Science.gov

Sample records for activity lipid peroxidation

  1. Lipid peroxidation and antioxidant enzymes activity in avian semen.

    PubMed

    Partyka, Agnieszka; Lukaszewicz, Ewa; Niżański, Wojciech

    2012-10-01

    The present study compared the antioxidant system and lipid peroxidation in semen of two avian species: chicken and goose. The experiment was conducted on Greenleg Partridge roosters and White Koluda(®) ganders, each represented by 10 mature males. Malondialdehyde (MDA) concentration, catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in sperm cells and seminal plasma. In gander spermatozoa, the amount of MDA was 10 times greater (P<0.01) than in rooster spermatozoa. Each of the investigated antioxidant enzymes had greater (P<0.01) activity in goose than chicken sperm. Catalase activity was detected in seminal plasma and spermatozoa from both studied species for the first time. In seminal plasma, the activity of GPx was two times greater (P<0.01) in the White Koluda(®) than in chickens, whereas SOD activity was less (P<0.01) than in chickens. This is the first study describing the presence of CAT in avian semen and the occurrence of indicator of lipid peroxidation (LPO) in geese. Data from the present study clearly show the species-specific differences in the activity of antioxidant defense and LPO. The greater amount of lipid peroxidation and greater activity of antioxidant enzymes in goose semen might suggest that spermatozoa were under greater oxidative stress and the enzymes were not utilized for the protection of functionally and structurally impaired cells. In turn, in fresh chicken semen a lesser activity of antioxidant enzymes accompanied with a lesser lipid peroxidation amount and good semen quality could indicate that fowl spermatozoa were under oxidative stress, but the enzymes were employed to protect and maintain sperm quality.

  2. Changes in lipid peroxide and antioxidant enzyme activities in corpora lutea during pseudopregnancy in rats.

    PubMed

    Shimamura, K; Sugino, N; Yoshida, Y; Nakamura, Y; Ogino, K; Kato, H

    1995-11-01

    This study investigated the involvement of lipid peroxidation and antioxidant enzymes in the regulation of luteal function in pseudopregnant rats. The activities of superoxide dismutase (SOD), a specific scavenger of superoxide radicals, and glutathione peroxidase, a scavenger of hydrogen peroxide, and lipid peroxide concentrations were measured in the corpus luteum on days 1, 3, 5, 7, 9, 11 and 13 of pseudopregnancy. The activity of SOD in the corpus luteum gradually increased until day 9 of pseudopregnancy and decreased thereafter, in a similar manner to serum progesterone concentration. Glutathione peroxidase activity significantly increased from day 1 to day 3 and remained high until day 11 of pseudopregnancy. The concentrations of lipid peroxides in the corpus luteum increased from day 3 to day 13 of pseudopregnancy. The involvement of prostaglandin F2 alpha (PGF2 alpha) in the production of lipid peroxides in regression of the corpus luteum was investigated by administering PGF2 alpha (3 mg kg-1, s.c.) or saline on days 7, 9 and 12 of pseudopregnancy. Each group of rats was autopsied 2 h later, and SOD activity, glutathione peroxidase activity and the concentration of lipid peroxides in the corpus luteum were determined. PGF2 alpha significantly increased lipid peroxide concentrations in the corpus luteum on days 7, 9 and 12 of pseudopregnancy (approximately twofold increases on days 7 and 9, and a fivefold increase on day 12, compared with the control that received saline). The activity of SOD in the corpus luteum was significantly increased by PGF2 alpha on days 7 and 9, but not on day 12, of pseudopregnancy. PGF2 alpha did not cause any significant changes in glutathione peroxidase activity in the corpus luteum on days 7, 9 and 12 of pseudopregnancy. It is concluded that lipid peroxides play an important role in regulating luteal function in pseudopregnant rats.

  3. Antioxidant and anti-lipid peroxidation activities of Tamarindus indica seed coat in human fibroblast cells.

    PubMed

    Nakchat, Oranuch; Meksuriyen, Duangdeun; Pongsamart, Sunanta

    2014-02-01

    Antioxidant activity and total phenolic content of tamarind seed coat extracts (TSCEs) were compared between the two extracts using boiling-water (TSCE-W) and 70% ethanol (TSCE-E) for extraction. TSCE-W, consisting of the highest phenolic content, possessed 2,2-diphenyl-1 -picrylhydrazyl (DPPH) radical scavenging and anti-lipid peroxidation activities much higher than TSCE-E and Trolox. Additionally, both TSCEs also exhibited superoxide anion and hydrogen peroxide scavenging activities higher than Trolox and BHA. Anti-lipid peroxidation and cytotoxicity of TSCE-W were also studied in human foreskin fibroblast CCD-1064Sk cells. Cytotoxic effect was not observed when exposed to TSCE-W up to 1 mg/mL for 12-48 h. However, TSCE-W significantly attenuated lipid peroxidation in H202-damaged cells. HPLC analysis showed the presence of (+)-catechin, (-)-epicatechin, and procyanidin B2 in TSCE-W, which could be responsible for antioxidant and anti-lipid peroxidation activities. The results suggest that an inexpensive and simple boiling-water extraction of TSCE-W may provide a valuable natural antioxidant source having anti-lipid peroxidation for health food additives, nutraceuticals as well as cosmeceuticals.

  4. Antioxidant and anti-lipid peroxidation activities of Tamarindus indica seed coat in human fibroblast cells.

    PubMed

    Nakchat, Oranuch; Meksuriyen, Duangdeun; Pongsamart, Sunanta

    2014-02-01

    Antioxidant activity and total phenolic content of tamarind seed coat extracts (TSCEs) were compared between the two extracts using boiling-water (TSCE-W) and 70% ethanol (TSCE-E) for extraction. TSCE-W, consisting of the highest phenolic content, possessed 2,2-diphenyl-1 -picrylhydrazyl (DPPH) radical scavenging and anti-lipid peroxidation activities much higher than TSCE-E and Trolox. Additionally, both TSCEs also exhibited superoxide anion and hydrogen peroxide scavenging activities higher than Trolox and BHA. Anti-lipid peroxidation and cytotoxicity of TSCE-W were also studied in human foreskin fibroblast CCD-1064Sk cells. Cytotoxic effect was not observed when exposed to TSCE-W up to 1 mg/mL for 12-48 h. However, TSCE-W significantly attenuated lipid peroxidation in H202-damaged cells. HPLC analysis showed the presence of (+)-catechin, (-)-epicatechin, and procyanidin B2 in TSCE-W, which could be responsible for antioxidant and anti-lipid peroxidation activities. The results suggest that an inexpensive and simple boiling-water extraction of TSCE-W may provide a valuable natural antioxidant source having anti-lipid peroxidation for health food additives, nutraceuticals as well as cosmeceuticals. PMID:24597144

