Laboratories focused on mobile platforms, both Unmanned Ground Vehicles (UGV"s) as well as Unmanned Air Vehicles (UAV's). The activities will be discussed in the context of the science and technology construct used by the DOE Technology Roadmap for Robotics and Intelligent Machines (RIM)1 published in 1998; namely, Perception, Reasoning, Action, and Integration. The activities to be discussed span from research and development to deployment in field operations. The activities support customers in other agencies. The discussion of "perception" will include hyperspectral sensors, complex patterns discrimination, multisensor fusion and advances in LADAR technologies, including real-world perception. "Reasoning" activities to be covered include cooperative controls, distributed systems, ad-hoc networks, platform-centric intelligence, and adaptable communications. The paper will discuss "action" activities such as advanced mobility and various air and ground platforms. In the RIM construct, "integration" includes the Human-Machine Integration. Accordingly the paper will discuss adjustable autonomy and the collaboration of operator(s) with distributed UGV's and UAV's. Integration also refers to the applications of these technologies into systems to perform operations such as perimeter surveillance, large-area monitoring and reconnaissance. Unique facilities and test beds for advanced mobile systems will be described. Given that this paper is an overview, rather than delve into specific detail in these activities, other more exhaustive references and sources will be cited extensively.

  17. Mobile Robotics Activities in DOE Laboratories

    SciTech Connect

    Ron Lujan; Jerry Harbour; John T. Feddema; Sharon Bailey; Jacob Barhen; David Reister

    2005-03-01

    This paper will briefly outline major activities in Department of Energy (DOE) Laboratories focused on mobile platforms, both Unmanned Ground Vehicles (UGV’s) as well as Unmanned Air Vehicles (UAV’s). The activities will be discussed in the context of the science and technology construct used by the DOE Technology Roadmap for Robotics and Intelligent Machines (RIM)1 published in 1998; namely, Perception, Reasoning, Action, and Integration. The activities to be discussed span from research and development to deployment in field operations. The activities support customers in other agencies. The discussion of "perception" will include hyperspectral sensors, complex patterns discrimination, multisensor fusion and advances in LADAR technologies, including real-world perception. "Reasoning" activities to be covered include cooperative controls, distributed systems, ad-hoc networks, platform-centric intelligence, and adaptable communications. The paper will discuss "action" activities such as advanced mobility and various air and ground platforms. In the RIM construct, "integration" includes the Human-Machine Integration. Accordingly the paper will discuss adjustable autonomy and the collaboration of operator(s) with distributed UGV’s and UAV’s. Integration also refers to the applications of these technologies into systems to perform operations such as perimeter surveillance, large-area monitoring and reconnaissance. Unique facilities and test beds for advanced mobile systems will be described. Given that this paper is an overview, rather than delve into specific detail in these activities, other more exhaustive references and sources will be cited extensively.

  18. Integrating Laboratory Activity into a Junior High School Classroom

    ERIC Educational Resources Information Center

    Shyr, Wen-Jye

    2010-01-01

    This paper presents a wind power system laboratory activity and an outline for evaluating student performance in this activity. The work described here was to design and implement the laboratory to assist teachers in achieving the teaching objective of this activity. The laboratory teaching activities introduce energy sources, wind energy…

  19. Soap from Nutmeg: An Integrated Introductory Organic Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    de Mattos, Marcio C. S.; Nicodem, David E.

    2002-01-01

    The extraction of trimyristin from nutmeg, its purification, and its conversion to a soap (sodium myristate) are described. Concepts such as the isolation of a natural product, recrystallization, identification of a solid, solubility, acidity and basicity, and organic reaction can be presented to students using integrated experiments in an introductory experimental chemistry laboratory. These experiments can easily be done in three class periods of four hours.

    See Letter re: this article.

  20. Solar activities at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Klimas, Paul C.; Hasti, David E.

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  1. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    ERIC Educational Resources Information Center

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  2. Laboratory Experiment in Semiconductor Surface-Field Effects

    ERIC Educational Resources Information Center

    Goodman, F. R.; And Others

    1974-01-01

    A laboratory instructional program involving metal-insulator-semiconductor (MIS) devices is described. In the first of a two-part experiment, students become familiar with the important parameters of a simple MIS device and learn measurement techniques; in the second part, device fabrication procedures are learned. (DT)

  3. Synthesis of Methyl Cyclopentanecarboxylate: A Laboratory Experience in Carbon Rearrangement

    ERIC Educational Resources Information Center

    Orchard, Alexandra; Maniquis, Roxanne V.; Salzameda, Nicholas T.

    2016-01-01

    We present a novel guided inquiry second semester organic chemistry laboratory rearrangement experiment. Students performed the Favorskii Rearrangement to obtain methyl cyclopentanecarboxylate in good yields. The students learned about the individual steps of the Favorskii mechanism and were required to propose a complete reaction mechanism and…

  4. Computer Simulation of Laboratory Experiments: An Unrealized Potential.

    ERIC Educational Resources Information Center

    Magin, D. J.; Reizes, J. A.

    1990-01-01

    Discussion of the use of computer simulation for laboratory experiments in undergraduate engineering education focuses on work at the University of New South Wales in the instructional design and software development of a package simulating a heat exchange device. The importance of integrating theory, design, and experimentation is also discussed.…

  5. Differentiating Biochemistry Course Laboratories Based on Student Experience

    ERIC Educational Resources Information Center

    Jakubowski, Henry V.

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or…

  6. A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements

    ERIC Educational Resources Information Center

    Collins, David C.

    2011-01-01

    An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…

  7. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  8. Development of Sensorial Experiments and Their Implementation into Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Bromfield Lee, Deborah Christina

    2009-01-01

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only…

  9. The Science Laboratory Experiences of Utah's High School Students

    ERIC Educational Resources Information Center

    Campbell, Todd

    2007-01-01

    This research investigated the extent to which science laboratory experiences encountered by Utah high school students aligned with reform efforts outlined in national standards documents. Through both quantitative and qualitative methods the findings revealed that while there were instances of alignment found between science laboratory…

  10. Lidocaine Metabolism and Toxicity: A Laboratory Experiment for Dental Students.

    ERIC Educational Resources Information Center

    Kusek, J. C.

    1980-01-01

    A laboratory exercise for dental students is presented using a toxic dose of lidocaine in place of an anesthetic dose of pentobarbital. The use of lidocaine demonstrates its toxic and lethal actions and increases the relevance of the experience for dental students. (Author/MLW)

  11. Raising environmental awareness through applied biochemistry laboratory experiments.

    PubMed

    Salman Ashraf, S

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment is described that guides students to learn about the applicability of peroxidase enzymes to degrade organic dyes (as model pollutants) in simulated waste water. In addition to showing how enzymes can potentially be used for waste water remediation, various factors than can affect enzyme-based reactions such as pH, temperature, concentration of substrates/enzymes, and denaturants can also be tested. This "applied biotechnology" experiment was successfully implemented in an undergraduate biochemistry laboratory course to enhance students' learning of environmental issues as well important biochemistry concepts. Student survey confirmed that this laboratory experiment was successful in achieving the objectives of raising environmental awareness in students and illustrating the usefulness of chemistry in solving real-life problems. This experiment can be easily adopted in an introductory biochemistry laboratory course and taught as an inquiry-guided exercise.

  12. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  13. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 2: Experiment selection

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.

  14. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated June 22, 1988: 'A dwarf wheat variety known as Yecoro Rojo flourishes in KSC's Biomass Production Chamber. Researchers are gathering information on the crop's ability to produce food, water and oxygen, and then remove carbon dioxide. The confined quarters associated with space travel require researchers to focus on smaller plants that yield proportionately large amounts of biomass. This wheat crop takes about 85 days to grow before harvest.' Plant experiments such as this are the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  15. Experiences and prospects of nuclear astrophysics in underground laboratories

    SciTech Connect

    Junker, M.

    2014-05-09

    Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

  16. Laboratory experiments on eelgrass (Zostera Marina L.) decomposition

    NASA Astrophysics Data System (ADS)

    Pellikaan, G. C.

    Eelgrass, Zostera marina L., forms large quantities of detritus in Lake Grevelingen. Laboratory experiments with green eelgrass and eelgrass detritus have been performed under aerobic and anaerobic conditions to study leaching and chemical changes of plant matter and surrounding medium. DW losses were less than 30%, demonstrating that field litterbag experiments overestimated the decomposition rate highly. This leads to the conclusion that eelgrass detritus should accumulate in Lake Grevelingen. POC and AFDW decreased during decomposition. PON and POP fluctuated and only C/P ratio in anaerobically incubated detritus showed a clear pattern. C/N ratio behaved rather stable and cannot be used as a valuable index for decomposition processes. Initial contents of Na, K, Ca and Mg in eelgrass differed from literature values. During decomposition Na, K and Ca increased, while Mg remained constant. Leaching of DOC, PO 4, NH 4 and NO 3 was rapid in the first hours of incubation, but leaching products did not change pH. Initial DOC and PO 4 concentrations were much higher in media with green eelgrass than in detritus series; no differences between aerobic and anaerobic series were found. In all series NO 3 concentrations were low. HN 4 and total dissolved N increased in anaerobic incubations. pH remained constant in detritus series, but changed significantly in the green grass series, concomittantly with drastic DOC decreases and DW increases, after 9 to 10 days, especially under aerobic conditions. This indicated high activity and growth of particle associated bacteria or formation of aggregates. A conversion factor of 66% for DOC to POC has been calculated. About 10% of DOC remained in the incubation vessels and will be refractory. In budgets for C, N and P the dissolved fractions were always small (1 to 20%) compared with the particulate fractions. The lost fractions were due to non-recovered, very small particulate matter. High losses for P have possibly been caused by

  17. The Nature of Laboratory Learning Experiences in Secondary Science Online

    ERIC Educational Resources Information Center

    Crippen, Kent J.; Archambault, Leanna M.; Kern, Cindy L.

    2013-01-01

    Teaching science to secondary students in an online environment is a growing international trend. Despite this trend, reports of empirical studies of this phenomenon are noticeably missing. With a survey concerning the nature of laboratory activities, this study describes the perspective of 35-secondary teachers from 15-different U.S. states who…

  18. Restructuring a General Microbiology Laboratory into an Investigative Experience.

    ERIC Educational Resources Information Center

    Deutch, Charles E.

    1994-01-01

    Describes an investigative laboratory sequence based upon the isolation and characterization of soil bacteria to aid microbiology teachers in providing students with activities that expose them to basic techniques of microbiology as well as demonstrates the scientific process and the experimental analysis of microorganisms. (ZWH)

  19. Scientific equity: experiments in laboratory education in Ghana.

    PubMed

    Osseo-Asare, Abena Dove

    2013-12-01

    During the 1960s the Ministry of Education in Ghana created a network of school laboratories to increase scientific literacy among young citizens. The ministry stocked these "Science Centres" with imported beakers, Bunsen burners, and books. Education officials and university scientists worked with teachers to create lesson plans on water, air, plants, and other topics. The government hoped that scientifically minded schoolchildren would be better prepared to staff the industries of the future. The adoption of laboratory norms represented a desire for scientific equity, rather than a condition of cultural mimicry. Interviews with ministry officials and science educators, alongside letters and reports, indicate how students and teachers appropriated the laboratories in the small West African nation. Their experiences in mobilizing resources from across Ghana and around the world provide a metaphor for ongoing efforts to establish access to scientific goods in Africa.

  20. Scientific equity: experiments in laboratory education in Ghana.

    PubMed

    Osseo-Asare, Abena Dove

    2013-12-01

    During the 1960s the Ministry of Education in Ghana created a network of school laboratories to increase scientific literacy among young citizens. The ministry stocked these "Science Centres" with imported beakers, Bunsen burners, and books. Education officials and university scientists worked with teachers to create lesson plans on water, air, plants, and other topics. The government hoped that scientifically minded schoolchildren would be better prepared to staff the industries of the future. The adoption of laboratory norms represented a desire for scientific equity, rather than a condition of cultural mimicry. Interviews with ministry officials and science educators, alongside letters and reports, indicate how students and teachers appropriated the laboratories in the small West African nation. Their experiences in mobilizing resources from across Ghana and around the world provide a metaphor for ongoing efforts to establish access to scientific goods in Africa. PMID:24783491

  1. NRCL-70, Review of the Activities of the Laboratories 1970.

    ERIC Educational Resources Information Center

    National Research Council of Canada, Ottawa (Ontario).

    Included are descriptions of activities of each of the 12 laboratories in the National Research Council of Canada, including background information and a summary of the studies (research) and results. The 12 laboratories in the NRCL are the following: Atlantic Regional Laboratory, Biochemistry Laboratory, Division of Biology, Division of Building…

  2. The Challenges of Blending a Face-to-Face Laboratory Experience with a Televised Distance Education Course

    ERIC Educational Resources Information Center

    LeDrew, June; Cummings-Vickaryous, Bonnie

    2010-01-01

    This article describes the practical challenges faced by instructors who must blend a face-to-face laboratory experience into a distance education course. This issue is discussed in the context of an ongoing kinesiology and health course that includes a mandatory physical activity laboratory experience. The challenges that have arisen around this…

  3. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Neil Yorio and Lisa Ruffe prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  4. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Lisa Ruffe and Neil Yorio prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  5. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    NASA Technical Reports Server (NTRS)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  6. An Undergraduate Laboratory Activity Demonstrating Bacteriophage Specificity†

    PubMed Central

    Allen, Mary E.; Gyure, Ruth A.

    2013-01-01

    Bacteriophage are among the most diverse and numerous microbes inhabiting our planet. Yet many laboratory activities fail to engage students in meaningful exploration of their diversity, unique characteristics, and abundance. In this curriculum activity students use a standard plaque assay to enumerate bacteriophage particles from a natural sample and use the scientific method to address questions about host specificity and diversity. A raw primary sewage sample is enriched for bacteriophage using hosts in the family Enterobacteriaceae. Students hypothesize about host specificity and use quantitative data (serial dilution and plaque assay) to test their hypotheses. Combined class data also help them answer questions about phage diversity. The exercise was field tested with a class of 47 students using pre- and posttests. For all learning outcomes posttest scores were higher than pretest scores at or below p = 0.01. Average individualized learning gain (G) was also calculated for each learning outcome. Students’ use of scientific language in reference to bacteriophage and host interaction significantly improved (p = 0.002; G = 0.50). Improved means of expression helped students construct better hypotheses on phage host specificity (G = 0.31, p = 0.01) and to explain the plaque assay method (G = 0.33, p = 0.002). At the end of the exercise students also demonstrated improved knowledge and understanding of phage specificity as related to phage therapy in humans (p < 0.001; G = 51). PMID:23858357

  7. Radiative Shocks And Plasma Jets As Laboratory Astrophysics Experiments

    SciTech Connect

    Koenig, M.; Loupias, B.; Vinci, T.; Ozaki, N.; Benuzzi-Mounaix, A.; Rabec le Goahec, M.; Falize, E.; Bouquet, S.; Courtois, C.; Nazarov, W.; Aglitskiy, Y.; Faenov, A. Ya.; Pikuz, T.; Schiavi, A.

    2007-08-02

    Dedicated laboratory astrophysics experiments have been developed at LULI in the last few years. First, a high velocity (70 km/s) radiative shock has been generated in a xenon filled gas cell. We observed a clear radiative precursor, measure the shock temperature time evolution in the xenon. Results show the importance of 2D radiative losses. Second, we developed specific targets designs in order to generate high Mach number plasma jets. The two schemes tested are presented and discussed.

  8. Equipment qualification testing evaluation experiences at Sandia National Laboratories

    SciTech Connect

    Bustard, L.D.; Wyant, F.J.; Bonzon, L.L.; Gillen, K.T.

    1986-01-01

    The USNRC has sponsored a number of programs at Sandia National Laboratories specifically addressing safety-related equipment qualification. The most visible of these programs has been the Qualification Testing Evaluation (QTE) program. Other relevant programs have included the Equipment Qualification Methodology Research Test program (CAP). Over a ten year period these programs have collectively tested numerous types of safety-related equipment. Some insights and conclusions extracted from these testing experiences are summarized in this report.

  9. Radiative Shocks And Plasma Jets As Laboratory Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Koenig, M.; Loupias, B.; Vinci, T.; Ozaki, N.; Benuzzi-Mounaix, A.; Rabec Le Goahec, M.; Falize, E.; Bouquet, S.; Michaut, C.; Herpe, G.; Baroso, P.; Nazarov, W.; Aglitskiy, Y.; Faenov, A. Ya.; Pikuz, T.; Courtois, C.; Woolsey, N. C.; Gregory, C. D.; Howe, J.; Schiavi, A.; Atzeni, S.

    2007-08-01

    Dedicated laboratory astrophysics experiments have been developed at LULI in the last few years. First, a high velocity (70 km/s) radiative shock has been generated in a xenon filled gas cell. We observed a clear radiative precursor, measure the shock temperature time evolution in the xenon. Results show the importance of 2D radiative losses. Second, we developed specific targets designs in order to generate high Mach number plasma jets. The two schemes tested are presented and discussed.

  10. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    ERIC Educational Resources Information Center

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  11. Near surface geophysical techniques on subsoil contamination: laboratory experiments

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; Giampaolo, Valeria; Rizzo, Enzo

    2016-04-01

    Hydrocarbons contamination of soil and groundwater has become a serious environmental problem, because of the increasing number of accidental spills caused by human activities. The starting point of any studies is the reconstruction of the conceptual site model. To make valid predictions about the flow pathways following by hydrocarbons compound is necessary to make a correct reconstruction of their characteristics and the environment in which they move. Near-surface geophysical methods, based on the study of electrical and electromagnetic properties, are proved to be very useful in mapping spatial distribution of the organic contaminants in the subsurface. It is well known, in fact, that electrical properties of the porous media are significantly influenced by hydrocarbons because, when contaminants enter the rock matrix, surface reaction occur between the contaminant and the soil grain surface. The main aim of this work is to investigate the capability of near-surface geophysical methods in mapping and monitoring spatial distribution of contaminants in a controlled setting. A laboratory experiment has been performed at the Hydrogeosite Laboratory of CNR-IMAA (Marsico Nuovo, PZ) where a box-sand has been contaminated by diesel. The used contaminant is a LNAPL, added to the sand through a drilled pipe. Contaminant behaviour and its migration paths have been monitored for one year by Electrical Resistivity measurements. In details, a Cross Borehole Electrical Resistivity Tomography techniques were used to characterize the contamination dynamics after a controlled hydrocarbon spillage occurring in the vadose zone. The approach with cross-borehole resistivity imaging provide a great advantage compared to more conventional surface electrical resistivity tomography, due to the high resolution at high depth (obviously depending on the depth of the well instrumented for the acquisition). This method has been shown to provide good information on the distribution of

  12. Differentiating biochemistry course laboratories based on student experience.

    PubMed

    Jakubowski, Henry V

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or no experience with biochemical techniques and biology and biochemistry majors who do. This manuscript describes a strategy for differentiating biochemistry labs to meet the needs of students with differing backgrounds.

  13. Thermal-blooming laboratory experiments. (Reannouncement with new availability information)

    SciTech Connect

    Johnson, B.

    1992-12-31

    The authors conducted a multiphase series of laboratory experiments to explore the adaptive optics compensation of a laser beam distorted by strong thermal blooming. Their experimental approach was to create on a small, low-power beam the same phase distortion that would be experienced by a large, high-power beam propagating through the atmosphere and to apply phase compensation via deformable mirrors. The authors performed the investigations to lay the foundation for future ground-based laser experiments and their corresponding atmospheric-propagation computer models.

  14. In-house experiments in large space structures at the Air Force Wright Aeronautical Laboratories Flight Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Gordon, Robert W.; Ozguner, Umit; Yurkovich, Steven

    1989-01-01

    The Flight Dynamics Laboratory is committed to an in-house, experimental investigation of several technical areas critical to the dynamic performance of future Air Force large space structures. The advanced beam experiment was successfully completed and provided much experience in the implementation of active control approaches on real hardware. A series of experiments is under way in evaluating ground test methods on the 12 meter trusses with significant passive damping. Ground simulated zero-g response data from the undamped truss will be compared directly with true zero-g flight test data. The performance of several leading active control approaches will be measured and compared on one of the trusses in the presence of significant passive damping. In the future, the PACOSS dynamic test article will be set up as a test bed for the evaluation of system identification and control techniques on a complex, representative structure with high modal density and significant passive damping.

  15. Combinatorial Synthesis and Discovery of an Antibiotic Compound. An Experiment Suitable for High School and Undergraduate Laboratories

    NASA Astrophysics Data System (ADS)

    Wolkenberg, Scott E.; Su, Andrew I.

    2001-06-01

    An exercise demonstrating solution-phase combinatorial chemistry and its application to drug discovery is described. The experiment involves the synthesis of six libraries of three hydrazones, screening the libraries for antibiotic activity, and deconvolution to determine the active individual compound. The laboratory was designed for a high school classroom, though it can easily be expanded to suit a college introductory organic laboratory course.

  16. An in silico DNA cloning experiment for the biochemistry laboratory.

    PubMed

    Elkins, Kelly M

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced high school biology classes. Students begin by examining a plasmid map with the goal of identifying which restriction enzymes may be used to clone a piece of foreign DNA containing a gene of interest into the vector. From the National Center for Biotechnology Initiative website, students are instructed to retrieve a protein sequence and use Expasy's Reverse Translate program to reverse translate the protein to cDNA. Students then use Integrated DNA Technologies' OligoAnalyzer to predict the complementary DNA strand and obtain DNA recognition sequences for the desired restriction enzymes from New England Biolabs' website. Students add the appropriate DNA restriction sequences to the double-stranded foreign DNA for cloning into the plasmid and infecting Escherichia coli cells. Students are introduced to computational biology tools, molecular biology terminology and the process of DNA cloning in this valuable single session, in silico experiment. This project develops students' understanding of the cloning process as a whole and contrasts with other laboratory and internship experiences in which the students may be involved in only a piece of the cloning process/techniques. Students interested in pursuing postgraduate study and research or employment in an academic biochemistry or molecular biology laboratory or industry will benefit most from this experience.

  17. An in silico DNA cloning experiment for the biochemistry laboratory.

    PubMed

    Elkins, Kelly M

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced high school biology classes. Students begin by examining a plasmid map with the goal of identifying which restriction enzymes may be used to clone a piece of foreign DNA containing a gene of interest into the vector. From the National Center for Biotechnology Initiative website, students are instructed to retrieve a protein sequence and use Expasy's Reverse Translate program to reverse translate the protein to cDNA. Students then use Integrated DNA Technologies' OligoAnalyzer to predict the complementary DNA strand and obtain DNA recognition sequences for the desired restriction enzymes from New England Biolabs' website. Students add the appropriate DNA restriction sequences to the double-stranded foreign DNA for cloning into the plasmid and infecting Escherichia coli cells. Students are introduced to computational biology tools, molecular biology terminology and the process of DNA cloning in this valuable single session, in silico experiment. This project develops students' understanding of the cloning process as a whole and contrasts with other laboratory and internship experiences in which the students may be involved in only a piece of the cloning process/techniques. Students interested in pursuing postgraduate study and research or employment in an academic biochemistry or molecular biology laboratory or industry will benefit most from this experience. PMID:21618385

  18. Understanding Fluorescence Measurements through a Guided-Inquiry and Discovery Experiment in Advanced Analytical Laboratory

    ERIC Educational Resources Information Center

    Wilczek-Vera, Grazyna; Salin, Eric Dunbar

    2011-01-01

    An experiment on fluorescence spectroscopy suitable for an advanced analytical laboratory is presented. Its conceptual development used a combination of the expository and discovery styles. The "learn-as-you-go" and direct "hands-on" methodology applied ensures an active role for a student in the process of visualization and discovery of concepts.…

  19. Evaluation of the Persistent Issues in History Laboratory for Virtual Field Experience (PIH-LVFE)

    ERIC Educational Resources Information Center

    Brush, Thomas; Saye, John; Kale, Ugur; Hur, Jung Won; Kohlmeier, Jada; Yerasimou, Theano; Guo, Lijiang; Symonette, Simone

    2009-01-01

    The Persistent Issues in History Laboratory for Virtual Field Experience (PIH-LVFE) combines a database of video cases of authentic classroom practices with multiple resources and tools to enable pre-service social studies teachers to virtually observe teachers implementing problem-based learning activities. In this paper, we present the results…

  20. Designing Experiments on Thermal Interactions by Secondary-School Students in a Simulated Laboratory Environment

    ERIC Educational Resources Information Center

    Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides

    2011-01-01

    Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample: Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and…

  1. Promoting Student Involvement with Environmental Laboratory Experiments in a General Microbiology Course

    PubMed Central

    TARAS, LORETTA BRANCACCIO

    2003-01-01

    This is a descriptive study of a series of laboratory exercises on environmental microbiology carried out by students in a general microbiology course during eight of the twelve weeks of the semester. The revised laboratory component is predicated upon seawater and sediment samples collected by student pairs using marine sampling equipment on a field trip aboard a research vessel. Two longitudinal studies were performed: assay for antibiotic production from isolated actinomycetes and construction and observation of Winogradsky columns. Two additional experiments: culturing microalgae and water testing for coliforms also used the samples collected by the students. The advantages of long-term, challenging laboratory experiences actively involving the students in group process, self-direction, and scientific practices are discussed. Also considered are development of laboratory skills, scientific competencies, and students’ self-confidence in carrying out such environmental investigations. Plans for future assessment of student learning are presented. PMID:23653550

  2. Armor breakup and reformation in a degradational laboratory experiment

    NASA Astrophysics Data System (ADS)

    Orrú, Clara; Blom, Astrid; Uijttewaal, Wim S. J.

    2016-06-01

    Armor breakup and reformation was studied in a laboratory experiment using a trimodal mixture composed of a 1 mm sand fraction and two gravel fractions (6 and 10 mm). The initial bed was characterized by a stepwise downstream fining pattern (trimodal reach) and a downstream sand reach, and the experiment was conducted under conditions without sediment supply. In the initial stage of the experiment an armor formed over the trimodal reach. The formation of the armor under partial transport conditions led to an abrupt spatial transition in the bed slope and in the mean grain size of the bed surface, as such showing similar results to a previous laboratory experiment conducted with a bimodal mixture. The focus of the current analysis is to study the mechanisms of armor breakup. After an increase in flow rate the armor broke up and a new coarser armor quickly formed. The breakup initially induced a bed surface fining due to the exposure of the finer substrate, which was accompanied by a sudden increase in the sediment transport rate, followed by the formation of an armor that was coarser than the initial one. The reformation of the armor was enabled by the supply of coarse material from the upstream degrading reach and the presence of gravel in the original substrate sediment. Here armor breakup and reformation enabled slope adjustment such that the new steady state was closer to normal flow conditions.

  3. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  4. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  5. Inter-Laboratory Uranium Double-Spike Experiment

    SciTech Connect

    Russ, G. P

    1999-11-11

    In environmental samples, the major analytical limitation on the use of uranium {sup 238}U/{sup 235}U determinations as an indicator of uranium enrichment is mass dependent bias occurring during the measurement. The double-spike technique can be used to correct the data for this effect. The purpose of this experiment was to evaluate the variation of mass bias among several laboratories and to determine the extent to which the double-spike could be used to reduce analytical uncertainty. Four laboratories performed replicate analyses on each of three samples. Generally mass bias was determined to be small compared to the random scatter of the measurements, but in at least one case, the bias was > 1%. In 8 of 12 cases, intra-laboratory variance was reduced when the double-spike correction was applied. For all three samples, the inter-laboratory variance was decreased, though the decrease was small. Based on a reasonable assumption about the true isotopic compositions of the samples, the accuracy of 11 of the twelve analyses was improved by applying the double spike correction. When the double spike is used to correct for mass bias, the {sup 238}U/{sup 235}U accuracy is better than 1% even for samples as small as 1 ng. For 50 ng of uranium, 0.1% accuracy was achieved.

  6. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    NASA Astrophysics Data System (ADS)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  7. Cryogenic Fracturing: Laboratory Visualization Experiments and Numerical Simulations Using Peridynamics

    NASA Astrophysics Data System (ADS)

    Martin-Short, R.; Edmiston, J. K.

    2015-12-01

    Typical hydraulic fracturing operations involve the use of a large quantity of water, which can be problematic for several reasons including possible formation (permeability) damage, disposal of waste water, and the use of precious local water resource. An alternate reservoir permeability enhancing technology not requiring water is cryogenic fracturing. This method induces controlled fracturing of rock formations by thermal shock and has potentially important applications in the geothermal and hydrocarbon industries. In this process, cryogenic fluid—such as liquid nitrogen—is injected into the subsurface, causing fracturing due to thermal gradients. These fractures may improve the formation permeability relative to that achievable by hydraulic fracturing alone. We conducted combined laboratory visualization and numerical simulations studies of thermal-shock-induced fracture initiation and propagation resulting from liquid nitrogen injection in rock and analog materials. The experiment used transparent soda-lime glass cubes to facilitate real-time visualization of fracture growth and the fracture network geometry. In this contribution, we report the effect of overall temperature difference between cryogenic fluid and solid material on the produced fracture network, by pre-heating the glass cubes to several temperatures and injecting liquid nitrogen. Temperatures are monitored at several points by thermocouple and the fracture evolution is captured visually by camera. The experiment was modeled using a customized, thermoelastic, fracture-capable numerical simulation code based on peridynamics. The performance of the numerical code was validated by the results of the laboratory experiments, and then the code was used to study the different factors affecting a cryogenic fracturing operation, including the evolution of residual stresses and constitutive relationships for material failure. In complex rock such as shale, understanding the process of cryogenic

  8. The Heavy Photon Search experiment at Jefferson Laboratory

    SciTech Connect

    Celentano, Andrea

    2014-11-01

    The Heavy Photon Search experiment (HPS) at Jefferson Laboratory will search for a new U(1) massive gauge boson, or "heavy-photon", mediator of a new fundamental interaction, called "dark-force", that couples to ordinary photons through kinetic mixing. HPS has sensitivity in the mass range 20 MeV – 1 GeV and coupling epsilon2 between 10-5 and 10-10. The HPS experiment will look for the e+e- decay of the heavy photon, by resonance search and detached vertexing, in an electron beam fixed target experiment. HPS will use a compact forward spectrometer, which employs silicon microstrip detectors for vertexing and tracking, and a PbWO4 electromagnetic calorimeter for energy measurement and fast triggering.

