Science.gov

Sample records for activity levels sleep

  1. Sleep Quality and Recommended Levels of Physical Activity in Older People.

    PubMed

    Hartescu, Iuliana; Morgan, Kevin; Stevinson, Clare D

    2016-04-01

    A minimum level of activity likely to improve sleep outcomes among older people has not previously been explored. In a representative UK sample aged 65+ (n = 926), cross-sectional regressions controlling for appropriate confounders showed that walking at or above the internationally recommended threshold of ≥ 150 min per week was significantly associated with a lower likelihood of reporting insomnia symptoms (OR = 0.67, 95% CI = 0.45-0.91, p < .05). At a 4-year follow-up (n = 577), higher walking levels at baseline significantly predicted a lower likelihood of reporting sleep onset (OR = 0.64, 95% CI = 0.42-0.97, p < .05) or sleep maintenance (OR = 0.63, 95% CI = 0.41-0.95, p < .05) problems. These results are consistent with the conclusion that current physical activity guidelines can support sleep quality in older adults. PMID:26291553

  2. Treatment of Sleep Disordered Breathing Reverses Low Fetal Activity Levels in Preeclampsia

    PubMed Central

    Blyton, Diane M.; Skilton, Michael R.; Edwards, Natalie; Hennessy, Annemarie; Celermajer, David S.; Sullivan, Colin E.

    2013-01-01

    Study Objectives: Preeclampsia affects 5% to 7% of pregnancies, is strongly associated with low birth weight and fetal death, and is accompanied by sleep disordered breathing. We hypothesized that sleep disordered breathing may link preeclampsia with reduced fetal movements (a marker of fetal health), and that treatment of sleep disordered breathing might improve fetal activity during sleep. Design, Setting, and Participants: First, a method of fetal movement recording was validated against ultrasound in 20 normal third trimester pregnancies. Second, fetal movement was measured overnight with concurrent polysomnography in 20 patients with preeclampsia and 20 control subjects during third trimester. Third, simultaneous polysomnography and fetal monitoring was done in 10 additional patients with preeclampsia during a control night and during a night of nasal CPAP. Intervention: Overnight continuous positive airway pressure. Measurements and Results: Women with preeclampsia had inspiratory flow limitation and an increased number of oxygen desaturations during sleep (P = 0.008), particularly during REM sleep. Preeclampsia was associated with reduced total fetal movements overnight (319 [SD 32]) versus controls (689 [SD 160], P < 0.0001) and a change in fetal movement patterns. The number of fetal hiccups was also substantially reduced in preeclampsia subjects (P < 0.0001). Continuous positive airway pressure treatment increased the number of fetal movements and hiccups (P < 0.0001 and P = 0.0002, respectively). Conclusions: The effectiveness of continuous positive airway pressure in improving fetal movements suggests a pathogenetic role for sleep disordered breathing in the reduced fetal activity and possibly in the poorer fetal outcomes associated with preeclampsia. Citation: Blyton DM; Skilton MR; Edwards N; Hennessy A; Celermajer DS; Sullivan CE. Treatment of sleep disordered breathing reverses low fetal activity levels in preeclampsia. SLEEP 2013;36(1):15–21

  3. Sleep and brain energy levels: ATP changes during sleep.

    PubMed

    Dworak, Markus; McCarley, Robert W; Kim, Tae; Kalinchuk, Anna V; Basheer, Radhika

    2010-06-30

    Sleep is one of the most pervasive biological phenomena, but one whose function remains elusive. Although many theories of function, indirect evidence, and even common sense suggest sleep is needed for an increase in brain energy, brain energy levels have not been directly measured with modern technology. We here report that ATP levels, the energy currency of brain cells, show a surge in the initial hours of spontaneous sleep in wake-active but not in sleep-active brain regions of rat. The surge is dependent on sleep but not time of day, since preventing sleep by gentle handling of rats for 3 or 6 h also prevents the surge in ATP. A significant positive correlation was observed between the surge in ATP and EEG non-rapid eye movement delta activity (0.5-4.5 Hz) during spontaneous sleep. Inducing sleep and delta activity by adenosine infusion into basal forebrain during the normally active dark period also increases ATP. Together, these observations suggest that the surge in ATP occurs when the neuronal activity is reduced, as occurs during sleep. The levels of phosphorylated AMP-activated protein kinase (P-AMPK), well known for its role in cellular energy sensing and regulation, and ATP show reciprocal changes. P-AMPK levels are lower during the sleep-induced ATP surge than during wake or sleep deprivation. Together, these results suggest that sleep-induced surge in ATP and the decrease in P-AMPK levels set the stage for increased anabolic processes during sleep and provide insight into the molecular events leading to the restorative biosynthetic processes occurring during sleep.

  4. Sleep duration and activity levels in Estonian and Swedish children and adolescents.

    PubMed

    Ortega, Francisco B; Ruiz, Jonatan R; Labayen, Idoia; Kwak, Lydia; Harro, Jaanus; Oja, Leila; Veidebaum, Toomas; Sjöström, Michael

    2011-10-01

    We aimed to examine the associations of sleep duration with time spent on sedentary, moderate and vigorous activities in children and adolescents. The sample consisted of 2,241 (53.5% girls) Estonian and Swedish children (9-10 years) and adolescents (15-16 years), from the European Youth Heart Study, in 1998-1999. Sleep duration was calculated by the difference between self-reported bedtime and time for getting up on a normal weekday. Sedentary time/physical activity was measured by accelerometry (valid data on 1,462 participants). Adolescents had lower odds than children, and Swedish higher odds than Estonian, of meeting the sleep recommendations (>9 h) (OR = 0.22, 95% CI 0.17-0.27; and 1.32, 1.07-1.61, respectively). Participants sleeping longer than 10 h spent more time on physical activities (all intensities) and less time on sedentary activities than those sleeping shorter durations (all P < 0.001). The associations with physical activity became non-significant after additional adjustment for age or sexual maturation (Tanner stages), whereas the associations with sedentary time became borderline significant (P = 0.09/0.03, for age and Tanner, respectively). In conclusion, these results do not suggest a link between sleep durations and activity in a relatively large sample of children and adolescents from two European countries. Consequently, the common assumption that physical activity is a mediator in the relationship between short sleep durations and obesity is not supported by our findings.

  5. Effects of chronic sleep deprivation on autonomic activity by examining heart rate variability, plasma catecholamine, and intracellular magnesium levels.

    PubMed

    Takase, Bonpei; Akima, Takashi; Satomura, Kimio; Ohsuzu, Fumitaka; Mastui, Takemi; Ishihara, Masayuki; Kurita, Akira

    2004-10-01

    Chronic sleep deprivation is associated with cardiovascular events. In addition, autonomic activity determined from the levels of the heart rate variability (HRV), plasma catecholamine, and intracellular magnesium (Mg) are important in the pathophysiology of cardiovascular events. This study therefore aimed to determine the effects of chronic sleep deprivation on autonomic activity by examining the HRV, plasma catecholamine, and intracellular magnesium levels. Thirty (30) healthy male college students ranging in age from 20 to 24 years of age (average 22 +/- 1 years; mean +/- SD) with no coronary risk factors such as hypertension, diabetes mellitus, hyperlipidemia or a family history of premature coronary artery disease (CAD) were included in the study. Over a 4-week period, the volunteers' plasma levels of epinephrine, norepinephrine, and erythrocyte-Mg were measured. The study was made during the 4 weeks before and immediately after college finals exams. HRV, obtained from 24-hour ambulatory ECG monitoring, included time and frequency domain indices. The HRV indices and erythrocyte-Mg decreased while norepinephrine increased during chronic sleep deprivation. It is concluded that chronic sleep deprivation causes an autonomic imbalance and decreases intracellular Mg, which could be associated with chronic sleep deprivation-induced cardiovascular events. PMID:15754837

  6. Thyroid Hormone Levels and TSH Activity in Patients with Obstructive Sleep Apnea Syndrome.

    PubMed

    Bielicki, P; Przybyłowski, T; Kumor, M; Barnaś, M; Wiercioch, M; Chazan, R

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is characterized by complete cessation of inspiratory flow (apnea) or upper airway airflow limitation (hypopnea) with increased respiratory muscle activity, which is repeatedly observed during sleep. Hypothyroidism has been described as a rare cause of OSAS, but it is considered to be the main cause of breathing disorders during sleep in patients in whom an improvement of OSAS is observed after thyroid hormone replacement therapy. Nevertheless, euthyreosis due to thyroxine replacement in patients with OSAS often does not improve the breathing disorder and treatment with continuous positive airway pressure is usually applied. The aim of this study was to assess thyroid function in patients with OSAS. We studied 813 patients in whom severe OSAS was diagnosed; the mean apnea-hypopnea index was 44.0. Most of the patients were obese (mean BMI 33.1 ± 6.6 kg/m2) and had excessive daytime sleepiness (ESS 12.8 ± 6.6). With the thyroid stimulating hormone (TSH) concentration as the major criterion, hypothyroidism was diagnosed in 38 (4.7%) and hyperthyroidism was diagnosed in 31 (3.8%) patients. Analysis of basic anthropometric data, selected polysomnography results, and TSH, fT3, and fT4 values did not reveal any significant correlations. In conclusion, the incidence of thyroid function disorders seems to be no different in OSAS than that in the general population. We did not find correlations between TSH activity and the severity of breathing disorders during sleep. PMID:26542600

  7. Sleep Loss Activates Cellular Inflammatory Signaling

    PubMed Central

    Irwin, Michael R.; Wang, Minge; Ribeiro, Denise; Cho, Hyong Jin; Olmstead, Richard; Breen, Elizabeth Crabb; Martinez-Maza, Otoniel; Cole, Steve

    2008-01-01

    Background Accumulating evidence suggests that sleep disturbance is associated with inflammation and related disorders including cardiovascular disease, arthritis, and diabetes mellitus. This study was undertaken to test the effects of sleep loss on activation of nuclear factor (NF) -κB, a transcription factor that serves a critical role in the inflammatory signaling cascade. Methods In 14 healthy adults (7 females; 7 males), peripheral blood mononuclear cell NF-κB was repeatedly assessed, along with enumeration of lymphocyte subpopulations, in the morning after baseline sleep, partial sleep deprivation (awake from 23:00 h to 03:00 h), and recovery sleep. Results In the morning after a night of sleep loss, mononuclear cell NF-κB activation was significantly greater compared with morning levels following uninterrupted baseline or recovery sleep, in which the response was found in females but not in males. Conclusions These results identify NF-κB activation as a molecular pathway by which sleep disturbance may influence leukocyte inflammatory gene expression and the risk of inflammation-related disease. PMID:18561896

  8. How Sleep Activates Epileptic Networks?

    PubMed Central

    Halász, Peter

    2013-01-01

    Background. The relationship between sleep and epilepsy has been long ago studied, and several excellent reviews are available. However, recent development in sleep research, the network concept in epilepsy, and the recognition of high frequency oscillations in epilepsy and more new results may put this matter in a new light. Aim. The review address the multifold interrelationships between sleep and epilepsy networks and with networks of cognitive functions. Material and Methods. The work is a conceptual update of the available clinical data and relevant studies. Results and Conclusions. Studies exploring dynamic microstructure of sleep have found important gating mechanisms for epileptic activation. As a general rule interictal epileptic manifestations seem to be linked to the slow oscillations of sleep and especially to the reactive delta bouts characterized by A1 subtype in the CAP system. Important link between epilepsy and sleep is the interference of epileptiform discharges with the plastic functions in NREM sleep. This is the main reason of cognitive impairment in different forms of early epileptic encephalopathies affecting the brain in a special developmental window. The impairment of cognitive functions via sleep is present especially in epileptic networks involving the thalamocortical system and the hippocampocortical memory encoding system. PMID:24159386

  9. How sleep activates epileptic networks?

    PubMed

    Halász, Peter

    2013-01-01

    Background. The relationship between sleep and epilepsy has been long ago studied, and several excellent reviews are available. However, recent development in sleep research, the network concept in epilepsy, and the recognition of high frequency oscillations in epilepsy and more new results may put this matter in a new light. Aim. The review address the multifold interrelationships between sleep and epilepsy networks and with networks of cognitive functions. Material and Methods. The work is a conceptual update of the available clinical data and relevant studies. Results and Conclusions. Studies exploring dynamic microstructure of sleep have found important gating mechanisms for epileptic activation. As a general rule interictal epileptic manifestations seem to be linked to the slow oscillations of sleep and especially to the reactive delta bouts characterized by A1 subtype in the CAP system. Important link between epilepsy and sleep is the interference of epileptiform discharges with the plastic functions in NREM sleep. This is the main reason of cognitive impairment in different forms of early epileptic encephalopathies affecting the brain in a special developmental window. The impairment of cognitive functions via sleep is present especially in epileptic networks involving the thalamocortical system and the hippocampocortical memory encoding system.

  10. Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep

    PubMed Central

    Turek, Michal; Besseling, Judith; Spies, Jan-Philipp; König, Sabine; Bringmann, Henrik

    2016-01-01

    Sleep is an essential behavioral state. It is induced by conserved sleep-active neurons that express GABA. However, little is known about how sleep neuron function is determined and how sleep neurons change physiology and behavior systemically. Here, we investigated sleep in Caenorhabditis elegans, which is induced by the single sleep-active neuron RIS. We found that the transcription factor LIM-6, which specifies GABAergic function, in parallel determines sleep neuron function through the expression of APTF-1, which specifies the expression of FLP-11 neuropeptides. Surprisingly FLP-11, and not GABA, is the major component that determines the sleep-promoting function of RIS. FLP-11 is constantly expressed in RIS. At sleep onset RIS depolarizes and releases FLP-11 to induce a systemic sleep state. DOI: http://dx.doi.org/10.7554/eLife.12499.001 PMID:26949257

  11. Sleep apnea in active acromegaly.

    PubMed

    Hart, T B; Radow, S K; Blackard, W G; Tucker, H S; Cooper, K R

    1985-05-01

    Previous case reports have shown an association between acromegaly and the sleep apnea syndrome (SAS). Some of the patients described had central SAS, raising the possibility that an elevation of the growth hormone (GH) level may cause a defect in respiratory drive. We determined the prevalence of SAS in 21 patients with a history of acromegaly. We separated them into two groups based on serum GH concentrations. Ten patients had active acromegaly (mean GH concentration, 62.2 ng/mL; range, 12.6 to 148 ng/mL), while 11 patients had inactive acromegaly (mean GH, 3.2 ng/mL; range, 0.7 to 6.4 ng/mL). Four of the ten patients with active acromegaly had SAS; none of the 11 patients with inactive acromegaly had SAS. Three patients with SAS had the purely obstructive type, and one had the mixed central and obstructive type. The hypercapnic ventilatory response was normal in all patients tested and was not influenced by the GH level. We conclude that SAS is associated with active acromegaly and that the GH level does not affect the hypercapnic ventilatory response. The absence of SAS in successfully treated patients suggests that it may resolve after a normal GH level is restored.

  12. Maternal stress induces adult reduced REM sleep and melatonin level.

    PubMed

    Feng, Pingfu; Hu, Yufen; Vurbic, Drina; Guo, Yang

    2012-05-01

    We have previously reported that neonatal maternal deprivation (MD) resulted in a decrease of total sleep and an increase of orexin A in adult rats. Now, we characterized features of sleep, activity, and melatonin levels in rats neonatally treated with MD and control (MC) procedures. Adult male Sprague-Dawley rats were treated with either MD or MC procedures for 10 days starting at postnatal day 4. At 3 months of age, sleep was recorded for 48 h in one set of MD and MC rats, while another set of MD and MC rats was measured for locomotor activity (under LD = 12:12). Melatonin levels in the blood, pineal gland, and hypothalamus were measured as well as clock protein level in the hypothalamus. Compared to the MC rats, REM sleep in the MD rats was significantly reduced in the light periods but not in the dark periods. Both quiet wake and total wake in the MD rats were significantly increased during the light period compared to the MC rats. The weight of the pineal gland of the MD rats was significantly smaller than in MC rats. Melatonin levels of the MD group were significantly reduced in the pineal gland and hypothalamus compared to the MC group. No significant difference was identified between groups in the expression of the clock protein in the hypothalamus. Neonatal MD resulted in reduced REM sleep and melatonin levels, without changes of circadian cycle of locomotor activity and levels of clock protein.

  13. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep

    PubMed Central

    Alam, Md. Aftab; Kumar, Sunil; McGinty, Dennis; Alam, Md. Noor

    2013-01-01

    The preoptic hypothalamus is implicated in sleep regulation. Neurons in the median preoptic nucleus (MnPO) and the ventrolateral preoptic area (VLPO) have been identified as potential sleep regulatory elements. However, the extent to which MnPO and VLPO neurons are activated in response to changing homeostatic sleep regulatory demands is unresolved. To address this question, we continuously recorded the extracellular activity of neurons in the rat MnPO, VLPO and dorsal lateral preoptic area (LPO) during baseline sleep and waking, during 2 h of sleep deprivation (SD) and during 2 h of recovery sleep (RS). Sleep-active neurons in the MnPO (n = 11) and VLPO (n = 13) were activated in response to SD, such that waking discharge rates increased by 95.8 ± 29.5% and 59.4 ± 17.3%, respectively, above waking baseline values. During RS, non-rapid eye movement (REM) sleep discharge rates of MnPO neurons initially increased to 65.6 ± 15.2% above baseline values, then declined to baseline levels in association with decreases in EEG delta power. Increase in non-REM sleep discharge rates in VLPO neurons during RS averaged 40.5 ± 7.6% above baseline. REM-active neurons (n = 16) in the LPO also exhibited increased waking discharge during SD and an increase in non-REM discharge during RS. Infusion of A2A adenosine receptor antagonist into the VLPO attenuated SD-induced increases in neuronal discharge. Populations of LPO wake/REM-active and state-indifferent neurons and dorsal LPO sleep-active neurons were unresponsive to SD. These findings support the hypothesis that sleep-active neurons in the MnPO and VLPO, and REM-active neurons in the LPO, are components of neuronal circuits that mediate homeostatic responses to sustained wakefulness. PMID:24174649

  14. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep.

    PubMed

    Alam, Md Aftab; Kumar, Sunil; McGinty, Dennis; Alam, Md Noor; Szymusiak, Ronald

    2014-01-01

    The preoptic hypothalamus is implicated in sleep regulation. Neurons in the median preoptic nucleus (MnPO) and the ventrolateral preoptic area (VLPO) have been identified as potential sleep regulatory elements. However, the extent to which MnPO and VLPO neurons are activated in response to changing homeostatic sleep regulatory demands is unresolved. To address this question, we continuously recorded the extracellular activity of neurons in the rat MnPO, VLPO and dorsal lateral preoptic area (LPO) during baseline sleep and waking, during 2 h of sleep deprivation (SD) and during 2 h of recovery sleep (RS). Sleep-active neurons in the MnPO (n = 11) and VLPO (n = 13) were activated in response to SD, such that waking discharge rates increased by 95.8 ± 29.5% and 59.4 ± 17.3%, respectively, above waking baseline values. During RS, non-rapid eye movement (REM) sleep discharge rates of MnPO neurons initially increased to 65.6 ± 15.2% above baseline values, then declined to baseline levels in association with decreases in EEG delta power. Increase in non-REM sleep discharge rates in VLPO neurons during RS averaged 40.5 ± 7.6% above baseline. REM-active neurons (n = 16) in the LPO also exhibited increased waking discharge during SD and an increase in non-REM discharge during RS. Infusion of A2A adenosine receptor antagonist into the VLPO attenuated SD-induced increases in neuronal discharge. Populations of LPO wake/REM-active and state-indifferent neurons and dorsal LPO sleep-active neurons were unresponsive to SD. These findings support the hypothesis that sleep-active neurons in the MnPO and VLPO, and REM-active neurons in the LPO, are components of neuronal circuits that mediate homeostatic responses to sustained wakefulness.

  15. Daily activities and sleep quality in young adults.

    PubMed

    Sexton-Radek, Kathy; Pichler-Mowry, Rene

    2011-04-01

    Daily activity levels were investigated as related to sleep quality in young adult college students aged 18 to 30 years. 85 participants (20 men, 65 women) completed the Young Adult Daily Activity Scale (YADAS). This 37-item checklist has 34 items based on focus group discussion points of college students' typical daily activities and three blank items for students to include their daily activities if not in the listing. The tabulation of type and amount of waking daily activities represents a unique measurement of factors that may affect sleep quality. The participants also rated their typical sleep quality using a standard 5-point scale (low indicating poor sleep). Correlations of sleep ratings and activities were not significant. PMID:21667753

  16. MCH levels in the CSF, brain preproMCH and MCHR1 gene expression during paradoxical sleep deprivation, sleep rebound and chronic sleep restriction.

    PubMed

    Dias Abdo Agamme, Ana Luiza; Aguilar Calegare, Bruno Frederico; Fernandes, Leandro; Costa, Alicia; Lagos, Patricia; Torterolo, Pablo; D'Almeida, Vânia

    2015-12-01

    Neurons that utilize melanin-concentrating hormone (MCH) as neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area. These neurons project throughout the central nervous system and play a role in sleep regulation. With the hypothesis that the MCHergic system function would be modified by the time of the day as well as by disruptions of the sleep-wake cycle, we quantified in rats the concentration of MCH in the cerebrospinal fluid (CSF), the expression of the MCH precursor (Pmch) gene in the hypothalamus, and the expression of the MCH receptor 1 (Mchr1) gene in the frontal cortex and hippocampus. These analyses were performed during paradoxical sleep deprivation (by a modified multiple platform technique), paradoxical sleep rebound and chronic sleep restriction, both at the end of the active (dark) phase (lights were turned on at Zeitgeber time zero, ZT0) and during the inactive (light) phase (ZT8). We observed that in control condition (waking and sleep ad libitum), Mchr1 gene expression was larger at ZT8 (when sleep predominates) than at ZT0, both in frontal cortex and hippocampus. In addition, compared to control, disturbances of the sleep-wake cycle produced the following effects: paradoxical sleep deprivation for 96 and 120 h reduced the expression of Mchr1 gene in frontal cortex at ZT0. Sleep rebound that followed 96 h of paradoxical sleep deprivation increased the MCH concentration in the CSF also at ZT0. Twenty-one days of sleep restriction produced a significant increment in MCH CSF levels at ZT8. Finally, sleep disruptions unveiled day/night differences in MCH CSF levels and in Pmch gene expression that were not observed in control (undisturbed) conditions. In conclusion, the time of the day and sleep disruptions produced subtle modifications in the physiology of the MCHergic system.

  17. Sleep bruxism and anxiety level in children.

    PubMed

    Oliveira, Marcelo Tomás de; Bittencourt, Sandra Teixeira; Marcon, Karina; Destro, Samia; Pereira, Jefferson Ricardo

    2015-01-01

    This study evaluated the association of level of anxiety in children with and without sleep bruxism (SB). The study was performed with 84 six- to eigth-years-old children, divided into two groups: with bruxism (BG) and without bruxism (CG). Following the criteria purposed by American Academy of Sleep Medicine (AASM) to determine SB, the presence of tooth wear has been verified through clinical examinations, and the parents have answered a questionnaire about their children's behavior and habits. Additionally, the State-Trait Anxiety Inventory for Children (STAIC) was applied to parents of the selected patients. Data analysis revealed a statistical significant difference between the groups (Student's t-test, p = 0.0136). Based on the results, anxiety assessment revealed that children with bruxism have reached higher levels in the STAIC scale than the non-bruxism group. Therefore, it indicates a direct relationship between the presence of anxiety disorder and the onset of bruxism in children.

  18. Why does serotonergic activity drastically decrease during REM sleep?

    PubMed

    Sato, Kohji

    2013-10-01

    Here, I postulate two hypotheses that can explain the missing link between sleep and the serotonergic system in terms of spine homeostasis and memory consolidation. As dendritic spines contain many kinds of serotonin receptors, and the activation of serotonin receptors generally increases the number of spines in the cortex and hippocampus, I postulate that serotonin neurons are down-regulated during sleep to decrease spine number, which consequently maintains the total spine number at a constant level. Furthermore, since synaptic consolidation during REM sleep needs long-term potentiation (LTP), and serotonin is reported to inhibit LTP in the cortex, I postulate that serotonergic activity must drastically decrease during REM sleep to induce LTP and do memory consolidation. Until now, why serotonergic neurons show these dramatic changes in the sleep-wake cycle remains unexplained; however, making these hypotheses, I can confer physiological meanings on these dramatic changes of serotonergic neurons in terms of spine homeostasis and memory consolidation.

  19. The role of REM sleep theta activity in emotional memory.

    PubMed

    Hutchison, Isabel C; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus. PMID:26483709

  20. The role of REM sleep theta activity in emotional memory.

    PubMed

    Hutchison, Isabel C; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.

  1. Chronotype influences activity circadian rhythm and sleep: differences in sleep quality between weekdays and weekend.

    PubMed

    Vitale, Jacopo A; Roveda, Eliana; Montaruli, Angela; Galasso, Letizia; Weydahl, Andi; Caumo, Andrea; Carandente, Franca

    2015-04-01

    Several studies have shown the differences among chronotypes in the circadian rhythm of different physiological variables. Individuals show variation in their preference for the daily timing of activity; additionally, there is an association between chronotype and sleep duration/sleep complaints. Few studies have investigated sleep quality during the week days and weekends in relation to the circadian typology using self-assessment questionnaires or actigraphy. The purpose of this study was to use actigraphy to assess the relationship between the three chronotypes and the circadian rhythm of activity levels and to determine whether sleep parameters respond differently with respect to time (weekdays versus the weekend) in Morning-types (M-types), Neither-types (N-types) and Evening-types (E-types). The morningness-eveningness questionnaire (MEQ) was administered to 502 college students to determine their chronotypes. Fifty subjects (16 M-types, 15 N-types and 19 E-types) were recruited to undergo a 7-days monitoring period with an actigraph (Actiwacth® actometers, CNT, Cambridge, UK) to evaluate their sleep parameters and the circadian rhythm of their activity levels. To compare the amplitude and the acrophase among the three chronotypes, we used a one-way ANOVA followed by the Tukey-Kramer post-hoc test. To compare the Midline Estimating Statistic of Rhythm (MESOR) among the three chronotypes, we used a Kruskal-Wallis non-parametric test followed by pairwise comparisons that were performed using Dunn's procedure with a Bonferroni correction for multiple comparisons. The analysis of each sleep parameter was conducted using the mixed ANOVA procedure. The results showed that the chronotype was influenced by sex (χ(2) with p = 0.011) and the photoperiod at birth (χ(2) with p < 0.05). Though the MESOR and amplitude of the activity levels were not different among the three chronotypes, the acrophases compared by the ANOVA post-hoc test were significantly

  2. The role of REM sleep theta activity in emotional memory

    PubMed Central

    Hutchison, Isabel C.; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity—which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex—is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus. PMID:26483709

  3. Relationships between intact parathyroid hormone 24-hour profiles, sleep-wake cycle, and sleep electroencephalographic activity in man.

    PubMed

    Chapotot, F; Gronfier, C; Spiegel, K; Luthringer, R; Brandenberger, G

    1996-10-01

    To determine whether the 24-h intact PTH (iPTH) profile is influenced by the sleep-wake cycle, and whether iPTH pulses show a temporal relationship with internal sleep structure, eight normal young men were studied during 24 h under basal conditions, once with normal nighttime sleep from 2300-0700 h and once after a night of sleep deprivation followed by an 8-h period of daytime sleep from 0700-1500 h. During the 8-h nighttime sleep period, mean iPTH levels were significantly increased by +13% and mean iPTH pulse amplitudes by +31% as compared with the 8-h subsequent waking periods. During the 8 h of total sleep deprivation, mean iPTH levels were not significantly different from the corresponding period in nighttime sleep condition, but mean iPTH pulse amplitudes were significantly lower (P < 0.01). The 8-h daytime sleep period was associated with increased mean iPTH levels and mean iPTH pulse amplitudes (+15% and +57%, respectively, as compared with the corresponding period in nighttime sleep condition). The number of pulses was similar in both experimental series and was not influenced by sleep or by time of day. Analysis of coincidence between iPTH pulses, plasma ionized calcium and plasma phosphate pulses, and slow wave sleep, as well as with rapid eye movement sleep episodes, did not reveal any significant association. Cross-correlation analysis between iPTH, plasma ionized calcium, and plasma phosphate fluctuations during sleep also showed no systematic association. Seven other subjects were studied during a nighttime sleep period in which temporal relationships between iPTH and internal sleep structure were reevaluated using spectral analysis of the sleep electroencephalogram. Cross-correlation analysis between iPTH levels and delta-relative power fluctuations showed nonsignificant results, which confirms the lack of relationship with slow wave sleep. This study demonstrates that the iPTH 24-h profile is influenced by sleep processes with a weak circadian

  4. A longitudinal examination of sleep quality and physical activity in older adults.

    PubMed

    Holfeld, Brett; Ruthig, Joelle C

    2014-10-01

    The relationship between sleep quality and physical activity is bidirectional, yet prior research on older adults has mainly focused on investigating whether increasing levels of physical activity leads to improvements in sleep quality. The current longitudinal study examined both directional relationships by assessing sleep quality and physical activity twice over a two-year period among 426 community-dwelling older adults (ages 61-100). A cross-lagged panel analysis that included age, gender, perceived stress, functional ability, and severity of chronic health conditions as covariates, revealed that better initial sleep quality predicted higher levels of later physical activity beyond the effects of prior physical activity; whereas initial physical activity did not predict later sleep quality after accounting for prior sleep quality. These findings highlight sleep quality as an important contributor to a physically active lifestyle among older adults.

  5. Sleep

    MedlinePlus

    ... sleep deprivation? What are sleep myths? What are sleep disorders? Can certain diseases/conditions disrupt sleep? What is ... sleep deprivation? What are sleep myths? What are sleep disorders? Can certain diseases/conditions disrupt sleep? What is ...

  6. Quantitative analysis of wrist electrodermal activity during sleep

    PubMed Central

    Sano, Akane; Picard, Rosalind W.; Stickgold, Robert

    2015-01-01

    We present the first quantitative characterization of electrodermal activity (EDA) patterns on the wrists of healthy adults during sleep using dry electrodes. We compare the new results on the wrist to prior findings on palmar or finger EDA by characterizing data measured from 80 nights of sleep consisting of 9 nights of wrist and palm EDA from 9 healthy adults sleeping at home, 56 nights of wrist and palm EDA from one healthy adult sleeping at home, and 15 nights of wrist EDA from 15 healthy adults in a sleep laboratory, with the latter compared to concurrent polysomnography. While high frequency patterns of EDA called “storms” were identified by eye in the 1960’s, we systematically compare thresholds for automatically detecting EDA peaks and establish criteria for EDA storms. We found that more than 80% of EDA peaks occurred in non-REM sleep, specifically during slow-wave sleep (SWS) and non-REM stage 2 sleep (NREM2). Also, EDA amplitude is higher in SWS than in other sleep stages. Longer EDA storms were more likely in the first two quarters of sleep and during SWS and NREM2. We also found from the home studies (65 nights) that EDA levels were higher and the skin conductance peaks were larger and more frequent when measured on the wrist than when measured on the palm. These EDA high frequency peaks and high amplitude were sometimes associated with higher skin temperature, but more work is needed looking at neurological and other EDA elicitors in order to elucidate their complete behavior. PMID:25286449

  7. Leptin and Hunger Levels in Young Healthy Adults After One Night of Sleep Loss

    PubMed Central

    Pejovic, Slobodanka; Vgontzas, Alexandros N.; Basta, Maria; Tsaoussoglou, Marina; Zoumakis, Emanuel; Vgontzas, Angeliki; Bixler, Edward O.; Chrousos, George P.

    2013-01-01

    Summary Short-term sleep curtailment associated with activation of the stress system in healthy, young adults has been shown to be associated with decreased leptin levels, impaired insulin sensitivity and increased hunger and appetite. To assess the effects of one night of sleep loss in a less stressful environment on hunger, leptin, adiponectin, cortisol, and blood pressure/heart rate and whether a 2-hour mid-afternoon nap reverses the changes associated with sleep loss, 21 young healthy individuals (10 men, 11 women) participated in a 7-day sleep deprivation experiment (4 consecutive nights followed by a night of sleep loss and 2 recovery nights). Half of the subjects were randomly assigned to take a mid-afternoon nap (1400–1600) the day following the night of total sleep loss. Serial 24-hour blood sampling and hunger scales were completed on the fourth (pre-deprivation) and sixth day (post-deprivation). Leptin levels were significantly increased after one night of total sleep loss, whereas adiponectin, cortisol levels, blood pressure/heart rate, and hunger were not affected. Daytime napping did not influence the effects of sleep loss on leptin, adiponectin or hunger. Acute sleep loss, in a less stressful environment, influences leptin levels in an opposite manner from that of short-term sleep curtailment associated with activation of the stress system. It appears that sleep loss associated with activation of the stress system but not sleep loss per se may lead to increased hunger and appetite and hormonal changes which ultimately may lead to increased consumption of “comfort” food and obesity. PMID:20545838

  8. The Interplay of Stress and Sleep Impacts BDNF Level

    PubMed Central

    Brand, Serge; Calabrese, Pasquale; Holsboer-Trachsler, Edith; Eckert, Anne

    2013-01-01

    Background Sleep plays a pivotal role in normal biological functions. Sleep loss results in higher stress vulnerability and is often found in mental disorders. There is evidence that brain-derived neurotrophic factor (BDNF) could be a central player in this relationship. Recently, we could demonstrate that subjects suffering from current symptoms of insomnia exhibited significantly decreased serum BDNF levels compared with sleep-healthy controls. In accordance with the paradigm indicating a link between sleep and BDNF, we aimed to investigate if the stress system influences the association between sleep and BDNF. Methodology/Principal Findings Participants with current symptoms of insomnia plus a former diagnosis of Restless Legs Syndrome (RLS) and/or Periodic Limb Movement (PLM) and sleep healthy controls were included in the study. They completed questionnaires on sleep (ISI, Insomnia Severity Index) and stress (PSS, Perceived Stress Scale) and provided a blood sample for determination of serum BDNF. We found a significant interaction between stress and insomnia with an impact on serum BDNF levels. Moreover, insomnia severity groups and score on the PSS each revealed a significant main effect on serum BDNF levels. Insomnia severity was associated with increased stress experience affecting serum BDNF levels. Of note, the association between stress and BDNF was only observed in subjects without insomnia. Using a mediation model, sleep was revealed as a mediator of the association between stress experience and serum BDNF levels. Conclusions This is the first study to show that the interplay between stress and sleep impacts BDNF levels, suggesting an important role of this relationship in the pathogenesis of stress-associated mental disorders. Hence, we suggest sleep as a key mediator at the connection between stress and BDNF. Whether sleep is maintained or disturbed might explain why some individuals are able to handle a certain stress load while others develop a

  9. The effects of physical activity on sleep: a meta-analytic review.

    PubMed

    Kredlow, M Alexandra; Capozzoli, Michelle C; Hearon, Bridget A; Calkins, Amanda W; Otto, Michael W

    2015-06-01

    A significant body of research has investigated the effects of physical activity on sleep, yet this research has not been systematically aggregated in over a decade. As a result, the magnitude and moderators of these effects are unclear. This meta-analytical review examines the effects of acute and regular exercise on sleep, incorporating a range of outcome and moderator variables. PubMed and PsycINFO were used to identify 66 studies for inclusion in the analysis that were published through May 2013. Analyses reveal that acute exercise has small beneficial effects on total sleep time, sleep onset latency, sleep efficiency, stage 1 sleep, and slow wave sleep, a moderate beneficial effect on wake time after sleep onset, and a small effect on rapid eye movement sleep. Regular exercise has small beneficial effects on total sleep time and sleep efficiency, small-to-medium beneficial effects on sleep onset latency, and moderate beneficial effects on sleep quality. Effects were moderated by sex, age, baseline physical activity level of participants, as well as exercise type, time of day, duration, and adherence. Significant moderation was not found for exercise intensity, aerobic/anaerobic classification, or publication date. Results were discussed with regards to future avenues of research and clinical application to the treatment of insomnia.

  10. Sleep Duration and Area-Level Deprivation in Twins

    PubMed Central

    Watson, Nathaniel F.; Horn, Erin; Duncan, Glen E.; Buchwald, Dedra; Vitiello, Michael V.; Turkheimer, Eric

    2016-01-01

    Study Objectives: We used quantitative genetic models to assess whether area-level deprivation as indicated by the Singh Index predicts shorter sleep duration and modifies its underlying genetic and environmental contributions. Methods: Participants were 4,218 adult twin pairs (2,377 monozygotic and 1,841 dizygotic) from the University of Washington Twin Registry. Participants self-reported habitual sleep duration. The Singh Index was determined by linking geocoding addresses to 17 indicators at the census-tract level using data from Census of Washington State and Census Tract Cartographic Boundary Files from 2000 and 2010. Data were analyzed using univariate and bivariate genetic decomposition and quantitative genetic interaction models that assessed A (additive genetics), C (common environment), and E (unique environment) main effects of the Singh Index on sleep duration and allowed the magnitude of residual ACE variance components in sleep duration to vary with the Index. Results: The sample had a mean age of 38.2 y (standard deviation [SD] = 18), and was predominantly female (62%) and Caucasian (91%). Mean sleep duration was 7.38 h (SD = 1.20) and the mean Singh Index score was 0.00 (SD = 0.89). The heritability of sleep duration was 39% and the Singh Index was 12%. The uncontrolled phenotypic regression of sleep duration on the Singh Index showed a significant negative relationship between area-level deprivation and sleep length (b = −0.080, P < 0.001). Every 1 SD in Singh Index was associated with a ∼4.5 min change in sleep duration. For the quasi-causal bivariate model, there was a significant main effect of E (b0E = −0.063; standard error [SE] = 0.30; P < 0.05). Residual variance components unique to sleep duration were significant for both A (b0Au = 0.734; SE = 0.020; P < 0.001) and E (b0Eu = 0.934; SE = 0.013; P < 0.001). Conclusions: Area-level deprivation has a quasi-causal association with sleep duration, with greater deprivation being related to

  11. Region-Specific Dissociation between Cortical Noradrenaline Levels and the Sleep/Wake Cycle

    PubMed Central

    Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara; Serra, Pier Andrea

    2016-01-01

    Study Objectives: The activity of the noradrenergic system of the locus coeruleus (LC) is high in wake and low in sleep. LC promotes arousal and EEG activation, as well as attention, working memory, and cognitive flexibility. These functions rely on prefrontal cortex and are impaired by sleep deprivation, but the extent to which LC activity changes during wake remains unclear. Moreover, it is unknown whether noradrenergic neurons can sustain elevated firing during extended wake. Recent studies show that relative to LC neurons targeting primary motor cortex (M1), those projecting to medial prefrontal cortex (mPFC) have higher spontaneous firing rates and are more excitable. These results suggest that noradrenaline (NA) levels should be higher in mPFC than M1, and that during prolonged wake LC cells targeting mPFC may fatigue more, but direct evidence is lacking. Methods: We performed in vivo microdialysis experiments in adult (9–10 weeks old) C57BL/6 mice implanted for chronic electroencephalographic recordings. Cortical NA levels were measured during spontaneous sleep and wake (n = 8 mice), and in the course of sleep deprivation (n = 6). Results: We found that absolute NA levels are higher in mPFC than in M1. Moreover, in both areas they decline during sleep and increase during wake, but these changes are faster in M1 than mPFC. Finally, by the end of sleep deprivation NA levels decline only in mPFC. Conclusions: Locus coeruleus (LC) neurons targeting prefrontal cortex may fatigue more markedly, or earlier, than other LC cells, suggesting one of the mechanisms underlying the cognitive impairment and the increased sleep presure associated with sleep deprivation. Commentary: A commentary on this article appears in this issue on page 11. Citation: Bellesi M, Tononi G, Cirelli C, Serra PA. Region-specific dissociation between cortical noradrenaline levels and the sleep/wake cycle. SLEEP 2016;39(1):143–154. PMID:26237776

  12. Age-Related Influences of Prior Sleep on Brain Activation during Verbal Encoding

    PubMed Central

    Jonelis, Michelle B.; Drummond, Sean P. A.; Salamat, Jennifer S.; McKenna, Benjamin S.; Ancoli-Israel, Sonia; Bondi, Mark W.

    2011-01-01

    Disrupted sleep is more common in older adults (OLD) than younger adults (YOUNG), often co-morbid with other conditions. How these sleep disturbances affect cognitive performance is an area of active study. We examined whether brain activation during verbal encoding correlates with sleep quantity and quality the night before testing in a group of healthy OLD and YOUNG. Twenty-seven OLD (ages 59–82) and 27 YOUNG (ages 19–36) underwent one night of standard polysomnography. Twelve hours post-awakening, subjects performed a verbal encoding task while undergoing functional magnetic resonance imaging. Analyses examined the group (OLD vs. YOUNG) by prior sleep quantity (total sleep time, TST) or quality (sleep efficiency, SE) interaction on cerebral activation, controlling for performance. Longer TST promoted higher levels of activation in the bilateral anterior parahippocampal in OLD and lower activation levels in the left anterior parahippocampus in YOUNG. Greater SE promoted higher activation levels in the left posterior parahippocampus and right inferior frontal gyrus in YOUNG, but not in OLD. The roles of these brain regions in verbal encoding suggest, in OLD, longer sleep duration may be linked to the ability to engage in functional compensation during cognitive challenges. By contrast, in YOUNG, shorter sleep duration may necessitate functional compensation to maintain cognitive performance, similar to what is seen following acute sleep deprivation. Additionally, in YOUNG, better sleep quality may improve semantic retrieval processes, thereby aiding encoding. PMID:22493590

  13. Sleep Restriction Enhances the Daily Rhythm of Circulating Levels of Endocannabinoid 2-Arachidonoylglycerol

    PubMed Central

    Hanlon, Erin C.; Tasali, Esra; Leproult, Rachel; Stuhr, Kara L.; Doncheck, Elizabeth; de Wit, Harriet; Hillard, Cecilia J.; Van Cauter, Eve

    2016-01-01

    Study Objectives: Increasing evidence from laboratory and epidemiologic studies indicates that insufficient sleep may be a risk factor for obesity. Sleep curtailment results in stimulation of hunger and food intake that exceeds the energy cost of extended wakefulness, suggesting the involvement of reward mechanisms. The current study tested the hypothesis that sleep restriction is associated with activation of the endocannabinoid (eCB) system, a key component of hedonic pathways involved in modulating appetite and food intake. Methods: In a randomized crossover study comparing 4 nights of normal (8.5 h) versus restricted sleep (4.5 h) in healthy young adults, we examined the 24-h profiles of circulating concentrations of the endocannabinoid 2-arachidonoylglycerol (2-AG) and its structural analog 2-oleoylglycerol (2-OG). We concomitantly assessed hunger, appetite, and food intake under controlled conditions. Results: A robust daily variation of 2-AG concentrations with a nadir around the middle of the sleep/overnight fast, followed by a continuous increase culminating in the early afternoon, was evident under both sleep conditions but sleep restriction resulted in an amplification of this rhythm with delayed and extended maximum values. Concentrations of 2-OG followed a similar pattern, but with a lesser amplitude. When sleep deprived, participants reported increases in hunger and appetite concomitant with the afternoon elevation of 2-AG concentrations, and were less able to inhibit intake of palatable snacks. Conclusions: Our findings suggest that activation of the eCB system may be involved in excessive food intake in a state of sleep debt and contribute to the increased risk of obesity associated with insufficient sleep. Commentary: A commentary on this article appears in this issue on page 495. Citation: Hanlon EC, Tasali E, Leproult R, Stuhr KL, Doncheck E, de Wit H, Hillard CJ, Van Cauter E. Sleep restriction enhances the daily rhythm of circulating levels of

  14. Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the basal forebrain

    PubMed Central

    Murillo-Rodriguez, Eric; Liu, Meng; Blanco-Centurion, Carlos; Shiromani, Priyattam J.

    2009-01-01

    Neurons containing the neuropeptide hypocretin (orexin) are localized only in the lateral hypothalamus from where they innervate multiple regions implicated in arousal, including the basal forebrain. HCRT activation of downstream arousal neurons is likely to stimulate release of endogenous factors. One such factor is adenosine (AD), which in the basal forebrain increases with waking and decreases with sleep, and is hypothesized to regulate the waxing and waning of sleep drive. Does loss of HCRT neurons affect AD levels in the basal forebrain? Is the increased sleep that accompanies HCRT loss a consequence of higher AD levels in the basal forebrain? In the present study, we investigate these questions by lesioning the HCRT neurons (hypocretin-2-saporin) and measuring sleep and extracellular levels of AD in the basal forebrain. In separate groups of rats, the neurotoxin HCRT2-SAP or saline were administered locally to the lateral hypothalamus and 80 days later AD and sleep were assessed. Rats given the neurotoxin had a 94% loss of the HCRT neurons. These rats awake less at night, and had more REM sleep, which is consistent with a HCRT hypofunction. These rats also had more sleep after brief periods of sleep deprivation. However, in the lesioned rats, AD levels did not increase with 6h sleep deprivation, whereas such an increase in AD occurred in rats without lesion of the HCRT neurons. These findings indicate that AD levels do not increase with waking in rats with a HCRT lesion, and that the increased sleep in these rats occurs independently of AD levels in the basal forebrain. PMID:18783368

  15. Sleep Loss and Cytokines Levels in an Experimental Model of Psoriasis

    PubMed Central

    Hirotsu, Camila; Rydlewski, Mariana; Araújo, Mariana Silva; Tufik, Sergio; Andersen, Monica Levy

    2012-01-01

    Up to 80% of people develop a cutaneous condition closely connected to their exposure to stressful life events. Psoriasis is a chronic recurrent inflammatory skin disorder with multifactorial etiology, including genetic background, environmental factors, and immune system disturbances with a strong cytokine component. Moreover, psoriasis is variably associated with sleep disturbance and sleep deprivation. This study evaluated the influence of sleep loss in the context of an animal model of psoriasis by measuring cytokine and stress-related hormone levels. Male adult Balb/C mice with or without psoriasis were subjected to 48 h of selective paradoxical sleep deprivation (PSD). Sleep deprivation potentiated the activities of kallikrein-5 and kallikrein-7 in the skin of psoriatic groups. Also, mice with psoriasis had significant increases in specific pro-inflammatory cytokines (IL-1β, IL-6 and IL-12) and decreases in the anti-inflammatory cytokine (IL-10) after PSD, which were normalized after 48 h of sleep rebound. Linear regression showed that IL-2, IL-6 and IL-12 levels predicted 66% of corticosterone levels, which were selectively increased in psoriasis mice subject to PSD. Kallikrein-5 was also correlated with pro-inflammatory cytokines, explaining 58% of IL-6 and IL-12 variability. These data suggest that sleep deprivation plays an important role in the exacerbation of psoriasis through modulation of the immune system in the epidermal barrier. Thus, sleep loss should be considered a risk factor for the development of psoriasis. PMID:23226485

  16. Early Blood Lead Levels and Sleep Disturbance in Preadolescence

    PubMed Central

    Liu, Jianghong; Liu, Xianchen; Pak, Victoria; Wang, Yingjie; Yan, Chonghuai; Pinto-Martin, Jennifer; Dinges, David

    2015-01-01

    Study Objectives: Little is known about the effect of lead exposure on children's sleep. This study examined the association between blood lead levels (BLL) and sleep problems in a longitudinal study of children. Setting: Four community-based elementary schools in Jintan City, China. Participants: 1,419 Chinese children. Measurement and Results: BLL were measured when children were aged 3–5 y, and sleep was assessed at ages 9–13 y. Sleep was assessed by both parents' report, using the Children's Sleep Habits Questionnaire (CSHQ), and children's report, using an adolescent sleep questionnaire. A total of 665 children with complete data on BLL and sleep at both ages were included in the current study. Mean age of the sample at BLL assessment was 4.74 y (standard deviation [SD] = 0.89) and at sleep assessment was 11.05 y (SD = 0.88). Mean BLL was 6.26 μg/dL (SD = 2.54). There were significant positive correlations between BLL and 3 CSHQ subscales: Sleep onset delay (r = 0.113, P < 0.01), sleep duration (r = 0.139, P < 0.001), and night waking (r = 0.089, P < 0.05). Excessive daytime sleepiness (EDS) (26.1% versus 9.0%, P < 0.001) and use of sleeping pills (6.5% versus 1.8%, P = 0.03) were more prevalent in children BLL ≥ 10.0 μg/dL than in those children BLL < 10.0 μg/dL. After adjusting for demographics, BLL ≥ 10.0 μg/dL was significantly associated with increased risk for insomnia symptoms (odds ratio [OR] = 2.01, 95% confidence interval [CI] = 1.03–3.95) and EDS (OR = 2.90, 95% CI = 1.27–6.61). Conclusion: The findings indicate that elevated blood lead levels in early childhood are associated with increased risk for sleep problems and excessive daytime sleepiness in later childhood. Citation: Liu J, Liu X, Pak V, Wang Y, Yan C, Pinto-Martin J, Dinges D. Early blood lead levels and sleep disturbance in preadolescence. SLEEP 2015;38(12):1869–1874. PMID:26194570

  17. Sleep complaints affecting school performance at different educational levels.

    PubMed

    Pagel, James F; Kwiatkowski, Carol F

    2010-01-01

    The clear association between reports of sleep disturbance and poor school performance has been documented for sleepy adolescents. This study extends that research to students outside the adolescent age grouping in an associated school setting (98 middle school students, 67 high school students, and 64 college students). Reported restless legs and periodic limb movements are significantly associated with lower GPA's in junior high students. Consistent with previous studies, daytime sleepiness was the sleep variable most likely to negatively affects high school students. Sleep onset and maintenance insomnia were the reported sleep variables significantly correlated with poorer school performance in college students. This study indicates that different sleep disorder variables negatively affect performance at different age and educational levels.

  18. Dissociated wake-like and sleep-like electro-cortical activity during sleep.

    PubMed

    Nobili, Lino; Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Russo, Giorgio Lo; Campus, Claudio; Cardinale, Francesco; De Carli, Fabrizio

    2011-09-15

    Sleep is traditionally considered a global process involving the whole brain. However, recent studies have shown that sleep depth is not evenly distributed within the brain. Sleep disorders, such as sleepwalking, also suggest that EEG features of sleep and wakefulness might be simultaneously present in different cerebral regions. In order to probe the coexistence of dissociated (wake-like and sleep-like) electrophysiological behaviors within the sleeping brain, we analyzed intracerebral electroencephalographic activity drawn from sleep recordings of five patients with pharmacoresistant focal epilepsy without sleep disturbances, who underwent pre-surgical intracerebral electroencephalographic investigation. We applied spectral and wavelet transform analysis techniques to electroencephalographic data recorded from scalp and intracerebral electrodes localized within the Motor cortex (Mc) and the dorso-lateral Prefrontal cortex (dlPFc). The Mc showed frequent Local Activations (lasting from 5 to more than 60s) characterized by an abrupt interruption of the sleep electroencephalographic slow waves pattern and by the appearance of a wake-like electroencephalographic high frequency pattern (alpha and/or beta rhythm). Local activations in the Mc were paralleled by a deepening of sleep in other regions, as expressed by the concomitant increase of slow waves in the dlPFc and scalp electroencephalographic recordings. These results suggest that human sleep can be characterized by the coexistence of wake-like and sleep-like electroencephalographic patterns in different cortical areas, supporting the hypothesis that unusual phenomena, such as NREM parasomnias, could result from an imbalance of these two states. PMID:21718789

  19. Time delay between cardiac and brain activity during sleep transitions

    NASA Astrophysics Data System (ADS)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  20. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during REM sleep

    PubMed Central

    Vanini, Giancarlo; Wathen, Bradley L.; Lydic, Ralph; Baghdoyan, Helen A.

    2011-01-01

    Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REMNeo) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (−42%) and REMNeo (−63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared to NREM sleep, GABA levels decreased significantly during REM sleep (−27%) and REMNeo (−52%). Comparisons of REM sleep and REMNeo revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep. PMID:21325533

  1. Review of Low-Level Bioacoustic Behavior in Wild Cetaceans: Conservation Implications of Possible Sleeping Behavior.

    PubMed

    Wright, Andrew J; Akamatsu, Tomonari; Mouritsen, Kim Nørgaard; Sveegaard, Signe; Dietz, Rune; Teilmann, Jonas

    2016-01-01

    Shallow, low-activity, low-biosonar parabolic-shaped dives were observed in biologging data from tagged harbor porpoises in Danish waters and identified as potential sleeping behavior. This behavioral state merits consideration in assessing the context for noise exposure and passive acoustic monitoring studies. Similar dives have also been reported for other cetacean species. The existence of low-level bioacoustic dives that may represent that sleeping has implications for the mitigation of not only noise exposure but also of bycatch as well as legal repercussions given the protected status of sleeping, as a part of resting, under many legislative regimes.

  2. Autonomic activity during sleep predicts memory consolidation in humans.

    PubMed

    Whitehurst, Lauren N; Cellini, Nicola; McDevitt, Elizabeth A; Duggan, Katherine A; Mednick, Sara C

    2016-06-28

    Throughout history, psychologists and philosophers have proposed that good sleep benefits memory, yet current studies focusing on the relationship between traditionally reported sleep features (e.g., minutes in sleep stages) and changes in memory performance show contradictory findings. This discrepancy suggests that there are events occurring during sleep that have not yet been considered. The autonomic nervous system (ANS) shows strong variation across sleep stages. Also, increases in ANS activity during waking, as measured by heart rate variability (HRV), have been correlated with memory improvement. However, the role of ANS in sleep-dependent memory consolidation has never been examined. Here, we examined whether changes in cardiac ANS activity (HRV) during a daytime nap were related to performance on two memory conditions (Primed and Repeated) and a nonmemory control condition on the Remote Associates Test. In line with prior studies, we found sleep-dependent improvement in the Primed condition compared with the Quiet Wake control condition. Using regression analyses, we compared the proportion of variance in performance associated with traditionally reported sleep features (model 1) vs. sleep features and HRV during sleep (model 2). For both the Primed and Repeated conditions, model 2 (sleep + HRV) predicted performance significantly better (73% and 58% of variance explained, respectively) compared with model 1 (sleep only, 46% and 26% of variance explained, respectively). These findings present the first evidence, to our knowledge, that ANS activity may be one potential mechanism driving sleep-dependent plasticity. PMID:27298366

  3. Sleep deprivation in the rat: XVIII. Regional brain levels of monoamines and their metabolites.

    PubMed

    Bergmann, B M; Seiden, L S; Landis, C A; Gilliland, M A; Rechtschaffen, A

    1994-10-01

    Several theories have linked sleep with change in monoamine activity. However, the use of sleep deprivation to show that changes in sleep generate changes in monoamines (directly or through feedback) has produced inconsistent results. To explore whether longer sleep deprivation, better documented sleep loss, more complete controls or regional brain analyses would produce clear sleep loss-induced change, eight rats were subjected to total sleep deprivation (TSD) by the disk-over-water method for 11-20 days and were guillotined along with yoked control (TSC) and home-cage control (HCC) rats. Brains were removed and dissected to obtain the caudate, frontal cortex, hippocampus, hypothalamus, midbrain and hindbrain (pons-medulla). Tissue sections were analyzed for concentrations of serotonin (5HT), its metabolite 5-hydroxyindoleacetic acid (5HIAA), dopamine (DA), its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), and either norepinephrine or, in the caudate section, the DA metabolite homovanillic acid. The ratios DOPAC/DA and 5HIAA/5HT, which under some conditions are indicators of turnover, were also calculated. Because sleep deprivation time varied across sets of TSD, TSC and HCC rats and not all eight sets were analyzed simultaneously, a repeated-measures ANOVA was performed within sets with HCC, TSC and TSD considered as successive levels of sleep deprivation treatment. In no case did TSD rats have significantly higher or lower values of amines, metabolites or ratios than both HCC and TSC rats. The most common outlying values were for TSC rats. Thus, these results failed to demonstrate sleep loss-induced regional changes in levels of major brain monoamines or their metabolites.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7531362

  4. Sleep and activity rhythms in mice: a description of circadian patterns and unexpected disruptions in sleep.

    PubMed

    Mitler, M M; Lund, R; Sokolove, P G; Pittendrigh, C S; Dement, W C

    1977-08-01

    Studies on daily and circadian rhythms in wheel running and electrographically defined wakefulness, NREM sleep, and REM sleep in M. musculus were done to gather data on the temporal distribution of activity and sleep. Generally, peaks in NREM and sleep tended to coincide and to alternate with the coincident peaks of wakefulness and wheel running. However, during the active phase of the circadian wheel running cycle some NREM and REM sleep did occur; conversely, during its rest phase, wakefulness was often present. The most striking finding was that in mice with clearly entrained or free-running activity onsets, the circadian peak-through patterns in wakefulness, NREM, and REM sleep were not always distinct--they could be damped and/or polyphasic. Several explanations of these phenomena are considered. PMID:195675

  5. Individual variation in sleep and motor activity in rats.

    PubMed

    Tang, Xiangdong; Yang, Linghui; Sanford, Larry D

    2007-06-01

    We examined individual differences in sleep and motor activity across 2 consecutive days in rats. EEG and motor activity were recorded via telemetry in Wistar rats (n=29) for 48h under well-habituated conditions. Rats were grouped based on sleep amounts and stability across days (short [SS, n=7], intermediate [IS, n=15] and long [LS, n=7] sleep) and comparisons were conducted to determine group differences for measures of sleep and motor activity. We found that correlations across recording days were significant for all selected sleep measures and motor activity counts. Rankings for 24h total sleep time and non-rapid eye movement sleep (NREM) were SSsleep did not differ among groups. Further analyses of NREM episode parameters found significant differences in mean episode length (SSactivity counts (per waking min) were greater (32-38%) in SS compared to LS rats on both recording days. The results indicate that individual differences in sleep and motor activity in Wistar rats are stable across days. Differences between SS and LS rats have parallels to those reported for short and long sleep humans.

  6. Bedtime activities, sleep environment, and sleep/wake patterns of Japanese elementary school children.

    PubMed

    Oka, Yasunori; Suzuki, Shuhei; Inoue, Yuich

    2008-01-01

    Bedtime activities, sleep environment, and their impact on sleep/wake patterns were assessed in 509 elementary school children (6-12 years of age; 252 males and 257 females). Television viewing, playing video games, and surfing the Internet had negative impact on sleep/wake parameters. Moreover, presence of a television set or video game in the child's bedroom increased their activity before bedtime. Time to return home later than 8 p.m. from after-school activity also had a negative impact on sleep/wake patterns. Health care practitioners should be aware of the potential negative impact of television, video games, and the Internet before bedtime, and also the possibility that late after-school activity can disturb sleep/wake patterns. PMID:18853306

  7. Impaired autonomic nervous system activity during sleep in family caregivers of ambulatory dementia patients in Japan.

    PubMed

    Sakurai, Shihomi; Onishi, Joji; Hirai, Makoto

    2015-01-01

    The number of dementia patients requiring care is rapidly increasing in Japan. Consequently, a large percentage of family members, including spouses and children of those with dementia, are assuming the role of primary caregiver. Many caregivers develop health problems including sleep disorders. Some report poor quality of sleep even when sleep duration is normal. In the present study, we used actigraphy and heart rate variability spectral analysis to assess autonomic nervous system activity and quality of sleep in family caregivers of people with ambulatory dementia. The 20 caregivers who participated in our study exhibited significantly higher levels of sympathetic nervous system activity during sleep than noncaregivers. This abnormal activity was most prominent during the first half of the sleep period and was not related to overall sleep duration. We propose that relaxation is inhibited during the first half of the sleep period in this caregiver population. This may be due to increased stress, as caregivers of people with ambulatory dementia may worry about their patients waking and wandering at night, potentially injuring themselves. Our findings indicate a need for increased support for caregivers of people with dementia, including the assessment and treatment of sleep disorders. PMID:25504947

  8. Associations of zinc and copper levels in serum and hair with sleep duration in adult women.

    PubMed

    Song, Chan-Hee; Kim, Yeong-Hoon; Jung, Kyu-In

    2012-10-01

    Zinc (Zn) and copper (Cu) are essential micronutrients involved in numerous metabolic reactions. They are also antagonists of the N-methyl-D-aspartate glutamate (NMDA) receptor in the central nervous system, which mediates mood, cognition, pain perception, and sleep. However, there have been few studies on the effects of Zn and Cu on sleep. A total of 126 adult women were recruited in this cross-sectional study. Zn and Cu levels in the serum and hair were measured for each subject. The participants completed the 7-day physical activity recall questionnaire and the Hospital Anxiety and Depression Scale. The mean hours of sleep were compared according to the tertiles of Zn, Cu, and Zn/Cu ratio in the serum and hair by analyses of covariance. The participants in the middle tertile of Zn and Zn/Cu ratio in the serum had significantly longer sleep duration compared to those in the lowest tertile (p<0.05 for each). An increasing Zn/Cu ratio in the hair was associated with longer sleep hours (p=0.026), whereas sleep duration decreased significantly from the lowest to the highest tertile of hair Cu level (p=0.010). The largest percentage of participants with optimal sleep duration was observed in the highest tertile of Zn/Cu ratio in the serum and hair (p=0.052 and 0.046, respectively). The results of our study suggest that Zn/Cu ratio as well as Zn or Cu levels in the serum and hair may be involved in sleep duration in adult women.

  9. Adolescent Sleep Quality Measured During Leisure Activities

    PubMed Central

    Sexton-Radek, Kathy

    2013-01-01

    A one-week sleep monitoring by logs and actigraphs in preteens during summer camp was conducted. Campers aged 11-16 attended a two-week day camp that focused on the learning about science. Nine campers agreed to monitor their sleep and have their patterns explained (anonymously) to other campers during the expert lecture by the author. The aim of the study was to identify the sleep quality in an adolescent group. All nine of the sleep logs and actigraphs denoted severe sleep deprivation. The findings from the logs and actigraphs denoted sever sleep deprivation. The expert lecturer provided basic information about sleep per the science designation of the day camp. A follow up session provided strategies to address sleep deprivation. PMID:26973908

  10. Adolescent Sleep Quality Measured During Leisure Activities.

    PubMed

    Sexton-Radek, Kathy

    2013-04-18

    A one-week sleep monitoring by logs and actigraphs in preteens during summer camp was conducted. Campers aged 11-16 attended a two-week day camp that focused on the learning about science. Nine campers agreed to monitor their sleep and have their patterns explained (anonymously) to other campers during the expert lecture by the author. The aim of the study was to identify the sleep quality in an adolescent group. All nine of the sleep logs and actigraphs denoted severe sleep deprivation. The findings from the logs and actigraphs denoted sever sleep deprivation. The expert lecturer provided basic information about sleep per the science designation of the day camp. A follow up session provided strategies to address sleep deprivation.

  11. Adolescent Sleep Quality Measured During Leisure Activities.

    PubMed

    Sexton-Radek, Kathy

    2013-04-18

    A one-week sleep monitoring by logs and actigraphs in preteens during summer camp was conducted. Campers aged 11-16 attended a two-week day camp that focused on the learning about science. Nine campers agreed to monitor their sleep and have their patterns explained (anonymously) to other campers during the expert lecture by the author. The aim of the study was to identify the sleep quality in an adolescent group. All nine of the sleep logs and actigraphs denoted severe sleep deprivation. The findings from the logs and actigraphs denoted sever sleep deprivation. The expert lecturer provided basic information about sleep per the science designation of the day camp. A follow up session provided strategies to address sleep deprivation. PMID:26973908

  12. Influence of sleep on genioglossus muscle activation by negative pressure in normal men.

    PubMed

    Wheatley, J R; Mezzanotte, W S; Tangel, D J; White, D P

    1993-09-01

    An important mechanism controlling genioglossus (GG) muscle activity is the reflex response to negative airway pressure. We hypothesize that this reflex response may be lost during sleep and believe that this loss may be important in the pathogenesis of airway collapse during sleep. Thus, we determined the effect of non-rapid eye movement (NREM) sleep on the GG electromyogram (EMG) response to brief (0.2 to 0.6 s) episodes of negative pressure generation (NPG) in the upper airway of six normal subjects. Up to 100 NPGs (mean 58 +/- 12) were recorded both awake and during stable NREM sleep. During wakefulness, the change in GG moving time average EMG from basal to peak levels (during NPG) was 17.1 +/- 2.5 au (a 154 +/- 22% increase above basal levels). This response was markedly reduced during NREM sleep (2.7 +/- 1.2 au; p < 0.01). The latency of the GG EMG response was 53.8 +/- 11.5 ms during wakefulness (n = 6), but much longer during sleep (132.7 +/- 24.5 ms; n = 3; p < 0.03). We conclude that in normal subjects (1) the GG muscle responds to negative airway pressure by reflex activation during wakefulness, and (2) this reflex activation is reduced or lost during NREM sleep. We speculate that loss of this mechanism during sleep may contribute to pharyngeal collapse in obstructive apnea patients.

  13. Structural Determinants of Sleeping Beauty Transposase Activity.

    PubMed

    Abrusán, György; Yant, Stephen R; Szilágyi, András; Marsh, Joseph A; Mátés, Lajos; Izsvák, Zsuzsanna; Barabás, Orsolya; Ivics, Zoltán

    2016-08-01

    Transposases are important tools in genome engineering, and there is considerable interest in engineering more efficient ones. Here, we seek to understand the factors determining their activity using the Sleeping Beauty transposase. Recent work suggests that protein coevolutionary information can be used to classify groups of physically connected, coevolving residues into elements called "sectors", which have proven useful for understanding the folding, allosteric interactions, and enzymatic activity of proteins. Using extensive mutagenesis data, protein modeling and analysis of folding energies, we show that (i) The Sleeping Beauty transposase contains two sectors, which span across conserved domains, and are enriched in DNA-binding residues, indicating that the DNA binding and endonuclease functions of the transposase coevolve; (ii) Sector residues are highly sensitive to mutations, and most mutations of these residues strongly reduce transposition rate; (iii) Mutations with a strong effect on free energy of folding in the DDE domain of the transposase significantly reduce transposition rate. (iv) Mutations that influence DNA and protein-protein interactions generally reduce transposition rate, although most hyperactive mutants are also located on the protein surface, including residues with protein-protein interactions. This suggests that hyperactivity results from the modification of protein interactions, rather than the stabilization of protein fold.

  14. Structural Determinants of Sleeping Beauty Transposase Activity.

    PubMed

    Abrusán, György; Yant, Stephen R; Szilágyi, András; Marsh, Joseph A; Mátés, Lajos; Izsvák, Zsuzsanna; Barabás, Orsolya; Ivics, Zoltán

    2016-08-01

    Transposases are important tools in genome engineering, and there is considerable interest in engineering more efficient ones. Here, we seek to understand the factors determining their activity using the Sleeping Beauty transposase. Recent work suggests that protein coevolutionary information can be used to classify groups of physically connected, coevolving residues into elements called "sectors", which have proven useful for understanding the folding, allosteric interactions, and enzymatic activity of proteins. Using extensive mutagenesis data, protein modeling and analysis of folding energies, we show that (i) The Sleeping Beauty transposase contains two sectors, which span across conserved domains, and are enriched in DNA-binding residues, indicating that the DNA binding and endonuclease functions of the transposase coevolve; (ii) Sector residues are highly sensitive to mutations, and most mutations of these residues strongly reduce transposition rate; (iii) Mutations with a strong effect on free energy of folding in the DDE domain of the transposase significantly reduce transposition rate. (iv) Mutations that influence DNA and protein-protein interactions generally reduce transposition rate, although most hyperactive mutants are also located on the protein surface, including residues with protein-protein interactions. This suggests that hyperactivity results from the modification of protein interactions, rather than the stabilization of protein fold. PMID:27401040

  15. Sleep and alertness during alternating monophasic and polyphasic rest-activity cycles.

    PubMed

    Porcú, S; Casagrande, M; Ferrara, M; Bellatreccia, A

    1998-07-01

    People involved in shift work often have to face altered patterns of sleep and wakefulness. This is particularly true for schedules involving night shifts and/or fragmentation of duty periods throughout the 24-hr day. In such conditions, it can be difficult to obtain satisfactory periods of sleep, and sleepiness on duty is a frequent and dangerous occurrence. The aim of this study was to evaluate sleep and wakefulness periods of subjects whose work schedule was characterized by an alternation of 2 hours of activity and 4 hours of rest (sleep allowed), repeated 4 times throughout the 24-hr day. This schedule was alternated with 24 hours off duty. Nine healthy male volunteers were monitored by means of ambulatory polysomnography while attending their 24-hr rest-activity schedule. Sleep periods were visually scored according to standard criteria. Wake periods were visually scored using both 30 s and 5 s epochs in order to reveal episodes of drowsiness and/or microsleep. Results showed that total sleep time was substantially reduced as compared to the usual 7-8 hour monophasic nocturnal sleep. Subjects did not sleep during the first rest period (11.00-15.00). Time in sleep linearly increased in the course of the 3 remaining rest periods. Normal sleep stage distribution was substantially spared only in the last rest period (3.00-7.00 a.m.). With regard to duty periods, only a few microsleeps were detected and their number did not significantly vary across the four 2-hr activity periods. In conclusion, this rest-activity schedule, despite the considerable sleep reduction, allowed maintaining good levels of vigilance as shown by the virtual absence of EEG microsleeps. Whether future research will prove that this regimen does not cause an impairment of performance, it should be a suitable strategy for the management of continuous operations. PMID:9845015

  16. Sleep and alertness during alternating monophasic and polyphasic rest-activity cycles.

    PubMed

    Porcú, S; Casagrande, M; Ferrara, M; Bellatreccia, A

    1998-07-01

    People involved in shift work often have to face altered patterns of sleep and wakefulness. This is particularly true for schedules involving night shifts and/or fragmentation of duty periods throughout the 24-hr day. In such conditions, it can be difficult to obtain satisfactory periods of sleep, and sleepiness on duty is a frequent and dangerous occurrence. The aim of this study was to evaluate sleep and wakefulness periods of subjects whose work schedule was characterized by an alternation of 2 hours of activity and 4 hours of rest (sleep allowed), repeated 4 times throughout the 24-hr day. This schedule was alternated with 24 hours off duty. Nine healthy male volunteers were monitored by means of ambulatory polysomnography while attending their 24-hr rest-activity schedule. Sleep periods were visually scored according to standard criteria. Wake periods were visually scored using both 30 s and 5 s epochs in order to reveal episodes of drowsiness and/or microsleep. Results showed that total sleep time was substantially reduced as compared to the usual 7-8 hour monophasic nocturnal sleep. Subjects did not sleep during the first rest period (11.00-15.00). Time in sleep linearly increased in the course of the 3 remaining rest periods. Normal sleep stage distribution was substantially spared only in the last rest period (3.00-7.00 a.m.). With regard to duty periods, only a few microsleeps were detected and their number did not significantly vary across the four 2-hr activity periods. In conclusion, this rest-activity schedule, despite the considerable sleep reduction, allowed maintaining good levels of vigilance as shown by the virtual absence of EEG microsleeps. Whether future research will prove that this regimen does not cause an impairment of performance, it should be a suitable strategy for the management of continuous operations.