  5. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  6. Augmentation of macrophage growth-stimulating activity of lipids by their peroxidation

    SciTech Connect

    Yui, S.; Yamazaki, M. )

    1990-02-15

    Previously, we reported that some kinds of lipids (cholesterol esters, triglycerides, and some negatively charged phospholipids) that are constituents of lipoproteins or cell membranes induce growth of peripheral macrophages in vitro. In this paper, we examined the effect of peroxidation of lipids on their macrophage growth-stimulating activity because lipid peroxidation is observed in many pathological states such as inflammation. When phosphatidylserine, one of the phospholipids with growth-stimulating activity, was peroxidized by UV irradiation, its macrophage growth-stimulating activity was augmented in proportion to the extent of its peroxidation. The activity of phosphatidylethanolamine was also increased by UV irradiation. On the other hand, phosphatidylcholine or highly unsaturated free fatty acids, such as arachidonic acid and eicosapentaenoic acid, did not induce macrophage growth irrespective of whether they were peroxidized. The augmented activity of UV-irradiated phosphatidylserine was not affected by the coexistence of an antioxidant, vitamin E or BHT. These results suggest that some phospholipids included in damaged cells or denatured lipoproteins which are scavenged by macrophages in vivo may induce growth of peripheral macrophages more effectively when they are peroxidized by local pathological processes.

  7. Correlation among lung damage after radiation, amount of lipid peroxides, and antioxidant enzyme activities

    SciTech Connect

    Nozue, M.; Ogata, T.

    1989-04-01

    The correlation between lipid peroxidation and morphologic changes was examined in Sprague-Dawley rat lungs after 30 Gy single thoracic radiation. The rats were sacrificed every week until the end of the fifth week after radiation. The left lungs were used for the measurement of lipid peroxides and antioxidant enzymes activities. The right lungs were examined by light and electron microscopy. Amounts of lung lipid peroxides were within normal limits, and no cellular degenerative changes were observed in the lungs except for subendothelial and interstitial edema 2 weeks after radiation. Lipid peroxides drastically increased and marked degenerative cellular changes such as edematous swelling, vacuolation, and destruction of cell membranes occurred in the alveolar septa following the third week after radiation. The activities of catalase were significantly higher during the period from the second to the fifth week and those of superoxide dismutase and glutathione peroxidase increased at the end of the fifth week. Our results demonstrated that the acceleration of lipid peroxidation was well correlated with the morphologic expression of cell injury in the irradiated lungs.

  8. Radical-scavenging activity, protective effect against lipid peroxidation and mineral contents of monofloral Cuban honeys.

    PubMed

    Alvarez-Suarez, José M; Giampieri, Francesca; Damiani, Elisabetta; Astolfi, Paola; Fattorini, Daniele; Regoli, Francesco; Quiles, José L; Battino, Maurizio

    2012-03-01

    Several monofloral Cuban honeys were analyzed to determine their free radical-scavenging activity and from this the total antioxidant content was estimated. The protective effect against lipid peroxidation in an in vitro model of rat liver homogenates was evaluated and, lastly, the mineral content of the honeys, which can be related to the maintenance of intracellular oxidative balance, was determined. The scavenging capacities against hydroxyl and superoxide radicals were determined using the spin-trapping technique and the hypoxanthine/xanthine oxidase assay, respectively. Lipid peroxidation was evaluated through the production of TBARS and hydroperoxides. All honeys tested showed potential antioxidant activity with Linen vine displaying the highest scavenging capacity towards the DPPH, hydroxyl and superoxide radicals, while the least efficient was Christmas vine honey. Honeys also inhibited, in a concentration-dependent mode, lipid peroxidation in rat liver homogenates, with Linen vine resulting the best while the least effective was Christmas vine honey. The ability to scavenge free radicals and protect against lipid peroxidation may contribute to the ability of certain Cuban honeys to help in preventing/reducing some inflammatory diseases in which oxidative stress is involved. A total of eight minerals were identified and quantified as follows: cadmium, chromium, copper, nickel, iron, manganese, lead, and zinc. Minerals found in higher concentrations were iron, zinc and manganese.

  9. Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation.

    PubMed

    Casalino, E; Sblano, C; Landriscina, C

    1997-10-15

    The specific activities of D-3-hydroxybutyrate dehydrogenase (BDH) and glutamate dehydrogenase (GDH) are reduced in the liver and kidney of rats intoxicated with 2.5 mg Cd/kg body wt and sacrificed after 24 h; conversely ketone-body concentration is strongly increased in both of these organs and blood. In the same animals a great stimulation of antioxidant enzymes glutathione reductase and glutathione peroxidase occurs. The prooxidant state induced by cadmium in liver mitochondria and microsomes is unaffected by superoxide dismutase, catalase, or mannitol, whereas it is completely blocked by vitamin E thus excluding the involvement of reactive oxygen species in this process. The mechanism by which cadmium induces lipid peroxidation has been investigated by measuring the effect of this metal on liposomes. Ninety-minute treatment of liposomes with CdCl2 does not induce any lipid peroxidation. In contrast, Fe2+ ions under the same conditions cause strong liposome peroxidation. It has also been observed that cadmium promotes a time-dependent iron release from biological membranes. When lipid peroxidation is induced by a low concentration (5 microM) of FeCl2, in place of CdCl2, the characteristics of this process and the sensitivity to the various antioxidants used are similar to those observed with Cd. From these results we conclude that the prooxidative effect of cadmium is an indirect one since it is mediated by iron. With regard to the inhibitory effect on BDH and GDH following cadmium intoxication, it does not appear to be imputable to lipid peroxidation since in vitro investigations indicate that the presence of vitamin E does not remove the inhibition at all. PMID:9343363

  10. Effect of Zen Meditation on serum nitric oxide activity and lipid peroxidation.

    PubMed

    Kim, Do-Hoon; Moon, Yoo-Sun; Kim, Hee-Sung; Jung, Jun-Sub; Park, Hyung-Moo; Suh, Hong-Won; Kim, Yung-Hi; Song, Dong-Keun

    2005-02-01

    This study was designed to investigate the effect of Zen Meditation on serum nitric oxide activity (NO) and oxidative stress (lipid peroxidation). The experimental group included 20 subjects who had practiced the Zen Meditation program in Meditation Center located in Seoul, South Korea. The control group included 20 subjects who did not practice any formal stress management technique and were age and sex matched with experimental group. To provide an assessment of nitric oxide production, the serum level of nitrate/nitrite was determined using the Griess reagent. Malondialdehyde (MDA) concentration was measured as a convenient index of lipid peroxidation by thiobarbituric acid (TBA) method. Meditation group showed a significant higher level of serum nitrate+nitrite concentration and a significant reduced level of serum malondialdehyde (MDA) than control group. A comprehensive randomized controlled trial should be performed to prove the causal relationship between meditation and level of nitric oxide or oxidative stress in reducing cardiovascular risk factors.