  9. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul

    2015-11-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.

  10. Constraining PCP Violating Varying Alpha Theory through Laboratory Experiments

    SciTech Connect

    Maity, Debaprasad; Chen, Pisin; /NCTS, Taipei /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2012-06-06

    In this report we have studied the implication of a parity and charge-parity (PCP) violating interaction in varying alpha theory. Due to this interaction, the state of photon polarization can change when it passes through a strong background magnetic field. We have calculated the optical rotation and ellipticity of the plane of polarization of an electromagnetic wave and tested our results against different laboratory experiments. Our model contains a PCP violating parameter {beta} and a scale of alpha variation {omega}. By analyzing the laboratory experimental data, we found the most stringent constraints on our model parameters to be 1 {le} {omega} {le} 10{sup 13} GeV{sup 2} and -0.5 {le} {beta} {le} 0.5. We also found that with the existing experimental input parameters it is very difficult to detect the ellipticity in the near future.

  11. Miniaturization and globalization of clinical laboratory activities.

    PubMed

    Melo, Murilo R; Clark, Samantha; Barrio, Daniel

    2011-04-01

    Clinical laboratories provide an invaluable service to millions of people around the world in the form of quality diagnostic care. Within the clinical laboratory industry the impetus for change has come from technological development (miniaturization, nanotechnology, and their collective effect on point-of-care testing; POCT) and the increasingly global nature of laboratory services. Potential technological gains in POCT include: the development of bio-sensors, microarrays, genetics and proteomics testing, and enhanced web connectivity. In globalization, prospective opportunities lie in: medical tourism, the migration of healthcare workers, cross-border delivery of testing, and the establishment of accredited laboratories in previously unexplored markets. Accompanying these impressive opportunities are equally imposing challenges. Difficulty transitioning from research to clinical use, poor infrastructure in developing countries, cultural differences and national barriers to global trade are only a few examples. Dealing with the issues presented by globalization and the impact of developing technology on POCT, and on the clinical laboratory services industry in general, will be a daunting task. Despite such concerns, with appropriate countermeasures it will be possible to address the challenges posed. Future laboratory success will be largely dependent on one's ability to adapt in this perpetually shifting landscape.

  12. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    SciTech Connect

    John D. Bess; Margaret A. Marshall; Mackenzie L. Gorham; Joseph Christensen; James C. Turnbull; Kim Clark

    2011-11-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) [1] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2] were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  13. Experiments at The Virtual National Laboratory for Heavy Ion Fusion

    SciTech Connect

    Seidl, P.A.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Kwan, J.W.; MacLaren, S.A.; Ponce, D.; Shuman, D.; Yu, S.; Ahle, L.; Lund, S.; Molvik, A.; Sangster, T.C.

    2000-07-24

    An overview of experiments is presented, in which the physical dimensions, emittance and perveance are scaled to explore driver-relevant beam dynamics. Among these are beam merging, focusing to a small spot, and bending and recirculating beams. The Virtual National Laboratory for Heavy Ion Fusion (VNL) is also developing two driver-scale beam experiments involving heavy-ion beams with I(sub beam) about 1 Ampere to provide guidance for the design of an Integrated Research Experiment (IRE) for driver system studies within the next 5 years. Multiple-beam sources and injectors are being designed and a one-beam module will be built and tested. Another experimental effort will be the transport of such a beam through about 100 magnetic quadrupoles. The experiment will determine transport limits at high aperture fill factors, beam halo formation, and the influence on beam properties of secondary electron Research into driver technology will be briefly presented, including the development of ferromagnetic core materials, induction core pulsers, multiple-beam quadrupole arrays and plasma channel formation experiments for pinched transport in reactor chambers.

  14. Simulation studies of plasma lens experiments at Daresbury laboratory

    NASA Astrophysics Data System (ADS)

    Hanahoe, K.; Mete, O.; Xia, G.; Angal-Kalinin, D.; Jones, J.; Smith, J.

    2016-03-01

    Experiments are planned to study plasma lensing using the VELA and CLARA Front End accelerators at Daresbury Laboratory. This paper presents results of 2-dimensional particle-in-cell simulations of the proposed experiments. The variation in focusing strength and emittance growth with beam and plasma parameters are studied in the overdense (plasma density much greater than bunch density) regime for the VELA beam. The effect of spherical and longitudinal aberrations on the beam emittance was estimated through numerical and theoretical studies. Simulation results show that a focusing strength equivalent to a magnetic field gradient of 10 T m-1 can be achieved using VELA, and a gradient of 247 T m-1 can be achieved using CLARA Front End.

  15. Laboratory experiments on stratified flow through a suspended porous fence

    NASA Astrophysics Data System (ADS)

    Delavan, Sarah; Nokes, Roger; Plew, David

    2012-11-01

    This study explores stratified flow through a suspended, porous, fence-like obstacle to simulate flow through fish farm cages, mussel farm rope suspensions, flow through suspended aquatic vegetation, underwater energy production structures, or windbreak and wave break fencing. Laboratory experiments were performed in a density stratified, stationary flume with a suspended porous fence model using a particle tracking velocimetry (PTV) system. Experiments explored the effect on the fluid of the fence depth to total depth ratio, the system Richardson number, and the porosity of the fence. Preliminary results suggest that the density stratification of the fluid inhibits vertical fluid motion, that fence porosity greatly controls the vertical mixing of the fluid, and that there may be an optimal fence depth to total depth ratio for full development of the system flow structures.

  16. Macromolecular crystal growth experiments on International Microgravity Laboratory--1.

    PubMed Central

    Day, J.; McPherson, A.

    1992-01-01

    Macromolecular crystal growth experiments, using satellite tobacco mosaic virus (STMV) and canavalin from jack beans as samples, were conducted on a US Space Shuttle mission designated International Microgravity Laboratory--1 (IML-1), flown January 22-29, 1992. Parallel experiments using identical samples were carried out in both a vapor diffusion-based device (PCG) and a liquid-liquid diffusion-based instrument (CRYOSTAT). The experiments in each device were run at 20-22 degrees C and at colder temperatures. Crystals were grown in virtually every trial, but the characteristics of the crystals were highly dependent on the crystallization technique employed and the temperature experience of the sample. In general, very good results, based on visual inspection of the crystals, were obtained in both PCG and CRYOSTAT. Unusually impressive results were, however, achieved for STMV in the CRYOSTAT instrument. STMV crystals grown in microgravity by liquid-liquid diffusion were more than 10-fold greater in total volume than any STMV crystals previously grown in the laboratory. X-ray diffraction data collected from eight STMV crystals grown in CRYOSTAT demonstrated a substantial improvement in diffraction quality over the entire resolution range when compared to data from crystals grown on Earth. In addition, the extent of the diffraction pattern for the STMV crystals grown in space extended to 1.8 A resolution, whereas the best crystals that were ever grown under conditions of Earth's gravity produced data limited to 2.3 A resolution. Other observations indicate that the growth of macromolecular crystals is indeed influenced by the presence or absence of gravity. These observations further suggest, consistent with earlier results, that the elimination of gravity provides a more favorable environment for such processes. PMID:1303744

  17. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE PAGES

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; et al

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  18. Laboratory plasma physics experiments using merging supersonic plasma jets

    SciTech Connect

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean charge $\\bar{Z}$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  19. On the potential for using immersive virtual environments to support laboratory experiment contextualisation

    NASA Astrophysics Data System (ADS)

    Machet, Tania; Lowe, David; Gütl, Christian

    2012-12-01

    This paper explores the hypothesis that embedding a laboratory activity into a virtual environment can provide a richer experimental context and hence improve the understanding of the relationship between a theoretical model and the real world, particularly in terms of the model's strengths and weaknesses. While an identified learning objective of laboratories is to support the understanding of the relationship between models and reality, the paper illustrates that this understanding is hindered by inherently limited experiments and that there is scope for improvement. Despite the contextualisation of learning activities having been shown to support learning objectives in many fields, there is traditionally little contextual information presented during laboratory experimentation. The paper argues that the enhancing laboratory activity with contextual information affords an opportunity to improve students' understanding of the relationship between the theoretical model and the experiment (which is effectively a proxy for the complex real world), thereby improving their understanding of the relationship between the model and reality. The authors propose that these improvements can be achieved by setting remote laboratories within context-rich virtual worlds.

  20. Kinetics of Papain: An Introductory Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Cornely, Kathleen; Crespo, Eric; Earley, Michael; Kloter, Rachel; Levesque, Aime; Pickering, Mary

    1999-05-01

    Enzyme kinetics experiments are popular in the undergraduate laboratory. These experiments have pedagogic value because they reinforce the concepts of Michaelis-Menten kinetics covered in the lecture portion of the course and give students the experience of calculating kinetic constants from data they themselves have generated. In this experiment, we investigate the kinetics of the thiol protease papain. The source of the papain is commercially available papaya latex. A specific substrate, Na-benzoyl-arginine-p-nitroanilide (BAPNA), is used, which takes advantage of the fact that papain interacts with a phenylalanine residue two amino acids away from the peptide bond cleaved. Upon hydrolysis by papain, a bright yellow product is released, p-nitroaniline. This allows the reaction to be monitored spectrophotometrically by measuring the rate of formation of the p-nitroaniline product as a function of the increase in absorbance of the solution at the lmax of p-nitroaniline (400 nm) over time at various substrate concentrations. These data are used to plot a Lineweaver-Burk plot from which the vmax and KM are obtained. If time permits, students carry out additional investigations in which e of p-nitroaniline is measured, the enzyme solution protein concentration is measured, the enzyme purity is evaluated by SDS-PAGE, and a pH-rate profile is constructed from experimental data.

  1. Subduction to Continental Delamination: Insights From Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Gogus, O. H.; Corbi, F.; Faccenna, C.; Pysklywec, R. N.

    2009-05-01

    The evolution of the lithosphere through subduction-collision and delamination and its surface/crustal response (topography/deformation) is investigated in this work. We present a series of lithosphere scale two dimensional (2-D) and three dimensional (3-D) laboratory experiments to better understand such processes. In these experiments, an idealized viscously deforming crust-mantle lithosphere-mantle system is configured with silicone putty (representing lithospheric mantle and upper crust) and glucose syrup (representing the upper mantle and lower crust). The initial focus was to investigate the physical development of delamination versus continental subduction without plate convergence. Experiments show that the delamination or continental subduction is strongly dependent on the density of the crust (both crust and mantle lithosphere subducts when crust has a higher density, instead of delamination), while in the investigated range, the viscosity of the weak layer does not have much influence on the process. In all the experiments, the topography is asymmetric with subsidence above the delaminating hinge due to the dynamic vertical pulling driven by the delaminating slab, and uplift above the delaminated region due to the buoyancy of asthenosphere. Our investigation on the oceanic subduction with a convergence rate of ~ 3cm/year plate velocity suggests that subduction -collision - delamination is well defined and at the end, the delaminating crust from the lithosphere is overthrusted on top of the overriding plate. Our results provide integrated insights on the Alpine-Himalayan type orogenies, in particular the neotectonic evolution of Eastern Anatolian plateau.

  2. Enhancing Active Learning in the Student Laboratory

    ERIC Educational Resources Information Center

    Modell, Harold I.; Michael, Joel A.; Adamson, Tom; Horwitz, Barbara

    2004-01-01

    We previously examined how three approaches to directing students in a laboratory setting impacted their ability to repair a faulty mental model in respiratory physiology (Modell, HI, Michael JA, Adamson T, Goldberg J, Horwitz BA, Bruce DS, Hudson ML, Whitescarver SA, and Williams S. Adv Physiol Educ 23: 82?90, 2000). This study addresses issues…

  3. Laboratory-Tutorial Activities for Teaching Probability

    ERIC Educational Resources Information Center

    Wittmann, Michael C.; Morgan, Jeffrey T.; Feeley, Roger E.

    2006-01-01

    We report on the development of students' ideas of probability and probability density in a University of Maine laboratory-based general education physics course called "Intuitive Quantum Physics". Students in the course are generally math phobic with unfavorable expectations about the nature of physics and their ability to do it. We describe a…

  4. NDE Activity at Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1993-01-01

    None, This is a viewgraph outline from an oral presentation. From Intro.: Our speaker will review the NDE technology under development at the Jet Propulsion Laboratory (JPL). Emphasis will be given to Ultrasonics and application of sensors to space technology. Further, the efforts of JPL in technology transfer to the industry in the area of NDE will be covered.

  5. State Public Health Laboratory System Quality Improvement Activities

    PubMed Central

    Vagnone, Paula Snippes

    2013-01-01

    The Association of Public Health Laboratories (APHL) and the APHL Laboratory Systems and Standards Committee manage the Laboratory System Improvement Program (L-SIP). One component of L-SIP is an assessment that allows the members and stakeholders of a laboratory system to have an open and honest discussion about the laboratory system's strengths and weaknesses. From these facilitated discussions, gaps and opportunities for improvement are identified. In some cases, ideas for how to best address these gaps emerge, and workgroups are formed. Depending on resources, both monetary and personnel, laboratory staff will then prioritize the next component of L-SIP: which quality improvement activities to undertake. This article describes a sample of quality improvement activities initiated by several public health laboratories after they conducted L-SIP assessments. These projects can result in more robust linkages between system entities, which can translate into improvements in the way the system addresses the needs of stakeholders. PMID:23997301

  6. The Software Engineering Laboratory: An operational software experience factory

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Caldiera, Gianluigi; Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon

    1992-01-01

    For 15 years, the Software Engineering Laboratory (SEL) has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software and software processes within a production software development environment at NASA/GSFC. The SEL comprises three major organizations: (1) NASA/GSFC, Flight Dynamics Division; (2) University of Maryland, Department of Computer Science; and (3) Computer Sciences Corporation, Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents, all of which describe some aspect of the software engineering technology that was analyzed in the flight dynamics environment at NASA. The studies range from small, controlled experiments (such as analyzing the effectiveness of code reading versus that of functional testing) to large, multiple project studies (such as assessing the impacts of Ada on a production environment). The organization's driving goal is to improve the software process continually, so that sustained improvement may be observed in the resulting products. This paper discusses the SEL as a functioning example of an operational software experience factory and summarizes the characteristics of and major lessons learned from 15 years of SEL operations.

  7. Internal Gravity Waves: Generation and Breaking Mechanisms by Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico

    2016-04-01

    Internal gravity waves (IGWs), occurring within estuaries and the coastal oceans, are manifest as large amplitude undulations of the pycnocline. IGWs propagating horizontally in a two layer stratified fluid are studied. The breaking of an IGW of depression shoaling upon a uniformly sloping boundary is investigated experimentally. Breaking dynamics beneath the shoaling waves causes both mixing and wave-induced near-bottom vortices suspending and redistributing the bed material. Laboratory experiments are conducted in a Perspex tank through the standard lock-release method, following the technique described in Sutherland et al. (2013). Each experiment is analysed and the instantaneous pycnocline position is measured, in order to obtain both geometric and kinematic features of the IGW: amplitude, wavelength and celerity. IGWs main features depend on the geometrical parameters that define the initial experimental setting: the density difference between the layers, the total depth, the layers depth ratio, the aspect ratio, and the displacement between the pycnoclines. Relations between IGWs geometric and kinematic features and the initial setting parameters are analysed. The approach of the IGWs toward a uniform slope is investigated in the present experiments. Depending on wave and slope characteristics, different breaking and mixing processes are observed. Sediments are sprinkled on the slope to visualize boundary layer separation in order to analyze the suspension e redistribution mechanisms due to the wave breaking.

  8. Laboratory astrophysical collisionless shock experiments on Omega and NIF

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Ross, J. S.; Huntington, C. M.; Fiuza, F.; Ryutov, D.; Casey, D.; Drake, R. P.; Fiksel, G.; Froula, D.; Gregori, G.; Kugland, N. L.; Kuranz, C.; Levy, M. C.; Li, C. K.; Meinecke, J.; Morita, T.; Petrasso, R.; Plechaty, C.; Remington, B.; Sakawa, Y.; Spitkovsky, A.; Takabe, H.; Zylstra, A. B.

    2016-03-01

    We are performing scaled astrophysics experiments on Omega and on NIF. Laser driven counter-streaming interpenetrating supersonic plasma flows can be studied to understand astrophysical electromagnetic plasma phenomena in a controlled laboratory setting. In our Omega experiments, the counter-streaming flow plasma state is measured using Thomson scattering diagnostics, demonstrating the plasma flows are indeed super-sonic and in the collisionless regime. We observe a surprising additional electron and ion heating from ion drag force in the double flow experiments that are attributed to the ion drag force and electrostatic instabilities. [1] A proton probe is used to image the electric and magnetic fields. We observe unexpected large, stable and reproducible electromagnetic field structures that arise in the counter-streaming flows [2]. The Biermann battery magnetic field generated near the target plane, advected along the flows, and recompressed near the midplane explains the cause of such self-organizing field structures [3]. A D3He implosion proton probe image showed very clear filamentary structures; three-dimensional Particle-In-Cell simulations and simulated proton radiography images indicate that these filamentary structures are generated by Weibel instabilities and that the magnetization level (ratio of magnetic energy over kinetic energy in the system) is ∼0.01 [4]. These findings have very high astrophysical relevance and significant implications. We expect to observe true collisionless shock formation when we use >100 kJ laser energy on NIF.

  9. Transverse dispersion: From laboratory experiments to field applications

    NASA Astrophysics Data System (ADS)

    Grathwohl, Peter; Rügner, Hermann

    2016-04-01

    Transverse dispersion is relevant for dilution of contaminant plumes in groundwater and in many cases controls the length of steady state plumes during natural attenuation. Also dissolution kinetics of NAPLs in porous media and mass transfer of vapor phase compounds across the capillary fringe (e.g. supply of oxygen) is limited by transverse dispersion. In bench scale laboratory experiments typically very small dispersion coefficients are observed. Transverse dispersivities determined in DNAPL pool dissolution experiments in coarse sands are less than 0.1 mm which agrees with results from lab experiments on dilution of tracers and transfer of oxygen across the capillary fringe. Such low dispersivities lead to long-term persistence of DNAPL pools of many decades to centuries which is confirmed e.g. for chlorinated solvents and coal tars by observations at contaminated sites. However, larger scale investigations, e.g. determination of the length of steady state plumes or reduction of mass fluxes of biodegradable compounds suggest that transverse dispersivities at field scale are up to 3 orders of magnitude higher (1 -10 cm). Reasons for this discrepancy are still unclear, but may be partly explained by processes enhancing transverse mixing such as flow focusing due to aquifer geometries or high permeability inclusions and helical groundwater flow induced by herringbone structures in sediments.

  10. Dimensioning IRGA gas sampling systems: laboratory and field experiments

    NASA Astrophysics Data System (ADS)

    Aubinet, Marc; Joly, Lilian; Loustau, Denis; De Ligne, Anne; Chopin, Henri; Cousin, Julien; Chauvin, Nicolas; Decarpenterie, Thomas; Gross, Patrick

    2016-03-01

    Both laboratory and field experiments were carried out in order to define suitable configuration ranges for the gas sampling systems (GSSs) of infrared gas analyzers (IRGAs) used in eddy covariance measurements.

    In the laboratory, an original dynamic calibration bench was developed in order to test the frequency attenuation and pressure drop generated by filters. In the field, three IRGAs of the same type equipped with different filters or different rain caps were installed and run and the real frequency response of the complete setup was tested. The main results are as follows. - Filters may have a strong impact on the pressure drop in the GSS and this impact increases with flow rate. - Conversely, no impact of the tested filters on cut-off frequency was found, GSSs with and without filters presenting similar cut-off frequencies. - The main limiting factor of cut-off frequency in the field was found to be the rain cap design. In addition, the impact of this design on pressure drop was also found to be noteworthy.

  11. Magnetic shielding of a laboratory Hall thruster. II. Experiments

    SciTech Connect

    Hofer, Richard R. Goebel, Dan M.; Mikellides, Ioannis G.; Katz, Ira

    2014-01-28

    The physics of magnetic shielding in Hall thrusters were validated through laboratory experiments demonstrating essentially erosionless, high-performance operation. The magnetic field near the walls of a laboratory Hall thruster was modified to effectively eliminate wall erosion while maintaining the magnetic field topology away from the walls necessary to retain efficient operation. Plasma measurements at the walls validate our understanding of magnetic shielding as derived from the theory. The plasma potential was maintained very near the anode potential, the electron temperature was reduced by a factor of two to three, and the ion current density was reduced by at least a factor of two. Measurements of the carbon backsputter rate, wall geometry, and direct measurement of plasma properties at the wall indicate that the wall erosion rate was reduced by a factor of 1000 relative to the unshielded thruster. These changes effectively eliminate wall erosion as a life limitation in Hall thrusters, enabling a new class of deep-space missions that could not previously be attempted.

  12. Dimensioning IRGA gas sampling system : laboratory and field experiments

    NASA Astrophysics Data System (ADS)

    Aubinet, Marc; Joly, Lilian; Loustau, Denis; De Ligne, Anne; Chopin, Henri; Cousin, Julien; De Carpenterie, Thomas; Gross, Patrick; Chauvin, Nicolas

    2016-04-01

    Both laboratory and field experiments were carried out in order to define suitable configuration ranges for the gas sampling systems (GSS) of infrared gas analyzers (IRGA) used in eddy covariance measurements. In the laboratory, an original dynamic calibration bench was developed in order to test the frequency attenuation and pressure drop generated by filters. In the field, three IRGAs of the same type equipped with different filters or different rain caps were installed and run and the real frequency response of the complete set-up was tested. The main results are that: - Filters may have a strong impact on the pressure drop in the GSS and this impact increases with flow rate. - On the contrary, no impact of the tested filters on cut off frequency was found, GSS with and without filters presenting similar cut off frequencies. - The main limiting factor of cut off frequency in the field was found to be the rain cap design. In addition, the impact of this design on pressure drop was also found noteworthy.

  13. Deformation Monitoring of Materials Under Stress in Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Skarlatos, D.; Yiatros, S.

    2016-06-01

    Photogrammetry is a valid alternative solution to linear variable differential transformer (LVDT) measurements in structural testing in laboratory conditions. Although the use of LVDTs boasts a high degree of accuracy, on the other hand it is limiting as it offers measurements between two points and it thus might be unable to capture localized deformations and strains over a bigger area of a structural specimen. In this aspect photogrammetry seems to offer certain advantages. Commercial solutions provide limited testing envelopes, while on the other hand, the wide range on new materials need more versatile techniques. Based on the need to develop an in-house photogrammetric toolbox to support several structural and material experiments in the department Advanced Pore Morphology (APM) aluminium foam specimens developed at Fraunhofer IFAM in Germany and cured at CUT, were tested under monotonic compressive load. Data acquisition, analysis and results, along with lessons learnt from the process are presented in this work.

  14. Slew maneuvers of Spacecraft Control Laboratory Experiment (SCOLE)

    NASA Technical Reports Server (NTRS)

    Kakad, Yogendra P.

    1992-01-01

    This is the final report on the dynamics and control of slew maneuvers of the Spacecraft Control Laboratory Experiment (SCOLE) test facility. The report documents the basic dynamical equation derivations for an arbitrary large angle slew maneuver as well as the basic decentralized slew maneuver control algorithm. The set of dynamical equations incorporate rigid body slew maneuver and three dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interactions between the rigid shuttle and the flexible appendage. The equations are simplified and evaluated numerically to include the first ten flexible modes to yield a model for designing control systems to perform slew maneuvers. The control problem incorporates the nonlinear dynamical equations and is expressed in terms of a two point boundary value problem.

  15. Laboratory experiment of the rock anelastic strain recovery compliances

    NASA Astrophysics Data System (ADS)

    Gao, Lu; Wang, Lianjie

    2012-09-01

    Anelastic strain recovery (ASR) compliances are the important parameters for the ASR in situ stress measurement method to accurately evaluate the magnitude of the stress. The laboratory experiment of the creep and ASR processes for three types of rocks (sandstone, marble and granite) were performed. The tests were carried out at 50% of the uniaxial compressive strength (UCS). And the ASR compliances of the shear mode Jas(t), the volumetric mode Jav(t) and the ratio of Jas(t) and Jav(t) were obtained, respectively. The experimental result show that both the magnitude and increase rate of the ASR compliance greatly depend on the rock type, and the ratios of Jas(t) and Jav(t) trend to different constant values after enough elapsed time for each type of rock specimen.

  16. Seeded FEL Microbunching Experiments at the UCLA Neptune Laboratory

    SciTech Connect

    Tochitsky, S. Ya.; Musumeci, P.; Rosenzweig, J. B.; Joshi, C.; Gottschalk, S. C.

    2010-11-04

    Seeded high-gain FELs, which can generate very powerful radiation pulses in a relatively compact undulator and simultaneously modulate the electron beam longitudinally at the seed wavelength, are important tools for advanced accelerator development. A single-pass 0.5-9 THz FEL amplifier-buncher driven by a regular photoinjector is being built at the UCLA Neptune Laboratory. FEL interactions at 340 {mu}m (1 THz) are considered for the first experiment, since time-resolved measurements of longitudinal current distribution of the bunched beam using the RF deflecting cavity are possible. A design of a 0.2-2.0 {mu}m FEL using the same undulators is presented. In this case the FEL is driven by a high-peak current beam from the laser-plasma accelerator tunable in the 100-300 MeV range.

  17. Experience of Implementing ISO 15189 Accreditation at a University Laboratory

    PubMed Central

    2015-01-01

    The present article summarizes the authors’ experience with the implementation of a quality management system based on ISO 17025 and ISO 15189 standards at university laboratories. The accreditation of the analytical procedures at the Universidad Mariano Gálvez represented a challenge due to the unique nature of an educational institution and the difference in nature to the standards implemented. Sample handling and care of the patient were combined to achieve an integrated management system. We explain the development of the management system, the obstacles and benefits of the system and concluding that it is possible to design a management system based on ISO 15189 for the university lab that allowed delivering results assuring technical competence to patient care and welfare. PMID:27683499

  18. Experience of Implementing ISO 15189 Accreditation at a University Laboratory.

    PubMed

    Solis-Rouzant, Patricia

    2015-11-01

    The present article summarizes the authors' experience with the implementation of a quality management system based on ISO 17025 and ISO 15189 standards at university laboratories. The accreditation of the analytical procedures at the Universidad Mariano Gálvez represented a challenge due to the unique nature of an educational institution and the difference in nature to the standards implemented. Sample handling and care of the patient were combined to achieve an integrated management system. We explain the development of the management system, the obstacles and benefits of the system and concluding that it is possible to design a management system based on ISO 15189 for the university lab that allowed delivering results assuring technical competence to patient care and welfare. PMID:27683499

  19. LABORATORY EXPERIMENTS TO SIMULATE CO2 OCEAN DISPOSAL

    SciTech Connect

    Stephen M. Masutani

    1999-12-31

    This Final Technical Report summarizes the technical accomplishments of an investigation entitled ''Laboratory Experiments to Simulate CO{sub 2} Ocean Disposal'', funded by the U.S. Department of Energy's University Coal Research Program. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation was to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO{sub 2}) from coal and other fossil fuel combustion systems into the atmosphere. A number of critical technical uncertainties of ocean disposal of CO{sub 2} were addressed by performing laboratory experiments on liquid CO{sub 2} jet break-up into a dispersed droplet phase, and hydrate formation, under deep ocean conditions. Major accomplishments of this study included: (1) five jet instability regimes were identified that occur in sequence as liquid CO{sub 2} jet disintegration progresses from laminar instability to turbulent atomization; (2) linear regression to the data yielded relationships for the boundaries between the five instability regimes in dimensionless Ohnesorge Number, Oh, and jet Reynolds Number, Re, space; (3) droplet size spectra was measured over the full range of instabilities; (4) characteristic droplet diameters decrease steadily with increasing jet velocity (and increasing Weber Number), attaining an asymptotic value in instability regime 5 (full atomization); and (5) pre-breakup hydrate formation appears to affect the size distribution of the droplet phase primary by changing the effective geometry of the jet.

  20. Laboratory Impact Experiments: Collisional Processing of Simulated Cometary Materials

    NASA Astrophysics Data System (ADS)

    Lederer, Susan M.; Cintala, M. J.; Olney, R. D.; Nakamura-Messenger, K.; Smith, D. C.; Keller, L. P.; Zolensky, M. E.

    2008-09-01

    While residing in the Kuiper Belt, an average comet (d=2 km) experiences tens to hundreds of impacts with d>8m objects over 3.5Gyr, while a typical Kuiper Belt Object (KBO) with d=200km undergoes 1x106 collisions. Durda and Stern (2000) suggest the interiors of most comet nuclei have been heavily damaged by collisions, and 1/3 of KBOs surfaces have been reworked. We have initiated a laboratory program dedicated to investigating the chemical, mineralogical, and spectral effects that impacts have had on comets and KBOs throughout their histories. Experiments were conducted at the NASA Johnson Space Center Experimental Impact Laboratory using the Vertical Impact gun. In phase 1, 16 experiments over a range of impact speeds (2.0 - 2.8 km/s) were conducted. Targets included refractory components found in comet dust, including Mg-rich olivine (forsterite) and pyroxene (enstatite), diopside, and Fe-rich sulfides (pyrrhotite). In phase 2, low-porosity, volatile-rich targets were constructed by mixing refractory dust components plus amorphous carbon, volatiles (H2O, CO2), and organics (PAHs). Targets were then insolated with a solar simulator to generate a layered target with a volatile-free crust above the volatile-rich base, and impacted. Analyses of pre- and post-impacted materials will be presented, including a) spectral changes, using a Fourier Transform Infrared Spectrometer (FTIR, 5 - 15 um) to investigate changes in slope, band depths, band shifting, and new signatures, b) the structural/shock-induced effects of the dust, through Transmission Electron Microscope (TEM) data, and c) compositional information via X-ray Diffraction lab studies. Phase 1 experiments demonstrate that silicate targets impacted at 2.45 and 2.8 km/s have been altered, causing changes in FTIR spectra (e.g., darkening, shallowing of band depths) and clear evidence of shock (high density of planar dislocations) in TEM images. This study was supported by a Cottrell College Science Award from

  1. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 3: Laboratory descriptions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The following study objectives are covered: (1) identification of major laboratory equipment; (2) systems and operations analysis in support of the laboratory design; and (3) conceptual design of the comm/nav research laboratory.