  17. Relationships between sleep, physical activity and human health

    PubMed Central

    Atkinson, Greg; Davenne, Damien

    2009-01-01

    Although sleep and exercise may seem to be mediated by completely different physiological mechanisms, there is growing evidence for clinically important relationships between these two behaviors. It is known that passive body heating facilitates the nocturnal sleep of healthy elderly people with insomnia. This finding supports the hypothesis that changes in body temperature trigger somnogenic brain areas to initiate sleep. Nevertheless, little is known about how the core and distal thermoregulatory responses to exercise fit into this hypothesis. Such knowledge could also help in reducing sleep problems associated with nocturnal shiftwork. It is difficult to incorporate physical activity into a shiftworker's lifestyle, since it is already disrupted in terms of family commitments and eating habits. A multi-research strategy is needed to identify what the optimal amounts and timing of physical activity are for reducing shiftwork-related sleep problems. The relationships between sleep, exercise and diet are also important, given the recently reported associations between short sleep length and obesity. The cardiovascular safety of exercise timing should also be considered, since recent data suggest that the reactivity of blood pressure to a change in general physical activity is highest during the morning. This time is associated with an increased risk in general of a sudden cardiac event, but more research work is needed to separate the influences of light, posture and exercise per se on the haemodynamic responses to sleep and physical activity following sleep taken at night and during the day as a nap. PMID:17067643

  18. Relationships between sleep, physical activity and human health.

    PubMed

    Atkinson, Greg; Davenne, Damien

    2007-02-28

    Although sleep and exercise may seem to be mediated by completely different physiological mechanisms, there is growing evidence for clinically important relationships between these two behaviors. It is known that passive body heating facilitates the nocturnal sleep of healthy elderly people with insomnia. This finding supports the hypothesis that changes in body temperature trigger somnogenic brain areas to initiate sleep. Nevertheless, little is known about how the core and distal thermoregulatory responses to exercise fit into this hypothesis. Such knowledge could also help in reducing sleep problems associated with nocturnal shiftwork. It is difficult to incorporate physical activity into a shiftworker's lifestyle, since it is already disrupted in terms of family commitments and eating habits. A multi-research strategy is needed to identify what the optimal amounts and timing of physical activity are for reducing shiftwork-related sleep problems. The relationships between sleep, exercise and diet are also important, given the recently reported associations between short sleep length and obesity. The cardiovascular safety of exercise timing should also be considered, since recent data suggest that the reactivity of blood pressure to a change in general physical activity is highest during the morning. This time is associated with an increased risk in general of a sudden cardiac event, but more research work is needed to separate the influences of light, posture and exercise per se on the haemodynamic responses to sleep and physical activity following sleep taken at night and during the day as a nap.

  19. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    PubMed

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  20. Arousal from Sleep Does Not Lead to Reduced Dilator Muscle Activity or Elevated Upper Airway Resistance on Return to Sleep in Healthy Individuals

    PubMed Central

    Jordan, Amy S.; Cori, Jennifer M.; Dawson, Andrew; Nicholas, Christian L.; O'Donoghue, Fergal J.; Catcheside, Peter G.; Eckert, Danny J.; McEvoy, R. Doug; Trinder, John

    2015-01-01

    Study Objectives: To compare changes in end-tidal CO2, genioglossus muscle activity and upper airway resistance following tone-induced arousal and the return to sleep in healthy individuals with small and large ventilatory responses to arousal. Design: Observational study. Setting: Two sleep physiology laboratories. Patients or Participants: 35 men and 25 women with no medical or sleep disorders. Interventions: Auditory tones to induce 3-s to 15-s cortical arousals from sleep. Measurements and Results: During arousal from sleep, subjects with large ventilatory responses to arousal had higher ventilation (by analytical design) and tidal volume, and more marked reductions in the partial pressure of end-tidal CO2 compared to subjects with small ventilatory responses to arousal. However, following the return to sleep, ventilation, genioglossus muscle activity, and upper airway resistance did not differ between high and low ventilatory response groups (Breath 1 on return to sleep: ventilation 6.7 ± 0.4 and 5.5 ± 0.3 L/min, peak genioglossus activity 3.4% ± 1.0% and 4.8% ± 1.0% maximum, upper airway resistance 4.7 ± 0.7 and 5.5 ± 1.0 cm H2O/L/s, respectively). Furthermore, dilator muscle activity did not fall below the pre-arousal sleeping level and upper airway resistance did not rise above the pre-arousal sleeping level in either group for 10 breaths following the return to sleep. Conclusions: Regardless of the magnitude of the ventilatory response to arousal from sleep and subsequent reduction in PETCO2, healthy individuals did not develop reduced dilator muscle activity nor increased upper airway resistance, indicative of partial airway collapse, on the return to sleep. These findings challenge the commonly stated notion that arousals predispose to upper airway obstruction. Citation: Jordan AS, Cori JM, Dawson A, Nicholas CL, O'Donoghue FJ, Catcheside PG, Eckert DJ, McEvoy RD, Trinder J. Arousal from sleep does not lead to reduced dilator muscle activity or

  1. Sleep Deprivation Aggravates Median Nerve Injury-Induced Neuropathic Pain and Enhances Microglial Activation by Suppressing Melatonin Secretion

    PubMed Central

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-01-01

    Study Objectives: Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. Design: Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. Participants: Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. Measurements: Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. Results: In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. Conclusions: Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity. Citation: Huang CT, Chiang RP, Chen CL, Tsai YJ. Sleep

  2. Phasic Motor Activity of Respiratory and Non-Respiratory Muscles in REM Sleep

    PubMed Central

    Fraigne, Jimmy J.; Orem, John M.

    2011-01-01

    Objectives: In this study, we quantified the profiles of phasic activity in respiratory muscles (diaphragm, genioglossus and external intercostal) and non-respiratory muscles (neck and extensor digitorum) across REM sleep. We hypothesized that if there is a unique pontine structure that controls all REM sleep phasic events, the profiles of the phasic twitches of different muscle groups should be identical. Furthermore, we described how respiratory parameters (e.g., frequency, amplitude, and effort) vary across REM sleep to determine if phasic processes affect breathing. Methods: Electrodes were implanted in Wistar rats to record brain activity and muscle activity of neck, extensor digitorum, diaphragm, external intercostal, and genioglossal muscles. Ten rats were studied to obtain 313 REM periods over 73 recording days. Data were analyzed offline and REM sleep activity profiles were built for each muscle. In 6 animals, respiratory frequency, effort, amplitude, and inspiratory peak were also analyzed during 192 REM sleep periods. Results: Respiratory muscle phasic activity increased in the second part of the REM period. For example, genioglossal activity increased in the second part of the REM period by 63.8% compared to the average level during NREM sleep. This profile was consistent between animals and REM periods (η2 = 0.58). This increased activity seen in respiratory muscles appeared as irregular bursts and trains of activity that could affect rythmo-genesis. Indeed, the increased integrated activity seen in the second part of the REM period in the diaphragm was associated with an increase in the number (28.3%) and amplitude (30%) of breaths. Non-respiratory muscle phasic activity in REM sleep did not have a profile like the phasic activity of respiratory muscles. Time in REM sleep did not have an effect on nuchal activity (P = 0.59). Conclusion: We conclude that the concept of a common pontine center controlling all REM phasic events is not supported by our

  3. Influence of sleep onset on upper-airway muscle activity in apnea patients versus normal controls.

    PubMed

    Mezzanotte, W S; Tangel, D J; White, D P

    1996-06-01

    Current evidence suggests that patients with obstructive sleep apnea (OSA) may have augmented pharyngeal dilator muscle activity during wakefulness, to compensate for deficient anatomy. However, the isolated effect of sleep on the activity of these muscles (comparing OSA patients with controls) has not been studied. We therefore determined waking levels of genioglossus (GG) and tensor palatini (TP) muscle activity (% of maximum electromyographic [EMG] activity) in 10 OSA patients and eight controls, and then assessed the impact of the first two breaths of sleep (theta electroencephalographic [EEG] activity) following a period of stable wakefulness. Apnea patients demonstrated greater genioglossal (27.4 +/- 4.0 versus 10.7 +/- 2.1%) and tensor palatini (31.9 +/- 6.5 versus 10.6 +/- 1.9%) EMG activity than did controls during wakefulness. This augmented muscle activity in apnea patients could be reduced to near control levels during wakefulness with the application of continuous positive airway pressure (CPAP) to the upper airway. At sleep onset, control subjects demonstrated small but consistent decrements in the activity of both the TP and GG muscles. On the other hand, apnea patients demonstrated large, significantly greater decrements in TP EMG at sleep onset than did the control subjects. The effect of sleep on GG EMG in apnea patients was inconsistent, with most (n = 7) demonstrating large (significantly larger than controls) decrements in genioglossal activity. However, three OSA patients demonstrated small increments in GG EMG at sleep onset despite falling TP EMG and obstructive apnea or hypopnea. We conclude that sleep onset is associated with significantly larger decrements in TP muscle EMG activity in OSA patients than in controls, which may represent a loss of neuromuscular compensation that is present during wakefulness. However, our results for the GG muscle were more variable, and did not always support this hypothesis.

  4. Sleep-Dependent Consolidation of Procedural Motor Memories in Children and Adults: The Pre-Sleep Level of Performance Matters

    ERIC Educational Resources Information Center

    Wilhelm, Ines; Metzkow-Meszaros, Maila; Knapp, Susanne; Born, Jan

    2012-01-01

    In striking contrast to adults, in children sleep following training a motor task did not induce the expected (offline) gain in motor skill performance in previous studies. Children normally perform at distinctly lower levels than adults. Moreover, evidence in adults suggests that sleep dependent offline gains in skill essentially depend on the…

  5. Relation between sleep quality and physical activity in chronic heart failure patients.

    PubMed

    Izawa, Kazuhiro P; Watanabe, Satoshi; Oka, Koichiro; Hiraki, Koji; Morio, Yuji; Kasahara, Yusuke; Takeichi, Naoya; Tsukamoto, Takae; Osada, Naohiko; Omiya, Kazuto; Makuuchi, Haruo

    2011-09-01

    To determine self-reported sleep quality-related differences in physical activity (PA) and health-related quality of life (HRQOL) and target values of PA for high-quality sleep in chronic heart failure (CHF) outpatients, 149 CHF outpatients (mean age 58 years) were divided into two groups by sleep-quality level determined via self-reported questionnaire: shallow sleep (SS) group (n = 77) and deep sleep (DS) group (n = 72). Steps were assessed by electronic pedometer, HRQOL was assessed with the Short Form 36 (SF-36) survey, and data were compared between groups. PA resulting in high-quality sleep was determined by receiver-operating characteristics curves. All SF-36 subscale scores except that of bodily pain were significantly decreased in the SS versus DS group. A cutoff value of 5723.6 steps/day and 156.4 Kcal/day for 1 week were determined as target values for PA. Sleep quality may affect PA and HRQOL, and attaining target values of PA may improve sleep quality and HRQOL of CHF outpatients. Patents relevant to heart failure are also discussed in this article.

  6. Bed-time food supplements and sleep: effects of different carbohydrate levels.

    PubMed

    Porter, J M; Horne, J A

    1981-04-01

    Blood glucose levels were altered during sleep by means of manipulating carbohydrate (CHO) intake through bed-time food supplements. Protein and fat intake were minimally affected. Subjects underwent all conditions in a balanced designed. A high CHO condition resulted in significantly reduced stages 1 + 0 sleep over the whole night and significantly increased REM sleep during the first half of the night; there seemed to be a reciprocity between these two changes. High CHO also produced a whole-night significant decrease in stages 4 sleep, which persisted into the recovery night. Few significant differences between the other conditions of low and zero CHO were found. Sleep onset was not affected. It was concluded that relatively high blood glucose levels were required to alter sleep, and perhaps lead to more 'restful' sleep. The present findings were similar to those of related studies. The REM sleep changes were discussed in relation to increases in brain serotonin synthesis mediated by elevated blood glucose levels.

  7. Role of corticosterone on sleep homeostasis induced by REM sleep deprivation in rats.

    PubMed

    Machado, Ricardo Borges; Tufik, Sergio; Suchecki, Deborah

    2013-01-01

    Sleep is regulated by humoral and homeostatic processes. If on one hand chronic elevation of stress hormones impair sleep, on the other hand, rapid eye movement (REM) sleep deprivation induces elevation of glucocorticoids and time of REM sleep during the recovery period. In the present study we sought to examine whether manipulations of corticosterone levels during REM sleep deprivation would alter the subsequent sleep rebound. Adult male Wistar rats were fit with electrodes for sleep monitoring and submitted to four days of REM sleep deprivation under repeated corticosterone or metyrapone (an inhibitor of corticosterone synthesis) administration. Sleep parameters were continuously recorded throughout the sleep deprivation period and during 3 days of sleep recovery. Plasma levels of adrenocorticotropic hormone and corticosterone were also evaluated. Metyrapone treatment prevented the elevation of corticosterone plasma levels induced by REM sleep deprivation, whereas corticosterone administration to REM sleep-deprived rats resulted in lower corticosterone levels than in non-sleep deprived rats. Nonetheless, both corticosterone and metyrapone administration led to several alterations on sleep homeostasis, including reductions in the amount of non-REM and REM sleep during the recovery period, although corticosterone increased delta activity (1.0-4.0 Hz) during REM sleep deprivation. Metyrapone treatment of REM sleep-deprived rats reduced the number of REM sleep episodes. In conclusion, reduction of corticosterone levels during REM sleep deprivation resulted in impairment of sleep rebound, suggesting that physiological elevation of corticosterone levels resulting from REM sleep deprivation is necessary for plentiful recovery of sleep after this stressful event.

  8. Circadian neuron feedback controls the Drosophila sleep--activity profile.

    PubMed

    Guo, Fang; Yu, Junwei; Jung, Hyung Jae; Abruzzi, Katharine C; Luo, Weifei; Griffith, Leslie C; Rosbash, Michael

    2016-08-18

    Little is known about the ability of Drosophila circadian neurons to promote sleep. Here we show, using optogenetic manipulation and video recording, that a subset of dorsal clock neurons (DN1s) are potent sleep-promoting cells that release glutamate to directly inhibit key pacemaker neurons. The pacemakers promote morning arousal by activating these DN1s, implying that a late-day feedback circuit drives midday siesta and night-time sleep. To investigate more plastic aspects of the sleep program, we used a calcium assay to monitor and compare the real-time activity of DN1 neurons in freely behaving males and females. Our results revealed that DN1 neurons were more active in males than in females, consistent with the finding that male flies sleep more during the day. DN1 activity is also enhanced by elevated temperature, consistent with the ability of higher temperatures to increase sleep. These new approaches indicate that DN1s have a major effect on the fly sleep-wake profile and integrate environmental information with the circadian molecular program. PMID:27479324

  9. Neuroligin-1 links neuronal activity to sleep-wake regulation

    PubMed Central

    El Helou, Janine; Bélanger-Nelson, Erika; Freyburger, Marlène; Dorsaz, Stéphane; Curie, Thomas; La Spada, Francesco; Gaudreault, Pierre-Olivier; Beaumont, Éric; Pouliot, Philippe; Lesage, Frédéric; Frank, Marcos G.; Franken, Paul; Mongrain, Valérie

    2013-01-01

    Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation. PMID:23716671

  10. Associations of disordered sleep with body fat distribution, physical activity and diet among overweight middle-aged men.

    PubMed

    Tan, Xiao; Alén, Markku; Cheng, Shu Mei; Mikkola, Tuija M; Tenhunen, Jarkko; Lyytikäinen, Arja; Wiklund, Petri; Cong, Fengyu; Saarinen, Antti; Tarkka, Ina; Partinen, Markku; Cheng, Sulin

    2015-08-01

    This cross-sectional study aimed to investigate whether body fat distribution, physical activity levels and dietary intakes are associated with insomnia and/or obstructive sleep apnea among overweight middle-aged men. Participants were 211 Finnish men aged 30-65 years. Among the 163 overweight or obese participants, 40 had insomnia only, 23 had obstructive sleep apnea only, 24 had comorbid insomnia and obstructive sleep apnea and 76 were without sleep disorder. The remaining 48 participants had normal weight without sleep disorder. Fat mass, levels of physical activity and diet were assessed by dual-energy X-ray densitometry, physical activity questionnaire and 3-day food diary, respectively. Among the overweight participants, we found that: (i) groups with sleep disorders had higher fat mass in trunk and android regions than the group without sleep disorder (P = 0.048-0.004); (ii) the insomnia-only group showed a lower level of leisure-time physical activity (436.9 versus 986.5 MET min week(-1) , P = 0.009) and higher intake of saturated fatty acids (14.8 versus 12.7 E%, P = 0.011) than the group without sleep disorder; and (iii) the comorbid group had a lower level of leisure-time physical activity (344.4 versus 986.5 MET min week(-1) , P = 0.007) and lower folate intake (118.9 versus 152.1 μg, P = 0.002) than the group without sleep disorder, which were independent of body mass index. The results suggest that central obesity is associated with insomnia and/or obstructive sleep apnea. In addition, low levels of leisure-time physical activity and poor dietary intakes are related to insomnia or comorbid insomnia and obstructive sleep apnea among overweight men.

  11. Daytime Physical Activity and Sleep in Hospitalized Older Adults: Association with Demographic Characteristics and Disease Severity

    PubMed Central

    Beveridge, Claire; Knutson, Kristen; Spampinato, Lisa; Flores, Andrea; Meltzer, David O.; Van Cauter, Eve; Arora, Vineet M.

    2016-01-01

    OBJECTIVES To assess objectively measured daytime physical activity and sleep duration and efficiency in hospitalized older adults and explore associations with demographic characteristics and disease severity. DESIGN Prospective cohort study. SETTING University of Chicago Medical Center general medicine wards. PARTICIPANTS Community-dwelling inpatients aged 50 and older (N = 120) MEASUREMENTS Physical activity and sleep were measured using wrist accelerometers. Information on Charlson Comorbidity Index and length of stay was collected from charts. Random-effects linear regression analysis was used to examine the association between in-hospital sleep and physical activity. RESULTS From March 2010 to May 2013, 120 participants wore wrist actigraphy monitors for at least 2 nights and 1 intervening day. Median activity level over the waking period was 77 counts/min (interquartile range 51–121 counts/min), an activity level that approximately corresponds to sitting while watching television (65 counts/min). Mean sleep duration the night before the activity interval was 289 ± 157 minutes, and mean sleep efficiency the night before the activity interval was 65.2 ± 26.9%. Mean activity counts/min were lowest for the oldest participants (oldest quartile 62, 95% confidence interval (CI) = 50–75; youngest quartile 121, 95% CI = 98–145, trend test P < .001) and those with highest Charlson Comorbidity Index (highest tertile 71, 95% CI = 60–83; lowest tertile 125, 95% CI = 104–147, trend test P = .01). Controlling for severity of illness and demographic characteristics, activity declined by 3 counts/min (95% CI = −5.65 to −0.43, P = .02) for each additional hour of inpatient sleep. CONCLUSION Older, sicker adults are less physically active during hospitalization. In contrast to studies in the community, inpatients who slept more were not more active. This may highlight that need for sleep is greater in the hospital than in the community. PMID:26131982

  12. CA1 hippocampal network activity changes during sleep-dependent memory consolidation

    PubMed Central

    Ognjanovski, Nicolette; Maruyama, Daniel; Lashner, Nora; Zochowski, Michal; Aton, Sara J.

    2014-01-01

    A period of sleep over the first few hours following single-trial contextual fear conditioning (CFC) is essential for hippocampally-mediated memory consolidation. Recent studies have uncovered intracellular mechanisms required for memory formation which are affected by post-conditioning sleep and sleep deprivation. However, almost nothing is known about the circuit-level activity changes during sleep that underlie activation of these intracellular pathways. Here we continuously recorded from the CA1 region of freely-behaving mice to characterize neuronal and network activity changes occurring during active memory consolidation. C57BL/6J mice were implanted with custom stereotrode recording arrays to monitor activity of individual CA1 neurons, local field potentials (LFPs), and electromyographic activity. Sleep architecture and state-specific CA1 activity patterns were assessed during a 24 h baseline recording period, and for 24 h following either single-trial CFC or Sham conditioning. We find that consolidation of CFC is not associated with significant sleep architecture changes, but is accompanied by long-lasting increases in CA1 neuronal firing, as well as increases in delta, theta, and gamma-frequency CA1 LFP activity. These changes occurred in both sleep and wakefulness, and may drive synaptic plasticity within the hippocampus during memory formation. We also find that functional connectivity within the CA1 network, assessed through functional clustering algorithm (FCA) analysis of spike timing relationships among recorded neurons, becomes more stable during consolidation of CFC. This increase in network stability was not present following Sham conditioning, was most evident during post-CFC slow wave sleep (SWS), and was negligible during post-CFC wakefulness. Thus in the interval between encoding and recall, SWS may stabilize the hippocampal contextual fear memory (CFM) trace by promoting CA1 network stability. PMID:24860440

  13. Sleep: A synchrony of cell activity-driven small network states

    PubMed Central

    Krueger, James M.; Huang, Yanhua; Rector, David M.; Buysse, Daniel J.

    2013-01-01

    We posit a bottom-up sleep regulatory paradigm in which state changes are initiated within small networks as a consequence of local cell activity. Bottom-up regulatory mechanisms are prevalent throughout nature, occurring in vastly different systems and levels of organization. Synchronization of state without top-down regulation is a fundamental property of large collections of small semi-autonomous entities. We posit that such synchronization mechanisms are sufficient and necessary for whole organism sleep onset. Within brain we posit that small networks of highly interconnected neurons and glia, e.g. cortical columns, are semi-autonomous units oscillating between sleep-like and wake-like states. We review evidence showing that cells, small networks, and regional areas of brain share sleep-like properties with whole animal sleep. A testable hypothesis focused on how sleep is initiated within local networks is presented. We posit that the release of cell activity-dependent molecules, such as ATP and nitric oxide, into the extracellular space initiates state changes within the local networks where they are produced. We review mechanisms of ATP induction of sleep regulatory substances (SRS) and their actions on receptor trafficking. Finally, we provide an example of how such local metabolic and state changes provide mechanistic explanations for clinical conditions such as insomnia. PMID:23651209

  14. Sleep mechanisms: Sleep deprivation and detection of changing levels of consciousness

    NASA Technical Reports Server (NTRS)

    Dement, W. C.; Barchas, J. D.

    1972-01-01

    An attempt was made to obtain information relevant to assessing the need to sleep and make up for lost sleep. Physiological and behavioral parameters were used as measuring parameters. Sleep deprivation in a restricted environment, derivation of data relevant to determining sleepiness from EEG, and the development of the Sanford Sleepiness Scale were discussed.

  15. Why does arterial blood pressure rise actively during REM sleep?

    PubMed

    Sei, H; Morita, Y

    1999-02-01

    A large fluctuation in autonomic function is one of the most important characteristics of REM sleep. Arterial blood pressure (AP) increases during the transition from non-REM to REM sleep, showing phasic surges during REM sleep. REM-associated AP changes involve 1) a long-term recovery process after surgery, 2) circadian rhythm, 3) relationships with ambient temperature. REM-associated AP changes are mediated by sympathetic nerves, buffered by baroreflex, abolished in decerebrated cats, and related to hippocampal theta activity in rats. Furthermore, the midbrain dopaminergic system has been recently found to be involved in increases in REM-associated AP. PMID:10408152

  16. Suppression of preoptic sleep-regulatory neuronal activity during corticotropin-releasing factor-induced sleep disturbance.

    PubMed

    Gvilia, Irma; Suntsova, Natalia; Kumar, Sunil; McGinty, Dennis; Szymusiak, Ronald

    2015-11-01

    Corticotropin releasing factor (CRF) is implicated in sleep and arousal regulation. Exogenous CRF causes sleep suppression that is associated with activation of at least two important arousal systems: pontine noradrenergic and hypothalamic orexin/hypocretin neurons. It is not known whether CRF also impacts sleep-promoting neuronal systems. We hypothesized that CRF-mediated changes in wake and sleep involve decreased activity of hypothalamic sleep-regulatory neurons localized in the preoptic area. To test this hypothesis, we examined the effects of intracerebroventricular administration of CRF on sleep-wake measures and c-Fos expression in GABAergic neurons in the median preoptic nucleus (MnPN) and ventrolateral preoptic area (VLPO) in different experimental conditions. Administration of CRF (0.1 nmol) during baseline rest phase led to delayed sleep onset and decreases in total amount and mean duration of non-rapid eye movement (NREM) sleep. Administration of CRF during acute sleep deprivation (SD) resulted in suppression of recovery sleep and decreased c-Fos expression in MnPN/VLPO GABAergic neurons. Compared with vehicle controls, intracerebroventricular CRF potentiated disturbances of both NREM and REM sleep in rats exposed to a species-specific psychological stressor, the dirty cage of a male conspecific. The number of MnPN/VLPO GABAergic neurons expressing c-Fos was reduced in the CRF-treated group of dirty cage-exposed rats. These findings confirm the involvement of CRF in wake-sleep cycle regulation and suggest that increased CRF signaling in the brain 1) negatively affects homeostatic responses to sleep loss, 2) exacerbates stress-induced disturbances of sleep, and 3) suppresses the activity of sleep-regulatory neurons of the MnPN and VLPO. PMID:26333784

  17. Effects of Sleep Disorders on Hemoglobin A1c Levels in Type 2 Diabetic Patients

    PubMed Central

    Keskin, Ahmet; Ünalacak, Murat; Bilge, Uğur; Yildiz, Pinar; Güler, Seda; Selçuk, Engin Burak; Bilgin, Muzaffer

    2015-01-01

    Background: Studies have reported the presence of sleep disorders in approximately 50–70% of diabetic patients, and these may contribute to poor glycemic control, diabetic neuropathy, and overnight hypoglycemia. The aim of this study was to determine the frequency of sleep disorders in diabetic patients, and to investigate possible relationships between scores of these sleep disorders and obstructive sleep apnea syndrome (OSAS) and diabetic parameters (fasting blood glucose, glycated hemoglobin A1c [HbA1c], and lipid levels). Methods: We used the Berlin questionnaire (BQ) for OSAS, the Epworth Sleepiness Scale (ESS), and the Pittsburgh Sleep Quality Index (PSQI) to determine the frequency of sleep disorders and their possible relationships with fasting blood glucose, HbA1c, and lipid levels. Results: The study included 585 type 2 diabetic patients admitted to family medicine clinics between October and December 2014. Sleep, sleep quality, and sleep scores were used as the dependent variables in the analysis. The ESS scores showed that 54.40% of patients experienced excessive daytime sleepiness, and according to the PSQI, 64.30% experienced poor-quality sleep. The BQ results indicated that 50.20% of patients were at high-risk of OSAS. HbA1c levels correlated significantly with the ESS and PSQI results (r = 0.23, P < 0.001 and r = 0.14, P = 0.001, respectively), and were significantly higher in those with high-risk of OSAS as defined by the BQ (P < 0.001). These results showed that HbA1c levels were related to sleep disorders. Conclusions: Sleep disorders are common in diabetic patients and negatively affect the control of diabetes. Conversely, poor diabetes control is an important factor disturbing sleep quality. Addressing sleep disturbances in patients who have difficulty controlling their blood glucose has dual benefits: Preventing diabetic complications caused by sleep disturbance and improving diabetes control. PMID:26668142

  18. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Foy, R.; Dijk, D. J.; Czeisler, C. A. (Principal Investigator)

    1999-01-01

    The effect of sleep deprivation (40 h) on topographic and temporal aspects of electroencephalographic (EEG) activity during sleep was investigated by all night spectral analysis in six young volunteers. The sleep-deprivation-induced increase of EEG power density in the delta and theta frequencies (1-7 Hz) during nonREM sleep, assessed along the antero-posterior axis (midline: Fz, Cz, Pz, Oz), was significantly larger in the more frontal derivations (Fz, Cz) than in the more parietal derivations (Pz, Oz). This frequency-specific frontal predominance was already present in the first 30 min of recovery sleep, and dissipated in the course of the 8-h sleep episode. The data demonstrate that the enhancement of slow wave EEG activity during sleep following extended wakefulness is most pronounced in frontal cortical areas.

  19. Uncovering representations of sleep-associated hippocampal ensemble spike activity.

    PubMed

    Chen, Zhe; Grosmark, Andres D; Penagos, Hector; Wilson, Matthew A

    2016-01-01

    Pyramidal neurons in the rodent hippocampus exhibit spatial tuning during spatial navigation, and they are reactivated in specific temporal order during sharp-wave ripples observed in quiet wakefulness or slow wave sleep. However, analyzing representations of sleep-associated hippocampal ensemble spike activity remains a great challenge. In contrast to wake, during sleep there is a complete absence of animal behavior, and the ensemble spike activity is sparse (low occurrence) and fragmental in time. To examine important issues encountered in sleep data analysis, we constructed synthetic sleep-like hippocampal spike data (short epochs, sparse and sporadic firing, compressed timescale) for detailed investigations. Based upon two Bayesian population-decoding methods (one receptive field-based, and the other not), we systematically investigated their representation power and detection reliability. Notably, the receptive-field-free decoding method was found to be well-tuned for hippocampal ensemble spike data in slow wave sleep (SWS), even in the absence of prior behavioral measure or ground truth. Our results showed that in addition to the sample length, bin size, and firing rate, number of active hippocampal pyramidal neurons are critical for reliable representation of the space as well as for detection of spatiotemporal reactivated patterns in SWS or quiet wakefulness. PMID:27573200

  20. Uncovering representations of sleep-associated hippocampal ensemble spike activity

    PubMed Central

    Chen, Zhe; Grosmark, Andres D.; Penagos, Hector; Wilson, Matthew A.

    2016-01-01

    Pyramidal neurons in the rodent hippocampus exhibit spatial tuning during spatial navigation, and they are reactivated in specific temporal order during sharp-wave ripples observed in quiet wakefulness or slow wave sleep. However, analyzing representations of sleep-associated hippocampal ensemble spike activity remains a great challenge. In contrast to wake, during sleep there is a complete absence of animal behavior, and the ensemble spike activity is sparse (low occurrence) and fragmental in time. To examine important issues encountered in sleep data analysis, we constructed synthetic sleep-like hippocampal spike data (short epochs, sparse and sporadic firing, compressed timescale) for detailed investigations. Based upon two Bayesian population-decoding methods (one receptive field-based, and the other not), we systematically investigated their representation power and detection reliability. Notably, the receptive-field-free decoding method was found to be well-tuned for hippocampal ensemble spike data in slow wave sleep (SWS), even in the absence of prior behavioral measure or ground truth. Our results showed that in addition to the sample length, bin size, and firing rate, number of active hippocampal pyramidal neurons are critical for reliable representation of the space as well as for detection of spatiotemporal reactivated patterns in SWS or quiet wakefulness. PMID:27573200

  1. Low-Level Mercury in Children: Associations with Sleep Duration and Cytokines TNF-α and IL-6

    PubMed Central

    Gump, Brooks B.; Gabrikova, Elena; Bendinskas, Kestutis; Dumas, Amy K.; Palmer, Christopher D.; Parsons, Patrick J.; MacKenzie, James A.

    2014-01-01

    There is a sizeable literature suggesting that mercury (Hg) exposure affects cytokine levels in humans. In addition to their signaling role in the immune system, some cytokines are also integrally associated with sleep behavior. In this cross-sectional study of 9–11 year old children (N = 100), we measured total blood Hg in whole blood, serum levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), and objectively measured sleep and activity using actigraphy. Increasing blood Hg was associated with significantly shorter sleep duration and lower levels of TNF-α. IL-6 was not associated with sleep or blood Hg. This study is the first to document an association between total blood Hg and sleep (albeit a small effect), and the first to consider the associations of total blood Hg with cytokines TNF-α and IL-6 in a pediatric sample. Further research using alternative designs (e.g., time-series) is necessary to determine if there is a causal pathway linking low-level Hg exposure to sleep restriction and reduced cytokines. PMID:25173056

  2. Sleep disorders and inflammatory disease activity: chicken or the egg?

    PubMed

    Parekh, Parth J; Oldfield Iv, Edward C; Challapallisri, Vaishnavi; Ware, J Catsby; Johnson, David A

    2015-04-01

    Sleep dysfunction is a highly prevalent condition that has long been implicated in accelerating disease states characterized by having an inflammatory component such as systemic lupus erythematosus, HIV, and multiple sclerosis. Inflammatory bowel disease (IBD) is a chronic, debilitating disease that is characterized by waxing and waning symptoms, which are a direct result of increased circulating inflammatory cytokines. Recent studies have demonstrated sleep dysfunction and the disruption of the circadian rhythm to result in an upregulation of inflammatory cytokines. Not only does this pose a potential trigger for disease flares but also an increased risk of malignancy in this subset of patients. This begs to question whether or not there is a therapeutic role of sleep cycle and circadian rhythm optimization in the prevention of IBD flares. Further research is needed to clarify the role of sleep dysfunction and alterations of the circadian rhythm in modifying disease activity and also in reducing the risk of malignancy in patients suffering from IBD.

  3. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep.

    PubMed

    Van Dort, Christa J; Zachs, Daniel P; Kenny, Jonathan D; Zheng, Shu; Goldblum, Rebecca R; Gelwan, Noah A; Ramos, Daniel M; Nolan, Michael A; Wang, Karen; Weng, Feng-Ju; Lin, Yingxi; Wilson, Matthew A; Brown, Emery N

    2015-01-13

    Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.

  4. Active Reward Processing during Human Sleep: Insights from Sleep-Related Eating Disorder.

    PubMed

    Perogamvros, Lampros; Baud, Patrick; Hasler, Roland; Cloninger, Claude Robert; Schwartz, Sophie; Perrig, Stephen

    2012-01-01

    In this paper, we present two carefully documented cases of patients with sleep-related eating disorder (SRED), a parasomnia which is characterized by involuntary compulsive eating during the night and whose pathophysiology is not known. Using video-polysomnography, a dream diary and psychometric examination, we found that both patients present elevated novelty seeking and increased reward sensitivity. In light of new evidence on the mesolimbic dopaminergic implication in compulsive eating disorders, our findings suggest a role of an active reward system during sleep in the manifestation of SRED.

  5. Active Reward Processing during Human Sleep: Insights from Sleep-Related Eating Disorder

    PubMed Central

    Perogamvros, Lampros; Baud, Patrick; Hasler, Roland; Cloninger, Claude Robert; Schwartz, Sophie; Perrig, Stephen

    2012-01-01

    In this paper, we present two carefully documented cases of patients with sleep-related eating disorder (SRED), a parasomnia which is characterized by involuntary compulsive eating during the night and whose pathophysiology is not known. Using video-polysomnography, a dream diary and psychometric examination, we found that both patients present elevated novelty seeking and increased reward sensitivity. In light of new evidence on the mesolimbic dopaminergic implication in compulsive eating disorders, our findings suggest a role of an active reward system during sleep in the manifestation of SRED. PMID:23205019

  6. Influence of chronic dopamine transporter inhibition by RTI-336 on motor behavior, sleep, and hormone levels in rhesus monkeys.

    PubMed

    Andersen, Monica L; Sawyer, Eileen K; Carroll, F Ivy; Howell, Leonard L

    2012-04-01

    Dopamine transporter (DAT) inhibitors have been developed as a promising treatment approach for cocaine dependence. However, the stimulant effects of DAT inhibitors have the potential to disrupt sleep patterns, and the influence of long-term treatment on dopamine neurochemistry is still unknown. The objectives of this study were to (1) explore the stimulant-related effects of chronic DAT inhibitor (RTI-336) treatment on motor activity and sleep-like measures in male rhesus monkeys (Macaca mulatta; n = 4) and (2) to determine the effect of drug treatment on prolactin and cortisol levels. Subjects were fitted with a collar-mounted activity monitor to evaluate their motor activity, with 4 days of baseline recording preceding 21 days of daily saline or RTI-336 (1 mg/kg/day; intramuscular) injections. Blood samples were collected immediately prior to and following chronic treatment to assess hormone levels. RTI-336 produced a significant increase in locomotor activity at the end of the daytime period compared to saline administration. During the 3-week treatment period, sleep efficiency was decreased and the fragmentation index and latency to sleep onset were significantly increased. Hormone levels were not changed throughout the study. Chronic treatment with RTI-336 has a mild but significant stimulant effect, as evidenced by the significant increase in activity during the evening period which may cause minor disruptions in sleep measures. PMID:22023668

  7. Association of Markers of Inflammation with Sleep and Physical Activity Among People Living with HIV or AIDS.

    PubMed

    Wirth, Michael D; Jaggers, Jason R; Dudgeon, Wesley D; Hébert, James R; Youngstedt, Shawn D; Blair, Steven N; Hand, Gregory A

    2015-06-01

    This study examined associations of sleep and minutes spent in moderate-vigorous physical activity (MVPA) with C-reactive protein (CRP) and interleukin (IL)-6 among persons living with HIV. Cross-sectional analyses (n = 45) focused on associations of inflammatory outcomes (i.e., CRP and IL-6) with actigraph-derived sleep duration, latency, and efficiency; sleep onset; wake time; and wake-after-sleep-onset; as well as MVPA. Least square means for CRP and IL-6 by levels of sleep and MVPA were computed from general linear models. Individuals below the median of sleep duration, above the median for sleep onset, and below the median of MVPA minutes had higher CRP or IL-6 levels. Generally, individuals with both low MVPA and poor sleep characteristics had higher inflammation levels than those with more MVPA and worse sleep. Understanding the combined impact of multiple lifestyle/behavioral factors on inflammation could inform intervention strategies to reduce inflammation and therefore, chronic disease risk.

  8. Daily activities and sleep quality in college students.

    PubMed

    Carney, Colleen E; Edinger, Jack D; Meyer, Björn; Lindman, Linda; Istre, Tai

    2006-01-01

    There is growing evidence that social rhythms (e.g., daily activities such as getting into or out of bed, eating, and adhering to a work schedule) have important implications for sleep. The present study used a prospective measure of daily activities to assess the relation between sleep and social rhythms. College students (n=243) 18 to 39 yrs of age, completed the Social Rhythm Metric (SRM) each day for 14 d and then completed the Pittsburgh Sleep Quality Index (PSQI). The sample was divided into groups of good or poor sleepers, according to a PSQI cut-off score of 5 points and was compared on the regularity, frequency, timing, and extent of social engagement during activities. There was a lower frequency and less regularity of social rhythms in poor sleepers relative to good sleepers. Good sleepers engaged more regularly in activities with active social engagement. Earlier rise time, first consumption of a beverage, going outdoors for the first time, and bedtime were associated with better sleep. Greater variability in rise time, consuming a morning beverage, returning home for the last time, and bedtime were associated with more disturbed sleep. The results are consistent with previous findings of reduced regularity in bedtime and rise time schedules in undergraduates, other age groups, and in clinical populations. Results augment the current thought that regulating behavioral zeitgebers may be important in influencing bed and rise times, and suggest that engaging in activities with other people may increase regularity.

  9. Sleep Loss Activates Cellular Markers of Inflammation: Sex Differences

    PubMed Central

    Irwin, Michael R.; Carrillo, Carmen; Olmstead, Richard

    2009-01-01

    Sleep disturbance is associated with inflammation and related disorders including cardiovascular disease, arthritis, and diabetes mellitus. Given sex differences in the prevalence of inflammatory disorders with stronger associations in females, this study was undertaken to test the effects of sleep loss on cellular mechanisms that contribute to proinflammatory cytokine activity. In 26 healthy adults (11 females; 15 males), monocyte intracellular proinflammatory cytokine production was repeatedly assessed at 08:00, 12:00, 16:00, 20:00, and 23:00 h during a baseline period and after partial sleep deprivation (awake from 11 PM to 3 AM). In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor- α differentially changed between the two sexes. Whereas both females and males showed a marked increase in the lipopolysaccharide (LPS) - stimulated production of IL-6 and TNF-α in the morning immediately after PSD, production of these cytokines during the early- and late evening was increased in the females as compared to decreases in the males. Sleep loss induces a functional alteration of monocyte proinflammatory cytokine responses with females showing greater cellular immune activation as compared to changes in males. These results have implications for understanding the role of sleep disturbance in the differential risk profile for inflammatory disorders between the sexes. PMID:19520155

  10. Exercise and sleep deprivation do not change cytokine expression levels in patients with chronic fatigue syndrome.

    PubMed

    Nakamura, Toru; Schwander, Stephan; Donnelly, Robert; Cook, Dane B; Ortega, Felix; Togo, Fumiharu; Yamamoto, Yoshiharu; Cherniack, Neil S; Klapholz, Marc; Rapoport, David; Natelson, Benjamin H

    2013-11-01

    A major hypothesis regarding the cause of chronic fatigue syndrome (CFS) is immune dysregulation, thought to be reflected in upregulated proinflammatory cytokines leading to the symptoms that are characteristic of this illness. Because the symptoms worsen with physical exertion or sleep loss, we hypothesized that we could use these stressors to magnify the underlying potential pathogenic abnormalities in the cytokine systems of people with CFS. We conducted repeat blood sampling for cytokine levels from healthy subjects and CFS patients during both postexercise and total sleep deprivation nights and assayed for protein levels in the blood samples, mRNA activity in peripheral blood lymphocytes (PBLs), and function in resting and stimulated PBLs. We found that these environmental manipulations did not produce clinically significant upregulation of proinflammatory cytokines. These data do not support an important role of immune dysregulation in the genesis of stress-induced worsening of CFS.

  11. Adenosine and Sleep

    PubMed Central

    Bjorness, Theresa E; Greene, Robert W

    2009-01-01

    Over the last several decades the idea that adenosine (Ado) plays a role in sleep control was postulated due in large part to pharmacological studies that showed the ability of Ado agonists to induce sleep and Ado antagonists to decrease sleep. A second wave of research involving in vitro cellular analytic approaches and subsequently, the use of neurochemical tools such as microdialysis, identified a population of cells within the brainstem and basal forebrain arousal centers, with activity that is both tightly coupled to thalamocortical activation and under tonic inhibitory control by Ado. Most recently, genetic tools have been used to show that Ado receptors regulate a key aspect of sleep, the slow wave activity expressed during slow wave sleep. This review will briefly introduce some of the phenomenology of sleep and then summarize the effect of Ado levels on sleep, the effect of sleep on Ado levels, and recent experiments using mutant mouse models to characterize the role for Ado in sleep control and end with a discussion of which Ado receptors are involved in such control. When taken together, these various experiments suggest that while Ado does play a role in sleep control, it is a specific role with specific functional implications and it is one of many neurotransmitters and neuromodulators affecting the complex behavior of sleep. Finally, since the majority of adenosine-related experiments in the sleep field have focused on SWS, this review will focus largely on SWS; however, the role of adenosine in REM sleep behavior will be addressed. PMID:20190965

  12. Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation.

    PubMed

    Gong, Hui; McGinty, Dennis; Guzman-Marin, Ruben; Chew, Keng-Tee; Stewart, Darya; Szymusiak, Ronald

    2004-05-01

    Neurones in the median preoptic nucleus (MnPN) and the ventrolateral preoptic area (vlPOA) express immunoreactivity for c-Fos protein following sustained sleep, and display elevated discharge rates during both non-REM and REM sleep compared to waking. We evaluated the hypothesis that MnPN and vlPOA sleep-active neurones are GABAergic by combining staining for c-Fos protein with staining for glutamic acid decarboxylase (GAD). In a group of six rats exhibiting spontaneous total sleep times averaging 82.2 +/- 5.1% of the 2 h immediately prior to death, >75% of MnPN neurones that were Fos-immunoreactive (IR) were also GAD-IR. Similar results were obtained in the vlPOA. In a group of 11 rats exhibiting spontaneous sleep times ranging from 20 to 92%, the number of Fos + GAD-IR neurones in MnPN and vlPOA was positively correlated with total sleep time. Compared to control animals, Fos + GAD-IR cell counts in the MnPN were significantly elevated in rats that were sleep deprived for 24 h and permitted 2 h of recovery sleep. These findings demonstrate that a majority of MnPN and vlPOA neurones that express Fos-IR during sustained spontaneous sleep are GABAergic. They also demonstrate that sleep deprivation is associated with increased activation of GABAergic neurones in the MnPN and vlPOA.

  13. Influences of NREM sleep on activity of palatoglossus and levator palatini muscles in normal men.

    PubMed

    Tangel, D J; Mezzanotte, W S; White, D P

    1995-02-01

    Most evidence indicates that palatal position has an important influence on respiration during sleep. We have previously demonstrated during wakefulness that the levator palatini (LP) and the palatoglossus (PG) muscles function in an integrated manner in determining the route of respiration. In this study we first determined the effect of non-rapid-eye-movement (NREM) sleep on LP and PG electromyograms (EMGs) and then assessed if subjects could switch from nasal (NR) to oral (OR) respiration during NREM sleep without arousal. Six normal males subjects were studied using intramuscular EMG recording electrodes (LP and PG) and a divided mask to separate NR and OR. Peak inspiratory and end-expiratory EMGs of the LP fell significantly during NREM sleep [3.7 +/- 0.4 (SE), 1.9 +/- 0.4, and 2.4 +/- 0.7 arbitrary units for LP peak inspiratory awake, stage 2, and stage 3/4, respectively; 2.7 +/- 0.2, 1.5 +/- 0.2, and 1.8 +/- 0.5 arbitrary units for LP end-expiratory awake, stage 2, and stage 3/4, respectively; P < 0.05]. In a similar manner, the peak inspiratory EMG of the PG fell from wakefulness to stage 2 NREM sleep [5.1 +/- 0.5 and 3.9 +/- 0.5 arbitrary units for PG peak inspiratory awake and stage 2, respectively]. On the other hand, the PG peak inspiratory activity returned to near waking levels during stage 3/4 sleep, with the PG end-expiratory activity never falling during sleep. A total of 14 nasal occlusions were performed during NREM sleep. In all cases except one, an arousal was required to institute a change to OR.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Low Physical Activity Level and Short Sleep Duration Are Associated with an Increased Cardio-Metabolic Risk Profile: A Longitudinal Study in 8-11 Year Old Danish Children

    PubMed Central

    Hjorth, Mads F.; Chaput, Jean-Philippe; Damsgaard, Camilla T.; Dalskov, Stine-Mathilde; Andersen, Rikke; Astrup, Arne; Michaelsen, Kim F.; Tetens, Inge; Ritz, Christian; Sjödin, Anders

    2014-01-01

    Background As cardio-metabolic risk tracks from childhood to adulthood, a better understanding of the relationship between movement behaviors (physical activity, sedentary behavior and sleep) and cardio-metabolic risk in childhood may aid in preventing metabolic syndrome (MetS) in adulthood. Objective To examine independent and combined cross-sectional and longitudinal associations between movement behaviors and the MetS score in 8-11 year old Danish children. Design Physical activity, sedentary time and sleep duration (seven days and eight nights) were assessed by accelerometer and fat mass index (fat mass/height2) was assessed using Dual-energy X-ray absorptiometry. The MetS-score was based on z-scores of waist circumference, mean arterial blood pressure, homeostatic model assessment of insulin resistance, triglycerides and high density lipoprotein cholesterol. All measurements were taken at three time points separated by 100 days. Average of the three measurements was used as habitual behavior in the cross-sectional analysis and changes from first to third measurement was used in the longitudinal analysis. Results 723 children were included. In the cross-sectional analysis, physical activity was negatively associated with the MetS-score (P<0.03). In the longitudinal analysis, low physical activity and high sedentary time were associated with an increased MetS-score (all P<0.005); however, after mutual adjustments for movement behaviors, physical activity and sleep duration, but not sedentary time, were associated with the MetS-score (all P<0.03). Further adjusting for fat mass index while removing waist circumference from the MetS-score rendered the associations no longer statistically significant (all P>0.17). Children in the most favorable tertiles of changes in moderate-to-vigorous physical activity, sleep duration and sedentary time during the 200-day follow-up period had an improved MetS-score relative to children in the opposite tertiles (P = 0

  15. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  16. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  17. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  18. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  19. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  20. Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression.

    PubMed

    Benedetti, Francesco; Dallaspezia, Sara; Fulgosi, Mara Cigala; Lorenzi, Cristina; Serretti, Alessandro; Barbini, Barbara; Colombo, Cristina; Smeraldi, Enrico

    2007-07-01

    Depressive insomnia and diurnal fluctuations of mood and activity are core clinical features of mood disorders. Here we studied the effect of CLOCK 3111 T/C SNP (rs1801260) on the actimetric recorded diurnal activity and nocturnal sleep of 39 bipolar depressed inpatients. Compared to T/T homozygotes, carriers of the C allele had a similar degree of severity of depression, but showed higher activity levels in the evening, a delayed sleep onset (mean 79 min later), and a reduced amount of sleep during the night (mean 75 min less). Ongoing lithium treatment significantly interacted with rs1801260 by enhancing activity levels in the evening and reducing the differences among genotype groups. Individual characteristics of the molecular clock can influence sleep symptoms in mood disorders.

  1. Nocturnal oscillations in plasma renin activity during sleep in hypertensive patients: the influence of perindopril.

    PubMed

    Brandenberger, G; Imbs, J L; Libert, J P; Ehrhart, J; Simon, C; Santoni, J P; Follenius, M

    1990-01-01

    In previous studies, we established a strong concordance between nocturnal oscillations in plasma renin activity (PRA) and REM-NREM sleep cycles. To determine whether this relation persists in the case of moderate essential hypertension and if it is influenced by antihypertensive therapies affecting renin release, six normal subjects and six hypertensive patients were studied. The normal subjects underwent one control night. The hypertensive patients were studied during a first night when a placebo was given. Four of them underwent a second night following a single dose of an angiotensin-converting enzyme (ACE) inhibitor, perindopril; and a third night, 45 days later, with the antihypertensive treatment. In addition, two of the patients underwent two night-studies, after a single and repeated doses of a beta-blocker, atenolol, to see whether preventing renin release modified the sleep structure. The relationship between the nocturnal PRA oscillations and the sleep stage patterns persisted in hypertensive patients receiving placebo. In patients who had low PRA levels, the increases associated with NREM sleep were small. However, the mean relative amplitude of the oscillations, expressed as a percentage of the nocturnal mean, was about 60%, which was similar to that in normotensive subjects. Active renin and PRA oscillations were closely coupled. ACE activity profiles displayed damped fluctuations and no systematic relationship with sleep stages.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2172356

  2. Sleep Duration or Bedtime? Exploring the Relationship between Sleep Habits and Weight Status and Activity Patterns

    PubMed Central

    Olds, Tim S.; Maher, Carol A.; Matricciani, Lisa

    2011-01-01

    Study Objectives: To assess the effects of early and late bedtimes and wake up times on use of time and weight status in Australian school-aged children. Design: Observational cross-sectional study involving use of time interviews and pedometers. Setting: Free-living Australian adolescents. Participants: 2200 9- to 16-year-olds from all states of Australia Interventions: NA. Measurements and Results: Bedtimes and wake times were adjusted for age and sex and classified as early or late using median splits. Adolescents were allocated into 4 sleep-wake pattern groups: Early-bed/Early-rise; Early-bed/Late-rise; Late-bed/Early-rise; Late-bed/Late-rise. The groups were compared for use of time (screen time, physical activity, and study-related time), sociodemographic characteristics, and weight status. Adolescents in the Late-bed/Late-rise category experienced 48 min/d more screen time and 27 min less moderate-to-vigorous physical activity (MVPA) (P < 0.0001) than adolescents in the Early-bed/Early-rise category, in spite of similar sleep durations. Late-bed/Late-rise adolescents had a higher BMI z-score (0.66 vs. 0.45, P = 0.0015). Late-bed/Late-rise adolescents were 1.47 times more likely to be overweight or obese than Early-bed/Early-rise adolescents, 2.16 times more likely to be obese, 1.77 times more likely to have low MVPA, and 2.92 times more likely to have high screen time. Late-bed/Late-rise adolescents were more likely to come from poorer households, to live in major cities, and have fewer siblings. Conclusions: Late bedtimes and late wake up times are associated with an unfavorable activity and weight status profile, independent of age, sex, household income, geographical remoteness, and sleep duration. Citation: Olds TS; Maher CA; Matricciani L. Sleep duration or bedtime? Exploring the relationship between sleep habits and weight status and activity patterns. SLEEP 2011;34(10):1299-1307. PMID:21966061

  3. Gudden's dorsal tegmental nucleus is activated in carbachol-induced active (REM) sleep and active wakefulness.

    PubMed

    Torterolo, Pablo; Sampogna, Sharon; Morales, Francisco R; Chase, Michael H

    2002-07-19

    Previous studies have shown that GABAergic processes in the ponto-mesencephalic region of the brainstem are involved in the generation of wakefulness and active sleep (AS). The dorsal and ventral tegmental nuclei of Gudden (DTN and VTN, respectively) are known to contain a large population of GABAergic neurons. In the present study, utilizing Fos immunoreactivity as a marker of neuronal activity, it was determined that GABAergic DTN pars dorsalis neurons are active during active wakefulness and AS induced by carbachol, but not during quiet wakefulness or quiet sleep. In contrast, no differences in the number of Fos immunoreactive neurons were observed in the DTN pars ventralis and VTN across behavioral states.

  4. Effects of sleep deprivation on serum cortisol level and mental health in servicemen.

    PubMed

    Song, Hong-Tao; Sun, Xin-Yang; Yang, Ting-Shu; Zhang, Li-Yi; Yang, Jia-Lin; Bai, Jing

    2015-06-01

    This study aimed to investigate the effects of sleep deprivation on serum cortisol level and mental health and explore the correlations between them in servicemen. A total of 149 out of the 207 Chinese servicemen were randomly selected to go through 24hour sleep deprivation, leaving the rest (58) as the control group, before and after which their blood samples were drawn for cortisol measurement. Following the procedure, all the participants were administered the Military Personnel Mental Disorder Prediction Scale, taking the military norm as baseline. The results revealed that the post-deprivation serum cortisol level was positively correlated with the factor score of mania in the sleep deprivation group (rSp=0.415, p<0.001). Sleep deprivation could significantly increase serum cortisol level and may affect mental health in servicemen. The increase of serum cortisol level is significantly related to mania disorder during sleep deprivation.

  5. Urinary 6-sulphatoxymelatonin levels and sleep disorders in children with migraine.

    PubMed

    Abou-Khadra, Maha K; Kishk, Nirmeen A; Shaker, Olfat G; Hassan, Amr

    2014-07-01

    We conducted the present study to assess melatonin secretion in a sample of children with migraine, to describe their sleep patterns and problems, and to examine the impact of sleep problems on migraine disability. The parents of 18 children with migraine completed the Children's Sleep Habits Questionnaire and Pediatric Migraine Disability Assessment Score in Arabic. The parents of 18 healthy controls also completed the Children's Sleep Habits Questionnaire. Urinary 6-sulphatoxymelatonin levels were determined with the enzyme-linked immunosorbent assay method. There was no significant difference in urinary 6-sulphatoxymelatonin between the migraine and control groups (Z = -0.127, P = .889). There were no significant differences between groups in Children's Sleep Habits Questionnaire subscales or total scores. There were significant correlations between bedtime resistance, parasomnias subscales, and migraine disability. Our findings indicate that nocturnal production of melatonin is not reduced in children with migraine, and sleep disturbances impact the degree of migraine disability.

  6. Behavioral state-specific inhibitory postsynaptic potentials impinge on cat lumbar motoneurons during active sleep.

    PubMed

    Morales, F R; Boxer, P; Chase, M H

    1987-11-01

    High-gain intracellular records were obtained from lumbar motoneurons in intact, undrugged cats during naturally occurring states of wakefulness, quiet sleep, and active sleep. Spontaneous, discrete, inhibitory postsynaptic potentials (IPSPs) were found to impinge on lumbar motoneurons during all states of sleep and wakefulness. IPSPs which occurred during wakefulness and quiet sleep were of relatively low amplitude and had a low frequency of occurrence. During the state of active sleep there occurred a great increase in inhibitory input. This was the result of the appearance of large-amplitude IPSPs and of an increase in the frequency of low-amplitude IPSPs which were indistinguishable from those recorded during wakefulness and quiet sleep. In addition to a difference in amplitude, the time course of the large IPSPs recorded during active sleep further differentiated them from the smaller IPSPs recorded during wakefulness, quiet sleep, and active sleep; i.e., their rise-time and half-width were of longer duration and their rate-of-rise was significantly faster. We suggest that the large, active sleep-specific IPSPs reflect the activity of a group of inhibitory interneurons which are inactive during wakefulness and quiet sleep and which discharge during active sleep. These as yet unidentified interneurons would then serve as the last link in the brain stem-spinal cord inhibitory system which is responsible for producing muscle atonia during the state of active sleep. PMID:3666087

  7. Reduced orexin-A levels in frontotemporal dementia: possible association with sleep disturbance.

    PubMed

    Çoban, Arzu; Bilgiç, Basar; Lohmann, Ebba; Küçükali, Cem İsmail; Benbir, Gülçin; Karadeniz, Derya; Hanagasi, Hasmet A; Tüzün, Erdem; Gürvit, Hakan

    2013-09-01

    Sleep disturbances including excessive daytime sleepiness (EDS) are encountered in frontotemporal dementia (FTD). To investigate the relationship between the plasma orexin-A levels and sleep disturbance patterns, we measured the plasma orexin-A levels and performed sleep studies in patients with FTD. The orexin-A levels were measured in 10 consecutive patients with FTD and controls by enzyme-linked immunosorbent assay. Nocturnal polysomnography (PSG) and Multiple Sleep Latency Test (MSLT) were performed in 2 patients with FTD. The orexin-A levels were significantly lower in patients with FTD compared to controls. The PSG revealed increased rapid eye movement (REM) latency in patients, whether or not they reported EDS. Mean sleep latency in MSLT was less than 10 minutes in both the patients, being shorter in patient without EDS, but none of them had REM sleep onset. Some patients with FTD may develop narcolepsy-like involuntary sleep attacks, even without complaining of EDS. Involvement of hypothalamus and a subsequent alteration in the orexin levels might be one of the determining factors in this sleep disturbance.

  8. Could transient hypoxia be associated with rhythmic masticatory muscle activity in sleep bruxism in the absence of sleep-disordered breathing? A preliminary report.

    PubMed

    Dumais, I E; Lavigne, G J; Carra, M C; Rompré, P H; Huynh, N T

    2015-11-01

    Sleep bruxism (SB) is a repetitive jaw-muscle activity characterised by clenching or grinding of the teeth during sleep. Sleep bruxism activity is characterised by rhythmic masticatory muscle activity (RMMA). Many but not all RMMA episodes are associated with sleep arousal. The aim of this study was to evaluate whether transient oxygen saturation level change can be temporally associated with genesis of RMMA/SB. Sleep laboratory or home recordings data from 22 SB (tooth grinding history in the absence of reported sleep-disordered breathing) and healthy subjects were analysed. A total of 143 RMMA/SB episodes were classified in four categories: (i) no arousal + no body movement; (ii) arousal + no body movement; (iii) no arousal + body movement; (iv) arousal + body movement. Blood oxygen levels (SaO2 ) were assessed from finger oximetry signal at the baseline (before RMMA), and during RMMA. Significant variation in SaO2 over time (P = 0·001) was found after RMMA onset (+7 to +9 s). No difference between categories (P = 0·91) and no interaction between categories and SaO2 variation over time (P = 0·10) were observed. SaO2 of six of 22 subjects (27%) remained equal or slight increase after the RMMA/SB onset (+8 s) compared to baseline; 10 subjects (45%) slightly decreased (drop 0·01-1%) and the remaining (27%) decreased between 1% and 2%. These preliminary findings suggest that a subgroup of SB subjects had (i) a minor transient hypoxia potentially associated with the onset of RMMA episodes, and this (ii) independently of concomitant sleep arousal or body movements.

  9. A new strategy to analyze possible association structures between dynamic nocturnal hormone activities and sleep alterations in humans.

    PubMed

    Kalus, Stefanie; Kneib, Thomas; Steiger, Axel; Holsboer, Florian; Yassouridis, Alexander

    2009-04-01

    The human sleep process shows dynamic alterations during the night. Methods are needed to examine whether and to what extent such alterations are affected by internal, possibly time-dependent, factors, such as endocrine activity. In an observational study, we examined simultaneously sleep EEG and nocturnal levels of renin, growth hormone (GH), and cortisol (between 2300 and 0700) in 47 healthy volunteers comprising 24 women (41.67 +/- 2.93 yr of age) and 23 men (37.26 +/- 2.85 yr of age). Hormone concentrations were measured every 20 min. Conventional sleep stage scoring at 30-s intervals was applied. Semiparametric multinomial logit models are used to study and quantify possible time-dependent hormone effects on sleep stage transition courses. Results show that increased cortisol levels decrease the probability of transition from rapid-eye-movement (REM) sleep to wakefulness (WAKE) and increase the probability of transition from REM to non-REM (NREM) sleep, irrespective of the time in the night. Via the model selection criterion Akaike's information criterion, it was found that all considered hormone effects on transition probabilities with the initial state WAKE change with time. Similarly, transition from slow-wave sleep (SWS) to light sleep (LS) is affected by a "hormone-time" interaction for cortisol and renin, but not GH. For example, there is a considerable increase in the probability of SWS-LS transition toward the end of the night, when cortisol concentrations are very high. In summary, alterations in human sleep possess dynamic forms and are partially influenced by the endocrine activity of certain hormones. Statistical methods, such as semiparametric multinomial and time-dependent logit regression, can offer ambitious ways to investigate and estimate the association intensities between the nonstationary sleep changes and the time-dependent endocrine activities. PMID:19144755

  10. Neocortical activation of the hippocampus during sleep in infant rats.

    PubMed

    Mohns, Ethan J; Blumberg, Mark S

    2010-03-01

    We recently reported that the majority of hippocampal neurons in newborn rats increase their activity in association with myoclonic twitches, which are indicative of active sleep. Because spindle bursts in the developing somatosensory neocortex occur in response to sensory feedback from myoclonic twitching, we hypothesized that the state-dependent activity of the newborn hippocampus arises from sensory feedback that sequentially activates the neocortex and then hippocampus, constituting an early form of neocortical-hippocampal communication. Here, in unanesthetized 5- to 6-d-old rats, we test this hypothesis by recording simultaneously from forelimb and barrel regions of somatosensory neocortex and dorsal hippocampus during periods of spontaneous sleep and wakefulness and in response to peripheral stimulation. Myoclonic twitches were consistently followed by neocortical spindle bursts, which were in turn consistently followed by bursts of hippocampal unit activity; moreover, spindle burst power was positively correlated with hippocampal unit activity. In addition, exogenous stimulation consistently evoked this neocortical-to-hippocampal sequence of activation. Finally, parahippocampal lesions that disrupted functional connections between the neocortex and hippocampus effectively disrupted the transmission of both spontaneous and evoked neocortical activity to the hippocampus. These findings suggest that sleep-related motor activity contributes to the development of neocortical and hippocampal circuits and provides a foundation on which coordinated activity between these two forebrain structures develops.

  11. Food Patterns According to Sociodemographics, Physical Activity, Sleeping and Obesity in Portuguese Children

    PubMed Central

    Moreira, Pedro; Santos, Susana; Padrão, Patrícia; Cordeiro, Tânia; Bessa, Mariana; Valente, Hugo; Barros, Renata; Teixeira, Vitor; Mitchell, Vanessa; Lopes, Carla; Moreira, André

    2010-01-01

    Our study aimed to describe the association between food patterns and gender, parental education, physical activity, sleeping and obesity in 1976 children aged 5−10 years old. Dietary intake was measured by a semi quantitative food frequency questionnaire; body mass index was calculated and categorized according to the IOTF classification. Factor analysis and generalized linear models were applied to identify food patterns and their associations. TV viewing and male gender were significant positive predictors for fast-food, sugar sweetened beverages and pastry pattern, while a higher level of maternal education and longer sleeping duration were positively associated with a dietary patterns that included fruit and vegetables. PMID:20617022

  12. Possible involvement of activated locus coeruleus-noradrenergic neurons in pain-related sleep disorders.

    PubMed

    Koh, Keito; Hamada, Asami; Hamada, Yusuke; Yanase, Makoto; Sakaki, Mamiko; Someya, Kazuki; Narita, Michiko; Kuzumaki, Naoko; Ikegami, Daigo; Sakai, Hiroyasu; Iseki, Masako; Inada, Eiichi; Narita, Minoru

    2015-03-01

    The locus coeruleus (LC) is a noradrenergic brainstem structure that is considered to play a role in promoting arousal. To further clarify the role of LC noradrenergic neurons, we performed an optogenetic assay by injecting AAV-channelrhodopsin-2 (ChR2) into the LC of cre-tyrosine hydrolase (TH) mice. We found here that the specific activation of LC noradrenergic neurons produced a significant increase in wakefulness and a significant decrease in non-rapid eye movement (NREM) sleep during photostimulation. On the other hand, neuropathic pain is believed to significantly interfere with sleep, and inadequate sleep may contribute to the stressful negative consequences of living with pain. In the present study, sciatic nerve ligation, which produced significant thermal hyperalgesia, significantly increased the levels of noradrenaline released in the prefrontal cortex (PFC) by the weak electrical stimulation of neurons in the LC. Under these conditions, the systemic administration of adrenaline α and β inhibitor cocktail at 7 days after sciatic nerve ligation restored the increased wakefulness and decreased NREM sleep to normal levels. These results suggest that neuropathic pain may accelerate neurons in the LC, and its overactivation may be, at least in part, associated with sleep disturbance under neuropathic pain.

  13. Impact of acute sleep restriction on cortisol and leptin levels in young women.

    PubMed

    Omisade, Antonina; Buxton, Orfeu M; Rusak, Benjamin

    2010-04-19

    Sleep restriction alters hormone patterns and appetite in men, but less is known about effects on women. We assessed effects of overnight sleep restriction on cortisol and leptin levels and on appetite in young women. Participants' baseline sleep duration and eating habits were monitored for a week before the study. Salivary cortisol and leptin were sampled from fifteen healthy women (aged 18-25) during two consecutive days: first after a 10h overnight sleep opportunity (Baseline day) and then after a night including only 3h sleep (Post sleep-restriction day). Participants also completed appetite questionnaires on both days. Sleep restriction significantly reduced morning cortisol levels (p=0.02), elevated morning leptin levels (p=0.04), elevated afternoon/evening cortisol area under the curve values (p=0.008), and slowed the decline in cortisol concentration during the day (p=0.04). Hunger and craving scores did not differ significantly between days. A single night of restricted sleep affected cortisol rhythms and morning leptin levels in young women.

  14. Sleep-Dependent Synaptic Down-Selection (II): Single-Neuron Level Benefits for Matching, Selectivity, and Specificity.