  11. Diazepam blocks striatal lipid peroxidation and improves stereotyped activity in a rat model of acute stress.

    PubMed

    Méndez-Cuesta, Luis A; Márquez-Valadez, Berenice; Pérez-De La Cruz, Verónica; Escobar-Briones, Carolina; Galván-Arzate, Sonia; Alvarez-Ruiz, Yarummy; Maldonado, Perla D; Santana, Ricardo A; Santamaría, Abel; Carrillo-Mora, Paul

    2011-11-01

    In this work, the effect of a single dose of diazepam was tested on different markers of oxidative damage in the striatum of rats in an acute model of immobilization (restraint) stress. In addition, the locomotor activity was measured at the end of the restraint period. Immobilization was induced to animals for 24 hr, and then, lipid peroxidation, superoxide dismutase activity and content, and mitochondrial function were all estimated in striatal tissue samples. Corticosterone levels were measured in serum. Diazepam was given to rats as a pre-treatment (1 mg/kg, i.p.) 20 min. before the initiation of stress. Our results indicate that acute stress produced enhanced striatal levels of lipid peroxidation (73% above the control), decreased superoxide dismutase activity (54% below the control), reduced levels of mitochondrial function (35% below the control) and increased corticosterone serum levels (86% above the control). Pre-treatment of stressed rats with diazepam decreased the striatal lipid peroxidation levels (68% below the stress group) and improved mitochondrial function (18% above the stress group), but only mild preservation of superoxide dismutase activity was detected (17% above the stress group). In regard to the motor assessment, only the stereotyped activity was increased in the stress group with respect to control (46% above the control), and this effect was prevented by diazepam administration (30% below the stress group). The preventive actions of diazepam in this acute model of stress suggest that drugs exhibiting anxiolytic and antioxidant properties might be useful for the design of therapies against early acute phases of physic stress.

  12. Relationship between Active Oxygen Species, Lipid Peroxidation, Necrosis, and Phytoalexin Production Induced by Elicitins in Nicotiana.

    PubMed Central

    Rusterucci, C.; Stallaert, V.; Milat, M. L.; Pugin, A.; Ricci, P.; Blein, J. P.

    1996-01-01

    Excised leaves of Nicotiana tabacum var Xanthi and Nicotiana rustica were treated with cryptogein and capsicein, basic and acidic elicitins, respectively. Both compounds induced leaf necrosis, the intensity of which depended on concentration and duration of treatment. N. tabacum var Xanthi was the most sensitive species and cryptogein was the most active elicitin. Lipid peroxidation in elicitin-treated Nicotiana leaves was closely correlated with the appearance of necrosis. Elicitin treatments induced a rapid and transient burst of active oxygen species (AOS) in cell cultures of both Nicotiana species, with the production by Xanthi cells being 6-fold greater than that by N. rustica. Similar maximum AOS production levels were observed with both elicitins, but capsicein required 10-fold higher concentrations than those of cryptogein. Phytoalexin production was lower in response to both elicitins in N. tabacum var Xanthi cells than in N. rustica cells, and capsicein was the most efficient elicitor of this response. In cryptogein-treated cell suspensions, phytoalexin synthesis was unaffected by diphenyleneiodonium, which inhibited AOS generation, nor was it affected by tiron or catalase, which suppressed AOS accumulation in the extracellular medium. These results suggest that AOS production, lipid peroxidation, and necrosis are directly related, whereas phytoalexin production depends on neither the presence nor the intensity of these responses. PMID:12226334

  13. Lipid peroxidation and antioxidant enzymes activity in controlled and uncontrolled Type 2 diabetic patients

    PubMed Central

    Zarei, Mahnaz; Farahnak, Zahra; Hosseinzadeh-Attar, Mohammad Javad; Javanbakht, Mohammad Hassan; Hosseinzadeh, Payam; Derakhshanian, Hoda; Farahbakhsh-Farsi, Payam; Djalali, Mahmoud

    2016-01-01

    BACKGROUND This study was designed to compare lipid peroxidation and antioxidant enzymes activity in Type 2 diabetes patients with good or weak glycemic control. METHODS In this case-control study, 62 Type 2 diabetic patients with glycated hemoglobin (HbA1c) between 6 and 8 were enrolled as the controlled group and 55 patients with HbA1c > 8 were selected as an uncontrolled group. Patients were all referred to Iranian Diabetes Association in Tehran, Iran, from 2010 onward. Groups were chosen by convenience sampling and were matched based on age, sex and duration of disease. Demographic questionnaire, two 24-hour food recall, HbA1c, insulin, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase were measured in blood samples. Data were analyzed by Food Processor II and SPSS software. RESULTS A mean daily consumption of energy, carbohydrate, protein, and fat was not significantly different between two groups. MDA in the uncontrolled group was significantly higher than controlled group (2.03 ± 0.88 vs. 1.65 ± 1.01 nmol/ml; P = 0.030). A mean SOD was slightly higher in the uncontrolled group comparing to the control group (843.3 ± 101.9 vs. 828.0 ± 127.3 U/g Hb; P = 0.400). CONCLUSION These data suggest that MDA as a lipid peroxidation indicator is higher in uncontrolled diabetes probably due to chronic high blood sugar followed by higher oxidative stress. PMID:27752268

  14. PEA chloroplasts under clino-rotation: lipid peroxidation and superoxide dismutase activity

    NASA Astrophysics Data System (ADS)

    Baranenko, V. V.

    The lipid peroxidation (LP) intensity and the activity of the antioxidant enzyme superoxide dismutase (SOD) were studied in chloroplasts of pea (Pisum sativum L.) plants grown for 7 and 14 days under clino-rotation. An increase in LP levels in chloroplasts during both terms of clinorotation in comparison with stationary controls was documented. SOD activity increased in chloroplasts of plants that were clino-rotated for seven days. SOD has a significant protective effect by diminishing the availability of O2-. However, under more prolonged clino-rotation (14 days), SOD activity decreased but was still higher than in the control samples. In accordance with Selye's oxidative stress theory (Selye, 1956; modified by Leshem et al., 1998), plants that were clino-rotated for seven days are presumed to be in a stage of resistance while 14-day plants reached a stage of exhaustion.

  15. Investigation of lipid peroxidation and catalase activity in magnetic fluid treated mice

    NASA Astrophysics Data System (ADS)

    Freitas, M. L. L.; Silva, L. P.; Freitas, J. L.; Azevedo, R. B.; Lacava, Z. G. M.; Homem de Bittencourt, P. I.; Curi, R.; Buske, N.; Morais, P. C.