  2. Field versus laboratory experiments to evaluate the fate of azoxystrobin in an amended vineyard soil.

    PubMed

    Herrero-Hernández, E; Marín-Benito, J M; Andrades, M S; Sánchez-Martín, M J; Rodríguez-Cruz, M S

    2015-11-01

    This study reports the effect that adding spent mushroom substrate (SMS) to a representative vineyard soil from La Rioja region (Spain) has on the behaviour of azoxystrobin in two different environmental scenarios. Field dissipation experiments were conducted on experimental plots amended at rates of 50 and 150 t ha(-1), and similar dissipation experiments were simultaneously conducted in the laboratory to identify differences under controlled conditions. Azoxystrobin dissipation followed biphasic kinetics in both scenarios, although the initial dissipation phase was much faster in the field than in the laboratory experiments, and the half-life (DT50) values obtained in the two experiments were 0.34-46.3 days and 89.2-148 days, respectively. Fungicide residues in the soil profile increased in the SMS amended soil and they were much higher in the top two layers (0-20 cm) than in deeper layers. The persistence of fungicide in the soil profile is consistent with changes in azoxystrobin adsorption by unamended and amended soils over time. Changes in the dehydrogenase activity (DHA) of soils under different treatments assayed in the field and in the laboratory indicated that SMS and the fungicide had a stimulatory effect on soil DHA. The results reveal that the laboratory studies usually reported in the literature to explain the fate of pesticides in amended soils are insufficient to explain azoxystrobin behaviour under real conditions. Field studies are necessary to set up efficient applications of SMS and fungicide, with a view to preventing the possible risk of water contamination.

  3. Cyclic deformations in the Opalinus clay: a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Huber, Emanuel; Huggenberger, Peter; Möri, Andreas; Meier, Edi

    2015-04-01

    The influence of tunnel climate on deformation cycles of joint openings and closings is often observed immediately after excavation. At the EZ-B niche in the Mt. Terri rock laboratory (Switzerland), a cyclic deformation of the shaly Opalinus clay has been monitored for several years. The deformation cycles of the joints parallel to the clay bedding planes correlate with seasonal variations in relative humidity of the air in the niche. In winter, when the relative humidity is the lowest (down to 65%), the joints open as the clay volume decreases, whereas they tend to close in the summer when the relative humidity reaches up to 100%. Furthermore, in situ measurements have shown the trend of an increasingly smaller aperture of joints with time. A laboratory experiment was carried out to reproduce the observed cyclic deformation in a climate chamber using a core sample of Opalinus clay. The main goal of the experiment was to investigate the influence of the relative humidity on the deformation of the Opalinus clay while excluding the in situ effects (e.g. confining stress). The core sample of Opalinus clay was put into a closed ended PVC tube and the space between the sample and the tube was filled with resin. Then, the sample (size: 28 cm × 14 cm × 6.5 cm) was cut in half lengthways and the open end was cut, so that the half-core sample could move in one direction. The mounted sample was exposed to wetting and drying cycles in a climate chamber. Air temperature, air humidity and sample weight were continuously recorded. Photographs taken at regular time intervals by a webcam allowed the formation/deformation of cracks on the surface of the sample to be monitored. A crackmeter consisting of a double-plate capacitor attached to the core sample was developed to measure the dynamics of the crack opening and closing. Preliminary results show that: - Deformation movements during different climate cycles can be visualized with the webcam - The crackmeter signal gives a

  4. Educational Activities At The Nuclear Engineering Teaching Laboratory

    NASA Astrophysics Data System (ADS)

    Tipping, Tracy N.

    2011-06-01

    The Nuclear Engineering Teaching Laboratory (NETL) at the University of Texas at Austin performs a wide variety of educational activities for students at various levels. Regular on-site courses in the areas of health physics, radiochemistry, and reactor operations are offered for university credit. Along with on-site courses, access to the reactor facility via a remote console connection allows students in an off-site classroom to conduct experiments via a "virtual" control console. In addition to the regularly scheduled courses, other programs, such as the Nuclear Regulatory Commission Summer Nuclear Engineering Institute and Office of Naval Research partnerships with Historically Black Colleges and Universities, provide access to the facility for students from other universities both domestic and foreign. And NETL hosts professional development programs such as training programs for Nuclear Regulatory Commission personnel and International Atomic Energy Agency fellowships.

  5. Laboratory Experiments on Convective Entrainment Using a Saline Water Tank

    NASA Astrophysics Data System (ADS)

    Jonker, Harmen J. J.; Jiménez, Maria A.

    2014-06-01

    Entrainment fluxes in a shear-free convective boundary layer have been measured with a saline water tank set-up. The experiments were targeted towards measuring the entrainment behaviour for medium to high Richardson numbers and use a two-layer design, i.e. two stacked non-stratified (neutral) layers with different densities. With laser induced fluorescence (LIF), the entrainment flux of a fluorescent dye is measured for bulk Richardson numbers in the range 30-260. It is proposed that a carefully chosen combination of top-down and bottom-up processes improves the accuracy of LIF-based entrainment observations. The observed entrainment fluxes are about an order of magnitude lower than reported for thermal water tanks: the derived buoyancy entrainment ratio, , is found to be , which is to be compared with for a thermal convection tank (Deardorff et al., J Fluid Mech 100:41-64, 1980). An extensive discussion is devoted to the influence of the Reynolds and Prandtl numbers in laboratory experiments on entrainment.

  6. Characterization of rockfalls from seismic signal: Insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; Rosny, Julien de; Shapiro, Nikolai; Dewez, Thomas; Hibert, Clément; Mathon, Christian; Sedan, Olivier; Berger, Frédéric

    2015-10-01

    The seismic signals generated by rockfalls can provide information on their dynamics and location. However, the lack of field observations makes it difficult to establish clear relationships between the characteristics of the signal and the source. In this study, scaling laws are derived from analytical impact models to relate the mass and the speed of an individual impactor to the radiated elastic energy and the frequency content of the emitted seismic signal. It appears that the radiated elastic energy and frequencies decrease when the impact is viscoelastic or elastoplastic compared to the case of an elastic impact. The scaling laws are validated with laboratory experiments of impacts of beads and gravels on smooth thin plates and rough thick blocks. Regardless of the involved materials, the masses and speeds of the impactors are retrieved from seismic measurements within a factor of 3. A quantitative energy budget of the impacts is established. On smooth thin plates, the lost energy is either radiated in elastic waves or dissipated in viscoelasticity when the impactor is large or small with respect to the plate thickness, respectively. In contrast, on rough thick blocks, the elastic energy radiation represents less than 5% of the lost energy. Most of the energy is lost in plastic deformation or rotation modes of the bead owing to surface roughness. Finally, we estimate the elastic energy radiated during field scale rockfalls experiments. This energy is shown to be proportional to the boulder mass, in agreement with the theoretical scaling laws.

  7. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1992-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: program objectives; program features; flight experiment features; current activities; MACE development model lab testing; MACE test article deployed on STS middeck; and development model testing.

  8. Laboratory experiment on boundaries of upper stage plane bed regime

    NASA Astrophysics Data System (ADS)

    Zrostlík, Štěpán; Matoušek, Václav

    2016-04-01

    Results are discussed of laboratory experiments on criteria determining the transition between the regime of dunes and the upper stage plane bed (UPB) regime and the transition between the UPB regime and the regime of wavy flow. The experiments were carried for 3 fractions of plastic material and two fractions of glass beads in a broad range of flow conditions (different discharges of water and solids and longitudinal bed slopes) in a tilting flume. The experiments reveal that, contrary to expectations, a constant value of the Shields parameter is not an appropriate criterion for the transition between the dune regime and the UPB regime. Furthermore, the transition appears to be insensitive to the total discharge of solids and water. Instead, the criterion seems to be well represented by a constant value of the average transport concentration of sediment (the ratio of volumetric discharge of solids and volumetric discharge of mixture). The experimental results exhibit a very tight correlation between the transport concentration and the longitudinal bed slope. Hence, a constant value of the bed slope can be considered an appropriate criterion for the transition. The transition between the UPB regime and the wavy regime (significant waves develop but they are not always standing waves) is found at a constant value of Froude number, which is in agreement with literature, although it is found at a higher value than the literature usually suggests (Fr = 1.2 instead of 1.0). Hence, the transition occurs in the super-critical flow but it is not necessarily associated with the critical flow.

  9. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  10. Characterisation of rockfalls from seismic signal: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; de Rosny, Julien; Shapiro, Nikolai; Dewez, Thomas; Hibert, Clément; Mathon, Christian; Sedan, Olivier; Berger, Frédéric

    2015-04-01

    Rockfalls, debris flows and rock avalanches represent a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very difficult. Recent field studies showed that gravitational instabilities can be detected, localized and characterized thanks to the seismic signal they generate. Therefore, a burning challenge for risks assessment related to these events is to obtain quantiative informations on the characteristics of the rockfalls (mass, speed, extension,...) from the properties of the signal (seismic energy, frequencies,...). Using a theoretical model of viscoelastic impact of a sphere on a plane, we develop analytical scaling laws relating the energy radiated in elastic waves, the energy dissipated in viscoelasticity during the impact and the frequencies of the generated seismic signal to the mass m and the impact speed V z of the sphere and to the elastic parameters of the involved materials. The radiated elastic energy is shown to vary as m5/3V z11/5 on plates and as mV z13/5 on blocks, regardless of the elastic parameters. The energy dissipated in viscoelasticity does not depend on the support thickness and varies as m2/3V z11/5. The mean frequency of the generated signal is inversely proportional to the impact duration. Then, we conduct simple laboratory experiments that consist in dropping spherical beads of different size and materials and small gravels on thin plates of glass and PMMA and rock blocks. In the experiments, piezoelectric accelerometers are used to record the signals in a wide frequency range: 1 Hz to 56 kHz. The experiments are also monitored optically using fast cameras. The elastic energy emitted by an impact on the supports is first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. We observe a quantitative agreement between experimental data and the analytical scaling laws, even when we use small

  11. Understanding the dynamics of volcanic jet through laboratory experiments

    NASA Astrophysics Data System (ADS)

    Cigala, Valeria; Kueppers, Ulrich; Dingwell, Donald Bruce

    2015-04-01

    Explosive volcanic eruptions pose great hazards in both the near- and far-field. Understanding the factors controlling the dynamics of pyroclast ejection is essential for better assessment of related hazards. The dynamics of volcanic explosions, which can be observed and characterized in the field only in a very incomplete manner due to their inaccessibility and hazards, can be simulated in the laboratory where experiments can be performed in their immediate proximity under controlled conditions. Using a shock-tube we ejected loose particles while controlling parameters such as temperature, applied overpressure, starting grain size distribution, conduit length and exit vent geometry. We recorded each explosion with a high-speed camera and collected the sample after deposition, thereby quantifying the velocity of individual particles, the jet spreading angle and the production of fines. The experiments were performed at 500°C and 15MPa using materials of two different densities ("Schaumlava" and "Laacher See Bims") and three grain size ranges (1-2 mm, 0.5-1 mm and 0.125-0.250 mm). Additionally, we varied the setup to allow for different sample-to-gas ratios and varying fragmentation depth at start of each experiment. We also deployed four different exit vents: a cylindrical continuation of the shock-tube, a funnel with a flaring of 30°, a funnel with a flaring of 15° and a nozzle. All vents are characterized by the same height and bottom diameter. The results of the current investigation together with comparison with other experimental campaigns showed particle velocities ranging from 130 to 290 m/s, gas spreading angles varying from 14 to 37° and particles spreading angles from 12° to 2°. Moreover we observed dynamically evolving ejection characteristics (speed and spreading angle) and strong variations in the production of fines (up to a factor of 2) during the course of individual experiments. We further qualitatively present the impact of experimental

  12. University Students' Activities, Thinking and Learning during Laboratory Work

    ERIC Educational Resources Information Center

    von Aufschnaiter, Claudia; von Aufschnaiter, Stefan

    2007-01-01

    One aim of physics laboratory instruction is to help students connect theory to practice. So experiments are often chosen in order to "demonstrate" specific concepts. Furthermore, students are expected to approach phenomena in a scientific way, that is, they should develop a hypothesis and plan their experiments accordingly. Although it is usually…

  13. MSLICE Science Activity Planner for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.; Shams, Khawaja S.; Wallick, Michael N.; Norris, Jeffrey S.; Joswig, Joseph C.; Crockett, Thomas M.; Fox, Jason M.; Torres, Recaredo J.; Kurien, James A.; McCurdy, Michael P.; Pyrzak, Guy; Aghevli, Arash; Bachmann, Andrew G.

    2009-01-01

    MSLICE (Mars Science Laboratory InterfaCE) is the tool used by scientists and engineers on the Mars Science Laboratory rover mission to visualize the data returned by the rover and collaboratively plan its activities. It enables users to efficiently and effectively search all mission data to find applicable products (e.g., images, targets, activity plans, sequences, etc.), view and plan the traverse of the rover in HiRISE (High Resolution Imaging Science Experiment) images, visualize data acquired by the rover, and develop, model, and validate the activities the rover will perform. MSLICE enables users to securely contribute to the mission s activity planning process from their home institutions using off-the-shelf laptop computers. This software has made use of several plug-ins (software components) developed for previous missions [e.g., Mars Exploration Rover (MER), Phoenix Mars Lander (PHX)] and other technology tasks. It has a simple, intuitive, and powerful search capability. For any given mission, there is a huge amount of data and associated metadata that is generated. To help users sort through this information, MSLICE s search interface is provided in a similar fashion as major Internet search engines. With regard to the HiRISE visualization of the rover s traverse, this view is a map of the mission that allows scientists to easily gauge where the rover has been and where it is likely to go. The map also provides the ability to correct or adjust the known position of the rover through the overlaying of images acquired from the rover on top of the HiRISE image. A user can then correct the rover s position by collocating the visible features in the overlays with the same features in the underlying HiRISE image. MSLICE users can also rapidly search all mission data for images that contain a point specified by the user in another image or panoramic mosaic. MSLICE allows the creation of targets, which provides a way for scientists to collaboratively name

  14. Electricity/Electronics Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Sutherland, Barbara, Ed.

    This electricity/electronics guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, a list of objectives, a course description, and a content outline. The guide contains 35 modules on the following topics: electrical…

  15. iPads in the Science Laboratory: Experience in Designing and Implementing a Paperless Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Hesser, Tiffany L.; Schwartz, Pauline M.

    2013-01-01

    In the fall of 2012, 20 General Chemistry Honors students at the University of New Haven were issued the new iPad 3 to incorporate these devices both in the classroom and the laboratory. This paper will focus on the integration of the iPad into the laboratory curriculum while creating a paperless experience, an environment where no paper would…

  16. Emulating JWST Exoplanet Transit Observations in a Testbed laboratory experiment

    NASA Astrophysics Data System (ADS)

    Touli, D.; Beichman, C. A.; Vasisht, G.; Smith, R.; Krist, J. E.

    2014-12-01

    The transit technique is used for the detection and characterization of exoplanets. The combination of transit and radial velocity (RV) measurements gives information about a planet's radius and mass, respectively, leading to an estimate of the planet's density (Borucki et al. 2011) and therefore to its composition and evolutionary history. Transit spectroscopy can provide information on atmospheric composition and structure (Fortney et al. 2013). Spectroscopic observations of individual planets have revealed atomic and molecular species such as H2O, CO2 and CH4 in atmospheres of planets orbiting bright stars, e.g. Deming et al. (2013). The transit observations require extremely precise photometry. For instance, Jupiter transit results to a 1% brightness decrease of a solar type star while the Earth causes only a 0.0084% decrease (84 ppm). Spectroscopic measurements require still greater precision <30ppm. The Precision Projector Laboratory (PPL) is a collaboration between the Jet Propulsion Laboratory (JPL) and California Institute of Technology (Caltech) to characterize and validate detectors through emulation of science images. At PPL we have developed a testbed to project simulated spectra and other images onto a HgCdTe array in order to assess precision photometry for transits, weak lensing etc. for Explorer concepts like JWST, WFIRST, EUCLID. In our controlled laboratory experiment, the goal is to demonstrate ability to extract weak transit spectra as expected for NIRCam, NIRIS and NIRSpec. Two lamps of variable intensity, along with spectral line and photometric simulation masks emulate the signals from a star-only, from a planet-only and finally, from a combination of a planet + star. Three masks have been used to simulate spectra in monochromatic light. These masks, which are fabricated at JPL, have a length of 1000 pixels and widths of 2 pixels, 10 pixels and 1 pixel to correspond respectively to the noted above JWST instruments. From many-hour long

  17. Dynamics of spacecraft control laboratory experiment (SCOLE) slew maneuvers

    NASA Technical Reports Server (NTRS)

    Kakad, Y. P.

    1987-01-01

    This is the first of two reports on the dynamics and control of slewing maneuvers of the NASA Spacecraft Control Laboratory Experiment (SCOLE). In this report, the dynamics of slewing maneuvers of SCOLE are developed in terms of an arbitrary maneuver about any given axis. The set of dynamical equations incorporate rigid-body slew maneuver and three-dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interaction between the rigid shuttle and the flexible appendage. The final set of dynamical equations obtained for slewing maneuvers is highly nonlinear and coupled in terms of the flexible modes and the rigid-body modes. The equations are further simplified and evaluated numerically to include the first ten flexible modes and the SCOLE data to yield a model for designing control systems to perform slew maneuvers.

  18. Control of Spacecraft Control Laboratory Experiment (SCOLE) slew maneuvers

    NASA Technical Reports Server (NTRS)

    Kakad, Y. P.

    1987-01-01

    This is the second report of a set of two reports on the dynamics and control of slewing maneuvers of NASA Spacecraft Control Laboratory Experiment (SCOLE). The control problem of slewing maneuvers of SCOLE is developed in terms of an arbitrary maneuver about any given axis. The control system is developed for the combined problem of rigid-body slew maneuver and vibration suppression of flexible appendage. The control problem is formulated by incorporating the nonlinear equations derived in the previous report and is expressed in terms of a two-point boundary value problem utilizing a quadratic type of performance index. The two-point boundary value problem is solved as a hierarchical control problem with the overall system being split in terms of two subsystems, namely the slewing of the entire assembly and the vibration suppression of the flexible antenna. The coupling variables between the two dynamical subsystems are identified and these two subsystems for control purposes are treated independently in parallel at the first level. Then the state-space trajectory of the combined problem is optimized at the second level.

  19. Laboratory experiments for estimating chemical osmotic parameters of mudstones

    NASA Astrophysics Data System (ADS)

    Miyoshi, S.; Tokunaga, T.; Mogi, K.; Ito, K.; Takeda, M.

    2010-12-01

    Recent studies have quantitatively shown that mudstone can act as semi-permeable membrane and can generate abnormally high pore pressure in sedimentary basins. Reflection coefficient is one of the important properties that affect the chemical osmotic behavior of mudstones. However, not many quantitative studies on the reflection coefficient of mudstones have been done. We have developed a laboratory apparatus to observe chemical osmotic behavior, and a numerical simulation technique to estimate the reflection coefficient and other relating properties of mudstones. A core sample of siliceous mudstone obtained from the drilled core at Horonobe, Japan, was set into the apparatus and was saturated by 0.1mol/L sodium chloride solution. Then, the up-side reservoir was replaced with 0.05mol/L sodium chloride solution, and temporal changes of both pressure and concentration of the solution in both up-side and bottom-side reservoirs were measured. Using the data obtained from the experiment, we estimated the reflection coefficient, effective diffusion coefficient, hydraulic conductivity, and specific storage of the sample by fitting the numerical simulation results with the observed ones. A preliminary numerical simulation of groundwater flow and solute migration was conducted in the area where the core sample was obtained, using the reflection coefficient and other properties obtained from this study. The result suggested that the abnormal pore pressure observed in the region can be explained by the chemical osmosis.

  20. A Simple Laboratory Exercise Illustrating Active Transport in Yeast Cells.

    ERIC Educational Resources Information Center

    Stambuk, Boris U.

    2000-01-01

    Describes a simple laboratory activity illustrating the chemiosmotic principles of active transport in yeast cells. Demonstrates the energy coupling mechanism of active a-glucoside uptake by Saccaromyces cerevisiae cells with a colorimetric transport assay using very simple equipment. (Contains 22 references.) (Author/YDS)

  1. Sampling Participants’ Experience in Laboratory Experiments: Complementary Challenges for More Complete Data Collection

    PubMed Central

    McAuliffe, Alan; McGann, Marek

    2016-01-01

    Speelman and McGann’s (2013) examination of the uncritical way in which the mean is often used in psychological research raises questions both about the average’s reliability and its validity. In the present paper, we argue that interrogating the validity of the mean involves, amongst other things, a better understanding of the person’s experiences, the meaning of their actions, at the time that the behavior of interest is carried out. Recently emerging approaches within Psychology and Cognitive Science have argued strongly that experience should play a more central role in our examination of behavioral data, but the relationship between experience and behavior remains very poorly understood. We outline some of the history of the science on this fraught relationship, as well as arguing that contemporary methods for studying experience fall into one of two categories. “Wide” approaches tend to incorporate naturalistic behavior settings, but sacrifice accuracy and reliability in behavioral measurement. “Narrow” approaches maintain controlled measurement of behavior, but involve too specific a sampling of experience, which obscures crucial temporal characteristics. We therefore argue for a novel, mid-range sampling technique, that extends Hurlburt’s descriptive experience sampling, and adapts it for the controlled setting of the laboratory. This controlled descriptive experience sampling may be an appropriate tool to help calibrate both the mean and the meaning of an experimental situation with one another. PMID:27242588

  2. Review of auditory subliminal psychodynamic activation experiments.

    PubMed

    Fudin, R; Benjamin, C

    1991-12-01

    Subliminal psychodynamic activation experiments using auditory stimuli have yielded only a modicum of support for the contention that such activation produces predictable behavioral changes. Problems in many auditory subliminal psychodynamic activation experiments indicate that those predictions have not been tested adequately. The auditory mode of presentation, however, has several methodological advantages over the visual one, the method used in the vast majority of subliminal psychodynamic activation experiments. Consequently, it should be considered in subsequent research in this area. PMID:1805167

  3. Plasmid Instability in Batch Cultures of Recombinant Bacteria. A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Bentley, William E.; Kompala, Dhinakar S.

    1990-01-01

    Described is a laboratory experiment designed to expose students to problem-solving methods individually and as a group. Included are background information, a list of materials, laboratory procedures, analysis methods, and probable results. (CW)

  4. Simulation of astrophysical jets in a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2006-04-01

    Astrophysical jets are routinely simulated in a reproducible, well-diagnosed laboratory experiment. The experimental sequence starts by imposing a vacuum poloidal magnetic field linking a disk electrode to a co-planar annular electrode. Neutral gas (H, Ne, N, or Ar) is then injected via 8 nozzles located on the disk and 8 nozzles on the annulus. A 120 μF capacitor bank power supply charged to 4-7 kV is applied via ignitron switches across the electrodes, breaking down the injected gas to form plasma. The low impedance (<10 mφ) of the highly conducting plasma causes the power supply to behave as a current source, rather than a voltage source. The discharging capacitor bank drives a ˜100 kA poloidal electric current through the plasma; this current initially flows in eight distinct `spider legs' (see photo in April meeting poster) that span from the disk to the annulus. The spider legs quickly merge via mutual attraction of their currents to form the simulated astrophysical jet. The axial gradient of the toroidal magnetic field energy density provides the force that accelerates the jet. The mass flux boundary condition at the electrodes is tightly coupled to the jet behavior. The jet is `fueled' by plasma ingested from the nozzles and the accumulation (pile-up) of the ingested plasma collimates the jet because of the associated pile-up of frozen-in toroidal magnetic flux convected with the plasma. The jet undergoes a kink instability when it becomes long enough to satisfy the Kruskal-Shafranov q=1 condition.

  5. Infrasound Generated by Strombolian Eruptions - Insights from Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Dabrowa, A.; Phillips, J. C.; Rust, A.; Green, D. N.

    2010-12-01

    In recent years infrasonic monitoring at volcanoes has become an increasingly common tool. Much of the current work on interpreting volcano infrasound has concentrated on Strombolian eruptions, and several mechanisms have been suggested for the sound produced at these eruptions. However, the precise mechanisms at the vent need to be identified and understood if infrasound recorded in the field is to be used to infer conditions in the volcanic system. In this work, laboratory experiments using audio recordings coupled with high speed video footage have been conducted to gain a deeper understanding of these sounds. A simplified analogue model is used as an analogy for a Strombolian eruption: an air bubble rises through a tank containing a viscous Newtonian liquid (golden syrup) and bursts at the surface. Although the experimental set-up is simple and idealized, it allows control of physical properties and measurement of the processes observed far more accurately than would be possible in the field. Physical parameters which may control the form of the acoustic wave produced, such as liquid viscosity (achieved by dilution of pure golden syrup with water) and bubble volume are investigated. Initial results show that the onset of the main part of the acoustic waveform occurs concurrently with the onset of bubble rupture. Trends in the amplitude and frequency of the acoustic waveform, as well as bubble rupture speed are seen as the liquid viscosity varied. A number of candidate mechanisms for the production of sound during the experiments have been investigated, and synthetic waveforms compared to experimental data. These include the flow of gas through a growing hole from a pressurised reservoir (the bubble), and the mass flux due to the collapse of the bubble film. Importantly it has been shown that even in this very simple case - the sound produced by the bursting of a hemispherical bubble formed at the surface of a viscous liquid - is not as simple as some theories

  6. An "in Silico" DNA Cloning Experiment for the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Elkins, Kelly M.

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced…

  7. The Multi-Well Experiment: a field laboratory for tight gas sands research

    SciTech Connect

    Sattler, A.R.

    1982-08-01

    The Multi-Well Experiment (MWX) is a research oriented field laboratory whose objective is developing the understanding and technology to allow economic production of the over 200 trillion cubic feet of natural gas estimated to lie within the low permeability, lenticular gas sands in the western United States. Experiment activities include: close-spaced (100-200 ft) wells, comprehensive core and logging programs, extensive in situ stress measurements, geophysical surveys to determine sand body configurations, diagnostic measurements for hydraulic fracture characterization, and a series of stimulation experiments. Analysis of data from these activities will yield improved geologic, reservoir, and stimulation models and improved log interpretation methods for lenticular, tight gas sands. To date, two 8350 ft wells, 135 ft apart, have been drilled in the Piceance Basin at a site near Rifle, Colorado, where the Mesaverde, the formation of interest, lies at a depth of 3900-8300 ft. Preliminary core, log, and well data have provided an initial characterization of the site. Four years of stimulation experiments are planned for this field laboratory.

  8. Multi-Well Experiment: a field laboratory for tight-gas-sands research

    SciTech Connect

    Northrop, D.A.; Sattler, A.R.

    1982-01-01

    The Multi-Well Experiment (MWX) is a research-oriented field laboratory whose objective is developing the understanding and technology to allow economic production of the over 200 trillion cubic feet of natural gas estimated to lie within the low permeability, lenticular gas sands in the western United States. Experiment activities include: (1) close-spaced (100 to 200 ft) wells; (2) comprehensive core and logging programs; (3) extensive in situ stress measurements; (4) geophysical surveys to determine sand body configurations; (5) diagnostic measurements for hydraulic fracture characterization; and (6) a series of stimulation experiments. Analysis of data from these activities will yield improved geologic, reservoir, and stimulation models and improved log interpretation methods for lenticular, tight gas sands. To date, two 8350 ft wells, 135 ft apart, have been drilled in the Piceance Basin at a site near Rifle, Colorado, where the Mesaverde, the formation of interest, lies at a depth of 3900 to 8300 ft. Preliminary core, log, and well data have provided an initial characterization of the site. Four years of stimulation experiments are planned for this field laboratory. 4 figures, 2 tables.

  9. NVLAP activities at Department of Defense calibration laboratories

    SciTech Connect

    Schaeffer, D.M.

    1993-12-31

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts.

  10. Estimation and uncertainty analysis of dose response in an inter-laboratory experiment

    NASA Astrophysics Data System (ADS)

    Toman, Blaza; Rösslein, Matthias; Elliott, John T.; Petersen, Elijah J.

    2016-02-01

    An inter-laboratory experiment for the evaluation of toxic effects of NH2-polystyrene nanoparticles on living human cancer cells was performed with five participating laboratories. Previously published results from nanocytoxicity assays are often contradictory, mostly due to challenges related to producing a reliable cytotoxicity assay protocol for use with nanomaterials. Specific challenges include reproducibility preparing nanoparticle dispersions, biological variability from testing living cell lines, and the potential for nano-related interference effects. In this experiment, such challenges were addressed by developing a detailed experimental protocol and using a specially designed 96-well plate layout which incorporated a range of control measurements to assess multiple factors such as nanomaterial interference, pipetting accuracy, cell seeding density, and instrument performance. Detailed data analysis of these control measurements showed that good control of the experiments was attained by all participants in most cases. The main measurement objective of the study was the estimation of a dose response relationship between concentration of the nanoparticles and metabolic activity of the living cells, under several experimental conditions. The dose curve estimation was achieved by imbedding a three parameter logistic curve in a three level Bayesian hierarchical model, accounting for uncertainty due to all known experimental conditions as well as between laboratory variability in a top-down manner. Computation was performed using Markov Chain Monte Carlo methods. The fit of the model was evaluated using Bayesian posterior predictive probabilities and found to be satisfactory.

  11. Physics Thematic Paths: Laboratorial Activities and Historical Scientific Instruments

    ERIC Educational Resources Information Center

    Pantano, O.; Talas, S.

    2010-01-01

    The Physics Department of Padua University keeps an important collection of historical physics instruments which alludes to the fruitful scientific activity of Padua through the centuries. This heritage led to the suggestion of setting up laboratory activities connected to the Museum collection for secondary school students. This article shows how…

  12. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S CONSOLIDATED HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from 12 U.S. studies related to human activities into one comprehensive data system that can be accessed via the Internet. The data system is called the Consolidated Human Activity Database (CHAD), and it is ...

  13. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S COMPREHENSIVE HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from nine U.S. studies related to human activities into one comprehensive data system that can be accessed via the world-wide web. The data system is called CHAD-Consolidated Human Activity Database-and it is ...

  14. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    PubMed

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum.

  15. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, V.

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  16. The 5th Annual NASA Spacecraft Control Laboratory Experiment (SCOLE) Workshop, part 2

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr. (Compiler)

    1990-01-01

    A collection of papers from the workshop are presented. The topics addressed include: the modeling, systems identification, and control synthesis for the Spacecraft Control Laboratory Experiment (SCOLE) configuration.