    PubMed

    Hashmi, Atif; Nere, Andrew; Tononi, Giulio

    2013-01-01

    In a companion paper (1), we used computer simulations to show that a strategy of activity-dependent, on-line net synaptic potentiation during wake, followed by off-line synaptic depression during sleep, can provide a parsimonious account for several memory benefits of sleep at the systems level, including the consolidation of procedural and declarative memories, gist extraction, and integration of new with old memories. In this paper, we consider the theoretical benefits of this two-step process at the single-neuron level and employ the theoretical notion of Matching between brain and environment to measure how this process increases the ability of the neuron to capture regularities in the environment and model them internally. We show that down-selection during sleep is beneficial for increasing or restoring Matching after learning, after integrating new with old memories, and after forgetting irrelevant material. By contrast, alternative schemes, such as additional potentiation in wake, potentiation in sleep, or synaptic renormalization in wake, decrease Matching. We also argue that, by selecting appropriate loops through the brain that tie feedforward synapses with feedback ones in the same dendritic domain, different subsets of neurons can learn to specialize for different contingencies and form sequences of nested perception-action loops. By potentiating such loops when interacting with the environment in wake, and depressing them when disconnected from the environment in sleep, neurons can learn to match the long-term statistical structure of the environment while avoiding spurious modes of functioning and catastrophic interference. Finally, such a two-step process has the additional benefit of desaturating the neuron's ability to learn and of maintaining cellular homeostasis. Thus, sleep-dependent synaptic renormalization offers a parsimonious account for both cellular and systems level effects of sleep on learning and memory. PMID:24151486

  15. Physical Activity, Screen-Based Sedentary Behavior, and Sleep Duration in Adolescents: Youth Risk Behavior Survey, 2011–2013

    PubMed Central

    Umeda, Masataka; Lochbaum, Marc; Stegemeier, Steven

    2016-01-01

    This study examined the concurrent associations of physical activity and screen-based sedentary behavior with sleep duration among adolescents by using data from the national Youth Risk Behavior Survey 2011–2013. Using latent class analysis, we identified 4 latent subgroups of adolescents with various levels of physical activity and screen-based sedentary behavior. The subgroup with high levels of physical activity and low levels of sedentary behavior generally showed greater odds of having sufficient sleep (≥8 hours/night) than the other subgroups. Findings imply that concurrent achievement of a high level of physical activity and low level of screen-based sedentary behavior is necessary to promote sufficient sleep among adolescents. PMID:27634781

  16. Physical Activity, Screen-Based Sedentary Behavior, and Sleep Duration in Adolescents: Youth Risk Behavior Survey, 2011-2013.

    PubMed

    Kim, Youngdeok; Umeda, Masataka; Lochbaum, Marc; Stegemeier, Steven

    2016-01-01

    This study examined the concurrent associations of physical activity and screen-based sedentary behavior with sleep duration among adolescents by using data from the national Youth Risk Behavior Survey 2011-2013. Using latent class analysis, we identified 4 latent subgroups of adolescents with various levels of physical activity and screen-based sedentary behavior. The subgroup with high levels of physical activity and low levels of sedentary behavior generally showed greater odds of having sufficient sleep (≥8 hours/night) than the other subgroups. Findings imply that concurrent achievement of a high level of physical activity and low level of screen-based sedentary behavior is necessary to promote sufficient sleep among adolescents. PMID:27634781

  17. Catecholamine and Cortisol Levels during Sleep in Women with Irritable Bowel Syndrome

    PubMed Central

    Burr, Robert L.; Jarrett, Monica E.; Cain, Kevin C.; Jun, Sang-Eun; Heitkemper, Margaret M.

    2010-01-01

    Evidence suggests that patients with irritable bowel syndrome (IBS) are hyper-responsive to environmental, physical, and visceral stimuli. IBS patients also frequently report poor sleep quality. This study compared serum cortisol and plasma catecholamine levels during sleep between women with IBS (n = 30) and healthy controls (n = 31), and among subgroups within the IBS sample based on predominant stool patterns, IBS-diarrhea (n = 14), IBS-constipation (n = 7), and IBS-alternators (n = 9). Cortisol was measured from serial blood samples drawn every 20 minutes, and catecholamines every hour, in a sleep laboratory from 8 PM until awakening. Because of the varied sleep schedules of the individual participants, each subject’s hormone series time base was referenced with respect to their onset of Stage-2 sleep. Overall, there were no significant differences in cortisol or catecholamine patterns between women with IBS and controls, nor were there any group by time interactions. However, women with constipation-predominant IBS demonstrated significantly increased norepinephrine, epinephrine, and cortisol levels throughout the sleep interval, and women with diarrhea-predominant IBS were significantly lower on norepinephrine and cortisol. These results suggest that differences in neuroendocrine levels during sleep among IBS predominant bowel pattern subgroups may be greater than differences between IBS women and controls. Neuroendocrine profiles during sleep may contribute to our understanding of symptom expression in IBS. PMID:19573081

  18. Correlation of Salivary Alpha Amylase Level and Adenotonsillar Hypertrophy with Sleep Disordered Breathing in Pediatric Subjects

    PubMed Central

    Park, Chan-Soon; Guilleminault, Christian; Park, Hong-Jin; Cho, Jin-Hee; Lee, Heung-Ku; Son, Hye-Lim; Hwang, Se-Hwan

    2014-01-01

    Study Objectives: Obstructive sleep apnea syndrome (OSAS) and sleep disordered breathing (SDB) can affect the sympathetic adrenomedullary system (SAM). As a biomarker of SAM activity, salivary α-amylase (sAA) in pediatric subjects was evaluated whether it has any correlation with polysomnographic (PSG) parameters related to SDB. Methods: Sixty-seven children who attended our clinic during 1 year were enrolled prospectively and underwent clinical examinations and in-lab polysomnography. The sAA was measured at 2 points—at night before PSG and in the early morning after PSG Results: Subjects were divided into control (n = 26, apneahypopnea index [AHI] < 1) and OSAS (n = 41, AHI ≥ 1) groups. The OSAS group was subdivided according to AHI (mild-moderate, 1 ≤ AHI < 10; severe, AHI ≥ 10). The sAA subtraction and ratio (p = 0.014 and p < 0.001, respectively) were significantly higher in severe OSAS than in the mild-moderate and control groups. Although oxygen desaturation index (ODI) and AHI were significantly associated with sAA, sAA in the OSAS group was not related to lowest oxygen saturation or adenotonsillar hypertrophy. Conclusion: sAA was well related to polysomnographic (PSG) parameters related to SDB, such as AHI and ODI. Therefore, screening test for sAA in children suspected to have SBD may help to identify OSAS patients from control. Citation: Park CS, Guilleminault C, Park HJ, Cho JH, Lee HK, Son HL, Hwang SH. Correlation of salivary alpha amylase level and adenotonsillar hypertrophy with sleep disordered breathing in pediatric subjects. J Clin Sleep Med 2014;10(5):559-566. PMID:24812542

  19. The interaction between anxiety sensitivity and cigarette smoking level in relation to sleep onset latency among adolescent cigarette smokers.

    PubMed

    Bilsky, Sarah A; Feldner, Matthew T; Knapp, Ashley A; Babson, Kimberly A; Leen-Feldner, Ellen W

    2016-08-01

    Cigarette smoking during adolescence is linked to a number of sleep disturbances and has been consistently linked to sleep onset latency among adults. However, little research has examined factors that may influence the relation between cigarette smoking level and sleep onset latency among adolescents. One factor that may be particularly important in this regard is anxiety sensitivity (AS). The current study examined whether cigarette smoking level interacted with AS in its association with sleep onset latency among 94 adolescent (Mage = 15.72) cigarette smokers. As hypothesized, AS interacted with smoking level to relate to sleep onset latency, even after controlling for age and gender. This relation was specific to sleep onset latency as opposed to other types of sleep disturbances, and that adolescents who smoked at higher levels tended to go to sleep later and wake up later than adolescents who smoked at relatively lower levels. PMID:27351343

  20. Geographic distribution of insufficient sleep across the United States: a county-level hotspot analysis☆

    PubMed Central

    Grandner, Michael A.; Smith, Tony E.; Jackson, Nicholas; Jackson, Tara; Burgard, Sarah; Branas, Charles

    2015-01-01

    Introduction Insufficient sleep is associated with cardiometabolic risk and neurocognitive impairment. Determinants of insufficient sleep include many social and environmental factors. Assessment of geographic hot/coldspots may uncover novel risk groups and/or targets for public health intervention. The aim of this study was to discern geographic patterns in the first data set to include county-level sleep data. Methods The 2009 Behavioral Risk Factor Surveillance System was used. Insufficient sleep was assessed with a survey item and dichotomized. Data from n = 2231 counties were available. Tests for significant spatial concentrations of high/low levels of insufficient sleep (hotspots/coldspots) used the Getis-Ord G* statistic of local spatial concentration, chosen due to the nature of missing data. Results Eighty-four counties were hotspots, with high levels of insufficient sleep (P < .01), and 45 were coldspots, with low insufficient sleep (P < .01). Hotspots were found in Alabama (1 county), Arkansas (1), Georgia (1), Illinois (1), Kentucky (25), Louisiana (1), Missouri (4), Ohio (7), Tennessee (12), Texas (9), Virginia (6), and West Virginia (16). Coldspots were found in Alabama (1 county), Georgia (2), Illinois (6), Iowa (6), Michigan (2), Minnesota (1), North Carolina (1), Texas (7), Virginia (12), and Wisconsin (6). Several contiguous hotspots and coldspots were evident. Notably, the 17 counties with the highest levels of insufficient sleep were found in a contiguous set at the intersection of Kentucky, Tennessee, Virginia, and West Virginia (all P < .0002). Conclusions Geographic distribution of insufficient sleep in the United States is uneven. Some areas (most notably parts of Appalachia) experience disproportionately high amounts of insufficient sleep and may be targets of intervention. Further investigation of determinants of geographic variability needs to be explored, which would enhance the utility of these data for development of public health

  1. Increased frontal sleep slow wave activity in adolescents with major depression

    PubMed Central

    Tesler, Noemi; Gerstenberg, Miriam; Franscini, Maurizia; Jenni, Oskar G.; Walitza, Susanne; Huber, Reto

    2015-01-01

    Sleep slow wave activity (SWA), the major electrophysiological characteristic of deep sleep, mirrors both cortical restructuring and functioning. The incidence of Major Depressive Disorder (MDD) substantially rises during the vulnerable developmental phase of adolescence, where essential cortical restructuring is taking place. The goal of this study was to assess characteristics of SWA topography in adolescents with MDD, in order to assess abnormalities in both cortical restructuring and functioning on a local level. All night high-density EEG was recorded in 15 patients meeting DSM-5 criteria for MDD and 15 sex- and age-matched healthy controls. The actual symptom severity was assessed using the Children's Depression Rating Scale—Revised (CDRS-R). Topographical power maps were calculated based on the average SWA of the first non-rapid eye movement (NREM) sleep episode. Depressed adolescents exhibited significantly more SWA in a cluster of frontal electrodes compared to controls. SWA over frontal brain regions correlated positively with the CDRS-R subscore “morbid thoughts”. Self-reported sleep latency was significantly higher in depressed adolescents compared to controls whereas sleep architecture did not differ between the groups. Higher frontal SWA in depressed adolescents may represent a promising biomarker tracing cortical regions of intense use and/or restructuring. PMID:26870661

  2. Increased frontal sleep slow wave activity in adolescents with major depression.

    PubMed

    Tesler, Noemi; Gerstenberg, Miriam; Franscini, Maurizia; Jenni, Oskar G; Walitza, Susanne; Huber, Reto

    2016-01-01

    Sleep slow wave activity (SWA), the major electrophysiological characteristic of deep sleep, mirrors both cortical restructuring and functioning. The incidence of Major Depressive Disorder (MDD) substantially rises during the vulnerable developmental phase of adolescence, where essential cortical restructuring is taking place. The goal of this study was to assess characteristics of SWA topography in adolescents with MDD, in order to assess abnormalities in both cortical restructuring and functioning on a local level. All night high-density EEG was recorded in 15 patients meeting DSM-5 criteria for MDD and 15 sex- and age-matched healthy controls. The actual symptom severity was assessed using the Children's Depression Rating Scale-Revised (CDRS-R). Topographical power maps were calculated based on the average SWA of the first non-rapid eye movement (NREM) sleep episode. Depressed adolescents exhibited significantly more SWA in a cluster of frontal electrodes compared to controls. SWA over frontal brain regions correlated positively with the CDRS-R subscore "morbid thoughts". Self-reported sleep latency was significantly higher in depressed adolescents compared to controls whereas sleep architecture did not differ between the groups. Higher frontal SWA in depressed adolescents may represent a promising biomarker tracing cortical regions of intense use and/or restructuring.

  3. Association of Markers of Inflammation with Sleep and Physical Activity among People Living with HIV or AIDS

    PubMed Central

    Wirth, Michael D.; Jaggers, Jason R.; Dudgeon, Wesley D.; Hébert, James R.; Youngstedt, Shawn D.; Blair, Steven N.; Hand, Gregory A.

    2015-01-01

    This study examined associations of sleep and minutes spent in moderate-vigorous physical activity (MVPA) with C-reactive protein (CRP) and interleukin (IL)-6 among persons living with HIV (PLWH). Cross-sectional analyses (n=45) focused on associations of inflammatory outcomes (i.e., CRP and IL-6) with actigraph-derived sleep duration, latency, and efficiency; bedtime; wake time; and wake-after-sleep-onset; as well as MVPA. Least square means for CRP and IL-6 by levels of sleep and MVPA were computed from general linear models. Individuals below the median of sleep duration, above the median for bedtime, and below the median of MVPA minutes had higher CRP or IL-6 levels. Generally, individuals with both low MVPA and poor sleep characteristics had higher inflammation levels than those with more MVPA and better sleep. Understanding the combined impact of multiple lifestyle/behavioral factors on inflammation could inform intervention strategies to reduce inflammation and therefore, chronic disease risk. PMID:25399034

  4. Essential Roles of GABA Transporter-1 in Controlling Rapid Eye Movement Sleep and in Increased Slow Wave Activity after Sleep Deprivation

    PubMed Central

    Xu, Xin-Hong; Qu, Wei-Min; Bian, Min-Juan; Huang, Fang; Fei, Jian; Urade, Yoshihiro; Huang, Zhi-Li

    2013-01-01

    GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep. PMID:24155871

  5. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    PubMed

    Xu, Xin-Hong; Qu, Wei-Min; Bian, Min-Juan; Huang, Fang; Fei, Jian; Urade, Yoshihiro; Huang, Zhi-Li

    2013-01-01

    GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  6. Pain severity in diabetic peripheral neuropathy is associated with patient functioning, symptom levels of anxiety and depression, and sleep.

    PubMed

    Gore, Mugdha; Brandenburg, Nancy A; Dukes, Ellen; Hoffman, Deborah L; Tai, Kei-Sing; Stacey, Brett

    2005-10-01

    Our goal was to evaluate pain severity, pain-related interference with function, sleep impairment, symptom levels of anxiety and depression, and quality of life among patients with painful diabetic peripheral neuropathy (DPN). Participants in a burden of illness survey (n = 255) completed the modified Brief Pain Inventory-DPN (BPI-DPN), MOS Sleep Scale, Hospital Anxiety and Depression Scale (HADS), Short Form Health Survey-12v2 (SF-12v2), and the EuroQoL (EQ-5D). Patients were 61 +/- 12.8 years old (51.4% female), had diabetes for 12 +/- 10.3 years and painful DPN for 6.4 +/- 6.4 years. Average and Worst Pain scores (BPI-DPN, 0-10 scales) were 5.0 +/- 2.5 and 5.6 +/- 2.8. Pain substantially interfered (>or=4 on 0-10 scales) with walking ability, normal work, sleep, enjoyment of life, mood, and general activity. Moderate to severe symptom levels of anxiety and depression (HADS-A and HADS-D scores >or=11 on 0-21 scales) occurred in 35% and 28% of patients, respectively. Patients reported greater sleep problems compared with the general U.S. population and significant impairment in both physical and mental functioning (SF-12v2) compared with subjects with diabetes. The mean EQ-5D utility score was 0.5 +/- 0.3. Greater pain levels in DPN (mild to moderate to severe) corresponded with higher symptom levels of anxiety and depression, more sleep problems, and lower utility ratings and physical and mental functioning, (all Ps < 0.01). Painful DPN is associated with decrements in many aspects of patients' lives: physical and emotional functioning, affective symptoms, and sleep problems. The negative impact is higher in patients with greater pain severity. PMID:16256902

  7. A particular effect of sleep, but not pain or depression, on the blood-oxygen-level dependent response during working memory tasks in patients with chronic pain

    PubMed Central

    Elvemo, Nicolas A; Landrø, Nils I; Borchgrevink, Petter C; Håberg, Asta K

    2015-01-01

    Background Patients with chronic pain (CP) are often reported to have deficits in working memory. Pain impairs working memory, but so do depression and sleep problems, which are also common in CP. Depression has been linked to changes in brain activity in CP during working memory tasks, but the effect of sleep problems on working memory performance and brain activity remains to be investigated. Methods Fifteen CP patients and 17 age-, sex-, and education-matched controls underwent blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging at 3T while performing block design 0-back, 2-back, and paced visual serial addition test paradigms. Subjects also reported their level of pain (Brief Pain Inventory), depression (Beck Depression Inventory II), and sleep problems (Pittsburgh Sleep Quality Index) and were tested outside the scanner with neuropsychological tests of working memory. Results The CP group reported significantly higher levels of pain, depression, and sleep problems. No significant performance difference was found on the neuropsychological tests in or outside the scanner between the two groups. There were no correlations between level of pain, depression, and sleep problems or between these and the neuropsychological test scores. CP patients exhibited significantly less brain activation and deactivation than controls in parietal and frontal lobes, which are the brain areas that normally show activation and deactivation during working memory tasks. Sleep problems independently and significantly modulated the BOLD response to the complex working memory tasks and were associated with decreased brain activation in task-positive regions and decreased deactivation in the default mode network in the CP group compared to the control group. The pain and depression scores covaried with working memory activation. Discussion Sleep problems in CP patients had a significant impact on the BOLD response during working memory tasks, independent of pain

  8. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.

    PubMed

    Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N

    2015-04-01

    Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation.

  9. Physiology of REM sleep, cataplexy, and sleep paralysis.

    PubMed

    Hishikawa, Y; Shimizu, T

    1995-01-01

    The main neural structures generating muscle atonia and other phenomena characteristic of REM sleep are present in dorsolateral portions of the pons in the brainstem. Occurrence of REM sleep and the NREM-REM sleep cycle are probably determined by a balance or interaction between the cholinergic and cholinoceptive REM sleep-on neuronal populations and the monoaminergic REM sleep-off neuronal population. Neural activities producing generalized muscle atonia in REM sleep originate mainly in dorsolateral portions of the pontine reticular formation, descend through the medulla and spinal cord, and inhibit the motoneurons in the brainstem and spinal cord, bringing about postural atonia. Cataplexy and sleep paralysis are pathological, dissociated manifestations of the generalized muscle atonia characteristic REM sleep. Cataplexy is triggered by emotional stimuli, probably through activation of the neural structure generating the muscle atonia of REM sleep. During long-lasting cataplectic attacks, narcoleptic humans often experience sleep paralysis and vivid hypnagogic hallucinations in the latter sleep state. Sleep paralysis is caused by the marked dissociation between level of alertness and muscle atonia that often occurs in SOREM sleep episodes. Frequent SOREM sleep episodes in narcoleptic humans and dogs may occur when some of the neural mechanisms producing wakefulness and/or NREM sleep that normally inhibit the occurrence of REM sleep are abnormally weak, or when neural mechanisms facilitating the occurrence of REM sleep are hypersensitive or hyperactive, or both. Both abnormalities may contribute to the occurrence of SOREM sleep episodes and sleep paralysis, and also to the emotional triggering of cataplexy. Frequent occurrence of SOREM sleep episodes seems to be prerequisite but not sufficient for the occurrence of cataplexy. Some additional neural activities induced by emotion also contribute by inhibiting and/or activating the disturbed neural mechanisms related

  10. Efficacy of physical activity counseling plus sleep restriction therapy on the patients with chronic insomnia

    PubMed Central

    Wang, Jihui; Yin, Guangxia; Li, Guanying; Liang, Wenjing; Wei, Qinling

    2015-01-01

    Objective Lack of physical activity (PA) is common in patients with chronic insomnia. Studies to increase PA and decrease sedentary behavior in those patients are limited. Therefore, we investigated the efficacy of “PA counseling combined with sleep restriction (SR) therapy (PASR)” vs only SR in the patients with chronic insomnia. Methods Seventy-one outpatients were assigned to either PASR (n=35), consisting of four weekly PA counseling sessions based on 5A model (assess, advise, agree, assist, and arrange) + SR, or SR (n=36), consisting of four weekly SR. International Physical Activity Questionnaire (Chinese version) and pedometer-based daily steps were evaluated as the primary endpoints. Insomnia Severity Index, Epworth Sleepiness Scale, Fatigue Scale-14, and Sleep Diary were evaluated as the secondary endpoints. Results The results showed that the patients in the PASR group gained more benefits than the SR group in terms of PA level and pedometer-based daily steps (all P<0.05). Better improvements of the study group were also shown in Epworth Sleepiness Scale, Fatigue Scale-14, and Sleep efficiency (all P<0.05). Conclusion We conclude that PA counseling based on 5A model combined with SR cannot only effectively increase the PA levels but also improve the sleep quality for patients with chronic insomnia. PMID:26566369

  11. Sleep Disturbance from Road Traffic, Railways, Airplanes and from Total Environmental Noise Levels in Montreal.

    PubMed

    Perron, Stéphane; Plante, Céline; Ragettli, Martina S; Kaiser, David J; Goudreau, Sophie; Smargiassi, Audrey

    2016-08-11

    The objective of our study was to measure the impact of transportation-related noise and total environmental noise on sleep disturbance for the residents of Montreal, Canada. A telephone-based survey on noise-related sleep disturbance among 4336 persons aged 18 years and over was conducted. LNight for each study participant was estimated using a land use regression (LUR) model. Distance of the respondent's residence to the nearest transportation noise source was also used as an indicator of noise exposure. The proportion of the population whose sleep was disturbed by outdoor environmental noise in the past 4 weeks was 12.4%. The proportion of those affected by road traffic, airplane and railway noise was 4.2%, 1.5% and 1.1%, respectively. We observed an increased prevalence in sleep disturbance for those exposed to both rail and road noise when compared for those exposed to road only. We did not observe an increased prevalence in sleep disturbance for those that were both exposed to road and planes when compared to those exposed to road or planes only. We developed regression models to assess the marginal proportion of sleep disturbance as a function of estimated LNight and distance to transportation noise sources. In our models, sleep disturbance increased with proximity to transportation noise sources (railway, airplane and road traffic) and with increasing LNight values. Our study provides a quantitative estimate of the association between total environmental noise levels estimated using an LUR model and sleep disturbance from transportation noise.

  12. Impact of layover length on sleep, subjective fatigue levels, and sustained attention of long-haul airline pilots.

    PubMed

    Roach, Gregory D; Petrilli, Renée M A; Dawson, Drew; Lamond, Nicole

    2012-06-01

    Long-haul airline pilots often experience elevated levels of fatigue due to extended work hours and circadian misalignment of sleep and wake periods. During long-haul trips, pilots are typically given 1-3 d off between flights (i.e., layover) to recover from, and prepare for, duty. Anecdotally, some pilots prefer long layovers because it maximizes the time available for recovery and preparation, but others prefer short layovers because it minimizes both the length of the trip, and the degree to which the body clock changes from "home time" to the layover time zone. The aim of this study was to examine the impact of layover length on the sleep, subjective fatigue levels, and capacity to sustain attention of long-haul pilots. Participants were 19 male pilots (10 Captains, 9 First Officers) working for an international airline. Data were collected during an 11- or 12-d international trip. The trips involved (i) 4 d at home prior to the trip; (ii) an eastward flight of 13.5 h across seven time zones; (iii) a layover of either 39 h (i.e., short, n = 9) or 62 h (i.e., long, n = 10); (iv) a return westward flight of 14.3 h across seven time zones; and (v) 4 d off at home after the trip. Sleep was recorded using a self-report sleep diary and wrist activity monitor; subjective fatigue level was measured using the Samn-Perelli Fatigue Checklist; and sustained attention was assessed using the psychomotor vigilance task for a personal digital assistant (PalmPVT). Mixed-model regression analyses were used to determine the effects of layover length (short, long) on the amount of sleep that pilots obtained during the trip, and on the pilots' subjective fatigue levels and capacity to sustain attention. There was no main effect of layover length on ground-based sleep or in-flight sleep, but pilots who had a short layover at the midpoint of their trip had higher subjective fatigue levels and poorer sustained attention than pilots who had a long layover. The results of this study

  13. Impact of layover length on sleep, subjective fatigue levels, and sustained attention of long-haul airline pilots.

    PubMed

    Roach, Gregory D; Petrilli, Renée M A; Dawson, Drew; Lamond, Nicole

    2012-06-01

    Long-haul airline pilots often experience elevated levels of fatigue due to extended work hours and circadian misalignment of sleep and wake periods. During long-haul trips, pilots are typically given 1-3 d off between flights (i.e., layover) to recover from, and prepare for, duty. Anecdotally, some pilots prefer long layovers because it maximizes the time available for recovery and preparation, but others prefer short layovers because it minimizes both the length of the trip, and the degree to which the body clock changes from "home time" to the layover time zone. The aim of this study was to examine the impact of layover length on the sleep, subjective fatigue levels, and capacity to sustain attention of long-haul pilots. Participants were 19 male pilots (10 Captains, 9 First Officers) working for an international airline. Data were collected during an 11- or 12-d international trip. The trips involved (i) 4 d at home prior to the trip; (ii) an eastward flight of 13.5 h across seven time zones; (iii) a layover of either 39 h (i.e., short, n = 9) or 62 h (i.e., long, n = 10); (iv) a return westward flight of 14.3 h across seven time zones; and (v) 4 d off at home after the trip. Sleep was recorded using a self-report sleep diary and wrist activity monitor; subjective fatigue level was measured using the Samn-Perelli Fatigue Checklist; and sustained attention was assessed using the psychomotor vigilance task for a personal digital assistant (PalmPVT). Mixed-model regression analyses were used to determine the effects of layover length (short, long) on the amount of sleep that pilots obtained during the trip, and on the pilots' subjective fatigue levels and capacity to sustain attention. There was no main effect of layover length on ground-based sleep or in-flight sleep, but pilots who had a short layover at the midpoint of their trip had higher subjective fatigue levels and poorer sustained attention than pilots who had a long layover. The results of this study

  14. Effects of mental resilience on neuroendocrine hormones level changes induced by sleep deprivation in servicemen.

    PubMed

    Sun, Xinyang; Dai, Xuyan; Yang, Tingshu; Song, Hongtao; Yang, Jialin; Bai, Jing; Zhang, Liyi

    2014-12-01

    The aim of this study was to investigate the effects of mental resilience on the changes of serum rennin, angiotensin, and cortisol level induced by sleep deprivation in servicemen. By random cluster sampling, a total of 160 servicemen, aged from 18 to 30, were selected to undergo 24-hour total sleep deprivation and administered the military personnel mental resilience scale after the deprivation procedure. The sleep deprivation procedure started at 8 a.m. on Day 8 and ended at 8 a.m. on Day 9 after 7 days of normal sleep for baseline preparation. Blood samples were drawn from the 160 participants at 8 a.m. respectively on Day 8 and Day 9 for hormonal measurements. All blood samples were analyzed using radioimmunoassay. As hypothesized, serum rennin, angiotensin II, and cortisol level of the participants after sleep deprivation were significantly higher than those before (P < 0.05). The changes of serum rennin and cortisol in the lower mental resilience subgroup were significantly greater (P < 0.05); problem-solving skill and willpower were the leading influence factors for the increases of serum rennin and cortisol respectively induced by sleep deprivation. We conclude that mental resilience plays a significant role in alleviating the changes of neurohormones level induced by sleep deprivation in servicemen.

  15. Positive affect and pain: mediators of the within-day relation linking sleep quality to activity interference in fibromyalgia.

    PubMed

    Kothari, Dhwani J; Davis, Mary C; Yeung, Ellen W; Tennen, Howard A

    2015-03-01

    Fibromyalgia (FM) is a chronic pain condition often resulting in functional impairments. Nonrestorative sleep is a prominent symptom of FM that is related to disability, but the day-to-day mechanisms relating the prior night's sleep quality to next-day reports of disability have not been examined. This study examined the within-day relations among early-morning reports of sleep quality last night, late-morning reports of pain and positive and negative affect, and end-of-day reports of activity interference. Specifically, we tested whether pain, positive affect, and negative affect mediated the association between sleep quality and subsequent activity interference. Data were drawn from electronic diary reports collected from 220 patients with FM for 21 consecutive days. The direct and mediated effects at the within-person level were estimated with multilevel structural equation modeling. Results showed that pain and positive affect mediated the relation between sleep quality and activity interference. Early-morning reports of poor sleep quality last night predicted elevated levels of pain and lower levels of positive affect at late-morning, which, in turn, predicted elevated end-of-day activity interference. Of note, positive affect was a stronger mediator than pain and negative affect was not a significant mediator. In summary, the findings identify 2 parallel mechanisms, pain and positive affect, through which the prior night's sleep quality predicts disability the next day in patients with FM. Furthermore, results highlight the potential utility of boosting positive affect after a poor night's sleep as one means of preserving daily function in FM. PMID:25679472

  16. Effects of selective REM sleep deprivation on prefrontal gamma activity and executive functions.

    PubMed

    Corsi-Cabrera, M; Rosales-Lagarde, A; del Río-Portilla, Y; Sifuentes-Ortega, R; Alcántara-Quintero, B

    2015-05-01

    Given that the dorsolateral prefrontal cortex is involved in executive functions and is deactivated and decoupled from posterior associative regions during REM sleep, that Gamma temporal coupling involved in information processing is enhanced during REM sleep, and that adult humans spend about 90 min of every 24h in REM sleep, it might be expected that REM sleep deprivation would modify Gamma temporal coupling and have a deteriorating effect on executive functions. We analyzed EEG Gamma activity and temporal coupling during implementation of a rule-guided task before and after REM sleep deprivation and its effect on verbal fluency, flexible thinking and selective attention. After two nights in the laboratory for adaptation, on the third night subjects (n=18) were randomly assigned to either selective REM sleep deprivation effectuated by awakening them at each REM sleep onset or, the same number of NREM sleep awakenings as a control for unspecific effects of sleep interruptions. Implementation of abstract rules to guide behavior required greater activation and synchronization of Gamma activity in the frontopolar regions after REM sleep reduction from 20.6% at baseline to just 3.93% of total sleep time. However, contrary to our hypothesis, both groups showed an overall improvement in executive task performance and no effect on their capacity to sustain selective attention. These results suggest that after one night of selective REM sleep deprivation executive functions can be compensated by increasing frontal activation and they still require the participation of supervisory control by frontopolar regions.

  17. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study

    PubMed Central

    Riedner, Brady A.; Goldstein, Michael R.; Plante, David T.; Rumble, Meredith E.; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M.

    2016-01-01

    Study Objectives: To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). Methods: All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. Results: The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4–8 Hz) and alpha (8–12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. Conclusions: These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. Citation: Riedner BA, Goldstein MR, Plante DT, Rumble ME, Ferrarelli F, Tononi G, Benca RM. Regional patterns of elevated alpha and high-frequency electroencephalographic activity during nonrapid eye movement sleep in chronic insomnia: a pilot study. SLEEP 2016;39(4):801–812. PMID:26943465

  18. Experienced mindfulness meditators exhibit higher parietal-occipital EEG gamma activity during NREM sleep.

    PubMed

    Ferrarelli, Fabio; Smith, Richard; Dentico, Daniela; Riedner, Brady A; Zennig, Corinna; Benca, Ruth M; Lutz, Antoine; Davidson, Richard J; Tononi, Giulio

    2013-01-01

    Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25-40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function.

  19. Caffeine and REM sleep deprivation: Effect on basal levels of signaling molecules in area CA1.

    PubMed

    Alkadhi, Karim A; Alhaider, Ibrahim A

    2016-03-01

    We have investigated the neuroprotective effect of chronic caffeine treatment on basal levels of memory-related signaling molecules in area CA1 of sleep-deprived rats. Animals in the caffeine groups were treated with caffeine in drinking water (0.3g/l) for four weeks before they were REM sleep-deprived for 24h in the Modified Multiple Platforms paradigm. Western blot analysis of basal protein levels of plasticity- and memory-related signaling molecules in hippocampal area CA1 showed significant down regulation of the basal levels of phosphorylated- and total-CaMKII, phosphorylated- and total-CREB as well as those of BDNF and CaMKIV in sleep deprived rats. All these changes were completely prevented in rats that chronically consumed caffeine. The present findings suggest an important neuroprotective property of caffeine in sleep deprivation.

  20. Caffeine and REM sleep deprivation: Effect on basal levels of signaling molecules in area CA1.

    PubMed

    Alkadhi, Karim A; Alhaider, Ibrahim A

    2016-03-01

    We have investigated the neuroprotective effect of chronic caffeine treatment on basal levels of memory-related signaling molecules in area CA1 of sleep-deprived rats. Animals in the caffeine groups were treated with caffeine in drinking water (0.3g/l) for four weeks before they were REM sleep-deprived for 24h in the Modified Multiple Platforms paradigm. Western blot analysis of basal protein levels of plasticity- and memory-related signaling molecules in hippocampal area CA1 showed significant down regulation of the basal levels of phosphorylated- and total-CaMKII, phosphorylated- and total-CREB as well as those of BDNF and CaMKIV in sleep deprived rats. All these changes were completely prevented in rats that chronically consumed caffeine. The present findings suggest an important neuroprotective property of caffeine in sleep deprivation. PMID:26767416

  1. Transiently Increasing cAMP Levels Selectively in Hippocampal Excitatory Neurons during Sleep Deprivation Prevents Memory Deficits Caused by Sleep Loss

    PubMed Central

    Bruinenberg, Vibeke M.; Tudor, Jennifer C.; Ferri, Sarah L.; Baumann, Arnd; Meerlo, Peter

    2014-01-01

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object–location task. Five hours of total sleep deprivation directly following training impaired the formation of object–location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. PMID:25411499

  2. Rapid eye movement sleep disruption and sleep fragmentation are associated with increased orexin-A cerebrospinal-fluid levels in mild cognitive impairment due to Alzheimer's disease.

    PubMed

    Liguori, Claudio; Nuccetelli, Marzia; Izzi, Francesca; Sancesario, Giuseppe; Romigi, Andrea; Martorana, Alessandro; Amoroso, Chiara; Bernardini, Sergio; Marciani, Maria Grazia; Mercuri, Nicola Biagio; Placidi, Fabio

    2016-04-01

    The orexin system has been investigated in patients affected by mild cognitive impairment (MCI) due to Alzheimer's disease (AD) by measuring orexin-A concentrations in the cerebrospinal fluid (CSF), and correlated to subjective and objective sleep parameters, quantified by questionnaires and polysomnography, respectively. Twenty drug-naïve patients with MCI due to AD were studied and compared with a population of 26 age and/or sex matched controls, divided into subgroups on the basis of the Pittsburgh Sleep Quality Index (PSQI) score. Increased CSF-orexin levels were detected in patients with MCI due to AD in comparison with controls (p < 0.05). In particular, CSF-orexin concentrations were higher in MCI patients suffering from sleep complaints (PSQI ≥5, n = 10) compared with MCI patients with a regular sleep-wake cycle (PSQI <5, n = 10, p < 0.001) and compared with both control groups (with sleep complaints, PSQI ≥5, n = 11, p < 0.001; without sleep complaints, PSQI <5, n = 15, p < 0.001). Moreover, REM sleep was reduced in MCI patients compared with controls (p < 0.01), and had a negative correlation coupled with a reciprocal influence at the multiple regression analysis with CSF-orexin levels (R = -0.65; β = -8.90). REM sleep disruption and sleep fragmentation are related to higher CSF-orexin levels in patients with MCI due to AD, thus suggesting that the orexin system may be involved even in the earliest stages of AD, resulting in prolonged sleep latency, reduced sleep efficiency, and REM sleep impairment. PMID:26973111

  3. Rapid eye movement sleep disruption and sleep fragmentation are associated with increased orexin-A cerebrospinal-fluid levels in mild cognitive impairment due to Alzheimer's disease.

    PubMed

    Liguori, Claudio; Nuccetelli, Marzia; Izzi, Francesca; Sancesario, Giuseppe; Romigi, Andrea; Martorana, Alessandro; Amoroso, Chiara; Bernardini, Sergio; Marciani, Maria Grazia; Mercuri, Nicola Biagio; Placidi, Fabio

    2016-04-01

    The orexin system has been investigated in patients affected by mild cognitive impairment (MCI) due to Alzheimer's disease (AD) by measuring orexin-A concentrations in the cerebrospinal fluid (CSF), and correlated to subjective and objective sleep parameters, quantified by questionnaires and polysomnography, respectively. Twenty drug-naïve patients with MCI due to AD were studied and compared with a population of 26 age and/or sex matched controls, divided into subgroups on the basis of the Pittsburgh Sleep Quality Index (PSQI) score. Increased CSF-orexin levels were detected in patients with MCI due to AD in comparison with controls (p < 0.05). In particular, CSF-orexin concentrations were higher in MCI patients suffering from sleep complaints (PSQI ≥5, n = 10) compared with MCI patients with a regular sleep-wake cycle (PSQI <5, n = 10, p < 0.001) and compared with both control groups (with sleep complaints, PSQI ≥5, n = 11, p < 0.001; without sleep complaints, PSQI <5, n = 15, p < 0.001). Moreover, REM sleep was reduced in MCI patients compared with controls (p < 0.01), and had a negative correlation coupled with a reciprocal influence at the multiple regression analysis with CSF-orexin levels (R = -0.65; β = -8.90). REM sleep disruption and sleep fragmentation are related to higher CSF-orexin levels in patients with MCI due to AD, thus suggesting that the orexin system may be involved even in the earliest stages of AD, resulting in prolonged sleep latency, reduced sleep efficiency, and REM sleep impairment.

  4. Increases in cAMP, MAPK Activity and CREB Phosphorylation during REM Sleep: Implications for REM Sleep and Memory Consolidation

    PubMed Central

    Luo, Jie; Phan, Trongha X.; Yang, Yimei; Garelick, Michael G.; Storm, Daniel R.

    2013-01-01

    The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Since mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK and phospho-CREB are higher in rapid eye movement (REM) sleep compared to awake mice but are not elevated in non-rapid eye movement (NREM) sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation. PMID:23575844

  5. Increases in cAMP, MAPK activity, and CREB phosphorylation during REM sleep: implications for REM sleep and memory consolidation.

    PubMed

    Luo, Jie; Phan, Trongha X; Yang, Yimei; Garelick, Michael G; Storm, Daniel R

    2013-04-10

    The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Because mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity, and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK, and phospho-CREB are higher in rapid eye movement (REM) sleep compared with awake mice but are not elevated in non-REM sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity, and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation. PMID:23575844

  6. Improving patients' sleep: reducing light and noise levels on wards at night.

    PubMed

    Hewart, Carol; Fethney, Loveday

    2016-02-01

    There is much research concerning the psychological and physical effects of sleep deprivation on patients in healthcare systems, yet interrupted sleep on hospital wards at night remains a problem. Staff at Plymouth Hospitals NHS Trust, Devon, wanted to identify the factors that prevent patients from sleeping well at night. Two audits were carried out, between April and August 2015, to assess noise and light levels on wards at night, and to engage nurses in ways of reducing these. A number of recommendations were made based on the audit findings, many of which have been put into practice. PMID:26938911

  7. Improving patients' sleep: reducing light and noise levels on wards at night.

    PubMed

    Hewart, Carol; Fethney, Loveday

    2016-02-01

    There is much research concerning the psychological and physical effects of sleep deprivation on patients in healthcare systems, yet interrupted sleep on hospital wards at night remains a problem. Staff at Plymouth Hospitals NHS Trust, Devon, wanted to identify the factors that prevent patients from sleeping well at night. Two audits were carried out, between April and August 2015, to assess noise and light levels on wards at night, and to engage nurses in ways of reducing these. A number of recommendations were made based on the audit findings, many of which have been put into practice.

  8. Cytokine polymorphisms and plasma levels are associated with sleep onset insomnia in adults living with HIV/AIDS.

    PubMed

    Gay, Caryl L; Zak, Rochelle S; Lerdal, Anners; Pullinger, Clive R; Aouizerat, Bradley E; Lee, Kathryn A

    2015-07-01

    Sleep disturbance has been associated with inflammation and cytokine activity, and we previously described genetic associations between cytokine polymorphisms and sleep maintenance and duration among adults with HIV/AIDS. Although sleep onset insomnia (SOI) is also a commonly reported sleep problem, associations between cytokine biomarkers and SOI have not been adequately studied. The purpose of this study was to describe SOI in relation to cytokine plasma concentrations and gene polymorphisms in a convenience sample of 307 adults (212 men, 72 women, and 23 transgender) living with HIV/AIDS. Based on the Pittsburgh Sleep Quality Index item that asks the time it usually took to fall asleep in the past month, participants were categorized as either >30min to fall asleep (n=70, 23%) or 30min or less to fall asleep (n=237). Plasma cytokines were analyzed, and genotyping was conducted for 15 candidate genes involved in cytokine signaling: interferon-gamma (IFNG), IFNG receptor 1 (IFNGR1), interleukins (IL1R2, IL2, IL4, IL6, IL8, IL10, IL13, IL17A), nuclear factor of kappa light polypeptide gene enhancer in B cells (NFKB1 and NFKB2), and tumor necrosis factor alpha (TNFA). Demographic and clinical variables were evaluated as potential covariates. After adjusting for genomic estimates of ancestry, self-reported race/ethnicity and viral load, SOI was associated with higher IL-13 plasma levels and with six single nucleotide polymorphisms (SNPs): IL1B rs1143642 and rs1143623, IL6 rs4719714, IL13 rs1295686, NFKB1 rs4648110, and TNFA rs2857602. In addition, the IL1B rs1143642 polymorphism was associated with plasma levels of IL-1β in adjusted analyses. This study strengthens the evidence for an association between inflammation and sleep disturbance, particularly self-report of habitual SOI. In this chronic illness population, the cytokine polymorphisms associated with SOI provide direction for future personalized medicine intervention research.

  9. Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep.

    PubMed

    Lu, Jun; Bjorkum, Alvhild A; Xu, Man; Gaus, Stephanie E; Shiromani, Priyattam J; Saper, Clifford B

    2002-06-01

    We found previously that damage to a cluster of sleep-active neurons (Fos-positive during sleep) in the ventrolateral preoptic nucleus (VLPO) decreases non-rapid eye movement (NREM) sleep in rats, whereas injury to the sleep-active cells extending dorsally and medially from the VLPO cluster (the extended VLPO) diminishes REM sleep. These results led us to examine whether neurons in the extended VLPO are activated during REM sleep and the connectivity of these neurons with pontine sites implicated in producing REM sleep: the laterodorsal tegmental nucleus (LDT), dorsal raphe nucleus (DRN), and locus ceruleus (LC). After periods of dark exposure that triggered enrichment of REM sleep, the number of Fos-positive cells in the extended VLPO was highly correlated with REM but not NREM sleep. In contrast, the number of Fos-positive cells in the VLPO cluster was correlated with NREM but not REM sleep. Sixty percent of sleep-active cells in the extended VLPO and 90% of sleep-active cells in the VLPO cluster in dark-treated animals contained galanin mRNA. Retrograde tracing from the LDT, DRN, and LC demonstrated more labeled cells in the extended VLPO than the VLPO cluster, and 50% of these in the extended VLPO were sleep-active. Anterograde tracing showed that projections from the extended VLPO and VLPO cluster targeted the cell bodies and dendrites of DRN serotoninergic neurons and LC noradrenergic neurons but were not apposed to cholinergic neurons in the LDT. The connections and physiological activity of the extended VLPO suggest a specialized role in the regulation of REM sleep.

  10. Sleep and Aging

    MedlinePlus

    ... There are two types of sleep: non-rapid eye movement -- or NREM sleep -- and rapid eye movement -- or REM sleep. NREM sleep includes four stages, ranging from light to deep sleep. Then we go into REM sleep, the most active ... During REM sleep, the eyes move back and forth beneath the eyelids and ...

  11. Sleep and neurochemical modulation by the nuclear peroxisome proliferator-activated receptor α (PPAR-α) in rat.

    PubMed

    Mijangos-Moreno, Stephanie; Poot-Aké, Alwin; Guzmán, Khalil; Arankowsky-Sandoval, Gloria; Arias-Carrión, Oscar; Zaldívar-Rae, Jaime; Sarro-Ramírez, Andrea; Murillo-Rodríguez, Eric

    2016-04-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear protein that plays an essential role in diverse neurobiological processes. However, the role of PPARα on the sleep modulation is unknown. Here, rats treated with an intrahypothalamic injection of Wy14643 (10μg/1μL; PPARα agonist) enhanced wakefulness and decreased slow wave sleep and rapid eye movement sleep whereas MK-886 (10μg/1μL; PPARα antagonist) promoted opposite effects. Moreover, Wy14643 increased dopamine, norepinephrine, serotonin, and adenosine contents collected from nucleus accumbens. The levels of these neurochemicals were diminished after MK-886 treatment. The current findings suggest that PPARα may participate in the sleep and neurochemical modulation. PMID:26450400

  12. Metabolic consequences of sleep and sleep loss

    PubMed Central

    Van Cauter, Eve; Spiegel, Karine; Tasali, Esra; Leproult, Rachel

    2015-01-01

    Reduced sleep duration and quality appear to be endemic in modern society. Curtailment of the bedtime period to minimum tolerability is thought to be efficient and harmless by many. It has been known for several decades that sleep is a major modulator of hormonal release, glucose regulation and cardiovascular function. In particular, slow wave sleep (SWS), thought to be the most restorative sleep stage, is associated with decreased heart rate, blood pressure, sympathetic nervous activity and cerebral glucose utilization, compared with wakefulness. During SWS, the anabolic growth hormone is released while the stress hormone cortisol is inhibited. In recent years, laboratory and epidemiologic evidence have converged to indicate that sleep loss may be a novel risk factor for obesity and type 2 diabetes. The increased risk of obesity is possibly linked to the effect of sleep loss on hormones that play a major role in the central control of appetite and energy expenditure, such as leptin and ghrelin. Reduced leptin and increased ghrelin levels correlate with increases in subjective hunger when individuals are sleep restricted rather than well rested. Given the evidence, sleep curtailment appears to be an important, yet modifiable, risk factor for the metabolic syndrome, diabetes and obesity. The marked decrease in average sleep duration in the last 50 years coinciding with the increased prevalence of obesity, together with the observed adverse effects of recurrent partial sleep deprivation on metabolism and hormonal processes, may have important implications for public health. PMID:18929315

  13. Cueing vocabulary during sleep increases theta activity during later recognition testing.

    PubMed

    Schreiner, Thomas; Göldi, Maurice; Rasch, Björn

    2015-11-01

    Neural oscillations in the theta band have repeatedly been implicated in successful memory encoding and retrieval. Several recent studies have shown that memory retrieval can be facilitated by reactivating memories during their consolidation during sleep. However, it is still unknown whether reactivation during sleep also enhances subsequent retrieval-related neural oscillations. We have recently demonstrated that foreign vocabulary cues presented during sleep improve later recall of the associated translations. Here, we examined the effect of cueing foreign vocabulary during sleep on oscillatory activity during subsequent recognition testing after sleep. We show that those words that were replayed during sleep after learning (cued words) elicited stronger centroparietal theta activity during recognition as compared to noncued words. The reactivation-induced increase in theta oscillations during later recognition testing might reflect a strengthening of individual memory traces and the integration of the newly learned words into the mental lexicon by cueing during sleep.

  14. Interactions between sleeping position and feeding on cardiorespiratory activity in preterm infants.

    PubMed

    Fifer, William P; Myers, Michael M; Sahni, Rakesh; Ohira-Kist, Kiyoko; Kashyap, Sudha; Stark, Raymond I; Schulze, Karl F

    2005-11-01

    Infants sleeping in the prone position are at greater risk for sudden infant death syndrome (SIDS). Sleep position-dependent changes in cardiorespiratory activity may contribute to this increased risk. Cardiorespiratory activity is also affected by feeding. Twenty prematurely-born infants were studied at 31-36 weeks postconceptional age while sleeping in the prone and supine positions. Heart rate, respiratory rate, and patterns of variability were recorded during interfeed intervals, and effects of position and time after feeding were analyzed by repeated measures analyses of variance. There were significant effects of both sleeping position and time after feeding. Heart rate is higher and heart period variability is lower in the prone position, and the effects of sleeping position on cardiac functioning are more pronounced during the middle of the intrafeed interval. In preterm infants, autonomic responses to nutrient processing modulate the cardiorespiratory effects of sleeping position. Prone sleeping risk may vary with time after feeding. PMID:16252285

  15. Activation of the motor cortex during phasic rapid eye movement sleep

    PubMed Central

    De Carli, Fabrizio; Proserpio, Paola; Morrone, Elisa; Sartori, Ivana; Ferrara, Michele; Gibbs, Steve Alex; De Gennaro, Luigi; Lo Russo, Giorgio

    2016-01-01

    When dreaming during rapid eye movement (REM) sleep, we can perform complex motor behaviors while remaining motionless. How the motor cortex behaves during this state remains unknown. Here, using intracerebral electrodes sampling the human motor cortex in pharmacoresistant epileptic patients, we report a pattern of electroencephalographic activation during REM sleep similar to that observed during the performance of a voluntary movement during wakefulness. This pattern is present during phasic REM sleep but not during tonic REM sleep, the latter resembling relaxed wakefulness. This finding may help clarify certain phenomenological aspects observed in REM sleep behavior disorder. Ann Neurol 2016;79:326–330 PMID:26575212

  16. Implementation of a quiet hour: effect on noise levels and infant sleep states.

    PubMed

    Strauch, C; Brandt, S; Edwards-Beckett, J

    1993-03-01

    It is necessary to decrease environmental stimuli in order to provide developmentally supportive care to the very low birthweight (VLBW) infant, thereby enhancing the sleep/wake cycle and possibly physiologic stability. The purpose of this study was to determine if it was possible to decrease the noise level in the Developmental Unit, and promote sleep states in infants on the unit. After determining control noise levels and infant state, the last hour of each shift was designated a Quiet Hour. During this time, noise levels were monitored in the room in five locations. Infant sleep states were also noted. The results indicate that noise levels decreased significantly on two of the three shifts. Fewer infants were crying during the Quiet Hour than the control period (2.4 vs 14.3 percent), and more were in deep or light sleep (84.5 vs 33.9 percent). This study demonstrates that noise levels in Developmental Units can be significantly decreased, and that the decreased noise levels positively impact infant state. By enhancing sleep states, nurses can enhance the long term developmental outcome of the VLBW infant. However, the reduction of noise is highly dependent on the collaborative efforts of all health care providers within the unit.

  17. Evaluation of mobile phone addiction level and sleep quality in university students

    PubMed Central

    Sahin, Sevil; Ozdemir, Kevser; Unsal, Alaattin; Temiz, Nazen

    2013-01-01

    Objective: To determine the mobile phone addiction level in university students, to examine several associated factors and to evaluate the relation between the addiction level and sleep quality. Methods: The study is a cross-sectional research conducted on the students of the Sakarya University between 01 November 2012 and 01 February 2013. The study group included 576 students. The Problematic Mobile Phone Use Scale was used for evaluating the mobile phone addiction level and the Pittsburgh Sleep Quality Index for assessing the sleep quality. Mann-Whitney U test, Kruskal-Wallis test and Spearman’s Correlation Analysis were used for analyzing the data. Results: The study group consisted of 296 (51.4%) females and 208 (48.6%) males. The mean age was 20.83 ± 1.90 years (min:17, max:28). The addiction level was determined to be higher in the second-year students, those with poor family income, those with type A personality, those whose age for first mobile phone is 13 and below and those whose duration of daily mobile phone use is above 5 hours (p < 0.05 for each). The sleep quality worsens with increasing mobile phone addiction level (p < 0.05). Conclusion: The sleep quality worsens with increasing addiction level. It was concluded that referring the students with suspected addiction to advanced healthcare facilities, performing occasional scans for early diagnosis and informing the students about controlled mobile phone use would be useful. PMID:24353658

  18. [Sleep psychiatry].

    PubMed

    Chiba, Shigeru

    2013-01-01

    Sleep disorders are serious issues in modern society. There has been marked scientific interest in sleep for a century, with the discoveries of the electrical activity of the brain (EEG), sleep-wake system, rapid eye movement (REM) sleep, and circadian rhythm system. Additionally, the advent of video-polysomnography in clinical research has revealed some of the consequences of disrupted sleep and sleep deprivation in psychiatric disorders. Decades of clinical research have demonstrated that sleep disorders are intimately tied to not only physical disease (e. g., lifestyle-related disease) but psychiatric illness. According to The International Classification of Sleep Disorders (2005), sleep disorders are classified into 8 major categories: 1) insomnia, 2) sleep-related breathing disorders, 3) hypersomnias of central origin, 4) circadian rhythm sleep disorders, 5) parasomnias, 6) sleep-related movement disorders, 7) isolated symptoms, and 8) other sleep disorders. Several sleep disorders, including obstructive sleep apnea syndrome, restless legs syndrome, periodic limb movement disorder, sleepwalking, REM sleep behavior disorder, and narcolepsy, may be comorbid or possibly mimic numerous psychiatric disorders, and can even occur due to psychiatric pharmacotherapy. Moreover, sleep disorders may exacerbate underlying psychiatric disorders when left untreated. Therefore, psychiatrists should pay attention to the intimate relationship between sleep disorders and psychiatric symptoms. Sleep psychiatry is an academic field focusing on interrelations between sleep medicine and psychiatry. This mini-review summarizes recent findings in sleep psychiatry. Future research on the bidirectional relation between sleep disturbance and psychiatric symptoms will shed light on the pathophysiological view of psychiatric disorders and sleep disorders. PMID:24050022

  19. Analysis of EEG activity during sleep - brain hemisphere symmetry of two classes of sleep spindles

    NASA Astrophysics Data System (ADS)

    Smolen, Magdalena M.

    2009-01-01

    This paper presents automatic analysis of some selected human electroencephalographic patterns during deep sleep using the Matching Pursuit (MP) algorithm. The periodicity of deep sleep EEG patterns was observed by calculating autocorrelation functions of their percentage contributions. The study confirmed the increasing trend of amplitude-weighted average frequency of sleep spindles from frontal to posterior derivations. The dominant frequencies from the left and the right brain hemisphere were strongly correlated.

  20. Quantification of tonic and phasic muscle activity in REM sleep behavior disorder.

    PubMed

    Mayer, Geert; Kesper, Karl; Ploch, Thomas; Canisius, Sebastian; Penzel, Thomas; Oertel, Wolfgang; Stiasny-Kolster, Karin

    2008-02-01

    REM sleep behavior disorder (RBD) is characterized by excessive tone of the chin muscle and limb movement during sleep. In the past, quantification of increased muscle tone in REM sleep has been performed visually, using no stringent criteria. The aim of this study was to develop an automatic analysis, allowing the quantification of muscle activity and its amplitude for all sleep stages, with a focus on REM sleep in patients with RBD. Forty-eight patients (27 male, 21 female) with RBD were included in the analysis. Twenty-one had idiopathic RBD; 28 had narcolepsy plus RBD. Twenty-five patients without confirmed sleep disorder served as control subjects. The amplitude of the EMG was generated from the difference of the upper and lower envelope of the mentalis muscle recordings. By smoothing the amplitude curve, a threshold curve was defined. Any muscle activity beyond the threshold curve was defined as motor activity. The means of the motor activity per second were summarized statistically and calculated for each sleep stage. Due to variable distribution of REM sleep, the latter was assigned to respective quartiles of the recorded night. Muscle activity was defined according to a histogram as short-lasting (<0.5 second) and long-lasting (>0.5 second) activity. No difference in the distribution of REM sleep/quartile and mean muscle tone throughout the sleep cycle could be found within the RBD groups and control subjects. Muscle activity was in the range of 200 ms. No clusters or regular distribution of muscle activity were found. Long muscle activity in the group with manifest clinical RBD was significantly higher than in control subjects, whereas it was nonsignificantly higher in subclinical RBD. The correlation between the frequency of long muscle activity in REM sleep and age was highly significant only for patients with idiopathic RBD. Automatic analysis of muscle activity in sleep is a reliable, easy method that may easily be used in the evaluation for REM sleep

  1. Quantification of muscle activity during sleep for patients with neurodegenerative diseases.

    PubMed

    Hanif, Umaer; Trap, Lotte; Jennum, Poul; Zoetmulder, Marielle; Sorensen, Helge B D

    2015-01-01

    Idiopathic REM sleep behavior disorder (iRBD) is a very strong predictor for later development of Parkinson's disease (PD), and is characterized by REM sleep without atonia (RSWA), resulting in increased muscle activity during REM sleep. Abundant studies have shown the loss of atonia during REM sleep, but our aim was to investigate whether iRBD and PD patients have increased muscle activity in both REM and NREM sleep compared to healthy controls. This was achieved by developing a semi-automatic algorithm for quantification of mean muscle activity per second during all sleep stages for the enrolled patients. The three groups examined included patients suffering from iRBD, PD and healthy control subjects (CO). To determine muscle activity, a baseline and threshold were established after pre-processing of the raw surface electromyography (sEMG) signal. The signal was then segmented according to the different sleep stages and muscle activity beyond the threshold was counted. The results were evaluated statistically using the two-sided Mann-Whitney U-test. The results suggested that iRBD patients also exhibit distinctive muscle activity characteristics in NREM sleep, however not as evident as in REM sleep, leading to the conclusion that RSWA still is the most distinct characteristic of RBD. Furthermore, the muscle activity of PD patients was comparable to that of controls with only slightly elevated amplitudes. PMID:26737659

  2. Sleep Disturbance from Road Traffic, Railways, Airplanes and from Total Environmental Noise Levels in Montreal.

    PubMed

    Perron, Stéphane; Plante, Céline; Ragettli, Martina S; Kaiser, David J; Goudreau, Sophie; Smargiassi, Audrey

    2016-01-01

    The objective of our study was to measure the impact of transportation-related noise and total environmental noise on sleep disturbance for the residents of Montreal, Canada. A telephone-based survey on noise-related sleep disturbance among 4336 persons aged 18 years and over was conducted. LNight for each study participant was estimated using a land use regression (LUR) model. Distance of the respondent's residence to the nearest transportation noise source was also used as an indicator of noise exposure. The proportion of the population whose sleep was disturbed by outdoor environmental noise in the past 4 weeks was 12.4%. The proportion of those affected by road traffic, airplane and railway noise was 4.2%, 1.5% and 1.1%, respectively. We observed an increased prevalence in sleep disturbance for those exposed to both rail and road noise when compared for those exposed to road only. We did not observe an increased prevalence in sleep disturbance for those that were both exposed to road and planes when compared to those exposed to road or planes only. We developed regression models to assess the marginal proportion of sleep disturbance as a function of estimated LNight and distance to transportation noise sources. In our models, sleep disturbance increased with proximity to transportation noise sources (railway, airplane and road traffic) and with increasing LNight values. Our study provides a quantitative estimate of the association between total environmental noise levels estimated using an LUR model and sleep disturbance from transportation noise. PMID:27529260

  3. Sleep Disturbance from Road Traffic, Railways, Airplanes and from Total Environmental Noise Levels in Montreal

    PubMed Central

    Perron, Stéphane; Plante, Céline; Ragettli, Martina S.; Kaiser, David J.; Goudreau, Sophie; Smargiassi, Audrey

    2016-01-01

    The objective of our study was to measure the impact of transportation-related noise and total environmental noise on sleep disturbance for the residents of Montreal, Canada. A telephone-based survey on noise-related sleep disturbance among 4336 persons aged 18 years and over was conducted. LNight for each study participant was estimated using a land use regression (LUR) model. Distance of the respondent’s residence to the nearest transportation noise source was also used as an indicator of noise exposure. The proportion of the population whose sleep was disturbed by outdoor environmental noise in the past 4 weeks was 12.4%. The proportion of those affected by road traffic, airplane and railway noise was 4.2%, 1.5% and 1.1%, respectively. We observed an increased prevalence in sleep disturbance for those exposed to both rail and road noise when compared for those exposed to road only. We did not observe an increased prevalence in sleep disturbance for those that were both exposed to road and planes when compared to those exposed to road or planes only. We developed regression models to assess the marginal proportion of sleep disturbance as a function of estimated LNight and distance to transportation noise sources. In our models, sleep disturbance increased with proximity to transportation noise sources (railway, airplane and road traffic) and with increasing LNight values. Our study provides a quantitative estimate of the association between total environmental noise levels estimated using an LUR model and sleep disturbance from transportation noise. PMID:27529260

  4. Lempel-Ziv complexity of cortical activity during sleep and waking in rats

    PubMed Central

    Abásolo, Daniel; Simons, Samantha; Morgado da Silva, Rita; Tononi, Giulio

    2015-01-01

    Understanding the dynamics of brain activity manifested in the EEG, local field potentials (LFP), and neuronal spiking is essential for explaining their underlying mechanisms and physiological significance. Much has been learned about sleep regulation using conventional EEG power spectrum, coherence, and period-amplitude analyses, which focus primarily on frequency and amplitude characteristics of the signals and on their spatio-temporal synchronicity. However, little is known about the effects of ongoing brain state or preceding sleep-wake history on the nonlinear dynamics of brain activity. Recent advances in developing novel mathematical approaches for investigating temporal structure of brain activity based on such measures, as Lempel-Ziv complexity (LZC) can provide insights that go beyond those obtained with conventional techniques of signal analysis. Here, we used extensive data sets obtained in spontaneously awake and sleeping adult male laboratory rats, as well as during and after sleep deprivation, to perform a detailed analysis of cortical LFP and neuronal activity with LZC approach. We found that activated brain states—waking and rapid eye movement (REM) sleep are characterized by higher LZC compared with non-rapid eye movement (NREM) sleep. Notably, LZC values derived from the LFP were especially low during early NREM sleep after sleep deprivation and toward the middle of individual NREM sleep episodes. We conclude that LZC is an important and yet largely unexplored measure with a high potential for investigating neurophysiological mechanisms of brain activity in health and disease. PMID:25717159

  5. Cardiovascular physiology and sleep.

    PubMed

    Murali, Narayana S; Svatikova, Anna; Somers, Virend K

    2003-05-01

    Sleep is a natural periodic suspension of consciousness during which processes of rest and restoration occur. The cognitive, reparative and regenerative accompaniments of sleep appear to be essential for maintenance of health and homeostasis. This brief overview will examine the cardiovascular responses to normal and disordered sleep, and their physiologic and pathologic implications. In the past, sleep was believed to be a passive state. The tableau of sleep as it unfolds is anything but a passive process. The brain's activity is as complex as wakefulness, never "resting" during sleep. Following the demise of the 'passive theory of sleep' (the reticular activating system is fatigued during the waking day and hence becomes inactive), there arose the 'active theory of sleep' (sleep is due to an active general inhibition of the brain) (1). Hess demonstrated the active nature of sleep in cats, inducing "physiological sleep" with electrical stimulation of the diencephalon (2). Classical experiments of transection of the cat brainstem (3) at midpontine level inhibited sleep completely, implying that centers below this level were involved in the induction of sleep (1, 4). For the first time, measurement of sleep depth without awakening the sleeper using the electroencephalogram (EEG) was demonstrated in animals by Caton and in humans, by Berger (1). This was soon followed by discovery of the rapid eye movement sleep periods (REM) by Aserinski and Kleitman (5), demonstration of periodical sleep cycles and their association with REM sleep (6, 7). Multiple studies and steady discoveries (4) made polysomnography, with its ability to perform simultaneous whole night recordings of EEG, electromyogram (EMG), and electrooculogram (EOC), a major diagnostic tool in study of sleep disorders. This facility has been of further critical importance in allowing evaluation of the interaction between sleep and changes in hemodynamics and autonomic cardiovascular control. Consequently the

  6. Chronic sleep restriction causes a decrease in hippocampal volume in adolescent rats, which is not explained by changes in glucocorticoid levels or neurogenesis.

    PubMed

    Novati, A; Hulshof, H J; Koolhaas, J M; Lucassen, P J; Meerlo, P

    2011-09-01

    Sleep loss strongly affects brain function and may even predispose susceptible individuals to psychiatric disorders. Since a recurrent lack of sleep frequently occurs during adolescence, it has been implicated in the rise in depression incidence during this particular period of life. One mechanism through which sleep loss may contribute to depressive symptomatology is by affecting hippocampal function. In this study, we examined the effects of sleep loss on hippocampal integrity at young age by subjecting adolescent male rats to chronic sleep restriction (SR) for 1 month from postnatal day 30 to 61. They were placed in slowly rotating drums for 20 h per day and were allowed 4 h of rest per day at the beginning of the light phase. Anxiety was measured using an open field and elevated plus maze test, while saccharine preference was used as an indication of anhedonia. All tests were performed after 1 and 4 weeks of SR. We further studied effects of SR on hypothalamic-pituitary-adrenal (HPA) axis activity, and at the end of the experiment, brains were collected to measure hippocampal volume and neurogenesis. Behavior of the SR animals was not affected, except for a transient suppression of saccharine preference after 1 week of SR. Hippocampal volume was significantly reduced in SR rats compared to home cage and forced activity controls. This volume reduction was not paralleled by reduced levels of hippocampal neurogenesis and could neither be explained by elevated levels of glucocorticoids. Thus, our results indicate that insufficient sleep may be a causal factor in the reductions of hippocampal volume that have been reported in human sleep disorders and mood disorders. Since changes in HPA activity or neurogenesis are not causally implicated, sleep disturbance may affect hippocampal volume by other, possibly more direct mechanisms.

  7. Simulation study on dynamics transition in neuronal activity during sleep cycle by using asynchronous and symmetry neural network model.

    PubMed

    Nakao, M; Takahashi, T; Mizutani, Y; Yamamoto, M

    1990-01-01

    We have found that single neuronal activities in different regions in the brain commonly exhibit the distinct dynamics transition during sleep-waking cycle in cats. Especially, power spectral densities of single neuronal activities change their profiles from the white to the 1/f along with sleep cycle from slow wave sleep (SWS) to paradoxical sleep (PS). Each region has different neural network structure and physiological function. This suggests a globally working mechanism may be underlying the dynamics transition we concern. Pharmacological studies have shown that a change in a wide-spread serotonergic input to these regions possibly causes the neuronal dynamics transition during sleep cycle. In this paper, based on these experimental results, an asynchronous and symmetry neural network model including inhibitory input, which represents the role of the serotonergic system, is utilized to examine the reality of our idea that the inhibitory input level varying during sleep cycle induce that transition. Simulation results show that the globally applied inhibitory input can control the dynamics of single neuronal state evolution in the artificial neural network: 1/f-like power spectral density profiles result under weak inhibition, which possibly corresponds to PS, and white profiles under strong inhibition, which possibly corresponds to SWS. An asynchronous neural network is known to change its state according to its energy function. The geometrical structure of network energy function is thought to vary along with the change in inhibitory level, which is expected to cause the dynamics transition of neuronal state evolution in the network model. These simulation results support the possibility that the serotonergic system is essential for the dynamics transition of single neuronal activities during sleep cycle.

  8. Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep.

    PubMed

    Mitra, Anish; Snyder, Abraham Z; Tagliazucchi, Enzo; Laufs, Helmut; Raichle, Marcus E

    2015-11-09

    Propagation of slow intrinsic brain activity has been widely observed in electrophysiogical studies of slow wave sleep (SWS). However, in human resting state fMRI (rs-fMRI), intrinsic activity has been understood predominantly in terms of zero-lag temporal synchrony (functional connectivity) within systems known as resting state networks (RSNs). Prior rs-fMRI studies have found that RSNs are generally preserved across wake and sleep. Here, we use a recently developed analysis technique to study propagation of infra-slow intrinsic blood oxygen level dependent (BOLD) signals in normal adults during wake and SWS. This analysis reveals marked changes in propagation patterns in SWS vs. wake. Broadly, ordered propagation is preserved within traditionally defined RSNs but lost between RSNs. Additionally, propagation between cerebral cortex and subcortical structures reverses directions, and intra-cortical propagation becomes reorganized, especially in visual and sensorimotor cortices. These findings show that propagated rs-fMRI activity informs theoretical accounts of the neural functions of sleep.