    2003-05-01

    The increasing interest in magnetic fluids (MFs) for biomedical applications demands a deeper knowledge of their effects in biological systems. To evaluate the in vivo response of a MF sample based on magnetite nanoparticles stabilized by a precoating double layer of dodecanoic acid plus ethoxylated polyalcohol (MFDE), the inflammation-related oxidative stress and antioxidant tissue response were both addressed in this study. MFDE sample was intraperitoneally administrated to mice at three different doses. The lipid peroxidation and the antioxidant defense induced in the liver and spleen were evaluated, respectively, by thiobarbituric acid-reactive substances (TBARS) and catalase activity, 1, 14, and 28 days after MFDE treatment. The liver and spleen responded with a huge increase in TBARS after MFDE treatment. We observed that oxidative changes as well as the variations in the liver catalase activity were time and MFDE-dose dependent.

  16. Involvement of active oxygen in lipid peroxide radical reaction of epidermal homogenate following ultraviolet light exposure

    SciTech Connect

    Nishi, J.; Ogura, R.; Sugiyama, M.; Hidaka, T.; Kohno, M. )

    1991-07-01

    To elucidate the radical mechanism of lipid peroxidation induced by ultraviolet light (UV) irradiation, an electron spin resonance (ESR) study was made on epidermal homogenate prepared from albino rat skin. The exposure of the homogenate to UV light resulted in an increase in lipid peroxide content, which was proportional to the time of UV exposure. Using ESR spin trapping (dimethyl-1-pyrroline-N-oxide, DMPO), the DMPO spin adduct spectrum of lipid radicals (L.) was measured following UV exposure (DMPO-L.:aN = 15.5 G, aH = 22.7 G), as was the spectrum of DMPO-hydroxyl radical (DMPO-OH, aN = aH = 15.5 G). In the presence of superoxide dismutase, the DMPO spin adduct spectrum of lipid radicals was found to be reduced remarkably. Therefore, it was shown that the generation of the lipid radicals partially involves superoxide anion radicals, in addition to hydroxyl radicals. In the ESR free-radical experiment, an ESR signal appeared at g = 2.0064 when the ESR tube filled with homogenate was exposed to UV light at -150 degrees C. The temperature-dependent change in the ESR free radical signal of homogenate exposed to UV light was observed at temperatures varying from -150 degrees C to room temperature. By using degassed samples, it was confirmed that oxygen is involved in the formation of the lipid peroxide radicals (LOO.) from the lipid radicals (L.).

  17. Activation of lipid peroxidation as a mechanism of plant cell rearrangements under microgravity

    NASA Astrophysics Data System (ADS)

    Baranenko, V. V.

    Activation of the lipid peroxidation (LP) is a universal process perturbating cell membranes under different unfavourable conditions. It is suggested that the LP can be one of the important mechanisms of plant cell rearrangements under altered gravity as well. The purpose of this investigation is to study the LP intensity in pea leaves and chloroplasts under 7- and 14-day clinorotation. The intensification of the LP under both terms of clinorotation particularly under more prolonged, is detected. The adaptive increase in the unsaturated fatty acid content under 7-day clinorotation and their minor decrease under 14-day clinorotation are revealed. The lowering of electron transport rate in both photosystems, particularly in PSI, is established. The results confirm that the LPmay be one of the mechanisms of plant cell rearrangements under microgravity.

  18. LIPID PEROXIDATION GENERATES BIOLOGICALLY ACTIVE PHOSPHOLIPIDS INCLUDING OXIDATIVELY N-MODIFIED PHOSPHOLIPIDS

    PubMed Central

    Davies, Sean S.; Guo, Lilu

    2014-01-01

    Peroxidation of membranes and lipoproteins converts “inert” phospholipids into a plethora of oxidatively modified phospholipids (oxPL) that can act as signaling molecules. In this review, we will discuss four major classes of oxPL: mildly oxygenated phospholipids, phospholipids with oxidatively truncated acyl chains, phospholipids with cyclized acyl chains, and phospholipids that have been oxidatively N-modified on their headgroups by reactive lipid species. For each class of oxPL we will review the chemical mechanisms of their formation, the evidence for their formation in biological samples, the biological activities and signaling pathways associated with them, and the catabolic pathways for their elimination. We will end by briefly highlighting some of the critical questions that remain about the role of oxPL in physiology and disease. PMID:24704586

  19. Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia: antioxidative systems, peroxide elimination, radical generation, lipid peroxidation.

    PubMed

    Röhl, Claudia; Armbrust, Elisabeth; Herbst, Eva; Jess, Anne; Gülden, Michael; Maser, Edmund; Rimbach, Gerald; Bösch-Saadatmandi, Christine

    2010-05-01

    Microglia and astrocytes are the cellular key players in many neurological disorders associated with oxidative stress and neuroinflammation. Previously, we have shown that microglia activated by lipopolysaccharides (LPS) induce the expression of antioxidative enzymes in astrocytes and render them more resistant to hydrogen peroxide (H2O2). In this study, we examined the mechanisms involved with respect to the cellular action of different peroxides, the ability to detoxify peroxides, and the status of further antioxidative systems. Astrocytes were treated for 3 days with medium conditioned by purified quiescent (microglia-conditioned medium, MCM[-]) or LPS-activated (MCM[+]) microglia. MCM[+] reduced the cytotoxicity of the organic cumene hydroperoxide in addition to that of H2O2. Increased peroxide resistance was not accompanied by an improved ability of astrocytes to remove H2O2 or an increased expression/activity of peroxide eliminating antioxidative enzymes. Neither peroxide-induced radical generation nor lipid peroxidation were selectively affected in MCM[+] treated astrocytes. The glutathione content of peroxide resistant astrocytes, however, was increased and superoxide dismutase and heme oxygenase were found to be upregulated. These changes are likely to contribute to the higher peroxide resistance of MCM[+] treated astrocytes by improving their ability to detoxify reactive oxygen radicals and oxidation products. For C6 astroglioma cells a protective effect of microglia-derived factors could not be observed, underlining the difference of primary cells and cell lines concerning their mechanisms of oxidative stress resistance. Our results indicate the importance of microglial-astroglial cell interactions during neuroinflammatory processes.