  17. Laboratory Experiment for the Transient Response of a Stirred Vessel.

    ERIC Educational Resources Information Center

    Noble, R. D.; And Others

    1983-01-01

    Provides background information, apparatus needed, and procedures for an experiment to measure transient response of a stirred vessel. The inexpensive apparatus can be used for two different experiments, reducing cost per experiment. Both experiments use salt dilution as the method of demonstration. (Author/JN)

  18. Combining Laboratory Experiments with Digital Tools to Do Scientific Inquiry

    ERIC Educational Resources Information Center

    Kluge, Anders

    2014-01-01

    This qualitative study investigates the gap between a lab experiment and theory of science. Two groups of 4 students in 2 different classes in 11th grade (15-16 years old) are followed as they process results and experiences from a lab experiment using a digital environment. The experiment is as a part of a larger project about genes and cells,…

  19. Laboratory Experiments of Radar-Detected Layering in Ice

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Koenig, L. S.; Courville, Z. R.; Ghent, R. R.; Koutnik, M. R.

    2016-09-01

    In a cold room at the Cold Regions Research and Engineering Laboratory, we constructed layered ice with a variety of layer types and thicknesses to investigate how the layers appear to ground-penetrating radar at a variety of frequencies.

  20. Kinetic Analysis of Metal Ions: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Williams, Kathryn R.

    1985-01-01

    Reports on the adaptation of a kinetic method of analysis of metal ions for use in an undergraduate teaching laboratory. Background information, procedures used, and analysis of typical results obtained are provided. (JN)

  1. If Your Rehearsals Are Unfulfilling Experiences, Try a Choral Laboratory

    ERIC Educational Resources Information Center

    Moore, Ray

    1973-01-01

    Music teachers can make learning about music more rewarding and effective by improving the setting for conceptual development. The choral laboratory is one important step in music education and a positive method for learning music concepts. (RK)

  2. Laboratory experiments on the structure of salt fingers

    NASA Astrophysics Data System (ADS)

    Taylor, John; Bucens, Paul

    1989-11-01

    We investigated the structure of salt fingers in a laboratory tank using horizontal and vertical conductivity and temperature profiles; similar measurements have been made of salt finger microstructure in the ocean. Visualization of the salt fingers using fluorescent dye mixed into the upper layer showed that they were disordered, with new fingers being formed at the edge of the gradient region then growing into the gradient. Because of the disordered state of the fingers the average coherence between the signals for two vertically separated sensors was small, even though the separation of the sensors was of the order of the finger width. The peak in horizontal gradient spectrum was close to both the wavenumber of salt fingers with the maximum growth rate and to the wavenumber of fingers that maximize the buoyancy flux in HOWARD and VERONIS' (1987, Journal of Fluid Mechanics, 183, 1-23), salt finger model. Assuming that the vertical advection of the mean temperature gradient within an individual finger was balanced by horizontal heat diffusion, we derived an estimate for the buoyancy flux due to heat from the variance of the horizontal temperature gradient. On average, this estimate for the flux was 0.6 that determined from the rate of change of the mean layer properties, and our result supports the use of this technique for estimating salt finger fluxes in the ocean. We also derived the buoyancy flux ratio, defined as the ratio of the buoyancy flux due to heat to that due to salt, from the ratio of the variances of the horizontal temperature and salinity profiles. Our estimate for the flux ratio from horizontal profiles was in agreement with that derived from the vertical profiles. At comparable stability ratios the salt flux and buoyancy flux ratio determined from the present experiments were closer to those presented by TURNER (1967, Deep-Sea Research, 14, 599-611) and SCHMITT (1979a, Journal of Marine Research, 37, 419-436) than to the later results of

  3. Environmental Pollution, Student's Book (Experiences/Experiments/Activities).

    ERIC Educational Resources Information Center

    Weaver, Elbert C.

    Described in this student's manual are numerous experiments to acquaint the learner with community environmental problems. Experiments are relatively simple and useful in the junior high school grades. Activities are provided which emphasize some of the materials involved in pollution problems, such as carbon dioxide, sulfur compounds, and others,…

  4. EM techniques for archaeological laboratory experiments: preliminary results

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; De Martino, Gregory; Giampaolo, Valeria; Raffaele, Luongo; Perciante, Felice; Rizzo, Enzo

    2015-04-01

    The electromagnetic techniques (EM) are based on the investigation of subsoil geophysical parameters and in the archaeological framework they involve in studying contrasts between the buried cultural structures and the surrounding materials. Unfortunately, the geophysical contrast between archaeological features and surrounding soils sometimes are difficult to define due to problems of sensitivity and resolution both related on the characteristic of the subsoil and the geophysical methods. For this reason an experimental activity has been performed in the Hydrogeosite laboratory addressed on the assessment of the capability of geophysical techniques to detect archeological remains placed in the humid/saturated subsoil. At Hydrogeosite Laboratory of CNR-IMAA, a large scale sand-box is located, consisting on a pool shape structures of 230m3 where archaeological remains have been installed . The remains are relative to a living environment and burial of Roman times (walls, tombs, roads, harbour, etc.) covered by sediments. In order to simulate lacustrine and wetland condition and to simulate extreme events (for example underwater landslide, fast natural erosion coast, etc.) the phreatic level was varied and various acquisitions for the different scenarios were performed. In order to analyze the EM behavior of the buried small archaeological framework, ground penetrating radar (GPR) and electrical resistivity tomographies were performed. With GPR, analysis in time domain and frequency domain were performed and coupled to information obtained through resistivity analysis with the support of numerical simulations used to compare the real data with those modeled. A dense grid was adopted for 400 and 900 MHz e-m acquisitions in both the directions, the maximum depth of investigation was limited and less than 3 meters. The same approach was used for ERT acquisition where different array are employed, in particular 3D configuration was used to carry out a 3D resistivity

  5. Laboratory for Atmospheres: Philosophy, Organization, Major Activities, and 2001 Highlights

    NASA Technical Reports Server (NTRS)

    Hoegy, Walter R.; Cote, Charles, E.

    2002-01-01

    How can we improve our ability to predict the weather? How is the Earth's climate changing? What can the atmospheres of other planets teach us about our own? The Laboratory for Atmospheres is helping to answer these and other scientific questions. The Laboratory conducts a broad theoretical and experimental research program studying all aspects of the atmospheres of the Earth and other planets, including their structural, dynamical, radiative, and chemical properties. Vigorous research is central to NASA's exploration of the frontiers of knowledge. NASA scientists play a key role in conceiving new space missions, providing mission requirements., and carrying out research to explore the behavior of planetary systems, including, notably, the Earth's. Our Laboratory's scientists also supply outside scientists with technical assistance and scientific data to further investigations not immediately addressed by NASA itself. The Laboratory for Atmospheres is a vital participant in NASA's research program. The Laboratory is part of the Earth Sciences Directorate based at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The Directorate itself comprises the Global Change Data Center; the Earth and Space Data Computing Division; three laboratories: the Laboratory for Atmospheres, the Laboratory for Terrestrial Physics, and the Laboratory for Hydrospheric Processes; and the Goddard Institute for Space Studies (GISS) in New York, New York. In this report, you will find a statement of our philosophy and a description of our role in NASA's mission. You'll also find a broad description of our research and a summary of our scientists' major accomplishments in 2001. The report also presents useful information on human resources, scientific interactions, and outreach activities with the outside community. For your convenience, we have published a version of this report on the Internet. Our Web site includes links to additional information about the Laboratory's Offices and

  6. Stanford Synchrotron Radiation Laboratory activity report for 1987

    SciTech Connect

    Robinson, S.; Cantwell, K.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  7. Laboratory scaled simulation of lidar cloud sounding experiments

    NASA Technical Reports Server (NTRS)

    Zaccanti, G.; Bruscaglioni, P.; Gurioli, M.; Sansoni, P.

    1992-01-01

    The results of lidar measurements carried out on laboratory scale models of clouds are presented. Measurements on laboratory scale models are important since one has the knowledge of the relevant parameters of the diffusing medium, such as: scattering and absorption coefficients, phase function, homogeneity, shape, etc. Knowledge of these parameters enables one to use the results to test the reliability of theoretical and numerical investigations. To obtain a laboratory scaled model of a lidar system sounding a cloud, it is necessary to scale down all the geometrical quantities by the same factor to reduce distances of the order of kilometers to the order of meters, keeping the size and the optical depth of the diffusers unchanged. If a time resolution of the order of nanoseconds is necessary for a lidar sounding actual clouds, the corresponding time resolution for the laboratory model should be of the order of picoseconds. It is possible to obtain this resolution by using picosecond laser systems and fast electrooptical detectors like the streak camera. The results of the laboratory measurements showed that the multiple scattering effect strongly depends on the size of the diffusers, as well as on the concentration. The experimental results were compared with the numerical results of a Monte Carlo code. A generally good agreement was obtained.

  8. Randomized block experimental designs can increase the power and reproducibility of laboratory animal experiments.

    PubMed

    Festing, Michael F W

    2014-01-01

    Randomized block experimental designs have been widely used in agricultural and industrial research for many decades. Usually they are more powerful, have higher external validity, are less subject to bias, and produce more reproducible results than the completely randomized designs typically used in research involving laboratory animals. Reproducibility can be further increased by using time as a blocking factor. These benefits can be achieved at no extra cost. A small experiment investigating the effect of an antioxidant on the activity of a liver enzyme in four inbred mouse strains, which had two replications (blocks) separated by a period of two months, illustrates this approach. The widespread failure to use these designs more widely in research involving laboratory animals has probably led to a substantial waste of animals, money, and scientific resources and slowed down the development of new treatments for human and animal diseases.

  9. Some More Simple Laser Experiments for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Yap, F. Y.

    1969-01-01

    Describes three elementary optics experiments using a laser instead of conventional light sources. Experiments illustrate the Fresnel-Arago law, elliptical polarization, double refraction and polarization in calcite, and interference by a Fresnel biprism. Because of the high intensity of the laser beam, these experiments lend themselves very well…

  10. Promoting Science Outdoor Activities for Elementary School Children: Contributions from a Research Laboratory

    ERIC Educational Resources Information Center

    Boaventura, Diana; Faria, Claudia; Chagas, Isabel; Galvao, Cecilia

    2013-01-01

    The purposes of the study were to analyse the promotion of scientific literacy through practical research activities and to identify children's conceptions about scientists and how they do science. Elementary school children were engaged in two scientific experiments in a marine biology research laboratory. A total of 136 students answered a…

  11. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults

    USGS Publications Warehouse

    McLaskey, Gregory C.; Thomas, Amanda M.; Glaser, Steven D.; Nadeau, Robert M.

    2012-01-01

    Faults strengthen or heal with time in stationary contact and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip

  12. Social setting, intuition and experience in laboratory experiments interact to shape cooperative decision-making

    PubMed Central

    Capraro, Valerio; Cococcioni, Giorgia

    2015-01-01

    Recent studies suggest that cooperative decision-making in one-shot interactions is a history-dependent dynamic process: promoting intuition versus deliberation typically has a positive effect on cooperation (dynamism) among people living in a cooperative setting and with no previous experience in economic games on cooperation (history dependence). Here, we report on a laboratory experiment exploring how these findings transfer to a non-cooperative setting. We find two major results: (i) promoting intuition versus deliberation has no effect on cooperative behaviour among inexperienced subjects living in a non-cooperative setting; (ii) experienced subjects cooperate more than inexperienced subjects, but only under time pressure. These results suggest that cooperation is a learning process, rather than an instinctive impulse or a self-controlled choice, and that experience operates primarily via the channel of intuition. Our findings shed further light on the cognitive basis of human cooperative decision-making and provide further support for the recently proposed social heuristics hypothesis. PMID:26156762

  13. A Virtual Laboratory on Natural Computing: A Learning Experiment

    ERIC Educational Resources Information Center

    de Castro, Leandro Nunes; Muñoz, Yupanqui Julho; de Freitas, Leandro Rubim; El-Hani, Charbel Niño

    2008-01-01

    Natural computing is a terminology used to describe computational algorithms developed by taking inspiration from information processing mechanisms in nature, methods to synthesize natural phenomena in computers, and novel computational approaches based on natural materials. The virtual laboratory on natural computing (LVCoN) is a Web environment…

  14. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  15. Students' Experience in a General Chemistry Cooperative Problem Based Laboratory

    ERIC Educational Resources Information Center

    Sandi-Urena, Santiago; Cooper, Melanie M.; Gatlin, Todd A.; Bhattacharyya, Gautam

    2011-01-01

    Most educators and scientists would agree that science laboratory instruction has the potential of developing science practices fundamental to achieving scientific literacy. However, there is scant evidence to support that this potential is realized, particularly in tertiary level education. This paper reports qualitative results from a sequential…

  16. Creatine Synthesis: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, Andri L.; Tan, Paula

    2006-01-01

    Students in introductory chemistry classes typically appreciate seeing the connection between course content and the "real world". For this reason, we have developed a synthesis of creatine monohydrate--a popular supplement used in sports requiring short bursts of energy--for introductory organic chemistry laboratory courses. Creatine monohydrate…

  17. Raising Environmental Awareness through Applied Biochemistry Laboratory Experiments

    ERIC Educational Resources Information Center

    Salman Ashraf, S.

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment…

  18. Laboratory Experiences in an Introduction to Natural Science Course.

    ERIC Educational Resources Information Center

    Barnard, Sister Marquita

    1984-01-01

    Describes a two-semester course designed to meet the needs of future elementary teachers, home economists, and occupational therapists. Laboratory work includes homemade calorimeters, inclined planes, and computing. Content areas of the course include measurement, physics, chemistry, astronomy, biology, geology, and meteorology. (JN)

  19. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    ERIC Educational Resources Information Center

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-01-01

    One of the goals of science education is to provide students with the ability to construct arguments--reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research…

  20. Interactive Screen Experiments--Innovative Virtual Laboratories for Distance Learners

    ERIC Educational Resources Information Center

    Hatherly, P. A.; Jordan, S. E.; Cayless, A.

    2009-01-01

    The desirability and value of laboratory work for physics students is a well-established principle and issues arise where students are inherently remote from their host institution, as is the case for the UK's Open University. In this paper, we present developments from the Physics Innovations Centre for Excellence in Teaching and Learning…

  1. EXPERIMENTS ON BUOYANT PLUME DISPERSION IN A LABORATORY CONVENTION TANK

    EPA Science Inventory

    Buoyant plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focus is on highly-buoyant plumes that loft near the CBL capping inversion and resist downward mixing. Highly- buoyant plumes are those with dimen...

  2. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    ERIC Educational Resources Information Center

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  3. An Example of a Laboratory Teaching Experience in a Professional Year (Plan B) Program

    ERIC Educational Resources Information Center

    Miller, P. J.; And Others

    1978-01-01

    A laboratory teaching experience (L.T.E.) was designed to focus on three teaching behaviors. It was recognized that a behavioral approach to teaching simplified its complexity by isolating specific teaching behaviors. Discusses the development and evaluation of the laboratory teaching experience. (Author/RK)

  4. Redefining Authentic Research Experiences in Introductory Biology Laboratories and Barriers to Their Implementation

    ERIC Educational Resources Information Center

    Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are…

  5. Capillary Electrophoresis Analysis of Cations in Water Samples: An Experiment for the Introductory Laboratory

    ERIC Educational Resources Information Center

    Pursell, Christopher J.; Chandler, Bert; Bushey, Michelle M.

    2004-01-01

    Capillary electrophoresis is gradually working its way into the undergraduate laboratory curriculum. Typically, experiments utilizing this newer technology have been introduced into analytical or instrumental courses. The authors of this article have introduced an experiment into the introductory laboratory that utilizes capillary electrophoresis…

  6. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    ERIC Educational Resources Information Center

    Simon, Nicole A.

    2013-01-01

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory…

  7. An Undergraduate Laboratory Experiment in Bioinorganic Chemistry: Ligation States of Myoglobin

    ERIC Educational Resources Information Center

    Bailey, James A.

    2011-01-01

    Although there are numerous inorganic model systems that are readily presented as undergraduate laboratory experiments in bioinorganic chemistry, there are few examples that explore the inorganic chemistry of actual biological molecules. We present a laboratory experiment using the oxygen-binding protein myoglobin that can be easily incorporated…

  8. The Need Of Laboratory Experiments In Parallel To Astrobiological Space Fligth Experiments

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    For laboratory studies on the responses of resistant life forms to simulated interplane- tary space conditions, test beds are available that simulate the parameters of space, such as vacuum, solar electromagnetic and cosmic ionizing radiation, temperature extremes and reduced gravity, which can be applied separately or in selected com- binations. Appropriate biological test systems are extremophiles, i.e. microorganisms that are adapted to grow or survive in extreme conditions of our biosphere. Examples are airborne microbes, endolithic or endoevaporitic microbial communities, or isolated biomolecules. The studies contribute to answer several questions of astrobiology, such as (i) the role of solar UV radiation in genetic stability, (ii) the role of gravity in basic biological functions, (iii) the chances and limits for interplanetary transfer of life, (iv) strategies of adaptation to environmental extremes, and (v) the needs for planetary protection. As an example, the ground controls that were performed in parallel with 3 BIOPAN flight experiments will be presented.

  9. Active-Learning Laboratory Session to Teach the Four M's of Diabetes Care

    PubMed Central

    Plake, Kimberly S.; Nash, Christiane L.; Shepler, Brian M.

    2009-01-01

    Objective To implement an active-learning methodology for teaching diabetes care to pharmacy students and evaluate its effectiveness. Design Laboratory instruction was divided into 4 primary areas of diabetes care, referred to by the mnemonic, the 4 M's: meal planning, motion, medication, and monitoring. Students participated in skill-based learning laboratory stations and in simulated patient experiences. A pretest, retrospective pretest, and posttest were administered to measure improvements in students' knowledge about diabetes and confidence in providing care to diabetes patients. Assessment Students knowledge of and confidence in each area assessed improved. Students enjoyed the laboratory session and felt it contributed to their learning. Conclusion An active-learning approach to teaching diabetes care allowed students to experience aspects of the disease from the patient's perspective. This approach will be incorporated in other content areas. PMID:19513160

  10. Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.

    ERIC Educational Resources Information Center

    Ellis, Linda K.

    2000-01-01

    Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)

  11. Teacher's Resource Guide on Acidic Precipitation with Laboratory Activities.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.

    The purpose of this teacher's resource guide is to help science teachers incorporate the topic of acidic precipitation into their curricula. A survey of recent junior high school science textbooks found a maximum of one paragraph devoted to the subject; in addition, none of these books had any related laboratory activities. It was on the basis of…

  12. Risk Assessment and Hazard Elimination for Undergraduate Laboratory Experiments.

    ERIC Educational Resources Information Center

    Young, Jay A.

    1982-01-01

    Describes a procedure which identifies an experiment as unreasonably hazardous or indicates precautions to be taken rendering the experiment acceptable for assignment to undergraduate students. The procedure follows in parallel form the procedure used to prepare chemical labels. (Author/JN)

  13. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  14. Iron-Sulfur-Carbonyl and -Nitrosyl Complexes: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1985-01-01

    Background information, materials needed, procedures used, and typical results obtained, are provided for an experiment on iron-sulfur-carbonyl and -nitrosyl complexes. The experiment involved (1) use of inert atmospheric techniques and thin-layer and flexible-column chromatography and (2) interpretation of infrared, hydrogen and carbon-13 nuclear…

  15. A "Greenhouse Gas" Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert

    2014-01-01

    This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…

  16. A Cyclic Voltammetry Experiment for the Instrumental Analysis Laboratory.

    ERIC Educational Resources Information Center

    Baldwin, Richard P.; And Others

    1984-01-01

    Background information and procedures are provided for experiments that illustrate the nature of cyclic voltammetry and its application in the characterization of organic electrode processes. The experiments also demonstrate the concepts of electrochemical reversibility and diffusion-controlled mass transfer. (JN)

  17. Undergraduate Laboratory Experiment Modules for Probing Gold Nanoparticle Interfacial Phenomena

    ERIC Educational Resources Information Center

    Karunanayake, Akila G.; Gunatilake, Sameera R.; Ameer, Fathima S.; Gadogbe, Manuel; Smith, Laura; Mlsna, Deb; Zhang, Dongmao

    2015-01-01

    Three gold-nanoparticle (AuNP) undergraduate experiment modules that are focused on nanoparticles interfacial phenomena have been developed. Modules 1 and 2 explore the synthesis and characterization of AuNPs of different sizes but with the same total gold mass. These experiments enable students to determine how particle size affects the AuNP…

  18. Reactions of Thiocyanate Ions with Acid: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1984-01-01

    Background information, procedures, and typical results are provided for a three-part experiment involving reactions of potassium thiocynate (KNCS) with sulfuric acid. The experiment represents the final stage of structured work prior to students' research projects during their final year. (JM)

  19. A Semi-Batch Reactor Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Derevjanik, Mario; Badri, Solmaz; Barat, Robert

    2011-01-01

    This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…

  20. The RC Circuit--A Multipurpose Laboratory Experiment.

    ERIC Educational Resources Information Center

    Wood, Herbert T.

    1993-01-01

    Describes an experiment that demonstrates the use of Kirchoff's rules in the analysis of electrical circuits. The experiment also involves the solution of a linear nonhomogeneous differential equation that is slightly different from the standard one for the simple RC circuit. (ZWH)

  1. A Thin Layer Chromatography Laboratory Experiment of Medical Importance

    ERIC Educational Resources Information Center

    Sharma, Loretta; Desai, Ankur; Sharma, Ajit

    2006-01-01

    A thin layer chromatography experiment of medical importance is described. The experiment involves extraction of lipids from simulated amniotic fluid samples followed by separation, detection, and scanning of the lecithin and sphingomyelin bands on TLC plates. The lecithin-to-sphingomyelin ratio is calculated. The clinical significance of this…

  2. A Membrane Gas Separation Experiment for the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Davis, Richard A.; Sandall, Orville C.

    1991-01-01

    Described is a membrane experiment that provides students with experience in fundamental engineering skills such as mass balances, modeling, and using the computer as a research tool. Included are the experimental design, theory, method of solution, sample calculations, and conclusions. (KR)

  3. Microcomputer-Based Digital Signal Processing Laboratory Experiments.

    ERIC Educational Resources Information Center

    Tinari, Jr., Rocco; Rao, S. Sathyanarayan

    1985-01-01

    Describes a system (Apple II microcomputer interfaced to flexible, custom-designed digital hardware) which can provide: (1) Fast Fourier Transform (FFT) computation on real-time data with a video display of spectrum; (2) frequency synthesis experiments using the inverse FFT; and (3) real-time digital filtering experiments. (JN)

  4. Exploring the Effectiveness of a Field Experience Program in a Pedagogical Laboratory: The Experience of Teacher Candidates

    ERIC Educational Resources Information Center

    Ma, Yuxin; Lai, Guolin; Williams, Doug; Prejean, Louise; Ford, Mary Jane

    2008-01-01

    Researchers argue that teachers' beliefs are the final barrier that prevents technology integration. To affect change in teacher candidates' beliefs of technology integration, we created a pedagogical laboratory as well as a field experience program that operates within the pedagogical laboratory. This article presents a qualitative study of…

  5. Laser-driven ICF experiments: Laboratory Report No. 223

    SciTech Connect

    McCrory, R.L.

    1991-04-01

    Laser irradiation uniformity is a key issue and is treated in some detail. The basic irradiation uniformity requirements and practical ways of achieving these requirements are both discussed, along with two beam-smoothing techniques: induced spatial incoherence (ISI), and smoothing by spectral dispersion (SSD). Experiments to measure and control the irradiation uniformity are also highlighted. Following the discussion of irradiation uniformity, a brief review of coronal physics is given, including the basic physical processes and their experimental signatures, together with a summary of pertinent diagnostics and results from experiments. Methods of determining ablation rates and thermal transport are also described. The hydrodynamics of laser-driven targets must be fully understood on the basis of experiments. Results from implosion experiments, including a brief description of the diagnostics, are presented. Future experiments aimed at determining ignition scaling and demonstrating hydrodynamically equivalent physics applicable to high-gain designs.

  6. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    ERIC Educational Resources Information Center

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  7. Undergraduate Student Attitudes and Perceptions toward Low- and High-Level Inquiry Exercise Physiology Teaching Laboratory Experiences

    ERIC Educational Resources Information Center

    Henige, Kim

    2011-01-01

    The purpose of this investigation was to compare student attitudes toward two different science laboratory learning experiences, specifically, traditional, cookbook-style, low-inquiry level (LL) activities and a high-inquiry level (HL) investigative project. In addition, we sought to measure and compare students' science-related attitudes and…

  8. Reflectance Experiment Laboratory (RELAB) Description and User's Manual

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.; Hiroi, Takahiro; Pratt, Steve F.; Patterson, Bill

    2004-01-01

    Spectroscopic data acquired in the laboratory provide the interpretive foundation upon which compositional information about unexplored or unsampled planetary surfaces is derived from remotely obtained reflectance spectra. The RELAB is supported by NASA as a multi-user spectroscopy facility, and laboratory time can be made available at no charge to investigators who are in funded NASA programs. RELAB has two operational spectrometers available to NASA scientists: 1) a near- ultraviolet, visible, and near-infrared bidirectional spectrometer and 2) a near- and mid- infrared FT-IR spectrometer. The overall purpose of the design and operation of the RELAB bidirectional spectrometer is to obtain high precision, high spectral resolution, bidirectional reflectance spectra of earth and planetary materials. One of the key elements of its design is the ability to measure samples using viewing geometries specified by the user. This allows investigators to simulate, under laboratory conditions, reflectance spectra obtained remotely (i.e., with spaceborne, telescopic, and airborne systems) as well as to investigate geometry dependent reflectance properties of geologic materials. The Nicolet 740 FT-IR spectrometer currently operates in reflectance mode from 0.9 to 25 Fm. Use and scheduling of the RELAB is monitored by a 4-member advisory committee. NASA investigators should direct inquiries to the Science Manager or RELAB Operator.

  9. Designing experiments on thermal interactions by secondary-school students in a simulated laboratory environment

    NASA Astrophysics Data System (ADS)

    Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides

    2011-07-01

    Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and communication technology, and specifically of the simulated virtual laboratory 'ThermoLab'. Design and methods A pre-post comparison was applied. Students' design of experiments was rated in eight dimensions; namely, hypothesis forming and verification, selection of variables, initial conditions, device settings, materials and devices used, process and phenomena description. A three-level ranking scheme was employed for the evaluation of students' answers in each dimension. Results A Wilcoxon signed-rank test revealed a statistically significant difference between the students' pre- and post-test scores. Additional analysis by comparing the pre- and post-test scores using the Hake gain showed high gains in all but one dimension, which suggests that this improvement was almost inclusive. Conclusions We consider that our findings support the statement that there was an improvement in students' ability to design experiments.

  10. Laboratory assessment of factor VIII inhibitor titer: the North American Specialized Coagulation Laboratory Association experience.

    PubMed

    Peerschke, Ellinor I B; Castellone, Donna D; Ledford-Kraemer, Marlies; Van Cott, Elizabeth M; Meijer, Piet

    2009-04-01

    Quantification of inhibitory antibodies against infused factor VIII (FVIII) has an important role in the management of patients with hemophilia A. This article summarizes results from the largest North American FVIII inhibitor proficiency testing challenge conducted to date. Test samples, 4 negative and 4 positive (1-3 Bethesda units [BU]/mL), were distributed by the ECAT Foundation in conjunction with the North American Specialized Coagulation Laboratory Association and analyzed by 38 to 42 laboratories in 2006 and 2007. Whereas laboratories were able to distinguish between the absence and presence of low-titer FVIII inhibitors, the intralaboratory coefficient of variation was high (30%-42%) for inhibitor-positive samples, and the definition of lower detection limits of the assay was variable (0-1 BU/mL). Most laboratories performed the Bethesda assay with commercially supplied buffered normal pooled plasma in a 1:1 mix with patient plasma. These data provide information for the development of consensus guidelines to improve FVIII inhibitor quantification.

  11. Laboratory for Atmospheres: Philosophy, Organization, Major Activities, and 1999 Highlights

    NASA Technical Reports Server (NTRS)

    Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Laboratory for Atmospheres is helping to answer questions related to climate, and climate change and other scientific questions about our planet and its neighbors. The Laboratory conducts a broad theoretical and experimental research program studying all aspects of the atmospheres of the Earth and other planets, including their structural, dynamical, radiative, and chemical properties. In this report,there is a statement of the labs philosophy and a description of it's role in NASA's mission. A broad description of the research and a summary of the scientists' major accomplishments in 1999 is also included. The report also presents useful information on human resources, scientific interactions, and outreach activities with the outside community.

  12. Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities

    SciTech Connect

    Erickson, M.D.

    1999-01-01

    The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

  13. A teaching intervention for reading laboratory experiments in college-level introductory chemistry

    NASA Astrophysics Data System (ADS)

    Kirk, Maria Kristine

    The purpose of this study was to determine the effects that a pre-laboratory guide, conceptualized as a "scientific story grammar," has on college chemistry students' learning when they read an introductory chemistry laboratory manual and perform the experiments in the chemistry laboratory. The participants (N = 56) were students enrolled in four existing general chemistry laboratory sections taught by two instructors at a women's liberal arts college. The pre-laboratory guide consisted of eight questions about the experiment, including the purpose, chemical species, variables, chemical method, procedure, and hypothesis. The effects of the intervention were compared with those of the traditional pre-laboratory assignment for the eight chemistry experiments. Measures included quizzes, tests, chemistry achievement test, science process skills test, laboratory reports, laboratory average, and semester grade. The covariates were mathematical aptitude and prior knowledge of chemistry and science processes, on which the groups differed significantly. The study captured students' perceptions of their experience in general chemistry through a survey and interviews with eight students. The only significant differences in the treatment group's performance were in some subscores on lecture items and laboratory items on the quizzes. An apparent induction period was noted, in that significant measures occurred in mid-semester. Voluntary study with the pre-laboratory guide by control students precluded significant differences on measures given later in the semester. The groups' responses to the survey were similar. Significant instructor effects on three survey items were corroborated by the interviews. The researcher's students were more positive about their pre-laboratory tasks, enjoyed the laboratory sessions more, and were more confident about doing chemistry experiments than the laboratory instructor's groups due to differences in scaffolding by the instructors.