  9. Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep

    PubMed Central

    Mitra, Anish; Snyder, Abraham Z; Tagliazucchi, Enzo; Laufs, Helmut; Raichle, Marcus E

    2015-01-01

    Propagation of slow intrinsic brain activity has been widely observed in electrophysiogical studies of slow wave sleep (SWS). However, in human resting state fMRI (rs-fMRI), intrinsic activity has been understood predominantly in terms of zero-lag temporal synchrony (functional connectivity) within systems known as resting state networks (RSNs). Prior rs-fMRI studies have found that RSNs are generally preserved across wake and sleep. Here, we use a recently developed analysis technique to study propagation of infra-slow intrinsic blood oxygen level dependent (BOLD) signals in normal adults during wake and SWS. This analysis reveals marked changes in propagation patterns in SWS vs. wake. Broadly, ordered propagation is preserved within traditionally defined RSNs but lost between RSNs. Additionally, propagation between cerebral cortex and subcortical structures reverses directions, and intra-cortical propagation becomes reorganized, especially in visual and sensorimotor cortices. These findings show that propagated rs-fMRI activity informs theoretical accounts of the neural functions of sleep. DOI: http://dx.doi.org/10.7554/eLife.10781.001 PMID:26551562

  10. Estimating individual optimal sleep duration and potential sleep debt

    PubMed Central

    Kitamura, Shingo; Katayose, Yasuko; Nakazaki, Kyoko; Motomura, Yuki; Oba, Kentaro; Katsunuma, Ruri; Terasawa, Yuri; Enomoto, Minori; Moriguchi, Yoshiya; Hida, Akiko; Mishima, Kazuo

    2016-01-01

    In this study, we hypothesized that dynamics of sleep time obtained over consecutive days of extended sleep in a laboratory reflect an individual’s optimal sleep duration (OSD) and that the difference between OSD and habitual sleep duration (HSD) at home represents potential sleep debt (PSD). We found that OSD varies among individuals and PSD showed stronger correlation with subjective/objective sleepiness than actual sleep time, interacting with individual’s vulnerability of sleep loss. Furthermore, only 1 h of PSD takes four days to recover to their optimal level. Recovery from PSD was also associated with the improvement in glycometabolism, thyrotropic activity and hypothalamic-pituitary-adrenocortical axis. Additionally, the increase (rebound) in total sleep time from HSD at the first extended sleep would be a simple indicator of PSD. These findings confirmed self-evaluating the degree of sleep debt at home as a useful clinical marker. To establish appropriate sleep habits, it is necessary to evaluate OSD, vulnerability to sleep loss, and sleep homeostasis characteristics on an individual basis. PMID:27775095

  11. The effect of sleep on reflex genioglossus muscle activation by stimuli of negative airway pressure in humans.

    PubMed Central

    Horner, R L; Innes, J A; Morrell, M J; Shea, S A; Guz, A

    1994-01-01

    The present study was designed to determine the effect of sleep on reflex pharyngeal dilator muscle activation by stimuli of negative airway pressure in human subjects. Intra-oral bipolar surface electrodes were used to record genioglossus electromyogram (EMG) responses to 500 ms duration pressure stimuli of 0 and -25 cmH2O applied, via a face-mask, in four normal subjects. Stimuli were applied during early inspiration in wakefulness and in periods of non-rapid-eye-movement (non-REM) sleep, defined by electroencephalographic (EEG) criteria. The rectified and integrated EMG responses to repeated interventions were bin averaged for the 0 and -25 cmH2O stimuli applied in wakefulness and sleep. Response latency was defined as the time when the EMG activity significantly increased above prestimulus levels. Response magnitude was quantified as the in ratio of the EMG activity for an 80 ms post-stimulus period to an 80 ms prestimulus period; data from after the subject's voluntary reaction time for tongue protrusion (range, 150-230 ms) were not analysed. Application of the -25 cmH2O stimuli caused genioglossus muscle activation in wakefulness and sleep, but in all subjects response magnitude was reduced in sleep (mean decrease, 61%; range, 52-82%; P = 0.011, Student's paired t test). In addition, response latency was increased in sleep in each subject (mean latency awake, 38 ms; range, 30-50 ms; mean latency asleep, 75 ms; range, 40-110 ms; P = 0.072, Student's paired t test). Application of the -25 cmH2O stimuli caused arousal from sleep on 90% occasions, but in all cases the reflex genioglossus muscle responses (maximum latency, 110 ms) always proceeded any sign of EEG arousal (mean time to arousal, 643 ms; range, 424-760 ms). These results show that non-REM sleep attenuates reflex genioglossus muscle activation by stimuli of negative airway pressure. Attenuation of this reflex by sleep may impair the ability of the upper airway to defend itself from suction collapse by

  12. Sleep disturbance, psycho-social and medical symptoms—A pilot survey among persons exposed to high levels of road traffic noise

    NASA Astrophysics Data System (ADS)

    Öhrström, E.

    1989-08-01

    A pilot survey was undertaken to elucidate sleep quality, as well as psycho-social and medical symptoms and mood, among people who had lived for many years in an area with high levels of road traffic noise during night hours and inhabitants of a quiet control area: 106 personal interviews were performed and specific questionnaires on sleep and mood answered by 63 persons during three consecutive days. It was found that both sleep quality and mood (social orientation, activity, wellbeing and extroversion) were depressed in the noisy area as compared with a control area. Symptoms of tiredness, headache and nervous stomach disorders were more frequent. A significant relationship between sensitivity to noise and sleep quality was also found. From this pilot study hypotheses may be formulated about a relationship between environmental noise and different psycho-social and medical symptoms. It is suggested that similar studies on a larger scale are performed to elucidate long-term effects of noise.

  13. The impact of posttraumatic stress disorder versus resilience on nocturnal autonomic nervous system activity as functions of sleep stage and time of sleep.

    PubMed

    Kobayashi, Ihori; Lavela, Joseph; Bell, Kimberly; Mellman, Thomas A

    2016-10-01

    Posttraumatic stress disorder (PTSD) has been associated with sleep disturbances including alterations in sleep stages and recently, elevated nocturnal autonomic nervous system (ANS) arousal (i.e., dominance of the sympathetic nervous system over the parasympathetic nervous system). Data suggest that sleep contributes to the regulation of ANS activity. In our previous ambulatory heart rate variability (HRV) monitoring study, strong relationships between sleep and nocturnal ANS activity in resilient participants (i.e., individuals who had never had PTSD despite exposure to high-impact trauma) were not seen with PTSD. In this study, we examined the impact of PTSD vs. resilience on ANS activity as a function of sleep stage and time of sleep. Participants (age 18-35) with current PTSD (n=38) and resilience (n=33) completed two overnight polysomnography recordings in a lab setting. The second night electrocardiogram was analyzed for frequency domain HRV parameters and heart rate within rapid-eye-movement (REM) and non-REM (NREM) sleep periods. Results indicated that ANS arousal indexed by HRV was greater during REM compared with NREM sleep and that the REM-NREM difference was greater in the PTSD than in the resilient participants. This effect of PTSD was reduced to non-significance when analyses controlled for REM sleep percentage, which was lower with PTSD. Exploratory analyses revealed that the REM-NREM difference in HRV was correlated with REM sleep percentage in resilient participants, but not with PTSD. In contrast with our data from home settings, the present study did not find increased overall nocturnal ANS arousal with PTSD. Analyses did reveal higher heart rate during initial NREM sleep with more rapid decline over the course of NREM sleep with PTSD compared with resilience. Findings suggest that elevated ANS arousal indexed by heart rate with PTSD is specific to the early part of sleep and possible impairment in regulating ANS activity with PTSD related to

  14. Influence of neighbourhood-level crowding on sleep-disordered breathing severity: mediation by body size.

    PubMed

    Johnson, Dayna A; Drake, Christopher; Joseph, Christine L M; Krajenta, Richard; Hudgel, David W; Cassidy-Bushrow, Andrea E

    2015-10-01

    Neighbourhood-level crowding, a measure of the percentage of households with more than one person per room, may impact the severity of sleep-disordered breathing. This study examined the association of neighbourhood-level crowding with apnoea-hypopnoea index in a large clinical sample of diverse adults with sleep-disordered breathing. Sleep-disordered breathing severity was quantified as the apnoea-hypopnoea index calculated from overnight polysomnogram; analyses were restricted to those with apnoea-hypopnoea index ≥5. Neighbourhood-level crowding was defined using 2000 US Census tract data as percentage of households in a census tract with >1 person per room. Multivariable linear mixed models were fit to examine the associations between the percentage of neighbourhood-level crowding and apnoea-hypopnoea index, and a causal mediation analysis was conducted to determine if body mass index acted as a mediator between neighbourhood-level crowding and apnoea-hypopnoea index. Among 1789 patients (43% African American; 68% male; 80% obese), the mean apnoea-hypopnoea index was 29.0 ± 25.3. After adjusting for race, age, marital status and gender, neighbourhood-level crowding was associated with apnoea-hypopnoea index; for every one-unit increase in percentage of neighbourhood-level crowding mean, the apnoea-hypopnoea index increased by 0.40 ± 0.20 (P = 0.04). There was a statistically significant indirect effect of neighbourhood-level crowding through body mass index on the apnoea-hypopnoea index (P < 0.001). Neighbourhood-level crowding is associated with severity of sleep-disordered breathing. Body mass index partially mediated the association between neighbourhood-level crowding and sleep-disordered breathing. Investigating prevalent neighbourhood conditions impacting breathing in urban settings may be promising.

  15. Brief Report: Influence of Physical Activity on Sleep Quality in Children with Autism

    ERIC Educational Resources Information Center

    Wachob, David; Lorenzi, David G.

    2015-01-01

    Sleep-related problems are often documented in children with Autism Spectrum Disorders (ASD). This study examined physical activity as a variable that might influence sleep quality in children with ASD. Ten children, ages 9-16 years, were asked to wear accelerometer devices for 7 days in order to track objective measures of activity and sleep…

  16. Duration of activity and mode of action of modafinil: Studies on sleep and wakefulness in humans.

    PubMed

    Turner, C; Belyavin, A J; Nicholson, A N

    2014-07-01

    The duration of activity of modafinil was investigated in healthy male volunteers in two double-blind crossover studies. Mode of action was explored using a statistical model concerned with the relationship between total sleep duration and that of rapid eye movement (REM) sleep. Nocturnal sleep (23:00-07:00) followed by next-day performance (09:00-17:00) was studied in 12 subjects administered 100, 200, 300 mg modafinil and placebo, 0.5 h before bedtime. Performance overnight (19:00-08:45) followed by sleep (09:15-15:15) was studied in nine subjects administered 100, 200, 300, 400 mg modafinil, 300 mg caffeine and placebo at 22:15. Modafinil dose-dependently reduced sleep duration (nocturnal: 200 mg, p<0.05; 300 mg, p<0.001; morning: 300 and 400 mg, p<0.05) and REM sleep (nocturnal: 300 mg; morning: 400 mg; p<0.05). The statistical model revealed that reduced REM sleep was due to alerting activity, with no evidence of direct suppression of REM sleep, suggesting dopaminergic activity. Enhanced performance with modafinil during overnight work varied with dose (200 mg>100 mg; 300, 400 mg>200, 100 mg, caffeine). However, in the study of next-day performance, the enhancement was attenuated at the highest dose (300 mg) by the greater disturbance of prior sleep. These findings indicate that modafinil has a long duration of action, with alerting properties arising predominantly from dopaminergic activity. PMID:24306135

  17. Chronic widespread musculoskeletal pain in patients with obstructive sleep apnea syndrome and the relationship between sleep disorder and pain level, quality of life, and disability

    PubMed Central

    Aytekin, Ebru; Demir, Saliha Eroglu; Komut, Ece Akyol; Okur, Sibel Caglar; Burnaz, Ozer; Caglar, Nil Sayiner; Demiryontar, Dilay Yilmaz

    2015-01-01

    [Purpose] The aim of this study was to ascertain the prevalence of chronic widespread musculoskeletal pain in patients with obstructive sleep apnea syndrome and to assess the relationship between sleep disorder and pain, quality of life, and disability. [Subjects and Methods] Seventy-four patients were included in the study and classified as having mild, moderate, or severe obstructive sleep apnea. Chronic widespread pain, quality of life, and disability were evaluated. [Results] Forty-one patients (55.4%) had chronic widespread pain. Female patients had a higher incidence of chronic pain, and female patients with chronic pain had higher body mass indexes, pain levels, and disability scores than did male patients. Physical component scores of female patients with chronic pain were lower than those of male patients. No correlation was observed between the degree of sleep disorder and severity of pain, pain duration, disability, or quality of life in obstructive sleep apnea patients with pain. [Conclusion] This study showed a 55.4% prevalence of chronic widespread pain in patients with obstructive sleep apnea and a greater risk of chronic pain in female than in male patients. Female patients with obstructive sleep apnea and chronic pain have higher pain and disability levels and a lower quality of life. PMID:26504332

  18. Active sleep and its role in the prevention of apoptosis in the developing brain.

    PubMed

    Morrissey, Michael J; Duntley, S P; Anch, A M; Nonneman, R

    2004-01-01

    The aim of this study is to identify a possible function of Active Sleep (AS), also known as Rapid Eye Movement Sleep (REM) in humans, as a protective state during early Central Nervous System (CNS) development. Previous research suggest pharmacological agents that inhibit high levels of neuronal activity in the CNS (e.g., benzodiazepines, ethanol, and anesthetics) precipitate massive CNS programmed cell death (PCD), in developing mammals. AS is characterized by high levels of CNS activity at levels comparable to waking. AS occupies up to 75% of the circadian cycle in developing mammals (rodents from postnatal days 1-14 days (p1-p14), and humans from prenatal month seven to postnatal year one). Many studies have implicated AS as having an active role in the normal development of the visual system and have documented myriad behavioral anomalies as a result of AS deprivation. Reduced adult brain mass has also been observed after AS deprivation in developing rats during this period, however, no study to date has documented this process as it occurs (i.e., the cellular mechanisms that result in behavioral anomalies or reduced adult brain mass). The purpose of this study is to begin documentation of this process by utilizing histological techniques that identify the PCD process, if it occurs, after acute and prolonged AS deprivation in rats from ages p7 to p14 (a time of active synaptogenesis). Our methodology includes utilization of the alpha2-adrenergic receptor agonist clonidine, to deprive rat pups of AS at ages varying from p7 to p14. Pilot data from our laboratory has shown that an acute exposure to clonidine significantly reduces time spent in AS. The animals that were AS deprived also showed a statistically significant decrease in brain mass and have stained positively for PCD. If our hypotheses are correct, this research will have major implications with regard to determining the function(s) of REM sleep. PMID:15142640

  19. Sociodemographic Characteristics and Waking Activities and their Role in the Timing and Duration of Sleep

    PubMed Central

    Basner, Mathias; Spaeth, Andrea M.; Dinges, David F.

    2014-01-01

    Study Objectives: Chronic sleep restriction is prevalent in the U.S. population and associated with increased morbidity and mortality. The primary reasons for reduced sleep are unknown. Using population data on time use, we sought to identify individual characteristics and behaviors associated with short sleep that could be targeted for intervention programs. Design: Analysis of the American Time Use Survey (ATUS). Setting: Cross-sectional annual survey conducted by the U.S. Bureau of Labor Statistics. Participants: Representative cohort (N = 124,517) of Americans 15 years and older surveyed between 2003 and 2011. Interventions: None. Measurements and Results: Telephone survey of activities over 24 hours. Relative to all other waking activities, paid work time was the primary waking activity exchanged for sleep. Time spent traveling, which included commuting to/from work, and immediate pre- and post-sleep activities (socializing, grooming, watching TV) were also reciprocally related to sleep duration. With every hour that work or educational training started later in the morning, sleep time increased by approximately 20 minutes. Working multiple jobs was associated with the highest odds for sleeping ≤ 6 hours on weekdays (adjusted OR 1.61, 95% CI 1.44; 1.81). Self-employed respondents were less likely to be short sleepers compared to private sector employees (OR 0.83, 95% CI 0.72; 0.95). Sociodemographic characteristics associated with paid work (age 25-64, male sex, high income, and employment per se) were consistently associated with short sleep. Conclusions: U.S. population time use survey findings suggest that interventions to increase sleep time should concentrate on delaying the morning start time of work and educational activities (or making them more flexible), increasing sleep opportunities, and shortening morning and evening commute times. Reducing the need for multiple jobs may increase sleep time, but economic disincentives from working fewer hours

  20. Sleep loss changes microRNA levels in the brain: A possible mechanism for state-dependent translational regulation

    PubMed Central

    Davis, Christopher J.; Bohnet, Stewart G.; Meyerson, Joseph M.; Krueger, James M.

    2007-01-01

    MicroRNAs (miRNAs) are small (∼22 nucleotide) non-coding RNA strands that base pair with mRNA to degrade it or inhibit its translation. Because sleep and sleep loss induce changes in many mRNA species, we hypothesized that sleep loss would also affect miRNA levels in the brain. Rats were sleep-deprived for 8 h then decapitated; hippocampus, prefrontal and somatosensory cortices and hypothalamus tissues were harvested and frozen in liquid nitrogen. MiRNA was extracted and then characterized using microarrays. Several let-7 miRNA microarray results using hippocampus and prefrontal cortex samples were verified by PCR. From the array data it was determined that about fifty miRNA species were affected by sleep loss. For example, in the hippocampus of sleep-deprived rats, miRNA expression increased compared to cage control samples. In contrast, the majority of miRNA species in the somatosensory and prefrontal cortices decreased, while in the hypothalamus miRNA species were both up- and down-regulated after sleep deprivation. The number of miRNA species affected by sleep loss, their differential expression in separate brain structures and their predicted targets suggest that they have a role in site-specific sleep mechanisms. Current results are, to our knowledge, the first demonstration of the homeostatic process, sleep, altering brain miRNA levels. PMID:17597302

  1. The Effects of the Mars Exploration Rovers (MER) Work Schedule Regime on Locomotor Activity Circadian Rhythms, Sleep and Fatigue

    NASA Technical Reports Server (NTRS)

    DeRoshia, Charles W.; Colletti, Laura C.; Mallis, Melissa M.

    2008-01-01

    This study assessed human adaptation to a Mars sol by evaluating sleep metrics obtained by actigraphy and subjective responses in 22 participants, and circadian rhythmicity in locomotor activity in 9 participants assigned to Mars Exploration Rover (MER) operational work schedules (24.65 hour days) at the Jet Propulsion Laboratory in 2004. During MER operations, increased work shift durations and reduced sleep durations and time in bed were associated with the appearance of pronounced 12-hr (circasemidian) rhythms with reduced activity levels. Sleep duration, workload, and circadian rhythm stability have important implications for adaptability and maintenance of operational performance not only of MER operations personnel but also in space crews exposed to a Mars sol of 24.65 hours during future Mars missions.

  2. Individual variation in circadian rhythms of sleep, EEG, temperature, and activity among monkeys - Implications for regulatory mechanisms.

    NASA Technical Reports Server (NTRS)

    Crowley, T. J.; Halberg, F.; Kripke, D. F.; Pegram, G. V.

    1971-01-01

    Investigation of circadian rhythms in a number of variables related to sleep, EEG, temperature, and motor activity in rhesus monkeys on an LD 12:12 schedule. Circadian rhythms were found to appear in each of 15 variables investigated. Statistical procedures assessed the variables for evidence of common regulation in these aspects of their circadian rhythms: acrophase (timing), amplitude (extent of change), and level (24-hr mean value). Patterns appearing in the data suggested that the circadian rhythms of certain variables are regulated in common. The circadian modulation of activity in the beta and sigma frequency bands of the EEG was correlated with statistical significance in acrophase, level, and amplitude. The delta frequency band appeared to be under circadian rhythm regulation distinct from that of the other bands. The circadian rhythm of REM stage sleep was like that of beta activity in level and amplitude. The data indicate that REM stage may share some common regulation of circadian timing with both stage 3-4 sleep and with temperature. Generally, however, the circadian rhythm of temperature appeared to bear little relation to the circadian rhythms of motor activity, EEG, or sleep.

  3. Looking for a precursor of spontaneous Sleep Slow Oscillations in human sleep: The role of the sigma activity

    PubMed Central

    Allegrini, Paolo; Bedini, Remo; Bergamasco, Massimo; Laurino, Marco; Sebastiani, Laura; Gemignani, Angelo

    2016-01-01

    Sleep Slow Oscillations (SSOs), paradigmatic EEG markers of cortical bistability (alternation between cellular downstates and upstates), and sleep spindles, paradigmatic EEG markers of thalamic rhythm, are two hallmarks of sleeping brain. Selective thalamic lesions are reportedly associated to reductions of spindle activity and its spectrum ~14 Hz (sigma), and to alterations of SSO features. This apparent, parallel behavior suggests that thalamo-cortical entrainment favors cortical bistability. Here we investigate temporally-causal associations between thalamic sigma activity and shape, topology, and dynamics of SSOs. We recorded sleep EEG and studied whether spatio-temporal variability of SSO amplitude, negative slope (synchronization in downstate falling) and detection rate are driven by cortical-sigma-activity expression (12–18 Hz), in 3 consecutive 1 s-EEG-epochs preceding each SSO event (Baselines). We analyzed: (i) spatial variability, comparing maps of baseline sigma power and of SSO features, averaged over the first sleep cycle; (ii) event-by-event shape variability, computing for each electrode correlations between baseline sigma power and amplitude/slope of related SSOs; (iii) event-by-event spreading variability, comparing baseline sigma power in electrodes showing an SSO event with the homologous ones, spared by the event. The scalp distribution of baseline sigma power mirrored those of SSO amplitude and slope; event-by-event variability in baseline sigma power was associated with that in SSO amplitude in fronto-central areas; within each SSO event, electrodes involved in cortical bistability presented higher baseline sigma activity than those free of SSO. In conclusion, spatio-temporal variability of thalamocortical entrainment, measured by background sigma activity, is a reliable estimate of the cortical proneness to bistability. PMID:26003553

  4. Cuneiform neurons activated during cholinergically induced active sleep in the cat.

    PubMed

    Pose, I; Sampogna, S; Chase, M H; Morales, F R

    2000-05-01

    In the present study, we report that the cuneiform (Cun) nucleus, a brainstem structure that before now has not been implicated in sleep processes, exhibits a large number of neurons that express c-fos during carbachol-induced active sleep (AS-carbachol). Compared with control (awake) cats, during AS-carbachol, there was a 671% increase in the number of neurons that expressed c-fos in this structure. Within the Cun nucleus, three immunocytochemically distinct populations of neurons were observed. One group consisted of GABAergic neurons, which predominantly did not express c-fos during AS-carbachol. Two other different populations expressed c-fos during this state. One of the Fos-positive (Fos(+)) populations consisted of a distinct group of nitric oxide synthase (NOS)-NADPH-diaphorase (NADPH-d)-containing neurons; the neurotransmitter of the other Fos(+) population remains unknown. The Cun nucleus did not contain cholinergic, catecholaminergic, serotonergic, or glycinergic neurons. On the basis of neuronal activation during AS-carbachol, as indicated by c-fos expression, we suggest that the Cun nucleus is involved, in an as yet unknown manner, in the physiological expression of active sleep. The finding of a population of NOS-NADPH-d containing neurons, which were activated during AS-carbachol, suggests that nitrergic modulation of their target cell groups is likely to play a role in active sleep-related physiological processes. PMID:10777795

  5. Single-Unit Muscle Sympathetic Nerve Activity Reflects Sleep Apnea Severity, Especially in Severe Obstructive Sleep Apnea Patients

    PubMed Central

    Hamaoka, Takuto; Murai, Hisayoshi; Kaneko, Shuichi; Usui, Soichiro; Okabe, Yoshitaka; Tokuhisa, Hideki; Kato, Takeshi; Furusho, Hiroshi; Sugiyama, Yu; Nakatsumi, Yasuto; Takata, Shigeo; Takamura, Masayuki

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is associated with augmented sympathetic nerve activity, as assessed by multi-unit muscle sympathetic nerve activity (MSNA). However, it is still unclear whether single-unit MSNA is a better reflection of sleep apnea severity according to the apnea-hypopnea index (AHI). One hundred and two OSAS patients underwent full polysomnography and single- and multi-unit MSNA measurements. Univariate and multivariate regression analysis were performed to determine which parameters correlated with OSAS severity, which was defined by the AHI. Single- and multi-unit MSNA were significantly and positively correlated with AHI severity. The AHI was also significantly correlated with multi-unit MSNA burst frequency (r = 0.437, p < 0.0001) and single-unit MSNA spike frequency (r = 0.632, p < 0.0001). Multivariable analysis revealed that SF was correlated most significantly with AHI (T = 7.27, p < 0.0001). The distributions of multiple single-unit spikes per one cardiac interval did not differ between patients with an AHI of <30 and those with and AHI of 30–55 events/h; however, the pattern of each multiple spike firing were significantly higher in patients with an AHI of >55. These results suggest that sympathetic nerve activity is associated with sleep apnea severity. In addition, single-unit MSNA is a more accurate reflection of sleep apnea severity with alternation of the firing pattern, especially in patients with very severe OSAS. PMID:26973534

  6. Single-Unit Muscle Sympathetic Nerve Activity Reflects Sleep Apnea Severity, Especially in Severe Obstructive Sleep Apnea Patients.

    PubMed

    Hamaoka, Takuto; Murai, Hisayoshi; Kaneko, Shuichi; Usui, Soichiro; Okabe, Yoshitaka; Tokuhisa, Hideki; Kato, Takeshi; Furusho, Hiroshi; Sugiyama, Yu; Nakatsumi, Yasuto; Takata, Shigeo; Takamura, Masayuki

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is associated with augmented sympathetic nerve activity, as assessed by multi-unit muscle sympathetic nerve activity (MSNA). However, it is still unclear whether single-unit MSNA is a better reflection of sleep apnea severity according to the apnea-hypopnea index (AHI). One hundred and two OSAS patients underwent full polysomnography and single- and multi-unit MSNA measurements. Univariate and multivariate regression analysis were performed to determine which parameters correlated with OSAS severity, which was defined by the AHI. Single- and multi-unit MSNA were significantly and positively correlated with AHI severity. The AHI was also significantly correlated with multi-unit MSNA burst frequency (r = 0.437, p < 0.0001) and single-unit MSNA spike frequency (r = 0.632, p < 0.0001). Multivariable analysis revealed that SF was correlated most significantly with AHI (T = 7.27, p < 0.0001). The distributions of multiple single-unit spikes per one cardiac interval did not differ between patients with an AHI of <30 and those with and AHI of 30-55 events/h; however, the pattern of each multiple spike firing were significantly higher in patients with an AHI of >55. These results suggest that sympathetic nerve activity is associated with sleep apnea severity. In addition, single-unit MSNA is a more accurate reflection of sleep apnea severity with alternation of the firing pattern, especially in patients with very severe OSAS. PMID:26973534

  7. Biomechanics-based active control of bedding support properties and its influence on sleep.

    PubMed

    Van Deun, D; Verhaert, V; Willemen, T; Wuyts, J; Verbraecken, J; Exadaktylos, V; Haex, B; Vander Sloten, J

    2012-01-01

    Proper body support plays an import role in the recuperation of our body during sleep. Therefore, this study uses an automatically adapting bedding system that optimises spinal alignment throughout the night by altering the stiffness of eight comfort zones. The aim is to investigate the influence of such a dynamic sleep environment on objective and subjective sleep parameters. The bedding system contains 165 sensors that measure mattress indentation. It also includes eight actuators that control the comfort zones. Based on the measured mattress indentation, body movements and posture changes are detected. Control of spinal alignment is established by fitting personalized human models in the measured indentation. A total of 11 normal sleepers participated in this study. Sleep experiments were performed in a sleep laboratory where subjects slept three nights: a first night for adaptation, a reference night and an active support night (in counterbalanced order). Polysomnographic measurements were recorded during the nights, combined with questionnaires aiming at assessing subjective information. Subjective information on sleep quality, daytime quality and perceived number of awakenings shows significant improvements during the active support (ACS) night. Objective results showed a trend towards increased slow wave sleep. On the other hand, it was noticed that % N1-sleep was significantly increased during ACS night, while % N2-sleep was significantly decreased. No prolonged N1 periods were found during or immediately after steering.

  8. Platelet function and fibrinolytic activity in hypertensive and normotensive sleep apnea patients.

    PubMed

    Rångemark, C; Hedner, J A; Carlson, J T; Gleerup, G; Winther, K

    1995-04-01

    Platelet function and fibrinolytic activity was studied during rest and after ergometric exercise in 13 hypertensive or normotensive patients with obstructive sleep apnea (OSA) and in 10 sex- and weight-matched controls. All patients had undergone a complete polysomnography for the diagnosis of OSA. The controls did not undergo any sleep investigation but had no history of snoring or witnessed apneas during sleep. On antihypertensive drug wash-out, two of the patients were normotensive, whereas 11 had mild to moderate hypertension. Platelet aggregation measured by adenosine 5'-diphosphate- or adrenaline-induced aggregation, platelet factor-4 or beta-thromboglobulin did not differ between patients and controls. During exercise beta-thromboglobulin decreased significantly in both OSA patients and controls. Plasma tissue plasminogen activator activity was similar in OSA patients and controls and increased significantly in both groups after exercise. Plasminogen activator inhibitor type 1 (PAI-1) was 18.4 +/- 3.6 IU/ml in OSA patients compared with 8.2 +/- 1.7 IU/ml in controls (p < 0.029) during rest, indicating decreased fibrinolytic activity. The difference between groups remained after exercise (p < 0.017). Blood pressure elevation was more common and body mass index (BMI) was higher in patients with OSA, but there was no direct relation between blood pressure level or BMI and PAI-1. Nevertheless, differences between groups were smaller when blood pressure and obesity were accounted for. It is concluded that patients with OSA may exhibit decreased fibrinolytic activity. Low fibrinolytic activity may represent a confounding pathophysiological mechanism behind the high incidence of myocardial infarction and stroke in patients with OSA.

  9. Sleep Loss Activates Cellular Inflammation and Signal Transducer and Activator of Transcription (STAT) Family Proteins in Humans

    PubMed Central

    Irwin, Michael R.; Witarama, Tuff; Caudill, Marissa; Olmstead, Richard; Breen, Elizabeth Crabb

    2014-01-01

    Sleep disturbance and short sleep duration are associated with inflammation and related disorders including cardiovascular disease, arthritis, diabetes mellitus, and certain cancers. This study was undertaken to test the effects of experimental sleep loss on spontaneous cellular inflammation and activation of signal transducer and activator of transcription (STAT) family proteins, which together promote an inflammatory microenvironment. In 24 healthy adults (16 females; 8 males), spontaneous production of IL-6 and TNF in monocytes and spontaneous intranuclear expression of activated STAT1, STAT3, and STAT5 in peripheral blood mononuclear cells (PBMC), monocyte-, and lymphocyte populations were measured in the morning after uninterrupted baseline sleep, partial sleep deprivation (PSD, sleep period from 3 a.m. to 7 a.m.), and recovery sleep. Relative to baseline, spontaneous monocytic expression of IL-6 and TNF-α was significantly greater after PSD (P<0.02) and after recovery sleep (P<0.01). Relative to baseline, spontaneous monocytic expression of activated STAT 1 and STAT 5 was significantly greater after recovery sleep (P<0.007P<0.02, respectively) but not STAT 3 (P=0.09). No changes in STAT1, STAT3, or STAT5 were found in lymphocyte populations. Sleep loss induces activation of spontaneous cellular innate immunity and of STAT family proteins, which together map the dynamics of sleep loss on the molecular signaling pathways that regulate inflammatory and other immune responses. Treatments that target short sleep duration have the potential to constrain inflammation and reduce the risk for inflammatory disorders and some cancers in humans. PMID:25451613

  10. Reduced physical activity in adults at risk for type 2 diabetes who curtail their sleep

    PubMed Central

    Booth, J.N.; Bromley, L.E.; Darukhanavala, A.P.; Whitmore, H.R.; Imperial, J.G.; Penev, P.D.

    2011-01-01

    Adults with parental history of type 2 diabetes have high metabolic morbidity, which is exacerbated by physical inactivity. Self-reported sleep <6 h/day is associated with increased incidence of obesity and diabetes, which may be mediated in part by sleep-loss-related reduction in physical activity. We examined the relationship between habitual sleep curtailment and physical activity in adults with parental history of type 2 diabetes. Forty-eight young urban adults with parental history of type 2 diabetes (27F/21M; mean [SD] age 26 [4] y; BMI 23.8 [2.5] kg/m2) each completed 13 [2] days of sleep and physical activity monitoring by wrist actigraphy and waist accelerometry while following their usual lifestyle at home. Laboratory polysomnography was used to screen for sleep disorders. The primary outcome of the study was the comparison of total daily activity counts between participants with habitual sleep <6 vs. ≥6 h/night. Secondary measures included daily time spent sedentary and in light, moderate, and vigorous physical activity. Short sleepers had no sleep abnormalities and showed signs of increased sleep pressure consistent with a behavioral pattern of habitual sleep curtailment. Compared to participants who slept ≥6 h/night, short sleepers had 27% fewer daily activity counts (P=0.042), spent less time in moderate-plus-vigorous physical activity (−43 min/day; P=0.010), and remained more sedentary (+69 min/day; P=0.026). Our results indicate that young urban adults with parental history of type 2 diabetes who habitually curtail their sleep have less daily physical activity and more sedentary living, which may enhance their metabolic risk. PMID:21996665

  11. Sleep Deprivation and Divergent Toll-like Receptor-4 Activation of Cellular Inflammation in Aging

    PubMed Central

    Carroll, Judith E.; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C.; Yokomizo, Megumi; Seeman, Teresa E.; Irwin, Michael R.

    2015-01-01

    Objectives: Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Design, Setting, and Participants: Community-dwelling adults (n = 70) who were categorized as younger (25–39 y old, n = 21) and older (60–84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00–07:00), and recovery. Measurement and Results: Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P < 0.05). Age moderated the effects of sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P < 0.05). Conclusion: Older adults exhibit reduced toll-like receptor 4 stimulated cellular inflammation that, unlike in younger adults, is not activated after a night of partial sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. Citation: Carroll JE, Carrillo C, Olmstead R, Witarama T, Breen EC, Yokomizo M, Seeman TE, Irwin MR. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging. SLEEP

  12. The supramammillary nucleus and the claustrum activate the cortex during REM sleep

    PubMed Central

    Renouard, Leslie; Billwiller, Francesca; Ogawa, Keiko; Clément, Olivier; Camargo, Nutabi; Abdelkarim, Mouaadh; Gay, Nadine; Scoté-Blachon, Céline; Touré, Rouguy; Libourel, Paul-Antoine; Ravassard, Pascal; Salvert, Denise; Peyron, Christelle; Claustrat, Bruno; Léger, Lucienne; Salin, Paul; Malleret, Gael; Fort, Patrice; Luppi, Pierre-Hervé

    2015-01-01

    Evidence in humans suggests that limbic cortices are more active during rapid eye movement (REM or paradoxical) sleep than during waking, a phenomenon fitting with the presence of vivid dreaming during this state. In that context, it seemed essential to determine which populations of cortical neurons are activated during REM sleep. Our aim in the present study is to fill this gap by combining gene expression analysis, functional neuroanatomy, and neurochemical lesions in rats. We find in rats that, during REM sleep hypersomnia compared to control and REM sleep deprivation, the dentate gyrus, claustrum, cortical amygdaloid nucleus, and medial entorhinal and retrosplenial cortices are the only cortical structures containing neurons with an increased expression of Bdnf, FOS, and ARC, known markers of activation and/or synaptic plasticity. Further, the dentate gyrus is the only cortical structure containing more FOS-labeled neurons during REM sleep hypersomnia than during waking. Combining FOS staining, retrograde labeling, and neurochemical lesion, we then provide evidence that FOS overexpression occurring in the cortex during REM sleep hypersomnia is due to projections from the supramammillary nucleus and the claustrum. Our results strongly suggest that only a subset of cortical and hippocampal neurons are activated and display plasticity during REM sleep by means of ascending projections from the claustrum and the supramammillary nucleus. Our results pave the way for future studies to identify the function of REM sleep with regard to dreaming and emotional memory processing. PMID:26601158

  13. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions.

    PubMed

    Han, Yong; Shi, Yu-feng; Xi, Wang; Zhou, Rui; Tan, Zhi-bing; Wang, Hao; Li, Xiao-ming; Chen, Zhong; Feng, Guoping; Luo, Minmin; Huang, Zhi-li; Duan, Shumin; Yu, Yan-qin

    2014-03-17

    The basal forebrain (BF) plays a crucial role in cortical activation [1, 2]. However, the exact role of cholinergic BF (ch-BF) neurons in the sleep-wake cycle remains unclear [3, 4]. We demonstrated that photostimulation of ch-BF neurons genetically targeted with channelrhodopsin 2 (ChR2) was sufficient to induce an immediate transition to waking or rapid eye movement (REM) sleep from slow-wave sleep (SWS). Light stimulation was most likely to induce behavioral arousal during SWS, but not during REM sleep, a result in contrast to the previously reported photostimulation of noradrenergic or hypocretin neurons that induces wake transitions from both SWS and REM sleep. Furthermore, the ratio of light-induced transitions from SWS to wakefulness or to REM sleep did not significantly differ from that of natural transitions, suggesting that activation of ch-BF neurons facilitates the transition from SWS but does not change the direction of the transition. Excitation of ch-BF neurons during wakefulness or REM sleep sustained the cortical activation. Stimulation of these neurons for 1 hr induced a delayed increase in the duration of wakefulness in the subsequent inactive period. Our results suggest that activation of ch-BF neurons alone is sufficient to suppress SWS and promote wakefulness and REM sleep.

  14. Reduced Sleep Spindle Activity in Early-Onset and Elevated Risk for Depression

    ERIC Educational Resources Information Center

    Lopez, Jorge; Hoffmann, Robert; Armitage, Roseanne

    2010-01-01

    Objective: Sleep disturbances are common in major depressive disorder (MDD), although polysomnographic (PSG) abnormalities are more prevalent in adults than in children and adolescents with MDD. Sleep spindle activity (SPA) is associated with neuroplasticity mechanisms during brain maturation and is more abundant in childhood and adolescence than…

  15. The supramammillary nucleus and the claustrum activate the cortex during REM sleep.

    PubMed

    Renouard, Leslie; Billwiller, Francesca; Ogawa, Keiko; Clément, Olivier; Camargo, Nutabi; Abdelkarim, Mouaadh; Gay, Nadine; Scoté-Blachon, Céline; Touré, Rouguy; Libourel, Paul-Antoine; Ravassard, Pascal; Salvert, Denise; Peyron, Christelle; Claustrat, Bruno; Léger, Lucienne; Salin, Paul; Malleret, Gael; Fort, Patrice; Luppi, Pierre-Hervé

    2015-04-01

    Evidence in humans suggests that limbic cortices are more active during rapid eye movement (REM or paradoxical) sleep than during waking, a phenomenon fitting with the presence of vivid dreaming during this state. In that context, it seemed essential to determine which populations of cortical neurons are activated during REM sleep. Our aim in the present study is to fill this gap by combining gene expression analysis, functional neuroanatomy, and neurochemical lesions in rats. We find in rats that, during REM sleep hypersomnia compared to control and REM sleep deprivation, the dentate gyrus, claustrum, cortical amygdaloid nucleus, and medial entorhinal and retrosplenial cortices are the only cortical structures containing neurons with an increased expression of Bdnf, FOS, and ARC, known markers of activation and/or synaptic plasticity. Further, the dentate gyrus is the only cortical structure containing more FOS-labeled neurons during REM sleep hypersomnia than during waking. Combining FOS staining, retrograde labeling, and neurochemical lesion, we then provide evidence that FOS overexpression occurring in the cortex during REM sleep hypersomnia is due to projections from the supramammillary nucleus and the claustrum. Our results strongly suggest that only a subset of cortical and hippocampal neurons are activated and display plasticity during REM sleep by means of ascending projections from the claustrum and the supramammillary nucleus. Our results pave the way for future studies to identify the function of REM sleep with regard to dreaming and emotional memory processing. PMID:26601158

  16. The supramammillary nucleus and the claustrum activate the cortex during REM sleep.

    PubMed

    Renouard, Leslie; Billwiller, Francesca; Ogawa, Keiko; Clément, Olivier; Camargo, Nutabi; Abdelkarim, Mouaadh; Gay, Nadine; Scoté-Blachon, Céline; Touré, Rouguy; Libourel, Paul-Antoine; Ravassard, Pascal; Salvert, Denise; Peyron, Christelle; Claustrat, Bruno; Léger, Lucienne; Salin, Paul; Malleret, Gael; Fort, Patrice; Luppi, Pierre-Hervé

    2015-04-01

    Evidence in humans suggests that limbic cortices are more active during rapid eye movement (REM or paradoxical) sleep than during waking, a phenomenon fitting with the presence of vivid dreaming during this state. In that context, it seemed essential to determine which populations of cortical neurons are activated during REM sleep. Our aim in the present study is to fill this gap by combining gene expression analysis, functional neuroanatomy, and neurochemical lesions in rats. We find in rats that, during REM sleep hypersomnia compared to control and REM sleep deprivation, the dentate gyrus, claustrum, cortical amygdaloid nucleus, and medial entorhinal and retrosplenial cortices are the only cortical structures containing neurons with an increased expression of Bdnf, FOS, and ARC, known markers of activation and/or synaptic plasticity. Further, the dentate gyrus is the only cortical structure containing more FOS-labeled neurons during REM sleep hypersomnia than during waking. Combining FOS staining, retrograde labeling, and neurochemical lesion, we then provide evidence that FOS overexpression occurring in the cortex during REM sleep hypersomnia is due to projections from the supramammillary nucleus and the claustrum. Our results strongly suggest that only a subset of cortical and hippocampal neurons are activated and display plasticity during REM sleep by means of ascending projections from the claustrum and the supramammillary nucleus. Our results pave the way for future studies to identify the function of REM sleep with regard to dreaming and emotional memory processing.

  17. The Memory Function of Noradrenergic Activity in Non-REM Sleep

    ERIC Educational Resources Information Center

    Gais, Steffen; Rasch, Bjorn; Dahmen, Johannes C.; Sara, Susan; Born, Jan

    2011-01-01

    There is a long-standing assumption that low noradrenergic activity during sleep reflects mainly the low arousal during this brain state. Nevertheless, recent research has demonstrated that the locus coeruleus, which is the main source of cortical noradrenaline, displays discrete periods of intense firing during non-REM sleep, without any signs of…

  18. Daily Variation in Adolescents' Sleep, Activities, and Psychological Well-Being

    ERIC Educational Resources Information Center

    Fuligni, Andrew J.; Hardway, Christina

    2006-01-01

    The daily diary method was used to examine the daily dynamics of adolescent sleep time, activities, and psychological well-being among an ethnically diverse sample of over 750 adolescents approximately 14-15 years of age. Studying and stressful demands during the day were modestly but consistently associated with less sleep that evening. Receiving…

  19. Common Features of Neural Activity during Singing and Sleep Periods in a Basal Ganglia Nucleus Critical for Vocal Learning in a Juvenile Songbird

    PubMed Central

    Yanagihara, Shin; Hessler, Neal A.

    2011-01-01

    Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase. PMID:21991379

  20. Basal secretory activity of the hypothalamo-pituitary-adrenocortical axis is enhanced in healthy elderly. An assessment during undisturbed night-time sleep.

    PubMed

    Dodt, C; Theine, K J; Uthgenannt, D; Born, J; Fehm, H L

    1994-11-01

    The process of aging is characterized by a disturbed neuroendocrine regulation, including a changed secretory activity of the hypothalamo-pituitary-adrenocortical (HPA) axis. In the present study adrenocorticotropin (ACTH) and cortisol secretion was monitored during nocturnal sleep (controlled by somnopolygraphy) in healthy aged men (N = 10, aged range 70-92 years, mean 78.2 years) and women (N = 10, age range 70-88 years, mean 78.6 years), and in young male controls (N = 16, age range 20-34 years, mean 24.9 years). Blood was drawn every 15 min. Most important, basal HPA secretory activity was enhanced distinctly in the elderly, as indicated by significantly elevated nadirs of plasma cortisol and ACTH concentrations occurring during early nocturnal sleep (p < 0.001, compared to young controls) and by elevated average levels of cortisol and ACTH between 23.00 and 03.00 h (p < 0.001). The first rise in nocturnal plasma cortisol began, on average, 67 min earlier than in young controls (p < 0.005). Changes of endocrine activity were associated with marked reductions of slow-wave sleep (SWS, p < 0.05) and rapid eye movement (REM) sleep in the elderly (p < 0.01), while time awake and in stage 1 sleep was increased. The REM sleep coincided with decreased HPA secretory activity, irrespective of age, indicating that the link between the ultradian sleep structure and the secretory HPA activity is maintained in the elderly.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Analysis of automated quantification of motor activity in REM sleep behaviour disorder.

    PubMed

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle; Kempfner, Lykke; Jennum, Poul

    2015-10-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters for motor activity were defined. Motor activity was detected and quantified automatically. The optimal parameters for separating RBD patients from controls were investigated by identifying the greatest area under the receiver operating curve from a total of 648 possible combinations. The optimal parameters were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep. The method was stable and can be used to differentiate RBD from controls and to quantify motor activity during REM sleep in patients with neurodegeneration. No control had more than 30% of REM sleep with increased motor activity; patients with known RBD had as low activity as 4.5%. We developed and applied a sensitive, quantitative, automatic algorithm to evaluate loss of atonia in RBD patients. PMID:25923472

  2. Analysis of automated quantification of motor activity in REM sleep behaviour disorder.

    PubMed

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle; Kempfner, Lykke; Jennum, Poul

    2015-10-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters for motor activity were defined. Motor activity was detected and quantified automatically. The optimal parameters for separating RBD patients from controls were investigated by identifying the greatest area under the receiver operating curve from a total of 648 possible combinations. The optimal parameters were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep. The method was stable and can be used to differentiate RBD from controls and to quantify motor activity during REM sleep in patients with neurodegeneration. No control had more than 30% of REM sleep with increased motor activity; patients with known RBD had as low activity as 4.5%. We developed and applied a sensitive, quantitative, automatic algorithm to evaluate loss of atonia in RBD patients.

  3. Calcium imaging of sleep-wake related neuronal activity in the dorsal pons.

    PubMed

    Cox, Julia; Pinto, Lucas; Dan, Yang

    2016-01-01

    The dorsal pons has long been implicated in the generation of rapid eye movement (REM) sleep, but the underlying circuit mechanisms remain poorly understood. Using cell-type-specific microendoscopic Ca(2+) imaging in and near the laterodorsal tegmental nucleus, we found that many glutamatergic neurons are maximally active during REM sleep (REM-max), while the majority of GABAergic neurons are maximally active during wakefulness (wake-max). Furthermore, the activity of glutamatergic neurons exhibits a medio-lateral spatial gradient, with medially located neurons more selectively active during REM sleep.

  4. REM sleep loss associated changes in orexin-A levels in discrete brain areas in rats.

    PubMed

    Mehta, Rachna; Khanday, Mudasir Ahmad; Mallick, Birendra Nath

    2015-03-17

    Rapid eye movement sleep (REMS) serves house-keeping function of the brain and its loss affects several pathophysiological processes. Relative levels of neurotransmitters including orexin A (Orx-A) in various parts of the brain in health and diseases are among the key factors for modulation of behaviors, including REMS. The level of neurotransmitter in an area in the brain directly depends on number of projecting neurons and their firing rates. The locus coeruleus (LC), the site of REM-OFF neurons, receives densest, while the pedunculo-pontine area (PPT), the site of REM-ON neurons receives lesser projections from the Orx-ergic neurons. Further, the Orx-ergic neurons are active during waking and silent during REMS and NREMS. Therefore, the level of Orx-A in discrete regions of the brain is likely to be different during normal and altered states, which in turn is likely to be responsible for altered behaviors in health and diseases, including in relation to REMS. Therefore, in the present study, we estimated Orx-A level in LC, cortex, posterior hypothalamus (PH), hippocampus, and PPT after 96 h REMSD, in post-deprivation recovered rats and in control rats. This is the first report of estimation of Orx-A in different brain regions after prolonged REMSD. It was observed that after REMSD the Orx-A level increased significantly in LC, cortex and PH which returned to normal level after recovery; however, the level did not change in the hippocampus and PPT. The Orx-A induced modulation of REMS could be secondary to increased waking.

  5. American Time Use Survey: Sleep Time and Its Relationship to Waking Activities

    PubMed Central

    Basner, Mathias; Fomberstein, Kenneth M.; Razavi, Farid M.; Banks, Siobhan; William, Jeffrey H.; Rosa, Roger R.; Dinges, David F.

    2007-01-01

    Study Objectives: To gain some insight into how various behavioral (lifestyle) factors influence sleep duration, by investigation of the relationship of sleep time to waking activities using the American Time Use Survey (ATUS). Design: Cross-sectional data from ATUS, an annual telephone survey of a population sample of US citizens who are interviewed regarding how they spent their time during a 24-hour period between 04:00 on the previous day and 04:00 on the interview day. Participants: Data were pooled from the 2003, 2004, and 2005 ATUS databases involving N=47,731 respondents older than 14 years of age. Interventions: N/A Results: Adjusted multiple linear regression models showed that the largest reciprocal relationship to sleep was found for work time, followed by travel time, which included commute time. Only shorter than average sleepers (<7.5 h) spent more time socializing, relaxing, and engaging in leisure activities, while both short (<5.5 h) and long sleepers (≥8.5 h) watched more TV than the average sleeper. The extent to which sleep time was exchanged for waking activities was also shown to depend on age and gender. Sleep time was minimal while work time was maximal in the age group 45–54 yr, and sleep time increased both with lower and higher age. Conclusions: Work time, travel time, and time for socializing, relaxing, and leisure are the primary activities reciprocally related to sleep time among Americans. These activities may be confounding the frequently observed association between short and long sleep on one hand and morbidity and mortality on the other hand and should be controlled for in future studies. Citation: Basner M; Fomberstein KM; Razavi FM; Banks S; William JH; Rosa RR; Dinges DF. American time use survey: sleep time and its relationship to waking activities. SLEEP 2007;30(9):1085-1095. PMID:17910380

  6. Hypothalamic prepro-orexin mRNA level is inversely correlated to the non-rapid eye movement sleep level in high-fat diet-induced obese mice.

    PubMed

    Tanno, Shogo; Terao, Akira; Okamatsu-Ogura, Yuko; Kimura, Kazuhiro

    2013-01-01

    Orexins are hypothalamic neuropeptides, which play important roles in the regulation and maintenance of sleep/wakefulness states and energy homeostasis. To evaluate whether alterations in orexin system is associated with the sleep/wakefulness abnormalities observed in obesity, we examined the mRNA expression of prepro-orexin, orexin receptor type 1 (orexin 1r), and orexin receptor type 2 (oxexin 2r) in the hypothalamus in mice fed with a normal diet (ND) and high-fat diet (HFD)-induced obese mice. We also compared their relationships with sleep/wakefulness. Twenty-four, 4-week-old, male C57BL/6J mice were divided randomly into three groups, which received the following: (1) ND for 17 weeks; (2) HFD for 17 weeks; and (3) ND for 7 weeks and HFD for a further 10 weeks. The body weights of mice fed the HFD for 10-17 weeks were 112-150% of the average body weight of the ND group. The daily amount of non-rapid eye movement (NREM) sleep increased significantly in HFD-fed mice. These changes were accompanied by increases in the number but decreases in the duration of each NREM sleep episode. In addition, brief awakenings (<20 s epoch) during NREM sleep was nearly 2-fold more frequent. The mRNA level of prepro-orexin in the hypothalamus was significantly reduced in HFD-induced obese mice, whereas the levels of orexin 1r and orexin 2r were unaffected. The daily amount of NREM sleep was negatively correlated with the hypothalamic prepro-orexin mRNA level, so these results suggest that the increased NREM sleep levels in HFD-induced obese mice are attributable to impaired orexin activity.

  7. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat.

    PubMed

    Morales, F R; Sampogna, S; Rampon, C; Luppi, P H; Chase, M H

    2006-09-29

    It is well established that, during rapid eye movement (REM) sleep, somatic motoneurons are subjected to a barrage of inhibitory synaptic potentials that are mediated by glycine. However, the source of this inhibition, which is crucial for the maintenance and preservation of REM sleep, has not been identified. Consequently, the present study was undertaken to determine in cats the location of the glycinergic neurons, that are activated during active sleep, and are responsible for the postsynaptic inhibition of motoneurons that occurs during this state. For this purpose, a pharmacologically-induced state of active sleep (AS-carbachol) was employed. Antibodies against glycine-conjugated proteins were used to identify glycinergic neurons and immunocytochemical techniques to label the Fos protein were employed to identify activated neurons. Two distinct populations of glycinergic neurons that expressed c-fos were distinguished. One population was situated within the nucleus reticularis gigantocellularis (NRGc) and nucleus magnocellularis (Mc) in the rostro-ventral medulla; this group of neurons extended caudally to the ventral portion of the nucleus paramedianus reticularis (nPR). Forty percent of the glycinergic neurons in the NRGc and Mc and 25% in the nPR expressed c-fos during AS-carbachol. A second population was located in the caudal medulla adjacent to the nucleus ambiguus (nAmb), wherein 40% of the glycinergic cells expressed c-fos during AS-carbachol. Neither population of glycinergic cells expressed c-fos during quiet wakefulness or quiet (non-rapid eye movement) sleep. We suggest that the population of glycinergic neurons in the NRGc, Mc, and nPR participates in the inhibition of somatic brainstem motoneurons during active sleep. These neurons may also be responsible for the inhibition of sensory and other processes during this state. It is likely that the group of glycinergic neurons adjacent to the nucleus ambiguus (nAmb) is responsible for the active

  8. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat.

    PubMed

    Morales, F R; Sampogna, S; Rampon, C; Luppi, P H; Chase, M H

    2006-09-29

    It is well established that, during rapid eye movement (REM) sleep, somatic motoneurons are subjected to a barrage of inhibitory synaptic potentials that are mediated by glycine. However, the source of this inhibition, which is crucial for the maintenance and preservation of REM sleep, has not been identified. Consequently, the present study was undertaken to determine in cats the location of the glycinergic neurons, that are activated during active sleep, and are responsible for the postsynaptic inhibition of motoneurons that occurs during this state. For this purpose, a pharmacologically-induced state of active sleep (AS-carbachol) was employed. Antibodies against glycine-conjugated proteins were used to identify glycinergic neurons and immunocytochemical techniques to label the Fos protein were employed to identify activated neurons. Two distinct populations of glycinergic neurons that expressed c-fos were distinguished. One population was situated within the nucleus reticularis gigantocellularis (NRGc) and nucleus magnocellularis (Mc) in the rostro-ventral medulla; this group of neurons extended caudally to the ventral portion of the nucleus paramedianus reticularis (nPR). Forty percent of the glycinergic neurons in the NRGc and Mc and 25% in the nPR expressed c-fos during AS-carbachol. A second population was located in the caudal medulla adjacent to the nucleus ambiguus (nAmb), wherein 40% of the glycinergic cells expressed c-fos during AS-carbachol. Neither population of glycinergic cells expressed c-fos during quiet wakefulness or quiet (non-rapid eye movement) sleep. We suggest that the population of glycinergic neurons in the NRGc, Mc, and nPR participates in the inhibition of somatic brainstem motoneurons during active sleep. These neurons may also be responsible for the inhibition of sensory and other processes during this state. It is likely that the group of glycinergic neurons adjacent to the nucleus ambiguus (nAmb) is responsible for the active

  9. Longitudinal assessment of leg motor activity and sleep patterns in infants with and without Down syndrome.

    PubMed

    McKay, Sandra M; Angulo-Barroso, Rosa M

    2006-04-01

    Whether infants with Down syndrome (DS) perform leg movements with the same frequency and quality as their typical development (TD) counterparts is equivocal. Furthermore, the relationship between these early leg movements and later onset of locomotor milestones has only been partially explored. The aims of this study were two-fold: (1) to describe the longitudinal leg activity in infants with and without DS (3-6 months), and (2) to examine sleeping patterns and leg activity during the night. In addition, the relationships between leg activities and sleep patterns with locomotor development were explored. An activity monitor was placed monthly on the infant's ankle for 48 h. Data were analyzed to separate day-night, high-low activity, and sleep fragmentation. The results indicate that infants with DS produced more low intensity activity and more fragmented sleep. These findings are discussed in relation to the influence of early motor activity on achievement of functional motor behavior.

  10. Daytime nap controls toddlers’ nighttime sleep

    PubMed Central

    Nakagawa, Machiko; Ohta, Hidenobu; Nagaoki, Yuko; Shimabukuro, Rinshu; Asaka, Yoko; Takahashi, Noriko; Nakazawa, Takayo; Kaneshi, Yousuke; Morioka, Keita; Oishi, Yoshihisa; Azami, Yuriko; Ikeuchi, Mari; Takahashi, Mari; Hirata, Michio; Ozawa, Miwa; Cho, Kazutoshi; Kusakawa, Isao; Yoda, Hitoshi

    2016-01-01

    Previous studies have demonstrated that afternoon naps can have a negative effect on subsequent nighttime sleep in children. These studies have mainly been based on sleep questionnaires completed by parents. To investigate the effect of napping on such aspects of sleep quality, we performed a study in which child activity and sleep levels were recorded using actigraphy. The parents were asked to attach actigraphy units to their child’s waist by an adjustable elastic belt and complete a sleep diary for 7 consecutive days. 50 healthy young toddlers of approximately 1.5 years of age were recruited. There was a significant negative correlation between nap duration and both nighttime sleep duration and sleep onset time, suggesting that long nap sleep induces short nighttime sleep duration and late sleep onset time. We also found a significant negative correlation between nap timing and nighttime sleep duration and also a significant positive correlation between nap timing and sleep onset time, suggesting that naps in the late afternoon also lead to short nighttime sleep duration and late sleep onset. Our findings suggest that duration-controlled naps starting early in the afternoon can induce a longer nighttime sleep in full-term infants of approximately 1.5 years of age. PMID:27277329

  11. QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish

    PubMed Central

    Chen, Audrey; Chiu, Cindy N.; Mosser, Eric A.; Kahn, Sohini; Spence, Rory

    2016-01-01

    The hypothalamus plays an important role in regulating sleep, but few hypothalamic sleep-promoting signaling pathways have been identified. Here we demonstrate a role for the neuropeptide QRFP (also known as P518 and 26RFa) and its receptors in regulating sleep in zebrafish, a diurnal vertebrate. We show that QRFP is expressed in ∼10 hypothalamic neurons in zebrafish larvae, which project to the hypothalamus, hindbrain, and spinal cord, including regions that express the two zebrafish QRFP receptor paralogs. We find that the overexpression of QRFP inhibits locomotor activity during the day, whereas mutation of qrfp or its receptors results in increased locomotor activity and decreased sleep during the day. Despite the restriction of these phenotypes to the day, the circadian clock does not regulate qrfp expression, and entrained circadian rhythms are not required for QRFP-induced rest. Instead, we find that QRFP overexpression decreases locomotor activity largely in a light-specific manner. Our results suggest that QRFP signaling plays an important role in promoting sleep and may underlie some aspects of hypothalamic sleep control. SIGNIFICANCE STATEMENT The hypothalamus is thought to play a key role in regulating sleep in vertebrate animals, but few sleep-promoting signaling pathways that function in the hypothalamus have been identified. Here we use the zebrafish, a diurnal vertebrate, to functionally and anatomically characterize the neuropeptide QRFP. We show that QRFP is exclusively expressed in a small number of neurons in the larval zebrafish hypothalamus that project widely in the brain. We also show that QRFP overexpression reduces locomotor activity, whereas animals that lack QRFP signaling are more active and sleep less. These results suggest that QRFP signaling participates in the hypothalamic regulation of sleep. PMID:26865608

  12. [Association between the serum level of testosterone and other comorbidities in obstructive sleep apnea].

    PubMed

    Bercea, Raluca; Bercea, Bogdan; Mihăescu, Traian

    2012-01-01

    Testosterone seems to play a role in the pathophysiology of OSAS but the mechanisms are not yet well defined. Research of this relationship has focused on two main assumptions: first case support the emergence of OSAS or augmentation of OSAS severity in men treated with testosterone for symptomatic hypogonadism; the second hypothesis suggest that serum testosterone deficiency is due to hypoxia and microarousals generated by OSAS with direct impact on hypothalamic-pituitary-gonadal axis. The correlation between sleep apnea and androgenic disorders should be considered in the light of the intervention of many other factors which can act as confounding factors: age, obesity and other associated pathologies (chronic lung disease, smoking status). Many studies conducted so far on this interrelation (sleep apnea, endocrine system) have ignored these factors. In most cases CPAP (continuous positive airway pressure) therapy revert low serum testosterone levels to normal levels. Depressive status and fatigue, as OSAS consequences associated with hypogonadism have been reported in the literature and may have clinically significant aspects due to summary effect, with notable improvement after CPAP therapy avoiding adverse effects of hormonal or antidepressant treatment. The clinical implications and major consequences of association between androgen dysfunction and sleep apnea syndrome require a correct management in the recognition and treatment of obstructive sleep apnea syndrome associated with comorbidities.

  13. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice.

    PubMed

    Szentirmai, Eva; Kapás, Levente; Sun, Yuxiang; Smith, Roy G; Krueger, James M

    2010-02-01

    Behavioral and physiological rhythms can be entrained by daily restricted feeding (RF), indicating the existence of a food-entrainable oscillator (FEO). One manifestation of the presence of FEO is anticipatory activity to regularly scheduled feeding. In the present study, we tested if intact ghrelin signaling is required for FEO function by studying food anticipatory activity (FAA) in preproghrelin knockout (KO) and wild-type (WT) mice. Sleep-wake activity, locomotor activity, body temperature, food intake, and body weight were measured for 12 days in mice on a RF paradigm with food available only for 4 h daily during the light phase. On RF days 1-3, increases in arousal occurred. This response was significantly attenuated in preproghrelin KO mice. There were progressive changes in sleep architecture and body temperature during the subsequent nine RF days. Sleep increased at night and decreased during the light periods while the total daily amount of sleep remained at baseline levels in both KO and WT mice. Body temperature fell during the dark but was elevated during and after feeding in the light. In the premeal hours, anticipatory increases in body temperature, locomotor activity, and wakefulness were present from RF day 6 in both groups. Results indicate that the preproghrelin gene is not required for the manifestation of FAA but suggest a role for ghrelinergic mechanisms in food deprivation-induced arousal in mice.

  14. 5-HT1A receptor-responsive pedunculopontine tegmental neurons suppress REM sleep and respiratory motor activity.

    PubMed

    Grace, Kevin P; Liu, Hattie; Horner, Richard L

    2012-02-01

    Serotonin type 1A (5-HT(1A)) receptor-responsive neurons in the pedunculopontine tegmental nucleus (PPTn) become maximally active immediately before and during rapid eye movement (REM) sleep. A prevailing model of REM sleep generation indicates that activation of such neurons contributes significantly to the generation of REM sleep, and if correct then inactivation of such neurons ought to suppress REM sleep. We test this hypothesis using bilateral microperfusion of the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 10 μm) into the PPTn; this tool has been shown to selectively silence REM sleep-active PPTn neurons while the activity of wake/REM sleep-active PPTn neurons is unaffected. Contrary to the prevailing model, bilateral microperfusion of 8-OH-DPAT into the PPTn (n = 23 rats) significantly increased REM sleep both as a percentage of the total recording time and sleep time, compared with both within-animal vehicle controls and between-animal time-controls. This increased REM sleep resulted from an increased frequency of REM sleep bouts but not their duration, indicating an effect on mechanisms of REM sleep initiation but not maintenance. Furthermore, an increased proportion of the REM sleep bouts stemmed from periods of low REM sleep drive quantified electrographically. Targeted suppression of 5-HT(1A) receptor-responsive PPTn neurons also increased respiratory rate and respiratory-related genioglossus activity, and increased the frequency and amplitude of the sporadic genioglossus activations occurring during REM sleep. These data indicate that 5-HT(1A) receptor-responsive PPTn neurons normally function to restrain REM sleep by elevating the drive threshold for REM sleep induction, and restrain the expression of respiratory rate and motor activities.

  15. Bioenergetic functions of sleep and activity rhythms and their possible relevance to aging.

    PubMed

    Berger, R J

    1975-01-01

    The hypothesis is proposed that sleep constitutes a period of dormancy in which energy is conserved to partially offset the increased energy demands of homeothermy. Phylogenetic data indicate that the complete psysiological and behavioral manifestations of sleep are unique to homeotherms; furthermore "ontogeny recapitulates phylogeny" in the parallel development of slow wave sleep and thermoregulation as exemplified in the opossum. Thus, sleep constitutes a state of reduced metabolism that may represent a variation on the theme of dormancy, functionally lying on a continuum of energy conservation processes, ranging from inactivity and estivation to torpor and hibernation. The high amounts of sleep in infancy may involve conservation of energy and its consequent availability for growth. Decreased amounts of stage 4 and total sleep with aging in humans may represent reduced energy demands reflected by parallel declines in basal metabolic rate and physical activity. Disruptions of circadian rhythms of sleep and wakefulness in humans produce impairments in mood and performance independent of total amounts of sleep obtained, and reduce the amplitude of physiological rhythms. It is suggested that aging processes might also be affected by such disruptions in activity rhythms.

  16. Wireless portable electrocardiogram and a tri-axis accelerometer implementation and application on sleep activity monitoring.

    PubMed

    Chang, Kang-Ming; Liu, Shin-Hong

    2011-04-01

    Night-to-night variability of sleep activity requires more home-based portable sleep monitoring instead of clinical polysomnography examination in the laboratory. In this article, a wireless sleep activity monitoring system is described. The system is light and small for the user. Sleep postures, such as supine or left/right side, were observed by a signal from a tri-axis accelerometer. An overnight electrocardiogram was also recorded with a single lead. Using an MSP430 as microcontroller, both physiological signals were transmitted by a Bluetooth chip. A Labview-based interface demonstrated the recorded signal and sleep posture. Three nights of sleep recordings were used to examine night-to-night variability. The proposed system can record overnight heart rate. Results show that sleep posture and posture change can be precisely detected via tri-axis accelerometer information. There is no significant difference within subject data sets, but there are statistically significant differences among subjects, both for heart rate and for sleep posture distribution. The wireless transmission range is also sufficient for home-based users. PMID:21413872

  17. Effects of a group-based step aerobics training on sleep quality and melatonin levels in sleep-impaired postmenopausal women.

    PubMed

    Cai, Zong-Yan; Wen-Chyuan Chen, Kenny; Wen, Huei-Jhen

    2014-09-01

    The purpose of this study was to investigate the effect of regular moderate- to high-intensity step aerobics training on the melatonin levels and sleep quality of sleep-impaired postmenopausal women (PMW). PMW with poor sleep (having a score over 5 in the Chinese version of the Pittsburgh sleep quality index [PSQI]) were divided into a training group (TG, n = 10) and an age-, height-, weight-, and PSQI score-matched control group (CG, n = 9). The participants in the TG performed 40-45 minutes of step aerobics exercise 3 times per week for 10 weeks at an intensity of 75-85% of the heart rate reserve, whereas the participants in the CG maintained their regular lifestyle. The fasting blood was analyzed, and the PSQI questionnaire and aerobic fitness test were administered before and after the 10-week program. The results revealed that for the participants in the TG, the PSQI score significantly decreased (TG from 9.40 ± 0.81 to 7.40 ± 0.43; CG from 7.56 ± 0.34 to 7.78 ± 0.68; between-group difference = 2.22, p ≤ 0.05) and the melatonin levels significantly increased (TG from 12.08 ± 4.20 to 44.42 ± 7.03 pg·ml; CG from 11.81 ± 2.03 to 5.5 ± 1.39 pg·ml, between-group difference = 38.65, p ≤ 0.05). In conclusion, a 10-week moderate- to high-intensity step aerobics training program can improve sleep quality and increase the melatonin levels in sleep-impaired PMW. Therefore, regular moderate- to high-intensity step aerobics training is recommended for sleep-impaired PMW.

  18. Perchance to dream? Primordial motor activity patterns in vertebrates from fish to mammals: their prenatal origin, postnatal persistence during sleep, and pathological reemergence during REM sleep behavior disorder.

    PubMed

    Corner, Michael A; Schenck, Carlos H

    2015-12-01

    An overview is presented of the literature dealing with sleep-like motility and concomitant neuronal activity patterns throughout the life cycle in vertebrates, ectothermic as well as endothermic. Spontaneous, periodically modulated, neurogenic bursts of non-purposive movements are a universal feature of larval and prenatal behavior, which in endothermic animals (i.e. birds and mammals) continue to occur periodically throughout life. Since the entire body musculature is involved in ever-shifting combinations, it is proposed that these spontaneously active periods be designated as 'rapid-BODY-movement' (RBM) sleep. The term 'rapid-EYE-movement (REM) sleep', characterized by attenuated muscle contractions and reduced tonus, can then be reserved for sleep at later stages of development. Mature stages of development in which sustained muscle atonia is combined with 'paradoxical arousal' of cortical neuronal firing patterns indisputably represent the evolutionarily most recent aspect of REM sleep, but more research with ectothermic vertebrates, such as fish, amphibians and reptiles, is needed before it can be concluded (as many prematurely have) that RBM is absent in these species. Evidence suggests a link between RBM sleep in early development and the clinical condition known as 'REM sleep behavior disorder (RBD)', which is characterized by the resurgence of periodic bouts of quasi-fetal motility that closely resemble RBM sleep. Early developmental neuromotor risk factors for RBD in humans also point to a relationship between RBM sleep and RBD.

  19. Impact of CPAP on Activity Patterns and Diet in Patients with Obstructive Sleep Apnea (OSA)

    PubMed Central

    Batool-Anwar, Salma; Goodwin, James L.; Drescher, Amy A.; Baldwin, Carol M.; Simon, Richard D.; Smith, Terry W.; Quan, Stuart F.