  20. Effect of cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes activity in fowl semen.

    PubMed

    Partyka, Agnieszka; Łukaszewicz, Ewa; Niżański, Wojciech

    2012-05-01

    The aim of the present study was to determine the influence of chicken semen cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes activities. Pooled semen from 10 Black Minorca roosters was used in the study. Semen samples were subjected to cryopreservation using the "pellet" method and dimethylacetamide (DMA) as a cryoprotectant. In the fresh and the frozen-thawed semen sperm membrane integrity (SYBR-14/propidium iodide (PI)), acrosomal damage (PNA-Alexa Fluor(®)488) and mitochondrial activity (Rhodamine 123) were assessed using flow cytometry. Malondialdehyde (MDA) concentration, catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in sperm cells and seminal plasma by spectrophotometry. All sperm characteristics evaluated using flow cytometry were affected by cryopreservation. After freezing-thawing, there was significant (P < 0.01) reduction in sperm membrane integrity, sperm acrosome integrity and mitochondrial activity. Following cryopreservation, MDA concentration significantly increased in chicken seminal plasma and spermatozoa (P < 0.01, P < 0.05). The CAT activity in seminal plasma significantly decreased (P < 0.05), while intracellular activity of this enzyme did not significantly change in frozen-thawed semen. In seminal plasma of frozen-thawed semen the significant increase (P < 0.01) in GPx activity was detected. Whereas GPx activity in spermatozoa remained statistically unchanged after thawing. The SOD activity significantly increased (P < 0.01) in cryopreserved seminal plasma with simultaneous decrease (P < 0.01) of its activity in cells. In conclusion, this is probably the first report describing the level of antioxidant enzymes in frozen-thawed avian semen. The present study showed that the activity of CAT, GPx and SOD in chicken semen was affected by cryopreservation, what increased the intensity of lipid peroxidation (LPO). Catalase appeared to play an important role

  1. Selenium status, lipid peroxides concentration, and glutathione peroxidase activity in the blood of power station and rubber factory workers.

    PubMed

    Zachara, B A; Wasowicz, W; Sklodowska, M; Gromadzinska, J

    1987-01-01

    Concentration of selenium in whole blood and plasma, lipid peroxides in plasma, and glutathione peroxidase activities in red blood cell hemolysates and plasma were determined in 49 coal power plant workers and in 50 rubber factory workers. The results were compared with those obtained for 58 nonindustrial controls. Whole blood selenium was significantly lower and plasma lipid peroxides were significantly higher in power plant workers when compared to the nonindustrial group. In the rubber factory workers, whole blood selenium and red blood cells and plasma glutathione peroxidase activities were significantly lower than in the control group. Urinary output of selenium was also significantly decreased in rubber factory workers. Slightly elevated lipid peroxides were also observed in that group. It seems reasonable to conclude that the lower blood selenium and decreased urinary output of this element may result from increased loss of selenium with perspiration. No correlation has been observed between selenium concentration and glutathione peroxidase activity and between enzyme activity and lipid peroxides concentration in the industrial group.

  2. Evaluation of lipid peroxidation activity at intravenous administration of gold nanorods in rats with simulated diabetes and transplanted liver cancer

    NASA Astrophysics Data System (ADS)

    Bucharskaya, Alla B.; Dikht, Natalia I.; Afanasyeva, Galina A.; Terentyuk, Georgy S.; Maslyakova, Galina N.; Zaraeva, Nadezhda V.; Khlebtsov, Nikolai G.; Khlebtsov, Boris N.

    2014-01-01

    In the experiment the white outbred rats with transplanted liver cancer (cholangiocarcinoma line PC-1) and simulated alloxan diabetes were treated by single intravenous injection of gold nanorods. State of lipid peroxidation was evaluated by the following parameters: the malondialdehyde, lipid hydroperoxide, the average weght molecules in the serum of animals by conventional spectrophotometric methods study using a spectrofluorometer RF-5301 PC (Shimadzu, Japan). In both experimental groups of animals the significant increasing of levels of lipid peroxidation products was noted compared with control group. After intravenous administration of nanoparticles in the group of animals with alloxan diabetes the activation of a free radical oxidation was not observed, in group with transplanted liver cancer the increasing of levels of lipid hydroperoxide, malondialdehyde was established.

  3. Using fluorescence-activated flow cytometry to determine reactive oxygen species formation and membrane lipid peroxidation in viable boar spermatozoa.

    PubMed

    Guthrie, H David; Welch, Glenn R

    2010-01-01

    Fluorescence-activated flow cytometry analyses were developed for determination of reactive oxygen species (ROS) formation and membrane lipid peroxidation in live spermatozoa loaded with, respectively, hydroethidine (HE) or the lipophilic probe 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid, C(11)BODIPY(581/591) (BODIPY). ROS was detected by red fluorescence emission from oxidization of HE and membrane lipid peroxidation was detected by green fluorescence emission from oxidation of BODIPY in individual live sperm. Of the reactive oxygen species generators tested, BODIPY oxidation was specific for FeSo4/ascorbate (FeAc), because menadione and H(2)O(2) had little or no effect. The oxidization of hydroethidine to ethidium was specific for menadione and H(2)O(2); FeAc had no effect. The incidence of basal or spontaneous ROS formation and membrane lipid peroxidation were low in boar sperm (<1% of live sperm) in fresh semen or after low temperature storage; however the sperm were quite susceptible to treatment-induced ROS formation and membrane lipid peroxidation. PMID:20072917

  4. Alleviation of Waterlogging Damage in Winter Rape by Uniconazole Application: Effects on Enzyme Activity, Lipid Peroxidation, and Membrane Integrity.

    PubMed

    Leul; Zhou

    1999-08-01

    Oilseed rape (Brassica napus L.) seedlings treated with uniconazole [(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-l-yl)-l-penten-3-ol] were transplanted at the five-leaf stage into specially designed experimental containers and then exposed to waterlogging for 3 weeks. After waterlogging stress, uniconazole-treated seedlings had significantly higher activities of superoxide dismutase, catalase, and peroxidase enzymes and endogenous free proline content at both the seedling and flowering stages. Uniconazole plus waterlogging-treated plants had a significantly higher content of unsaturated fatty acids than the waterlogged plants. There was a parallel increase in the lipid peroxidation level and electrolyte leakage rate from the leaves of waterlogged plants. Leaves from uniconazole plus waterlogging-treated plants had a significantly lower lipid peroxidation level and electrolyte leakage rate compared with waterlogged plants at both the seedling and flowering stages. Pretreatment of seedlings with uniconazole could effectively delay stress-induced degradation of chlorophyll and reduction of root oxidizability. Uniconazole did not alter the soluble sugar content of leaves and stems, after waterlogging of seedlings. Uniconazole improved waterlogged plant performance and increased seed yield, possibly because of improved antioxidation defense mechanisms, and it retarded lipid peroxidation and membrane deterioration of plants.Key Words. Waterlogging-Uniconazole-Brassica napus L.-Enzymes-Lipid peroxidation-Membrane integrityhttp://link.springer-ny.com/link/service/journals/00344/bibs/18n1p9.html PMID:10467014

  5. Nonenzymatic Lipid Peroxidation Reprograms Gene Expression and Activates Defense Markers in Arabidopsis Tocopherol-Deficient Mutants[W

    PubMed Central

    Sattler, Scott E.; Mène-Saffrané, Laurent; Farmer, Edward E.; Krischke, Markus; Mueller, Martin J.; DellaPenna, Dean