  14. Zero-gravity atmospheric Cloud Physics Experiment Laboratory; Programmatics report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The programmatics effort included comprehensive analyses in four major areas: (1) work breakdown structure, (2) schedules, (3) costs, and (4) supporting research and technology. These analyses are discussed in detail in the following sections which identify and define the laboratory project development schedule, cost estimates, funding distributions and supporting research and technology requirements. All programmatics analyses are correlated among themselves and with the technical analyses by means of the work breakdown structure which serves as a common framework for program definition. In addition, the programmatic analyses reflect the results of analyses and plans for reliability, safety, test, and maintenance and refurbishment.

  15. Laboratory experiments duplicate conditions in the Earth’s crust

    USGS Publications Warehouse

    Peselnick, L.; Dieterich, J.H.; Stewart, R.M.

    1974-01-01

    An experimental device that simulates conditions in the Earth's crust at depths of up to 30 kilometers has been constructed by geophysicists working at the U.S Geological Survey laboratories in Menlo Park, California. A high pressure "bomb" is being used to experimentally measure the velocity of seismic waves in different types of rock at various confining pressures and temperatures. The principal purpose of these measurements is to determine the elastic and non-elastic properties of rocks and minerals under conditions of high-pressure such as exist deep in the Earth's crust. 

  16. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  17. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1991-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: science program objectives and rationale; science requirements; capturing the essential physics; science development approach; development model hardware; development model test plan; and flight hardware and operations.

  18. Laboratory activities involving transmissible spongiform encephalopathy causing agents

    PubMed Central

    Leunda, Amaya; Van Vaerenbergh, Bernadette; Baldo, Aline; Roels, Stefan; Herman, Philippe

    2013-01-01

    Since the appearance in 1986 of epidemic of bovine spongiform encephalopathy (BSE), a new form of neurological disease in cattle which also affected human beings, many diagnostic and research activities have been performed to develop detection and therapeutic tools. A lot of progress was made in better identifying, understanding and controlling the spread of the disease by appropriate monitoring and control programs in European countries. This paper reviews the recent knowledge on pathogenesis, transmission and persistence outside the host of prion, the causative agent of transmissible spongiform encephalopathies (TSE) in mammals with a particular focus on risk (re)assessment and management of biosafety measures to be implemented in diagnostic and research laboratories in Belgium. Also, in response to the need of an increasing number of European diagnostic laboratories stopping TSE diagnosis due to a decreasing number of TSE cases reported in the last years, decontamination procedures and a protocol for decommissioning TSE diagnostic laboratories is proposed. PMID:24055928

  19. From laboratory to industry Phasics experience (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wattellier, Benoit F.; Lebrun, Marie-Begoña.

    2016-03-01

    We describe several examples of technology transfer from academic laboratories to PHASICS. PHASICS was created in 2003 as a spin-off of LULI an academic laboratory working on plasma physics and developing high power lasers to create such objects which temperature and pressure conditions are close to those at the center of stars. In order to optimize the intensity at laser focus, several thesis treated the subject of adaptive optics for lasers. LULI decided to collaborate with ONERA who just invented a technique for wave front sensing called multiwave lateral shearing interferometry. Though developed at first for infrared metrology applications, this technique proved to be very efficient with lasers because it was able to analyze wave front of modulated beams with sharp edges. Before being industrialized the technique was further improved to a compact version called quadriwave lateral shearing interferometry. As soon as PHASICS was created, we felt the potential of making wave front images from transparent objects because of QWLSI high spatial resolution. PHASICS and Institut Fresnel started a collaboration to study applications in microscopy imaging. Research subjects include biological imaging, CARS microscopy, anisotropy imaging, or laser damage testing. The results of research were then included in PHASICS products but sometimes only a tool developed during the project became a product. We will present research works that led to transfers as well as the method we used to ensure fruitful collaboration and transfer.

  20. Computer assisted laboratory diagnosis: a ten-year experience.

    PubMed

    Zatti, M; Guidi, G; Marcolini, F

    1988-10-01

    An automated procedure to help general practitioners in clinical diagnosis and decision making is presented. The computer-based program is conceived to process results from laboratory tests performed on outpatients, providing general practitioners with possible causes of abnormal results. When only one or two abnormal tests are observed, a series of suggestions pertinent to each abnormality is printed. When there are more abnormal test results, the program performs a more complex procedure ending with the output of some diagnostic hypotheses. Messages are also printed to focus the physician's attention to particular aspects of patient pathology that were sometimes missed or disregarded and to suggest new investigations the laboratory can perform to improve diagnostic efficiency. Moreover some advice is supplied to allow a better evaluation of particular risk conditions, as those associated with the development of coronary heart disease. The program has been recently extended with the calculation of intraindividual reference intervals. The system described has been working since 1976 and appears particularly useful when the general practitioner is faced with a number of pathological results of difficult interpretation.

  1. Circadian rhythm of outside-nest activity in wild (WWCPS), albino and pigmented laboratory rats.

    PubMed

    Stryjek, Rafał; Modlińska, Klaudia; Turlejski, Krzysztof; Pisula, Wojciech

    2013-01-01

    The domestication process of the laboratory rat has been going on for several hundred generations in stable environmental conditions, which may have affected their physiological and behavioural functions, including their circadian system. Rats tested in our ethological experiments were laboratory-bred wild Norway rats (WWCPS), two strains of pigmented laboratory rats (Brown Norway and Long Evans), and two strains of albino rats (Sprague-Dawley and Wistar). Rats were placed in purpose-built enclosures and their cycle of activity (time spent actively outside the nest) has been studied for one week in standard light conditions and for the next one in round-the-clock darkness. The analysis of circadian pattern of outside-nest activity revealed differences between wild, pigmented laboratory, and albino laboratory strains. During daytime, albino rats showed lower activity than pigmented rats, greater decrease in activity when the light was turned on and greater increase in activity when the light was switched off, than pigmented rats. Moreover albino rats presented higher activity during the night than wild rats. The magnitude of the change in activity between daytime and nighttime was also more pronounced in albino rats. Additionaly, they slept outside the nest more often during the night than during the day. These results can be interpreted in accordance with the proposition that intense light is an aversive stimulus for albino rats, due to lack of pigment in their iris and choroid, which reduces their ability to adapt to light. Pigmented laboratory rats were more active during lights on, not only in comparison to the albino, but also to the wild rats. Since the difference seems to be independent of light intensity, it is likely to be a result of the domestication process. Cosinor analysis revealed a high rhythmicity of circadian cycles in all groups.

  2. Simulated Medication Therapy Management Activities in a Pharmacotherapy Laboratory Course

    PubMed Central

    Thorpe, Joshua M.; Trapskin, Kari

    2011-01-01

    Objective. To measure the impact of medication therapy management (MTM) learning activities on students’ confidence and intention to provide MTM using the Theory of Planned Behavior. Design. An MTM curriculum combining lecture instruction and active-learning strategies was incorporated into a required pharmacotherapy laboratory course. Assessment. A validated survey instrument was developed to evaluate student confidence and intent to engage in MTM services using the domains comprising the Theory of Planned Behavior. Confidence scores improved significantly from baseline for all items (p < 0.00), including identification of billable services, documentation, and electronic billing. Mean scores improved significantly for all Theory of Planned Behavior items within the constructs of perceived behavioral control and subjective norms (p < 0.05). At baseline, 42% of students agreed or strongly agreed that they had knowledge and skills to provide MTM. This percentage increased to 82% following completion of the laboratory activities. Conclusion. Implementation of simulated MTM activities in a pharmacotherapy laboratory significantly increased knowledge scores, confidence measures, and scores on Theory of Planned Behavior constructs related to perceived behavioral control and subjective norms. Despite these improvements, intention to engage in future MTM services remained unchanged. PMID:21829269

  3. Millikan Oil-Drop Experiment in the Introductory Laboratory

    ERIC Educational Resources Information Center

    Heald, Mark A.

    1974-01-01

    Discusses a simplified Millikan oil-drop experiment which emphasizes the enplanation of basic concepts in mechanics and electrostatics, the use of home-made apparatus, the request for an individual's observation of his own drop, and the application of statistical analysis in data interpretation. (CC)

  4. Cavity Ring down Spectroscopy Experiment for an Advanced Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Stacewicz, T.; Wasylczyk, P.; Kowalczyk, P.; Semczuk, M.

    2007-01-01

    A simple experiment is described that permits advanced undergraduates to learn the principles and applications of the cavity ring down spectroscopy technique. The apparatus is used for measurements of low concentrations of NO[subscript 2] produced in air by an electric discharge. We present the setup, experimental procedure, data analysis and some…

  5. Car-Crash Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Ball, Penny L.; And Others

    1974-01-01

    Describes an interesting, inexpensive, and highly motivating experiment to study uniform and accelerated motion by measuring the position of a car as it crashes into a rigid wall. Data are obtained from a sequence of pictures made by a high speed camera. (Author/SLH)

  6. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  7. A Process Dynamics and Control Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Spencer, Jordan L.

    2009-01-01

    This paper describes a process control experiment. The apparatus includes a three-vessel glass flow system with a variable flow configuration, means for feeding dye solution controlled by a stepper-motor driven valve, and a flow spectrophotometer. Students use impulse response data and nonlinear regression to estimate three parameters of a model…

  8. A Laboratory Experiment on How to Create Dimensionless Correlations

    ERIC Educational Resources Information Center

    Edwards, Robert V.

    2010-01-01

    An experiment is described that illustrates how chemical engineering correlations are created. Balls of different diameters and different specific gravities (all less than one) are dropped from several heights into a pool of water, and the maximum depth reached by the ball is measured. This data is used to estimate the coefficients for a…

  9. Laboratory-Equivalent Minicomputer Experiments: A Kinetic Application

    ERIC Educational Resources Information Center

    Cabrol, D.; And Others

    1975-01-01

    Describes programs that have been developed to allow kinetic experiments to be simulated on a small computer. Reports the principles that have guided the conception of the programs and describes an instance of their application to a complex reaction. (Author/GS)

  10. Coulometric Analysis Experiment for the Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu; Thor, Ryan

    2011-01-01

    An undergraduate experiment on coulometric analysis of four commercial household products is presented. A special type of coulometry cell made of polydimethylsiloxane (PDMS) polymer is utilized. The PDMS cell consists of multiple analyte compartments and an internal network of salt bridges. Experimental procedure for the analysis of the acid in a…

  11. A Nonlinear, Multiinput, Multioutput Process Control Laboratory Experiment

    ERIC Educational Resources Information Center

    Young, Brent R.; van der Lee, James H.; Svrcek, William Y.

    2006-01-01

    Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…

  12. User Experience in Digital Games: Differences between Laboratory and Home

    ERIC Educational Resources Information Center

    Takatalo, Jari; Hakkinen, Jukka; Kaistinen, Jyrki; Nyman, Gote

    2011-01-01

    Playing entertainment computer, video, and portable games, namely, digital games, is receiving more and more attention in academic research. Games are studied in different situations with numerous methods, but little is known about if and how the playing situation affects the user experience (UX) in games. In addition, it is hard to understand and…

  13. An Approach to Poiseuille's Law in an Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Sianoudis, I. A.; Drakaki, E.

    2008-01-01

    The continuous growth of computer and sensor technology allows many researchers to develop simple modifications and/or refinements to standard educational experiments, making them more attractive and comprehensible to students and thus increasing their educational impact. In the framework of this approach, the present study proposes an alternative…

  14. Radiative Transfer Theory Verified by Controlled Laboratory Experiments

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur

    2013-01-01

    We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.

  15. Metabolic Activity - Skylab Experiment M171

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This chart details Skylab's Metabolic Activity experiment (M171), a medical evaluation facility designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer. The Marshall Space Flight Center had program responsibility for the development of Skylab hardware and experiments.

  16. Clinical and laboratory characteristics of atopic myelitis: Korean experience.

    PubMed

    Yoon, Jung Han; Joo, In Soo; Li, Wen Yu; Sohn, Seong Yeon

    2009-10-15

    HyperIgEemia and atopy have recently been reported to be related to various neurological diseases such as Hirayama disease and idiopathic myelitis. The aims of this study are to determine frequency of atopy or hyperIgEemia in idiopathic myelitis and to characterize the clinical and laboratory profiles of atopic myelitis (AM). From January 2006 to August 2008, 29 consecutive patients with idiopathic myelitis were recruited. We compared demographic data, laboratory results and radiologic findings between patients with atopic diathesis and those without. Allergic or atopic history was found in only 4 patients (13%), but hyperIgEemia and mite antigen-specific IgE were observed in 17 (58%) and 19 (65%) of idiopathic myelitis patients, respectively. Patients with AM (n=14, 48%) showed the following distinctive features: (1) younger age at onset, (2) non-acute onset and long duration of symptoms at admission, (3) predominant sensory symptoms with mild weakness, (4) low EDSS score, (5) low frequency of abnormal SEP findings, and (6) increased eosinophils in peripheral blood. Common MR findings of AM included eccentric lesions occupying more than two-thirds of spinal cord with focal peripheral enhancement on axial image. These lesions were usually extended over more than 3 to 5 vertebral segments with cord swelling. HyperIgEemia and mite antigen-specific IgE are fairly common in idiopathic myelitis patients. The AM patients show relatively homogenous clinicolaboratory and radiological features. It is noteworthy that none of these patients showed brain abnormalities suggestive of multiple sclerosis or neuromyelitis optica (NMO).

  17. Low-cost Active Structural Control Space Experiment (LASC)

    NASA Technical Reports Server (NTRS)

    Robinett, Rush; Bukley, Angelia P.

    1992-01-01

    The DOE Lab Director's Conference identified the need for the DOE National Laboratories to actively and aggressively pursue ways to apply DOE technology to problems of national need. Space structures are key elements of DOD and NASA space systems and a space technology area in which DOE can have a significant impact. LASC is a joint agency space technology experiment (DOD Phillips, NASA Marshall, and DOE Sandia). The topics are presented in viewgraph form and include the following: phase 4 investigator testbed; control of large flexible structures in orbit; INFLEX; Controls, Astrophysics; and structures experiments in space; SARSAT; and LASC mission objectives.

  18. UV Radiation: a new first year physics/life sciences laboratory experiment

    NASA Astrophysics Data System (ADS)

    Petelina, S. V.; Siddaway, J. M.

    2010-12-01

    Unfortunately, Australia leads the world in the number of skin cancer cases per capita. Three major factors that contribute to this are: 1) the level of damaging ultraviolet (UV) radiation in Australia is higher than in many other countries. This is caused, among other factors, by the stratospheric ozone depletion and Antarctic ozone hole; 2) many people in Australia are of Irish-Scottish origin and their skin can not repair the damage caused by the UV radiation as effectively as the skin of people of other origins; 3) Australia is one of the world’s leaders in the outdoor activities where people tend to spend more time outside. As our experience has shown, most Australian University students, high school students, and even high school teachers were largely unaware of the UV damage details and effective safety measures. Therefore, a need for new ways to educate people became apparent. The general aim of this new 1st year laboratory experiment, developed and first offered at La Trobe University (Melbourne, Australia) in 2009, is to investigate how UV-B radiation levels change under various solar illumination conditions and how effective different types of protection are. After pre-lab readings on physical concepts and biological effects of UV radiation, and after solving all pre-lab problems, the students go outside and measure the actual change in UV-B and UV-A radiation levels under various conditions. Some of these conditions are: direct sun, shade from a building, shade under the roof, reflection from various surfaces, direct sun through cheap and expensive sunglasses and eyeglasses, direct sun through various types of cloth and hair. The equipment used is the UV-Probe manufactured by sglux SolGel Technologies GmbH. The students’ feedback on this new laboratory experiment was very positive. It was ranked top among all physics experiments offered as part of that subject (Physics for Life Sciences) in 2009 and top among all physics experiments presented for

  19. A laboratory activity on the eddy current brake

    NASA Astrophysics Data System (ADS)

    Molina-Bolívar, J. A.; Abella-Palacios, A. J.

    2012-05-01

    The aim of this paper is to introduce a simple and low-cost experimental setup that can be used to study the eddy current brake, which considers the motion of a sliding magnet on an inclined conducting plane in terms of basic physical principles. We present a set of quantitative experiments performed to study the influence of the geometrical and electromagnetic properties of the magnet on the magnetic drag force. This video-based experiment is ideal for the study of kinematic graphs and the application of Newton's laws. Video motion analysis software enables students to make precise measurements of the magnet's position at incremental times during its motion, thus allowing them to quantify electromagnetic induction phenomena. The equipment needed for this experiment and data collection software are present in most physics teaching laboratories or are inexpensive and available.

  20. Enzyme Activity Experiments Using a Simple Spectrophotometer

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  1. The Heavy Photon Search experiment at Jefferson Laboratory

    NASA Astrophysics Data System (ADS)

    De Napoli, Marzio

    2015-06-01

    Many beyond Standard Model theories predict a new massive gauge boson, aka "dark" or "heavy photon", directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS) experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab), in the mass range 20-1000 MeV/c2 and coupling to electric charge ɛ2 = α'/α in the range 10-5 to 10-10. HPS will look for the e+e- decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  2. Laser fusion experiments, facilities and diagnostics at Lawrence Livermore Laboratory

    SciTech Connect

    Ahlstrom, H.G.

    1980-02-01

    The progress of the LLL Laser Fusion Program to achieve high gain thermonuclear micro-explosions is discussed. Many experiments have been successfully performed and diagnosed using the large complex, 10-beam, 30 TW Shiva laser system. A 400 kJ design of the 20-beam Nova laser has been completed. The construction of the first phase of this facility has begun. New diagnostic instruments are described which provide one with new and improved resolution, information on laser absorption and scattering, thermal energy flow, suprathermal electrons and their effects, and final fuel conditions. Measurements were made on the absorption and Brillouin scattering for target irradiations at both 1.064 ..mu..m and 532 nm. These measurements confirm the expected increased absorption and reduced scattering at the shorter wavelength. Implosion experiments have been performed which have produced final fuel densities over the range of 10x to 100x liquid DT density.

  3. The Heavy Photon Search experiment at Jefferson Laboratory

    SciTech Connect

    De Napoli, Marzio

    2015-06-01

    Many beyond Standard Model theories predict a new massive gauge boson, a.k.a. 'dark' or 'heavy photon', directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS) experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab), in the mass range 20-1000 MeV/c2 and coupling to electric charge ϵ2 = α'/α in the range 10-5 to 10-10. HPS will look for the e+e- decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  4. Experimenting with Impacts in a Conceptual Physics or Descriptive Astronomy Laboratory

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2016-01-01

    What follows is a description of the procedure for and results of a simple experiment on the formation of impact craters designed for the laboratory portions of lower mathematical-level general education science courses such as conceptual physics or descriptive astronomy. The experiment provides necessary experience with data collection and…

  5. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    SciTech Connect

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  6. Laboratory Directed Research and Development Program Activities for FY 2008.

    SciTech Connect

    Looney,J.P.; Fox, K.

    2009-04-01

    with limited management filtering to encourage the creativity of individual researchers. The competition is open to all BNL staff in programmatic, scientific, engineering, and technical support areas. Researchers submit their project proposals to the Assistant Laboratory Director for Policy and Strategic Planning. A portion of the LDRD budget is held for the Strategic LDRD (S-LDRD) category. Projects in this category focus on innovative R&D activities that support the strategic agenda of the Laboratory. The Laboratory Director entertains requests or articulates the need for S-LDRD funds at any time. Strategic LDRD Proposals also undergo rigorous peer review; the approach to review is tailored to the size and scope of the proposal. These Projects are driven by special opportunities, including: (1) Research project(s) in support of Laboratory strategic initiatives as defined and articulated by the Director; (2) Research project(s) in support of a Laboratory strategic hire; (3) Evolution of Program Development activities into research and development activities; and (4) ALD proposal(s) to the Director to support unique research opportunities. The goals and objectives of BNL's LDRD Program can be inferred fronl the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. To be one of the premier DOE National Laboratories, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program

  7. Insights into oil cracking based on laboratory experiments

    USGS Publications Warehouse

    Hill, R.J.; Tang, Y.; Kaplan, I.R.

    2003-01-01

    The objectives of this pyrolysis investigation were to determine changes in (1) oil composition, (2) gas composition and (3) gas carbon isotope ratios and to compare these results with hydrocarbons in reservoirs. Laboratory cracking of a saturate-rich Devonian oil by confined, dry pyrolysis was performed at T = 350-450??C, P = 650 bars and times ranging from 24 h to 33 days. Increasing thermal stress results in the C15+ hydrocarbon fraction cracking to form C6-14 and C1-5 hydrocarbons and pyrobitumen. The C6-14 fraction continues to crack to C 1-5 gases plus pyrobitumen at higher temperatures and prolonged heating time and the ?? 13Cethane-?? 13Cpropane difference becomes greater as oil cracking progresses. There is considerable overlap in product generation and product cracking. Oil cracking products accumulate either because the rate of generation of any product is greater than the rate of removal by cracking of that product or because the product is a stable end member under the experimental conditions. Oil cracking products decrease when the amount of product generated from a reactant is less than the amount of product cracked. If pyrolysis gas compositions are representative of gases generated from oil cracking in nature, then understanding the processes that alter natural gas composition is critical. ?? 2003 Elsevier Ltd. All rights reserved.

  8. Laboratory and clinical experience with neodymium:YAG laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kabalin, John N.

    1996-05-01

    Since 1991, we have undertaken extensive laboratory and clinical studies of the Neodymium:YAG (Nd:YAG) laser for surgical treatment of bladder outlet obstruction due to prostatic enlargement or benign prostatic hyperplasia (BPH). Side-firing optical fibers which emit a divergent, relatively low energy density Nd:YAG laser beam produce coagulation necrosis of obstructing periurethral prostate tissue, followed by gradual dissolution and slough in the urinary stream. Laser-tissue interactions and Nd:YAG laser dosimetry for prostatectomy have been studied in canine and human prostate model systems, enhancing clinical application. Ongoing studies examine comparative Nd:YAG laser dosimetry for various beam configurations produced by available side-firing optical fibers and continue to refine operative technique. We have documented clinical outcomes of Nd:YAG laser prostatectomy in 230 consecutive patients treated with the UrolaseTM side-firing optical fiber. Nd:YAG laser coagulation the prostate produces a remarkably low acute morbidity profile, with no significant bleeding or fluid absorption. No postoperative incontinence has been produced. Serial assessments of voiding outcomes over more than 3 years of followup show objective and symptomatic improvement following Nd:YAG laser prostatectomy which is comparable to older but more morbid electrosurgical approaches. Nd:YAG laser prostatectomy is a safe, efficacious, durable and cost-effective treatment for BPH.

  9. Redefining authentic research experiences in introductory biology laboratories and barriers to their implementation.

    PubMed

    Spell, Rachelle M; Guinan, Judith A; Miller, Kristen R; Beck, Christopher W

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are poorly defined. To guide future reform efforts in this area, we conducted a national survey of biology faculty members to determine 1) their definitions of authentic research experiences in laboratory classes, 2) the extent of authentic research experiences currently experienced in their laboratory classes, and 3) the barriers that prevent incorporation of authentic research experiences into these classes. Strikingly, the definitions of authentic research experiences differ among faculty members and tend to emphasize either the scientific process or the discovery of previously unknown data. The low level of authentic research experiences in introductory biology labs suggests that more development and support is needed to increase undergraduate exposure to research experiences. Faculty members did not cite several barriers commonly assumed to impair pedagogical reform; however, their responses suggest that expanded support for development of research experiences in laboratory classes could address the most common barrier.

  10. The work of fault growth in laboratory sandbox experiments

    NASA Astrophysics Data System (ADS)

    Herbert, Justin W.; Cooke, Michele L.; Souloumiac, Pauline; Madden, Elizabeth H.; Mary, Baptiste C. L.; Maillot, Bertrand

    2015-12-01

    Contractional sandbox experiments that simulate crustal accretion and direct shear tests both provide direct data on the amount of work required to create faults (Wprop) in granular materials. Measurements of force changes associated with faulting reveal the work consumed by fault growth, which can be used to predict fault growth path and timing. Within the contractional experiments, the sequence and style of early faulting is consistent for the range of sand pack thicknesses tested, from 12 to 30 mm. Contrary to expectations that Wprop is only a material property, the experimental data show that for the same material, Wprop increases with sand pack thickness. This normal stress dependence stems from the frictional nature of granular materials. With the same static and sliding friction values, incipient faults initiated deeper in the sand pack have larger shear stress drops, due to increased normal compression, σn. For CV32 sand, the relationship between Wprop and σn, calculated from the force drop data as Wprop (J/m2) = 2.0 ×10-4 (m)σn (Pa), is consistent with the relationship calculated from direct shear test data as Wprop (J/m2) = 2.4 ×10-4 (m)σn (Pa). Testing of different materials within the contractional sandbox (fine sand and glass beads) shows the sensitivity of Wprop to material properties. Both material properties and normal stress should be considered in calculations of the work consumed by fault growth in both analog experiments and crustal fault systems.

  11. Bacterial transport in heterogeneous porous media: Observations from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Silliman, S. E.; Dunlap, R.; Fletcher, M.; Schneegurt, M. A.

    2001-11-01

    Transport of bacteria through heterogeneous porous media was investigated in small-scale columns packed with sand and in a tank designed to allow the hydraulic conductivity to vary as a two-dimensional, lognormally distributed, second-order stationary, exponentially correlated random field. The bacteria were Pseudomonas ftuorescens R8, a strain demonstrating appreciable attachment to surfaces, and strain Ml, a transposon mutant of strain R8 with reduced attachment ability. In bench top, sand-filled columns, transport was determined by measuring intensity of fluorescence of stained cells in the effluent or by measuring radiolabeled cells that were retained in the sand columns. Results demonstrated that strain Ml was transported more efficiently than strain R8 through columns packed with either a homogeneous silica sand or a more heterogeneous sand with iron oxide coatings. Two experiments conducted in the tank involved monitoring transport of bacteria to wells via sampling from wells and sample ports in the tank. Bacterial numbers were determined by direct plate count. At the end of the first experiment, the distribution of the bacteria in the sediment was determined by destructive sampling and plating. The two experiments produced bacterial breakthrough curves that were quite similar even though the similarity between the two porous media was limited to first- and second-order statistical moments. This result appears consistent with the concept of large-scale, average behavior such as has been observed for the transport of conservative chemical tracers. The transported bacteria arrived simultaneously with a conservative chemical tracer (although at significantly lower normalized concentration than the tracer). However, the bacterial breakthrough curves showed significant late time tailing. The concentrations of bacteria attached to the sediment surfaces showed considerably more spatial variation than did the concentrations of bacteria in the fluid phase. This

  12. Subpicosecond compression experiments at Los Alamos National Laboratory

    SciTech Connect

    Carlsten, B.E.; Russell, S.J.; Kinross-Wright, J.M.

    1995-09-01

    The authors report on recent experiments using a magnetic chicane compressor at 8 MeV. Electron bunches at both low (0.1 nC) and high (1 nC) charges were compressed from 20 ps to less than 1 ps (FWHM). A transverse deflecting rf cavity was used to measure the bunch length at low charge; the bunch length at high charge was inferred from an induced energy spread of the beam. The longitudinal centrifugal-space charge force is calculated using a point-to-point numerical simulation and is shown not to influence the energy-spread measurement.

  13. The microphysics of ash tribocharging: New insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Joshua, M. S.; Dufek, J.

    2014-12-01

    The spectacular lightning strokes observed during eruptions testify to the enormous potentials that can be generated within plumes. Related to the charging of individual ash particles, large electric fields and volcanic lightning have been observed at Eyjafjallajokull, Redoubt, and Sakurajima, among other volcanoes. A number of mechanisms have been proposed for plume electrification, including charging from the brittle failure of rock, charging due to phase change as material is carried aloft, and triboelectric charging, also known as contact charging. While the first two mechanisms (fracto-emission and volatile charging) have been described by other authors (James et al, 2000 and McNutt et al., 2010, respectively), the physics of tribocharging--charging related to the collisions of particles--of ash are still relatively unknown. Because the electric fields and lightning present in volcanic clouds result from the multiphase dynamics of the plume itself, understanding the electrodynamics of these systems may provide a way to detect eruptions and probe the interior of plumes remotely. In the present work, we describe two sets of experiments designed to explore what controls the exchange of charge during particle collisions. We employ natural material from Colima, Mt. Saint Helens, and Tungurahua. Our experiments show that the magnitude and temporal behavior of ash charging depend on a number of factors, including particle size, shape, chemistry, and collisional energy. The first set of experiments were designed to determine the time-dependent electrostatic behavior of a parcel of ash. These experiments consist of fluidizing an ash bed and monitoring the current induced in a set of ring electrodes. As such, we are able to extract charging rates for ash samples driven by different flow rates. The second experimental setup allows us to measure how much charge is exchanged during a single particle-particle collision. Capable of measuring charges as small as 1 fC, this

  14. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This study was undertaken to develop conceptual designs for a manned, space shuttle sortie mission laboratory capable of supporting a wide variety of experiments in conjunction with communications and navigation research. This space/laboratory would be one in which man may effectively increase experiment efficiency by certain observations, modifications, setup, calibration, and limited maintenance steps. In addition, man may monitor experiment progress and perform preliminary data evaluation to verify proper equipment functioning and may terminate or redirect experiments to obtain the most desirable end results. The flexibility and unique capabilities of man as an experimenter in such a laboratory will add greatly to the simplification of space experiments and this provides the basis for commonality in many of the supportive subsystems, thus reaping the benefits of reusability and reduced experiment costs. For Vol. 4, see N73-19268.

  15. An Analysis of High School Students' Perceptions and Academic Performance in Laboratory Experiences

    ERIC Educational Resources Information Center

    Mirchin, Robert Douglas

    2012-01-01

    This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published…

  16. Combustion and Energy Transfer Experiments: A Laboratory Model for Linking Core Concepts across the Science Curriculum

    ERIC Educational Resources Information Center

    Barreto, Jose C.; Dubetz, Terry A.; Schmidt, Diane L.; Isern, Sharon; Beatty, Thomas; Brown, David W.; Gillman, Edward; Alberte, Randall S.; Egiebor, Nosa O.