    2014-01-01

    Study Objectives: Patients with severe OSA consume greater amounts of cholesterol, protein, and fat as well as have greater caloric expenditure. However, it is not known whether their activity levels or diet change after treatment with CPAP. To investigate this issue, serial assessments of activity and dietary intake were performed in the Apnea Positive Pressure Long-term Efficacy Study (APPLES); a 6-month randomized controlled study of CPAP vs. sham CPAP on neurocognitive outcomes. Methods: Subjects were recruited into APPLES at 5 sites through clinic encounters or public advertisement. After undergoing a diagnostic polysomnogram, subjects were randomized to CPAP or sham if their AHI was ≥ 10. Adherence was assessed using data cards from the devices. At the Tucson and Walla Walla sites, subjects were asked to complete validated activity and food frequency questionnaires at baseline and their 4-month visit. Results: Activity and diet data were available at baseline and after 4 months treatment with CPAP or sham in up to 231 subjects (117 CPAP, 114 Sham). Mean age, AHI, BMI, and Epworth Sleepiness Score (ESS) for this cohort were 55 ± 13 [SD] years, 44 ± 27 /h, 33 ± 7.8 kg/m2, and 10 ± 4, respectively. The participants lacking activity and diet data were younger, had lower AHI and arousal index, and had better sleep efficiency (p < 0.05). The BMI was higher among women in both CPAP and Sham groups. However, compared to women, men had higher AHI only in the CPAP group (50 vs. 34). Similarly, the arousal index was higher among men in CPAP group. Level of adherence defined as hours of device usage per night at 4 months was significantly higher among men in CPAP group (4.0 ± 2.9 vs. 2.6 ± 2.6). No changes in consumption of total calories, protein, carbohydrate or fat were noted after 4 months. Except for a modest increase in recreational activity in women (268 ± 85 vs. 170 ± 47 calories, p < 0.05), there also were no changes in activity patterns. Conclusion

  20. Ultradian oscillations in plasma renin activity: their relationships to meals and sleep stages.

    PubMed

    Brandenberger, G; Follenius, M; Muzet, A; Ehrhart, J; Schieber, J P

    1985-08-01

    The 24-h pattern of PRA was studied in 6 supine normal subjects, and the relationship between sleep stages and PRA oscillations was analyzed using 18 nighttime profiles and the concomitant polygraphic recordings of sleep. Blood was collected at 10-min intervals. The slow trends obtained by adjusting a third degree polynomial to the 24-h data were not reproducible among individuals, and no circadian pattern was detected. Sustained oscillations in PRA occurred throughout the day. Spectral analysis revealed that PRA oscillated at a regular periodicity of about 100 min during the night. This periodicity was modified during the daytime by meal intake, which induced PRA peaks with large interindividual variations in size. A close relationship was found between the nocturnal PRA oscillations and the alternance of rapid eye movement (REM) sleep and non-REM sleep. Non-REM sleep invariably coincided with increasing or peaking PRA levels. REM sleep occurred as PRA was declining or at nadirs. More precisely, increases in PRA marked the transition from REM sleep to stage II, whereas stages III and IV usually occurred when PRA was highest. This relationship between the periodic nocturnal oscillations in PRA and the alternance of the REM-non-REM cycles may translate a similar oscillatory process in the central nervous system or may be linked to hemodynamic changes during sleep that might be partly controlled by the renin-angiotensin system.

  1. Temporal link between plasma thyrotropin levels and electroencephalographic activity in man.

    PubMed

    Gronfier, C; Luthringer, R; Follenius, M; Schaltenbrand, N; Macher, J P; Muzet, A; Brandenberger, G

    1995-11-17

    Plasma thyrotropin (TSH) levels have been previously shown to be associated with the internal sleep structure determined by conventional scoring of sleep stages. This temporal relationship was re-evaluated using spectral analysis of the sleep electroencephalogram (EEG). Eight healthy male subjects underwent two randomized night studies after having received either placebo or 5 mg ritanserin, a selective 5-HT2 receptor antagonist known to increase slow-wave sleep. Delta relative power and TSH levels, determined at 10 min intervals, were found to be inversely related with an average cross-correlation coefficient highly significant (P < 0.0001) in both experimental conditions. Alpha slow-wave index, an estimator of awakenings, and TSH pulses exhibited a significant temporal association in both conditions. These results demonstrate that TSH fluctuations are linked to the sleep EEG activity in man.

  2. Upper Airway Collapsibility (Pcrit) and Pharyngeal Dilator Muscle Activity are Sleep Stage Dependent

    PubMed Central

    Carberry, Jayne C.; Jordan, Amy S.; White, David P.; Wellman, Andrew; Eckert, Danny J.

    2016-01-01

    Study Objectives: An anatomically narrow/highly collapsible upper airway is the main cause of obstructive sleep apnea (OSA). Upper airway muscle activity contributes to airway patency and, like apnea severity, can be sleep stage dependent. Conversely, existing data derived from a small number of participants suggest that upper airway collapsibility, measured by the passive pharyngeal critical closing pressure (Pcrit) technique, is not sleep stage dependent. This study aimed to determine the effect of sleep stage on Pcrit and upper airway muscle activity in a larger cohort than previously tested. Methods: Pcrit and/or muscle data were obtained from 72 adults aged 20–64 y with and without OSA.Pcrit was determined via transient reductions in continuous positive airway pressure (CPAP) during N2, slow wave sleep (SWS) and rapid eye movement (REM) sleep. Genioglossus and tensor palatini muscle activities were measured: (1) awake with and without CPAP, (2) during stable sleep on CPAP, and (3) in response to the CPAP reductions used to quantify Pcrit. Results: Pcrit was 4.9 ± 1.4 cmH2O higher (more collapsible) during REM versus SWS (P = 0.012), 2.3 ± 0.6 cmH2O higher during REM versus N2 (P < 0.001), and 1.6 ± 0.7 cmH2O higher in N2 versus SWS (P = 0.048). Muscle activity decreased from wakefulness to sleep and from SWS to N2 to REM sleep for genioglossus but not for tensor palatini. Pharyngeal muscle activity increased by ∼50% by breath 5 following CPAP reductions. Conclusions: Upper airway collapsibility measured via the Pcrit technique and genioglossus muscle activity vary with sleep stage. These findings should be taken into account when performing and interpreting “passive” Pcrit measurements. Citation: Carberry JC, Jordan AS, White DP, Wellman A, Eckert DJ. Upper airway collapsibility (Pcrit) and pharyngeal dilator muscle activity are sleep stage dependent. SLEEP 2016;39(3):511–521. PMID:26612386

  3. Increased sleep spindle activity in patients with Costello syndrome (HRAS gene mutation).

    PubMed

    Della Marca, Giacomo; Leoni, Chiara; Dittoni, Serena; Battaglia, Domenica; Losurdo, Anna; Testani, Elisa; Colicchio, Salvatore; Gnoni, Valentina; Gambardella, Maria L; Mariotti, Paolo; Alfieri, Paolo; Tartaglia, Marco; Zampino, Giuseppe

    2011-06-01

    Costello syndrome is a congenital disorder because of HRAS gene mutation, frequently associated with neurologic impairment and sleep disorders. The aims of the study were to evaluate the sleep EEG, and particularly the sleep spindles, in a population of patients with Costello syndrome and to compare them with those characterizing unaffected subjects. Eleven subjects (5 men and 6 women) with Costello syndrome were included in the study; age ranged between 18 months and 31 years (mean, 9.6 ± 9.4 years). The diagnosis was posed on the basis of established clinical criteria and confirmed molecularly. Sleep EEG was studied by means of full-night, laboratory-based video-polysomnography, performed overnight, during hospitalization. Sleep activity was quantified by means of power spectral analysis. Patients heterozygous for an HRAS mutation exhibited increased EEG power in 12- to 15-Hz activity band compared with age-matched control subjects. In conclusion, the authors observed a consistent increase in the amplitude of cortical sleep spindles in all our subjects with an HRAS mutation. These "giant" spindles were not associated with any evidence of structural damage of the cortex or the thalami and should be considered as phenotypic feature of sleep EEG activity in Costello syndrome because of HRAS mutation.

  4. Tonic inhibition and ponto-geniculo-occipital-related activities shape abducens motoneuron discharge during REM sleep.

    PubMed

    Escudero, Miguel; Márquez-Ruiz, Javier

    2008-07-15

    Eye movements, ponto-geniculo-occipital (PGO) waves, muscular atonia and desynchronized cortical activity are the main characteristics of rapid eye movement (REM) sleep. Although eye movements designate this phase, little is known about the activity of the oculomotor system during REM sleep. In this work, we recorded binocular eye movements by the scleral search-coil technique and the activity of identified abducens (ABD) motoneurons along the sleep-wake cycle in behaving cats. The activity of ABD motoneurons during REM sleep was characterized by a tonic decrease of their mean firing rate throughout this period, and short bursts and pauses coinciding with the occurrence of PGO waves. We demonstrate that the decrease in the mean firing discharge was due to an active inhibition of ABD motoneurons, and that the occurrence of primary and secondary PGO waves induced a pattern of simultaneous but opposed phasic activation and inhibition on each ABD nucleus. With regard to eye movements, during REM sleep ABD motoneurons failed to codify eye position as during alertness, but continued to codify eye velocity. The pattern of tonic inhibition and the phasic activations and inhibitions shown by ABD motoneurons coincide with those reported in other non-oculomotor motoneurons, indicating that the oculomotor system - contrary to what has been accepted until now - is not different from other motor systems during REM sleep, and that all motor systems are receiving similar command signals during this period.

  5. Cardiac and Sympathetic Activation are Reduced in Children with Down Syndrome and Sleep Disordered Breathing

    PubMed Central

    O’Driscoll, Denise M.; Horne, Rosemary S.C.; Davey, Margot J.; Hope, Sarah A.; Anderson, Vicki; Trinder, John; Walker, Adrian M.; Nixon, Gillian M.

    2012-01-01

    Study Objectives: Sleep disordered breathing (SDB) occurs at an increased incidence in children with Down Syndrome (DS) compared to the general pediatric population. We hypothesized that, compared with typically developing (TD) children with SDB, children with DS have a reduced cardiovascular response with delayed reoxygenation after obstructive respiratory events, and reduced sympathetic drive, providing a potential explanation for their increased risk of pulmonary hypertension. Design: Beat-by-beat heart rate (HR) was analyzed over the course of obstructive events (pre, early, late, post-event) and compared between groups. Also compared were the time for oxygen resaturation post-event and overnight urinary catecholamines. Setting: Pediatric sleep laboratory. Patients: Sixty-four children aged 2-17 y referred for investigation of SDB (32 DS; 32 TD) matched for age and obstructive apnea/hypopnea index. Measurement and Results: Children underwent overnight polysomnography with overnight urine collection. Compared to TD children, those with DS had significantly reduced HR changes post-event during NREM (DS: 21.4% ± 1.8%, TD: 26.6% ± 1.6%, change from late to post-event, P < 0.05). The time to resaturation post-event was significantly increased in the DS group (P < 0.05 for both NREM and REM sleep). Children with DS had significantly reduced overnight urinary noradrenaline (P < 0.01), adrenaline (P < 0.05) and dopamine levels (P < 0.01) compared with TD children. Conclusion: Children with DS and SDB exhibit a compromised acute cardio-respiratory response and dampened sympathetic response to SDB compared with TD children with SDB. These data may reflect autonomic dysfunction in children with DS that may place them at increased risk for cardiovascular complications such as pulmonary hypertension. Citation: O’Driscoll DM; Horne RSC; Davey MJ; Hope SA; Anderson V; Trinder J; Walker AM; Nixon GM. Cardiac and sympathetic activation are reduced in children with down

  6. Serum inflammatory mediators correlate with disease activity in electrical status epilepticus in sleep (ESES) syndrome.

    PubMed

    van den Munckhof, Bart; de Vries, Evelien E; Braun, Kees P J; Boss, H Myrthe; Willemsen, Michèl A; van Royen-Kerkhof, Annet; de Jager, Wilco; Jansen, Floor E

    2016-02-01

    We aimed to study serum cytokine levels in 11 electrical status epilepticus in sleep (ESES) patients and 20 healthy control children. Patients showed significantly higher levels of interleukin (IL)-1α, IL-6, IL-10, chemokine (C-C motif) ligand (CCL)2 and chemokine (C-X-C motif) ligand (CXCL)8/IL-8 than controls, while macrophage migration inhibitory factor (MIF) and CCL3 were significantly lower. Follow-up analyses in five patients revealed a significant decrease of IL-6 levels after immunomodulating treatment. IL-6 changes were accompanied by clear improvement of electroencephalography (EEG) patterns and neuropsychological evaluation. We hypothesize that IL-6 correlates with disease activity and immunomodulating treatment efficacy.

  7. Serum inflammatory mediators correlate with disease activity in electrical status epilepticus in sleep (ESES) syndrome.

    PubMed

    van den Munckhof, Bart; de Vries, Evelien E; Braun, Kees P J; Boss, H Myrthe; Willemsen, Michèl A; van Royen-Kerkhof, Annet; de Jager, Wilco; Jansen, Floor E

    2016-02-01

    We aimed to study serum cytokine levels in 11 electrical status epilepticus in sleep (ESES) patients and 20 healthy control children. Patients showed significantly higher levels of interleukin (IL)-1α, IL-6, IL-10, chemokine (C-C motif) ligand (CCL)2 and chemokine (C-X-C motif) ligand (CXCL)8/IL-8 than controls, while macrophage migration inhibitory factor (MIF) and CCL3 were significantly lower. Follow-up analyses in five patients revealed a significant decrease of IL-6 levels after immunomodulating treatment. IL-6 changes were accompanied by clear improvement of electroencephalography (EEG) patterns and neuropsychological evaluation. We hypothesize that IL-6 correlates with disease activity and immunomodulating treatment efficacy. PMID:26666401

  8. Noradrenergic modulation of masseter muscle activity during natural rapid eye movement sleep requires glutamatergic signalling at the trigeminal motor nucleus.

    PubMed

    Schwarz, Peter B; Mir, Saba; Peever, John H

    2014-08-15

    Noradrenergic neurotransmission in the brainstem is closely coupled to changes in muscle activity across the sleep-wake cycle, and noradrenaline is considered to be a key excitatory neuromodulator that reinforces the arousal-related stimulus on motoneurons to drive movement. However, it is unknown if α-1 noradrenoceptor activation increases motoneuron responsiveness to excitatory glutamate (AMPA) receptor-mediated inputs during natural behaviour. We studied the effects of noradrenaline on AMPA receptor-mediated motor activity at the motoneuron level in freely behaving rats, particularly during rapid eye movement (REM) sleep, a period during which both AMPA receptor-triggered muscle twitches and periods of muscle quiescence in which AMPA drive is silent are exhibited. Male rats were subjected to electromyography and electroencephalography recording to monitor sleep and waking behaviour. The implantation of a cannula into the trigeminal motor nucleus of the brainstem allowed us to perfuse noradrenergic and glutamatergic drugs by reverse microdialysis, and thus to use masseter muscle activity as an index of motoneuronal output. We found that endogenous excitation of both α-1 noradrenoceptor and AMPA receptors during waking are coupled to motor activity; however, REM sleep exhibits an absence of endogenous α-1 noradrenoceptor activity. Importantly, exogenous α-1 noradrenoceptor stimulation cannot reverse the muscle twitch suppression induced by AMPA receptor blockade and nor can it elevate muscle activity during quiet REM, a phase when endogenous AMPA receptor activity is subthreshold. We conclude that the presence of an endogenous glutamatergic drive is necessary for noradrenaline to trigger muscle activity at the level of the motoneuron in an animal behaving naturally.

  9. Mechanism of noradrenaline-induced stimulation of Na-K ATPase activity in the rat brain: implications on REM sleep deprivation-induced increase in brain excitability.

    PubMed

    Mallick, Birendra Nath; Singh, Sudhuman; Singh, Abhishek

    2010-03-01

    Rapid eye movement (REM) sleep is a unique phenomenon expressed in all higher forms of animals. Its quantity varies in different species and with ageing; it is also affected in several psycho-somatic disorders. Several lines of studies showed that after REM sleep loss, the levels of noradrenaline (NA) increase in the brain. The NA in the brain modulates neuronal Na-K ATPase activity, which helps maintaining the brain excitability status. The detailed mechanism of increase in NA level after REM sleep loss and the effect of NA on stimulation of Na-K ATPase in the neurons have been discussed. The findings have been reviewed and discussed with an aim to understand the role of REM sleep in maintaining brain excitability status.

  10. Spindle Activity Orchestrates Plasticity during Development and Sleep

    PubMed Central

    Lindemann, Christoph; Ahlbeck, Joachim; Bitzenhofer, Sebastian H.; Hanganu-Opatz, Ileana L.

    2016-01-01

    Spindle oscillations have been described during early brain development and in the adult brain. Besides similarities in temporal patterns and involved brain areas, neonatal spindle bursts (NSBs) and adult sleep spindles (ASSs) show differences in their occurrence, spatial distribution, and underlying mechanisms. While NSBs have been proposed to coordinate the refinement of the maturating neuronal network, ASSs are associated with the implementation of acquired information within existing networks. Along with these functional differences, separate synaptic plasticity mechanisms seem to be recruited. Here, we review the generation of spindle oscillations in the developing and adult brain and discuss possible implications of their differences for synaptic plasticity. The first part of the review is dedicated to the generation and function of ASSs with a particular focus on their role in healthy and impaired neuronal networks. The second part overviews the present knowledge of spindle activity during development and the ability of NSBs to organize immature circuits. Studies linking abnormal maturation of brain wiring with neurological and neuropsychiatric disorders highlight the importance to better elucidate neonatal plasticity rules in future research. PMID:27293903

  11. Fear Extinction Memory Consolidation Requires Potentiation of Pontine-Wave Activity during REM Sleep

    PubMed Central

    Datta, Subimal; O'Malley, Matthew W .

    2013-01-01

    Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory testing, only 57% of the fear-extinguished animals retained fear extinction memory. We found that these animals exhibited an increase in phasic pontine-wave (P-wave) activity during post-training REM sleep, which was absent in the 43% of animals that failed to retain fear extinction memory. The results of this study provide evidence that brainstem activation, specifically potentiation of phasic P-wave activity, during post-training REM sleep is critical for consolidation of fear extinction memory. The results of this study also suggest that, contrary to the popular hypothesis of sleep and memory, increased sleep after training alone does not guarantee consolidation and/or retention of fear extinction memory. Rather, the potentiation of specific sleep-dependent physiological events may be a more accurate predictor for successful consolidation of fear extinction memory. Identification of this unique mechanism will significantly improve our present understanding of the cellular and molecular mechanisms that underlie the sleep-dependent regulation of emotional memory. Additionally, this discovery may also initiate development of a new, more targeted treatment method for clinical disorders of fear and anxiety in humans that is more efficacious than existing methods such as exposure therapy that incorporate only fear extinction. PMID:23467372

  12. Increased Inflammatory Activity in Nonobese Patients with Coronary Artery Disease and Obstructive Sleep Apnea

    PubMed Central

    Thunström, Erik; Glantz, Helena; Fu, Michael; Yucel-Lindberg, Tülay; Petzold, Max; Lindberg, Kristin; Peker, Yüksel

    2015-01-01

    Study Objectives: Obstructive sleep apnea (OSA) is common in patients with coronary artery disease (CAD). Enhanced vascular inflammation is implicated as a pathophysiologic mechanism but obesity is confounding. We aimed to address the association of OSA with inflammatory biomarkers in a nonobese cohort of revascularized patients with CAD and preserved left ventricular ejection fraction. Design: Cross-sectional analysis of baseline investigations of a randomized controlled trial. Setting: Clinic-based. Participants: There were 329 nonobese patients with CAD, of whom 234 with OSA (apnea-hypopnea index [AHI] ≥ 15 events/h) and 95 without OSA (AHI < 5 events/h). Obese patients with CAD and OSA (N = 105) were chosen as an additional control group. Interventions: None. Measurements: Circulating levels of high-sensitivity C-reactive protein (hs-CRP), interleukin (IL)-6, IL-8, and tumor necrosis factor-α were assessed in relation to OSA diagnosis based on AHI ≥ 15 events/h as well as oxygen desaturation index (ODI) ≥ 5 events/h. Results: Nonobese patients with OSA had significantly higher levels of hs-CRP and IL-6 than those without OSA. The values did not differ significantly between obese and nonobese patients with OSA. In bivariate regression analysis, AHI ≥ 15 events/h was associated with all four biomarkers but not so in the multivariate model after adjustment for confounders. ODI ≥ 5 events/h was associated with hs-CRP (odds ratio [OR] 1.49, 95% confidence interval [CI] 1.13–1.99) and IL-6 (OR 1.30; 95% CI 1.05–1.60) in multivariate analysis. Conclusions: Obstructive sleep apnea with oxygen desaturation index ≥ 5 was independently associated with increased inflammatory activity in this nonobese coronary artery disease cohort. The intermittent hypoxemia, rather than the number of apneas and hypopneas, appears to be primarily associated with enhanced inflammation. Citation: Thunström E, Glantz H, Fu M, Yucel-Lindberg T, Petzold M, Lindberg K, Peker Y

  13. Sleep Disorders and Associated Medical Comorbidities in Active Duty Military Personnel

    PubMed Central

    Mysliwiec, Vincent; McGraw, Leigh; Pierce, Roslyn; Smith, Patrick; Trapp, Brandon; Roth, Bernard J.

    2013-01-01

    Study Objectives: Describe the prevalence of sleep disorders in military personnel referred for polysomnography and identify relationships between demographic characteristics, comorbid diagnoses, and specific sleep disorders. Design: Retrospective cross-sectional study. Setting: Military medical treatment facility. Participants: Active duty military personnel with diagnostic polysomnogram in 2010. Measurements: Primary sleep disorder rendered by review of polysomnogram and medical record by a board certified sleep medicine physician. Demographic characteristics and conditions of posttraumatic stress disorder (PTSD), mild traumatic brain injury (mTBI), anxiety, depression, and pain syndromes determined by medical record review. Results: Primary sleep diagnoses (n = 725) included: mild obstructive sleep apnea (OSA), 207 (27.2%); insomnia, 188 (24.7%); moderate-to-severe OSA, 183 (24.0 %); and paradoxical insomnia,39 (5.1%); behaviorally induced insufficient sleep syndrome, 68 (8.9%) and snoring, 40 (5.3%) comprised our control group. Short sleep duration (< 5 h) was reported by 41.8%. Overall 85.2% had deployed, with 58.1% having one or more comorbid diagnoses. Characteristics associated with moderate-to-severe OSA were age (adjusted odds ratio [OR], 1.03 [95% confidence interval {CI}, 1.0–1.05], sex (male) (adjusted OR, 19.97 [95% CI, 2.66–150.05], anxiety (adjusted OR, 0.58 [95% CI, 0.34–0.99]), and body mass index, BMI (adjusted OR 1.19 [95% CI, 1.13–1.25]; for insomnia, characteristics included PTSD (adjusted OR, 2.12 [95% CI, 1.31–3.44]), pain syndromes (adjusted OR, 1.48 [95%CI, 1.01–2.12]), sex (female) (adjusted OR, 0.22 [95% CI, 0.12–0.41]) and lower BMI (adjusted OR, 0.91 [95% CI, 0.87, 0.95]). Conclusions: Service-related illnesses are prevalent in military personnel who undergo polysomnography with significant associations between PTSD, pain syndromes, and insomnia. Despite having sleep disorders, almost half reported short sleep duration

  14. The association between physical activity and maternal sleep during the postpartum period

    PubMed Central

    Vladutiu, Catherine J.; Evenson, Kelly R.; Borodulin, Katja; Deng, Yu; Dole, Nancy

    2014-01-01

    Background Physical activity is associated with improved sleep quality and duration in the general population, but its effect on sleep in postpartum women is unknown. Methods We examined cross-sectional and longitudinal associations between hours/week of self-reported domain-specific and overall moderate to vigorous physical activity (MVPA) and sleep quality and duration at 3- and 12-months postpartum among a cohort of 530 women in the Pregnancy, Infection, and Nutrition Postpartum Study. Results MVPA was not associated with sleep quality or duration at 3-months postpartum. At 12-months postpartum, a one hour/week increase in recreational MVPA was associated with higher odds of good (vs. poor) sleep quality (odds ratio, OR=1.14; 95% confidence interval, CI, 1.03–1.27) and a one hour/week increase in child/adult care MVPA was associated with lower odds of good (vs. poor) sleep quality (OR=0.93; 95% CI=0.88–0.99). A one hour/week increase in child/adult care MVPA (OR=1.08, 95% CI=1.00–1.16) was associated with higher odds of long sleep duration and one hour/week increases in indoor household (OR=1.09, 95% CI=1.01–1.18) and overall MVPA (OR=1.04, 95% CI=1.01–1.07) were associated with higher odds of short (vs. normal) sleep duration. Comparing 3-months postpartum to 12-months postpartum, increased work MVPA was associated with good sleep quality (OR=2.40, 95% CI=1.12–5.15) and increased indoor household MVPA was associated with short sleep duration (OR=1.85, 95% CI=1.05–3.27) as measured at 12-months postpartum. Conclusions Selected domains of MVPA and their longitudinal increases were associated with sleep quality and duration at 12-months postpartum. Additional research is needed to elucidate whether physical activity can improve postpartum sleep. PMID:24577601

  15. The relationship between disease activity, sleep, psychiatric distress and pain sensitivity in rheumatoid arthritis: a cross-sectional study

    PubMed Central

    2009-01-01

    Introduction Despite recent advances in anti-inflammatory therapy, rheumatoid arthritis (RA) patients continue to rate pain as a priority. The etiology of RA pain is likely multifactorial, including both inflammatory and non-inflammatory components. In this study, we examine the association between disease activity, sleep, psychiatric distress and pain sensitivity in RA. Methods Fifty-nine female RA patients completed questionnaires and underwent pressure pain threshold testing to assess hyperalgesia/allodynia at joint and non-joint sites. Blood samples were taken to measure C-reactive protein (CRP). The association between disease activity, sleep problems, psychiatric distress and pain threshold was assessed using Pearson/Spearman correlations and multivariable linear regression. Disease activity levels, sleep problems and psychiatric distress were compared between RA patients with fibromyalgia and RA patients without fibromyalgia. Results In unadjusted analyses, CRP was not correlated with pain threshold, but tender joint count was inversely correlated with pain threshold at all sites (P ≤ 0.004). Sleep problems were associated with low pain threshold at all sites (P ≤ 0.0008). Psychiatric distress was associated with low pain threshold at the wrist and thumbnail (P ≤ 0.006). In multivariable linear regression models, CRP was inversely associated with wrist pain threshold (P = 0.003). Sleep problems were inversely associated with pain threshold at all sites (P ≤ 0.01), but psychiatric distress was not. Despite differences in pain threshold, CRP levels and sleep problems between RA patients with fibromyalgia and those without fibromyalgia, associations between these variables did not change when patients with fibromyalgia were excluded. Conclusions Multivariable models are essential in analyses of pain. Among RA patients, inflammation is associated with heightened pain sensitivity at joints. In contrast, poor sleep is associated with diffuse pain

  16. Sleep and exercise: a reciprocal issue?

    PubMed

    Chennaoui, Mounir; Arnal, Pierrick J; Sauvet, Fabien; Léger, Damien

    2015-04-01

    Sleep and exercise influence each other through complex, bilateral interactions that involve multiple physiological and psychological pathways. Physical activity is usually considered as beneficial in aiding sleep although this link may be subject to multiple moderating factors such as sex, age, fitness level, sleep quality and the characteristics of the exercise (intensity, duration, time of day, environment). It is therefore vital to improve knowledge in fundamental physiology in order to understand the benefits of exercise on the quantity and quality of sleep in healthy subjects and patients. Conversely, sleep disturbances could also impair a person's cognitive performance or their capacity for exercise and increase the risk of exercise-induced injuries either during extreme and/or prolonged exercise or during team sports. This review aims to describe the reciprocal fundamental physiological effects linking sleep and exercise in order to improve the pertinent use of exercise in sleep medicine and prevent sleep disorders in sportsmen.

  17. Relationships of objectively measured physical activity and sleep with BMI and academic outcomes in 8-year-old children.

    PubMed

    Harrington, Susan Ann

    2013-05-01

    Current guidelines in place for sleep and physical activity in childhood are the result of data collected in the form of self-reports. Exact measurement of activity dimensions and sleep characteristics are essential. The purpose of clearly established parameters is for the intent of verifying health outcomes and evaluating interventions. The purpose of this research was to determine the relationships between the objective dimensions of physical activity, sleep, weight status, academic achievement, and academic behavior. This cross-sectional correlational descriptive design examined the activity and sleep patterns continuously for 24 hours/7 days with triaxial accelerometers in a low income African American sample of 8-year-olds. A qualitative component gathered additional identifiers. This sample was overweight/obese, inactive, and sleep-deprived. Moderate-vigorous activity was correlated with reading scores. Confirmed in this research was the association between sleep duration, physical activity intensities, and academics. Positive health outcomes in children are endorsed by an energy balance.

  18. Sleep spindle activity is associated with the integration of new memories and existing knowledge

    PubMed Central

    Tamminen, Jakke; Payne, Jessica D.; Stickgold, Robert; Wamsley, Erin J.; Gaskell, M. Gareth

    2010-01-01

    Sleep spindle activity has been associated with improvements in procedural and declarative memory. Here, for the first time, we looked at the role of spindles in the integration of newly learned information with existing knowledge, contrasting this with explicit recall of the new information. Two groups of participants learned novel spoken words (e.g., cathedruke) that overlapped phonologically with familiar words (e.g., cathedral). The sleep group was exposed to the novel words in the evening, followed by an initial test, a polysomnographically (PSG) monitored night of sleep, and second test in the morning. The wake group was exposed and initially tested in the morning, and spent a retention interval of similar duration awake. Finally, both groups were tested a week later at the same circadian time to control for possible circadian effects. In the sleep group, participants recalled more words and recognized them faster after sleep, while in the wake group such changes were not observed until the final test one week later. Following acquisition of the novel words, recognition of the familiar words was slowed in both groups, but only after the retention interval, indicating that the novel words had been integrated into the mental lexicon following consolidation. Importantly, spindle activity was associated with overnight lexical integration in the sleep group, but not with gains in recall rate or recognition speed of the novel words themselves. Spindle activity appears to be particularly important for overnight integration of new memories with existing neocortical knowledge. PMID:20980591

  19. A biphasic daily pattern of slow wave activity during a two-day 90-minute sleep wake schedule.

    PubMed

    Duncan, W C; Barbato, G; Fagioli, I; Garcia-Borreguero, D; Wehr, T A

    2009-12-01

    Twenty-four hour sleep patterns were measured in six healthy male volunteers during a 90-minute short sleep-wake (SW 30:60) cycle protocol for 48 hours. Sleep pressure estimates (amount of Slow Wave Sleep [SWS], SWA, and Rate of Synchronization [RoS: the rate of SWA build-up at the beginning of the NREM period]) were compared with the 24-hour patterns of body temperature (Tb24) and sleep propensity. A moderate sleep debt was incurred over the 48 hour study as indicated by decreased levels of 24 hour sleep. On day 1, ultradian patterns of REM and SWS sleep were prominent; on day 2, more prominent were circadian patterns of REM sleep, SWS, Sleep Latency, TST and Tb24. Also on Day 2, biphasic patterns of SWA and RoS were expressed, with peaks occurring during the falling and rising limbs of Tb24. The biphasic peaks in SWA and RoS may be associated with phase-specific interactions of the circadian pacemaker with the sleep homeostat during conditions of moderate sleep pressure. Further research is needed to replicate the finding and to identify biological factors that may underlie the twelve hour pattern in SWA. PMID:20162861

  20. Influences of NREM sleep on the activity of tonic vs. inspiratory phasic muscles in normal men.

    PubMed

    Tangel, D J; Mezzanotte, W S; Sandberg, E J; White, D P

    1992-09-01

    Studies of sleep influences on human pharyngeal and other respiratory muscles suggest that the activity of these muscles may be affected by non-rapid-eye-movement (NREM) sleep in a nonuniform manner. This variable sleep response may relate to the pattern of activation of the muscle (inspiratory phasic vs. tonic) and peripheral events occurring in the airway. Furthermore, the ability of these muscles to respond to respiratory stimuli during NREM sleep may also differ. To systematically investigate the effect of NREM sleep on respiratory muscle activity, we studied two tonic muscles [tensor palatini (TP), masseter (M)] and two inspiratory phasic ones [genioglossus (GG), diaphragm (D)], also measuring the response of these muscles to inspiratory resistive loading (12 cmH2O.l-1.s) during wakefulness and NREM sleep. Seven normal male subjects were studied on a single night with intramuscular electrodes placed in the TP and GG and surface electrodes placed over the D and M. Sleep stage, inspiratory airflow, and moving time average electromyograph (EMG) of the above four muscles were continuously recorded. The EMG of both tonic muscles fell significantly (P less than 0.05) during NREM sleep [TP awake, 4.3 +/- 0.05 (SE) arbitrary units, stage 2, 1.1 +/- 0.2; stage 3/4, 1.0 +/- 0.2. Masseter awake, 4.8 +/- 0.6; stage 2, 3.3 +/- 0.5; stage 3/4, 3.1 +/- 0.5]. On the other hand, the peak phasic EMG of both inspiratory phasic muscles (GG and D) was well maintained.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Relationship between C-reactive protein levels and obstructive sleep apnea syndrome.

    PubMed

    Tie, Y X; Fu, Y Y; Xu, Z; Peng, Y

    2016-01-01

    This study aims to determine the relationship between C-reactive protein levels and obstructive sleep apnea syndrome (OSAS). We recruited 30 OSAS patients into the observation group (OSAS group), and subdivided them into mild, moderate and severe groups according to the apnea hypopnea index. In addition, 20 normal individuals were included in the control group. Plasma CRP levels of two groups were measured. As compared with the control group, the CRP levels in the OSAS group were significantly increased (P < 0.05). ANOVA showed that CRP levels in the three subgroups differ; statistically significant differences between the mild and severe OSA patients were observed (P < 0.05). It was hypothesized that OSAS patients show elevated serum CRP levels, and that serum CRP levels are associated with OSAS severity. PMID:27323094

  2. Subclinical epileptiform activity in children with electrical status epilepticus during sleep: effects on cognition and behavior before and after treatment with levetiracetam.

    PubMed

    Bjørnæs, Helge; Bakke, Kristin A; Larsson, Pål Gunnar; Heminghyt, Einar; Rytter, Elisif; Brager-Larsen, Line M; Eriksson, Ann-Sofie

    2013-04-01

    We performed a double-blind placebo-controlled crossover study of the effects of spike activity during sleep and when awake on learning, long-term memory, vigilance and behavior before and after treatment with levetiracetam in children with electrical status epilepticus during sleep. At baseline, verbal learning declined with increasing spike activity, but there were no relations between spike activity and memory, vigilance or behavior. Levetiracetam was effective in reducing sleep-related spike activity, but on a group level, this had no clear effects on behavior, vigilance or learning and memory. Our results do not allow firm conclusions whether to treat nocturnal epileptiform activity or not; larger samples and longer follow-up may be needed.

  3. Pre-sleep behaviour in normal subjects.

    PubMed

    Ellis; Lemmens; Parkes

    1995-12-01

    Behaviour in the 2-h period before sleep onset was evaluated in 90 subjects with normal sleep/wake habits using an anonymous self-report questionnaire. This determined the timing of events from the initial preparation for sleep. The nature of the pre-sleep environment, the level of physical activity, and patterns of feeding behaviour were recorded together with self-ratings of tiredness, mood and security. Estimated sleep duration and sleep quality were determined. Ninety of 120 subjects responded. Sleep 'preparatory latency', from the time of initial sleep preparation to sleep onset, was 77 +/- 48 min; bed time to sleep onset time (sleep latency) was 41 +/- 42 min; lights out to sleep onset latency was 26 +/- 45 min. The estimated total sleep time was 7 +/- 1 h. In the pre-sleep period, mean noise and illumination levels were low and environmental temperature rating was at the median point on a very cold-very hot scale (mean scale scores: 23, 28 and 50, respectively). All subjects went to the bathroom before going to bed. Twenty-five percent of normal subjects had a snack or meal in the 2-h period before sleep onset. Sixty percentage recorded setting an alarm, 27% had a bath or shower, 23% checked door locks or windows and 49% read in bed. Nine percent of subjects slept with a cat on the bed. Humans, like other animal species, show a complex behavioural sequence in the 2-h period before falling asleep. A constant environment with limited metabolic activity may predispose to thermoregulatory changes prior to sleep onset. PMID:10607159

  4. Increased physical activity improves sleep and mood outcomes in inactive people with insomnia: a randomized controlled trial.

    PubMed

    Hartescu, Iuliana; Morgan, Kevin; Stevinson, Clare D

    2015-10-01

    While high levels of activity and exercise training have been associated with improvements in sleep quality, minimum levels of activity likely to improve sleep outcomes have not been explored. A two-armed parallel randomized controlled trial (N=41; 30 females) was designed to assess whether increasing physical activity to the level recommended in public health guidelines can improve sleep quality among inactive adults meeting research diagnostic criteria for insomnia. The intervention consisted of a monitored program of ≥150 min of moderate- to vigorous-intensity physical activity per week, for 6 months. The principal end-point was the Insomnia Severity Index at 6 months post-baseline. Secondary outcomes included measures of mood, fatigue and daytime sleepiness. Activity and light exposure were monitored throughout the trial using accelerometry and actigraphy. At 6 months post-baseline, the physical activity group showed significantly reduced insomnia symptom severity (F(8,26) = 5.16, P = 0.03), with an average reduction of four points on the Insomnia Severity Index; and significantly reduced depression and anxiety scores (F(6,28) = 5.61, P = 0.02; and F(6,28) = 4.41, P = 0.05, respectively). All of the changes were independent of daily light exposure. Daytime fatigue showed no significant effect of the intervention (F(8,26) = 1.84, P = 0.18). Adherence and retention were high. Internationally recommended minimum levels of physical activity improve daytime and night-time symptoms of chronic insomnia independent of daily light exposure levels.

  5. Increased physical activity improves sleep and mood outcomes in inactive people with insomnia: a randomized controlled trial.

    PubMed

    Hartescu, Iuliana; Morgan, Kevin; Stevinson, Clare D

    2015-10-01

    While high levels of activity and exercise training have been associated with improvements in sleep quality, minimum levels of activity likely to improve sleep outcomes have not been explored. A two-armed parallel randomized controlled trial (N=41; 30 females) was designed to assess whether increasing physical activity to the level recommended in public health guidelines can improve sleep quality among inactive adults meeting research diagnostic criteria for insomnia. The intervention consisted of a monitored program of ≥150 min of moderate- to vigorous-intensity physical activity per week, for 6 months. The principal end-point was the Insomnia Severity Index at 6 months post-baseline. Secondary outcomes included measures of mood, fatigue and daytime sleepiness. Activity and light exposure were monitored throughout the trial using accelerometry and actigraphy. At 6 months post-baseline, the physical activity group showed significantly reduced insomnia symptom severity (F(8,26) = 5.16, P = 0.03), with an average reduction of four points on the Insomnia Severity Index; and significantly reduced depression and anxiety scores (F(6,28) = 5.61, P = 0.02; and F(6,28) = 4.41, P = 0.05, respectively). All of the changes were independent of daily light exposure. Daytime fatigue showed no significant effect of the intervention (F(8,26) = 1.84, P = 0.18). Adherence and retention were high. Internationally recommended minimum levels of physical activity improve daytime and night-time symptoms of chronic insomnia independent of daily light exposure levels. PMID:25903450

  6. Duration of hexobarbital-induced sleep and monoamine oxidase activities in rat brain: Focus on the behavioral activity and on the free-radical oxidation.

    PubMed

    Tseilikman, Vadim E; Kozochkin, Denis A; Manukhina, Eugenia B; Downey, H Fred; Tseilikman, Olga B; Misharina, Maria E; Nikitina, Anna A; Komelkova, Maria V; Lapshin, Maxim S; Kondashevskaya, Marina V; Lazuko, Svetlana S; Kusina, Oxana V; Sahabutdinov, Marat V

    2016-04-01

    The present study is focused on the relationship between monoamine oxidase (MAO) activity and hepatic content of cytochrome P450 (CYP), which reflects the status of microsomal oxidation. For vital integrative evaluation of hepatic microsomal oxidation in rats, the hexobarbital sleep test was used, and content of CYP was measured in hepatic microsomes. Rats with short hexobarbital sleep time (SHST) had higher content of microsomal CYP than rats with long hexobarbital sleep time (LHST). Whole brain MAO-A and MAO-B activities, serotonin and carbonylated protein levels were higher in SHST than in LHST rats. MAO-A and MAO-B activities were higher in brain cortex of SHST rats; MAO-A activity was higher only in hypothalamus and medulla of LHST. The same brain regions of LHST rats had higher concentrations of carbonylated proteins and lipid peroxidation products than in SHST rats. MAO activity was correlated with microsomal oxidation phenotype. Rats with higher hepatic content of CYP had higher activities of MAO-A and MAO-B in the brain and higher plasma serotonin levels than rats with lower microsomal oxidation. In conclusion, data obtained in this study showed a correlation between MAO activity and microsomal oxidation phenotype.

  7. Sleep Restriction Decreases the Physical Activity of Adults at Risk for Type 2 Diabetes

    PubMed Central

    Bromley, Lindsay E.; Booth, John N.; Kilkus, Jennifer M.; Imperial, Jacqueline G.; Penev, Plamen D.

    2012-01-01

    Study Objective: To test the hypothesis that recurrent sleep curtailment will result in decreased physical activity in adults at risk for type 2 diabetes. Design: Two-condition 2-period randomized crossover study. Setting: University General Clinical Research Center. Participants: Eighteen healthy patients with parental history of type 2 diabetes (9 females and 9 males, age 27 yr [standard deviation 3], body mass index 23.7 [2.3] kg/m2). Interventions: Two week-long inpatient sessions with 8.5 or 5.5-hr nighttime sleep opportunity. Participants who exercised regularly (39%) could follow their usual exercise routines during both sessions. Measurements and Results: Sleep and total body movement were measured by wrist actigraphy and waist accelerometry. Subjective mood and vigor was assessed using visual analog scales. The main outcome was the comparison of total activity counts between sleep conditions. Ancillary endpoints included changes in sedentary, light, and moderate plus vigorous activity, and their association with changes in mood and vigor. Daily sleep was reduced by 2.3 hr (P < 0.001) and total activity counts were 31% lower (P = 0.020) during the 5.5-hr time-in-bed condition. This was accompanied by a 24% reduction in moderate-plus-vigorous activity time (P = 0.005) and more sedentary behavior (+21 min/day; P = 0.020). The decrease in daily activity during the 5.5-hr time-in-bed condition was seen mostly in participants who exercised regularly (-39 versus −4% in exercisers versus nonexercisers; P = 0.027). Sleep loss-related declines in physical activity correlated strongly with declines in subjective vigor (R = 0.90; P < 0.001). Conclusions: Experimental sleep restriction results in decreased amount and intensity of physical activity in adults at risk for type 2 diabetes. Citation: Bromley LE; Booth JN; Kilkus JM; Imperial JG; Penev PD. Sleep restriction decreases the physical activity of adults at risk for type 2 diabetes. SLEEP 2012

  8. Sleep and Inflammatory Bowel Disease: Exploring the Relationship Between Sleep Disturbances and Inflammation

    PubMed Central

    Kinnucan, Jami A.; Rubin, David T.

    2013-01-01

    Sleep disturbances are associated with a greater risk of serious adverse health events, economic consequences, and, most importantly, increased all-cause mortality. Several studies support the associations among sleep, immune function, and inflammation. The relationship between sleep disturbances and inflammatory conditions is complex and not completely understood. Sleep deprivation can lead to increased levels of inflammatory cytokines, including interleukin (IL)-1β IL-6, tumor necrosis factor-α and C-reactive protein, which can lead to further activation of the inflammatory cascade. The relevance of sleep in inflammatory bowel disease (IBD), a chronic immune-mediated inflammatory disease of the gastrointestinal tract, has recently received more attention. Several studies have shown that patients with both inactive and active IBD have self-reported sleep disturbances. Here, we present a concise review of sleep and its association with the immune system and the process of inflammation. We discuss the studies that have evaluated sleep in patients with IBD as well as possible treatment options for those patients with sleep disturbances. An algorithm for evaluating sleep disturbances in the IBD population is also proposed. Further research is still needed to better characterize sleep disturbances in the IBD population as well as to assess the effects of various therapeutic interventions to improve sleep quality. It is possible that the diagnosis and treatment of sleep disturbances in this population may provide an opportunity to alter disease outcomes. PMID:24764789

  9. To sleep or not to sleep: the ecology of sleep in artificial organisms

    PubMed Central

    Acerbi, Alberto; McNamara, Patrick; Nunn, Charles L

    2008-01-01

    Background All animals thus far studied sleep, but little is known about the ecological factors that generate differences in sleep characteristics across species, such as total sleep duration or division of sleep into multiple bouts across the 24-hour period (i.e., monophasic or polyphasic sleep activity). Here we address these questions using an evolutionary agent-based model. The model is spatially explicit, with food and sleep sites distributed in two clusters on the landscape. Agents acquire food and sleep energy based on an internal circadian clock coded by 24 traits (one for each hour of the day) that correspond to "genes" that evolve by means of a genetic algorithm. These traits can assume three different values that specify the agents' behavior: sleep (or search for a sleep site), eat (or search for a food site), or flexibly decide action based on relative levels of sleep energy and food energy. Individuals with higher fitness scores leave more offspring in the next generation of the simulation, and the model can therefore be used to identify evolutionarily adaptive circadian clock parameters under different ecological conditions. Results We systematically varied input parameters related to the number of food and sleep sites, the degree to which food and sleep sites overlap, and the rate at which food patches were depleted. Our results reveal that: (1) the increased costs of traveling between more spatially separated food and sleep clusters select for monophasic sleep, (2) more rapid food patch depletion reduces sleep times, and (3) agents spend more time attempting to acquire the "rarer" resource, that is, the average time spent sleeping is positively correlated with the number of food patches and negatively correlated with the number of sleep patches. "Flexible" genes, in general, do not appear to be advantageous, though their arrangements in the agents' genome show characteristic patterns that suggest that selection acts on their distribution. Conclusion

  10. Stress Biomarkers, Mood States, and Sleep during a Major Competition: “Success” and “Failure” Athlete's Profile of High-Level Swimmers

    PubMed Central

    Chennaoui, Mounir; Bougard, Clément; Drogou, Catherine; Langrume, Christophe; Miller, Christian; Gomez-Merino, Danielle; Vergnoux, Frédéric

    2016-01-01

    The aim of this study was to evaluate stress markers, mood states, and sleep indicators in high-level swimmers during a major 7-days competition according to the outcomes. Nine swimmers [six men and three women (age: 22 ± 2 and 22 ± 4 years, respectively)] were examined. Before (PRE) and after (POST) each race (series, semi-finals, and finals), salivary concentrations of cortisol, α-amylase (sAA), and chromogranin-A (CgA) were determined. Mood states were assessed by the profile of mood state (POMS) questionnaire completed before and after the 7-days, and self-reported sleep diaries were completed daily. In the “failure” group, cortisol and sAA significantly increased between PRE-POST measurements (p < 0.05), while sCgA was not changed. Significant overall decrease of cortisol (-52.6%) and increase of sAA (+68.7%) was shown in the “failure group.” In this group, fatigue, confusion and depression scores, and sleep duration before the finals increased. The results in the “success” group show tendencies for increased cortisol and sCgA concentrations in response to competition, while sAA was not changed. Cortisol levels before the semi-finals and finals and sCgA levels before the finals were positively correlated to the fatigue score in the “failure” group only (r = 0.89). sAA levels before and after the semi-finals were negatively correlated to sleep duration measured in the subsequent night (r = −0.90). In conclusion, the stress of the competition could trigger a negative mood profile and sleep disturbance which correspond to different responses of biomarkers related to the hypothalamo-pituitary-adrenal axis and the sympathetic nervous system (SNS) activity, cortisol, sAA, and CgA. PMID:27014092

  11. Paradoxical (REM) sleep deprivation in mice using the small-platforms-over-water method: polysomnographic analyses and melanin-concentrating hormone and hypocretin/orexin neuronal activation before, during and after deprivation.

    PubMed

    Arthaud, Sebastien; Varin, Christophe; Gay, Nadine; Libourel, Paul-Antoine; Chauveau, Frederic; Fort, Patrice; Luppi, Pierre-Herve; Peyron, Christelle

    2015-06-01

    Studying paradoxical sleep homeostasis requires the specific and efficient deprivation of paradoxical sleep and the evaluation of the subsequent recovery period. With this aim, the small-platforms-over-water technique has been used extensively in rats, but only rare studies were conducted in mice, with no sleep data reported during deprivation. Mice are used increasingly with the emergence of transgenic mice and technologies such as optogenetics, raising the need for a reliable method to manipulate paradoxical sleep. To fulfil this need, we refined this deprivation method and analysed vigilance states thoroughly during the entire protocol. We also studied activation of hypocretin/orexin and melanin-concentrating hormone neurones using Fos immunohistochemistry to verify whether mechanisms regulating paradoxical sleep in mice are similar to those in rats. We showed that 48 h of deprivation was highly efficient, with a residual amount of paradoxical sleep of only 2.2%. Slow wave sleep and wake quantities were similar to baseline, except during the first 4 h of deprivation, where slow wave sleep was strongly reduced. After deprivation, we observed a 124% increase in paradoxical sleep quantities during the first hour of rebound. In addition, 34% of hypocretin/orexin neurones were activated during deprivation, whereas melanin-concentrated hormone neurones were activated only during paradoxical sleep rebound. Corticosterone level showed a twofold increase after deprivation and returned to baseline level after 4 h of recovery. In summary, a fairly selective deprivation and a significant rebound of paradoxical sleep can be obtained in mice using the small-platforms-over-water method. As in rats, rebound is accompanied by a selective activation of melanin-concentrating hormone neurones.

  12. Masticatory muscle sleep background electromyographic activity is elevated in myofascial temporomandibular disorder patients.

    PubMed

    Raphael, K G; Janal, M N; Sirois, D A; Dubrovsky, B; Wigren, P E; Klausner, J J; Krieger, A C; Lavigne, G J

    2013-12-01

    Despite theoretical speculation and strong clinical belief, recent research using laboratory polysomnographic (PSG) recording has provided new evidence that frequency of sleep bruxism (SB) masseter muscle events, including grinding or clenching of the teeth during sleep, is not increased for women with chronic myofascial temporomandibular disorder (TMD). The current case-control study compares a large sample of women suffering from chronic myofascial TMD (n = 124) with a demographically matched control group without TMD (n = 46) on sleep background electromyography (EMG) during a laboratory PSG study. Background EMG activity was measured as EMG root mean square (RMS) from the right masseter muscle after lights out. Sleep background EMG activity was defined as EMG RMS remaining after activity attributable to SB, other orofacial activity, other oromotor activity and movement artefacts were removed. Results indicated that median background EMG during these non-SB event periods was significantly higher (P < 0·01) for women with myofascial TMD (median = 3·31 μV and mean = 4·98 μV) than for control women (median = 2·83 μV and mean = 3·88 μV) with median activity in 72% of cases exceeding control activity. Moreover, for TMD cases, background EMG was positively associated and SB event-related EMG was negatively associated with pain intensity ratings (0-10 numerical scale) on post-sleep waking. These data provide the foundation for a new focus on small, but persistent, elevations in sleep EMG activity over the course of the night as a mechanism of pain induction or maintenance.

  13. Single-neuron activity and eye movements during human REM sleep and awake vision

    PubMed Central

    Andrillon, Thomas; Nir, Yuval; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak

    2015-01-01

    Are rapid eye movements (REMs) in sleep associated with visual-like activity, as during wakefulness? Here we examine single-unit activities (n=2,057) and intracranial electroencephalography across the human medial temporal lobe (MTL) and neocortex during sleep and wakefulness, and during visual stimulation with fixation. During sleep and wakefulness, REM onsets are associated with distinct intracranial potentials, reminiscent of ponto-geniculate-occipital waves. Individual neurons, especially in the MTL, exhibit reduced firing rates before REMs as well as transient increases in firing rate immediately after, similar to activity patterns observed upon image presentation during fixation without eye movements. Moreover, the selectivity of individual units is correlated with their response latency, such that units activated after a small number of images or REMs exhibit delayed increases in firing rates. Finally, the phase of theta oscillations is similarly reset following REMs in sleep and wakefulness, and after controlled visual stimulation. Our results suggest that REMs during sleep rearrange discrete epochs of visual-like processing as during wakefulness. PMID:26262924

  14. Sleep Hygiene and Recovery Strategies in Elite Soccer Players.

    PubMed

    Nédélec, Mathieu; Halson, Shona; Delecroix, Barthélémy; Abaidia, Abd-Elbasset; Ahmaidi, Said; Dupont, Gregory

    2015-11-01

    In elite soccer, players are frequently exposed to various situations and conditions that can interfere with sleep (e.g., playing night matches interspersed with 3 days; performing activities demanding high levels of concentration close to bedtime; use of products containing caffeine or alcohol in the period preceding bedtime; regular daytime napping throughout the week; variable wake-up times or bedtime), potentially leading to sleep deprivation. We outline simple, practical, and pharmaceutical-free sleep strategies that are coordinated to the constraints of elite soccer in order to promote sleep. Sleep deprivation is best alleviated by sleep extension; however, sleep hygiene strategies (i.e., consistent sleep pattern, appropriate napping, and active daytime behaviors) can be utilized to promote restorative sleep. Light has a profound impact on sleep, and sleep hygiene strategies that support the natural environmental light-dark cycle (i.e., red-light treatment prior to sleep, dawn-simulation therapy prior to waking) and prevent cycle disruption (i.e., filtering short wavelengths prior to sleep) may be beneficial to elite soccer players. Under conditions of inordinate stress, techniques such as brainwave entrainment and meditation are promising sleep-promoting strategies, but future studies are required to ascertain the applicability of these techniques to elite soccer players. Consuming high-electrolyte fluids such as milk, high-glycemic index carbohydrates, some forms of protein immediately prior to sleep, as well as tart cherry juice concentrate and tryptophan may promote rehydration, substrate stores replenishment, muscle-damage repair and/or restorative sleep. The influence of cold water immersion performed close to bedtime on subsequent sleep is still debated. Conversely, the potential detrimental effects of sleeping medication must be recognized. Sleep initiation is influenced by numerous factors, reinforcing the need for future research to identify such

  15. Sleep Hygiene and Recovery Strategies in Elite Soccer Players.

    PubMed

    Nédélec, Mathieu; Halson, Shona; Delecroix, Barthélémy; Abaidia, Abd-Elbasset; Ahmaidi, Said; Dupont, Gregory

    2015-11-01

    In elite soccer, players are frequently exposed to various situations and conditions that can interfere with sleep (e.g., playing night matches interspersed with 3 days; performing activities demanding high levels of concentration close to bedtime; use of products containing caffeine or alcohol in the period preceding bedtime; regular daytime napping throughout the week; variable wake-up times or bedtime), potentially leading to sleep deprivation. We outline simple, practical, and pharmaceutical-free sleep strategies that are coordinated to the constraints of elite soccer in order to promote sleep. Sleep deprivation is best alleviated by sleep extension; however, sleep hygiene strategies (i.e., consistent sleep pattern, appropriate napping, and active daytime behaviors) can be utilized to promote restorative sleep. Light has a profound impact on sleep, and sleep hygiene strategies that support the natural environmental light-dark cycle (i.e., red-light treatment prior to sleep, dawn-simulation therapy prior to waking) and prevent cycle disruption (i.e., filtering short wavelengths prior to sleep) may be beneficial to elite soccer players. Under conditions of inordinate stress, techniques such as brainwave entrainment and meditation are promising sleep-promoting strategies, but future studies are required to ascertain the applicability of these techniques to elite soccer players. Consuming high-electrolyte fluids such as milk, high-glycemic index carbohydrates, some forms of protein immediately prior to sleep, as well as tart cherry juice concentrate and tryptophan may promote rehydration, substrate stores replenishment, muscle-damage repair and/or restorative sleep. The influence of cold water immersion performed close to bedtime on subsequent sleep is still debated. Conversely, the potential detrimental effects of sleeping medication must be recognized. Sleep initiation is influenced by numerous factors, reinforcing the need for future research to identify such

  16. Rest/Activity Rhythms and Mortality Rates in Older Men: MrOS Sleep Study

    PubMed Central

    Paudel, Misti L.; Taylor, Brent C.; Ancoli-Israel, Sonia; Blackwell, Terri; Stone, Katie L.; Tranah, Greg; Redline, Susan; Cummings, Steven R; Ensrud, Kristine E.

    2010-01-01

    Background An association between increased risk of mortality and disruptions in rest/activity circadian rhythms (RAR) has been shown among adults with dementia and with metastatic colorectal cancer. However the association among a more general population of older adults has not been studied. Methods Study population consisted of 2964 men aged 67 and older enrolled in the Outcomes of Sleep Disorders in Older Men (MrOS Sleep) Study. Rest/activity patterns were measured with wrist actigraphy. RAR parameters were computed and expressed as quintiles, and included acrophase (time of peak activity level), amplitude (peak-to-nadir difference), mesor (middle of the peak), pseudo F-value (overall circadian rhythmicity), beta (steepness) and alpha (peak-to-trough width). Results After adjustment for multiple potential confounders, men in the lowest quintile of pseudo F-value had a 57% higher mortality rate (Hazard ratio [HR]=1.57, 95%CI, 1.03–2.39) compared with men in the highest quintile. This association was even stronger with increased risk of cardiovascular disease-related mortality (CVD) (HR=2.32, 95%CI, 1.04–5.22). Additionally, men in the lowest quintile of acrophase had a 2.8-fold higher rate of CVD-related mortality (HR=2.84, 95%CI, 1.29–6.24). There was no evidence of independent associations with amplitude, mesor, alpha, beta and risk of mortality. Conclusions Older men with less robust RAR and earlier acrophase timing, have modestly higher all-cause and CVD-related mortality rates. Further research should examine potential biological mechanisms underlying this association. PMID:20370475

  17. Rest/activity rhythms and mortality rates in older men: MrOS Sleep Study.

    PubMed

    Paudel, Misti L; Taylor, Brent C; Ancoli-Israel, Sonia; Blackwell, Terri; Stone, Katie L; Tranah, Greg; Redline, Susan; Cummings, Steven R; Ensrud, Kristine E

    2010-01-01

    An association between increased risk of mortality and disruptions in rest/activity circadian rhythms (RAR) has been shown among adults with dementia and with metastatic colorectal cancer. However, the association among a more general population of older adults has not been studied. Our study population consisted of 2964 men aged > or = 67 yrs of age enrolled in the Outcomes of Sleep Disorders in Older Men (MrOS Sleep) Study. Rest/activity patterns were measured with wrist actigraphy. RAR parameters were computed and expressed as quintiles, and included acrophase (time of peak activity level), amplitude (peak-to-nadir difference), mesor (middle of the peak), pseudo F-value (overall circadian rhythmicity), beta (steepness), and alpha (peak-to-trough width). After adjustment for multiple potential confounders, men in the lowest quintile of pseudo F-value had a 57% higher mortality rate (hazard ratio [HR] = 1.57, 95% CI, 1.03-2.39) than men in the highest quintile. This association was even stronger with increased risk of cardiovascular disease-related mortality (CVD) (HR = 2.32, 95% CI, 1.04-5.22). Additionally, men in the lowest quintile of acrophase had a 2.8-fold higher rate of CVD-related mortality (HR = 2.84, 95% CI, 1.29-6.24). There was no evidence of independent associations with amplitude, mesor, alpha, beta, and mortality risk. Older men with less robust RAR and earlier acrophase timing have modestly higher all-cause and CVD-related mortality rates. Further research should examine potential biological mechanisms underlying this association. PMID:20370475

  18. Sleep and activity monitoring for Returning Soldier Adjustment Assessment.

    PubMed

    Yardibi, T; Cleary, D; Wood, J; Stachura, M; Wood, E; Dicks, A

    2012-01-01

    This paper describes the development of unobtrusive room sensors to discover relationships between sleep quality and the clinical assessments of combat soldiers suffering from post-traumatic stress disorder (PTSD) and mild traumatic brain injury (TBI). We consider the use of a remote room sensor unit composed of a Doppler radar, light, sound and other room environment sensors. We also employ an actigraphy watch. We discuss sensor implementation, radar data analytics and preliminary results using real data from a Warrior Transition Battalion located in Fort Gordon, GA. Two radar analytical approaches are developed and compared against the actigraphy watch estimates--one, emphasizing system knowledge; and the other, clustering on several radar signal features. The radar analytic algorithms are able to estimate sleep periods, signal absence and restlessness in the bed. In our test cases, the radar estimates are shown to agree with the actigraphy watch. PTSD and mild-TBI soldiers do often show signs of sporadic and restless sleep. Ongoing research results are expected to provide further insight. PMID:23366346

  19. Sleep and activity monitoring for Returning Soldier Adjustment Assessment.

    PubMed

    Yardibi, T; Cleary, D; Wood, J; Stachura, M; Wood, E; Dicks, A

    2012-01-01

    This paper describes the development of unobtrusive room sensors to discover relationships between sleep quality and the clinical assessments of combat soldiers suffering from post-traumatic stress disorder (PTSD) and mild traumatic brain injury (TBI). We consider the use of a remote room sensor unit composed of a Doppler radar, light, sound and other room environment sensors. We also employ an actigraphy watch. We discuss sensor implementation, radar data analytics and preliminary results using real data from a Warrior Transition Battalion located in Fort Gordon, GA. Two radar analytical approaches are developed and compared against the actigraphy watch estimates--one, emphasizing system knowledge; and the other, clustering on several radar signal features. The radar analytic algorithms are able to estimate sleep periods, signal absence and restlessness in the bed. In our test cases, the radar estimates are shown to agree with the actigraphy watch. PTSD and mild-TBI soldiers do often show signs of sporadic and restless sleep. Ongoing research results are expected to provide further insight.

  20. Obstructive sleep apnea.

    PubMed

    White, David P; Younes, Magdy K

    2012-10-01

    Obstructive sleep apnea (OSA) is a common disorder characterized by repetitive collapse of the pharyngeal airway during sleep. Control of pharyngeal patency is a complex process relating primarily to basic anatomy and the activity of many pharyngeal dilator muscles. The control of these muscles is regulated by a number of processes including respiratory drive, negative pressure reflexes, and state (sleep) effects. In general, patients with OSA have an anatomically small airway the patency of which is maintained during wakefulness by reflex-driven augmented dilator muscle activation. At sleep onset, muscle activity falls, thereby compromising the upper airway. However, recent data suggest that the mechanism of OSA differs substantially among patients, with variable contributions from several physiologic characteristics including, among others: level of upper airway dilator muscle activation required to open the airway, increase in chemical drive required to recruit the pharyngeal muscles, chemical control loop gain, and arousal threshold. Thus, the cause of sleep apnea likely varies substantially between patients. Other physiologic mechanisms likely contributing to OSA pathogenesis include falling lung volume during sleep, shifts in blood volume from peripheral tissues to the neck, and airway edema. Apnea severity may progress over time, likely due to weight gain, muscle/nerve injury, aging effects on airway anatomy/collapsibility, and changes in ventilatory control stability.

  1. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.

    PubMed

    Takahashi, K; Lin, J-S; Sakai, K

    2008-05-15

    Using extracellular single unit recordings alone or in combination with neurobiotin juxtacellular labeling and orexin (hypocretin) immunohistochemistry in the mouse, we have recorded a total of 452 neurons in the orexin neuron field of the posterior hypothalamus. Of these, 76 exhibited tonic discharge highly specific to wakefulness, referred to as waking-active neurons. They showed differences from each other in terms of spike shape, activity profile, and response to an arousing sound stimulus and could be classified into three groups on the basis of spike shape as: 1) biphasic broad; 2) biphasic narrow; and 3) triphasic. Waking-active neurons characterized by biphasic broad spikes were orexin-immunopositive, whereas those characterized by either biphasic narrow or triphasic broad spikes were orexin-immunonegative. Unlike waking-specific histamine neurons, all orexin and non-orexin waking-active neurons exhibited slow (<10 Hz) tonic discharges during wakefulness and ceased firing shortly after the onset of electroencephalogram (EEG) synchronization (deactivation), the EEG sign of sleep (drowsy state). They remained virtually silent during slow-wave sleep, but displayed transient discharges during paradoxical (or rapid eye movement) sleep. During the transition from sleep to wakefulness, both orexin and triphasic non-orexin neurons fired in clusters prior to the onset of EEG activation, the EEG sign of wakefulness, and responded with a short latency to an arousing sound stimulus given during sleep. In contrast, the biphasic narrow non-orexin neurons fired in single spikes either prior to, or after, EEG activation during the same transition and responded to the stimulus with a longer latency. The activity of all waking-active neurons preceded the return of muscle tonus at the transition from paradoxical sleep to wakefulness. These data support the view that the activity of orexin and non-orexin waking-active neurons in the posterior hypothalamus plays an important

  2. A Simplified model of mutually inhibitory sleep-active and wake-active neuronal populations employing a noise-based switching mechanism.

    PubMed

    Patel, Mainak

    2016-04-01

    Infant rats switch randomly between the sleeping and waking states; during early infancy (up to postnatal day 8), sleep and wake bouts are random, brief (with means on the order of several seconds) and exponentially distributed, with the length of a particular bout independent of the length of prior bouts. As the rat ages during this early period, mean sleep and wake bout lengths gradually increase, though sleep and wake bouts remain exponentially distributed. Additionally, sleep and wake bouts are regulated independently of each other - alterations in the development of sleep (wake) bouts has no impact on the regulation wake (sleep) bouts. Sleep and wake bout behavior is associated with the activity of mutually inhibitory sleep-active and wake-active brainstem populations. In this work, I employ a simplified biophysical model of two mutually inhibitory populations consisting of ten integrate-and-fire neurons each and a noise-based switching mechanism. I show that such a noise-based switching mechanism naturally accounts for the experimentally observed features of sleep-wake switching during early infancy - random alternating activity bouts occur as a consequence of noise (provided inhibition is strong relative to excitation), bout durations are exponential (due to a lack of memory within the system), and cross-population inhibition or intrapopulation excitatory coupling provide mechanisms for changing and independently regulated sleep and wake bout means. PMID:26802484

  3. A Simplified model of mutually inhibitory sleep-active and wake-active neuronal populations employing a noise-based switching mechanism.

    PubMed

    Patel, Mainak

    2016-04-01

    Infant rats switch randomly between the sleeping and waking states; during early infancy (up to postnatal day 8), sleep and wake bouts are random, brief (with means on the order of several seconds) and exponentially distributed, with the length of a particular bout independent of the length of prior bouts. As the rat ages during this early period, mean sleep and wake bout lengths gradually increase, though sleep and wake bouts remain exponentially distributed. Additionally, sleep and wake bouts are regulated independently of each other - alterations in the development of sleep (wake) bouts has no impact on the regulation wake (sleep) bouts. Sleep and wake bout behavior is associated with the activity of mutually inhibitory sleep-active and wake-active brainstem populations. In this work, I employ a simplified biophysical model of two mutually inhibitory populations consisting of ten integrate-and-fire neurons each and a noise-based switching mechanism. I show that such a noise-based switching mechanism naturally accounts for the experimentally observed features of sleep-wake switching during early infancy - random alternating activity bouts occur as a consequence of noise (provided inhibition is strong relative to excitation), bout durations are exponential (due to a lack of memory within the system), and cross-population inhibition or intrapopulation excitatory coupling provide mechanisms for changing and independently regulated sleep and wake bout means.

  4. Cerebral Activity Associated with Transient Sleep-Facilitated Reduction in Motor Memory Vulnerability to Interference

    PubMed Central

    Albouy, Geneviève; King, Bradley R.; Schmidt, Christina; Desseilles, Martin; Dang-Vu, Thien Thanh; Balteau, Evelyne; Phillips, Christophe; Degueldre, Christian; Orban, Pierre; Benali, Habib; Peigneux, Philippe; Luxen, André; Karni, Avi; Doyon, Julien; Maquet, Pierre; Korman, Maria

    2016-01-01

    Motor memory consolidation is characterized, in part, by a sleep-facilitated decrease in susceptibility to subsequent interfering experiences. Surprisingly, the cerebral substrates supporting this phenomenon have never been examined. We used fMRI to investigate the neural correlates of the influence of sleep on interference to motor memory consolidation. Healthy young adults were trained on a sequential motor task, and subsequently practiced a second competing sequence after an interval including diurnal sleep or wakefulness. Participants were then retested on the initial sequence 8 h and 24 h (including nocturnal sleep) after training. Results demonstrated that a post-training nap significantly protected memory against interference at 8 h and modulated the link between cerebral activity and behavior, such that a smaller post-interference decrease in cortico-striatal activity was associated with better performance. Interestingly, the protective effect of a nap was only transitory, as both groups performed similarly at 24 h. Activity in cortico-striatal areas that was disrupted during the day, presumably due to interference and accentuated in the absence of a nap, was restored overnight. Altogether, our findings offer the first evidence that cortico-striatal areas play a critical role in the transient sleep-facilitated reduction in motor memory vulnerability and in the overnight restoration of previously degraded memories. PMID:27725727

  5. The use of actigraphy in the monitoring of sleep and activity in ADHD: A meta-analysis.

    PubMed

    De Crescenzo, Franco; Licchelli, Serena; Ciabattini, Marco; Menghini, Deny; Armando, Marco; Alfieri, Paolo; Mazzone, Luigi; Pontrelli, Giuseppe; Livadiotti, Susanna; Foti, Francesca; Quested, Digby; Vicari, Stefano

    2016-04-01

    Attention deficit/hyperactivity disorder (ADHD) is the most common neurobehavioral disorder of childhood. There is an increasing need to find objective measures and markers of the disorder in order to assess the efficacy of the therapies and to improve follow-up strategies. Actigraphy is an objective method for recording motor activity and sleep parameters that has been used in many studies in ADHD. Our meta-analysis aimed to assess the current evidence on the role of actigraphy in both the detection of changes in motor activity and in sleep patterns in ADHD. A systematic review was carried out to find studies comparing children with unmedicated ADHD versus controls, using actigraphic measures as an outcome. The primary outcome measures were "sleep duration" and daytime "activity mean". As secondary outcome measures we analyzed "sleep onset latency", "sleep efficiency" and "wake after sleep onset". Twenty-four studies comprising 2179 children were included in this review. We show evidence that ADHD compared to typically developing children present a higher mean activity during structured sessions, a similar sleep duration, and a moderately altered sleep pattern. This study highlights the role of actigraphy as an objective tool for the ambulatory monitoring of sleep and activity in ADHD. PMID:26163053

  6. Dopaminergic D2 receptor is a key player in the substantia nigra pars compacta neuronal activation mediated by REM sleep deprivation.