    2006-01-01

    Tocopherols (vitamin E) are lipophilic antioxidants that are synthesized by all plants and are particularly abundant in seeds. Two tocopherol-deficient mutant loci in Arabidopsis thaliana were used to examine the functions of tocopherols in seedlings: vitamin e1 (vte1), which accumulates the pathway intermediate 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ); and vte2, which lacks all tocopherols and pathway intermediates. Only vte2 displayed severe seedling growth defects, which corresponded with massively increased levels of the major classes of nonenzymatic lipid peroxidation products: hydroxy fatty acids, malondialdehyde, and phytoprostanes. In the absence of pathogens, the phytoalexin camalexin accumulated in vte2 seedlings to levels 100-fold higher than in wild-type or vte1 seedlings. Similarly, gene expression profiling in wild-type, vte1, and vte2 seedlings indicated that increased levels of nonenzymatic lipid peroxidation in vte2 corresponded to increased expression of many defense-related genes, which were not induced in vte1. Both biochemical and transcriptional analyses of vte2 seedlings indicate that nonenzymatic lipid peroxidation plays a significant role in modulating plant defense responses. Together, these results establish that tocopherols in wild-type plants or DMPBQ in vte1 plants limit nonenzymatic lipid peroxidation during germination and early seedling development, thereby preventing the inappropriate activation of transcriptional and biochemical defense responses. PMID:17194769

  6. The Fungicidal Activity of Thymol against Fusarium graminearum via Inducing Lipid Peroxidation and Disrupting Ergosterol Biosynthesis.

    PubMed

    Gao, Tao; Zhou, Hao; Zhou, Wei; Hu, Liangbin; Chen, Jian; Shi, Zhiqi

    2016-01-01

    Thymol is a natural plant-derived compound that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism for thymol against phytopathogens remains unclear. In this study, we identified the antifungal action of thymol against Fusarium graminearum, an economically important phytopathogen showing severe resistance to traditional chemical fungicides. The sensitivity of thymol on different F. graminearum isolates was screened. The hyphal growth, as well as conidial production and germination, were quantified under thymol treatment. Histochemical, microscopic, and biochemical approaches were applied to investigate thymol-induced cell membrane damage. The average EC50 value of thymol for 59 F. graminearum isolates was 26.3 μg·mL(-1). Thymol strongly inhibited conidial production and hyphal growth. Thymol-induced cell membrane damage was indicated by propidium iodide (PI) staining, morphological observation, relative conductivity, and glycerol measurement. Thymol induced a significant increase in malondialdehyde (MDA) concentration and a remarkable decrease in ergosterol content. Taken together, thymol showed potential antifungal activity against F. graminearum due to the cell membrane damage originating from lipid peroxidation and the disturbance of ergosterol biosynthesis. These results not only shed new light on the antifungal mechanism of thymol, but also imply a promising alternative for the control of Fusarium head blight (FHB) disease caused by F. graminearum. PMID:27322238

  7. Glutathione peroxidase activity, selenium, and lipid peroxide concentrations in blood from a healthy Polish population : I. Maternal and cord blood.

    PubMed

    Zachara, B A; Wąsowicz, W; Gromadzińska, J; Skłodowska, M; Krasomski, G

    1986-09-01

    Selenium (Se) concentrations in whole blood and plasma of 19 nonpregnant women. 14 mothers at delivery, 14 neonates, and 13 infants, aged 2-12 mo, were evaluated. The activity of glutathione peroxidase (GSH-Px) in erythrocytes and plasma and the level of lipid peroxides in plasma were also analyzed. Selenium concentrations in whole blood and plasma in mothers at delivery were significantly lower compared to nonpregnant women. Selenium concentrations in cord blood components were lower compared to mothers, but the differences were not significant. The concentration of the element decreased in the first few months of life. Glutathione peroxidase activity in erythrocytes differed only slightly in the examined groups. In plasma, however, the enzyme activity was significantly lower in pregnant compared to nonpregnant women and in neonates compared to their mothers. Lipid peroxide concentrations in plasma differed only slightly in the examined groups. The results obtained are discussed in terms of the observations of other investigators. PMID:24254392

  8. Age-Related Alterations of Plasma Lipid Peroxidation and Erythrocyte Superoxide Dismutase Activity in Different Ethnic Groups of Gorgan

    NASA Astrophysics Data System (ADS)

    Marjani, Abdoljalal; Mansourian, Azad Reza; Veghari, Gholam Reza; Rabiee, Mohammad Reza

    Free radicals have been proposed as important causative agents of ageing. The free radical theory of ageing postulates that ageing is caused by free radical reactions. These highly reactive species can cause oxidative damage in the cell. The purposive of this study was to investigate the alteration in plasma lipid peroxidation and erythrocyte superoxide dismutase activity in 2 different ethnic groups of Fars and Turkmen healthy people. We measured plasma lipid peroxidation levels (lipid peroxidation expressed as malondialdehyde) and erythrocyte superoxide dismutase activity. Study include 350 (175 Fars and 175 Turkmen male) apparently healthy individuals. Erythrocyte superoxide dismutase activities were determined in 2 different ethnic groups of Fars and Turkmen consisting of healthy individuals between 26-60 years of age {26-30 (n = 30), 3-35 (n = 30), 36-40 (n = 30), 41-45 (n = 30), 46-50 (n = 25), 51-55 (n = 15) and 56-60 (n = 15)}, respectively. The data was analyzed by Student` t-test. Erythrocyte superoxide dismutase and plasma lipid peroxidation levels in Fars and Turkmen people with 41-45 ages (group 4) and 36-40 ages (group 3) were significantly lower and higher than in the other age groups (Fars groups 1, 2 and 3, Turkmen groups 1, 2), respectively (p< 0.05). There were no significant relation between the age group 4 (Fars people) and the age groups 5, 6 and 7 (p>0.05). There were no significant relation between the age groups 3 (Turkmen people) and the age groups 4, 5, 6 and 7 (p>0.05). We found age-related differences in erythrocyte superoxide dismutase activity and plasma lipid peroxidation levels. The results indicate that the balance between antioxidant and prooxidant factors in free radical metabolism shifts towards increased lipid peroxidation with advancing age in 2 ethnic groups. This situation maybe begin in Turkmen people earlier than Fars people. The ethnic origin, diet, heavy working and life style factors of the two populations may explain

  9. Alterations in superoxide dismutase activities, lipid peroxidation and glutathione levels in thinner inhaled rat lungs: relationship between histopathological properties.