    2007-01-01

    Core concepts can be integrated throughout lower-division science and engineering courses by using a series of related, cross-referenced laboratory experiments. Starting with butane combustion in chemistry, the authors expanded the underlying core concepts of energy transfer into laboratories designed for biology, physics, and engineering. This…

  17. Using Laboratory Experiments and Circuit Simulation IT Tools in an Undergraduate Course in Analog Electronics

    ERIC Educational Resources Information Center

    Baltzis, Konstantinos B.; Koukias, Konstantinos D.

    2009-01-01

    Laboratory-based courses play a significant role in engineering education. Given the role of electronics in engineering and technology, laboratory experiments and circuit simulation IT tools are used in their teaching in several academic institutions. This paper discusses the characteristics and benefits of both methods. The content and structure…

  18. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  19. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  20. The Synthesis of a Cockroach Pheromone: An Experiment for the Second-Year Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Feist, Patty L.

    2008-01-01

    This experiment describes the synthesis of gentisyl quinone isovalerate, or blattellaquinone, a sex pheromone of the German cockroach that was isolated and identified in 2005. The synthesis is appropriate for the second semester of a second-year organic chemistry laboratory course. It can be completed in two, three-hour laboratory periods and uses…

  1. Laboratory: Undergraduate Laboratory Experiment Teaching Fundamental Concepts of Rheology in Context of Sickle Cell Anemia

    ERIC Educational Resources Information Center

    Vernengo, Jennifer; Purdy, Caitlin; Farrell, Stephanie

    2014-01-01

    This paper describes a biomedical engineering experiment that introduces students to rheology. Healthy and sickle-cell blood analogs are prepared that are composed of chitosan particles suspended in aqueous glycerol solutions, which substitute for RBCs and plasma, respectively. Students study flow properties of the blood analogs with a viscometer…

  2. Screening for Saponins Using the Blood Hemolysis Test. An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Sotheeswaran, Subramaniam

    1988-01-01

    Describes an experiment for undergraduate chemistry laboratories involving a chemical found in plants and some sea animals. Discusses collection and identification of material, a hemolysis test, preparation of blood-coated agar plates, and application of samples. (CW)

  3. An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Turchi, Sandra L.; Weiss, Monica

    1988-01-01

    Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)

  4. The Synthesis and Proton NMR Spectrum of Methyl 7-Cycloheptatrienylacetate: An Advanced Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Jurch, G. R., Jr.; And Others

    1980-01-01

    Describes an advanced undergraduate laboratory experiment designed to give the senior chemistry student an opportunity to apply several synthetic and purification techniques as well as possibilities for the application of NMR spectroscopy. (CS)

  5. Determination of Rate Constants for Ouabain Inhibition of Adenosine Triphosphatase: An Undergraduate Biological Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sall, Eri; And Others

    1978-01-01

    Describes an undergraduate biological chemistry laboratory experiment which provides students with an example of pseudo-first-order kinetics with the cardiac glycoside inhibition of mammalism sodium and potassium transport. (SL)

  6. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: I. Fundamentals and Instrumentation

    ERIC Educational Resources Information Center

    Tsionsky, Vladimir

    2007-01-01

    The fundamentals, as well as the instrumentation of the quartz-crystal microbalance (QCM) technique that is used in an undergraduate laboratory experiment are being described. The QCM response can be easily used to change the properties of any system.

  7. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  8. Laboratory experiments of an atmospheric/oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Thacker, Adrien; Eiff, Olivier; waves, turbulence, environment Team

    2015-11-01

    Atmospheric or oceanic turbulence is strongly influenced by the effects of stratification leading to the emmergence of quasi-horizontal layers often described as ``pancake'' structures. The mechanisms of this layering and the selection of the vertical length scale of pancake structures is discussed for one decade whereas it is of a major importance to elucidate the energetic cascade that leads to viscous dissipation. In this present work, we analyze a new series of decaying grid turbulence experiments under the effects of stratification aiming to identify and observe the strongly stratified turbulence regime. The experiments have been performed in a large water towing tank with salt stratification and measurements have been carried out using a scanning correlation imaging velocimetry technique providing instantaneous 3D3C velocity fields along the decaying turbulence. Self similar power laws of the decaying grid turbulence have been assessed and allow the definition of empirical critical time giving transitions to the strongly stratified turbulence regime. A first experimental evidence of overturning process between layers of pancake vortices has been obtained through vorticity fields observation. This observation support the existence of a downscale energy cascade.

  9. Geochemistry of shale groundwaters: Results of preliminary laboratory leaching experiments

    SciTech Connect

    Von Damm, K.L.; Johnson, K.O.

    1987-09-01

    Twelve shales were reacted with distilled water at 20/sup 0/C and 100/sup 0/C; the composition of the waters and the mineralogy were determined before and after reaction. The experiments were conducted in a batch mode over a period of approximately 40 days. Major changes occurred in the solution chemistry; in most cases sulfate became the dominant anion while either sodium or calcium was the major cation. The high sulfate is most likely a result of the oxidation of pyrite in the samples. In the 100/sup 0/C experiments some of the solutions became quite acidic. Examination of the observed mineralogy and comparison to the mineral assemblage calculated to be in equilibrium with the experimentally determined waters, suggests that the acidic waters are generated when no carbonate minerals remain to buffer the groundwaters to a more neutral pH. The pH of shale waters will be determined by the balance between the oxidation of pyrite and organic matter and the dissolution of carbonate minerals. The experimental data are helping to elucidate the chemical reactions that control the pH of shale groundwaters, a critical parameter in determining other water-rock and waste-water-rock interactions and ultimate solute mobility. An experimental approach also provides a means of obtaining data for shales for which no groundwater data are available as well as data on chemical species which are not usually determined or reported.

  10. Laboratory experiments of heat and moisture fluxes through supraglacial debris

    NASA Astrophysics Data System (ADS)

    Nicholson, Lindsey; Mayer, Christoph; Wirbel, Anna

    2014-05-01

    Inspired by earlier work (Reznichenko et al., 2010), we have carried out experiments within a climate chamber to explore the best ways to measure the heat and moisture fluxes through supraglacial debris. Sample ice blocks were prepared with debris cover of varying lithology, grain size and thickness and were instrumented with a combination of Gemini TinyTag temperature/relative humidity sensors and Decagon soil moisture sensors in order to monitor the heat and moisture fluxes through the overlying debris material when the experiment is exposed to specified solar lamp radiation and laminar airflow within the temperature-controlled climate chamber. Experimental results can be used to determine the optimal set up for numerical models of heat and moisture flux through supraglacial debris and also indicate the performance limitations of such sensors that can be expected in field installations. Reznichenko, N., Davies, T., Shulmeister, J. and McSaveney, M. (2010) Effects of debris on ice-surface melting rates: an experimental study. Journal of Glaciology, Volume 56, Number 197, 384-394.

  11. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories.

    PubMed

    Koenen, F; Uttenthal, A; Meindl-Böhmer, A

    2007-12-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning contingency plans. These plans should ensure that in the event of an outbreak access to facilities, equipment, resources, trained personnel, and all other facilities needed for the rapid and efficient eradication of the outbreak is guaranteed, and that the procedures to follow are well rehearsed. It is essential that these plans are established during 'peace-time' and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance of a well-documented laboratory contingency plan. The major pitfalls encountered were shortage of space, difficulties in guaranteeing biosecurity and sufficient supplies of sterile equipment and consumables. The need for a standardised laboratory information management system, that is used by all those involved in order to reduce the administrative load, is also discussed.

  12. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories.

    PubMed

    Koenen, F; Uttenthal, A; Meindl-Böhmer, A

    2007-12-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning contingency plans. These plans should ensure that in the event of an outbreak access to facilities, equipment, resources, trained personnel, and all other facilities needed for the rapid and efficient eradication of the outbreak is guaranteed, and that the procedures to follow are well rehearsed. It is essential that these plans are established during 'peace-time' and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance of a well-documented laboratory contingency plan. The major pitfalls encountered were shortage of space, difficulties in guaranteeing biosecurity and sufficient supplies of sterile equipment and consumables. The need for a standardised laboratory information management system, that is used by all those involved in order to reduce the administrative load, is also discussed. PMID:18293611

  13. Blast Wave Driven Instabilities In Laboratory Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn; Drake, R.; Grosskopf, M.; Robey, H.; Hansen, J.; Miles, A.; Knauer, J.; Arnett, D.; Plewa, T.; Hearn, N.; Meakin, C.

    2008-05-01

    This presentation discusses experiments well scaled to the blast wave driven instabilities at the He/H interface during the explosion phase of SN1987A. This core-collapse supernova was detected about 50 kpc from Earth making it the first supernova observed so closely to earth in modern times. The progenitor star was a blue supergiant with a mass of 18-20 solar masses. A blast wave occurred following the supernova explosion because there was a sudden, finite release of energy. Blast waves consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 µm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses a three-dimensional interface with a wavelength of 71 µm in two orthogonal directions. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability. We have detected the interface structure under these conditions, using dual orthogonal radiography, and will show some of the resulting data. Recent advancements in our x-ray backlighting techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed. Current simulations do not show this phenomenon. This presentation will discuss the amount of mass in these spike extensions. Recent results from an experiment using more realistic initial conditions based on stellar evolution models will also be shown. This research was sponsored by the Stewardship Science Academic Alliance through DOE Research Grants DE-FG52-07NA28058, DE-FG52-04NA00064.

  14. From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion

    NASA Astrophysics Data System (ADS)

    Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Boatella, C.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Brandt, N.; Caleno, M.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Ciani, G.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Fertin, D.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marin, A.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Giardini, D.; Gibert, F.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jeannin, O.; Jennrich, O.; Jetzer, P.; Johlander, B.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Monsky, A.; Nicolini, D.; Nicolodi, D.; Nofrarias, M.; Pedersen, F.; Perreur-Lloyd, M.; Perreca, A.; Plagnol, E.; Prat, P.; Racca, G. D.; Rais, B.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schleicher, A.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Steier, F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tombolato, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Zweifel, P.

    2011-05-01

    This paper presents a quantitative assessment of the performance of the upcoming LISA Pathfinder geodesic explorer mission. The findings are based on the results of extensive ground testing and simulation campaigns using flight hardware, flight control and operations algorithms. The results show that, for the central experiment of measuring the stray differential acceleration between the LISA test masses, LISA Pathfinder will be able to verify the overall acceleration noise to within a factor 2 of the LISA requirement at 1 mHz and within a factor 6 at 0.1 mHz. We also discuss the key elements of the physical model of disturbances, coming from LISA Pathfinder and ground measurement that will guarantee the LISA performance.

  15. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    SciTech Connect

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  16. Aquifer recharge with reclaimed water in the Llobregat Delta. Laboratory batch experiments and field test site.

    NASA Astrophysics Data System (ADS)

    Tobella, J.

    2010-05-01

    Summary Spain, as most other Mediterranean countries, faces near future water shortages, generalized pollution and loss of water dependent ecosystems. Aquifer recharge represents a promising option to become a source for indirect potable reuse purposes but presence of pathogens as well as organic and inorganic pollutants should be avoided. To this end, understanding the processes of biogeochemical degradation occurring within the aquifer during infiltration is capital. A set of laboratory batch experiments has been assembled in order to assess the behaviour of selected pesticides, drugs, estrogens, surfactant degradation products, biocides and phthalates under different redox conditions. Data collected during laboratory experiments and monitoring activities at the Sant Vicenç dels Horts test site will be used to build and calibrate a numerical model (i) of the physical-chemical-biochemical processes occurring in the batches and (ii) of multicomponent reactive transport in the unsaturated/saturated zone at the test site. Keywords Aquifer recharge, batch experiments, emerging micropollutants, infiltration, numerical model, reclaimed water, redox conditions, Soil Aquifer Treatment (SAT). 1. Introduction In Spain, the Llobregat River and aquifers, which supply water to Barcelona, have been overexploited for years and therefore, suffer from serious damages: the river dries up on summer, riparian vegetation has disappeared and seawater has intruded the aquifer. In a global context, solutions to water stress problems are urgently needed yet must be sustainable, economical and safe. Recent developments of analytical techniques detect the presence of the so-called "emerging" organic micropollutants in water and soils. Such compounds may affect living organisms when occurring in the environment at very low concentrations (microg/l or ng/l). In wastewater and drinking water treatment plants, a remarkable removal of these chemicals from water can be obtained only using

  17. Closing the loop on improvement: Packaging experience in the Software Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Waligora, Sharon R.; Landis, Linda C.; Doland, Jerry T.

    1994-01-01

    As part of its award-winning software process improvement program, the Software Engineering Laboratory (SEL) has developed an effective method for packaging organizational best practices based on real project experience into useful handbooks and training courses. This paper shares the SEL's experience over the past 12 years creating and updating software process handbooks and training courses. It provides cost models and guidelines for successful experience packaging derived from SEL experience.

  18. Phosphatidylcholine from "Healthful" Egg Yolk Varieties: An Organic Laboratory Experience

    NASA Astrophysics Data System (ADS)

    Hodges, Linda C.

    1995-12-01

    I have added an investigative element to a popular undergraduate experiment. the characterization of phosphatidylcholine (PC) from egg yolks. Varieties of eggs are commercially available which have been obtained from chickens fed a diet containing no animal fat. Presumably, less saturated fat in the diet of the chickens could be reflected in the fatty acid composition of various classes of biological lipids, including phospholipids, in the eggs from these chickens. PC is extracted using conventional methods, the extract is further purified by chromatography on silicic acid, and the column fractions are assayed for the presence and purity of PC by TLC. Fractions containing pure PC are pooled, concentrated, hydrolyzed, and esterified to obtain the fatty acid methyl esters (FAME) which are identified by GLC. Comparing FAMEs derived from PC of yolks of regular eggs to those obtained from the other special brands adds a novel twist to the students' work and generates greater student interest and involvement in both the interpretation of data than a simple isolation of a biological compound alone evokes.

  19. Laboratory experiments on Radiative Shocks relevant to Stellar Accretion

    NASA Astrophysics Data System (ADS)

    Chaulagain, Uddhab

    2015-08-01

    Radiative shocks are strong shocks which are characterized by a plasma at high temperatures emitting an important fraction of its energy as radiation. Radiative shocks are found in many astrophysical systems, including stellar accretion shocks, supernovae remnants, jet driven shocks, etc. In the case of stellar accretion, matter is funneled into accretion columns by the stellar magnetic field, and falls at several hundreds km/s from the circumstellar envelope onto the stellar photosphere. This generates a strong radiative shock with x-ray spectral signatures that are a key ingredient to quantify the mass accretion rate. The physical structure and dynamics of such plasmas is complex, and experimental benchmarks are needed to provide a deeper understanding of the physics at play.Recently, radiative shocks have also been produced experimentally using high energy lasers. We discuss the results of an experiment performed on the Prague Asterix Laser System (PALS) facility. Shocks are generated by focusing the PALS Infrared laser beam on millimetre-scale targets filled with xenon gas at low pressure. The shock that is generated then propagates in the gas with a sufficiently high velocity such that the shock is in a radiative flux dominated regime. We will present the first instantaneous imaging of a radiative shock at 21.2 nm which is characterized by the presence of both the radiative precursor and the post shock structure. These results are complemented with time-and-space resolved XUV plasma self-emission measurements using fast diodes. Interpretation of the data, supported by numerical simulations using the 2-D radiative-hydrodynamics code ARWEN, will be presented showing the importance of radiative processes from atomic to larger scales.

  20. Spectral probing of impact-generated vapor in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.; Eberhardy, Clara A.

    2015-03-01

    High-speed spectra of hypervelocity impacts at the NASA Ames Vertical Gun Range (AVGR) captured the rapidly evolving conditions of impact-generated vapor as a function of impact angle, viewpoint, and time (within the first 50 μs). Impact speeds possible at the AVGR (<7 km/s) are insufficient to induce significant vaporization in silicates, other than the high-temperature (but low-mass) jetting component created at first contact. Consequently, this study used powdered dolomite as a proxy for surveying the evolution and distribution of chemical constituents within much longer lasting vapor. Seven separate telescopes focused on different portions of the impact vapor plume and were connected through quartz fibers to two 0.35 cm monochromaters. Quarter-space experiments reduced the thermal background and opaque phases due to condensing particles and heated projectile fragments while different exposure times isolated components passing through different the fields of view, both above and below the surface within the growing transient cavity. At early times (<5 μs), atomic emission lines dominate the spectra. At later times, molecular emission lines dominate the composition of the vapor plume along a given direction. Layered targets and target mixtures isolated the source and reveal that much of the vaporization comes from the uppermost surface. Collisions by projectile fragments downrange also make significant contributions for impacts below 60° (from the horizontal). Further, impacts into mixtures of silicates with powdered dolomite reveal that frictional heating must play a role in vapor production. Such results have implications for processes controlling vaporization on planetary surfaces including volatile release, atmospheric evolution (formation and erosion), vapor generated by the Deep Impact collision, and the possible consequences of the Chicxulub impact.

  1. Integrated verification experiment data collected as part of the Los Alamos National Laboratory`s Source Region program. Appendix F: Regional data from Lawrence Livermore National Laboratory and Sandia National Laboratory Seismic Networks

    SciTech Connect

    Taylor, S.R.

    1993-06-11

    A dataset of regional seismograms assembled for a series of Integrated Verification Experiments conducted by the Los Alamos National Laboratory Source Region program is described. The seismic data has been assembled from networks operated by Lawrence Livermore National Laboratory and Sandia National Laboratory. Examples of the data are shown and basic recording characteristics of the network are described. The seismograms are available on a data tape in SAC format upon request.

  2. A History of Classified Activities at Oak Ridge National Laboratory

    SciTech Connect

    Quist, A.S.

    2001-01-30

    The facilities that became Oak Ridge National Laboratory (ORNL) were created in 1943 during the United States' super-secret World War II project to construct an atomic bomb (the Manhattan Project). During World War II and for several years thereafter, essentially all ORNL activities were classified. Now, in 2000, essentially all ORNL activities are unclassified. The major purpose of this report is to provide a brief history of ORNL's major classified activities from 1943 until the present (September 2000). This report is expected to be useful to the ORNL Classification Officer and to ORNL's Authorized Derivative Classifiers and Authorized Derivative Declassifiers in their classification review of ORNL documents, especially those documents that date from the 1940s and 1950s.

  3. Laboratory experiments on turbulent mixing across sheared density interfaces

    NASA Astrophysics Data System (ADS)

    Stephenson, Philip; Fernando, Harindra J. S.

    1991-05-01

    An experimental study was carried out to investigate turbulent mixing and entrainment across a density interface subjected to velocity shear. The flow configuration consisted of a salinity (stably) stratified two-fluid system with a driven upper turbulent layer and a quiescent lower layer. The experiments were performed in an Odell-Kovasznay tank and the mean flow in the upper layer was generated by using a conventional disk pump. The velocity and salinity measurements were made using a laser-Doppler anemometer and conductivity probes, respectively, and (quantitative) flow visualization was performed using the laser-induced fluorescence LIF technique. The refractive indices of upper and lower layers were matched, using salt and alcohol, to facilitate the use of laser-based flow diagnostic techniques. The measurements show that the rms velocity fluctuation u in bulk of the mixed layer scales well with the mean velocity jump Δu across the interface. The Thorpe, buoyancy, overturning, and integral length scales, as well as the maximum Thorpe displacement in the mixed layer, were also found to be proportional to the depth h of the upper mixed layer. The structure of the entrainment interface was found to depend strongly on the bulk Richardson number Ri (=Δb h/u2), where Δb is the buoyancy jump across the interfacial layer. At lower Ri, the entrainment occurred rapidly, as in a nonstratified fluid, but as Ri increases, the entrainment rate becomes a strong function of Ri: under the latter conditions, the interfacial wave breaking and Kelvin-Helmholtz instabilities were common features. At still higher Ri, the entrainment rate becomes vanishingly small and the interfacial mixing events were found to be controlled by the molecular diffusive effects. The measurement of the interfacial-layer thickness using LIF shows that it is much thinner than that measured using less-accurate techniques such as traversing probes. The nondimensional rms amplitude of the interfacial

  4. Space Weathering Effects on Sulfates and Carbonates: Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Dukes, Catherine; Bu, Caixia; Rodriguez lopez, Gerard; McFadden, Lucy Ann; Li, Jian-Yang; Ruesch, Ottaviano

    2016-10-01

    Introduction: The solar wind plasma continuously streams from the Sun, interacting with the surfaces of airless bodies throughout the solar system. Sulfates and carbonates, identified by the UV-Vis spectral slope [1] and 3.4 / 4.0 μm absorption features [2] on the surface of Ceres, will be exposed to solar H, He at ~1keV/amu. We investigate the stability of anhydrous salts under 4 keV He+ irradiation as proxy for the solar wind.Experiment: Anhydrous MgSO4, Na2SO4, and Na2CO3 powders are pressed into pellets, with compositions confirmed by XRD. Pellet samples are placed in ultra-high vacuum (10-9 Torr) and the effects of 4keV He+ irradiation on surface composition and chemistry are monitored by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy, as a function of ion fluence. We measure ex situ diffuse optical reflectance prior and subsequent to irradiation through ranges 0.2-2.5µm (Lambda 1050) and 0.6-10µm (Thermo Nicolet 670).Results: Ion irradiation of MgSO4 damages the crystal structure, preferentially removing oxygen along with sulfur. XPS measurements imply the formation of MgO after 5x1017 He+cm-2 (~15,000 years at 2.7AU). During irradiation, we observe secondary ion ejection (Mg, MgO, O, OH, H, S, and SO) and neutral SO2. In addition, XPS sulfur spectra suggest the presence of a small amount of trapped SO2, confirming this decomposition product observed in the optical UV spectra at ~240 and 280nm [3,4] with dehydration, as well as in the IR at ~7.8μm [5] with irradiation. Our observations are consistent with the potential decomposition pathway for MgSO4 to SO2 provided by McCord et al. (2001) [6]. Spectral darkening and reddening in the UV-Vis region after irradiation are observed by ex situ optical spectroscopy. We suggest that space weathering by solar ions limits the stability of salts on Ceres and other airless bodies, which influences the optical reflectance.Acknowledgements: We thank the NASA SSW program for support

  5. Recording the PHILAE Touchdown using CASSE: Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Knapmeyer, Martin; Faber, Claudia; Tune, Jean-Baptiste; Arnold, Walter; Witte, Lars; Schröder, Silvio; Roll, Reinhard; Chares, Bernd; Fischer, Hans-Herbert; Möhlmann, Diedrich; Seidensticker, Klaus

    2014-05-01

    The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 11, 2014. Its landing feet house the triaxial acceleration sensors of CASSE (Comet Acoustic Surface Sounding Experiment) which will thus be the first sensors to be in mechanical contact with the cometary surface. It is planned that CASSE will be in listening mode to record the deceleration of the lander by the collision with the comet. The analysis of this data will not only support an engineering analysis of the landing process itself but also yield information about the mechanical properties of the comet's surface. Here, we describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths and under simulated low gravity. The qualification model of the Philae landing gear was used in the tests. It consists of three legs manufactured of carbon fiber and metal joints. Attached to each leg is a foot with two soles and a mechanically driven ice screw to secure the lander on the comet. The right one of these soles, if viewed from the outside towards the lander body, houses a Brüel & Kjaer DeltaTron 4506 triaxial piezoelectric accelerometer as used on the spacecraft. Orientation of the three axes was such that the X-axis of the accelerometer points downwards while the Y and Z axes are horizontal. This somewhat uncommon orientation was necessary due to the position of the electric connector on the 4506. Data was recorded at a sampling rate of 8.2 kHz for a duration of 2 s. Touchdown measurements were conducted on three types of ground with different landing velocities. Landings with low velocities were carried out on the concrete floor of the LAMA to determine the stiffness of the landing gear based on the deceleration data measured with the accelerometer. Landings on fine

  6. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an

  7. Annotated List of Laboratory Experiments in Chemistry from the Journal of Chemical Education. Second Edition, 1957-1984.

    ERIC Educational Resources Information Center

    Allen, C. B.; And Others

    This document is the second edition of the Annotated List of Laboratory Experiments in Chemistry first published in 1980. All entries in the Journal of Chemical Education describing laboratory experiments in chemistry or laboratory descriptions suitable for student experiments or projects, for the years 1957-1984 inclusive, have been listed and…

  8. Laboratory Experiments of Sand Ripples with Bimodal Size Distributions Under Asymmetric Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Landry, B. J.

    2010-12-01

    The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Though significant laboratory research has been conducted to elucidate oscillatory flow morphodynamics under various constant and transient forcing conditions, the majority of the previous experiments were conducted only for beds with unimodal size distributions of sediment. Recent oscillatory flow experiments as well as past laboratory observations in uniform flows suggest that the presence of heterogeneous size sand compositions may significantly impact ripple morphology, resulting in a variety of observable effects (e.g., sediment sorting, bed armoring, and altered transport rates). Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Three different monochromatic oscillatory forcings having velocity asymmetry were used to study sand ripple dynamics over five bimodal and two unimodal sediment beds. The seven different mixtures were composed using two unimodal sands of different colors (blue/white) and median grain diameters (d=0.31 mm / d=0.65 mm) combined into various mixtures by mass (i.e., 0/100; 10/90; 25/75; 50/50; 75/25; 90/10; and 100/0 which denotes mass percentage of blue/white sand, respectively, within each mixture). High-definition video of the sediment bed profile was acquired in conjunction with sediment trap measurements to resolve differences in ripple geometries, migration and evolution rates due to the different sediment mixtures and flow conditions. Observational findings clearly illustrate sediment stratification within ripple crests and the depth of the active mixing layer in addition to supporting sediment sorting in previous research on symmetric oscillatory flows in which the larger grains collect on top of ripple crests and smaller grains in the

  9. BASIC and the Density of Glass. A First-Year Laboratory/Computer Experiment.

    ERIC Educational Resources Information Center

    Harris, Arlo D.

    1986-01-01

    Describes a first-year chemistry laboratory experiment which uses a simple computer program written in BASIC, to analyze data collected by students about the density of a set of marbles. A listing of the program is provided, along with a sample printout of the experiment's results. (TW)

  10. Linking Laboratory Experiences to the Real World: The Extraction of Octylphenoxyacetic Acid from Water

    ERIC Educational Resources Information Center

    Loyo-Rosales, Jorge E.; Torrents, Alba; Rosales-Rivera, Georgina C.; Rice, Clifford C.

    2006-01-01

    Several chemical concepts to the extraction of a water pollutant OPC (octylphenoxyacetic acid) is presented. As an introduction to the laboratory experiment, a discussion on endocrine disrupters is conducted to familiarize the student with the background of the experiment and to explain the need for the extraction and quantitation of the OPC which…

  11. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    ERIC Educational Resources Information Center

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  12. Virtualisation of Engineering Discipline Experiments for an Internet-Based Remote Laboratory

    ERIC Educational Resources Information Center

    Tiwari, Rajiv; Singh, Khilawan

    2011-01-01

    A comprehensive survey on the Internet based virtualisation of experiments is presented, covering several individual as well as collaborative efforts in various engineering disciplines. From this survey it could be concluded that there is a pressing need to develop full-fledged remote laboratory experiments for integrated directly into engineering…

  13. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  14. Size Exclusion Chromatography: An Experiment for High School and Community College Chemistry and Biotechnology Laboratory Programs

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Davis, Kathryn K.

    2008-01-01

    A simple multiday laboratory exercise suitable for use in a high school or community college chemistry course or a biotechnology advanced placement biology course is described. In this experiment students gain experience in the use of column chromatography as a tool for the separation and characterization of biomolecules, thus expanding their…

  15. The Equilibrium Constant for Bromothymol Blue: A General Chemistry Laboratory Experiment Using Spectroscopy

    ERIC Educational Resources Information Center

    Klotz, Elsbeth; Doyle, Robert; Gross, Erin; Mattson, Bruce

    2011-01-01

    A simple, inexpensive, and environmentally friendly undergraduate laboratory experiment is described in which students use visible spectroscopy to determine a numerical value for an equilibrium constant, K[subscript c]. The experiment correlates well with the lecture topic of equilibrium even though the subject of the study is an acid-base…

  16. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah

    2008-01-01

    We present a novel first-year chemistry laboratory experiment that connects solubility, equilibrium, and chemical periodicity concepts. It employs a unique format that asks students to replicate experiments described in different sample lab reports, each lacking some essential information, rather than follow a scripted procedure. This structure is…

  17. Cross-Disciplinary Thermoregulation and Sweat Analysis Laboratory Experiences for Undergraduate Chemistry and Exercise Science Students

    ERIC Educational Resources Information Center

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A.

    2011-01-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two…

  18. An Undergraduate Biochemistry Laboratory Course with an Emphasis on a Research Experience

    ERIC Educational Resources Information Center

    Caspers, Mary Lou; Roberts-Kirchhoff, Elizabeth S.

    2003-01-01

    In their junior or senior year, biochemistry majors at the University of Detroit Mercy are required to take a two-credit biochemistry laboratory course. Five years ago, the format of this course was changed from structured experiments to a more project-based approach. Several structured experiments were included at the beginning of the course…

  19. Laboratory Experiments on the Electrochemical Remediation of the Environment. Part 8. Microscale Simultaneous Photocatalysis

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Mena-Brito, Rodrigo; Fregoso-Infante, Arturo

    2005-01-01

    A microscale experiment in which the simultaneous oxidation of an organic compound and the reduction of a metal ion are photocatalytically performed in an aqueous slurry containing TiO[subscript 2] irradiated with UV light. This experiment can be performed in the laboratory session with simple chemicals and equipments.

  20. The Synthesis of 4,6,8-Trimethylazulene: An Organic Laboratory Experiment.

    ERIC Educational Resources Information Center

    Garst, Michael E.; And Others

    1983-01-01

    A two-stage synthesis of 4,6,8-trimethylazulene was developed for use in the undergraduate experiment, highlighting concepts not usually covered in the laboratory. The experiment requires purification procedures of chromatography and of sublimation and illustrates concepts of aromaticity, molecular orbital theory, and carbodium ion reactivity. (JN)

  1. Annotated List of Chemistry Laboratory Experiments with Computer Access. Final Report.

    ERIC Educational Resources Information Center

    Bunce, S. C.; And Others

    Project Chemlab was designed to prepare an "Annotated List of Laboratory Experiments in Chemistry from the Journal of Chemical Education (1957-1979)" and to develop a computer file and program to search for specific types of experiments. Provided in this document are listings (photoreduced copies of printouts) of over 1500 entries classified into…

  2. Designing an Acoustic Suspension Speaker System in the General Physics Laboratory: A Divergent experiment

    ERIC Educational Resources Information Center

    Horton, Philip B.