    PubMed

    Proença, Mariana B; Dombrowski, Patrícia A; Da Cunha, Claudio; Fischer, Luana; Ferraz, Anete C; Lima, Marcelo M S

    2014-01-01

    Currently, several studies addresses the novel link between sleep and dopaminergic neurotransmission, focusing most closely on the mechanisms by which Parkinson's disease (PD) and sleep may be intertwined. Therefore, variations in the activity of afferents during the sleep cycles, either at the level of DA cell bodies in the ventral tegmental area (VTA) and/or substantia nigra pars compacta (SNpc) or at the level of dopamine (DA) terminals in limbic areas may impact functions such as memory. Accordingly, we performed striatal and hippocampal neurochemical quantifications of DA, serotonin (5-HT) and metabolites of rats intraperitoneally treated with haloperidol (1.5 mg/kg) or piribedil (8 mg/kg) and submitted to REM sleep deprivation (REMSD) and sleep rebound (REB). Also, we evaluated the effects of REMSD on motor and cognitive parameters and SNpc c-Fos neuronal immunoreactivity. The results indicated that DA release was strongly enhanced by piribedil in the REMSD group. In opposite, haloperidol prevented that alteration. A c-Fos activation characteristic of REMSD was affected in a synergic manner by piribedil, indicating a strong positive correlation between striatal DA levels and nigral c-Fos activation. Hence, we suggest that memory process is severely impacted by both D2 blockade and REMSD and was even more by its combination. Conversely, the activation of D2 receptor counteracted such memory impairment. Therefore, the present evidence reinforce that the D2 receptor is a key player in the SNpc neuronal activation mediated by REMSD, as a consequence these changes may have direct impact for cognitive and sleep abnormalities found in patients with PD. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.

  7. Physiological time structure of the tibialis anterior motor activity during sleep in mice, rats and humans.

    PubMed

    Silvani, Alessandro; Lo Martire, Viviana; Salvadè, Agnese; Bastianini, Stefano; Ferri, Raffaele; Berteotti, Chiara; Baracchi, Francesca; Pace, Marta; Bassetti, Claudio L; Zoccoli, Giovanna; Manconi, Mauro

    2015-12-01

    The validation of rodent models for restless legs syndrome (Willis-Ekbom disease) and periodic limb movements during sleep requires knowledge of physiological limb motor activity during sleep in rodents. This study aimed to determine the physiological time structure of tibialis anterior activity during sleep in mice and rats, and compare it with that of healthy humans. Wild-type mice (n = 9) and rats (n = 8) were instrumented with electrodes for recording the electroencephalogram and electromyogram of neck muscles and both tibialis anterior muscles. Healthy human subjects (31 ± 1 years, n = 21) underwent overnight polysomnography. An algorithm for automatic scoring of tibialis anterior electromyogram events of mice and rats during non-rapid eye movement sleep was developed and validated. Visual scoring assisted by this algorithm had inter-rater sensitivity of 92-95% and false-positive rates of 13-19% in mice and rats. The distribution of the time intervals between consecutive tibialis anterior electromyogram events during non-rapid eye movement sleep had a single peak extending up to 10 s in mice, rats and human subjects. The tibialis anterior electromyogram events separated by intervals <10 s mainly occurred in series of two-three events, their occurrence rate in humans being lower than in mice and similar to that in rats. In conclusion, this study proposes reliable rules for scoring tibialis anterior electromyogram events during non-rapid eye movement sleep in mice and rats, demonstrating that their physiological time structure is similar to that of healthy young human subjects. These results strengthen the basis for translational rodent models of periodic limb movements during sleep and restless legs syndrome/Willis-Ekbom disease.

  8. Serum sLOX-1 Levels Are Correlated with the Presence and Severity of Obstructive Sleep Apnea

    PubMed Central

    Xu, Chun-Yan; Li, Da-Ju; Wu, Chun-Ling; Lou, Han-Jian; Jiang, Hong-Wei

    2015-01-01

    Context: Inflammation plays a critical role in the development and progression of obstructive sleep apnea (OSA). Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) activation is involved in the pathophysiology of inflammatory process-related disorders. Objective: This study aims to investigate whether serum soluble LOX-1 (sLOX-1) levels are associated with the presence and severity of OSA. Materials and Methods: A total of 137 OSA patients and 78 controls were recruited in this study. Serum sLOX-1 levels were measured by enzyme-linked immunosorbent assay. The severity of OSA was assessed by the apnea–hypopnea index (AHI). Results: OSA patients had significantly higher serum sLOX-1 levels compared with controls. Serum sLOX-1 levels elevated with the increment of OSA severity. sLOX-1 was the independent predictor of OSA. Serum sLOX-1 levels were significantly correlated with AHI and high-sensitivity C-reactive protein levels. Conclusions: Serum sLOX-1 levels were independently correlated with the presence and severity of OSA. These findings revealed that sLOX-1 might function as a potential biomarker for monitoring the development and progression of OSA. PMID:25825846

  9. Physical Activity, Study Sitting Time, Leisure Sitting Time, and Sleep Time Are Differently Associated With Obesity in Korean Adolescents

    PubMed Central

    Kong, Il Gyu; Lee, Hyo-Jeong; Kim, So Young; Sim, Songyong; Choi, Hyo Geun

    2015-01-01

    Abstract Low physical activity, long leisure sitting time, and short sleep time are risk factors for obesity, but the association with study sitting time is unknown. The objective of this study was to evaluate the association between these factors and obesity. We analyzed the association between physical activity, study sitting time, leisure sitting time, and sleep time and subject weight (underweight, healthy weight, overweight, and obese), using data from a large population-based survey, the 2013 Korea Youth Risk Behavior Web-based Survey. Data from 53,769 participants were analyzed using multinomial logistic regression analyses with complex sampling. Age, sex, region of residence, economic level, smoking, stress level, physical activity, sitting time for study, sitting time for leisure, and sleep time were adjusted as the confounders. Low physical activity (adjusted odds ratios [AORs] = 1.03, 1.12) and long leisure sitting time (AORs = 1.15, 1.32) were positively associated with overweight and obese. Low physical activity (AOR = 1.33) and long leisure sitting time (AOR = 1.12) were also associated with underweight. Study sitting time was negatively associated with underweight (AOR = 0.86) but was unrelated to overweight (AOR = 0.97, 95% confidence interval [CI] = 0.91–1.03) and obese (AOR = 0.94, 95% CI = 0.84–1.04). Sleep time (<6 hours; ≥6 hours, <7 hours; ≥7 hours, <8 hours) was adversely associated with underweight (AORs = 0.67, 0.79, and 0.88) but positively associated with overweight (AORs = 1.19, 1.17, and 1.08) and obese (AORs = 1.33, 1.36, and 1.30) in a dose–response relationship. In adolescents, increasing physical activity, decreasing leisure sitting time, and obtaining sufficient sleep would be beneficial in maintaining a healthy weight. However, study sitting time was not associated with overweight or obese. PMID:26554807

  10. Epileptiform activity in children with developmental dysphasia: quantification of discharges in overnight sleep video-EEG.

    PubMed

    Neuschlová, Lenka; Sterbová, Katalin; Zácková, Jitka; Komárek, Vladimír

    2007-12-01

    We present results of analysis of overnight sleep video-EEG in 8 patients with developmental dysphasia and rolandic discharges. We evaluated the incidence of epileptiform discharges (expressed as paroxysmal activity density) at one or more electrodes in different sleep stages in three different periods of the night (after falling asleep, around midnight and before awakening). The difference of paroxysmal activity density was never higher than 21%, indicating that quantifying the discharges in the whole night recording is not necessary. We also showed that two independent foci may differ in the frequency of discharges. We propose a scheme for evaluation of EEG reflecting both frequency and distribution of discharges.

  11. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer.

    PubMed

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J; Adams, David J; Leung, Hing Y

    2016-07-19

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition. PMID:27357679

  12. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer

    PubMed Central

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G.; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J.; Adams, David J.; Leung, Hing Y.

    2016-01-01

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition. PMID:27357679

  13. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer.

    PubMed

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J; Adams, David J; Leung, Hing Y

    2016-07-19

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition.

  14. Monounsaturated Fatty Acids Prevent the Aversive Effects of Obesity on Locomotion, Brain Activity, and Sleep Behavior

    PubMed Central

    Sartorius, Tina; Ketterer, Caroline; Kullmann, Stephanie; Balzer, Michelle; Rotermund, Carola; Binder, Sonja; Hallschmid, Manfred; Machann, Jürgen; Schick, Fritz; Somoza, Veronika; Preissl, Hubert; Fritsche, Andreas; Häring, Hans-Ulrich; Hennige, Anita M.

    2012-01-01

    Fat and physical inactivity are the most evident factors in the pathogenesis of obesity, and fat quality seems to play a crucial role for measures of glucose homeostasis. However, the impact of dietary fat quality on brain function, behavior, and sleep is basically unknown. In this study, mice were fed a diet supplemented with either monounsaturated fatty acids (MUFAs) or saturated fatty acids (SFAs) and their impact on glucose homeostasis, locomotion, brain activity, and sleep behavior was evaluated. MUFAs and SFAs led to a significant increase in fat mass but only feeding of SFAs was accompanied by glucose intolerance in mice. Radiotelemetry revealed a significant decrease in cortical activity in SFA-mice whereas MUFAs even improved activity. SFAs decreased wakefulness and increased non–rapid eye movement sleep. An intracerebroventricular application of insulin promoted locomotor activity in MUFA-fed mice, whereas SFA-mice were resistant. In humans, SFA-enriched diet led to a decrease in hippocampal and cortical activity determined by functional magnetic resonance imaging techniques. Together, dietary intake of MUFAs promoted insulin action in the brain with its beneficial effects for cortical activity, locomotion, and sleep, whereas a comparable intake of SFAs acted as a negative modulator of brain activity in mice and humans. PMID:22492529

  15. Nonparametric Signal Extraction and Measurement Error in the Analysis of Electroencephalographic Activity During Sleep.

    PubMed

    Crainiceanu, Ciprian M; Caffo, Brian S; Di, Chong-Zhi; Punjabi, Naresh M

    2009-06-01

    We introduce methods for signal and associated variability estimation based on hierarchical nonparametric smoothing with application to the Sleep Heart Health Study (SHHS). SHHS is the largest electroencephalographic (EEG) collection of sleep-related data, which contains, at each visit, two quasi-continuous EEG signals for each subject. The signal features extracted from EEG data are then used in second level analyses to investigate the relation between health, behavioral, or biometric outcomes and sleep. Using subject specific signals estimated with known variability in a second level regression becomes a nonstandard measurement error problem. We propose and implement methods that take into account cross-sectional and longitudinal measurement error. The research presented here forms the basis for EEG signal processing for the SHHS.

  16. Role of physical activity and sleep duration in growth and body composition of preschool-aged children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of physical activity patterns and sleep duration on growth and body composition of preschool-aged children remains unresolved. Aims were (1) to delineate cross-sectional associations among physical activity components, sleep, total energy expenditure (TEE), and body size and composition; ...

  17. Quantitative EEG Monitoring of Vigilance: Effects of Sleep Deprivation, Circadian Phase and Sympathetic Activation

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan

    1999-01-01

    Shuttle astronauts typically sleep only 6 to 6.5 hours per day while in orbit. This sleep loss is related to recurrent sleep cycle shifting--due to mission-dependent orbital mechanics and mission duration requirements-- and associated circadian displacement of sleep, the operational demands of space flight, noise and space motion sickness. Such sleep schedules are known to produce poor subjective sleep quality, daytime sleepiness, reduced attention, negative mood, slower reaction times, and impaired daytime alertness. Countermeasures to allow crew members to obtain an adequate amount of sleep and maintain adequate levels of neurobehavioral performance are being developed and investigated. However, it is necessary to develop methods that allow effective and attainable in-flight monitoring of vigilance to evaluate the effectiveness of these countermeasures and to detect and predict online critical decrements in alertness/performance. There is growing evidence to indicate that sleep loss and associated decrements in neurobehavioral function are reflected in the spectral composition of the electroencephalogram (EEG) during wakefulness as well as in the incidence of slow eye movements recorded by the electro-oculogram (EOG). Further-more, our preliminary data indicated that these changes in the EEG during wakefulness are more pronounced when subjects are in a supine posture, which mimics some of the physiologic effects of microgravity. Therefore, we evaluate the following hypotheses: (1) that during a 40-hour period of wakefulness (i.e., one night of total sleep deprivation) neurobehavioral function deteriorates, the incidence of slow eye-movements and EEG power density in the theta frequencies increases especially in frontal areas of the brain; (2) that the sleep deprivation induced deterioration of neurobehavioral function and changes in the incidence of slow eye movements and the spectral composition of the EEG are more pronounced when subjects are in a supine

  18. Morning pentraxin3 levels reflect obstructive sleep apnea–related acute inflammation

    PubMed Central

    Kobukai, Yusuke; Koyama, Takashi; Ito, Hiroshi

    2014-01-01

    This study investigated morning levels of pentraxin3 (PTX3) as a sensitive biomarker for acute inflammation in patients with obstructive sleep apnea (OSA). A total of 61 consecutive patients with OSA were divided into two groups: non-to-mild (n = 20) and moderate-to-severe (n = 41) OSA based on their apnea-hypopnea index (AHI) score. Those patients with moderate-to-severe OSA were further divided into continuous positive airway pressure (CPAP) treated (n = 21) and non-CPAP-treated (n = 20) groups. Morning and evening serum PTX3 and high-sensitivity (hs) C-reactive protein (CRP) levels were measured before and after 3 mo of CPAP therapy. The baseline hs-CRP and PTX3 levels were higher in patients with moderate-to-severe OSA than in those with non-to-mild OSA. Moreover, the serum PTX3 levels, but not the hs-CRP levels, were significantly higher after than before sleep in the moderate-to-severe OSA group (morning PTX3, 1.96 ± 0.52; evening PTX3, 1.71 ± 0.44 ng/ml). OSA severity as judged using the AHI was significantly correlated with serum PTX3 levels but not hs-CRP levels. The highest level of correlation was found between the AHI and morning PTX3 levels (r = 0.563, P < 0.001). CPAP therapy reduced evening and morning serum hs-CRP and PTX3 levels in patients with moderate-to-severe OSA; however, the reduction in PTX3 levels in the morning was greater than that in the evening (morning −29.8 ± 16.7% vs. evening −12.6 ± 26.8%, P = 0.029). Improvement in the AHI score following CPAP therapy was strongly correlated with reduced morning PTX3 levels(r = 0.727, P < 0.001). Based on these results, morning PTX3 levels reflect OSA-related acute inflammation and are a useful marker for improvement in OSA following CPAP therapy. PMID:25237185

  19. PM2: a partitioning-mining-measuring method for identifying progressive changes in older adults' sleeping activity.

    PubMed

    Lin, Qiang; Zhang, Daqing; Connelly, Kay; Zhou, Xingshe; Ni, Hongbo

    2014-01-01

    As people age, their health typically declines, resulting in difficulty in performing daily activities. Sleep-related problems are common issues with older adults, including shifts in circadian rhythms. A detection method is proposed to identify progressive changes in sleeping activity using a three-step process: partitioning, mining, and measuring. Specifically, the original spatiotemporal representation of each sleeping activity instance was first transformed into a sequence of equal-sized segments, or symbols, via a partitioning process. A data-mining-based algorithm was proposed to find symbols that are not present in all instances of a sleeping activity. Finally, a measuring process was responsible for evaluating the changes in these symbols. Experimental evaluation conducted on a group of datasets of older adults showed that the proposed method is able to identify progressive changes in sleeping activity.

  20. Repeated Sleep Restriction in Adolescent Rats Altered Sleep Patterns and Impaired Spatial Learning/Memory Ability

    PubMed Central

    Yang, Su-Rong; Sun, Hui; Huang, Zhi-Li; Yao, Ming-Hui; Qu, Wei-Min

    2012-01-01

    Study Objectives: To investigate possible differences in the effect of repeated sleep restriction (RSR) during adolescence and adulthood on sleep homeostasis and spatial learning and memory ability. Design: The authors examined electroencephalograms of rats as they were subjected to 4-h daily sleep deprivation that continued for 7 consecutive days and assessed the spatial learning and memory by Morris water maze test (WMT). Participants: Adolescent and adult rats. Measurements and Results: Adolescent rats exhibited a similar amount of rapid eye movement (REM) and nonrapid eye movement (NREM) sleep with higher slow wave activity (SWA, 0.5-4 Hz) and fewer episodes and conversions with prolonged durations, indicating they have better sleep quality than adult rats. After RSR, adult rats showed strong rebound of REM sleep by 31% on sleep deprivation day 1; this value was 37% on sleep deprivation day 7 in adolescents compared with 20-h baseline level. On sleep deprivation day 7, SWA in adult and adolescent rats increased by 47% and 33%, and such elevation lasted for 5 h and 7 h, respectively. Furthermore, the authors investigated the effects of 4-h daily sleep deprivation immediately after the water maze training sessions on spatial cognitive performance. Adolescent rats sleep-restricted for 7 days traveled a longer distance to find the hidden platform during the acquisition training and had fewer numbers of platform crossings in the probe trial than those in the control group, something that did not occur in the sleep-deprived adult rats. Conclusions: Repeated sleep restriction (RSR) altered sleep profiles and mildly impaired spatial learning and memory capability in adolescent rats. Citation: Yang SR; Sun H; Huang ZL; Yao MH; Qu WM. Repeated sleep restriction in adolescent rats altered sleep patterns and impaired spatial learning/memory ability. SLEEP 2012;35(6):849-859. PMID:22654204

  1. Managing fatigue: It really is about sleep.

    PubMed

    Darwent, David; Dawson, Drew; Paterson, Jessica L; Roach, Gregory D; Ferguson, Sally A

    2015-09-01

    Biomathematical models of fatigue can assist organisations to estimate the fatigue consequences of a roster before operations commence. These estimates do not account for the diversity of sleep behaviours exhibited by employees. The purpose of this study was to develop sleep transfer functions describing the likely distributions of sleep around fatigue level estimates produced by a commercial biomathematical model of fatigue. Participants included 347 (18 females, 329 males) train drivers working commercial railway operations in Australia. They provided detailed information about their sleep behaviours using sleep diaries and wrist activity monitors. On average, drivers slept for 7.7 (±1.7)h in the 24h before work and 15.1 (±2.5)h in the 48h before work. The amount of sleep obtained by drivers before shifts differed only marginally across morning, afternoon and night shifts. Shifts were also classified into one of seven ranked categories using estimated fatigue level scores. Higher fatigue score categories were associated with significant reductions in the amount of sleep obtained before shifts, but there was substantial within-category variation. The study findings demonstrate that biomathematical models of fatigue have utility for designing round-the-clock rosters that provide sufficient sleep opportunities for the average employee. Robust variability in the amount of sleep obtained by drivers indicate that models are relatively poor tools for ensuring that all employees obtain sufficient sleep. These findings demonstrate the importance of developing approaches for managing the sleep behaviour of individual employees. PMID:26026969

  2. Managing fatigue: It really is about sleep.

    PubMed

    Darwent, David; Dawson, Drew; Paterson, Jessica L; Roach, Gregory D; Ferguson, Sally A

    2015-09-01

    Biomathematical models of fatigue can assist organisations to estimate the fatigue consequences of a roster before operations commence. These estimates do not account for the diversity of sleep behaviours exhibited by employees. The purpose of this study was to develop sleep transfer functions describing the likely distributions of sleep around fatigue level estimates produced by a commercial biomathematical model of fatigue. Participants included 347 (18 females, 329 males) train drivers working commercial railway operations in Australia. They provided detailed information about their sleep behaviours using sleep diaries and wrist activity monitors. On average, drivers slept for 7.7 (±1.7)h in the 24h before work and 15.1 (±2.5)h in the 48h before work. The amount of sleep obtained by drivers before shifts differed only marginally across morning, afternoon and night shifts. Shifts were also classified into one of seven ranked categories using estimated fatigue level scores. Higher fatigue score categories were associated with significant reductions in the amount of sleep obtained before shifts, but there was substantial within-category variation. The study findings demonstrate that biomathematical models of fatigue have utility for designing round-the-clock rosters that provide sufficient sleep opportunities for the average employee. Robust variability in the amount of sleep obtained by drivers indicate that models are relatively poor tools for ensuring that all employees obtain sufficient sleep. These findings demonstrate the importance of developing approaches for managing the sleep behaviour of individual employees.

  3. Spatial patterns of neuronal activity in rat cerebral cortex during non-rapid eye movement sleep.

    PubMed

    Wanger, Tim; Wetzel, Wolfram; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen

    2015-11-01

    It is commonly assumed that cortical activity in non-rapid eye movement sleep (NREMS) is spatially homogeneous on the mesoscopic scale. This is partly due to the limited observational scope of common metabolic or imaging methods in sleep. We used the recently developed technique of thallium-autometallography (TlAMG) to visualize mesoscopic patterns of activity in the sleeping cortex with single-cell resolution. We intravenously injected rats with the lipophilic chelate complex thallium diethyldithiocarbamate (TlDDC) during spontaneously occurring periods of NREMS and mapped the patterns of neuronal uptake of the potassium (K+) probe thallium (Tl+). Using this method, we show that cortical activity patterns are not spatially homogeneous during discrete 5-min episodes of NREMS in unrestrained rats-rather, they are complex and spatially diverse. Along with a relative predominance of infragranular layer activation, we find pronounced differences in metabolic activity of neighboring neuronal assemblies, an observation which lends support to the emerging paradigm that sleep is a distributed process with regulation on the local scale.

  4. Ventromedial prefrontal cortex activity and rapid eye movement sleep are associated with subsequent fear expression in human subjects.

    PubMed

    Spoormaker, V I; Gvozdanovic, G A; Sämann, P G; Czisch, M

    2014-05-01

    In humans, activity patterns in the ventromedial prefrontal cortex (vmPFC) have been found to be predictive of subsequent fear memory consolidation. Pioneering work in rodents has further shown that vmPFC-amygdala theta synchronization is correlated with fear memory consolidation. We aimed to evaluate whether vmPFC activity during fear conditioning is (1) correlated with fear expression the subsequent day and whether (2) this relationship is mediated by rapid eye movement (REM) sleep. We analyzed data from 17 young healthy subjects undergoing a fear conditioning task, followed by a fear extinction task 24 h later, both recorded with simultaneous skin conductance response (SCR) and functional magnetic resonance imaging measurements, with a polysomnographically recorded night sleep in between. Our results showed a correlation between vmPFC activity during fear conditioning and subsequent REM sleep amount, as well as between REM sleep amount and SCR to the conditioned stimulus 24 h later. Moreover, we observed a significant correlation between vmPFC activity during fear conditioning and SCR responses during extinction, which was no longer significant after controlling for REM sleep amount. vmPFC activity during fear conditioning was further correlated with sleep latency. Interestingly, hippocampus activity during fear conditioning was correlated with stage 2 and stage 4 sleep amount. Our results provide preliminary evidence that the relationship between REM sleep and fear conditioning and extinction observed in rodents can be modeled in healthy human subjects, highlighting an interrelated set of potentially relevant trait markers.

  5. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves.

    PubMed

    Frauscher, Birgit; von Ellenrieder, Nicolás; Ferrari-Marinho, Taissa; Avoli, Massimo; Dubeau, François; Gotman, Jean

    2015-06-01

    Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated ('down', hyperpolarized) and an activated state ('up', depolarized). The 'up' state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the 'up' state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ∼ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the 'up' and 'down' states. Spike and high frequency oscillation density was highest during the transition from the 'up' to the 'down' state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the 'down' to the 'up' state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow waves that are frequent, but not

  6. Self-Reported Sleep Disturbance is associated with Lower CD4 Count and 24-Hour Urinary Dopamine Levels in Ethnic Minority Women Living with HIV

    PubMed Central

    Seay, Julia S.; McIntosh, Roger; Fekete, Erin M.; Fletcher, Mary Ann; Kumar, Mahendra; Schneiderman, Neil; Antoni, Michael H.

    2013-01-01

    Background Sleep disturbance is associated with dopamine dysregulation, which can negatively impact immune status. Individuals living with HIV experience more sleep difficulties, and poor sleep may compound immune decrements associated with HIV infection. Little research has examined associations between sleep, dopamine, and immune status (CD4 count) in individuals with HIV. As ethnic minority women living with HIV (WLWH) are at heightened risk for HIV disease progression, we related sleep reports to both CD4 count and dopamine levels in a cohort of ethnic minority WLWH. Methods Participants were 139 low-income WLWH (ages 20–62; 78.3% African-American or Caribbean) who reported both overall sleep quality and sleep disturbance on the Pittsburgh Sleep Quality Index (PSQI). CD4 count and HIV viral load were measured via morning peripheral venous blood samples, and concentrations of dopamine were measured via 24-hour urine collection. Covariates included HIV viral load, length of time since HIV diagnosis, HAART adherence, perceived stress and depression. Results After controlling for all covariates, greater sleep disturbance was associated with significantly lower CD4 count (β = −.20, p = .03) and lower levels of dopamine (β = −.25, p = .04). Poorer overall sleep quality was marginally associated with lower CD4 count (β = −.16, p = .08), and was not associated with dopamine. Conclusion Our analyses suggest that sleep disturbance is independently related with immune status and dopamine levels in WLWH. Lower levels of dopamine may indicate neuroendocrine dysregulation and may impact immune and health status. Results highlight sleep disturbance rather than overall sleep quality as potentially salient to neuroendocrine and immune status in ethnic minority WLWH. PMID:23850225

  7. Evaluating the Workload of On-Call Psychiatry Residents: Which Activities Are Associated with Sleep Loss?

    ERIC Educational Resources Information Center

    Cooke, Brian K.; Cooke, Erinn O.; Sharfstein, Steven S.

    2012-01-01

    Objective: The purpose of this study was to review the workload inventory of on-call psychiatry residents and to evaluate which activities were associated with reductions in on-call sleep. Method: A prospective cohort study was conducted, following 20 psychiatry residents at a 231-bed psychiatry hospital, from July 1, 2008 through June 30, 2009.…

  8. The importance of physical activity and sleep for affect on stressful days: Two intensive longitudinal studies.

    PubMed

    Flueckiger, Lavinia; Lieb, Roselind; Meyer, Andrea H; Witthauer, Cornelia; Mata, Jutta

    2016-06-01

    We investigated the potential stress-buffering effect of 3 health behaviors-physical activity, sleep quality, and snacking-on affect in the context of everyday life in young adults. In 2 intensive longitudinal studies with up to 65 assessment days over an entire academic year, students (Study 1, N = 292; Study 2, N = 304) reported stress intensity, sleep quality, physical activity, snacking, and positive and negative affect. Data were analyzed using multilevel regression analyses. Stress and positive affect were negatively associated; stress and negative affect were positively associated. The more physically active than usual a person was on a given day, the weaker the association between stress and positive affect (Study 1) and negative affect (Studies 1 and 2). The better than usual a person's sleep quality had been during the previous night, the weaker the association between stress and positive affect (Studies 1 and 2) and negative affect (Study 2). The association between daily stress and positive or negative affect did not differ as a function of daily snacking (Studies 1 and 2). On stressful days, increasing physical activity or ensuring high sleep quality may buffer adverse effects of stress on affect in young adults. These findings suggest potential targets for health-promotion and stress-prevention programs, which could help reduce the negative impact of stress in young adults. (PsycINFO Database Record

  9. Relationships between sleeping habits, sedentary leisure activities and childhood overweight and obesity.

    PubMed

    Busto-Zapico, Raquel; Amigo-Vázquez, Isaac; Peña-Suárez, Elsa; Fernández-Rodríguez, Concepción

    2014-01-01

    The aim of this study is to show how sedentary leisure activities and a decrease in hours of sleep interact to lead to an increase in the body mass index (BMI) in children. A random sample of 291 nine-year-old and ten-year-old schoolchildren from Asturias (Spain) was taken. A cross-sectional design was used, the children's weight and height were measured and an individual interview was carried out. Using path analysis, a model was tested in which bedtime, the number of hours spent sleeping and sedentary leisure activities were the independent variables and the BMI was the dependent variable. The results show that sedentary leisure activities and hours spent sleeping are predictors of a greater BMI in children. Moreover, the effect of the time spent sleeping is mediated by sedentary leisure activities. That is to say, it is those children who go to bed late and who use that extra time to watch the television or play with the computer that tend to have a greater BMI. Attention should be drawn to the importance of this fact and to the implications it may have for education and children's health.

  10. Adenosine A2A receptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus

    PubMed Central

    Kumar, Sunil; Rai, Seema; Hsieh, Kung-Chiao; McGinty, Dennis; Alam, Md. Noor

    2013-01-01

    The median preoptic nucleus (MnPN) and the ventrolateral preoptic area (VLPO) are two hypothalamic regions that have been implicated in sleep regulation, and both nuclei contain sleep-active GABAergic neurons. Adenosine is an endogenous sleep regulatory substance, which promotes sleep via A1 and A2A receptors (A2AR). Infusion of A2AR agonist into the lateral ventricle or into the subarachnoid space underlying the rostral basal forebrain (SS-rBF), has been previously shown to increase sleep. We examined the effects of an A2AR agonist, CGS-21680, administered into the lateral ventricle and the SS-rBF on sleep and c-Fos protein immunoreactivity (Fos-IR) in GABAergic neurons in the MnPN and VLPO. Intracerebroventricular administration of CGS-21680 during the second half of lights-on phase increased sleep and increased the number of MnPN and VLPO GABAergic neurons expressing Fos-IR. Similar effects were found with CGS-21680 microinjection into the SS-rBF. The induction of Fos-IR in preoptic GABAergic neurons was not secondary to drug-induced sleep, since CGS-21680 delivered to the SS-rBF significantly increased Fos-IR in MnPN and VLPO neurons in animals that were not permitted to sleep. Intracerebroventricular infusion of ZM-241385, an A2AR antagonist, during the last 2 h of a 3-h period of sleep deprivation caused suppression of subsequent recovery sleep and reduced Fos-IR in MnPN and VLPO GABAergic neurons. Our findings support a hypothesis that A2AR-mediated activation of MnPN and VLPO GABAergic neurons contributes to adenosinergic regulation of sleep. PMID:23637137

  11. Respiratory muscle activity during sleep-induced periodic breathing in the elderly.

    PubMed

    Hudgel, D W; Hamilton, H B

    1994-11-01

    During spontaneous sleep-induced periodic breathing in elderly subjects, we have found that tidal volume oscillations are related to reciprocal oscillations in upper airway resistance. The purpose of this study was to address the mechanism of the relationship between oscillations in tidal volume and upper airway resistance in elderly subjects with sleep-induced periodic breathing. We hypothesized that the spontaneous periodic breathing observed in non-rapid-eye-movement (NREM) sleep in elderly subjects would be closely related to fluctuations in upper airway resistance and not to changes in central motor drive to ventilatory pump muscles. Therefore, in eight healthy elderly subjects, we measured costal margin chest wall peak moving time average electrical inspiratory activity (CW EMG), ventilation variables, and upper airway resistance during sleep. Five of eight subjects had significant sine wave oscillations in upper airway resistance and tidal volume. For these five subjects, there was a reciprocal exponential relationship between peak upper airway inspiratory resistance and tidal volume or minute ventilation [r = -0.60 +/- 0.20 (SD) (P < 0.05) and -0.55 +/- 0.26 (P < 0.05), respectively], such that as resistance increased, ventilation decreased. The relationship between CW EMG and tidal volume or minute ventilation was quite low (r = 0.12 +/- 0.32 and -0.07 +/- 0.27, respectively). This study demonstrated that oscillations in ventilation during NREM sleep in elderly subjects were significantly related to fluctuations in upper airway resistance but were not related to changes in chest wall muscle electrical activity. Therefore, changes in upper airway caliber likely contribute to oscillations in ventilation seen during sleep-induced periodic breathing in the elderly.

  12. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions.

    PubMed

    Hirotsu, Camila; Tufik, Sergio; Andersen, Monica Levy

    2015-11-01

    Poor sleep quality due to sleep disorders and sleep loss is highly prevalent in the modern society. Underlying mechanisms show that stress is involved in the relationship between sleep and metabolism through hypothalamic-pituitary-adrenal (HPA) axis activation. Sleep deprivation and sleep disorders are associated with maladaptive changes in the HPA axis, leading to neuroendocrine dysregulation. Excess of glucocorticoids increase glucose and insulin and decrease adiponectin levels. Thus, this review provides overall view of the relationship between sleep, stress, and metabolism from basic physiology to pathological conditions, highlighting effective treatments for metabolic disturbances. PMID:26779321

  13. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions

    PubMed Central

    Hirotsu, Camila; Tufik, Sergio; Andersen, Monica Levy

    2015-01-01

    Poor sleep quality due to sleep disorders and sleep loss is highly prevalent in the modern society. Underlying mechanisms show that stress is involved in the relationship between sleep and metabolism through hypothalamic–pituitary–adrenal (HPA) axis activation. Sleep deprivation and sleep disorders are associated with maladaptive changes in the HPA axis, leading to neuroendocrine dysregulation. Excess of glucocorticoids increase glucose and insulin and decrease adiponectin levels. Thus, this review provides overall view of the relationship between sleep, stress, and metabolism from basic physiology to pathological conditions, highlighting effective treatments for metabolic disturbances. PMID:26779321

  14. Profiling physical activity, diet, screen and sleep habits in Portuguese children.

    PubMed

    Pereira, Sara; Katzmarzyk, Peter T; Gomes, Thayse Natacha; Borges, Alessandra; Santos, Daniel; Souza, Michele; dos Santos, Fernanda K; Chaves, Raquel N; Champagne, Catherine M; Barreira, Tiago V; Maia, José A R

    2015-06-02

    Obesity in children is partly due to unhealthy lifestyle behaviours, e.g., sedentary activity and poor dietary choices. This trend has been seen globally. To determine the extent of these behaviours in a Portuguese population of children, 686 children 9.5 to 10.5 years of age were studied. Our aims were to: (1) describe profiles of children's lifestyle behaviours; (2) identify behaviour pattern classes; and (3) estimate combined effects of individual/ socio-demographic characteristics in predicting class membership. Physical activity and sleep time were estimated by 24-h accelerometry. Nutritional habits, screen time and socio-demographics were obtained. Latent Class Analysis was used to determine unhealthy lifestyle behaviours. Logistic regression analysis predicted class membership. About 78% of children had three or more unhealthy lifestyle behaviours, while 0.2% presented no risk. Two classes were identified: Class 1-Sedentary, poorer diet quality; and Class 2-Insufficiently active, better diet quality, 35% and 65% of the population, respectively. More mature children (Odds Ratio (OR) = 6.75; 95%CI = 4.74-10.41), and boys (OR = 3.06; 95% CI = 1.98-4.72) were more likely to be overweight/obese. However, those belonging to Class 2 were less likely to be overweight/obese (OR = 0.60; 95% CI = 0.43-0.84). Maternal education level and household income did not significantly predict weight status (p ≥ 0.05).

  15. Profiling Physical Activity, Diet, Screen and Sleep Habits in Portuguese Children

    PubMed Central

    Pereira, Sara; Katzmarzyk, Peter T.; Gomes, Thayse Natacha; Borges, Alessandra; Santos, Daniel; Souza, Michele; dos Santos, Fernanda K.; Chaves, Raquel N.; Champagne, Catherine M.; Barreira, Tiago V.; Maia, José A.R.

    2015-01-01

    Obesity in children is partly due to unhealthy lifestyle behaviours, e.g., sedentary activity and poor dietary choices. This trend has been seen globally. To determine the extent of these behaviours in a Portuguese population of children, 686 children 9.5 to 10.5 years of age were studied. Our aims were to: (1) describe profiles of children’s lifestyle behaviours; (2) identify behaviour pattern classes; and (3) estimate combined effects of individual/socio-demographic characteristics in predicting class membership. Physical activity and sleep time were estimated by 24-h accelerometry. Nutritional habits, screen time and socio-demographics were obtained. Latent Class Analysis was used to determine unhealthy lifestyle behaviours. Logistic regression analysis predicted class membership. About 78% of children had three or more unhealthy lifestyle behaviours, while 0.2% presented no risk. Two classes were identified: Class 1-Sedentary, poorer diet quality; and Class 2-Insufficiently active, better diet quality, 35% and 65% of the population, respectively. More mature children (Odds Ratio (OR) = 6.75; 95%CI = 4.74–10.41), and boys (OR = 3.06; 95% CI = 1.98–4.72) were more likely to be overweight/obese. However, those belonging to Class 2 were less likely to be overweight/obese (OR = 0.60; 95% CI = 0.43–0.84). Maternal education level and household income did not significantly predict weight status (p ≥ 0.05). PMID:26043034

  16. Differences in Overweight and Obesity among Children from Migrant and Native Origin: The Role of Physical Activity, Dietary Intake, and Sleep Duration.

    PubMed

    Labree, Wim; van de Mheen, Dike; Rutten, Frans; Rodenburg, Gerda; Koopmans, Gerrit; Foets, Marleen

    2015-01-01

    A cross-sectional survey was performed to examine to what degree differences in overweight and obesity between native Dutch and migrant primary school children could be explained by differences in physical activity, dietary intake, and sleep duration among these children. Subjects (n=1943) were primary school children around the age of 8-9 years old and their primary caregivers: native Dutch children (n=1546), Turkish children (n=93), Moroccan children (n=66), other non-western children (n=105), and other western children (n=133). Multivariate regressions and logistic regressions were used to examine the relationship between migrant status, child's behavior, and BMI or prevalence of overweight, including obesity (logistic). Main explanatory variables were physical activity, dietary intake, and sleep duration. We controlled for age, sex, parental educational level, and parental BMI. Although sleep duration, dietary intake of fruit, and dietary intake of energy-dense snacks were associated with BMI, ethnic differences in sleep duration and dietary intake did not have a large impact on ethnic differences in overweight and obesity among children from migrant and native origin. It is suggested that future preventive strategies to reduce overweight and obesity, in general, consider the role of sleep duration. Also, cross-cultural variation in preparation of food among specific migrant groups, focusing on fat, sugar, and salt, deserves more attention. In order to examine which other variables may clarify ethnic differences in overweight and obesity, future research is needed.

  17. Physical Activity, Mind Wandering, Affect, and Sleep: An Ecological Momentary Assessment

    PubMed Central

    Mackenzie, Michael; Roberts, Sarah; Crato, Ines; Ehlers, Diane; McAuley, Edward

    2016-01-01

    Background A considerable portion of daily thought is spent in mind wandering. This behavior has been related to positive (eg, future planning, problem solving) and negative (eg, unhappiness, impaired cognitive performance) outcomes. Objective Based on previous research suggesting future-oriented (ie, prospective) mind wandering may support autobiographical planning and self-regulation, this study examined associations between hourly mind wandering and moderate-to-vigorous physical activity (MVPA), and the impact of affect and daily sleep on these relations. Methods College-aged adults (N=33) participated in a mobile phone-delivered ecological momentary assessment study for 1 week. Sixteen hourly prompts assessing mind wandering and affect were delivered daily via participants’ mobile phones. Perceived sleep quality and duration was assessed during the first prompt each day, and participants wore an ActiGraph accelerometer during waking hours throughout the study week. Results Study findings suggest present-moment mind wandering was positively associated with future MVPA (P=.03), and this relationship was moderated by affective state (P=.04). Moreover, excessive sleep the previous evening was related to less MVPA across the following day (P=.007). Further, mind wandering was positively related to activity only among those who did not oversleep (P=.007). Conclusions Together, these results have implications for multiple health behavior interventions targeting physical activity, affect, and sleep. Researchers may also build on this work by studying these relationships in the context of other important behaviors and psychosocial factors (eg, tobacco use, depression, loneliness). PMID:27580673

  18. Medullary respiratory neural activity during hypoxia in NREM and REM sleep in the cat.

    PubMed

    Lovering, Andrew T; Fraigne, Jimmy J; Dunin-Barkowski, Witali L; Vidruk, Edward H; Orem, John M

    2006-02-01

    Intact unanesthetized cats hyperventilate in response to hypocapnic hypoxia in both wakefulness and sleep. This hyperventilation is caused by increases in diaphragmatic activity during inspiration and expiration. In this study, we recorded 120 medullary respiratory neurons during sleep in hypoxia. Our goal was to understand how these neurons change their activity to increase breathing efforts and frequency in response to hypoxia. We found that the response of medullary respiratory neurons to hypoxia was variable. While the activity of a small majority of inspiratory (58%) and expiratory (56%) neurons was increased in response to hypoxia, the activity of a small majority of preinspiratory (57%) neurons was decreased. Cells that were more active in hypoxia had discharge rates that averaged 183% (inspiratory decrementing), 154% (inspiratory augmenting), 155% (inspiratory), 230% (expiratory decrementing), 191% (expiratory augmenting), and 136% (expiratory) of the rates in normoxia. The response to hypoxia was similar in non-rapid-eye-movement (NREM) and REM sleep. Additionally, changes in the profile of activity were observed in all cell types examined. These changes included advanced, prolonged, and abbreviated patterns of activity in response to hypoxia; for example, some inspiratory neurons prolonged their discharge into expiration during the postinspiratory period in hypoxia but not in normoxia. Although changes in activity of the inspiratory neurons could account for the increased breathing efforts and activity of the diaphragm observed during hypoxia, the mechanisms responsible for the change in respiratory rate were not revealed by our data.

  19. Unhealthy sleep practices, conduct problems, and daytime functioning during adolescence.

    PubMed

    Lin, Wen-Hsu; Yi, Chin-Chun

    2015-02-01

    Although sleep has been linked to activities in various domains of life, one under-studied link is the relationship between unhealthy sleep practices and conduct problems among adolescents. The present study investigates the influence of adolescents' unhealthy sleep practices-short sleep (e.g., less than 6 h a day), inconsistent sleep schedule (e.g., social jetlag), and sleep problems-on conduct problems (e.g., substance use, fighting, and skipping class). In addition, this study examines unhealthy sleep practices in relationship to adolescent emotional well-being, defiant attitudes, and academic performance, as well as these three domains as possible mediators of the longitudinal association between sleep practices and conduct problems. Three waves of the Taiwan Youth Project (n = 2,472) were used in this study. At the first time-point examined in this study, youth (51% male) were aged 13-17 (M = 13.3). The results indicated that all three measures of unhealthy sleep practices were related to conduct problems, such that short sleep, greater social jetlag, and more serious sleep problems were concurrently associated with greater conduct problems. In addition, short sleep and sleep problems predicted conduct problems one year later. Furthermore, these three unhealthy sleep practices were differently related to poor academic performance, low levels of emotional well-being, and defiant attitudes, and some significant indirect effects on later conduct problems through these three attributes were found. Cultural differences and suggestions for prevention are discussed. PMID:25148793

  20. Prioritizing sleep for healthy work schedules

    PubMed Central

    2012-01-01

    Good sleep is advantageous to the quality of life. Sleep-related benefits are particularly helpful for the working class, since poor or inadequate amounts of sleep degrade work productivity and overall health. This review paper explores the essential role of sleep in healthy work schedules and primarily focuses on the timing of sleep in relation to the work period (that is, before, during and after work). Data from laboratory, field and modeling studies indicate that consistent amounts of sleep prior to work are fundamental to improved performance and alertness in the workplace. In addition, planned naps taken during work maintain appropriate levels of waking function for both daytime and night-time work. Clearly, sufficient sleep after work is vital in promoting recovery from fatigue. Recent data also suggest that the time interval between shifts should be adjusted according to the biological timing of sleep. Although sleep is more likely to be replaced by job and other activities in the real life, research shows that it is worthwhile to revise the work schedules in order to optimize sleep before, sometime during and after the work period. Therefore, we suggest establishing work-sleep balance, similar to work-life balance, as a principle for designing and improving work schedules. PMID:22738292

  1. Ostriches Sleep like Platypuses

    PubMed Central

    Lesku, John A.; Meyer, Leith C. R.; Fuller, Andrea; Maloney, Shane K.; Dell'Omo, Giacomo

    2011-01-01

    Mammals and birds engage in two distinct states of sleep, slow wave sleep (SWS) and rapid eye movement (REM) sleep. SWS is characterized by slow, high amplitude brain waves, while REM sleep is characterized by fast, low amplitude waves, known as activation, occurring with rapid eye movements and reduced muscle tone. However, monotremes (platypuses and echidnas), the most basal (or ‘ancient’) group of living mammals, show only a single sleep state that combines elements of SWS and REM sleep, suggesting that these states became temporally segregated in the common ancestor to marsupial and eutherian mammals. Whether sleep in basal birds resembles that of monotremes or other mammals and birds is unknown. Here, we provide the first description of brain activity during sleep in ostriches (Struthio camelus), a member of the most basal group of living birds. We found that the brain activity of sleeping ostriches is unique. Episodes of REM sleep were delineated by rapid eye movements, reduced muscle tone, and head movements, similar to those observed in other birds and mammals engaged in REM sleep; however, during REM sleep in ostriches, forebrain activity would flip between REM sleep-like activation and SWS-like slow waves, the latter reminiscent of sleep in the platypus. Moreover, the amount of REM sleep in ostriches is greater than in any other bird, just as in platypuses, which have more REM sleep than other mammals. These findings reveal a recurring sequence of steps in the evolution of sleep in which SWS and REM sleep arose from a single heterogeneous state that became temporally segregated into two distinct states. This common trajectory suggests that forebrain activation during REM sleep is an evolutionarily new feature, presumably involved in performing new sleep functions not found in more basal animals. PMID:21887239

  2. Adverse cognitive effects of high-fat diet in a murine model of sleep apnea are mediated by NADPH oxidase activity.

    PubMed

    Nair, D; Ramesh, V; Gozal, D

    2012-12-27

    Intermittent hypoxia (IH) during sleep, such as occurs in sleep apnea (SA), induces increased NADPH oxidase activation and deficits in hippocampal learning and memory. Similar to IH, high fat-refined carbohydrate diet (HFD), a frequent occurrence in patients with SA, can also induce similar oxidative stress and cognitive deficits under normoxic conditions, suggesting that excessive NADPH oxidase activity may underlie CNS dysfunction in both conditions. The effect of HFD and IH during the light period on two forms of spatial learning in the water maze as well as on markers of oxidative stress was assessed in male mice lacking NADPH oxidase activity (gp91phox⁻/Y) and wild-type littermates fed on HFD. On a standard place training task, gp91phox⁻/Y displayed normal learning, and was protected from the spatial learning deficits observed in wild-type littermates exposed to IH. Moreover, anxiety levels were increased in wild-type mice exposed to HFD and IH as compared to controls, while no changes emerged in gp91phox⁻/Y mice. Additionally, wild-type mice, but not gp91phox⁻/Y mice, had significantly elevated levels of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) in hippocampal lysates following IH-HFD exposures. The cognitive deficits of obesity and westernized diets and those of sleep disorders that are characterized by IH during sleep are both mediated, at least in part, by excessive NADPH oxidase activity.

  3. Objective assessment of sleep and sleep problems in older adults with intellectual disabilities.

    PubMed

    van de Wouw, Ellen; Evenhuis, Heleen M; Echteld, Michael A

    2013-08-01

    Little is known about sleep in older adults with intellectual disability (ID). Aim of this study was to investigate sleep and its associated factors, and to estimate the prevalence of sleep problems in this population. This study was part of the healthy aging and intellectual disabilities study. Sleep was assessed using the Actiwatch, a watch-like device that measures sleep and wakefulness based on movement activity. Participants (n=551) wore the Actiwatch at least seven days and nights continuously. Variables of interest were time in bed (TIB), sleep onset latency, total sleep time, wake after sleep onset, sleep efficiency and get-up time latency. Multivariate analyses were used to investigate factors associated with these sleep parameters. Provisional definitions were drafted to estimate the prevalence of sleep problems. Mean TIB was 630 min. Longer TIB was independently associated with higher age, more severe level of ID, living at a central facility, wheelchair dependence, female gender and depressive symptoms (adjusted R(2)=.358, F-change=8.302, p<.001). The prevalence of sleep problems was 23.9% settling problem, 63.1% night waking problem, 20.9% short sleep time, 9.3% early waking problem. 72% of the participants had at least one problem, 12.3% had three or more sleep problems. Older adults with ID lie in bed very long, and the prevalence of sleep problems is high. Further research should focus on causality of the relationships found in this study, and effects of sleep problems on health and well-being in this population. PMID:23692894

  4. Activation of the prostaglandin system in response to sleep loss in healthy humans: Potential mediator of increased spontaneous pain

    PubMed Central

    Haack, Monika; Lee, Erin; Cohen, Daniel; Mullington, Janet M.

    2009-01-01

    Insufficient duration of sleep is a highly prevalent behavioral pattern in society that has been shown to cause an increase in spontaneous pain and sensitivity to noxious stimuli. Prostaglandins (PG), in particular PGE2, are key mediators of inflammation and pain, and we investigated whether PGE2 is a potential mediator in sleep-loss induced changes in nociceptive processing. Twenty-four participants (7 females, age 35. 17.1yrs) stayed for 7 days in the Clinical Research Center. After two baseline days, participants were randomly assigned to either three days of 88 hours of total sleep deprivation (TSD, N=15) or 8 hours of sleep per night (N=9), followed by a night of recovery sleep. Participants rated the intensity of various pain-related symptoms every two hours across waking periods on computerized visual analog scales. PGE2 was measured in 24h-urine collections during baseline and third sleep deprivation day. Spontaneous pain, including headache, muscle pain, stomach pain, generalized body pain, and physical discomfort significantly increased by 5 to 14 units on a 100-unit scale during TSD, compared to the sleep condition. Urinary PGE2 metabolite significantly increased by about 30% in TSD over sleep condition. TSD-induced increase in spontaneous pain, in particular headache and muscle pain, was significantly correlated with increase in PGE2 metabolite. Activation of the PGE2 system appears to be a potential mediator of increased spontaneous pain in response to insufficient sleep. PMID:19560866

  5. On the Need of Objective Vigilance Monitoring: Effects of Sleep Loss on Target Detection and Task-Negative Activity Using Combined EEG/fMRI

    PubMed Central

    Czisch, Michael; Wehrle, Renate; Harsay, Helga A.; Wetter, Thomas C.; Holsboer, Florian; Sämann, Philipp G.; Drummond, Sean P. A.

    2012-01-01

    Sleep loss affects attention by reducing levels of arousal and alertness. The neural mechanisms underlying the compensatory efforts of the brain to maintain attention and performance after sleep deprivation (SD) are not fully understood. Previous neuroimaging studies of SD have not been able to separate the effects of reduced arousal from the effects of SD on cerebral responses to cognitive challenges. Here, we used a simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) approach to study the effects of 36 h of total sleep deprivation (TSD). Specifically, we focused on changes in selective attention processes as induced by an active acoustic oddball task, with the ability to isolate runs with objective EEG signs of high (SDalert) or reduced (SDsleepy) vigilance. In the SDalert condition, oddball task-related activity appears to be sustained by compensatory co-activation of insular regions, but task-negative activity in the right posterior node of the default mode network is altered following TSD. In the SDsleepy condition, oddball task-positive activity was massively impaired, but task-negative activation was showing levels comparable with the control condition after a well-rested night. Our results suggest that loss of strict negative correlation between oddball task-positive and task-negative activation reflects the effects of TSD, while the actual state of vigilance during task performance can affects either task-related or task-negative activity, depending on the exact vigilance level. PMID:22557992

  6. Comparing a Combination of Validated Questionnaires and Level III Portable Monitor with Polysomnography to Diagnose and Exclude Sleep Apnea

    PubMed Central

    Pereira, Effie J.; Driver, Helen S.; Stewart, Steven C.; Fitzpatrick, Michael F.

    2013-01-01

    Study Objectives: Questionnaires have been validated as screening tools in adult populations at risk for obstructive sleep apnea (OSA). Portable monitors (PM) have gained acceptance for confirmation of OSA in some patients with a high pretest probability of the disorder. We evaluated the combined diagnostic utility of 3 validated questionnaires and a Level III PM in the diagnosis and exclusion of OSA, as compared with in-laboratory polysomnography (PSG) derived apnea hypopnea index (AHI). Methods: Consecutive patients referred to the Sleep Disorders Clinic completed 3 testing components: (1) 3 questionnaires (Berlin, STOP-Bang, and Sleep Apnea Clinical Score [SACS]); (2) Level III at-home PM (MediByte) study; and (3) Level I in-laboratory PSG. The utility of individual questionnaires, the Level III device alone, and the combination of questionnaires and the Level III device were compared with the PSG. Results: One hundred twenty-eight patients participated in the study (84M, 44F), mean ± SD age 50 ± 12.3years, BMI 31 ± 6.6 kg/m2. At a PSG threshold AHI = 10, the PM derived respiratory disturbance index (RDI) had a sensitivity and specificity of 79% and 86%, respectively. The sensitivity and specificity for the other screening tools were: Berlin 88%, 25%; STOP-Bang 90%, 25%; SACS 33%, 75%. The sensitivity and specificity at a PSG AHI = 15 were: PM 77%, 95%; Berlin 91%, 28%; STOP-Bang 93%, 28%; SACS 35%, 78%. Conclusions: Questionnaires alone, possibly given a reliance on sleepiness as a symptom, cannot reliably rule out the presence of OSA. Objective physiological measurement is critical for the diagnosis and exclusion of OSA. Citation: Pereira EJ; Driver HS; Stewart SC; Fitzpatrick MF. Comparing a combination of validated questionnaires and level III portable monitor with polysomnography to diagnose and exclude sleep apnea. J Clin Sleep Med 2013;9(12):1259-1266. PMID:24340287

  7. Associations of Sleep Quality and Awake Physical Activity with Fluctuations in Nocturnal Blood Pressure in Patients with Cardiovascular Risk Factors

    PubMed Central

    Kadoya, Manabu; Koyama, Hidenori; Kurajoh, Masafumi; Naka, Mariko; Miyoshi, Akio; Kanzaki, Akinori; Kakutani, Miki; Shoji, Takuhito; Moriwaki, Yuji; Yamamoto, Tetsuya; Inaba, Masaaki; Namba, Mitsuyoshi

    2016-01-01

    Background Sleep quality and awake physical activity are important behavioral factors involved in the occurrence of cardiovascular diseases, potentially through nocturnal blood pressure (BP) changes. However, the impacts of quantitatively measured sleep quality and awake physical activity on BP fluctuation, and their relationships with several candidate causal factors for nocturnal hypertension are not well elucidated. Methods This cross-sectional study included 303 patients registered in the HSCAA study. Measurements included quantitatively determined sleep quality parameters and awake physical activity obtained by actigraph, nocturnal systolic BP (SBP) fall [100 × (1- sleep SBP/awake SBP ratio)], apnea hypopnea index, urinary sodium and cortisol secretion, plasma aldosterone concentration and renin activity, insulin resistance index, parameters of heart rate variability (HRV), and plasma brain-derived neurotrophic factor (BDNF). Results Simple regression analysis showed that time awake after sleep onset (r = -0.150), a parameter of sleep quality, and awake physical activity (r = 0.164) were significantly correlated with nocturnal SBP fall. Among those, time awake after sleep onset (β = -0.179) and awake physical activity (β = 0.190) were significantly and independently associated with nocturnal SBP fall in multiple regression analysis. In a subgroup of patients without taking anti-hypertensive medications, both time awake after sleep onset (β = -0.336) and awake physical activity (β = 0.489) were more strongly and independently associated with nocturnal SBP falls. Conclusion Sleep quality and awake physical activity were found to be significantly associated with nocturnal SBP fall, and that relationship was not necessarily confounded by candidate causal factors for nocturnal hypertension. PMID:27166822

  8. Electrophysiological correlates of sleep homeostasis in freely behaving rats

    PubMed Central

    Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Tononi, Giulio

    2011-01-01

    The electrical activity of the brain does not only reflect the current level of arousal, ongoing behavior or involvement in a specific task, but is also influenced by what kind of activity, and how much sleep and waking occurred before. The best marker of sleep-wake history is the electroencephalogram (EEG) spectral power in slow frequencies (slow-wave activity, 0.5–4 Hz, SWA) during sleep, which is high after extended wakefulness and low after consolidated sleep. While sleep homeostasis has been well characterized in various species and experimental paradigms, the specific mechanisms underlying homeostatic changes in brain activity or their functional significance remain poorly understood. However, several recent studies in humans, rats and computer simulations shed light on the cortical mechanisms underlying sleep regulation. First, it was found that the homeostatic changes in SWA can be fully accounted for by the variations in amplitude and slope of EEG slow waves, which are in turn determined by the efficacy of cortico-cortical connectivity. Specifically, the slopes of sleep slow waves were steeper in early sleep compared to late sleep. Second, the slope of cortical evoked potentials, which is an established marker of synaptic strength, was steeper after waking and decreased after sleep. Furthermore, cortical long-term potentiation (LTP) was partially occluded if it was induced after a period of waking, but it could again be fully expressed after sleep. Finally, multiunit activity recordings during sleep revealed that cortical neurons fired more synchronously after waking, and less so after a period of consolidated sleep. The decline of all these electrophysiological measures - the slopes of slow waves and evoked potentials and neuronal synchrony – during sleep correlated with the decline of the traditional marker of sleep homeostasis, EEG SWA. Taken together, these data suggest that homeostatic changes in sleep EEG are the result of altered neuronal firing

  9. Delta Activity at Sleep Onset and Cognitive Performance in Community-Dwelling Older Adults

    PubMed Central

    Kawai, Makoto; Beaudreau, Sherry A.; Gould, Christine E.; Hantke, Nathan C.; Jordan, Josh T.; O'Hara, Ruth

    2016-01-01

    Study Objectives: Frontal intermittent rhythmic delta activity (FIRDA) has long been considered to be an abnormal variant in the electroencephalogram (EEG) among older adults. Prior work also indicates a predominance of slow wave EEG activity among patients with dementia. However, instability of state control occurring with aging generally and among many neurodegenerative diseases raises the possibility that FIRDA might represent the intrusion of sleep related elements of the EEG into the waking state. We examined delta activity at sleep onset (DASO) in community-dwelling, older adults without dementia, and examined whether this activity is related to poorer cognitive performance. Methods: 153 community-dwelling, older adults without dementia underwent overnight polysomnography and measures of global cognition, delayed verbal memory, information processing speed, attention, inhibition, verbal naming, and visuospatial ability. Delta activity during sleep/wake transitions (scored either as Waking or N1) was analyzed visually. Results: Participants were 83 women and 70 men, mean age 71.3 ± 0.6 y. DASO was present in 30 participants (19.6%). Age, years of education, sex, and body mass index did not differ between DASO (+) and (−) groups. Multiple regression analyses indicated faster reading of the Stroop color words in DASO (+) subjects (P = 0.007). None of the other cognitive domains differed between the two groups. Conclusions: DASO was relatively common in our sample of community-dwelling, older adults without dementia. DASO was not associated with poorer performance on any cognitive domain. Instead, individuals with DASO demonstrated better performance on a simple reading task. Although these findings suggest that an abnormal EEG activity may represent normal variation, our work underscores the importance of distinguishing DASO from FIRDA when examining sleep in older adults. Commentary: A commentary on this article appears in this issue on page 725. Citation

  10. Sleep loss, learning capacity and academic performance.

    PubMed

    Curcio, Giuseppe; Ferrara, Michele; De Gennaro, Luigi

    2006-10-01

    At a time when several studies have highlighted the relationship between sleep, learning and memory processes, an in-depth analysis of the effects of sleep deprivation on student learning ability and academic performance would appear to be essential. Most studies have been naturalistic correlative investigations, where sleep schedules were correlated with school and academic achievement. Nonetheless, some authors were able to actively manipulate sleep in order to observe neurocognitive and behavioral consequences, such as learning, memory capacity and school performance. The findings strongly suggest that: (a) students of different education levels (from school to university) are chronically sleep deprived or suffer from poor sleep quality and consequent daytime sleepiness; (b) sleep quality and quantity are closely related to student learning capacity and academic performance; (c) sleep loss is frequently associated with poor declarative and procedural learning in students; (d) studies in which sleep was actively restricted or optimized showed, respectively, a worsening and an improvement in neurocognitive and academic performance. These results may been related to the specific involvement of the prefrontal cortex (PFC) in vulnerability to sleep loss. Most methodological limitations are discussed and some future research goals are suggested. PMID:16564189

  11. Mental toughness, sleep disturbances, and physical activity in patients with multiple sclerosis compared to healthy adolescents and young adults

    PubMed Central

    Sadeghi Bahmani, Dena; Gerber, Markus; Kalak, Nadeem; Lemola, Sakari; Clough, Peter J; Calabrese, Pasquale; Shaygannejad, Vahid; Pühse, Uwe; Holsboer-Trachsler, Edith; Brand, Serge

    2016-01-01

    Background Multiple sclerosis (MS) is the most common chronic autoimmune demyelinating and inflammatory disease of the central nervous system, afflicting both the body and mind. The risk of suffering from MS is 2.5–3.5 times greater in females than in males. While there is extant research on fatigue, depression, and cognitive impairment in patients with MS during its clinical course, there is a lack of research focusing on sleep, psychological functioning, and physical activity (PA) at the point of disease onset. The aims of the present study were therefore, to assess the markers of mental toughness (MT) as a dimension of psychological functioning, sleep disturbances (SD), and PA among patients at the moment of disease onset and to compare these with the corresponding values for healthy adolescents and young adults. Methods A total of 23 patients with MS at disease onset (mean age =32.31 years; 91% females), 23 healthy adolescents (mean age =17.43 years; 82% females), and 25 healthy young adults (mean age =20.72 years; 80% females) took part in the study. They completed questionnaires covering sociodemographic data, MT, SD, and PA. Results Patients with MS had similar scores for MT traits as those in healthy adolescents and healthy young adults, and equivalent levels of moderate-intensity PA and SD as young adults. MS patients reported lower levels of vigorous PA compared to both healthy adolescents and young adults. Conclusion The pattern of the results of the present study suggests that the onset of MS is not associated with poor MT, poor sleep, or reduced moderate-intensity PA. Lower levels of vigorous PA were observed in MS patients. Low levels of vigorous PA may lead to decreased cardiorespiratory fitness in patients with MS and, in the long run, to reduced cardiovascular health and degraded psychological functioning. PMID:27390520

  12. Self-organized dynamical complexity in human wakefulness and sleep: Different critical brain-activity feedback for conscious and unconscious states

    NASA Astrophysics Data System (ADS)

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo

    2015-09-01

    Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.

  13. Self-organized dynamical complexity in human wakefulness and sleep: Different critical brain-activity feedback for conscious and unconscious states

    PubMed Central

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo

    2016-01-01

    Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing

  14. Self-organized dynamical complexity in human wakefulness and sleep: different critical brain-activity feedback for conscious and unconscious states.

    PubMed

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo

    2015-09-01

    Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.

  15. Self-organized dynamical complexity in human wakefulness and sleep: different critical brain-activity feedback for conscious and unconscious states.

    PubMed

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo

    2015-09-01

    Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing

  16. PROCESSES ORGANISMIC: SLEEP AND DREAMING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews studies relating biological and mental activity during sleep and discusses how sleep affects waking behavior. The research shows that sleep and waking behaviors—-both physiological and cognitive--are more directly related than previously imagined....

  17. Genetic Dissociation of Daily Sleep and Sleep Following Thermogenetic Sleep Deprivation in Drosophila

    PubMed Central

    Dubowy, Christine; Moravcevic, Katarina; Yue, Zhifeng; Wan, Joy Y.; Van Dongen, Hans P.A.; Sehgal, Amita

    2016-01-01

    Study Objectives: Sleep rebound—the increase in sleep that follows sleep deprivation—is a hallmark of homeostatic sleep regulation that is conserved across the animal kingdom. However, both the mechanisms that underlie sleep rebound and its relationship to habitual daily sleep remain unclear. To address this, we developed an efficient thermogenetic method of inducing sleep deprivation in Drosophila that produces a substantial rebound, and applied the newly developed method to assess sleep rebound in a screen of 1,741 mutated lines. We used data generated by this screen to identify lines with reduced sleep rebound following thermogenetic sleep deprivation, and to probe the relationship between habitual sleep amount and sleep following thermogenetic sleep deprivation in Drosophila. Methods: To develop a thermogenetic method of sleep deprivation suitable for screening, we thermogenetically stimulated different populations of wake-promoting neurons labeled by Gal4 drivers. Sleep rebound following thermogenetically-induced wakefulness varies across the different sets of wake-promoting neurons that were stimulated, from very little to quite substantial. Thermogenetic activation of neurons marked by the c584-Gal4 driver produces both strong sleep loss and a substantial rebound that is more consistent within genotypes than rebound following mechanical or caffeine-induced sleep deprivation. We therefore used this driver to induce sleep deprivation in a screen of 1,741 mutagenized lines generated by the Drosophila Gene Disruption Project. Flies were subjected to 9 h of sleep deprivation during the dark period and released from sleep deprivation 3 h before lights-on. Recovery was measured over the 15 h following sleep deprivation. Following identification of lines with reduced sleep rebound, we characterized baseline sleep and sleep depth before and after sleep deprivation for these hits. Results: We identified two lines that consistently exhibit a blunted increase in the

  18. c-fos expression in brainstem premotor interneurons during cholinergically induced active sleep in the cat.

    PubMed

    Morales, F R; Sampogna, S; Yamuy, J; Chase, M H

    1999-11-01

    The present study was undertaken to identify trigeminal premotor interneurons that become activated during carbachol-induced active sleep (c-AS). Their identification is a critical step in determining the neural circuits responsible for the atonia of active sleep. Accordingly, the retrograde tracer cholera toxin subunit B (CTb) was injected into the trigeminal motor nuclei complex to label trigeminal interneurons. To identify retrograde-labeled activated neurons, immunocytochemical techniques, designed to label the Fos protein, were used. Double-labeled (i.e., CTb(+), Fos(+)) neurons were found exclusively in the ventral portion of the medullary reticular formation, medial to the facial motor nucleus and lateral to the inferior olive. This region, which encompasses the ventral portion of the nucleus reticularis gigantocellularis and the nucleus magnocellularis, corresponds to the rostral portion of the classic inhibitory region of. This region contained a mean of 606 +/- 41.5 ipsilateral and 90 +/- 32.0 contralateral, CTb-labeled neurons. These cells were of medium-size with an average soma diameter of 20-35 micrometer. Approximately 55% of the retrogradely labeled cells expressed c-fos during a prolonged episode of c-AS. We propose that these neurons are the interneurons responsible for the nonreciprocal postsynaptic inhibition of trigeminal motoneurons that occurs during active sleep. PMID:10531453

  19. Ongoing Network State Controls the Length of Sleep Spindles via Inhibitory Activity

    PubMed Central

    Barthó, Péter; Slézia, Andrea; Mátyás, Ferenc; Faradzs-Zade, Lejla; Ulbert, István; Harris, Kenneth D.; Acsády, László

    2014-01-01

    Summary Sleep spindles are major transient oscillations of the mammalian brain. Spindles are generated in the thalamus; however, what determines their duration is presently unclear. Here, we measured somatic activity of excitatory thalamocortical (TC) cells together with axonal activity of reciprocally coupled inhibitory reticular thalamic cells (nRTs) and quantified cycle-by-cycle alterations in their firing in vivo. We found that spindles with different durations were paralleled by distinct nRT activity, and nRT firing sharply dropped before the termination of all spindles. Both initial nRT and TC activity was correlated with spindle length, but nRT correlation was more robust. Analysis of spindles evoked by optogenetic activation of nRT showed that spindle probability, but not spindle length, was determined by the strength of the light stimulus. Our data indicate that during natural sleep a dynamically fluctuating thalamocortical network controls the duration of sleep spindles via the major inhibitory element of the circuits, the nRT. PMID:24945776

  20. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep.

    PubMed

    Urbano, Francisco J; D'Onofrio, Stasia M; Luster, Brennon R; Beck, Paige B; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS.