    PubMed

    Ulakoğlu, E Z; Saygi, A; Gümüştaş, M K; Zor, E; Oztek, I; Kökoğlu, E

    1998-09-01

    Paint thinner has widespread use in industry. The use of thinner among children as a narcotic agent has become a social and health problem. There is some evidence that organic solvents may express their toxicity by the way of reactive oxygen species (ROS) induced cell damage. ROS has been shown to induce lipid peroxidation in biological membranes. This study examined peroxidative and histopathological changes in the rat lung, during 5 weeks of thinner inhalation. Significant increases were found in lipid peroxidation (MDA+4-DHA) levels related to the duration of inhalation. As opposed to increases in the lipid peroxidation levels, significant decreases in superoxide dismutase activities and glutathione levels were observed from the third inhalation week to the end of the fifth week. At the beginning of the inhalation slight inflammatory changes, intraalveolar and interstitial extravasation and oedema in lung parenchyma were noted. As the inhalation period extended, chronic inflammatory changes, alveolar epithelial proliferation, collapse, emphysematous changes and interstitial fibrosis in lung were detected. PMID:9782071

  10. The relation between sphingomyelinase activity, lipid peroxide oxidation and NO-releasing in mice liver and brain.

    PubMed

    Alessenko, A V; Shupik, M A; Bugrova, A E; Dudnik, L B; Shingarova, L N; Mikoyan, A; Vanin, A F

    2005-10-24

    We used animal models to study connection between oxidating system and sphingomyelin signaling cascade, because this models are more close related to people disease. Activation of n-sphingomyelinase (n-SMase) in mice liver and brain is coincided in time with increased level of peroxide products (conjugated dienes) after injection of tumor necrosis factor alpha (TNF-alpha). We found that ceramide can induce peroxide oxidation and lead to accumulation of TNF-alpha in animal organs. Nitric oxide (NO) donors (S-nitrosoglutathione and dinitrosyl iron complex) reversibly inhibited activity of n-SMase and decreased level of lipid peroxidation products. This data proposed that both SMase and messengers of oxidative systems could be targets for NO-derived oxidants. PMID:16225875

  11. Effects of chilled storage and cryopreservation on sperm characteristics, antioxidant enzyme activities, and lipid peroxidation in Pacific cod Gadus microcephalus

    NASA Astrophysics Data System (ADS)

    Wang, Xueying; Shi, Xuehui; Liu, Yifan; Yu, Daode; Guan, Shuguang; Liu, Qinghua; Li, Jun

    2016-07-01

    The present study evaluated the effects of chilled storage and cryopreservation on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod Gadus macrocephalus. Sperm motility and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (Gr), and lipid peroxidation (measured via malondialdehyde (MDA) content) were determined after the milt was stored at 4°C for 12 h, cryopreserved without cryoprotectant in 12% propylene glycol (PG), cryopreserved in 12% PG+0.1 mol/L trehalose, or cryopreserved in 12% PG spermatozoa but centrifuged to decant the supernatant prior to cryopreservation (only sperm cells were cryopreserved). After chilled storage or cryopreservation, the SOD, CAT and GPx activities were reduced in sperm cells and increased in seminal plasma in almost all treatments; sperm motility parameters were also decreased. However, the addition of trehalose into the cryoprotectant could significantly improve the postthaw sperm quality as revealed by the sperm average path velocity. This improvement might be attributed to the function of trehalose in scavenging reactive oxygen species. Chilled storage and cryopreservation had significant effects on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod.

  12. Effect of tea polyphenols on lipid peroxidation and antioxidant activity of litchi (Litchi chinensis Sonn.) fruit during cold storage.

    PubMed

    Chen, Wenrong; Zhang, Zhenzhen; Shen, Yanwen; Duan, Xuewu; Jiang, Yuemin

    2014-10-20

    To understand the potential of application of tea polyphenols to the shelf life extension and quality maintenance of litchi (Litchi chinensis Sonn.) fruit, the fruits were dipped into a solution of 1% tea phenols for 5 min before cold storage at 4 °C. Changes in browning index, contents of anthocyanins and phenolic compounds, superoxide dismutase (SOD) and peroxidase (POD) activities, O2.- production rate and H2O2 content, levels of relative leakage rate and lipid peroxidation, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were measured after 0, 10, 20 and 30 days of cold storage. The results showed that application of tea polyphenols markedly delayed pericarp browning, alleviated the decreases in contents of total soluble solids (TSS) and ascorbic acid, and maintained relatively high levels of total phenolics and anthocyanins of litchi fruit after 30 days of cold storage. Meanwhile, the treatment reduced the increases in relative leakage rate and lipid peroxidation content, delayed the increases in both O2.- production rate and H2O2 contents, and increased SOD activity but reduced POD activity throughout this storage period. These data indicated that the delayed pericarp browning of litchi fruit by the treatment with tea polyphenols could be due to enhanced antioxidant capability, reduced accumulations of reactive oxygen species and lipid peroxidation, and improved membrane integrity.

  13. [Effect of biologically active substances from marine organisms on lipid peroxidation-antioxidant defence system in gastroduodenitis, associated with hyperlipidemia].

    PubMed

    Knyshova, V V; Ivanova, I L; Kozlovskaia, E P; Loenko, Iu N

    2002-01-01

    An experimental model of gastroduodenitis combined with hyperlipidemia was used to study the effects of the product Zolotoi rog (Golden Horn) which is a composition of biologically active substances of marine organisms and honey. It was found that a course administration of Zolotoi rog in a dose 2.5 mg/kg b.w. improves histomorphology of gastric mucosa, acts hypolipidemically, raises reserves of the antioxidant system of the body and suppresses intensity of lipid peroxidation.

  14. Membrane lipid peroxidation in neurodegeneration: Role of thrombin and proteinase-activated receptor-1.

    PubMed

    Citron, Bruce A; Ameenuddin, Syed; Uchida, K; Suo, William Z; SantaCruz, Karen; Festoff, Barry W

    2016-07-15

    Thrombin and membrane lipid peroxidation (MLP) have been implicated in various central nervous system (CNS) disorders from CNS trauma to stroke, Alzheimer's (AD) and Parkinson's (PD) diseases. Because thrombin also induces MLP in platelets and its involvement in neurodegenerative diseases we hypothesized that its deleterious effects might, in part, involve formation of MLP in neuronal cells. We previously showed that thrombin induced caspase-3 mediated apoptosis in motor neurons, via a proteinase-activated receptor (PAR1). We have now investigated thrombin's influence on the oxidative state of neurons leading to induction of MLP-protein adducts. Translational relevance of thrombin-induced MLP is supported by increased levels of 4-hydroxynonenal-protein adducts (HNEPA) in AD and PD brains. We now report for the first time that thrombin dose-dependently induces formation of HNEPA in NSC34 mouse motor neuron cells using anti-HNE and anti-acrolein monoclonal antibodies. The most prominent immunoreactive band, in SDS-PAGE, was at ∼54kDa. Membrane fractions displayed higher amounts of the protein-adduct than cytosolic fractions. Thrombin induced MLP was mediated, at least in part, through PAR1 since a PAR1 active peptide, PAR1AP, also elevated HNEPA levels. Of interest, glutamate and Fe2SO4 also increased the ∼54kDa HNEPA band in these cells but to a lesser extent. Taken together our results implicate the involvement of thrombin and MLP in neuronal cell loss observed in various CNS degenerative and traumatic pathologies. PMID:27138068

  15. Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries.