    1969-01-01

    Describes a student laboratory project involving the design of an "acoustic suspension speaker system. The characteristics of the loudspeaker used are measured as an extension of the inertia-balance experiment. The experiment may be extended to a study of Stelmholtz resonators, coupled oscillators, electromagnetic forces, thermodynamics and…

  3. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    ERIC Educational Resources Information Center

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  4. An Investigation of Students' Prior Experience with Laboratory Practicals and Report-Writing.

    ERIC Educational Resources Information Center

    Kaunda, L.; Ball, D.

    1998-01-01

    A study of 723 University of Cape Town (South Africa) physics students investigated their prior experience with laboratory procedures and technical report writing. Results suggest that, although students are generally aware of the importance of these elements of learning, school experience with teaching of scientific concepts and skills is often…

  5. Advanced Undergraduate-Laboratory Experiment on Electron Spin Resonance in Single-Crystal Ruby

    ERIC Educational Resources Information Center

    Collins, Lee A.; And Others

    1974-01-01

    An electron-spin-resonance experiment which has been successfully performed in an advanced undergraduate physics laboratory is described. A discussion of that part of the theory of magnetic resonance necessary for the understanding of the experiment is also provided in this article. (DT)

  6. Topics in Chemical Instrumentation: XCVIII. Experiments Involving Thermal Methods of Analysis for Undergraduate Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Ewing, Galen W., Ed.

    1978-01-01

    Explains some experiments involving thermal methods of analysis for undergraduate chemistry laboratories. Some experiments are: (1) the determination of the density and degree of crystallinity of a polymer; and (2) the determination of the specific heat of a nonvolatile compound. (HM)

  7. What's New in the Launching of Start-Ups? Features and Implications of Laboratory Experiments

    ERIC Educational Resources Information Center

    Matricano, Diego

    2009-01-01

    This article responds to "Laboratory experiments as a tool in the empirical economic analysis of high-expectation start-ups" by Martin Curley and Piero Formica, published in the December 2008 issue of "Industry and Higher Education." The exploitation of knowledge and experience is increasingly important to companies operating in the globalized…

  8. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  9. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  10. Aquifer recharge with reclaimed water in the Llobregat Delta. Laboratory batch experiments and field test site.

    NASA Astrophysics Data System (ADS)

    Tobella, J.

    2010-05-01

    Summary Spain, as most other Mediterranean countries, faces near future water shortages, generalized pollution and loss of water dependent ecosystems. Aquifer recharge represents a promising option to become a source for indirect potable reuse purposes but presence of pathogens as well as organic and inorganic pollutants should be avoided. To this end, understanding the processes of biogeochemical degradation occurring within the aquifer during infiltration is capital. A set of laboratory batch experiments has been assembled in order to assess the behaviour of selected pesticides, drugs, estrogens, surfactant degradation products, biocides and phthalates under different redox conditions. Data collected during laboratory experiments and monitoring activities at the Sant Vicenç dels Horts test site will be used to build and calibrate a numerical model (i) of the physical-chemical-biochemical processes occurring in the batches and (ii) of multicomponent reactive transport in the unsaturated/saturated zone at the test site. Keywords Aquifer recharge, batch experiments, emerging micropollutants, infiltration, numerical model, reclaimed water, redox conditions, Soil Aquifer Treatment (SAT). 1. Introduction In Spain, the Llobregat River and aquifers, which supply water to Barcelona, have been overexploited for years and therefore, suffer from serious damages: the river dries up on summer, riparian vegetation has disappeared and seawater has intruded the aquifer. In a global context, solutions to water stress problems are urgently needed yet must be sustainable, economical and safe. Recent developments of analytical techniques detect the presence of the so-called "emerging" organic micropollutants in water and soils. Such compounds may affect living organisms when occurring in the environment at very low concentrations (microg/l or ng/l). In wastewater and drinking water treatment plants, a remarkable removal of these chemicals from water can be obtained only using

  11. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    SciTech Connect

    Finsterle, S.; Moridis, G.J.; Pruess, K.; Persoff, P.

    1994-01-01

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.

  12. Preliminary activation calculations for the Poloidal Divertor Experiment

    SciTech Connect

    Judd, J.L.; Scott, A.J.; Nigg, D.W.; Bohn, T.S.

    1981-01-01

    The Poloidal Divertor Experiment (PDX) tokamak is being operated by the Princeton Plasma Physics Laboratory (PPPL) to study plasma cross section shaping, high power neutral beam heating, and divertor control of plasma impurities in tokamaks. Experiments to date have been performed at relatively low power, but with 6 MW of neutral beam power eventually available, high D-D plasma reaction rates are expected that will yield up to 10/sup 15/ 2.45-MeV neutrons per pulse. This neutron emission level is high enough to cause significant neutron-induced machine activation that will limit the occupancy time of personnel entering the room to repair or change parts. The dose rate depends on the location in the room and, of course, the pulsing history prior to entry. This paper describes one-dimensional activation calculations that have been done for PDX to provide preliminary dose rate information for various times after shutdown following one week of high power operation.

  13. Choice of experimental venue matters in ecotoxicology studies: Comparison of a laboratory-based and an outdoor mesocosm experiment.

    PubMed

    Mikó, Zsanett; Ujszegi, János; Gál, Zoltán; Imrei, Zoltán; Hettyey, Attila

    2015-10-01

    The heavy application of pesticides and its potential effects on natural communities has attracted increasing attention to inadvertent impacts of these chemicals. Toxicologists conventionally use laboratory-based tests to assess lethal concentrations of pesticides. However, these tests often do not take into account indirect, interactive and long-term effects, and tend to ignore different rates of disintegration in the laboratory and under natural conditions. Our aim was to investigate the importance of the experimental venue for ecotoxicology tests. We reared tadpoles of the agile frog (Rana dalmatina) in the laboratory and in outdoor mesocosms and exposed them to three initial concentrations of a glyphosate-based herbicide (0, 2 and 6.5 mg a.e./L glyphosate), and to the presence or absence of caged predators (dragonfly larvae). The type of experimental venue had a large effect on the outcome: The herbicide was less lethal to tadpoles reared in outdoor mesocosms than in the laboratory. Further, while the herbicide had a negative effect on development time and on body mass in the laboratory, tadpoles exposed to the herbicide in mesocosms were larger at metamorphosis and developed faster in comparison to those reared in the absence of the herbicide. The effect of the herbicide on morphological traits of tadpoles also differed between the two venues. Finally, in the presence of the herbicide, tadpoles tended to be more active and to stay closer to the bottom of laboratory containers, while tadpole behaviour shifted in the opposite direction in outdoor mesocosms. Our results demonstrate major discrepancies between results of a classic laboratory-based ecotoxicity test and outcomes of an experiment performed in outdoor mesocosms. Consequently, the use of standard laboratory tests may have to be reconsidered and their benefits carefully weighed against the difficulties of performing experiments under more natural conditions. Tests validating experimentally estimated

  14. Choice of experimental venue matters in ecotoxicology studies: Comparison of a laboratory-based and an outdoor mesocosm experiment.

    PubMed

    Mikó, Zsanett; Ujszegi, János; Gál, Zoltán; Imrei, Zoltán; Hettyey, Attila

    2015-10-01

    The heavy application of pesticides and its potential effects on natural communities has attracted increasing attention to inadvertent impacts of these chemicals. Toxicologists conventionally use laboratory-based tests to assess lethal concentrations of pesticides. However, these tests often do not take into account indirect, interactive and long-term effects, and tend to ignore different rates of disintegration in the laboratory and under natural conditions. Our aim was to investigate the importance of the experimental venue for ecotoxicology tests. We reared tadpoles of the agile frog (Rana dalmatina) in the laboratory and in outdoor mesocosms and exposed them to three initial concentrations of a glyphosate-based herbicide (0, 2 and 6.5 mg a.e./L glyphosate), and to the presence or absence of caged predators (dragonfly larvae). The type of experimental venue had a large effect on the outcome: The herbicide was less lethal to tadpoles reared in outdoor mesocosms than in the laboratory. Further, while the herbicide had a negative effect on development time and on body mass in the laboratory, tadpoles exposed to the herbicide in mesocosms were larger at metamorphosis and developed faster in comparison to those reared in the absence of the herbicide. The effect of the herbicide on morphological traits of tadpoles also differed between the two venues. Finally, in the presence of the herbicide, tadpoles tended to be more active and to stay closer to the bottom of laboratory containers, while tadpole behaviour shifted in the opposite direction in outdoor mesocosms. Our results demonstrate major discrepancies between results of a classic laboratory-based ecotoxicity test and outcomes of an experiment performed in outdoor mesocosms. Consequently, the use of standard laboratory tests may have to be reconsidered and their benefits carefully weighed against the difficulties of performing experiments under more natural conditions. Tests validating experimentally estimated

  15. Introductory Oceanography Taught as a Laboratory Science--An Experiment That Worked.

    ERIC Educational Resources Information Center

    Anderson, Franz E.

    1979-01-01

    Describes a college level introductory oceanography course that incorporates a hands-on laboratory component. The activities include the determination of density and buoyancy, light transmission in sea water, and wave refraction. (MA)

  16. MIT-EAPS Neutron Activation Analysis and Radiometric Laboratory Contribution to Geosciences: Past, Present, and Future

    SciTech Connect

    Pillalamarri, Ila

    2005-09-08

    The Instrumental Neutron Activation Analysis (INAA) and Radiometric Laboratory's current system is described. This laboratory has been in continuous operation for the past thirty years. A review is provided about the laboratory's analytical participation in trace element geochemical studies of the earth's upper mantle, trace impurity studies of high purity materials, the provenance study of archaeological glass beads, trace multi-element analyses of standard reference materials, the preparation of synthetic analytical standards for Neutron Activation Analysis, and providing a training course in nuclear analytical techniques for environmental samples. The multi-element analysis by INAA consists of determining elements like the rare earths La, Ce, Nd, Sm Eu, Tb, Dy, Ho, Yb, Lu, and also As, Ba, Cl, Co, Cr, Cs, Dy, Fe, Hf, Hg, K, Mn, Na, Ta, Th, U. The projected future of the laboratory is explained in terms of its resources, expertise in high precision analysis of trace impurities for the material selection that is to be used in rare event physics experiments. For example, this 'surface' laboratory can be efficiently interfaced/integrated with a deep underground low background counting facility, especially in the initial stages.

  17. Experiences with active cosmic background suppression

    SciTech Connect

    Lindstrom, R.M.; Lamaze, G.P.

    1994-12-31

    The dominant source of background in a bare germanium gamma-ray detector is natural radiation originating from potassium, uranium, and thorium decay in the laboratory environment and from cosmic rays. Most of the background is removed by surrounding the detector with lead shielding, which is commonly 20 cm thick. In a well-shielded detector, the largest contributor to the integral counting rate is cosmic rays, and to a lesser extent beta particles from {sup 210}Pb. Most of the counting rate in the continuum is due to highly penetrating muons. Many of the characteristic peaks in the background also originate from fast tertiary neutrons of cosmic-ray origin, which generate neutron activation products or create gamma rays from inelastic scattering in materials of the detector and shield. Very massive shielding is required to remove this penetrating component of background; we have found a fivefold reduction in the cosmic components by moving the detector into a laboratory 20 m underground. However, lacking an underground lab, we have attempted to use active shielding to reduce the background of a Ge detector located above ground. The guard detector is a proportional counter forming a roof 23 cm above the detector. The counter is placed inside the lead shielding to reduce it`s background counting rate.

  18. In vivo neutron activation facility at Brookhaven National Laboratory

    SciTech Connect

    Ma, R.; Yasumura, Seiichi; Dilmanian, F.A.

    1997-11-01

    Seven important body elements, C, N, Ca, P, K, Na, and Cl, can be measured with great precision and accuracy in the in vivo neutron activation facilities at Brookhaven National Laboratory. The facilities include the delayed-gamma neutron activation, the prompt-gamma neutron activation, and the inelastic neutron scattering systems. In conjunction with measurements of total body water by the tritiated-water dilution method several body compartments can be defined from the contents of these elements, also with high precision. In particular, body fat mass is derived from total body carbon together with total body calcium and nitrogen; body protein mass is derived from total body nitrogen; extracellular fluid volume is derived from total body sodium and chlorine; lean body mass and body cell mass are derived from total body potassium; and, skeletal mass is derived from total body calcium. Thus, we suggest that neutron activation analysis may be valuable for calibrating some of the instruments routinely used in clinical studies of body composition. The instruments that would benefit from absolute calibration against neutron activation analysis are bioelectric impedance analysis, infrared interactance, transmission ultrasound, and dual energy x-ray/photon absorptiometry.

  19. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  20. THE IPOS FRAMEWORK: LINKING FISH SWIMMING PERFORMANCE IN ALTERED FLOWS FROM LABORATORY EXPERIMENTS TO RIVERS

    SciTech Connect

    Neary, Vincent S

    2011-01-01

    Current understanding of the effects of turbulence on the swimming performance of fish 32 is primarily derived from laboratory experiments under pressurized flow swim tunnels 33 and open channel flow facilities. These studies have produced valuable information on 34 the swimming mechanics and behavior of fish in turbulent flow. However, laboratory 35 studies have limited representation of the flows fish experience in nature. The complex 36 flow structure in rivers is imparted primarily by the highly heterogeneous and non37 uniform bed and planform geometry. Our goal is to direct future laboratory and field 38 studies to adopt a common framework that will shape the integration of both approaches. 39 This paper outlines four characteristics of turbulent flow, which we suggest should be 40 evaluated when generalizing results from fish turbulent studies in both the laboratory and 41 the field. The framework is based on four turbulence characteristics that are summarized 42 under the acronym IPOS: Intensity, Periodicity, Orientation, and Scale.

  1. Teaching astronomy for the blind: Providing a lecture and laboratory experience

    NASA Astrophysics Data System (ADS)

    Spagna, George F.

    1991-04-01

    A general education course in astronomy was successfully adapted to provide a meaningful laboratory science experience for a visually-impaired student. Minor alterations to the style of lecture, coupled with an edition of the text on audio cassette tapes, allowed the student to keep pace with the theory component of the course. Laboratory equipment was modified to provide tactile measuring apparatus, which allowed the student to perform all the same processes of data acquisition and analysis required of sighted students.

  2. Areal rainfall estimation using moving cars as rain gauges - laboratory and field experiment

    NASA Astrophysics Data System (ADS)

    Rabiei, Ehsan; Haberlandt, Uwe; Sester, Monika; Fitzner, Daniel

    2014-05-01

    Areal precipitation estimation for fine temporal and spatial resolution is still a challenging task. Beside the fact that newly developed instrumentations, e.g. weather radar, provide valuable information with high spatial and temporal resolutions, they are subject to different sources of errors. On the other hand, recording rain gauges provide accurate point rainfall depth, but are still often poor in density. Equipping a car with a GPS device as well as sensors measuring rainfall makes it possible to implement cars on the streets as the moving rain gauges. Initial results from a modeling study assuming arbitrary measurement errors have shown that implementing a reasonable large number of inaccurate measurement devices (raincars) provide more reliable areal precipitations compared to the available rain gauge network. The purpose of this study is to derive relationships between sensor readings and rain rate in a laboratory and quantify the errors. Sensor readings involve wiper frequency and optical sensors which are on the cars to automate wiper activities. Besides, the influence of car speed on the sensor readings is investigated implementing a car-speed simulator. It has been observed that the manual wiper activity adjustment, according to front visibility, shows a strong relationship between rainfall intensity and wiper speed. Two optical sensors calibrated in laboratory showed a relatively strong relationship with the rain intensity recorded by a tipping bucket. A positive relationship between the velocity and the amount of water has been observed meaning that the higher the speed of a car, the higher the amount of water hitting the car. Additionally, some preliminary results of the field experiments are discussed.

  3. Laboratory Activity on Sample Handling and Maintaining a Laboratory Notebook through Simple pH Measurements

    ERIC Educational Resources Information Center

    Erdmann, Mitzy A.; March, Joe L.

    2016-01-01

    Sample handling and laboratory notebook maintenance are necessary skills but can seem abstract if not presented to students in context. An introductory exercise focusing on proper sample handling, data collection and laboratory notebook keeping for the general chemistry laboratory was developed to emphasize the importance of keeping an accurate…

  4. The Accreditation Experience of Clinical Laboratories and Blood Banks in Mexico

    PubMed Central

    2015-01-01

    The accreditation of clinical laboratories and blood banks based on ISO 15189 is now being consolidated in Mexico, and is coordinated by the Mexican accreditation entity innovative strategies, A.C. (ema) and supported by the activities of the committee of clinical laboratories and blood banks. The active participation in working groups formed by the technical committee of clinical laboratories and blood banks in specific areas, has contributed to the formulation of technical documents and criteria of evaluation that strengthen the current accreditation scheme. The national registry of evaluation (PNE) consists of technical experts and evaluators from different disciplines of clinical laboratory; the evaluators actively participate in accreditation assessment, with an ultimate goal to receive training and feedback for continuous improvement of its own performance.

  5. The Accreditation Experience of Clinical Laboratories and Blood Banks in Mexico

    PubMed Central

    2015-01-01

    The accreditation of clinical laboratories and blood banks based on ISO 15189 is now being consolidated in Mexico, and is coordinated by the Mexican accreditation entity innovative strategies, A.C. (ema) and supported by the activities of the committee of clinical laboratories and blood banks. The active participation in working groups formed by the technical committee of clinical laboratories and blood banks in specific areas, has contributed to the formulation of technical documents and criteria of evaluation that strengthen the current accreditation scheme. The national registry of evaluation (PNE) consists of technical experts and evaluators from different disciplines of clinical laboratory; the evaluators actively participate in accreditation assessment, with an ultimate goal to receive training and feedback for continuous improvement of its own performance. PMID:27683498

  6. Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.

    1972-01-01

    A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.

  7. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    NASA Astrophysics Data System (ADS)

    Simon, Nicole A.

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.

  8. Investigating the impact of vegetation on alluvial fans using laboratory experiments

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy; McLelland, Stuart; Tom, Coutlhard

    2016-04-01

    Riparian vegetation can significantly influence the geomorphology of fluvial systems, affecting channel geometry and flow dynamics. However, there is still limited understanding of the role vegetation plays in the development of alluvial fans, despite the large number of vegetated fans located in temperate and humid climates. An understanding of the feedback loops between water flow, sediment dynamics and vegetation is key to understanding the geomorphological response of alluvial fans. But it is difficult to investigate these relationships in the natural world due to the complexity of the geomorphic and biological processes and timescales involved, whereas the controlled conditions afforded by laboratory experiments provide the ideal opportunity to explore these relationships. To examine the effects of vegetation on channel form, flow dynamics and morphology during fan evolution, a series of experiments were conducted using the Total Environment Simulator (operated by the University of Hull). The experiments followed a 'similarity of processes' approach and so were not scaled to a specific field prototype. Live vegetation (Medicago Sativa) was used to simulate the influence of vegetation on the fan development. A range of experiments were conducted on 2x2m fan plots, the same initial conditions and constant water discharge and sediment feed rates were used, but the vegetation density and amount of geomorphic time (when the sediment and water were running and there was active fan development) between seeding / vegetation growth varied between runs. The fan morphology was recorded at regular intervals using a laser scanner (at 1mm resolution) and high resolution video recording and overhead photography were used to gain near-continuous data quantifying fan topography, flow patterns, channel migration and avulsion frequency. Image analysis also monitored the spatial extent of vegetation establishment. The use of these techniques allowed collection of high resolution

  9. Development and Operation of a MUMPS Laboratory Information System: A Decade's Experience

    PubMed Central

    Miller, R. E.; Causey, J. P.; Moore, G. W.; Wilk, G. E.

    1988-01-01

    We describe more than a decade's experience with inhouse development and operation of a clinical laboratory computer system written in the MUMPS programming language for a 1000 bed teaching hospital. The JHLIS is a networked minicomputer system that supports accessioning, instrument monitoring, and result reporting for over 3000 specimens and 30,000 test results daily. Development and operation of the system accounts for 6% of the budget of the laboratories which have had a 70% increase in workload over the past decade. Our experience with purchased MUMPS software maintained and enhanced inhouse suggests an attractive alternative to lengthy inhouse development.

  10. The effects of emotion regulation strategies on the pain experience: a structured laboratory investigation.

    PubMed

    Hampton, Amy J D; Hadjistavropoulos, Thomas; Gagnon, Michelle M; Williams, Jaime; Clark, David

    2015-05-01

    Although emotion regulation modulates the pain experience, inconsistencies have been identified regarding the impact of specific regulation strategies on pain. Our goal was to examine the effects of emotion suppression and cognitive reappraisal on automatic (ie, nonverbal) and cognitively mediated (ie, verbal) pain expressions. Nonclinical participants were randomized into either a suppression (n = 58), reappraisal (n = 51), or monitoring control (n = 42) condition. Upon arrival to the laboratory, participants completed the Emotion Regulation Questionnaire, to quantify self-reported suppression and reappraisal tendencies. Subsequently, they completed a thermal pain threshold and tolerance task. They were then provided with instructions to use, depending on their experimental condition, suppression, reappraisal, or monitoring strategies. Afterward, they were exposed to experimentally induced pain. Self-report measures of pain, anxiety, and tension were administered, and facial expressions, heart rate, and galvanic skin response were recorded. The Facial Action Coding System was used to quantify general and pain-related facial activity (ie, we defined facial actions that occurred during at least 5% of pain stimulation periods as "pain-related actions"). Reappraisal and suppression induction led to reductions in nonverbal and verbal indices of pain. Moreover, self-reported tendencies to use suppression and reappraisal (as measured by the Emotion Regulation Questionnaire) did not interact with experimental condition in the determination of participants' responses. Results suggest that consciously applying emotion regulation strategies during a painful task can moderate both cognitively mediated (e.g., verbal) and automatic (e.g., facial activity) expressions of pain.

  11. A MASSive laboratory tour. An interactive mass spectrometry outreach activity for children.

    PubMed

    Jungmann, Julia H; Mascini, Nadine E; Kiss, Andras; Smith, Donald F; Klinkert, Ivo; Eijkel, Gert B; Duursma, Marc C; Cillero Pastor, Berta; Chughtai, Kamila; Chughtai, Sanaullah; Heeren, Ron M A

    2013-07-01

    It is imperative to fascinate young children at an early stage in their education for the analytical sciences. The exposure of the public to mass spectrometry presently increases rapidly through the common media. Outreach activities can take advantage of this exposure and employ mass spectrometry as an exquisite example of an analytical science in which children can be fascinated. The presented teaching modules introduce children to mass spectrometry and give them the opportunity to experience a modern research laboratory. The modules are highly adaptable and can be applied to young children from the age of 6 to 14 y. In an interactive tour, the students explore three major scientific concepts related to mass spectrometry; the building blocks of matter, charged particle manipulation by electrostatic fields, and analyte identification by mass analysis. Also, the students carry out a mass spectrometry experiment and learn to interpret the resulting mass spectra. The multistage, inquiry-based tour contains flexible methods, which teach the students current-day research techniques and possible applications to real research topics. Besides the scientific concepts, laboratory safety and hygiene are stressed and the students are enthused for the analytical sciences by participating in "hands-on" work. The presented modules have repeatedly been successfully employed during laboratory open days. They are also found to be extremely suitable for (early) high school science classes during laboratory visit-focused field trips. PMID:23681852

  12. A MASSive Laboratory Tour. An Interactive Mass Spectrometry Outreach Activity for Children

    NASA Astrophysics Data System (ADS)

    Jungmann, Julia H.; Mascini, Nadine E.; Kiss, Andras; Smith, Donald F.; Klinkert, Ivo; Eijkel, Gert B.; Duursma, Marc C.; Cillero Pastor, Berta; Chughtai, Kamila; Chughtai, Sanaullah; Heeren, Ron M. A.

    2013-07-01

    It is imperative to fascinate young children at an early stage in their education for the analytical sciences. The exposure of the public to mass spectrometry presently increases rapidly through the common media. Outreach activities can take advantage of this exposure and employ mass spectrometry as an exquisite example of an analytical science in which children can be fascinated. The presented teaching modules introduce children to mass spectrometry and give them the opportunity to experience a modern research laboratory. The modules are highly adaptable and can be applied to young children from the age of 6 to 14 y. In an interactive tour, the students explore three major scientific concepts related to mass spectrometry; the building blocks of matter, charged particle manipulation by electrostatic fields, and analyte identification by mass analysis. Also, the students carry out a mass spectrometry experiment and learn to interpret the resulting mass spectra. The multistage, inquiry-based tour contains flexible methods, which teach the students current-day research techniques and possible applications to real research topics. Besides the scientific concepts, laboratory safety and hygiene are stressed and the students are enthused for the analytical sciences by participating in "hands-on" work. The presented modules have repeatedly been successfully employed during laboratory open days. They are also found to be extremely suitable for (early) high school science classes during laboratory visit-focused field trips.

  13. A MASSive laboratory tour. An interactive mass spectrometry outreach activity for children.

    PubMed

    Jungmann, Julia H; Mascini, Nadine E; Kiss, Andras; Smith, Donald F; Klinkert, Ivo; Eijkel, Gert B; Duursma, Marc C; Cillero Pastor, Berta; Chughtai, Kamila; Chughtai, Sanaullah; Heeren, Ron M A

    2013-07-01

    It is imperative to fascinate young children at an early stage in their education for the analytical sciences. The exposure of the public to mass spectrometry presently increases rapidly through the common media. Outreach activities can take advantage of this exposure and employ mass spectrometry as an exquisite example of an analytical science in which children can be fascinated. The presented teaching modules introduce children to mass spectrometry and give them the opportunity to experience a modern research laboratory. The modules are highly adaptable and can be applied to young children from the age of 6 to 14 y. In an interactive tour, the students explore three major scientific concepts related to mass spectrometry; the building blocks of matter, charged particle manipulation by electrostatic fields, and analyte identification by mass analysis. Also, the students carry out a mass spectrometry experiment and learn to interpret the resulting mass spectra. The multistage, inquiry-based tour contains flexible methods, which teach the students current-day research techniques and possible applications to real research topics. Besides the scientific concepts, laboratory safety and hygiene are stressed and the students are enthused for the analytical sciences by participating in "hands-on" work. The presented modules have repeatedly been successfully employed during laboratory open days. They are also found to be extremely suitable for (early) high school science classes during laboratory visit-focused field trips.

  14. An undergraduate laboratory activity on molecular dynamics simulations.

    PubMed

    Spitznagel, Benjamin; Pritchett, Paige R; Messina, Troy C; Goadrich, Mark; Rodriguez, Juan

    2016-01-01

    Vision and Change [AAAS, 2011] outlines a blueprint for modernizing biology education by addressing conceptual understanding of key concepts, such as the relationship between structure and function. The document also highlights skills necessary for student success in 21st century Biology, such as the use of modeling and simulation. Here we describe a laboratory activity that allows students to investigate the dynamic nature of protein structure and function through the use of a modeling technique known as molecular dynamics (MD). The activity takes place over two lab periods that are 3 hr each. The first lab period unpacks the basic approach behind MD simulations, beginning with the kinematic equations that all bioscience students learn in an introductory physics course. During this period students are taught rudimentary programming skills in Python while guided through simple modeling exercises that lead up to the simulation of the motion of a single atom. In the second lab period students extend concepts learned in the first period to develop skills in the use of expert MD software. Here students simulate and analyze changes in protein conformation resulting from temperature change, solvation, and phosphorylation. The article will describe how these activities can be carried out using free software packages, including Abalone and VMD/NAMD.

  15. An undergraduate laboratory activity on molecular dynamics simulations.

    PubMed

    Spitznagel, Benjamin; Pritchett, Paige R; Messina, Troy C; Goadrich, Mark; Rodriguez, Juan

    2016-01-01

    Vision and Change [AAAS, 2011] outlines a blueprint for modernizing biology education by addressing conceptual understanding of key concepts, such as the relationship between structure and function. The document also highlights skills necessary for student success in 21st century Biology, such as the use of modeling and simulation. Here we describe a laboratory activity that allows students to investigate the dynamic nature of protein structure and function through the use of a modeling technique known as molecular dynamics (MD). The activity takes place over two lab periods that are 3 hr each. The first lab period unpacks the basic approach behind MD simulations, beginning with the kinematic equations that all bioscience students learn in an introductory physics course. During this period students are taught rudimentary programming skills in Python while guided through simple modeling exercises that lead up to the simulation of the motion of a single atom. In the second lab period students extend concepts learned in the first period to develop skills in the use of expert MD software. Here students simulate and analyze changes in protein conformation resulting from temperature change, solvation, and phosphorylation. The article will describe how these activities can be carried out using free software packages, including Abalone and VMD/NAMD. PMID:26751047

  16. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  17. We are what we do: Examining learner-generated content in the anatomy laboratory through the lens of activity theory.

    PubMed

    Doubleday, Alison F; Wille, Sarah J

    2014-01-01

    Video and photography are often used for delivering content within the anatomical sciences. However, instructors typically produce these resources to provide instructional or procedural information. Although the benefits of learner-generated content have been explored within educational research, virtually no studies have investigated the use of learner-generated video and photograph content within anatomy dissection laboratories. This study outlines an activity involving learner-generated video diaries and learner-generated photograph assignments produced during anatomy laboratory sessions. The learner-generated photographs and videos provided instructors with a means of formative assessment and allowed instructors to identify evidence of collaborative behavior in the laboratory. Student questionnaires (n = 21) and interviews (n = 5), as well as in-class observations, were conducted to examine student perspectives on the laboratory activities. The quantitative and qualitative data were examined using the framework of activity theory to identify contradictions between student expectations of, and engagement with, the activity and the actual experiences of the students. Results indicate that learner-generated photograph and video content can act as a rich source of data on student learning processes and can be used for formative assessment, for observing collaborative behavior, and as a starting point for class discussions. This study stresses the idea that technology choice for activities must align with instructional goals. This research also highlights the utility of activity theory as a framework for assessing classroom and laboratory activities, demonstrating that this approach can guide the development of laboratory activities.

  18. Consumer-Oriented Laboratory Activities: A Manual for Secondary Science Students.

    ERIC Educational Resources Information Center

    Anderson, Jacqueline; McDuffie, Thomas E., Jr.