  1. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    PubMed Central

    Urbano, Francisco J.; D’Onofrio, Stasia M.; Luster, Brennon R.; Beck, Paige B.; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS. PMID:25368599

  2. Subthreshold excitatory activity and motoneuron discharge during REM periods of active sleep.

    PubMed

    Chase, M H; Morales, F R

    1983-09-16

    A striking paradox of the rapid eye movement periods of active sleep, which are typically characterized by the exacerbation of somatomotor atonia, is the occurrence of muscle twitches and jerks. The purpose of this study was to examine the specific motoneuron membrane potential processes responsible for these myoclonic patterns of activity. In lumbar motoneurons, examined intracellularly in the cat prepared for long-term study, these processes consisted of recurrent depolarizing membrane potential shifts and spontaneous action potentials that were either full-sized or of partial amplitude. In addition, the invasion of antidromically induced spikes into the soma was often blocked. Hyperpolarizing potentials were evident in the intervals between spontaneous spikes. Hyperpolarization was also observed immediately before depolarization and spike activity, in contrast to the gradual depolarization of the motoneuron membrane potential that always occurred during wakefulness. Thus, during rapid eye movement periods, in conjunction with muscle twitches and jerks, a strong excitatory input is superimposed on a background of inhibitory input. The unique patterns of membrane potential change that arise thus seem to result from the simultaneous coactivation of excitatory and inhibitory processes. PMID:6310749

  3. Diagnostic Thresholds for Quantitative REM Sleep Phasic Burst Duration, Phasic and Tonic Muscle Activity, and REM Atonia Index in REM Sleep Behavior Disorder with and without Comorbid Obstructive Sleep Apnea

    PubMed Central

    McCarter, Stuart J.; St. Louis, Erik K.; Duwell, Ethan J.; Timm, Paul C.; Sandness, David J.; Boeve, Bradley F.; Silber, Michael H.

    2014-01-01

    Objectives: We aimed to determine whether phasic burst duration and conventional REM sleep without atonia (RSWA) methods could accurately diagnose REM sleep behavior disorder (RBD) patients with comorbid OSA. Design: We visually analyzed RSWA phasic burst durations, phasic, “any,” and tonic muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and conducted automated REM atonia index (RAI) analysis. Group RSWA metrics were analyzed and regression models fit, with receiver operating characteristic (ROC) curves determining the best diagnostic cutoff thresholds for RBD. Both split-night and full-night polysomnographic studies were analyzed. Setting: N/A. Participants: Parkinson disease (PD)-RBD (n = 20) and matched controls with (n = 20) and without (n = 20) OSA. Interventions: N/A. Measurements and Results: All mean RSWA phasic burst durations and muscle activities were higher in PD-RBD patients than controls (P < 0.0001), and RSWA associations with PD-RBD remained significant when adjusting for age, gender, and REM AHI (P < 0.0001). RSWA muscle activity (phasic, “any”) cutoffs for 3-s mini-epoch scorings were submentalis (SM) (15.5%, 21.6%), anterior tibialis (AT) (30.2%, 30.2%), and combined SM/AT (37.9%, 43.4%). Diagnostic cutoffs for 30-s epochs (AASM criteria) were SM 2.8%, AT 11.3%, and combined SM/AT 34.7%. Tonic muscle activity cutoff of 1.2% was 100% sensitive and specific, while RAI (SM) cutoff was 0.88. Phasic muscle burst duration cutoffs were: SM (0.65) and AT (0.79) seconds. Combining phasic burst durations with RSWA muscle activity improved sensitivity and specificity of RBD diagnosis. Conclusions: This study provides evidence for REM sleep without atonia diagnostic thresholds applicable in Parkinson disease-REM sleep behavior disorder (PD-RBD) patient populations with comorbid OSA that may be useful toward distinguishing PD-RBD in typical outpatient populations. Citation: McCarter SJ, St. Louis EK, Duwell EJ, Timm PC

  4. Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice.

    PubMed

    Sakai, K

    2014-02-28

    The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus contains a circadian clock for timing of diverse neuronal, endocrine, and behavioral rhythms, such as the cycle of sleep and wakefulness. Using extracellular single unit recordings, we have determined, for the first time, the discharge activity of individual SCN neurons during the complete wake-sleep cycle in non-anesthetized, head restrained mice. SCN neurons (n=79) were divided into three types according to their regular (type I; n=38) or irregular (type II; n=19) discharge activity throughout the wake-sleep cycle or their quiescent activity during waking and irregular discharge activity during sleep (type III; n=22). The type I and II neurons displayed a long-duration action potential, while the type III neurons displayed either a short-duration or long-duration action potential. The type I neurons discharged exclusively as single isolated spikes, whereas the type II and III neurons fired as single isolated spikes, clusters, or bursts. The type I and II neurons showed wake-active, wake/paradoxical (or rapid eye movement) sleep-active, or state-unrelated activity profiles and were, respectively, mainly located in the ventral or dorsal region of the SCN. In contrast, the type III neurons displayed sleep-active discharge profiles and were mainly located in the lateral region of the SCN. The majority of type I and II neurons tested showed an increase in discharge rate following application of light to the animal's eyes. Of the 289 extra-SCN neurons recorded, those displaying sleep-active discharge profiles were mainly located dorsal to the SCN, whereas those displaying wake-active discharge profiles were mainly located lateral or dorsolateral to the SCN. This study shows heterogeneity of mouse SCN and surrounding anterior hypothalamic neurons and suggests differences in their topographic organization and roles in mammalian circadian rhythms and the regulation of sleep and wakefulness.

  5. Sleep Interacts with Aβ to Modulate Intrinsic Neuronal Excitability

    PubMed Central

    Tabuchi, Masashi; Lone, Shahnaz R.; Liu, Sha; Liu, Qili; Zhang, Julia; Spira, Adam P.; Wu, Mark N.

    2015-01-01

    SUMMARY Background Emerging data suggest an important relationship between sleep and Alzheimer’s Disease (AD), but how poor sleep promotes the development of AD remains unclear. Results Here, using a Drosophila model of AD, we provide evidence suggesting that changes in neuronal excitability underlie the effects of sleep loss on AD pathogenesis. β-amyloid (Aβ) accumulation leads to reduced and fragmented sleep, while chronic sleep deprivation increases Aβ burden. Moreover, enhancing sleep reduces Aβ deposition. Increasing neuronal excitability phenocopies the effects of reducing sleep on Aβ, and decreasing neuronal activity blocks the elevated Aβ accumulation induced by sleep deprivation. At the single neuron level, we find that chronic sleep deprivation, as well as Aβ expression, enhances intrinsic neuronal excitability. Importantly, these data reveal that sleep loss exacerbates Aβ–induced hyperexcitability and suggest that defects in specific K+ currents underlie the hyperexcitability caused by sleep loss and Aβ expression. Finally, we show that feeding levetiracetam, an anti-epileptic medication, to Aβ-expressing flies suppresses neuronal excitability and significantly prolongs their lifespan. Conclusions Our findings directly link sleep loss to changes in neuronal excitability and Aβ accumulation and further suggest that neuronal hyperexcitability is an important mediator of Aβ toxicity. Taken together, these data provide a mechanistic framework for a positive feedback loop, whereby sleep loss and neuronal excitation accelerate the accumulation of Aβ, a key pathogenic step in the development of AD. PMID:25754641

  6. An Exploratory Study of the Effects of Mind-Body Interventions Targeting Sleep on Salivary Oxytocin Levels in Cancer Survivors.

    PubMed

    Lipschitz, David L; Kuhn, Renee; Kinney, Anita Y; Grewen, Karen; Donaldson, Gary W; Nakamura, Yoshio

    2015-07-01

    Cancer survivors experience high levels of distress, associated with a host of negative psychological states, including anxiety, depression, and fear of recurrence, which often lead to sleep problems and reduction in quality of life (QOL) and well-being. As a neuropeptide hormone associated with affiliation, calmness, and well-being, oxytocin may be a useful biological measure of changes in health outcomes in cancer survivors. In this exploratory study, which comprised a subset of participants from a larger study, we evaluated (a) the feasibility and reliability of salivary oxytocin (sOT) levels in cancer survivors and (b) the effects of 2 sleep-focused mind-body interventions, mind-body bridging (MBB) and mindfulness meditation (MM), compared with a sleep hygiene education (SHE) control, on changes in sOT levels in 30 cancer survivors with self-reported sleep disturbance. Interventions were conducted in 3 sessions, once per week for 3 weeks. Saliva samples were collected at baseline, postintervention (~1 week after the last session), and at the 2-month follow-up. In this cancer survivor group, we found that intra-individual sOT levels were fairly stable across the 3 time points, of about 3 months' duration, and mean baseline sOT levels did not differ between females and males and were not correlated with age. Correlations between baseline sOT and self-report measures were weak; however, several of these relationships were in the predicted direction, in which sOT levels were negatively associated with sleep problems and depression and positively associated with cancer-related QOL and well-being. Regarding intervention effects on sOT, baseline-subtracted sOT levels were significantly larger at postintervention in the MBB group as compared with those in SHE. In this sample of cancer survivors assessed for sOT, at postintervention, greater reductions in sleep problems were noted for MBB and MM compared with that of SHE, and increases in mindfulness and self

  7. Cued Reactivation of Motor Learning during Sleep Leads to Overnight Changes in Functional Brain Activity and Connectivity

    PubMed Central

    Cousins, James N.; El-Deredy, Wael; Parkes, Laura M.; Hennies, Nora; Lewis, Penelope A.

    2016-01-01

    Sleep plays a role in memory consolidation. This is demonstrated by improved performance and neural plasticity underlying that improvement after sleep. Targeted memory reactivation (TMR) allows the manipulation of sleep-dependent consolidation through intentionally biasing the replay of specific memories in sleep, but the underlying neural basis of these altered memories remains unclear. We use functional magnetic resonance imaging (fMRI) to show a change in the neural representation of a motor memory after targeted reactivation in slow-wave sleep (SWS). Participants learned two serial reaction time task (SRTT) sequences associated with different auditory tones (high or low pitch). During subsequent SWS, one sequence was reactivated by replaying the associated tones. Participants were retested on both sequences the following day during fMRI. As predicted, they showed faster reaction times for the cued sequence after targeted memory reactivation. Furthermore, increased activity in bilateral caudate nucleus and hippocampus for the cued relative to uncued sequence was associated with time in SWS, while increased cerebellar and cortical motor activity was related to time in rapid eye movement (REM) sleep. Functional connectivity between the caudate nucleus and hippocampus was also increased after targeted memory reactivation. These findings suggest that the offline performance gains associated with memory reactivation are supported by altered functional activity in key cognitive and motor networks, and that this consolidation is differentially mediated by both REM sleep and SWS. PMID:27137944

  8. Long-term facilitation of genioglossus activity is present in normal humans during NREM sleep

    PubMed Central

    Chowdhuri, Susmita; Pierchala, Lisa; Aboubakr, Salah E.; Shkoukani, Mahdi; Badr, M. Safwan

    2008-01-01

    Episodic hypoxia (EH) is followed by increased ventilatory motor output in the recovery period indicative of long-term facilitation (LTF). We hypothesized that episodic hypoxia evokes LTF of genioglossus (GG) muscle activity in humans during non-rapid eye movement sleep (NREM) sleep. We studied 12 normal non-flow limited humans during stable NREM sleep. We induced 10 brief (3 minute) episodes of isocapnic hypoxia followed by 5 minutes of room air. Measurements were obtained during control, hypoxia, and at 5, 10, 20, 30 and 40 minutes of recovery, respectively, for minute ventilation (V̇I), supraglottic pressure (PSG), upper airway resistance (RUA) and phasic GG electromyogram (EMGGG). In addition, sham studies were conducted on room air. During hypoxia there was a significant increase in phasic EMGGG (202.7±24.1% of control, p<0.01) and in V̇I (123.0±3.3% of control, p<0.05); however, only phasic EMGGG demonstrated a significant persistent increase throughout recovery (198.9±30.9%, 203.6±29.9% and 205.4±26.4% of control, at 5, 10, and 20 minutes of recovery, respectively, p<0.01). In multivariate regression analysis, age and phasic EMGGG activity during hypoxia were significant predictors of EMGGG at recovery 20 minutes. No significant changes in any of the measured parameters were noted during sham studies. Conclusion: 1) EH elicits LTF of GG in normal non-flow limited humans during NREM sleep, without ventilatory or mechanical LTF. 2) GG activity during the recovery period correlates with the magnitude of GG activation during hypoxia, and inversely with age. PMID:17945544

  9. Induction of active (REM) sleep and motor inhibition by hypocretin in the nucleus pontis oralis of the cat.

    PubMed

    Xi, Ming-Chu; Fung, Simon J; Yamuy, Jack; Morales, Francisco R; Chase, Michael H

    2002-06-01

    Hypocretin (orexin)-containing neurons in the hypothalamus, which have been implicated in the pathology of narcolepsy, project to nuclei in the brain stem reticular formation that are involved in the control of the behavioral states of sleep and wakefulness. Among these nuclei is the nucleus pontis oralis (NPO). Consequently, the present study was undertaken to determine if the hypocretinergic system provides regulatory input to neurons in the NPO with respect to the generation of the states of sleep and wakefulness. Accordingly, polygraphic recordings and behavioral observations were obtained before and after hypocretin-1 and -2 were microinjected into the NPO in chronic, unanesthetized cats. Microinjections of either hypocretin-1 or -2 elicited, with a short latency, a state of active [rapid eye movement (REM)] sleep that appeared identical to naturally occurring active sleep. The percentage of time spent in active sleep was significantly increased. Dissociated states, which are characterized by the presence of muscle atonia without one or more of the electrophysiological correlates of active sleep, also arose following the injection. The effect of juxtacellular application of hypocretin-1 on the electrical activity of intracellularly recorded NPO neurons was then examined in the anesthetized cat. In this preparation, the application of hypocretin-1 resulted in the depolarization of NPO neurons, an increase in the frequency of their discharge and an increase in their excitability. These latter data represent the first description of the in vivo action of hypocretin on intracellularly recorded neuronal activity and provide evidence that the active sleep-inducing effects of hypocretin are due to a direct excitatory action on NPO neurons. Therefore we suggest that hypocretinergic processes in the NPO may play a role in the generation of active sleep, particularly muscle atonia and therefore are likely to be involved in the pathology of narcolepsy. PMID:12037191

  10. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation.

    PubMed

    Tsunematsu, Tomomi; Ueno, Takafumi; Tabuchi, Sawako; Inutsuka, Ayumu; Tanaka, Kenji F; Hasuwa, Hidetoshi; Kilduff, Thomas S; Terao, Akira; Yamanaka, Akihiro

    2014-05-14

    Melanin-concentrating hormone (MCH) is a neuropeptide produced in neurons sparsely distributed in the lateral hypothalamic area. Recent studies have reported that MCH neurons are active during rapid eye movement (REM) sleep, but their physiological role in the regulation of sleep/wakefulness is not fully understood. To determine the physiological role of MCH neurons, newly developed transgenic mouse strains that enable manipulation of the activity and fate of MCH neurons in vivo were generated using the recently developed knockin-mediated enhanced gene expression by improved tetracycline-controlled gene induction system. The activity of these cells was controlled by optogenetics by expressing channelrhodopsin2 (E123T/T159C) or archaerhodopsin-T in MCH neurons. Acute optogenetic activation of MCH neurons at 10 Hz induced transitions from non-REM (NREM) to REM sleep and increased REM sleep time in conjunction with decreased NREM sleep. Activation of MCH neurons while mice were in NREM sleep induced REM sleep, but activation during wakefulness was ineffective. Acute optogenetic silencing of MCH neurons using archaerhodopsin-T had no effect on any vigilance states. Temporally controlled ablation of MCH neurons by cell-specific expression of diphtheria toxin A increased wakefulness and decreased NREM sleep duration without affecting REM sleep. Together, these results indicate that acute activation of MCH neurons is sufficient, but not necessary, to trigger the transition from NREM to REM sleep and that MCH neurons also play a role in the initiation and maintenance of NREM sleep.

  11. ELECTROMYOGRAPHIC ACTIVITY AT THE BASE AND TIP OF THE TONGUE ACROSS SLEEP-WAKE STATES IN RATS

    PubMed Central

    Lu, Jackie W.; Kubin, Leszek

    2009-01-01

    Obstructive sleep apnea (OSA) patients have elevated tonic and phasic inspiratory activity in the genioglossus and other upper airway muscles during wakefulness; this protects their upper airway from collapse. In this group, sleep-related decrements of upper airway motor tone result in sleep-related upper airway obstructions. We previously reported that in the rat, a species widely used to study the neural mechanisms of both sleep and breathing, lingual electromyographic activity (EMG) is minimal or absent during slow-wave sleep (SWS) and then gradually increases after the onset of rapid eye movement sleep (REMS) due to the appearance of large phasic bursts. Here, we investigated whether sleep-wake patterns and respiratory modulation of lingual EMG depend on the site of EMG recording within the tongue. In nine chronically instrumented rats, we recorded from 17 sites within the tongue and from the diaphragm across sleep-wake states. We quantified lingual EMG in successive 10 s intervals of continuous 2 h recordings (1–3 pm). We found that sleep-wake patterns of lingual EMG did not differ between the base and tip of the tongue, and that respiratory modulation was extremely rare regardless of the recording site. We also determined that the often rhythmic lingual bursts during REMS do not occur with respiratory rhythmicity. This pattern differs from that in OSA subjects who, unlike rats, have collapsible upper airway, exhibit prominent respiratory-modulation of upper airway motor tone during quiet wakefulness, retain considerable tonic and inspiratory phasic activity during SWS, and show nadirs of activity during REMS. PMID:19539786

  12. [Prevention and treatment of sleep disorders through regulation] of sleeping habits].

    PubMed

    Onen, S H; Onen, F; Bailly, D; Parquet, P

    1994-03-12

    Healthy sleeping habits is a complex balance between behaviour, environment and circadian rhythm. The quality of sleep can be improved by behaviour, e.g. eating tryptophan and carbohydrate rich foods, physical exercise in the afternoon or a cold shower just before going to bed. Total sleep time is maximal in thermoneutrality and decreases above and below the thermoneutrality zone. Thermoneutrality is reached for an environmental temperature of 30-32 degrees C without night clothing or of 16-19 degrees with a pyjama and at least one sheet. Noise also modifies sleep structure and above 50dB shortens total sleeping time. Although subjects do become subjectively accustomed to noise, vegetative cardiovascular reactivity to environmental noise remains unchanged. The spontaneous circadian awake/sleep cycle is 25 hours, slightly longer than the body temperature cycle, but when subjects are exposed to environmental synchronization, the two cycles coincide. In individuals undergoing temporal isolation, the two rhythms become independent often leading to subjective discomfort and fatigue. Certain factors including age can favour internal desynchronization. Other factors may include social contact, stress due to mental work load, and constant lighting which could lengthen the awake/sleep cycle. Caffeine blocks the receptors of adenosine, and thus its effects of inhibiting neurotransmission. Intake 30 to 60 minutes before sleeping shortens total sleep time and increases the duration of stage 2 and shortens stage 3 and 4. Alcohol may act as a relaxing, sedative agent when consumed just before sleeping but can also lead to night-time awakening due to sympathetic activation which does not return to baseline levels until the blood alcohol levels have returned to 0. Nicotine has a biphasic effect on sleep: at low concentrations, it leads to relaxation and sedation and at high concentrations inhibits sleep. A careful study of sleeping habits is the first step in evaluating complains

  13. Sleep Pharmacogenetics: Personalized Sleep-Wake Therapy.

    PubMed

    Holst, Sebastian C; Valomon, Amandine; Landolt, Hans-Peter

    2016-01-01

    Research spanning (genetically engineered) animal models, healthy volunteers, and sleep-disordered patients has identified the neurotransmitters and neuromodulators dopamine, serotonin, norepinephrine, histamine, hypocretin, melatonin, glutamate, acetylcholine, γ-amino-butyric acid, and adenosine as important players in the regulation and maintenance of sleep-wake-dependent changes in neuronal activity and the sleep-wake continuum. Dysregulation of these neurochemical systems leads to sleep-wake disorders. Most currently available pharmacological treatments are symptomatic rather than causal, and their beneficial and adverse effects are often variable and in part genetically determined. To evaluate opportunities for evidence-based personalized medicine with present and future sleep-wake therapeutics, we review here the impact of known genetic variants affecting exposure of and sensitivity to drugs targeting the neurochemistry of sleep-wake regulation and the pathophysiology of sleep-wake disturbances. Many functional polymorphisms modify drug response phenotypes relevant for sleep. To corroborate the importance of these and newly identified variants for personalized sleep-wake therapy, human sleep pharmacogenetics should be complemented with pharmacogenomic investigations, research about sleep-wake-dependent pharmacological actions, and studies in mice lacking specific genes. These strategies, together with future knowledge about epigenetic mechanisms affecting sleep-wake physiology and treatment outcomes, may lead to potent and safe novel therapies for the increasing number of sleep-disordered patients (e.g., in aged populations).

  14. Effects of nocturnal railway noise on sleep fragmentation in young and middle-aged subjects as a function of type of train and sound level.

    PubMed

    Saremi, Mahnaz; Grenèche, Jérôme; Bonnefond, Anne; Rohmer, Odile; Eschenlauer, Arnaud; Tassi, Patricia

    2008-12-01

    Due to undisputable effects of noise on sleep structure, especially in terms of sleep fragmentation, the expected development of railway transportation in the next few years might represent a potential risk factor for people living alongside the rail tracks. The aim of this study was to compare the effects of different types of train (freight, automotive, passenger) on arousal from sleep and to determine any differential impact as a function of sound level and age. Twenty young (16 women, 4 men; 25.8 years+/-2.6) and 18 middle-aged (15 women, 3 men; 52.2 years+/-2.5) healthy subjects participated in three whole-night polysomnographic recordings including one control night (35 dBA), and two noisy nights with equivalent noise levels of 40 or 50 dB(A), respectively. Arousal responsiveness increased with sound level. It was the highest in S2 and the lowest in REM sleep. Micro-arousals (3-10 s) occurred at a rate of 25-30%, irrespective of the type of train. Awakenings (>10 s) were produced more frequently by freight train than by automotive and passenger trains. Normal age-related changes in sleep were observed, but they were not aggravated by railway noise, thus questioning whether older persons are less sensitive to noise during sleep. These evidences led to the conclusion that microscopic detection of sleep fragmentation may provide advantageous information on sleep disturbances caused by environmental noises. PMID:18773929

  15. GABAergic mechanisms in the pedunculopontine tegmental nucleus of the cat promote active (REM) sleep.

    PubMed

    Torterolo, Pablo; Morales, Francisco R; Chase, Michael H

    2002-07-19

    The pedunculopontine tegmental nucleus (PPT) has been implicated in the generation and/or maintenance of both active sleep (AS) and wakefulness (W). GABAergic neurons are present within this nucleus and recent studies have shown that these neurons are active during AS. In order to examine the role of mesopontine GABAergic processes in the generation of AS, the GABA(A) agonist muscimol and the GABA(A) antagonist bicuculline were microinjected into the PPT of chronic cats that were prepared for recording the states of sleep and wakefulness. Muscimol increased the time spent in AS by increasing the frequency and duration of AS episodes; this increase in AS was at the expense of the time spent in wakefulness. A decrease in PGO density during AS was also observed following the microinjection of muscimol. On the other hand, bicuculline decreased both AS and quiet sleep and increased the time spent in wakefulness. These data suggest that GABA acts on GABA(A) receptors within the PPT to facilitate the generation of AS by suppressing the activity of waking-related processes within this nucleus. PMID:12106660

  16. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia.

    PubMed

    Vatthauer, Karlyn E; Craggs, Jason G; Robinson, Michael E; Staud, Roland; Berry, Richard B; Perlstein, William M; McCrae, Christina S

    2015-01-01

    Patients with chronic pain exhibit altered default mode network (DMN) activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations. Thirteen women with fibromyalgia (FM) only and 26 women with fibromyalgia with comorbid chronic insomnia (FMI) underwent a single night of ambulatory polysomnography and completed a sleep diary each morning for 14 days prior to performing a neuroimaging protocol. Novel imaging analyses were utilized to identify regions associated with significantly disordered sleep that were more active in task-negative periods than task-oriented periods in participants with FMI, when compared to participants with FM. It was hypothesized that core DMN areas (ie, cingulate cortex, inferior parietal lobule, medial prefrontal cortex, medial temporal cortex, precuneus) would exhibit increased activity during task-negative periods. Analyses revealed that significantly disordered sleep significantly contributed to group differences in the right cingulate gyrus, left lentiform nucleus, left anterior cingulate, left superior gyrus, medial frontal gyrus, right caudate, and the left inferior parietal lobules. Results suggest that FMI may alter some brain areas of the DMN, above and beyond FM. However, future work will need to investigate these results further by controlling for chronic insomnia only before conclusions can be made regarding the effect of FMI comorbidity on the DMN. PMID:26648751

  17. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia

    PubMed Central

    Vatthauer, Karlyn E; Craggs, Jason G; Robinson, Michael E; Staud, Roland; Berry, Richard B; Perlstein, William M; McCrae, Christina S

    2015-01-01

    Patients with chronic pain exhibit altered default mode network (DMN) activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations. Thirteen women with fibromyalgia (FM) only and 26 women with fibromyalgia with comorbid chronic insomnia (FMI) underwent a single night of ambulatory polysomnography and completed a sleep diary each morning for 14 days prior to performing a neuroimaging protocol. Novel imaging analyses were utilized to identify regions associated with significantly disordered sleep that were more active in task-negative periods than task-oriented periods in participants with FMI, when compared to participants with FM. It was hypothesized that core DMN areas (ie, cingulate cortex, inferior parietal lobule, medial prefrontal cortex, medial temporal cortex, precuneus) would exhibit increased activity during task-negative periods. Analyses revealed that significantly disordered sleep significantly contributed to group differences in the right cingulate gyrus, left lentiform nucleus, left anterior cingulate, left superior gyrus, medial frontal gyrus, right caudate, and the left inferior parietal lobules. Results suggest that FMI may alter some brain areas of the DMN, above and beyond FM. However, future work will need to investigate these results further by controlling for chronic insomnia only before conclusions can be made regarding the effect of FMI comorbidity on the DMN. PMID:26648751

  18. Aspects of activity behavior as a determinant of the physical activity level.

    PubMed

    Bonomi, A G; Plasqui, G; Goris, A H C; Westerterp, K R

    2012-02-01

    This study investigated which aspects of the individuals' activity behavior determine the physical activity level (PAL). Habitual physical activity of 20 Dutch adults (age: 26-60 years, body mass index: 24.5 ± 2.7 kg/m(2)) was measured using a tri-axial accelerometer. Accelerometer output was used to identify the engagement in different types of daily activities with a classification tree algorithm. Activity behavior was described by the daily duration of sleeping, sedentary behavior (lying, sitting, and standing), walking, running, bicycling, and generic standing activities. Simultaneously, the total energy expenditure (TEE) was measured using doubly labeled water. PAL was calculated as TEE divided by sleeping metabolic rate. PAL was significantly associated (P<0.05) with sedentary time (R=-0.72), and the duration of walking (R=0.49), bicycling (R=0.77), and active standing (R=0.62). A negative association was observed between sedentary time and the duration of active standing (R=-0.87; P<0.001). A multiple-linear regression analysis showed that 75% of the variance in PAL could be predicted by the duration of bicycling (Partial R(2) =59%; P<0.01), walking (Partial R(2) =9%; P<0.05) and being sedentary (Partial R(2) =7%; P<0.05). In conclusion, there is objective evidence that sedentary time and activities related to transportation and commuting, such as walking and bicycling, contribute significantly to the average PAL. PMID:20536909

  19. Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight

    NASA Technical Reports Server (NTRS)

    Shearer, W. T.; Reuben, J. M.; Mullington, J. M.; Price, N. J.; Lee, B. N.; Smith, E. O.; Szuba, M. P.; Van Dongen, H. P.; Dinges, D. F.

    2001-01-01

    BACKGROUND: The extent to which sleep loss may predispose astronauts to a state of altered immunity during extended space travel prompts evaluation with ground-based models. OBJECTIVE: We sought to measure plasma levels of selected cytokines and their receptors, including the putative sleep-regulation proteins soluble TNF-alpha receptor (sTNF-alpha R) I and IL-6, in human subjects undergoing 2 types of sleep deprivation during environmental confinement with performance demands. METHODS: Healthy adult men (n = 42) were randomized to schedules that varied in severity of sleep loss: 4 days (88 hours) of partial sleep deprivation (PSD) involving two 2-hour naps per day or 4 days of total sleep deprivation (TSD). Plasma samples were obtained every 6 hours across 5 days and analyzed by using enzyme-linked immunoassays for sTNF-alpha RI, sTNF-alpha RII, IL-6, soluble IL-2 receptor, IL-10, and TNF-alpha. RESULTS: Interactions between the effects of time and sleep deprivation level were detected for sTNF-alpha RI and IL-6 but not for sTNF-alpha RII, soluble IL-2 receptor, IL-10, and TNF-alpha. Relative to the PSD condition, subjects in the TSD condition had elevated plasma levels of sTNF-alpha RI on day 2 (P =.04), day 3 (P =.01), and across days 2 to 4 of sleep loss (P =.01) and elevated levels of IL-6 on day 4 (P =.04). CONCLUSIONS: Total sleep loss produced significant increases in plasma levels of sTNF-alpha RI and IL-6, messengers that connect the nervous, endocrine, and immune systems. These changes appeared to reflect elevations of the homeostatic drive for sleep because they occurred in TSD but not PSD, suggesting that naps may serve as the basis for a countermeasures approach to prolonged spaceflight.

  20. MCHergic projections to the nucleus pontis oralis participate in the control of active (REM) sleep.

    PubMed

    Torterolo, Pablo; Sampogna, Sharon; Chase, Michael H

    2009-05-01

    Neurons that utilize melanin-concentrating hormone (MCH) as a neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area and project diffusely throughout the central nervous system, including areas that participate in the generation and maintenance of sleep and wakefulness. Recent studies have shown that hypothalamic MCHergic neurons are active during active sleep (AS), and that intraventricular microinjections of MCH induce AS sleep; however, there are no data available regarding the manner in which MCHergic neurons participate in the control of this behavioral state. Utilizing immunohistochemical and retrograde tracing techniques, we examined, in the cat, projections from MCHergic neurons to the nucleus pontis oralis (NPO), which is considered to be the executive area that is responsible for the generation and maintenance of AS. In addition, we explored the effects on sleep and waking states produced by the microinjection of MCH into the NPO. We first determined that MCHergic fibers and terminals are present in the NPO. We also found that when a retrograde tracer (cholera toxin subunit B) was placed in the NPO MCHergic neurons of the hypothalamus were labeled. When MCH was microinjected into the NPO, there was a significant increase in the amount of AS (19.8+/-1.4% versus 11.9+/-0.2%, P<0.05) and a significant decrease in the latency to AS (10.4+/-4.2 versus 26.6+/-2.3 min, P<0.05). The preceding anatomical and functional data support our hypothesis that the MCHergic system participates in the regulation of AS by modulating neuronal activity in the NPO. PMID:19269278

  1. MCHergic projections to the nucleus pontis oralis participate in the control of active (REM) sleep.

    PubMed

    Torterolo, Pablo; Sampogna, Sharon; Chase, Michael H

    2009-05-01

    Neurons that utilize melanin-concentrating hormone (MCH) as a neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area and project diffusely throughout the central nervous system, including areas that participate in the generation and maintenance of sleep and wakefulness. Recent studies have shown that hypothalamic MCHergic neurons are active during active sleep (AS), and that intraventricular microinjections of MCH induce AS sleep; however, there are no data available regarding the manner in which MCHergic neurons participate in the control of this behavioral state. Utilizing immunohistochemical and retrograde tracing techniques, we examined, in the cat, projections from MCHergic neurons to the nucleus pontis oralis (NPO), which is considered to be the executive area that is responsible for the generation and maintenance of AS. In addition, we explored the effects on sleep and waking states produced by the microinjection of MCH into the NPO. We first determined that MCHergic fibers and terminals are present in the NPO. We also found that when a retrograde tracer (cholera toxin subunit B) was placed in the NPO MCHergic neurons of the hypothalamus were labeled. When MCH was microinjected into the NPO, there was a significant increase in the amount of AS (19.8+/-1.4% versus 11.9+/-0.2%, P<0.05) and a significant decrease in the latency to AS (10.4+/-4.2 versus 26.6+/-2.3 min, P<0.05). The preceding anatomical and functional data support our hypothesis that the MCHergic system participates in the regulation of AS by modulating neuronal activity in the NPO.

  2. Arousal from sleep - The physiological and subjective effects of a 15 dB/A/ reduction in aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Levere, T. E.; Davis, N.

    1977-01-01

    The present research was concerned with whether or not a 15 dB(A) reduction in overall noise level would lessen the sleep disturbing properties of jet aircraft flyover noise and, if less disturbing, whether this would be subjectively appreciated by the sleeping individual. The results indicate that a reduction of 15 dB (A) does result in less sleep disruption but only during sleep characterized by fast-wave electroencephalographic activity. During sleep characterized by slow-wave electroencephalographic activity, such a reduction in the sleep-disturbing properties of jet aircraft noise has little effect. Moreover, even when effective during fast-wave sleep, the decreased arousal produced by the lower noise levels is not subjectively appreciated by the individual in terms of his estimate of the quality of his night's sleep. Thus, reducing the overall noise level of jet aircraft flyovers by some 15 dB(A), is, at best, minimally beneficial to sleep.

  3. Mild Airflow Limitation during N2 Sleep Increases K-complex Frequency and Slows Electroencephalographic Activity

    PubMed Central

    Nguyen, Chinh D.; Wellman, Andrew; Jordan, Amy S.; Eckert, Danny J.

    2016-01-01

    Study Objectives: To determine the effects of mild airflow limitation on K-complex frequency and morphology and electroencephalogram (EEG) spectral power. Methods: Transient reductions in continuous positive airway pressure (CPAP) during stable N2 sleep were performed to induce mild airflow limitation in 20 patients with obstructive sleep apnea (OSA) and 10 healthy controls aged 44 ± 13 y. EEG at C3 and airflow were measured in 1-min windows to quantify K-complex properties and EEG spectral power immediately before and during transient reductions in CPAP. The frequency and morphology (amplitude and latency of P200, N550 and N900 components) of K-complexes and EEG spectral power were compared between conditions. Results: During mild airflow limitation (18% reduction in peak inspiratory airflow from baseline, 0.38 ± 0.11 versus 0.31 ± 0.1 L/sec) insufficient to cause American Academy of Sleep Medicine-defined cortical arousal, K-complex frequency (9.5 ± 4.5 versus 13.7 ± 6.4 per min, P < 0.01), N550 amplitude (25 ± 3 versus 27 ± 3 μV, P < 0.01) and EEG spectral power (delta: 147 ± 48 versus 230 ± 99 μV2, P < 0.01 and theta bands: 31 ± 14 versus 34 ± 13 μV2, P < 0.01) significantly increased whereas beta band power decreased (14 ± 5 versus 11 ± 4 μV2, P < 0.01) compared to the preceding non flow-limited period on CPAP. K-complex frequency, morphology, and timing did not differ between patients and controls. Conclusion: Mild airflow limitation increases K-complex frequency, N550 amplitude, and spectral power of delta and theta bands. In addition to providing mechanistic insight into the role of mild airflow limitation on K-complex characteristics and EEG activity, these findings may have important implications for respiratory conditions in which airflow limitation during sleep is common (e.g., snoring and OSA). Citation: Nguyen CD, Wellman A, Jordan AS, Eckert DJ. Mild airflow limitation during N2 sleep increases k-complex frequency and slows

  4. Consideration of sleep dysfunction in rehabilitation.

    PubMed

    Valenza, Marie Carmen; Rodenstein, Daniel O; Fernández-de-las-Peñas, César

    2011-07-01

    The physiology of sleep is not completely understood but it is widely accepted that sleep is important to the human body in the recovery of metabolic and neurological processes. This paper summarizes the effects of sleep dysfunction on different systems and considers implications in the context of rehabilitation. When sleep is experimentally completely or partially curtailed important brain functions are impacted leading to psychological and neurological disturbances. Increased cortisol levels, reduction of glucose tolerance, and increased sympathetic nervous system activity have also been identified in healthy subjects under such conditions. Several studies show that 50-80% of patients with chronic pain suffer from sleep dysfunction. It has been suggested that on the one hand pain can cause sleep dysfunction and on the other hand that sleep dysfunction can aggravate pain. The physiologic mechanism behind this interaction is not completely clear; although most authors describe the relationship between pain and sleep dysfunction as aberrant processing of tactile-cutaneous sensory inputs at the meso-encephalic level and in the trigeminal nucleus both when asleep and awake. Decreased duration of sleep also increases heart rate, blood pressure and sympathetic activity magnifying the individual's response to stressful stimuli. Possible causal mechanisms for the established connection between short sleep cycles and coronary pathology include sympathetic nervous system hyperactivity, increased blood pressure increase or reduced glucose tolerance. Finally, sleep and fatigue have traditionally been linked. Fatigue can have a physical etiology but is also associated with depression. Sleep alterations are also considered an important risk factor for psychological dysfunction and also mental illness. However, despite the noted repercussions of sleep dysfunction, studies investigating interventions to improve sleep have been limited in number. Benefits of exercise programs on

  5. Wrist actigraphic assessment of sleep in 116 community based subjects suspected of obstructive sleep apnoea syndrome.

    PubMed Central

    Middelkoop, H. A.; Knuistingh Neven, A.; van Hilten, J. J.; Ruwhof, C. W.; Kamphuisen, H. A.

    1995-01-01

    BACKGROUND--The combined use of wrist actigraphic assessment and self assessment of sleep in the screening of obstructive sleep apnoea syndrome was evaluated in a community based sample. METHODS--One hundred and sixteen community based subjects clinically suspected of having obstructive sleep apnoea (syndrome) were evaluated by means of simultaneous ambulatory recording of respiration (oronasal flow thermistry), motor activity (wrist actigraphy), and subjective sleep (sleep log) during one night of sleep. RESULTS--The subjects were distributed according to their apnoea index (AI); AI < 1 (non-apnoeic snorers) 44%; AI 1- < 5 39%; and AI > or = 5 17%. High apnoea index values were associated with self reported disturbed sleep initiation and more fragmented and increased levels of motor activity and decreased duration of immobility periods, particularly in those with an apnoea index of > or = 5. Across subjects the duration of immobility periods was the only predictor of the apnoea index, explaining 11% of its variance. Use of the multiple regression equation to discriminate retrospectively between those with an apnoea index of < 1 and > or = 5 resulted in sensitivity and specificity values of 75% and 43%, and 5% and 100%, respectively. CONCLUSIONS--The combined use of a sleep log and actigraphic assessment of sleep failed to identify reliably those subjects who suffered from obstructive sleep apnoea (syndrome) in a sample of community based subjects reporting habitual snoring combined with excessive daytime sleepiness and/or nocturnal respiratory arrests. Images PMID:7660344

  6. Morning cortisol levels and glucose metabolism parameters in moderate and severe obstructive sleep apnea patients.

    PubMed

    Bozic, Josko; Galic, Tea; Supe-Domic, Daniela; Ivkovic, Natalija; Ticinovic Kurir, Tina; Valic, Zoran; Lesko, Josip; Dogas, Zoran

    2016-09-01

    Obstructive sleep apnea (OSA) has been associated with dysregulation of the hypothalamic-pituitary-adrenal axis and alterations in glucose metabolism with increased risk for type 2 diabetes. The aim of the current study was to compare morning plasma cortisol levels and glucose metabolism parameters between moderate (apnea-hypopnea index (AHI): 15-30 events/h) and severe OSA patients (AHI >30 events/h), with respective controls. A total of 56 male OSA patients, 24 moderate (AHI = 21.1 ± 5.3) and 32 severe (AHI = 49.7 ± 18.1), underwent a full-night polysomnography, oral glucose tolerance test (OGTT), and measurement of morning plasma cortisol levels. These groups were compared to 20 matched subjects in a control group. Morning plasma cortisol levels were statistically lower in severe OSA group than in moderate OSA and control groups (303.7 ± 93.5 vs. 423.9 ± 145.1 vs. 417.5 ± 99.8 pmol/L, P < 0.001). Significant negative correlations were found between morning plasma cortisol levels and AHI (r = -0.444, P = 0.002), as well as oxygen desaturation index (r = -0.381, P = 0.011). Fasting plasma glucose (5.0 ± 0.5 vs. 5.4 ± 0.7 vs. 4.9 ± 0.6 mmol/L, P = 0.009) was higher in the severe OSA group compared to moderate OSA and controls. Homeostasis model assessment insulin resistance (HOMA-IR) was higher in the severe OSA group compared to moderate OSA and controls (4.6 ± 3.7 vs. 2.7 ± 2.0 and 2.2 ± 1.8, respectively, P = 0.006). In conclusion, our study showed that morning plasma cortisol levels measured at 8 a.m. were significantly lower in severe OSA patients than those in moderate OSA group and controls. Morning plasma cortisol levels showed a negative correlation with AHI and oxygen desaturation index. Additionally, this study confirmed the evidence of glucose metabolism impairment in moderate and severe OSA patients, with more pronounced effect in the severe OSA patients group. PMID:27000083

  7. A restricted parabrachial pontine region is active during non-REM sleep

    PubMed Central

    Torterolo, Pablo; Sampogna, Sharon; Chase, Michael H.

    2011-01-01

    The principal site that generates both REM sleep and wakefulness is located in the mesopontine reticular formation, whereas non-REM sleep (NREM) is primarily dependent upon the functioning of neurons that are located in the preoptic region of the hypothalamus. In the present study, we were interested in determining whether the occurrence of NREM might also depend on the activity of mesopontine structures, as has been shown for wakefulness and REM sleep. Adult cats were maintained in one of the following states: quiet wakefulness (QW), alert wakefulness (AW), NREM, or REM sleep induced by microinjections of carbachol into the nucleus pontis oralis (REM-carbachol). Subsequently, they were euthanized and single labeling immunohistochemical studies were undertaken to determine state-dependent patterns of neuronal activity in the brainstem based upon the expression of the protein Fos. In addition, double labeling immunohistochemical studies were carried out to detect neurons that expressed Fos as well as choline acetyltransferase, tyrosine hydroxylase or GABA. During NREM, only a few Fos immunoreactive cells were present in different regions of the brainstem; however, a discrete cluster of Fos+ neurons was observed in the caudolateral peribrachial region (CLPB). The number of the Fos+ neurons in the CLPB during NREM was significantly greater (67.9 ± 10.9, P < 0.0001) compared to QW (8.0 ± 6.7), AW (5.2 ± 4.2) or REM-carbachol (8.0 ± 4.7). In addition, there was a positive correlation (R = 0.93) between the time the animals spent in NREM and the number of Fos+ neurons in the CLPB. Fos-immunoreactive neurons in the CLPB were neither cholinergic nor catecholaminergic; however about 50% of these neurons were GABAergic. We conclude that a group of GABAergic and unidentified neurons in the CLPB are active during NREM and likely involved in the control of this behavioral state. These data open new avenues for the study of NREM, as well as for the explorations of

  8. Identification of the occurrence and pattern of masseter muscle activities during sleep using EMG and accelerometer systems

    PubMed Central

    Yoshimi, Hidehiro; Sasaguri, Kenichi; Tamaki, Katsushi; Sato, Sadao

    2009-01-01

    Background Sleep bruxism has been described as a combination of different orofacial motor activities that include grinding, clenching and tapping, although accurate distribution of the activities still remains to be clarified. Methods We developed a new system for analyzing sleep bruxism to examine the muscle activities and mandibular movement patterns during sleep bruxism. The system consisted of a 2-axis accelerometer, electroencephalography and electromyography. Nineteen healthy volunteers were recruited and screened to evaluate sleep bruxism in the sleep laboratory. Results The new system could easily distinguish the different patterns of bruxism movement of the mandible and the body movement. Results showed that grinding (59.5%) was most common, followed by clenching (35.6%) based on relative activity to maximum voluntary contraction (%MVC), whereas tapping was only (4.9%). Conclusion It was concluded that the tapping, clenching, and grinding movement of the mandible could be effectively differentiated by the new system and sleep bruxism was predominantly perceived as clenching and grinding, which varied between individuals. PMID:19208264

  9. Effects of thalidomide and pentobarbital on neuronal activity in the preoptic area during sleep and wakefulness in the cat.

    PubMed

    Kaitin, K I

    1985-01-01

    To test the hypothesis that sleep produced by thalidomide, unlike that of pentobarbital, is associated with increased neuronal activity in the preoptic area (POA), the spontaneous activity of 96 POA neurons was recorded in chronically prepared cats during alert wakefulness (W), deep slow-wave sleep (SWS), and REM sleep in a drug-free preparation and after administration of thalidomide (4 mg/kg) and pentobarbital (4 or 8 mg/kg). Thalidomide, unlike pentobarbital, at a dose that significantly increased the amount of SWS, failed to depress neuronal activity in the POA compared to drug-free controls. Mean discharge rates during thalidomide treatment were similar to drug-free rates. In contrast, rates during low-dose pentobarbital treatment were significantly less than those of drug-free and thalidomide-treated animals. Rates during high-dose pentobarbital treatment were significantly less than those in all other groups. Thalidomide, compared with the other groups, in addition to increasing the amount of SWS, significantly increased the total amount of REM sleep as well as REM sleep as a percent of total sleep, but did not produce ataxia or behavioral excitement. These results do not confirm the initial hypothesis, but suggest that hypnotic drugs that do not depress neuronal activity in the POA may be devoid of some of the unwanted side effects often associated with the more commonly prescribed hypnotic medications.

  10. Differential activation of immune factors in neurons and glia contribute to individual differences in resilience/vulnerability to sleep disruption

    PubMed Central

    Dissel, Stephane; Seugnet, Laurent; Thimgan, Matthew S.; Silverman, Neal; Angadi, Veena; Thacher, Pamela V.; Burnham, Melissa M.; Shaw, Paul J.

    2014-01-01

    Individuals frequently find themselves confronted with a variety of challenges that threaten their wellbeing. While some individuals face these challenges efficiently and thrive (resilient) others are unable to cope and may suffer persistent consequences (vulnerable). Resilience/vulnerability to sleep disruption may contribute to the vulnerability to individuals exposed to challenging conditions. With that in mind we exploited individual differences in a fly’s ability to form short-term memory (STM) following 3 different types of sleep disruption to identify the underlying genes. Our analysis showed that in each category of flies examined, there are individuals that form STM in the face of sleep loss (resilient) while other individuals show dramatic declines in cognitive behavior (vulnerable). Molecular genetic studies revealed that Antimicrobial Peptides, factors important for innate immunity, were candidates for conferring resilience/vulnerability to sleep deprivation. Specifically, Metchnikowin (Mtk), drosocin (dro) and Attacin (Att) transcript levels seemed to be differentially increased by sleep deprivation in glia (Mtk), neurons (dro) or primarily in the head fat body (Att). Follow-up genetic studies confirmed that expressing Mtk in glia but not neurons, and expressing dro in neurons but not glia, disrupted memory while modulating sleep in opposite directions. These data indicate that various factors within glia or neurons can contribute to individual differences in resilience/vulnerability to sleep deprivation. PMID:25451614

  11. Slow wave activity and slow oscillations in sleepwalkers and controls: effects of 38 h of sleep deprivation.

    PubMed

    Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2013-08-01

    Sleepwalkers have been shown to have an unusually high number of arousals from slow wave sleep and lower slow wave activity (SWA) power during the night than controls. Because sleep deprivation increases the frequency of slow wave sleep (SWS) arousals in sleepwalkers, it may also affect the expression of the homeostatic process to a greater extent than shown previously. We thus investigated SWA power as well as slow wave oscillation (SWO) density in 10 sleepwalkers and nine controls at baseline and following 38 h of sleep deprivation. There was a significant increase in SWA during participants' recovery sleep, especially during their second non-rapid eye movement (NREM) period. SWO density was similarly increased during recovery sleep's first two NREM periods. A fronto-central gradient in SWA and SWO was also present on both nights. However, no group differences were noted on any of the 2 nights on SWA or SWO. This unexpected result may be related to the heterogeneity of sleepwalkers as a population, as well as our small sample size. SWA pressure after extended sleep deprivation may also result in a ceiling effect in both sleepwalkers and controls. PMID:23398262

  12. Slow wave activity and slow oscillations in sleepwalkers and controls: effects of 38 h of sleep deprivation.

    PubMed

    Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2013-08-01

    Sleepwalkers have been shown to have an unusually high number of arousals from slow wave sleep and lower slow wave activity (SWA) power during the night than controls. Because sleep deprivation increases the frequency of slow wave sleep (SWS) arousals in sleepwalkers, it may also affect the expression of the homeostatic process to a greater extent than shown previously. We thus investigated SWA power as well as slow wave oscillation (SWO) density in 10 sleepwalkers and nine controls at baseline and following 38 h of sleep deprivation. There was a significant increase in SWA during participants' recovery sleep, especially during their second non-rapid eye movement (NREM) period. SWO density was similarly increased during recovery sleep's first two NREM periods. A fronto-central gradient in SWA and SWO was also present on both nights. However, no group differences were noted on any of the 2 nights on SWA or SWO. This unexpected result may be related to the heterogeneity of sleepwalkers as a population, as well as our small sample size. SWA pressure after extended sleep deprivation may also result in a ceiling effect in both sleepwalkers and controls.

  13. Childhood epilepsy and sleep

    PubMed Central

    Al-Biltagi, Mohammed A

    2014-01-01

    Sleep and epilepsy are two well recognized conditions that interact with each other in a complex bi-directional way. Some types of epilepsies have increased activity during sleep disturbing it; while sleep deprivation aggravates epilepsy due to decreased seizure threshold. Epilepsy can deteriorate the sleep-related disorders and at the same time; the parasomnias can worsen the epilepsy. The secretion of sleep-related hormones can also be affected by the occurrence of seizures and supplementation of epileptic patients with some of these sleep-related hormones may have a beneficial role in controlling epilepsy. PMID:25254184

  14. Actigraphic Monitoring during Sleep of Children with ADHD on Methylphenidate and Placebo

    ERIC Educational Resources Information Center

    Schwartz, George; Amor, Leila Ben; Grizenko, Natalie; Lageix, Philippe; Baron, Chantal; Boivin, Diane B.; Joober, Ridha

    2004-01-01

    Objective: Sleep disturbances appear as a comorbid condition in children with attention-deficit/hyperactivity disorder. The aim of this study was to investigate the relationship of activity levels during sleep and therapeutic response to methylphenidate (MPH). Method: Nightly sleep actigraphic recordings during a double-blind, placebo-controlled,…

  15. C-fos expression in the pons and medulla of the cat during carbachol-induced active sleep.

    PubMed

    Yamuy, J; Mancillas, J R; Morales, F R; Chase, M H

    1993-06-01

    Microinjection of carbachol into the rostral pontine tegmentum of the cat induces a state that is comparable to naturally occurring active (REM, rapid eye movement) sleep. We sought to determine, during this pharmacologically induced behavioral state, which we refer to as active sleep-carbachol, the distribution of activated neuron within the pons and medulla using c-fos immunocytochemistry as a functional marker. Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited higher numbers of c-fos-expressing neurons in (1) the medial and portions of the lateral reticular formation of the pons and medulla, (2) nuclei in the dorsolateral rostral pons, (3) various raphe nuclei, including the dorsal, central superior, magnus, pallidus, and obscurus, (4) the medial and lateral vestibular, prepositus hypoglossi, and intercalatus nuclei, and (5) the abducens nuclei. On the other hand, the mean number of c-fos-expressing neurons found in the masseter, facial, and hypoglossal nuclei was lower in carbachol-injected than in control cats. The data indicate that c-fos expression can be employed as a marker of state-dependent neuronal activity. The specific sites in which there were greater numbers of c-fos-expressing neurons during active sleep-carbachol are discussed in relation to the state of active sleep, as well as the functional role that these sites play in generating the various physiological patterns of activity that occur during this state. PMID:8501533

  16. H-reflex suppression and autonomic activation during lucid REM sleep: a case study.

    PubMed

    Brylowski, A; Levitan, L; LaBerge, S

    1989-08-01

    A single subject, a proficient lucid dreamer experienced with signaling the onset of lucidity (reflective consciousness of dreaming) by means of voluntary eye movements, spent 4 nonconsecutive nights in the sleep laboratory. The subject reported becoming lucid and signaling in 8 of the 18 rapid-eye movement (REM) periods recorded. Ten lucid dream reports were verified by polygraphic examination of signals, providing a total of 12.5 min of signal-verified lucid REM. H-Reflex amplitude was recorded every 5 s, along with continuous recording of electroencephalogram, electrooculogram, electromyogram, electrocardiogram, finger pulse, and respiration. Significant findings included greater mean H-reflex suppression during lucid REM sleep than during nonlucid REM and correlations of H-reflex suppression with increased eye movement density, heart rate, and respiration rate. These results support previous studies reporting that lucid REM is not, as might be supposed, a state closer to awakening than ordinary, or nonlucid, REM; rather, lucid dreaming occurs during unequivocal REM sleep and is characteristically associated with phasic REM activation. PMID:2762692

  17. H-reflex suppression and autonomic activation during lucid REM sleep: a case study.

    PubMed

    Brylowski, A; Levitan, L; LaBerge, S

    1989-08-01

    A single subject, a proficient lucid dreamer experienced with signaling the onset of lucidity (reflective consciousness of dreaming) by means of voluntary eye movements, spent 4 nonconsecutive nights in the sleep laboratory. The subject reported becoming lucid and signaling in 8 of the 18 rapid-eye movement (REM) periods recorded. Ten lucid dream reports were verified by polygraphic examination of signals, providing a total of 12.5 min of signal-verified lucid REM. H-Reflex amplitude was recorded every 5 s, along with continuous recording of electroencephalogram, electrooculogram, electromyogram, electrocardiogram, finger pulse, and respiration. Significant findings included greater mean H-reflex suppression during lucid REM sleep than during nonlucid REM and correlations of H-reflex suppression with increased eye movement density, heart rate, and respiration rate. These results support previous studies reporting that lucid REM is not, as might be supposed, a state closer to awakening than ordinary, or nonlucid, REM; rather, lucid dreaming occurs during unequivocal REM sleep and is characteristically associated with phasic REM activation.

  18. Sleep and Women

    MedlinePlus

    ... Benefits Side Effects Variations Tips Healthy Sleep Habits Sleep Disorders by Category Insomnias Insomnia Child Insomnia Short Sleeper ... Work SIDS Sleep apnea Sleep Debt Sleep Deprivation Sleep Disorders Sleep history Sleep hygiene sleep length Sleep Need ...

  19. Functional neuroimaging insights into the physiology of human sleep.

    PubMed

    Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Sterpenich, Virginie; Bonjean, Maxime; Maquet, Pierre

    2010-12-01

    Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep.

  20. Stress-free automatic sleep deprivation using air puffs

    PubMed Central

    Gross, Brooks A.; Vanderheyden, William M.; Urpa, Lea M.; Davis, Devon E.; Fitzpatrick, Christopher J.; Prabhu, Kaustubh; Poe, Gina R.

    2015-01-01

    Background Sleep deprivation via gentle handling is time-consuming and personnel-intensive. New Method We present here an automated sleep deprivation system via air puffs. Implanted EMG and EEG electrodes were used to assess sleep/waking states in six male Sprague-Dawley rats. Blood samples were collected from an implanted intravenous catheter every 4 hours during the 12-hour light cycle on baseline, 8 hours of sleep deprivation via air puffs, and 8 hours of sleep deprivation by gentle handling days. Results The automated system was capable of scoring sleep and waking states as accurately as our offline version (~90% for sleep) and with sufficient speed to trigger a feedback response within an acceptable amount of time (1.76 s). Manual state scoring confirmed normal sleep on the baseline day and sleep deprivation on the two manipulation days (68% decrease in non-REM, 63% decrease in REM, and 74% increase in waking). No significant differences in levels of ACTH and corticosterone (stress hormones indicative of HPA axis activity) were found at any time point between baseline sleep and sleep deprivation via air puffs. Comparison with Existing Method There were no significant differences in ACTH or corticosterone concentrations between sleep deprivation by air puffs and gentle handling over the 8-hour period. Conclusions Our system accurately detects sleep and delivers air puffs to acutely deprive rats of sleep with sufficient temporal resolution during the critical 4-5 h post learning sleep-dependent memory consolidation period. The system is stress-free and a viable alternative to existing sleep deprivation techniques. PMID:26014662

  1. [Sleep, emotions and the visceral control].

    PubMed

    Pigarev, I N; Pigareva, M L

    2013-01-01

    It is known that sleep is connected with sensory isolation of the brain, inactivation of the consciousness and reorganization of the electrical activity in all cerebral cortical areas. On the other hand, sleep deprivation leads to pathology in visceral organs and finally to the death of animals, while there are no obvious changes in the brain itself. It stays the opened question how the changes in the brain activity during sleep could be con- nected with the visceral health? We proposed that the same brain areas and the same neurons, which in wakefulness process the information coming from the distant and proprioreceptors, switch during sleep to the processing of the interoceptive information. Thus, central nervous system is involved into the regulation of the life support functions of the body during sleep. Results of our experiments supported this hypothesis, explained many observations obtained in somnology and offered the mechanisms of several pathological states connected with sleep. However, at the present level of the visceral sleep theory there were no understanding of the well known link between the emotional states of the organisms and transition from wakefulness to sleep, and sleep quality. In this study the attempt is undertaken to combine the visceral theory of sleep with the need- informational theory ofemotions, proposed by P. Simonov. The visceral theory of sleep proposes that in living organisms there is a constant monitoring of the correspondence of the visceral parameters to the genetically determined values. Mismatch signals evoke the feeling of tiredness and the need of sleep. This sleep need en- ters the competition with the other actual needs of the organism. In according with the theory of P. Simonov emotions connected with a particular need play important role in their ranking for satisfaction. We propose that emotional estimation of the sleep need, based on the visceral signals, is realized in the same brain structures which undertake this

  2. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay.

    PubMed

    Mahoney, J Matthew; Titiz, Ali S; Hernan, Amanda E; Scott, Rod C

    2016-01-01

    Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.

  3. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay.

    PubMed

    Mahoney, J Matthew; Titiz, Ali S; Hernan, Amanda E; Scott, Rod C

    2016-01-01

    Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation. PMID:26866597

  4. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay

    PubMed Central

    Mahoney, J. Matthew; Titiz, Ali S.; Hernan, Amanda E.; Scott, Rod C.

    2016-01-01

    Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation. PMID:26866597

  5. Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?

    PubMed

    Lesku, John A; Vyssotski, Alexei L; Martinez-Gonzalez, Dolores; Wilzeck, Christiane; Rattenborg, Niels C

    2011-08-22

    The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.

  6. ACTIVITY LEVEL AND LEARNING EFFECTIVENESS.

    ERIC Educational Resources Information Center

    SJOGREN, DOUGLAS D.; STAKE, ROBERT E.

    A STUDY OF LEARNING ACTIVITY EXPLORED (1) AN ACTIVITY-ACHIEVEMENT SCALE TO DESCRIBE THE IMPACT OF ACTIVITY ON ACHIEVEMENT AND (2) THE POSSIBLE COMPLEXITY OR DIMENSIONALITY OF THIS IMPACT. TEN GROUPS, OF 10 COLLEGE UNDERGRADUATE STUDENTS EACH, WERE SCHEDULED TO STUDY UNDER EACH OF 10 LEARNING SITUATIONS. THE SITUATIONS CONSISTED OF TWO MODES OF…

  7. Does pilates exercise increase physical activity, quality of life, latency, and sleep quantity in middle-aged people?

    PubMed

    García-Soidán, J L; Giraldez, V Arufe; Cachón Zagalaz, J; Lara-Sánchez, A J

    2014-12-01

    This prospective study assessed the effects of a 12-wk. exercise program based on the Pilates method (2 one-hr. sessions per week) on 99 sedentary middle-aged volunteers (M age = 47.6 yr., SD = 0.8), using an accelerometry, the Pittsburgh Sleep Quality Index, and the SF-36 questionnaire to measure changes in physical activity, quality of life, sleep latency, and quantity. The variables (quality of life, sleep latency, and quantity) were compared before and after applying the Pilates program. All of the physical and emotional components of the SF-36 questionnaire showed significant improvement, and the latency and sleep quantity also showed significant increases. The results indicate that Pilates is an accessible, interesting exercise program that can generate important changes in middle age. PMID:25456245

  8. Does pilates exercise increase physical activity, quality of life, latency, and sleep quantity in middle-aged people?

    PubMed

    García-Soidán, J L; Giraldez, V Arufe; Cachón Zagalaz, J; Lara-Sánchez, A J

    2014-12-01

    This prospective study assessed the effects of a 12-wk. exercise program based on the Pilates method (2 one-hr. sessions per week) on 99 sedentary middle-aged volunteers (M age = 47.6 yr., SD = 0.8), using an accelerometry, the Pittsburgh Sleep Quality Index, and the SF-36 questionnaire to measure changes in physical activity, quality of life, sleep latency, and quantity. The variables (quality of life, sleep latency, and quantity) were compared before and after applying the Pilates program. All of the physical and emotional components of the SF-36 questionnaire showed significant improvement, and the latency and sleep quantity also showed significant increases. The results indicate that Pilates is an accessible, interesting exercise program that can generate important changes in middle age.

  9. The relationship between disease activity and depression and sleep quality in Behçet's disease patients.

    PubMed

    Koca, Irfan; Savas, Esen; Ozturk, Zeynel Abidin; Tutoglu, Ahmet; Boyaci, Ahmet; Alkan, Samet; Kisacik, Bünyamin; Onat, Ahmet Mesut

    2015-07-01

    Like many chronic illnesses, Behçet's disease (BD) has been reported to negatively affect the quality of life and mental health of the individuals diagnosed with this disease. This study aims to investigate the relationship between disease activity and depression and sleep quality in BD. Forty patients with BD and 30 healthy subjects (controls), aged 18-65, were included in this study, and all of the subjects enrolled in this study were assessed in terms of depression and sleep quality using the Beck depression index (BDI) and Pittsburg sleep quality index (PSQI). Additionally, the subjects with BD were also assessed using the Behçet's disease current activity form (BDCAF). It was determined that the depression and sleep quality scores were significantly higher in the BD group compared to those in the control group (p = 0.012 and p = 0.020, respectively), and in the BD group, significant positive correlations were determined between the BDCAF and depression and sleep quality scores (r = 0.559, p < 0.001 and r = 0.462, p = 0.003, respectively). We believe that the assessment of BD patients for depressive symptoms and sleep quality, and providing medical support to those who need it, will contribute to the treatment and follow-up processes of BD.

  10. Identifying sleep regulatory genes using a Drosophila model of insomnia

    PubMed Central

    Seugnet, Laurent; Suzuki, Yasuko; Thimgan, Matthew; Donlea, Jeff; Gimbel, Sarah I.; Gottschalk, Laura; Duntley, Steve P.; Shaw, Paul J.

    2009-01-01

    Although it is widely accepted that sleep must serve an essential biological function, little is known about molecules that underlie sleep regulation. Given that insomnia is a common sleep disorder that disrupts the ability to initiate and maintain restorative sleep, a better understanding of its molecular underpinning may provide crucial insights into sleep regulatory processes. Thus, we created a line of flies using laboratory selection that share traits with human insomnia. After 60 generations insomnia-like (ins-l) flies sleep 60 min a day, exhibit difficulty initiating sleep, difficulty maintaining sleep, and show evidence of daytime cognitive impairment. ins-l flies are also hyperactive and hyper responsive to environmental perturbations. In addition they have difficulty maintaining their balance, have elevated levels of dopamine, are short-lived and show increased levels of triglycerides, cholesterol, and free fatty acids. While their core molecular clock remains intact, ins-l flies lose their ability to sleep when placed into constant darkness. Whole genome profiling identified genes that are modified in ins-l flies. Among those differentially expressed transcripts genes involved in metabolism, neuronal activity, and sensory perception constituted over-represented categories. We demonstrate that two of these genes are upregulated in human subjects following acute sleep deprivation. Together these data indicate that the ins-l flies are a useful tool that can be used to identify molecules important for sleep regulation and may provide insights into both the causes and long-term consequences of insomnia. PMID:19494137

  11. Unraveling a new circuitry for sleep regulation in Parkinson's disease.

    PubMed

    Targa, Adriano D S; Rodrigues, Lais S; Noseda, Ana Carolina D; Aurich, Mariana F; Andersen, Monica L; Tufik, Sergio; da Cunha, Cláudio; Lima, Marcelo M S

    2016-09-01

    Sleep disturbances are among the most disabling non-motor symptoms in Parkinson's disease. The pedunculopontine tegmental nucleus and basal ganglia are likely involved in these dysfunctions, as they are affected by neurodegeneration in Parkinson's disease and have a role in sleep regulation. To investigate this, we promoted a lesion in the pedunculopontine tegmental nucleus or substantia nigra pars compacta of male rats, followed by 24 h of REM sleep deprivation. Then, we administrated a dopaminergic D2 receptor agonist, antagonist or vehicle directly in the striatum. After a period of 24 h of sleep-wake recording, we observed that the ibotenic acid infusion in the pedunculopontine tegmental nucleus blocked the so-called sleep rebound effect mediated by REM sleep deprivation, which was reversed by striatal D2 receptors activation. Rotenone infusion in the substantia nigra pars compacta also blocked the sleep rebound, however, striatal D2 receptors activation did not reverse it. In addition, rotenone administration decreased the time spent in NREM sleep, which was corroborated by positive correlations between dopamine levels in both substantia nigra pars compacta and striatum and the time spent in NREM sleep. These findings suggest a new circuitry for sleep regulation in Parkinson's disease, involving the triad composed by pedunculopontine nucleus, substantia nigra pars compacta and striatum, evidencing a potential therapeutic target for the sleep disturbances associated to this pathology. PMID:27091486

  12. Unraveling a new circuitry for sleep regulation in Parkinson's disease.

    PubMed

    Targa, Adriano D S; Rodrigues, Lais S; Noseda, Ana Carolina D; Aurich, Mariana F; Andersen, Monica L; Tufik, Sergio; da Cunha, Cláudio; Lima, Marcelo M S

    2016-09-01

    Sleep disturbances are among the most disabling non-motor symptoms in Parkinson's disease. The pedunculopontine tegmental nucleus and basal ganglia are likely involved in these dysfunctions, as they are affected by neurodegeneration in Parkinson's disease and have a role in sleep regulation. To investigate this, we promoted a lesion in the pedunculopontine tegmental nucleus or substantia nigra pars compacta of male rats, followed by 24 h of REM sleep deprivation. Then, we administrated a dopaminergic D2 receptor agonist, antagonist or vehicle directly in the striatum. After a period of 24 h of sleep-wake recording, we observed that the ibotenic acid infusion in the pedunculopontine tegmental nucleus blocked the so-called sleep rebound effect mediated by REM sleep deprivation, which was reversed by striatal D2 receptors activation. Rotenone infusion in the substantia nigra pars compacta also blocked the sleep rebound, however, striatal D2 receptors activation did not reverse it. In addition, rotenone administration decreased the time spent in NREM sleep, which was corroborated by positive correlations between dopamine levels in both substantia nigra pars compacta and striatum and the time spent in NREM sleep. These findings suggest a new circuitry for sleep regulation in Parkinson's disease, involving the triad composed by pedunculopontine nucleus, substantia nigra pars compacta and striatum, evidencing a potential therapeutic target for the sleep disturbances associated to this pathology.

  13. [Influence of a program of physical activity in children and obese adolescents with sleep apnea; study protocol].

    PubMed

    Aguilar Cordero, M J; Sánchez López, A M; Mur Villar, N; Sánchez Marenco, A; Guisado Barrilao, R

    2013-01-01

    Recent studies show an alarming increase in the rate of overweight / obesity among the infant - juvenile population. Obesity in childhood is associated with a significant number of complications, such as sleep apnea syndrome, insulin resistance and type 2 diabetes, hypertension, cardiovascular disease and some cancers. It is estimated that the prevalence of sleep apnea in children is 2-3% in the general population, while in obese adolescents, varies between 13% and 66%, according to various studies. It is associated with impairment of neurocognitive function, behavior, cardiovascular system, metabolic disorders and growth. Sleep apnea is a serious public health problem that increases when children and adolescents are overweight or obese. We hypothesize that aerobic endurance exercise can be an effective treatment for obesity and apnea at the same time. The aim of this study was to determine the influence of physical activity in children and adolescents with overweight / obesity in sleep apnea. An observational, descriptive, prospective, longitudinal study will be carried out in children with sleep apnea and obesity. The universe will be made up of 60 children and adolescents aged between 10 and 18 years, attending the endocrinology service for suffering of obesity in the Hospital Clinico San Cecilio of Granada during the period September 2012-September 2013. The smple will consist of children and adolescents that meet these characteristics and to whom their parents/tutors have authorized through the informed consent. Sleep apnea in children wil be measured by polysomnography and sleep quality questionnaire. There will also be a nutritional assessment by a food frequency questionnaire and an anthropometric assessment. Among the expected results are the lower overweight and obesity in children through the physical activity program. To reduce apnea and to improve sleep quality.

  14. Blood Pressure and Heart Rate During Continuous Experimental Sleep Fragmentation in Healthy Adults

    PubMed Central

    Carrington, Melinda J.; Trinder, John

    2008-01-01

    Study Objectives: This paper aims to determine whether experimental arousals from sleep delay the sleep related fall in cardiovascular activity in healthy adults. Design: We report the results of 2 studies. The first experiment manipulated arousals from sleep in young adults. The second compared the effect of frequent arousals on young and middle-aged adults. The influence of arousals were assessed in 2 ways; (1) the fall in cardiovascular activity over sleep onset and the early sleep period, and (2) the underlying sleep levels during the sleep periods in between arousals. Setting: Both experiments were conducted in the sleep laboratory of the Department of Psychology, The University of Melbourne, Australia. Participants: There were 5 male and 5 female healthy individuals in each experiment between the ages of 18–25 years (Experiment 1) and 38–55 years (Experiment 2). Interventions: Participants in Experiment 1 were aroused by auditory stimuli every (i) 2 min, (ii) 1 min, and (iii) 30 sec of sleep for 90 min after the first indication of sleep. In a control condition, participants slept undisturbed for one NREM sleep cycle. Experiment 2 compared the control with the 30-sec condition in the young adults and in an additional group of middle-aged adults. Measurements and Results: The dependent variables were blood pressure (BP) and heart rate (HR). In Experiment 1, sleep fragmentation at higher frequencies retarded the fall in BP over sleep onset but did not affect the underlying sleep levels. Experiment 2 showed that there were no age differences on the effect of arousals on changes in BP and HR during sleep. Conclusions: This paper supports the hypothesis that repetitive arousals from sleep independently contribute to elevations in BP at night. Citation: Carrington MJ; Trinder J. Blood pressure and heart rate during continuous experimental sleep fragmentation in healthy adults. SLEEP 2008;31(12):1701–1712. PMID:19090326

  15. GABAA receptor antagonism at the hypoglossal motor nucleus increases genioglossus muscle activity in NREM but not REM sleep.

    PubMed

    Morrison, Janna L; Sood, Sandeep; Liu, Hattie; Park, Eileen; Nolan, Philip; Horner, Richard L

    2003-04-15

    The pharyngeal muscles, such as the genioglossus (GG) muscle of the tongue, are important for effective lung ventilation since they maintain an open airspace. Rapid-eye-movement (REM) sleep, however, recruits powerful neural mechanisms that can abolish GG activity, even during strong reflex respiratory stimulation by elevated CO2. In vitro studies have demonstrated the presence of GABAA receptors on hypoglossal motoneurons, and these and other data have led to the speculation that GABAA mechanisms may contribute to the suppression of hypoglossal motor outflow to the GG muscle in REM sleep. We have developed an animal model that allows us to chronically manipulate neurotransmission at the hypoglossal motor nucleus using microdialysis across natural sleep-wake states in rats. The present study tests the hypothesis that microdialysis perfusion of the GABAA receptor antagonist bicuculline into the hypoglossal motor nucleus will prevent the suppression of GG muscle activity in REM sleep during both room-air and CO2-stimulated breathing. Ten rats were implanted with electroencephalogram and neck muscle electrodes to record sleep-wake states, and GG and diaphragm electrodes for respiratory muscle recording. Microdialysis probes were implanted into the hypoglossal motor nucleus for perfusion of artificial cerebrospinal fluid (ACSF) or 100 microM bicuculline during room-air and CO2-stimulated breathing (7 % inspired CO2). GABAA receptor antagonism at the hypoglossal motor nucleus increased respiratory-related GG activity during both room-air (P = 0.01) and CO2-stimulated breathing (P = 0.007), indicating a background inhibitory GABA tone. However, the effects of bicuculline on GG activity depended on the prevailing sleep-wake state (P < 0.005), with bicuculline increasing GG activity in non-REM (NREM) sleep and wakefulness both in room air and hypercapnia (P < 0.01), but GG activity was effectively abolished in those REM periods without phasic twitches in the GG muscle

  16. Can we still dream when the mind is blank? Sleep and dream mentations in auto-activation deficit.

    PubMed

    Leu-Semenescu, Smaranda; Uguccioni, Ginevra; Golmard, Jean-Louis; Czernecki, Virginie; Yelnik, Jerome; Dubois, Bruno; Forgeot d'Arc, Baudouin; Grabli, David; Levy, Richard; Arnulf, Isabelle

    2013-10-01

    Bilateral damage to the basal ganglia causes auto-activation deficit, a neuropsychological syndrome characterized by striking apathy, with a loss of self-driven behaviour that is partially reversible with external stimulation. Some patients with auto-activation deficit also experience a mental emptiness, which is defined as an absence of any self-reported thoughts. We asked whether this deficit in spontaneous activation of mental processing may be reversed during REM sleep, when dreaming activity is potentially elicited by bottom-up brainstem stimulation on the cortex. Sleep and video monitoring over two nights and cognitive tests were performed on 13 patients with auto-activation deficit secondary to bilateral striato-pallidal lesions and 13 healthy subjects. Dream mentations were collected from home diaries and after forced awakenings in non-REM and REM sleep. The home diaries were blindly analysed for length, complexity and bizarreness. A mental blank during wakefulness was complete in six patients and partial in one patient. Four (31%) patients with auto-activation deficit (versus 92% of control subjects) reported mentations when awakened from REM sleep, even when they demonstrated a mental blank during the daytime (n = 2). However, the patients' dream reports were infrequent, short, devoid of any bizarre or emotional elements and tended to be less complex than the dream mentations of control subjects. The sleep duration, continuity and stages were similar between the groups, except for a striking absence of sleep spindles in 6 of 13 patients with auto-activation deficit, despite an intact thalamus. The presence of spontaneous dreams in REM sleep in the absence of thoughts during wakefulness in patients with auto-activation deficit supports the idea that simple dream imagery is generated by brainstem stimulation and is sent to the sensory cortex. However, the lack of complexity in these dream mentations suggests that the full dreaming process (scenario

  17. c-fos Expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    1998-01-01

    The interaction of cholinergic and catecholaminergic mechanisms in the mesopontine region has been hypothesized as being critical for the generation and maintenance of active (REM) sleep. To further examine this hypothesis, we sought to determine the pattern of neuronal activation (via c-fos expression) of catecholaminergic and cholinergic neurons in this region during active sleep induced by the pontine microapplication of carbachol (designated as active sleep-carbachol). Accordingly, we used two sets of double-labeling techniques; the first to identify tyrosine hydroxylase-containing neurons (putative catecholaminergic cells) which also express the c-fos protein product Fos, and the second to reveal choline acetyltransferase-containing neurons (putative cholinergic cells) which also express Fos. Compared to control cats, active sleep-carbachol cats exhibited a significantly greater number of Fos-expressing neurons in the dorsolateral region of the pons, which encompasses the locus coeruleus, the lateral pontine reticular formation, the peribrachial nuclei and the latero-dorsal and pedunculo-pontine tegmental nuclei. However, both control and active sleep-carbachol cats exhibited a similar number of catecholaminergic and cholinergic neurons in those regions that expressed Fos (i.e., double-labeled cells). A large number of c-fos-expressing neurons in the active sleep-carbachol cats whose neurotransmitter phenotype was not identified suggests that non-catecholaminergic, non-cholinergic neuronal populations in mesopontine regions are involved in the generation and maintenance of active sleep. The lack of increased c-fos expression in catecholaminergic neurons during active sleep-carbachol confirms and extends previous data that indicate that these cells are silent during active sleep-carbachol and naturally-occurring active sleep. The finding that cholinergic neurons of the dorsolateral pons were not activated either during wakefulness or active sleep

  18. c-fos Expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    1998-01-01

    The interaction of cholinergic and catecholaminergic mechanisms in the mesopontine region has been hypothesized as being critical for the generation and maintenance of active (REM) sleep. To further examine this hypothesis, we sought to determine the pattern of neuronal activation (via c-fos expression) of catecholaminergic and cholinergic neurons in this region during active sleep induced by the pontine microapplication of carbachol (designated as active sleep-carbachol). Accordingly, we used two sets of double-labeling techniques; the first to identify tyrosine hydroxylase-containing neurons (putative catecholaminergic cells) which also express the c-fos protein product Fos, and the second to reveal choline acetyltransferase-containing neurons (putative cholinergic cells) which also express Fos. Compared to control cats, active sleep-carbachol cats exhibited a significantly greater number of Fos-expressing neurons in the dorsolateral region of the pons, which encompasses the locus coeruleus, the lateral pontine reticular formation, the peribrachial nuclei and the latero-dorsal and pedunculo-pontine tegmental nuclei. However, both control and active sleep-carbachol cats exhibited a similar number of catecholaminergic and cholinergic neurons in those regions that expressed Fos (i.e., double-labeled cells). A large number of c-fos-expressing neurons in the active sleep-carbachol cats whose neurotransmitter phenotype was not identified suggests that non-catecholaminergic, non-cholinergic neuronal populations in mesopontine regions are involved in the generation and maintenance of active sleep. The lack of increased c-fos expression in catecholaminergic neurons during active sleep-carbachol confirms and extends previous data that indicate that these cells are silent during active sleep-carbachol and naturally-occurring active sleep. The finding that cholinergic neurons of the dorsolateral pons were not activated either during wakefulness or active sleep

  19. Are Children Like Werewolves? Full Moon and Its Association with Sleep and Activity Behaviors in an International Sample of Children.

    PubMed

    Chaput, Jean-Philippe; Weippert, Madyson; LeBlanc, Allana G; Hjorth, Mads F; Michaelsen, Kim F; Katzmarzyk, Peter T; Tremblay, Mark S; Barreira, Tiago V; Broyles, Stephanie T; Fogelholm, Mikael; Hu, Gang; Kuriyan, Rebecca; Kurpad, Anura; Lambert, Estelle V; Maher, Carol; Maia, Jose; Matsudo, Victor; Olds, Timothy; Onywera, Vincent; Sarmiento, Olga L; Standage, Martyn; Tudor-Locke, Catrine; Zhao, Pei; Sjödin, Anders M

    2016-01-01

    In order to verify if the full moon is associated with sleep and activity behaviors, we used a 12-country study providing 33,710 24-h accelerometer recordings of sleep and activity. The present observational, cross-sectional study included 5812 children ages 9-11 years from study sites that represented all inhabited continents and wide ranges of human development (Australia, Brazil, Canada, China, Colombia, Finland, India, Kenya, Portugal, South Africa, United Kingdom, and United States). Three moon phases were used in this analysis: full moon (±4 days; reference), half moon (±5-9 days), and new moon (±10-14 days) from nearest full moon. Nocturnal sleep duration, moderate-to-vigorous physical activity (MVPA), light-intensity physical activity (LPA), and total sedentary time (SED) were monitored over seven consecutive days using a waist-worn accelerometer worn 24 h a day. Only sleep duration was found to significantly differ between moon phases (~5 min/night shorter during full moon compared to new moon). Differences in MVPA, LPA, and SED between moon phases were negligible and non-significant (<2 min/day difference). There was no difference in the associations between study sites. In conclusion, sleep duration was 1% shorter at full moon compared to new moon, while activity behaviors were not significantly associated with the lunar cycle in this global sample of children. Whether this seemingly minimal difference is clinically meaningful is questionable.

  20. Genetic contributions to circadian activity rhythm and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder

    PubMed Central

    Pagani, Lucia; St. Clair, Patricia A.; Teshiba, Terri M.; Service, Susan K.; Fears, Scott C.; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Ramirez, Margarita; Castrillón, Gabriel; Gomez-Makhinson, Juliana; Lopez, Maria C.; Montoya, Gabriel; Montoya, Claudia P.; Aldana, Ileana; Navarro, Linda; Freimer, Daniel G.; Safaie, Brian; Keung, Lap-Woon; Greenspan, Kiefer; Chou, Katty; Escobar, Javier I.; Ospina-Duque, Jorge; Kremeyer, Barbara; Ruiz-Linares, Andres; Cantor, Rita M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Bearden, Carrie E.; Takahashi, Joseph S.; Freimer, Nelson B.

    2016-01-01

    Abnormalities in sleep and circadian rhythms are central features of bipolar disorder (BP), often persisting between episodes. We report here, to our knowledge, the first systematic analysis of circadian rhythm activity in pedigrees segregating severe BP (BP-I). By analyzing actigraphy data obtained from members of 26 Costa Rican and Colombian pedigrees [136 euthymic (i.e., interepisode) BP-I individuals and 422 non–BP-I relatives], we delineated 73 phenotypes, of which 49 demonstrated significant heritability and 13 showed significant trait-like association with BP-I. All BP-I–associated traits related to activity level, with BP-I individuals consistently demonstrating lower activity levels than their non–BP-I relatives. We analyzed all 49 heritable phenotypes using genetic linkage analysis, with special emphasis on phenotypes judged to have the strongest impact on the biology underlying BP. We identified a locus for interdaily stability of activity, at a threshold exceeding genome-wide significance, on chromosome 12pter, a region that also showed pleiotropic linkage to two additional activity phenotypes. PMID:26712028

  1. Genetic contributions to circadian activity rhythm and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder.

    PubMed

    Pagani, Lucia; St Clair, Patricia A; Teshiba, Terri M; Service, Susan K; Fears, Scott C; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Ramirez, Margarita; Castrillón, Gabriel; Gomez-Makhinson, Juliana; Lopez, Maria C; Montoya, Gabriel; Montoya, Claudia P; Aldana, Ileana; Navarro, Linda; Freimer, Daniel G; Safaie, Brian; Keung, Lap-Woon; Greenspan, Kiefer; Chou, Katty; Escobar, Javier I; Ospina-Duque, Jorge; Kremeyer, Barbara; Ruiz-Linares, Andres; Cantor, Rita M; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I; Sabatti, Chiara; Bearden, Carrie E; Takahashi, Joseph S; Freimer, Nelson B

    2016-02-01

    Abnormalities in sleep and circadian rhythms are central features of bipolar disorder (BP), often persisting between episodes. We report here, to our knowledge, the first systematic analysis of circadian rhythm activity in pedigrees segregating severe BP (BP-I). By analyzing actigraphy data obtained from members of 26 Costa Rican and Colombian pedigrees [136 euthymic (i.e., interepisode) BP-I individuals and 422 non-BP-I relatives], we delineated 73 phenotypes, of which 49 demonstrated significant heritability and 13 showed significant trait-like association with BP-I. All BP-I-associated traits related to activity level, with BP-I individuals consistently demonstrating lower activity levels than their non-BP-I relatives. We analyzed all 49 heritable phenotypes using genetic linkage analysis, with special emphasis on phenotypes judged to have the strongest impact on the biology underlying BP. We identified a locus for interdaily stability of activity, at a threshold exceeding genome-wide significance, on chromosome 12pter, a region that also showed pleiotropic linkage to two additional activity phenotypes.

  2. Sleep, recovery, and metaregulation: explaining the benefits of sleep.

    PubMed

    Vyazovskiy, Vladyslav V

    2015-01-01

    A commonly held view is that extended wakefulness is causal for a broad spectrum of deleterious effects at molecular, cellular, network, physiological, psychological, and behavioral levels. Consequently, it is often presumed that sleep plays an active role in providing renormalization of the changes incurred during preceding waking. Not surprisingly, unequivocal empirical evidence supporting such a simple bi-directional interaction between waking and sleep is often limited or controversial. One difficulty is that, invariably, a constellation of many intricately interrelated factors, including the time of day, specific activities or behaviors during preceding waking, metabolic status and stress are present at the time of measurement, shaping the overall effect observed. In addition to this, although insufficient or disrupted sleep is thought to prevent efficient recovery of specific physiological variables, it is also often difficult to attribute specific changes to the lack of sleep proper. Furthermore, sleep is a complex phenomenon characterized by a multitude of processes, whose unique and distinct contributions to the purported functions of sleep are difficult to determine, because they are interrelated. Intensive research effort over the last decades has greatly progressed current understanding of the cellular and physiological processes underlying the regulation of vigilance states. Notably, it also highlighted the infinite complexity within both waking and sleep, and revealed a number of fundamental conceptual and technical obstacles that need to be overcome in order to fully understand these processes. A promising approach could be to view sleep not as an entity, which has specific function(s) and is subject to direct regulation, but as a manifestation of the process of metaregulation, which enables efficient moment-to-moment integration between internal and external factors, preceding history and current homeostatic needs. PMID:26719733

  3. Sleep, recovery, and metaregulation: explaining the benefits of sleep

    PubMed Central

    Vyazovskiy, Vladyslav V

    2015-01-01

    A commonly held view is that extended wakefulness is causal for a broad spectrum of deleterious effects at molecular, cellular, network, physiological, psychological, and behavioral levels. Consequently, it is often presumed that sleep plays an active role in providing renormalization of the changes incurred during preceding waking. Not surprisingly, unequivocal empirical evidence supporting such a simple bi-directional interaction between waking and sleep is often limited or controversial. One difficulty is that, invariably, a constellation of many intricately interrelated factors, including the time of day, specific activities or behaviors during preceding waking, metabolic status and stress are present at the time of measurement, shaping the overall effect observed. In addition to this, although insufficient or disrupted sleep is thought to prevent efficient recovery of specific physiological variables, it is also often difficult to attribute specific changes to the lack of sleep proper. Furthermore, sleep is a complex phenomenon characterized by a multitude of processes, whose unique and distinct contributions to the purported functions of sleep are difficult to determine, because they are interrelated. Intensive research effort over the last decades has greatly progressed current understanding of the cellular and physiological processes underlying the regulation of vigilance states. Notably, it also highlighted the infinite complexity within both waking and sleep, and revealed a number of fundamental conceptual and technical obstacles that need to be overcome in order to fully understand these processes. A promising approach could be to view sleep not as an entity, which has specific function(s) and is subject to direct regulation, but as a manifestation of the process of metaregulation, which enables efficient moment-to-moment integration between internal and external factors, preceding history and current homeostatic needs. PMID:26719733

  4. Diet, exercise, sleep, sexual activity, and perceived stress in people with epilepsy in NE Thailand.

    PubMed

    Saengsuwan, Jiamjit; Boonyaleepan, Suwanna; Tiamkao, Somsak

    2015-04-01

    The aim of this study was to find out how people with epilepsy in NE Thailand feel about their levels of stress, sleep, diet, exercise habits, and sex lives using a cross-sectional design. Two hundred and three people with epilepsy (PWE) were randomly recruited from a university epilepsy clinic in Khon Kaen and then completed an interview and a questionnaire. A total of 27.6% of the patients believed that diet had an influence on their epilepsy (of those who reported changes, 41.1% stopped consuming alcohol, while 32.1% stopped drinking caffeinated beverages). A total of 47.2% of the patients exercised at least three times per week, while 52.8% exercised two times or less a week. Daytime sleeping was prevalent, with 43.3% saying that they slept during the day frequently or every day. There were 44.3% of the patients who believed that their sex lives changed after the onset of epilepsy, with decreased sexual arousal being most commonly mentioned. A total of 76.4% of the patients said that they had medium or high levels of stress, and epilepsy was listed as the most common reason for their stress (50.2%). Focusing on the problem was the most common method to reduce stress (80.3%). The findings illuminate the need to increase attention towards improving and promoting self-management of epilepsy. As a whole, diet, exercise, sleep, stress reduction, and sex therapy can be valuable tools to improve the quality of life of people with epilepsy.

  5. Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study.

    PubMed

    Kurth, Salomé; Ringli, Maya; Geiger, Anja; LeBourgeois, Monique; Jenni, Oskar G; Huber, Reto

    2010-10-01

    Evidence that electroencephalography (EEG) slow-wave activity (SWA) (EEG spectral power in the 1-4.5 Hz band) during non-rapid eye movement sleep (NREM) reflects plastic changes is increasing (Tononi and Cirelli, 2006). Regional assessment of gray matter development from neuroimaging studies reveals a posteroanterior trajectory of cortical maturation in the first three decades of life (Shaw et al., 2008). Our aim was to test whether this regional cortical maturation is reflected in regional changes of sleep SWA. We evaluated all-night high-density EEG (128 channels) in 55 healthy human subjects (2.4-19.4 years) and assessed age-related changes in NREM sleep topography. As in adults, we observed frequency-specific topographical distributions of sleep EEG power in all subjects. However, from early childhood to late adolescence, the location on the scalp showing maximal SWA underwent a shift from posterior to anterior regions. This shift along the posteroanterior axis was only present in the SWA frequency range and remained stable across the night. Changes in the topography of SWA during sleep parallel neuroimaging study findings indicating cortical maturation starts early in posterior areas and spreads rostrally over the frontal cortex. Thus, SWA might reflect the underlying processes of cortical maturation. In the future, sleep SWA assessments may be used as a clinical tool to detect aberrations in cortical maturation.

  6. Neurobiological consequences of sleep deprivation.

    PubMed

    Alkadhi, Karim; Zagaar, Munder; Alhaider, Ibrahim; Salim, Samina; Aleisa, Abdulaziz

    2013-05-01

    Although the physiological function of sleep is not completely understood, it is well documented that it contributes significantly to the process of learning and memory. Ample evidence suggests that adequate sleep is essential for fostering connections among neuronal networks for memory consolidation in the hippocampus. Sleep deprivation studies are extremely valuable in understanding why we sleep and what are the consequences of sleep loss. Experimental sleep deprivation in animals allows us to gain insight into the mechanism of sleep at levels not possible to study in human subjects. Many useful approaches have been utilized to evaluate the effect of sleep loss on cognitive function, each with relative advantages and disadvantages. In this review we discuss sleep and the detrimental effects of sleep deprivation mostly in experimental animals. The negative effects of sleep deprivation on various aspects of brain function including learning and memory, synaptic plasticity and the state of cognition-related signaling molecules are discussed.

  7. Neurobiological Consequences of Sleep Deprivation

    PubMed Central

    Alkadhi, Karim; Zagaar, Munder; Alhaider, Ibrahim; Salim, Samina; Aleisa, Abdulaziz

    2013-01-01

    Although the physiological function of sleep is not completely understood, it is well documented that it contributes significantly to the process of learning and memory. Ample evidence suggests that adequate sleep is essential for fostering connections among neuronal networks for memory consolidation in the hippocampus. Sleep deprivation studies are extremely valuable in understanding why we sleep and what are the consequences of sleep loss. Experimental sleep deprivation in animals allows us to gain insight into the mechanism of sleep at levels not possible to study in human subjects. Many useful approaches have been utilized to evaluate the effect of sleep loss on cognitive function, each with relative advantages and disadvantages. In this review we discuss sleep and the detrimental effects of sleep deprivation mostly in experimental animals. The negative effects of sleep deprivation on various aspects of brain function including learning and memory, synaptic plasticity and the state of cognition-related signaling molecules are discussed. PMID:24179461

  8. Global Brain Blood-Oxygen Level Responses to Autonomic Challenges in Obstructive Sleep Apnea

    PubMed Central

    Macey, Paul M.; Kumar, Rajesh; Ogren, Jennifer A.; Woo, Mary A.; Harper, Ronald M.

    2014-01-01

    Obstructive sleep apnea (OSA) is accompanied by brain injury, perhaps resulting from apnea-related hypoxia or periods of impaired cerebral perfusion. Perfusion changes can be determined indirectly by evaluation of cerebral blood volume and oxygenation alterations, which can be measured rapidly and non-invasively with the global blood oxygen level dependent (BOLD) signal, a magnetic resonance imaging procedure. We assessed acute BOLD responses in OSA subjects to pressor challenges that elicit cerebral blood flow changes, using a two-group comparative design with healthy subjects as a reference. We separately assessed female and male patterns, since OSA characteristics and brain injury differ between sexes. We studied 94 subjects, 37 with newly-diagnosed, untreated OSA (6 female (age mean ± std: 52.1±8.1 yrs; apnea/hypopnea index [AHI]: 27.7±15.6 events/hr and 31 male 54.3±8.4 yrs; AHI: 37.4±19.6 events/hr), and 20 female (age 50.5±8.1 yrs) and 37 male (age 45.6±9.2 yrs) healthy control subjects. We measured brain BOLD responses every 2 s while subjects underwent cold pressor, hand grip, and Valsalva maneuver challenges. The global BOLD signal rapidly changed after the first 2 s of each challenge, and differed in magnitude between groups to two challenges (cold pressor, hand grip), but not to the Valsalva maneuver (repeated measures ANOVA, p<0.05). OSA females showed greater differences from males in response magnitude and pattern, relative to healthy counterparts. Cold pressor BOLD signal increases (mean ± adjusted standard error) at the 8 s peak were: OSA 0.14±0.08% vs. Control 0.31±0.06%, and hand grip at 6 s were: OSA 0.08±0.03% vs. Control at 0.30±0.02%. These findings, indicative of reduced cerebral blood flow changes to autonomic challenges in OSA, complement earlier reports of altered resting blood flow and reduced cerebral artery responsiveness. Females are more affected than males, an outcome which may contribute to the sex-specific brain injury

  9. The role of fast and slow EEG activity during sleep in males and females with Major Depressive Disorder

    PubMed Central

    Cheng, Philip; Goldschmied, Jennifer; Deldin, Patricia; Hoffmann, Robert; Armitage, Roseanne

    2015-01-01

    Sleep difficulties are highly prevalent in depression, and appears to be a contributing factor in the development and maintenance of symptoms. However, despite the generally acknowledged relationship between sleep and depression, the neurophysiological substrates underlying this relationship still remain unclear. Two main hypotheses were tested in this study. The first hypothesis states that sleep in depression is characterized by inadequate generation of restorative sleep, as indexed by reduced amounts of slow-wave activity. Conversely, the second hypothesis states that poor sleep in depression is due to intrusions of fast-frequency activity that may be reflective of a hyperaroused central nervous system. This study aimed to test both hypotheses in a large sample of individuals with clinically validated depression, as well as examine sex as a moderator. Results suggest that depression is better characterized by an overall decrease in slow-wave activity, which is related to elevated anxious and depressed mood the following morning. Results also suggest that females may be more likely to experience fast frequency activity related to depression symptom severity. PMID:26175101

  10. The Involvement of Noradrenaline in Rapid Eye Movement Sleep Mentation

    PubMed Central

    Gottesmann, Claude

    2011-01-01

    Noradrenaline, one of the main brain monoamines, has powerful central influences on forebrain neurobiological processes which support the mental activities occurring during the sleep–waking cycle. Noradrenergic neurons are activated during waking, decrease their firing rate during slow wave sleep, and become silent during rapid eye movement (REM) sleep. Although a low level of noradrenaline is still maintained during REM sleep because of diffuse extrasynaptic release without rapid withdrawal, the decrease observed during REM sleep contributes to the mentation disturbances that occur during dreaming, which principally resemble symptoms of schizophrenia but seemingly also of attention deficit hyperactivity disorder. PMID:22180750

  11. Effect of Exercise and Cognitive Activity on Self-Reported Sleep Quality in Community-Dwelling Older Adults with Cognitive Complaints: A Randomized Controlled Trial

    PubMed Central

    Pa, Judy; Goodson, William; Bloch, Andrew; King, Abby C.; Yaffe, Kristine; Barnes, Deborah E.

    2015-01-01

    Objectives To compare the effects of different types of physical and mental activity on self-reported sleep quality over 12 weeks in older adults with cognitive and sleep complaints. Design Randomized controlled trial. Setting General community. Participants Seventy-two inactive community-dwelling older adults with self-reported sleep and cognitive problems (mean age 73.3±6.1; 60% women). Intervention Random allocation to four arms using a two-by-two factorial design: aerobic+cognitive training, aerobic+educational DVD, stretching+cognitive training, and stretching+educational DVD arms (60 min/d, 3 d/wk for physical and mental activity for 12 weeks). Measurements Change in sleep quality using seven questions from the Sleep Disorders Questionnaire on the 2005–06 National Health and Nutrition Examination Survey (range 0–28, with higher scores reflecting worse sleep quality). Analyses used intention-to-treat methods. Results Sleep quality scores did not differ at baseline, but there was a significant difference between the study arms in change in sleep quality over time (p<.005). Mean sleep quality scores improved significantly more in the stretching+educational DVD arm (5.1 points) than in the stretching+cognitive training (1.2 points), aerobic+educational DVD (1.1 points), or aerobic+cognitive training (0.25 points) arm (all p<.05, corrected for multiple comparisons). Differences between arms were strongest for waking at night (p=.02) and taking sleep medications (p=.004). Conclusion Self-reported sleep quality improved significantly more with low-intensity physical and mental activities than with moderate- or high-intensity activities in older adults with self-reported cognitive and sleep difficulties. Future longer-term studies with objective sleep measures are needed to corroborate these results. PMID:25516028

  12. Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation

    PubMed Central

    Hill, J L; Hardy, N F; Jimenez, D V; Maynard, K R; Kardian, A S; Pollock, C J; Schloesser, R J; Martinowich, K

    2016-01-01

    Posttraumatic stress disorder is characterized by hyperarousal, sensory processing impairments, sleep disturbances and altered fear regulation; phenotypes associated with changes in brain oscillatory activity. Molecules associated with activity-dependent plasticity, including brain-derived neurotrophic factor (BDNF), may regulate neural oscillations by controlling synaptic activity. BDNF synthesis includes production of multiple Bdnf transcripts, which contain distinct 5′ noncoding exons. We assessed arousal, sensory processing, fear regulation and sleep in animals where BDNF expression from activity-dependent promoter IV is disrupted (Bdnf-e4 mice). Bdnf-e4 mice display sensory hyper-reactivity and impaired electrophysiological correlates of sensory information processing as measured by event-related potentials (ERP). Utilizing electroencephalogram, we identified a decrease in slow-wave activity during non-rapid eye movement sleep, suggesting impaired sleep homeostasis. Fear extinction is controlled by hippocampal–prefrontal cortical BDNF signaling, and neurophysiological communication patterns between the hippocampus (HPC) and medial prefrontal cortex (mPFC) correlate with behavioral performance during extinction. Impaired fear extinction in Bdnf-e4 mice is accompanied by increased HPC activation and decreased HPC–mPFC theta phase synchrony during early extinction, as well as increased mPFC activation during extinction recall. These results suggest that activity-dependent BDNF signaling is critical for regulating oscillatory activity, which may contribute to altered behavior. PMID:27552586

  13. Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation.

    PubMed

    Hill, J L; Hardy, N F; Jimenez, D V; Maynard, K R; Kardian, A S; Pollock, C J; Schloesser, R J; Martinowich, K

    2016-01-01

    Posttraumatic stress disorder is characterized by hyperarousal, sensory processing impairments, sleep disturbances and altered fear regulation; phenotypes associated with changes in brain oscillatory activity. Molecules associated with activity-dependent plasticity, including brain-derived neurotrophic factor (BDNF), may regulate neural oscillations by controlling synaptic activity. BDNF synthesis includes production of multiple Bdnf transcripts, which contain distinct 5' noncoding exons. We assessed arousal, sensory processing, fear regulation and sleep in animals where BDNF expression from activity-dependent promoter IV is disrupted (Bdnf-e4 mice). Bdnf-e4 mice display sensory hyper-reactivity and impaired electrophysiological correlates of sensory information processing as measured by event-related potentials (ERP). Utilizing electroencephalogram, we identified a decrease in slow-wave activity during non-rapid eye movement sleep, suggesting impaired sleep homeostasis. Fear extinction is controlled by hippocampal-prefrontal cortical BDNF signaling, and neurophysiological communication patterns between the hippocampus (HPC) and medial prefrontal cortex (mPFC) correlate with behavioral performance during extinction. Impaired fear extinction in Bdnf-e4 mice is accompanied by increased HPC activation and decreased HPC-mPFC theta phase synchrony during early extinction, as well as increased mPFC activation during extinction recall. These results suggest that activity-dependent BDNF signaling is critical for regulating oscillatory activity, which may contribute to altered behavior. PMID:27552586

  14. Dreaming without REM sleep.

    PubMed

    Oudiette, Delphine; Dealberto, Marie-José; Uguccioni, Ginevra; Golmard, Jean-Louis; Merino-Andreu, Milagros; Tafti, Mehdi; Garma, Lucile; Schwartz, Sophie; Arnulf, Isabelle

    2012-09-01

    To test whether mental activities collected from non-REM sleep are influenced by REM sleep, we suppressed REM sleep using clomipramine 50mg (an antidepressant) or placebo in the evening, in a double blind cross-over design, in 11 healthy young men. Subjects were awakened every hour and asked about their mental activity. The marked (81%, range 39-98%) REM-sleep suppression induced by clomipramine did not substantially affect any aspects of dream recall (report length, complexity, bizarreness, pleasantness and self-perception of dream or thought-like mentation). Since long, complex and bizarre dreams persist even after suppressing REM sleep either partially or totally, it suggests that the generation of mental activity during sleep is independent of sleep stage.

  15. Sleep Disorders

    MedlinePlus

    ... the day, even if you have had enough sleep? You might have a sleep disorder. The most common kinds are Insomnia - a hard time falling or staying asleep Sleep apnea - breathing interruptions during sleep Restless legs syndrome - ...

  16. Sleep Problems

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Sleep Problems Share Tweet Linkedin Pin it More sharing ... PDF 474KB) En Español Medicines to Help You Sleep Tips for Better Sleep Basic Facts about Sleep ...

  17. Vi. Marital conflict, vagal regulation, and children's sleep: a longitudinal investigation.

    PubMed

    El-Sheikh, Mona; Hinnant, J Benjamin; Erath, Stephen A

    2015-03-01

    We examined longitudinal relations between adult interpartner conflict (referred to as marital conflict) and children's subsequent sleep minutes and quality assessed objectively via actigraphy, and tested parasympathetic nervous system (PNS) activity indexed through respiratory sinus arrhythmia reactivity (RSA-R) and initial sleep as moderators of predictive associations. At Wave 1 (W1), children (85 boys, 75 girls) with a mean age of 9.43 years (SD=.69) reported on marital conflict, and their sleep was assessed with actigraphs for seven nights. Sleep minutes, sleep efficiency, sleep activity, and number of long wake episodes were derived. RSA-R was measured in response to a lab challenge. Sleep parameters were assessed again 1 year later at Wave 2 (W2; mean age=10.39; SD=.64). Analyses consistently revealed 3-way interactions among W1 marital conflict, sleep, and RSA-R as predictors of W2 sleep parameters. Sleep was stable among children with more sleep minutes and better sleep quality at W1 or low exposure to marital conflict at W1. Illustrating conditional risk, marital conflict predicted increased sleep problems (reduced sleep minutes, worse sleep quality) at W2 among children with poorer sleep at W1 in conjunction with less apt physiological regulation (i.e., lower levels of RSA-R or less vagal withdrawal) at W1. Findings build on the scant literature and underscore the importance of simultaneous consideration of bioregulatory systems (PNS and initial sleep in this study) in conjunction with family processes in the prediction of children's later sleep parameters.

  18. Electric stimulation of the tuberomamillary nucleus affects epileptic activity and sleep-wake cycle in a genetic absence epilepsy model.

    PubMed

    Blik, Vitaliya

    2015-01-01

    Deep brain stimulation (DBS) is a promising approach for epilepsy treatment, but the optimal targets and parameters of stimulation are yet to be investigated. Tuberomamillary nucleus (TMN) is involved in EEG desynchronization-one of the proposed mechanisms for DBS action. We studied whether TMN stimulation could interfere with epileptic spike-wave discharges (SWDs) in WAG/Rij rats with inherited absence epilepsy and whether such stimulation would affect sleep-wake cycle. EEG and video registration were used to determine SWD occurrence and stages of sleep and wake during three-hours recording sessions. Stimulation (100Hz) was applied in two modes: closed-loop (with previously determined interruption threshold intensity) or open-loop mode (with 50% or 70% threshold intensity). Closed-loop stimulation successfully interrupted SWDs but elevated their number by 148 ± 54% compared to baseline. It was accompanied by increase in number of episodes but not total duration of both active and passive wakefulness. Open-loop stimulation with amplitude 50% threshold did not change measured parameters, though 70% threshold stimulation reduced SWDs number by 40 ± 9%, significantly raised the amount of active wakefulness and decreased the amount of both slow-wave and rapid eye movement sleep. These results suggest that the TMN is unfavorable as a target for DBS as its stimulation may cause alterations in sleep-wake cycle. A careful choosing of parameters and control of sleep-wake activity is necessary when applying DBS in epilepsy.

  19. Anatomical markers of sleep slow wave activity derived from structural magnetic resonance images.

    PubMed

    Buchmann, Andreas; Kurth, Salomé; Ringli, Maya; Geiger, Anja; Jenni, Oskar G; Huber, Reto

    2011-12-01

    Sleep studies often observe differences in slow wave activity (SWA) during non-rapid eye movement sleep between subjects. This study investigates to what extent these absolute differences in SWA can be explained with differences in grey matter volume, white matter volume or the thickness of skull and outer liquor rooms. To do this, we selected the 10-min interval showing maximal SWA of 20 young adult subjects and correlated these values lobe-wise with grey matter, skull and liquor thickness and globally with white matter as well as segments of the corpus callosum. Whereas grey matter, skull thickness and liquor did not correlate significantly with maximal slow wave activity, there were significant correlations with the anterior parts of the corpus callosum and with one other white matter region. In contrast, electroencephalogram power of higher frequencies correlates positively with grey matter volumes and cortical surface area. We discuss the possible role of white matter tracts on the synchronization of slow waves across the cortex.

  20. Salivary and hair glucocorticoids and sleep in very preterm children during school age.

    PubMed

    Maurer, Natalie; Perkinson-Gloor, Nadine; Stalder, Tobias; Hagmann-von Arx, Priska; Brand, Serge; Holsboer-Trachsler, Edith; Wellmann, Sven; Grob, Alexander; Weber, Peter; Lemola, Sakari

    2016-10-01

    Very preterm birth involves increased stress for the child, which may lead to programming of the hypothalamic-pituitary-adrenal (HPA) axis activity and poor sleep in later life. Moreover, there is evidence for a relationship between HPA axis activity and sleep. However, research with objective sleep measures in very preterm children during school-age is rare. Eighty-five healthy children born very preterm (<32nd gestational week) and 91 full-term children aged 7-12 years were recruited for the present study. To assess HPA axis activity, salivary cortisol was measured at awakening, 10, 20, and 30min later. In addition, hair cortisol and cortisone concentrations were quantified using liquid chromatography tandem mass spectrometry to assess cumulative endocrine activity over the preceding months. One night of in-home polysomnographic sleep assessment was conducted to assess sleep duration, sleep continuity, and sleep architecture. Children born very preterm showed significantly lower levels of cortisol at awakening and lower overall post-awakening cortisol secretion, lower cortisone in hair, and earlier sleep onset than full-term children. Across the whole sample, overall post-awakening cortisol secretion was positively related to sleep onset time and negatively to sleep duration. The association between prematurity status and post-awakening cortisol secretion was partially mediated by earlier sleep onset time. In conclusion, this study provides evidence for a possible down-regulation of the HPA axis activity and slightly earlier sleep phase in very preterm children during school age. PMID:27434634

  1. Serum sex hormone levels in different severity of male adult obstructive sleep apnea-hypopnea syndrome in East Asians.

    PubMed

    Dong, Jia-Qi; Chen, Xiong; Xiao, Ying; Zhang, Rui; Niu, Xun; Kong, Wei-Jia

    2015-08-01

    Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a serious health issue, which can impact the hormone secretion. The aim of this study is to analyze the relationship between serum sex hormone concentrations and different severity degree of OSAHS, and to evaluate the influence of OSAHS on sex hormone levels. We enrolled 116 subjects who were subjected to polysomnography (PSG). They were divided into three groups: control group (n=10) [apnea hypopnea index (AHI) <5/h], mild-moderate OSAHS group (n=15) (5≤AHI<30/h), and severe OSAHS group (n=91) (AHI≥30/h). The patients in OSAHS group were subdivided into obesity and non-obesity subgroups. The parameters such as AHI, body mass index (BMI), lowest oxygen saturation (LSaO2), and mean oxygen saturation (MSaO2) were recorded. Serum levels of testosterone, polactin, estradiol, follicle stimulating hormone (FSH) and luteinizing hormone (LH) were determined in the morning immediately after waking up. Mean levels of hormones were compared among groups. The correlation between hormone levels and sleep-breathing parameters was analyzed. No significant differences in serum sex hormone levels were found among control, mild-moderate OSAHS, and severe OSAHS groups (P>0.05). There was no correlation between AHI and sex hormone levels (P>0.05). Testosterone was significantly negatively correlated with BMI (P<0.05). These results suggested that BMI might have a direct effect on testosterone level, and it might be an important factor affecting testosterone level in male OSAHS patients, and there may be no correlation between severity of OSAHS and sex hormones levels. PMID:26223926

  2. Physical Activity, Study Sitting Time, Leisure Sitting Time, and Sleep Time Are Differently Associated With Obesity in Korean Adolescents: A Population-Based Study.

    PubMed

    Kong, Il Gyu; Lee, Hyo-Jeong; Kim, So Young; Sim, Songyong; Choi, Hyo Geun

    2015-11-01

    Low physical activity, long leisure sitting time, and short sleep time are risk factors for obesity, but the association with study sitting time is unknown. The objective of this study was to evaluate the association between these factors and obesity.We analyzed the association between physical activity, study sitting time, leisure sitting time, and sleep time and subject weight (underweight, healthy weight, overweight, and obese), using data from a large population-based survey, the 2013 Korea Youth Risk Behavior Web-based Survey. Data from 53,769 participants were analyzed using multinomial logistic regression analyses with complex sampling. Age, sex, region of residence, economic level, smoking, stress level, physical activity, sitting time for study, sitting time for leisure, and sleep time were adjusted as the confounders.Low physical activity (adjusted odds ratios [AORs] = 1.03, 1.12) and long leisure sitting time (AORs = 1.15, 1.32) were positively associated with overweight and obese. Low physical activity (AOR = 1.33) and long leisure sitting time (AOR = 1.12) were also associated with underweight. Study sitting time was negatively associated with underweight (AOR = 0.86) but was unrelated to overweight (AOR = 0.97, 95% confidence interval [CI] = 0.91-1.03) and obese (AOR = 0.94, 95% CI = 0.84-1.04). Sleep time (<6 hours; ≥6 hours, <7 hours; ≥7 hours, <8 hours) was adversely associated with underweight (AORs = 0.67, 0.79, and 0.88) but positively associated with overweight (AORs = 1.19, 1.17, and 1.08) and obese (AORs = 1.33, 1.36, and 1.30) in a dose-response relationship.In adolescents, increasing physical activity, decreasing leisure sitting time, and obtaining sufficient sleep would be beneficial in maintaining a healthy weight. However, study sitting time was not associated with overweight or obese. PMID:26554807

  3. Choice of biomaterials—Do soft occlusal splints influence jaw-muscle activity during sleep? A preliminary report

    NASA Astrophysics Data System (ADS)

    Arima, Taro; Takeuchi, Tamiyo; Tomonaga, Akio; Yachida, Wataru; Ohata, Noboru; Svensson, Peter

    2012-12-01

    AimThe choice of biomaterials for occlusal splints may significantly influence biological outcome. In dentistry, hard acrylic occlusal splints (OS) have been shown to have a temporary and inhibitory effect on jaw-muscle activity, such as tooth clenching and grinding during sleep, i.e., sleep bruxism (SB). Traditionally, this inhibitory effect has been explained by changes in the intraoral condition rather than the specific effects of changes in occlusion. The aim of this preliminary study was to investigate the effect of another type of occlusal surface, such as a soft-material OS in addition to a hard-type OS in terms of changes in jaw-muscle activity during sleep. Materials and methodsSeven healthy subjects (mean ± SD, six men and one woman: 28.9 ± 2.7 year old), participated in this study. A soft-material OS (ethylene vinyl acetate copolymer) was fabricated for each subject and the subjects used the OS for five continuous nights. The EMG activity during sleep was compared to baseline (no OS). Furthermore, the EMG activity during the use of a hard-type OS (Michigan-type OS, acrylic resin), and hard-type OS combined with contingent electrical stimulation (CES) was compared to baseline values. Each session was separated by at least two weeks (washout). Jaw-muscle activity during sleep was recorded with single-channel ambulatory devices (GrindCare, MedoTech, Herlev, Denmark) in all sessions for five nights. ResultsJaw-muscle activity during sleep was 46.6 ± 29.8 EMG events/hour at baseline and significantly decreased during the hard-type OS (17.4 ± 10.5, P = 0.007) and the hard-type OS + CES (10.8 ± 7.1, P = 0.002), but not soft-material OS (36.3 ± 24.5, P = 0.055). Interestingly, the soft-material OS (coefficient of variance = 98.6 ± 35.3%) was associated with greater night-to-night variations than baseline (39.0 ± 11.8%) and the hard-type OS + CES (53.3 ± 13.7%, P < 0.013). ConclusionThe present pilot study in small sample showed that a soft

  4. Sleep disturbances and PTSD: a perpetual circle?

    PubMed Central

    van Liempt, Saskia

    2012-01-01

    Background Sleep facilitates the consolidation of fear extinction memory. Nightmares and insomnia are hallmark symptoms of posttraumatic stress disorder (PTSD), possibly interfering with fear extinction and compromising recovery. A perpetual circle may develop when sleep disturbances increase the risk for PTSD and vice versa. To date, therapeutic options for alleviating sleep disturbances in PTSD are limited. Methods We conducted three studies to examine the relationship between sleep and posttraumatic symptoms: (1) a prospective longitudinal cohort study examining the impact of pre-deployment insomnia symptoms and nightmares on the development of PTSD; (2) a cross-sectional study examining subjective sleep measures, polysomnography, endocrinological parameters, and memory in veterans with PTSD, veterans without PTSD, and healthy controls (HCs); (3) a randomized controlled trial (RCT) (n=14) comparing the effect of prazosin and placebo on sleep disturbances in veterans with PTSD. In addition to these studies, we systematically reviewed the literature on treatment options for sleep disturbances in PTSD. Results Pre-deployment nightmares predicted PTSD symptoms at 6 months post-deployment; however, insomnia symptoms did not. Furthermore, in patients with PTSD, a correlation between the apnea index and PTSD severity was observed, while obstructive sleep apnea syndrome was not more prevalent. We observed a significant increase in awakenings during sleep in patients with PTSD, which were positively correlated with adrenocorticotropic hormone (ACTH) levels, negatively correlated with growth hormone (GH) secretion, and the subjective perception of sleep depth. Also, heart rate was significantly increased in PTSD patients. Interestingly, plasma levels of GH during the night were decreased in PTSD. Furthermore, GH secretion and awakenings were independent predictors for delayed recall, which was lower in PTSD. In our RCT, prazosin was not associated with improvement of any

  5. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    PubMed

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment.

  6. Birth Order and Activity Level in Children.

    ERIC Educational Resources Information Center

    Eaton, Warren O.; And Others

    1989-01-01

    Studied 7,018 children between birth and 7 years and 81 children of 5-8 years to test the hypothesis that birth order is negatively related to motor activity level. Activity level declined linearly across birth position, so that early-borns were rated as more active than later-borns. (RJC)

  7. Sleep in pregnancy.

    PubMed

    Richardson, P

    1996-07-01

    The article examines relationships between pregnancy and maternal sleep. Specifically, sleep as a restorative process is considered with regard for the metabolic and arousal demands of childbearing. The analysis draws attention to the limited number of studies in the area and the need for greater research interest in pregnancy sleep phenomena. The available evidence indicates that maternal slow-wave and rapid eye movement which are key to anabolic activity and neural-cerebral recharge, are protected throughout pregnancy until perhaps the last 3 to 4 weeks before delivery. The sleep disturbances about which term gravidas complain appear to be based on increased periods of wakefulness after sleep onset. PMID:8717994

  8. The Role of Sleep Spindles and Slow-Wave Activity in Integrating New Information in Semantic Memory

    PubMed Central

    Lambon Ralph, Matthew A.; Lewis, Penelope A.

    2013-01-01

    Assimilating new information into existing knowledge is a fundamental part of consolidating new memories and allowing them to guide behavior optimally and is vital for conceptual knowledge (semantic memory), which is accrued over many years. Sleep is important for memory consolidation, but its impact upon assimilation of new information into existing semantic knowledge has received minimal examination. Here, we examined the integration process by training human participants on novel words with meanings that fell into densely or sparsely populated areas of semantic memory in two separate sessions. Overnight sleep was polysomnographically monitored after each training session and recall was tested immediately after training, after a night of sleep, and 1 week later. Results showed that participants learned equal numbers of both word types, thus equating amount and difficulty of learning across the conditions. Measures of word recognition speed showed a disadvantage for novel words in dense semantic neighborhoods, presumably due to interference from many semantically related concepts, suggesting that the novel words had been successfully integrated into semantic memory. Most critically, semantic neighborhood density influenced sleep architecture, with participants exhibiting more sleep spindles and slow-wave activity after learning the sparse compared with the dense neighborhood words. These findings provide the first evidence that spindles and slow-wave activity mediate integration of new information into existing semantic networks. PMID:24068804

  9. Prior regular exercise reverses the decreased effects of sleep deprivation on brain-derived neurotrophic factor levels in the hippocampus of ovariectomized female rats.

    PubMed

    Saadati, Hakimeh; Sheibani, Vahid; Esmaeili-Mahani, Saeed; Darvishzadeh-Mahani, Fatemeh; Mazhari, Shahrzad

    2014-11-01

    Previous studies indicated that brain-derived neurotrophic factor (BDNF) is the main candidate to mediate the beneficial effects of exercise on cognitive function in sleep deprived male rats. In addition, our previous findings demonstrate that female rats are more vulnerable to the deleterious effects of sleep deprivation on cognitive performance and synaptic plasticity. Therefore, the current study was designed to investigate the effects of treadmill exercise and/or sleep deprivation (SD) on the levels of BDNF mRNA and protein in the hippocampus of female rats. Intact and ovariectomized (OVX) female Wistar rats were used in the present experiment. The exercise protocol was four weeks treadmill running and sleep deprivation was accomplished using the multiple platform method. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblot analysis were used to evaluate the level of BDNF mRNA and protein in the rat hippocampus respectively. Our results showed that protein and mRNA expression of BDNF was significantly (p<0.05) decreased after 72 h SD in OVX rats in compared with other groups. Furthermore, sleep deprived OVX rats under exercise conditions had a significant (p<0.05) up-regulation of the BDNF protein and mRNA in the hippocampus. These findings suggest that regular exercise can exert a protective effect against hippocampus-related functions and impairments induced by sleep deprivation probably by inducing BDNF expression.

  10. Phase coupling between rhythmic slow activity and gamma characterizes mesiotemporal rapid-eye-movement sleep in humans.

    PubMed

    Clemens, Z; Weiss, B; Szucs, A; Eross, L; Rásonyi, G; Halász, P

    2009-09-29

    In the human sleep literature there is much controversy regarding the existence and the characteristics of hippocampal rhythmic slow activity (RSA). Generally the human RSA is believed to occur in short bursts of theta activity. An earlier study, however, reported mesiotemporal RSA during rapid-eye-movement (REM) sleep that instead of theta fell in the delta frequency band. We conjectured that if this RSA activity is indeed a human analogue of the animal hippocampal theta then characteristics associated with the animal theta should also be reflected in the human recordings. Here our aim was to examine possible phase coupling between mesiotemporal RSA and gamma activity during REM sleep. The study relied on nine epilepsy surgery candidates implanted with foramen ovale electrodes. Positive half-waves of the 1.5-3 Hz RSA were identified by an automatic algorithm during REM sleep. High-frequency activity was assessed for 11 consecutive 20 Hz-wide frequency bands between 20 and 240 Hz. Increase in high frequency activity was phase coupled with RSA in most frequency bands and patients. Such a phase coupling closely resembles that seen between theta and gamma in rodents. We consider this commonality to be an additional reason for regarding delta rather than theta as the human analogue of RSA in animals.

  11. Sleep disorders in psychiatry.

    PubMed

    Costa e Silva, Jorge Alberto

    2006-10-01

    Sleep is an active state that is critical for our physical, mental, and emotional well-being. Sleep is also important for optimal cognitive functioning, and sleep disruption results in functional impairment. Insomnia is the most common sleep disorder in psychiatry. At any given time, 50% of adults are affected with 1 or more sleep problems such as difficulty in falling or staying asleep, in staying awake, or in adhering to a consistent sleep/wake schedule. Narcolepsy affects as many individuals as does multiple sclerosis or Parkinson disease. Sleep problems are especially prevalent in schizophrenia, depression, and other mental illnesses, and every year, sleep disorders, sleep deprivation, and sleepiness add billions to the national health care bill in industrialized countries. Although psychiatrists often treat patients with insomnia secondary to depression, most patients discuss their insomnia with general care physicians, making it important to provide this group with clear guidelines for the diagnosis and management of insomnia. Once the specific medical, behavioral, or psychiatric causes of the sleep problem have been identified, appropriate treatment can be undertaken. Chronic insomnia has multiple causes arising from medical disorders, psychiatric disorders, primary sleep disorders, circadian rhythm disorders, social or therapeutic use of drugs, or maladaptive behaviors. The emerging concepts of sleep neurophysiology are consistent with the cholinergic-aminergic imbalance hypothesis of mood disorders, which proposes that depression is associated with an increased ratio of central cholinergic to aminergic neurotransmission. The characteristic sleep abnormalities of depression may reflect a relative predominance of cholinergic activity. Antidepressant medications presumably reduce rapid eye movement (REM) sleep either by their anticholinergic properties or by enhancing aminergic neurotransmission. Intense and prolonged dreams often accompany abrupt withdrawal

  12. Sleep and vigilance linked to melanism in wild barn owls.

    PubMed

    Scriba, M F; Rattenborg, N C; Dreiss, A N; Vyssotski, A L; Roulin, A

    2014-10-01

    Understanding the function of variation in sleep requires studies in the natural ecological conditions in which sleep evolved. Sleep has an impact on individual performance and hence may integrate the costs and benefits of investing in processes that are sensitive to sleep, such as immunity or coping with stress. Because dark and pale melanic animals differentially regulate energy homeostasis, immunity and stress hormone levels, the amount and/or organization of sleep may covary with melanin-based colour. We show here that wild, cross-fostered nestling barn owls (Tyto alba) born from mothers displaying more black spots had shorter non-REM (rapid eye movement) sleep bouts, a shorter latency until the occurrence of REM sleep after a bout of wakefulness and more wakefulness bouts. In male nestlings, the same sleep traits also correlated with their own level of spotting. Because heavily spotted male nestlings and the offspring of heavily spotted biological mothers switched sleep-wakefulness states more frequently, we propose the hypothesis that they could be also behaviourally more vigilant. Accordingly, nestlings from mothers displaying many black spots looked more often towards the nest entrance where their parents bring food and towards their sibling against whom they compete. Owlets from heavily spotted mothers might invest more in vigilance, thereby possibly increasing associated costs due to sleep fragmentation. We conclude that different strategies of the regulation of brain activity have evolved and are correlated with melanin-based coloration.

  13. Sleep and vigilance linked to melanism in wild barn owls.

    PubMed

    Scriba, M F; Rattenborg, N C; Dreiss, A N; Vyssotski, A L; Roulin, A

    2014-10-01

    Understanding the function of variation in sleep requires studies in the natural ecological conditions in which sleep evolved. Sleep has an impact on individual performance and hence may integrate the costs and benefits of investing in processes that are sensitive to sleep, such as immunity or coping with stress. Because dark and pale melanic animals differentially regulate energy homeostasis, immunity and stress hormone levels, the amount and/or organization of sleep may covary with melanin-based colour. We show here that wild, cross-fostered nestling barn owls (Tyto alba) born from mothers displaying more black spots had shorter non-REM (rapid eye movement) sleep bouts, a shorter latency until the occurrence of REM sleep after a bout of wakefulness and more wakefulness bouts. In male nestlings, the same sleep traits also correlated with their own level of spotting. Because heavily spotted male nestlings and the offspring of heavily spotted biological mothers switched sleep-wakefulness states more frequently, we propose the hypothesis that they could be also behaviourally more vigilant. Accordingly, nestlings from mothers displaying many black spots looked more often towards the nest entrance where their parents bring food and towards their sibling against whom they compete. Owlets from heavily spotted mothers might invest more in vigilance, thereby possibly increasing associated costs due to sleep fragmentation. We conclude that different strategies of the regulation of brain activity have evolved and are correlated with melanin-based coloration. PMID:25056556

  14. Glycogen metabolism and the homeostatic regulation of sleep.

    PubMed

    Petit, Jean-Marie; Burlet-Godinot, Sophie; Magistretti, Pierre J; Allaman, Igor

    2015-02-01

    In 1995 Benington and Heller formulated an energy hypothesis of sleep centered on a key role of glycogen. It was postulated that a major function of sleep is to replenish glycogen stores in the brain that have been depleted during wakefulness which is associated to an increased energy demand. Astrocytic glycogen depletion participates to an increase of extracellular adenosine release which influences sleep homeostasis. Here, we will review some evidence obtained by studies addressing the question of a key role played by glycogen metabolism in sleep regulation as proposed by this hypothesis or by an alternative hypothesis named "glycogenetic" hypothesis as well as the importance of the confounding effect of glucocorticoïds. Even though actual collected data argue in favor of a role of sleep in brain energy balance-homeostasis, they do not support a critical and direct involvement of glycogen metabolism on sleep regulation. For instance, glycogen levels during the sleep-wake cycle are driven by different physiological signals and therefore appear more as a marker-integrator of brain energy status than a direct regulator of sleep homeostasis. In support of this we provide evidence that blockade of glycogen mobilization does not induce more sleep episodes during the active period while locomotor activity is reduced. These observations do not invalidate the energy hypothesis of sleep but indicate that underlying cellular mechanisms are more complex than postulated by Benington and Heller.

  15. Sleep protects memories from interference in older adults.

    PubMed

    Sonni, Akshata; Spencer, Rebecca M C

    2015-07-01

    In a recent study, we demonstrated that sleep-dependent consolidation of declarative memories is preserved in older adults. The present study examined whether this benefit of sleep for declarative learning in older adults reflects a passive role of sleep in protecting memories from decay or an active role in stabilizing them. Young and older adults learned a visuospatial task, and recall was probed after sleep or wake. Although a reduction in performance was observed after sleep and wake, task-related interference before recall had a larger detriment on performance in the wake condition. This was true for young and high performing older adults only. Low performing older adults did not receive a benefit of sleep on the visuospatial task. Performance changes were associated with early night nonrapid eye movement sleep in young adults and with early night rapid eye movement sleep in high performing older adults. These results demonstrate that performance benefits from sleep in older adults as a result of an active memory stabilization process; importantly, the extent of this benefit of sleep is closely linked to the level of initial acquisition of the episodic information in older adults. PMID:25890819

  16. Cerebral blood flow during paroxysmal EEG activation induced by sleep in patients with complex partial seizures

    SciTech Connect

    Gozukirmizi, E.; Meyer, J.S.; Okabe, T.; Amano, T.; Mortel, K.; Karacan, I.

    1982-01-01

    Cerebral blood flow (CBF) measurements were combined with sleep polysomnography in nine patients with complex partial seizures. Two methods were used: the 133Xe method for measuring regional (rCBF) and the stable xenon CT method for local (LCBF). Compared to nonepileptic subjects, who show diffuse CBF decreases during stages I-II, non-REM sleep onset, patients with complex partial seizures show statistically significant increases in CBF which are maximal in regions where the EEG focus is localized and are predominantly seen in one temporal region but are also propagated to other cerebral areas. Both CBF methods gave comparable results, but greater statistical significance was achieved by stable xenon CT methodology. CBF increases are more diffuse than predicted by EEG paroxysmal activity recorded from scalp electrodes. An advantage of the 133Xe inhalation method was achievement of reliable data despite movement of the head. This was attributed to the use of a helmet which maintained the probes approximated to the scalp. Disadvantages were poor resolution (7 cm3) and two-dimensional information. The advantage of stable xenon CT method is excellent resolution (80 mm3) in three dimensions, but a disadvantage is that movement of the head in patients with seizure disorders may limit satisfactory measurements.

  17. [Moving activity and wakefulness-sleep cycle changes in a mouse MPTP model of Parkinson's disease].

    PubMed

    Manolov, A I; Dolgikh, V V; Ukraintseva, Iu V; Zavalko, I M; Revishchin, A V; Pavlova, G V; Pronina, T S; Ugriumov, M V; Dorokhov, V B; Koval'zon, V M

    2014-11-01

    A group of mice with preliminary implanted (under general anesthesia) electrodes for cortical EEG and nuchal EMG was subjected to continuous baseline 24-hr video and digital polysomnographic recording with the 12/12 light/dark schedule, and then injected subcutaneously with 24 or 48 mg/kg of MPTP toxin or (the control group) saline. The recordings were continued for 2 weeks more. A significant increase in activity and the waking percentage as well as decrease in REM sleep and NREM sleep (tendency) during the dark period as compared to the baseline and control recordings was found. The effect was seen just on the 7th day following MPTP administration and became significant by the 14th day. The effect was more pronounced after 48 mg/kg injection than after 24. There were no changes during the light period. Morphological control revealed a 70% and 35% decreases in the amount of tyrosine hydroxylase positive neurons in substancia nigra/pars compacta after 48 and 24 mg/kg of MPTP, respectively, as compared to the saline group.

  18. Consequences of acne on stress, fatigue, sleep disorders and sexual activity: a population-based study.

    PubMed

    Misery, Laurent; Wolkenstein, Pierre; Amici, Jean-Michel; Maghia, Rémi; Brenaut, Emilie; Cazeau, Christine; Voisard, Jean-Jacques; Taïeb, Charles

    2015-04-01

    Acne is a common disease among young people, which could have a serious impact on quality of life. Based on a survey using the quotas method on a large sample of the French population, we studied the impact of acne on feelings of stress, fatigue upon waking, sleep disorders and sexual activity. We did not establish any relationship to sleep disorders, but clearly ascertained that people with acne (n = 1,375) feel more stressed and have less sexual intercourse. Hence, 18% of people from acne group declared to be stressed every day (13.9% in control group) and 37.5% had no sexual intercourse (20.4% in control group; n = 891). To our knowledge, this is the first study to show that fatigue upon waking is strongly associated with the presence of acne (65.4% versus 58.4%). This study emphasises the fact that acne could have a deep resounding impact on the lives of people suffering from the disease.

  19. The impact of sleep restriction on daytime movement in typically developing children.

    PubMed

    Poirier, Abbey; Gendron, Melissa; Vriend, Jennifer; Davidson, Fiona; Corkum, Penny

    2016-03-01

    The current study investigated the link between poor sleep and ADHD symptomatology. The effects of extending versus restricting sleep on subjective (questionnaires) and objective (actigraphy) measures of daytime movement were examined in 25 typically developing children aged 8-12 years. Subjective measures demonstrated an increase in ADHD symptomology following sleep restriction, with follow-up analyses indicating that findings were due to poorer attention, not changes in hyperactivity. The results of actigraphy data indicated that there were no differences found for mean or median daytime activity, but the standard deviation of activity was found to be significantly higher following sleep restriction. Contrary to the popular belief that sleep restriction results in increased overall activity, this study instead found an increase in variability of activity. This suggests that a sleep-restricted child's activity level may appear as alternating periods of high and low activity levels throughout the day. PMID:26160688

  20. Circadian Activity Rhythms and Sleep in Nurses Working Fixed 8-hr Shifts.

    PubMed

    Kang, Jiunn-Horng; Miao, Nae-Fang; Tseng, Ing-Jy; Sithole, Trevor; Chung, Min-Huey

    2015-05-01

    Shift work is associated with adverse health outcomes. The aim of this study was to explore the effects of shift work on circadian activity rhythms (CARs) and objective and subjective sleep quality in nurses. Female day-shift (n = 16), evening-shift (n = 6), and night-shift (n = 13) nurses wore a wrist actigraph to monitor the activity. We used cosinor analysis and time-frequency analysis to study CARs. Night-shift nurses exhibited the lowest values of circadian rhythm amplitude, acrophase, autocorrelation, and mean of the circadian relative power (CRP), whereas evening-shift workers exhibited the greatest standard deviation of the CRP among the three shift groups. That is, night-shift nurses had less robust CARs and evening-shift nurses had greater variations in CARs compared with nurses who worked other shifts. Our results highlight the importance of assessing CARs to prevent the adverse effects of shift work on nurses' health. PMID:25332463

  1. Sleep and circadian rhythm disruption in schizophrenia†

    PubMed Central

    Wulff, Katharina; Dijk, Derk-Jan; Middleton, Benita; Foster, Russell G.; Joyce, Eileen M.

    2012-01-01

    Background Sleep disturbances comparable with insomnia occur in up to 80% of people with schizophrenia, but very little is known about the contribution of circadian coordination to these prevalent disruptions. Aims A systematic exploration of circadian time patterns in individuals with schizophrenia with recurrent sleep disruption. Method We examined the relationship between sleep-wake activity, recorded actigraphically over 6 weeks, along with ambient light exposure and simultaneous circadian clock timing, by collecting weekly 48 h profiles of a urinary metabolite of melatonin in 20 out-patients with schizophrenia and 21 healthy control individuals matched for age, gender and being unemployed. Results Significant sleep/circadian disruption occurred in all the participants with schizophrenia. Half these individuals showed severe circadian misalignment ranging from phase-advance/delay to non-24 h periods in sleep-wake and melatonin cycles, and the other half showed patterns from excessive sleep to highly irregular and fragmented sleep epochs but with normally timed melatonin production. Conclusions Severe circadian sleep/wake disruptions exist despite stability in mood, mental state and newer antipsychotic treatment. They cannot be explained by the individuals' level of everyday function. PMID:22194182

  2. Combinations of physical activity, sedentary behaviour and sleep: relationships with health indicators in school-aged children and youth.

    PubMed

    Saunders, Travis John; Gray, Casey Ellen; Poitras, Veronica Joan; Chaput, Jean-Philippe; Janssen, Ian; Katzmarzyk, Peter T; Olds, Timothy; Connor Gorber, Sarah; Kho, Michelle E; Sampson, Margaret; Tremblay, Mark S; Carson, Valerie

    2016-06-01

    The purpose of this systematic review was to determine how combinations of physical activity (PA), sedentary behaviour (SB), and sleep were associated with important health indicators in children and youth aged 5-17 years. Online databases (MEDLINE, EMBASE, SPORTdiscus, CINAHL, and PsycINFO) were searched for relevant studies examining the relationship between time spent engaging in different combinations of PA, SB, and sleep with the following health indicators: adiposity, cardiometabolic biomarkers, physical fitness, emotional regulation/psychological distress, behavioural conduct/pro-social behaviour, cognition, quality of life/well-being, injuries, bone density, motor skill development, and self-esteem. PA had to be objectively measured, while sleep and SB could be objectively or subjectively measured. The quality of research evidence and risk of bias for each health indicator and for each individual study was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework. A total of 13 cross-sectional studies and a single prospective cohort study reporting data from 36 560 individual participants met the inclusion criteria. Children and youth with a combination of high PA/high sleep/low SB had more desirable measures of adiposity and cardiometabolic health compared with those with a combination of low PA/low sleep/high SB. Health benefits were also observed for those with a combination of high PA/high sleep (cardiometabolic health and adiposity) or high PA/low SB (cardiometabolic health, adiposity and fitness), compared with low PA/low sleep or low PA/high SB. Of the 3 movement behaviours, PA (especially moderate- to vigorous-intensity PA) was most consistently associated with desirable health indicators. Given the lack of randomized trials, the overall quality of the available evidence was low. PMID:27306434

  3. Sleep and sleep disorders in Don Quixote.

    PubMed

    Iranzo, Alex; Santamaria, Joan; de Riquer, Martín

    2004-01-01

    In Don Quijote de la Mancha, Miguel de Cervantes presents Don Quixote as an amazing character of the 17th century who suffers from delusions and illusions, believing himself to be a medieval knight errant. Besides this neuropsychiatric condition, Cervantes included masterful descriptions of several sleep disorders such as insomnia, sleep deprivation, disruptive loud snoring and rapid eye movement sleep behaviour disorder. In addition, he described the occurrence of physiological, vivid dreams and habitual, post-prandial sleepiness--the siesta. Cervantes' concept of sleep as a passive state where all cerebral activities are almost absent is in conflict with his description of abnormal behaviours during sleep and vivid, fantastic dreams. His concept of sleep was shared by his contemporary, Shakespeare, and could have been influenced by the reading of the classical Spanish book of psychiatry Examen de Ingenios (1575).

  4. Sleep physiology and sleep disorders in childhood

    PubMed Central

    El Shakankiry, Hanan M

    2011-01-01

    Sleep has long been considered as a passive phenomenon, but it is now clear that it is a period of intense brain activity involving higher cortical functions. Overall, sleep affects every aspect of a child’s development, particularly higher cognitive functions. Sleep concerns are ranked as the fifth leading concern of parents. Close to one third of all children suffer from sleep disorders, the prevalence of which is increased in certain pediatric populations, such as children with special needs, children with psychiatric or medical diagnoses and children with autism or pervasive developmental disorders. The paper reviews sleep physiology and the impact, classification, and management of sleep disorders in the pediatric age group. PMID:23616721

  5. Shining evolutionary lig