    This document provides a laboratory manual for use by secondary level students in performing consumer-oriented laboratory experiments. Each experiment includes an introductory question outlining the purpose of the investigation, a detailed discussion, detailed procedures, questions to be answered upon completing the experiment, and information for…

  19. Promoting Science Outdoor Activities for Elementary School Children: Contributions from a research laboratory

    NASA Astrophysics Data System (ADS)

    Boaventura, Diana; Faria, Cláudia; Chagas, Isabel; Galvão, Cecília

    2013-03-01

    The purposes of the study were to analyse the promotion of scientific literacy through practical research activities and to identify children's conceptions about scientists and how they do science. Elementary school children were engaged in two scientific experiments in a marine biology research laboratory. A total of 136 students answered a questionnaire about their previous habits towards science and carried out the following actions: (1) a guided visit to the laboratory, (2) a brief presentation of the research theme, (3) the development of two experiments, and (4) a questionnaire about the experiments and science conceptions. The research methods included observation, document analysis, and content analysis of the answers to the questionnaires. Additionally, each visit was video recorded in order to design learning materials. The results revealed that most of the pupils were able to follow every stage of experimentation. However, some of them misinterpreted results and conclusions. One implication of the study is that this type of outdoor activity is extremely important to promote meaningful science learning in children, but more care should be taken in practical science activities so that children can overcome some common difficulties when performing scientific inquiry.

  20. Experiments to be flown in an Earth orbiting laboratory: The US experiments on the first international microgravity laboratory, from concept to flight

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Callahan, P. X.; Schaefer, R. L.; Lashbrook, J. J.

    1992-01-01

    The current life cycle of NASA ARC-managed flight experiments is presented. The two main purposes are: (1) to bring to the attention of biologists, and in particular cell and plant biologists, some of the requirements for flying a life science experiment in space; and (2) to introduce the subject to biologists embarking on studies in the field and to delineate some of the specific requirements that will be encountered by an ARC-managed microgravity experiment. This is not intended to be an exhaustive encyclopedia of all techniques used to prepare an experiment to evaluate the effect of microgravity on plant and animal cells. However, many of the requirements are the same for all biological systems and for other NASA centers. Emphasis is on the principle investigator's (PI's) involvement in the activities required for successful completion of major reviews. The PI support required for activities other than these reviews is also discussed, as are the interactions between ARC and the PI that will be required as problems or questions arise throughout experiment and payload development. It is impossible to predict the extent of this activity because it varies according to the complexity of the experiment and the flight experience of the PI.

  1. Laboratory Activity to Teach about the Proliferation of Salmonella in Vegetables.

    PubMed

    Marvasi, Massimiliano; Choudhury, Manika; Teplitski, Max

    2015-12-01

    We designed a three-week laboratory experience that can complement any microbiology teaching laboratory to expand students' knowledge of the ecology of human enteric pathogens outside of their animal hosts. Through their participation in this laboratory activity, students learned that vegetative and reproductive plant parts could be a natural habitat for enteric bacteria such as non-typhoidal strains of Salmonella enterica. This field was recently brought to the forefront of the scientific community and public interest by outbreaks of human illness linked to the consumption of fresh fruits and vegetables. Students were encouraged to develop their own testable hypotheses to compare proliferation of Salmonella enterica sv Typhimurium LT2 in different vegetables: cherry and regular-size tomatoes, onions, lettuce, and yellow and red bell peppers (Escherichia coli can be substituted for BSL1 laboratories). Upon completion of the laboratory experience, students were able to: 1) Develop testable hypotheses addressing the ability of a human pathogen, Salmonella enterica, to colonize and proliferate in vegetables; 2) Determine that different vegetables support the growth of Salmonella to different extents; 3) Conduct statistical analysis and identify any significant differences. The teaching-learning process was assessed with a pre-/posttest, with an average increase in content understanding from ~15% to 85%. We also measured students' proficiency while conducting specific technical tasks, revealing no major difficulties while conducting the experiments. Students indicated satisfaction with the organization and content of the practices. All of the students (100%) agreed that the exercises improved their knowledge of this subject. PMID:26753031

  2. Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems

    SciTech Connect

    Stephen L. Karner, Ph.D

    2006-06-01

    Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir – ultimately leading to improvements in managing the resource.

  3. Pore-space alteration in source rock (shales) during hydrocarbons generation: laboratory experiment

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, D. R.; Korost, D. V.; Nadezhkin, D. V.

    2013-12-01

    Hydrocarbons (HC) are generated from solid organic matter (kerogen) due to thermocatalytic reactions. The rate of such reactions shows direct correlation with temperature and depends on the depth of source rock burial. Burial of sedimentary rock is also inevitably accompanied by its structural alteration owing to compaction, dehydration and re-crystallization. Processes of HC generation, primary migration and structural changes are inaccessible for direct observation in nature, but they can be studied in laboratory experiments. Experiment was carried out with a clayey-carbonate rock sample of the Domanik Horizon taken from boreholes drilled in the northeastern part of the south Tatar arch. The rock chosen fits the very essential requirements - high organic matter content and its low metamorphic grade. Our work aimed at laboratory modeling of HC generation in an undisturbed rock sample by its heating in nitrogen atmosphere based on a specified temperature regime and monitoring alterations in the pore space structure. Observations were carried out with a SkyScan-1172 X-ray microtomography scanner (resulting scan resolution of 1 μm). A cylinder, 44 mm in diameter, was prepared from the rock sample for the pyrolitic and microtomographic analyses. Scanning procedures were carried out in 5 runs. Temperature interval for each run had to match the most important stage of HC generation in the source rock, namely: (1) original structure; (2) 100-300°C - discharge of free and adsorbed HC and water; (3) 300-400°C - initial stage of HC formation owing to high-temperature pyrolysis of the solid organic matter and discharge of the chemically bound water; (4) 400-470°C - temperature interval fitting the most intense stage of HC formation; (5) 470-510°C - final stage of HC formation. Maximum sample heating in the experiment was determined as temperature of the onset of active decomposition of carbonates, i.e., in essence, irreversible metamorphism of the rock. Additional

  4. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    NASA Astrophysics Data System (ADS)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  5. Measurement of nonlinear parameters in a semi-infinite medium: laboratory experiment in a berea sandstone

    NASA Astrophysics Data System (ADS)

    Gallot, T.; Fehler, M. C.; Brown, S. R.; Buns, D.; Szabo, T.; Malcolm, A. E.

    2013-12-01

    The nonlinear mechanical behavior of rocks is a well known phenomenon at a laboratory scale and has been observed during earthquakes, slow slip events, volcanic activity, reservoir fracturing, etc. he present work explores the possibility of measuring nonlinear parameters in a semi-infinite medium. Contrary to existing methods that rely on vibrating a sample at a fixed resonant frequency, a pulsed wave is used to create a high amplitude perturbation (the pump) responsible for the nonlinear response. At the same time, a low amplitude wave probes the material to measure changes in elastic properties. Laboratory experiments have been performed in rocks (berea sandstones) to explore the possibility of using such a method for Earth imaging. The strain created by the pump (a shear wave in the tens of kHz), is on the order of a microstrain and is measured by laser vibrometry and extrapolated to the whole sample by a finite difference simulation. A compressional pulse (in the hundreds of kHz range) probes the 15-cm size sample. The variation in time of flight is related to a change in elasticity as described as a function of the strain through quadratic and cubic nonlinearities. Those nonlinear coefficients are shown to be sensitive to several environmental parameters such as temperature, humidity, and also physical properties such as the amplitude of the strain and the relative orientation of the pump and the probing wave. Experimental set-up: a P-wave transducer generates an ultrasonic pulse at 500 kHz recorded by an identical transducer after propagation through the sample. The medium is then perturbed with a S-wave transducer on the top of the sample at 50 kHz .

  6. Plume-induced subduction: from laboratory experiments to Venus large coronae

    NASA Astrophysics Data System (ADS)

    Davaille, A.; Smrekar, S. E.; Tomlinson, S. M.

    2015-12-01

    The development of new visualization techniques and the use of complex-rheology fluids open a new area for planetary geodynamic modelling, as observations of surface patterns (i.e. faults, folds, ridges, trenches) can be related to convective instabilities inside the laboratory mantle analog. The rheology of colloidal aqueous dispersions of silica nanoparticles depends strongly on the solid particle fraction, φp, deforming in the Newtonian regime at low φp, and transitioning to strain-rate weakening, plasticity, elasticity, and brittle properties as φp increases. So, as the system is dried from above, a dense skin grows on the surface, akin to a planetary lithosphere. If it is also heated from below, hot plumes develop. When a hot plume impinges under the skin, it triggers a new mode of subduction: as the upwelling plume material breaks the lithosphere and flows above the denser skin, it forces it to sink. The subduction trenches are localized along the rim of the plumes and strong roll-back is observed. Subduction always occurs along partial circles, a situation very different from the purely viscous case. This is due to the brittle character of the upper part of the experimental lithosphere: it cannot deform viscously to accommodate roll-back and sinking motions. Instead, the plate tears, as a sheet of paper would do upon intrusion. The experiments further suggest that a weaker lithosphere than that present on Earth today is required for such a convective regime. These experimental observations strongly resemble the association of large coronae with trenches that is observed on Venus. The surface deformation structures and the subsurface density variations predicted by the laboratory agree with radar image observations and subsurface density variations inferred from modeling the gravity and topography data at Artemis and Quetzelpetlatl Coronae. Evidence for geologically recent volcanism at Quetzelpetlatl suggests that subduction may be currently active on

  7. Comparison of prototype and laboratory experiments on MOMA GCMS: results from the AMASE11 campaign.

    PubMed

    Siljeström, Sandra; Freissinet, Caroline; Goesmann, Fred; Steininger, Harald; Goetz, Walter; Steele, Andrew; Amundsen, Hans

    2014-09-01

    The characterization of any organic molecules on Mars is a top-priority objective for the ExoMars European Space Agency-Russian Federal Space Agency joint mission. The main instrument for organic analysis on the ExoMars rover is the Mars Organic Molecule Analyzer (MOMA). In preparation for the upcoming mission in 2018, different Mars analog samples are studied with MOMA and include samples collected during the Arctic Mars Analog Svalbard Expedition (AMASE) to Svalbard, Norway. In this paper, we present results obtained from two different Mars analog sites visited during AMASE11, Colletthøgda and Botniahalvøya. Measurements were performed on the samples during AMASE11 with a MOMA gas chromatograph (GC) prototype connected to a commercial mass spectrometer (MS) and later in home institutions with commercial pyrolysis-GCMS instruments. In addition, derivatization experiments were performed on the samples during AMASE11 and in the laboratory. Three different samples were studied from the Colletthøgda that included one evaporite and two carbonate-bearing samples. Only a single sample was studied from the Botniahalvøya site, a weathered basalt covered by a shiny surface consisting of manganese and iron oxides. Organic molecules were detected in all four samples and included aromatics, long-chained hydrocarbons, amino acids, nucleobases, sugars, and carboxylic acids. Both pyrolysis and derivatization indicated the presence of extinct biota by the detection of carboxylic acids in the samples from Colletthøgda, while the presence of amino acids, nucleobases, carboxylic acids, and sugars indicated an active biota in the sample from Botniahalvøya. The results obtained with the prototype flight model in the field coupled with repeat measurements with commercial instruments within the laboratory were reassuringly similar. This demonstrates the performance of the MOMA instrument and validates that the instrument will aid researchers in their efforts to answer fundamental

  8. Comparison of prototype and laboratory experiments on MOMA GCMS: results from the AMASE11 campaign.

    PubMed

    Siljeström, Sandra; Freissinet, Caroline; Goesmann, Fred; Steininger, Harald; Goetz, Walter; Steele, Andrew; Amundsen, Hans

    2014-09-01

    The characterization of any organic molecules on Mars is a top-priority objective for the ExoMars European Space Agency-Russian Federal Space Agency joint mission. The main instrument for organic analysis on the ExoMars rover is the Mars Organic Molecule Analyzer (MOMA). In preparation for the upcoming mission in 2018, different Mars analog samples are studied with MOMA and include samples collected during the Arctic Mars Analog Svalbard Expedition (AMASE) to Svalbard, Norway. In this paper, we present results obtained from two different Mars analog sites visited during AMASE11, Colletthøgda and Botniahalvøya. Measurements were performed on the samples during AMASE11 with a MOMA gas chromatograph (GC) prototype connected to a commercial mass spectrometer (MS) and later in home institutions with commercial pyrolysis-GCMS instruments. In addition, derivatization experiments were performed on the samples during AMASE11 and in the laboratory. Three different samples were studied from the Colletthøgda that included one evaporite and two carbonate-bearing samples. Only a single sample was studied from the Botniahalvøya site, a weathered basalt covered by a shiny surface consisting of manganese and iron oxides. Organic molecules were detected in all four samples and included aromatics, long-chained hydrocarbons, amino acids, nucleobases, sugars, and carboxylic acids. Both pyrolysis and derivatization indicated the presence of extinct biota by the detection of carboxylic acids in the samples from Colletthøgda, while the presence of amino acids, nucleobases, carboxylic acids, and sugars indicated an active biota in the sample from Botniahalvøya. The results obtained with the prototype flight model in the field coupled with repeat measurements with commercial instruments within the laboratory were reassuringly similar. This demonstrates the performance of the MOMA instrument and validates that the instrument will aid researchers in their efforts to answer fundamental

  9. Laboratory Experiments on Electrochemical Remediation of the Environment: Electrocoagulation of Oily Wastewater

    NASA Astrophysics Data System (ADS)

    Ibanez, Jorge G.; Takimoto, Martha M.; Vasquez, Ruben C.; Basak, Sanjay; Myung, Noseung; Rajeshwar, Krishnan

    1995-11-01

    A laboratory experiment illustrating the principle and application of electrocoagulation is described using oil-water emulsions as the medium to be treated and iron as the anode. The destabilized oil droplets are shown to be separated from the aqueous phase via electrolysis and iron hydrooxide coagulant formation. This simple experiment is shown to afford opportunities for exploring concepts related to colloid chemistry, electrochemistry, corrosion, and analytical chemistry.

  10. Laboratory Experiments, Numerical Simulations, and Astronomical Observations of Deflected Supersonic Jets: Application to HH 110

    NASA Astrophysics Data System (ADS)

    Hartigan, P.; Foster, J. M.; Wilde, B. H.; Coker, R. F.; Rosen, P. A.; Hansen, J. F.; Blue, B. E.; Williams, R. J. R.; Carver, R.; Frank, A.

    2009-11-01

    Collimated supersonic flows in laboratory experiments behave in a similar manner to astrophysical jets provided that radiation, viscosity, and thermal conductivity are unimportant in the laboratory jets and that the experimental and astrophysical jets share similar dimensionless parameters such as the Mach number and the ratio of the density between the jet and the ambient medium. When these conditions apply, laboratory jets provide a means to study their astrophysical counterparts for a variety of initial conditions, arbitrary viewing angles, and different times, attributes especially helpful for interpreting astronomical images where the viewing angle and initial conditions are fixed and the time domain is limited. Experiments are also a powerful way to test numerical fluid codes in a parameter range in which the codes must perform well. In this paper, we combine images from a series of laboratory experiments of deflected supersonic jets with numerical simulations and new spectral observations of an astrophysical example, the young stellar jet HH 110. The experiments provide key insights into how deflected jets evolve in three dimensions, particularly within working surfaces where multiple subsonic shells and filaments form, and along the interface where shocked jet material penetrates into and destroys the obstacle along its path. The experiments also underscore the importance of the viewing angle in determining what an observer will see. The simulations match the experiments so well that we can use the simulated velocity maps to compare the dynamics in the experiment with those implied by the astronomical spectra. The experiments support a model where the observed shock structures in HH 110 form as a result of a pulsed driving source rather than from weak shocks that may arise in the supersonic shear layer between the Mach disk and bow shock of the jet's working surface.

  11. LABORATORY EXPERIMENTS, NUMERICAL SIMULATIONS, AND ASTRONOMICAL OBSERVATIONS OF DEFLECTED SUPERSONIC JETS: APPLICATION TO HH 110

    SciTech Connect

    Hartigan, P.; Carver, R.; Foster, J. M.; Rosen, P. A.; Williams, R. J. R.; Wilde, B. H.; Coker, R. F.; Hansen, J. F.; Blue, B. E.; Frank, A.

    2009-11-01

    Collimated supersonic flows in laboratory experiments behave in a similar manner to astrophysical jets provided that radiation, viscosity, and thermal conductivity are unimportant in the laboratory jets and that the experimental and astrophysical jets share similar dimensionless parameters such as the Mach number and the ratio of the density between the jet and the ambient medium. When these conditions apply, laboratory jets provide a means to study their astrophysical counterparts for a variety of initial conditions, arbitrary viewing angles, and different times, attributes especially helpful for interpreting astronomical images where the viewing angle and initial conditions are fixed and the time domain is limited. Experiments are also a powerful way to test numerical fluid codes in a parameter range in which the codes must perform well. In this paper, we combine images from a series of laboratory experiments of deflected supersonic jets with numerical simulations and new spectral observations of an astrophysical example, the young stellar jet HH 110. The experiments provide key insights into how deflected jets evolve in three dimensions, particularly within working surfaces where multiple subsonic shells and filaments form, and along the interface where shocked jet material penetrates into and destroys the obstacle along its path. The experiments also underscore the importance of the viewing angle in determining what an observer will see. The simulations match the experiments so well that we can use the simulated velocity maps to compare the dynamics in the experiment with those implied by the astronomical spectra. The experiments support a model where the observed shock structures in HH 110 form as a result of a pulsed driving source rather than from weak shocks that may arise in the supersonic shear layer between the Mach disk and bow shock of the jet's working surface.

  12. Laboratory experiments on current flow between stationary and moving electrodes in magnetoplasmas

    NASA Technical Reports Server (NTRS)

    Stenzel, Reiner L.; Urrutia, J. M.

    1990-01-01

    Laboratory experiments were performed in order to investigate the basic physics of current flow between tethered electrodes in magnetoplasmas. The major findings are summarized. The experiments are performed in an effectively very large laboratory plasma in which not only the nonlinear current collection is addressed but also the propagation and spread of currents, the formation of current wings by moving electrodes, the current closure, and radiation from transmission lines. The laboratory plasma consists of a pulsed dc discharge whose Maxwellian afterglow provides a quiescent, current-free uniform background plasma. Electrodes consisting of collectors and electron emitters are inserted into the plasma and a pulsed voltage is applied between two floating electrodes via insulated transmission lines. Besides the applied current in the wire, the total current density in the plasma is obtained from space and time resolved magnetic probe measurements via Maxwell's law. Langmuir probes yield the plasma parameters.

  13. An Advanced Undergraduate Chemistry Laboratory Experiment Exploring NIR Spectroscopy and Chemometrics

    ERIC Educational Resources Information Center

    Wanke, Randall; Stauffer, Jennifer

    2007-01-01

    An advanced undergraduate chemistry laboratory experiment to study the advantages and hazards of the coupling of NIR spectroscopy and chemometrics is described. The combination is commonly used for analysis and process control of various ingredients used in agriculture, petroleum and food products.

  14. A Laboratory Experiment, Based on the Maillard Reaction, Conducted as a Project in Introductory Statistics

    ERIC Educational Resources Information Center

    Kravchuk, Olena; Elliott, Antony; Bhandari, Bhesh

    2005-01-01

    A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques…

  15. Laboratory and in-flight experiments to evaluate 3-D audio display technology

    NASA Technical Reports Server (NTRS)

    Ericson, Mark; Mckinley, Richard; Kibbe, Marion; Francis, Daniel

    1994-01-01

    Laboratory and in-flight experiments were conducted to evaluate 3-D audio display technology for cockpit applications. A 3-D audio display generator was developed which digitally encodes naturally occurring direction information onto any audio signal and presents the binaural sound over headphones. The acoustic image is stabilized for head movement by use of an electromagnetic head-tracking device. In the laboratory, a 3-D audio display generator was used to spatially separate competing speech messages to improve the intelligibility of each message. Up to a 25 percent improvement in intelligibility was measured for spatially separated speech at high ambient noise levels (115 dB SPL). During the in-flight experiments, pilots reported that spatial separation of speech communications provided a noticeable improvement in intelligibility. The use of 3-D audio for target acquisition was also investigated. In the laboratory, 3-D audio enabled the acquisition of visual targets in about two seconds average response time at 17 degrees accuracy. During the in-flight experiments, pilots correctly identified ground targets 50, 75, and 100 percent of the time at separation angles of 12, 20, and 35 degrees, respectively. In general, pilot performance in the field with the 3-D audio display generator was as expected, based on data from laboratory experiments.

  16. Solubility and Solubility Product Determination of a Sparingly Soluble Salt: A First-Level Laboratory Experiment

    ERIC Educational Resources Information Center

    Bonomo, Raffaele P.; Tabbi, Giovanni; Vagliasindi, Laura I.

    2012-01-01

    A simple experiment was devised to let students determine the solubility and solubility product, "K"[subscript sp], of calcium sulfate dihydrate in a first-level laboratory. The students experimentally work on an intriguing equilibrium law: the constancy of the product of the ion concentrations of a sparingly soluble salt. The determination of…

  17. A Laboratory Experience for Students of Differential Equations using RLC Circuits.

    ERIC Educational Resources Information Center

    Graham, Jeff; Barnes, Julia

    1997-01-01

    Argues that although differential equations are billed as applied mathematics, there is rarely any hands-on experience incorporated into the course. Presents a laboratory project that requires students to obtain data from a physics lab and use that data to compute the coefficients of the second order differential equation, which mathematically…

  18. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  19. Bacterial Production of Poly(3-hydroxybutyrate): An Undergraduate Student Laboratory Experiment

    ERIC Educational Resources Information Center

    Burns, Kristi L.; Oldham, Charlie D.; May, Sheldon W.

    2009-01-01

    As part of a multidisciplinary course that is cross-listed between five departments, we developed an undergraduate student laboratory experiment for culturing, isolating, and purifying the biopolymer, poly(3-hydroxybutyrate), PHB. This biopolyester accumulates in the cytoplasm of bacterial cells under specific growth conditions, and it has…

  20. A Critical Review of Seligman's Laboratory Experiments on Learned Helplessness and Depression in Humans

    ERIC Educational Resources Information Center

    Costello, Charles G.

    1978-01-01

    Six laboratory experiments on learned helplessness and depression in humans reported by Seligman and his colleagues were critically reviewed. A number of methodological and conceptual problems were discussed. Suggests that it is important for psychologists to scrutinize psychological theories in order to assess their conceptual clarity and…

  1. Coulometric Titration of Ethylenediaminetetraacetate (EDTA) with Spectrophotometric Endpoint Detection: An Experiment for the Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Williams, Kathryn R.; Young, Vaneica Y.; Killian, Benjamin J.

    2011-01-01

    Ethylenediaminetetraacetate (EDTA) is commonly used as an anticoagulant in blood-collection procedures. In this experiment for the instrumental analysis laboratory, students determine the quantity of EDTA in commercial collection tubes by coulometric titration with electrolytically generated Cu[superscript 2+]. The endpoint is detected…

  2. Dehydration of 2-Methyl-1-Cyclohexanol: New Findings from a Popular Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Friesen, J. Brent; Schretzman, Robert

    2011-01-01

    The mineral acid-catalyzed dehydration of 2-methyl-1-cyclohexanol has been a popular laboratory exercise in second-year organic chemistry for several decades. The dehydration experiment is often performed by organic chemistry students to illustrate Zaitsev's rule. However, sensitive analytical techniques reveal that the results do not entirely…

  3. Microwave-Assisted Esterification: A Discovery-Based Microscale Laboratory Experiment

    ERIC Educational Resources Information Center

    Reilly, Maureen K.; King, Ryan P.; Wagner, Alexander J.; King, Susan M.

    2014-01-01

    An undergraduate organic chemistry laboratory experiment has been developed that features a discovery-based microscale Fischer esterification utilizing a microwave reactor. Students individually synthesize a unique ester from known sets of alcohols and carboxylic acids. Each student identifies the best reaction conditions given their particular…

  4. Development of a Web-Enabled Learning Platform for Geospatial Laboratories: Improving the Undergraduate Learning Experience

    ERIC Educational Resources Information Center

    Mui, Amy B.; Nelson, Sarah; Huang, Bruce; He, Yuhong; Wilson, Kathi

    2015-01-01

    This paper describes a web-enabled learning platform providing remote access to geospatial software that extends the learning experience outside of the laboratory setting. The platform was piloted in two undergraduate courses, and includes a software server, a data server, and remote student users. The platform was designed to improve the quality…

  5. Usnic Acid and the Intramolecular Hydrogen Bond: A Computational Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Green, Thomas K.; Lane, Charles A.

    2006-01-01

    A computational experiment is described for the organic chemistry laboratory that allows students to estimate the relative strengths of the intramolecular hydrogen bonds of usnic and isousnic acids, two related lichen secondary metabolites. Students first extract and purify usnic acid from common lichens and obtain [superscript 1]H NMR and IR…

  6. Ring-Closing Metathesis: An Advanced Guided-Inquiry Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Schepmann, Hala G.; Mynderse, Michelle

    2010-01-01

    The design and implementation of an advanced guided-inquiry experiment for the organic laboratory is described. Grubbs's second-generation catalyst is used to effect the ring-closing metathesis of diethyl diallylmalonate. The reaction is carried out under an inert atmosphere at room temperature and monitored by argentic TLC. The crude reaction is…

  7. A Static Method as an Alternative to Gel Chromatography: An Experiment for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Burum, Alex D.; Splittgerber, Allan G.

    2008-01-01

    This article describes a static method as an alternative to gel chromatography, which may be used as an undergraduate laboratory experiment. In this method, a constant mass of Sephadex gel is swollen in a series of protein solutions. UV-vis spectrophotometry is used to find a partition coefficient, KD, that indicates the fraction of the interior…

  8. Laboratory Experiment Investigating the Impact of Ocean Acidification on Calcareous Organisms

    ERIC Educational Resources Information Center

    Perera, Alokya P.; Bopegedera, A. M. R. P.

    2014-01-01

    The increase in ocean acidity since preindustrial times may have deleterious consequences for marine organisms, particularly those with calcareous structures. We present a laboratory experiment to investigate this impact with general, introductory, environmental, and nonmajors chemistry students. For simplicity and homogeneity, calcite was…

  9. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  10. Developing School Laboratories To Promote the Establishment of Individual Experience Programs. Final Report.

    ERIC Educational Resources Information Center

    Valley Springs School District 2, AR.

    A project was conducted to promote and develop individual Supervised Agricultural Experience (SAE) programs in Arkansas through the development of laboratories. It was felt that strong SAE programs enhance the instructional portion of agriculture education, serve as a motivational tool, and improve the relations between the local school and…

  11. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    ERIC Educational Resources Information Center

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  12. A Student Laboratory Experiment Based on the Vitamin C Clock Reaction

    ERIC Educational Resources Information Center

    Vitz, Ed

    2007-01-01

    The Vitamin C Clock Reaction has now been adapted to serve as a student laboratory experiment in the education process of high-school and college-level general chemistry. Despite of imparting valuable knowledge, it also may be hazardous, as the tincture of iodine contains inflammable substances that may cause burning on prolonged exposure.

  13. The Kinetics and Inhibition of Gamma-Glutamyl Transpeptidase: A Biochemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; Sohl, Julie

    1988-01-01

    Discusses an enzyme kinetics laboratory experiment involving a two substrate system for undergraduate biochemistry. Uses the enzyme gamma-glutamyl transpeptidase as this enzyme in blood serum is of clinical significance. Notes elevated levels are seen in liver disease, alcoholism, and epilepsy. Uses a spectrophotometer for the analysis. (MVL)

  14. Measurement of the Compressibility Factor of Gases: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Bendelsmith, Andrew J.; Kuwata, Keith T.

    2011-01-01

    In this article, we describe an experiment for the undergraduate physical chemistry laboratory in which students measure the compressibility factor of two gases, helium and carbon dioxide, as a function of pressure at constant temperature. The experimental apparatus is relatively inexpensive to construct and is described and diagrammed in detail.…

  15. Design Your Own Workup: A Guided-Inquiry Experiment for Introductory Organic Laboratory Courses

    ERIC Educational Resources Information Center

    Mistry, Nimesh; Fitzpatrick, Christopher; Gorman, Stephen

    2016-01-01

    A guided-inquiry experiment was designed and implemented in an introductory organic chemistry laboratory course. Students were given a mixture of compounds and had to isolate two of the components by designing a viable workup procedure using liquid-liquid separation methods. Students were given the opportunity to apply their knowledge of chemical…

  16. Early experience with the Intel iPSC/860 at Oak Ridge National Laboratory

    SciTech Connect

    Heath, M.T.; Geist, G.A.; Drake, J.B.

    1990-09-01

    This report summarizes the early experience in using the Intel iPSC/860 parallel supercomputer at Oak Ridge National Laboratory. The hardware and software are described in some detail, and the machine's performance is studied using both simple computational kernels and a number of complete applications programs. 21 refs., 7 figs., 3 tabs.

  17. Non-stop lab week: A real laboratory experience for life sciences postgraduate courses.

    PubMed

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-05-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular Biomedicine master program at the University of Aveiro, Portugal. The unique feature of the NSLW is its intensity: during a 1-week period, students perform a subcloning and a protein expression project in an environment that mimics a real laboratory. Students work autonomously, and the progression of work depends on achieving the daily goals. Throughout the three curricular years, most students considered the intensity of the NSLW a very good experience and fundamental for their future. Moreover, after some experience in a real laboratory, students state that both the techniques and the environment created in the NSLW were similar to what they experience in their current work situation. The NSLW fulfills a gap in postgraduate students' learning, particularly in practical skills and scientific thinking. Furthermore, the NSLW experience provides skills to the students that are crucial to their future research area. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:297-303, 2016.

  18. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  19. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  20. Nitration of Phenols Using Cu(NO[subscript 3])[subscript 2]: Green Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Yadav, Urvashi; Mande, Hemant; Ghalsasi, Prasanna

    2012-01-01

    An easy-to-complete, microwave-assisted, green chemistry, electrophilic nitration method for phenol using Cu(NO[subscript 3])[subscript 2] in acetic acid is discussed. With this experiment, students clearly understand the mechanism underlying the nitration reaction in one laboratory session. (Contains 4 schemes.)