    PubMed

    Mulabagal, Vanisree; Lang, Gregory A; DeWitt, David L; Dalavoy, Sanjeev S; Nair, Muraleedharan G

    2009-02-25

    Cherries contain bioactive anthocyanins that are reported to possess antioxidant, anti-inflammatory, anticancer, antidiabetic and antiobese properties. The present study revealed that red sweet cherries contained cyanidin-3-O-rutinoside as major anthocyanin (>95%). The sweet cherry cultivar "Kordia" (aka "Attika") showed the highest cyanidin-3-O-rutinoside content, 185 mg/100 g fresh weight. The red sweet cherries "Regina" and "Skeena" were similar to "Kordia", yielding cyanidin-3-O-rutinoside at 159 and 134 mg/100 g fresh weight, respectively. The yields of cyanidin-3-O-glucosylrutinoside and cyanidin-3-O-rutinoside were 57 and 19 mg/100 g fresh weight in "Balaton" and 21 and 6.2 mg/100 g fresh weight in "Montmorency", respectively, in addition to minor quantities of cyanidin-3-O-glucoside. The water extracts of "Kordia", "Regina", "Glacier" and "Skeena" sweet cherries gave 89, 80, 80 and 70% of lipid peroxidation (LPO) inhibition, whereas extracts of "Balaton" and "Montmorency" were in the range of 38 to 58% at 250 microg/mL. Methanol and ethyl acetate extracts of the yellow sweet cherry "Rainier" containing beta-carotene, ursolic, coumaric, ferulic and cafeic acids inhibited LPO by 78 and 79%, respectively, at 250 microg/mL. In the cyclooxygenase (COX) enzyme inhibitory assay, the red sweet cherry water extracts inhibited the enzymes by 80 to 95% at 250 microg/mL. However, the methanol and ethyl acetate extracts of "Rainier" and "Gold" were the most active against COX-1 and -2 enzymes. Water extracts of "Balaton" and "Montmorency" inhibited COX-1 and -2 enzymes by 84, and 91 and 77, and 87%, respectively, at 250 microg/mL. PMID:19199585

  16. Beta-carotene suppression of benzophenone-sensitized lipid peroxidation in hexane through additional chain-breaking activities

    NASA Astrophysics Data System (ADS)

    Cvetković, Dragan; Marković, Dejan

    2011-01-01

    The aim of this work is to estimate the antioxidant activity of β-carotene in the presence of two different mixtures of phospholipids in hexane solution, under continuous UV-irradiation from three different ranges (UV-A, UV-B, and UV-C). β-Carotene is employed to control lipid peroxidation process generated by UV-irradiation, in the presence and in the absence of selected photosensitizer, benzophenone, by scavenging the involved, created free radicals. The results show that β-carotene undergoes to a substantial, probably structural dependent destruction (bleaching), highly dependent on UV-photons energy input, more expressed in the presence than in the absence of benzophenone. The additional bleaching is synchronized with the further increase in β-carotene antioxidant activity in the presence of benzophenone, implying the same cause: increase in (phospholipids peroxidation) chain-breaking activities.

  17. Antioxidant activity and inhibition of lipid peroxidation in germinating seeds of transgenic soybean expressing OsHGGT.

    PubMed

    Kim, Yul Ho; Lee, Yu Young; Kim, Yong Ho; Choi, Man Soo; Jeong, Kwang Ho; Lee, Seuk Ki; Seo, Min Jung; Yun, Hong Tai; Lee, Choon Ki; Kim, Wook Han; Lee, Sang Chul; Park, Soon Ki; Park, Hyang Mi

    2011-01-26

    Tocochromanols are potent lipid-soluble antioxidants and essential nutrients for human health. Genetic engineering techniques were used to develop soybeans with enhanced vitamin E levels, including tocotrienols, which are not found in soybean. The gene encoding rice homogentisate geranylgeranyl transferase (HGGT) was overexpressed in soybeans using seed-specific and constitutive promoters. The association between abundance of vitamin E isomers and antioxidant activity was investigated during seed germination. With the exception of β-tocotrienol, all vitamin E isomers were detected in germinating seeds expressing OsHGGT. The antioxidant properties of germinating seed extracts were determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radicals and lipid peroxidation (TBARS). Compared with intact wild-type seeds, transgenic seeds showed increases in radical scavenging of 5.4-17 and 23.2-35.3% in the DPPH and ABTS assays, respectively. Furthermore, the lipid peroxidation levels were 2.0-4.5-fold lower in germinating seeds from transgenic lines than in wild-type seeds. Therefore, it appears that the antioxidant potential of transgenic oil-producing plants such as soybean, sunflower, and corn may be enhanced by overexpressing OsHGGT during seed germination.

  18. [Effects of exogenous spermidine on lipid peroxidation and membrane proton pump activity of cucumber seedling leaves under high temperature stress].

    PubMed

    Tian, Jing; Guo, Shi-Rong; Sun, Jin; Wang, Li-Ping; Yang, Yan-Juan; Li, Bin

    2011-12-01

    Taking a relatively heat-resistant cucumber (Cucumis sativus) cultivar 'Jinchun No. 4' as test material, a sand culture experiment was conducted in growth chamber to investigate the effects of foliar spraying spermidine (Spd) on the lipid peroxidation, membrane proton pump activity, and corresponding gene expression of cucumber seedling leaves under high temperature stress. Compared with the control, foliar spraying Spd increased the plant height, stem diameter, dry and fresh mass, and leaf area significantly, and inhibited the increase of leaf relative conductivity, malondialdehyde (MDA) content, and lipoxygenase (LOX) activity effectively. Foliar spraying Spd also helped to the increase of leaf plasma membrane- and tonoplast H(+)-ATPase activity, but no significant difference was observed in the gene expression levels. These results suggested that exogenous Spd could significantly decrease the leaf lipid peroxidation and increase the proton pump activity, and thus, stabilize the leaf membrane structure and function, alleviate the damage induced by high temperature stress, and enhance the heat tolerance of cucumber seedlings.

  19. Curcumin Blocks Naproxen-Induced Gastric Antral Ulcerations through Inhibition of Lipid Peroxidation and Activation of Enzymatic Scavengers in Rats.

    PubMed

    Kim, Jeong-Hwan; Jin, Soojung; Kwon, Hyun Ju; Kim, Byung Woo

    2016-08-28

    Curcumin is a polyphenol derived from the plant Curcuma longa, which is used for the treatment of diseases associated with oxidative stress and inflammation. The present study was undertaken to determine the protective effect of curcumin against naproxen-induced gastric antral ulcerations in rats. Different doses (10, 50, and 100 mg/kg) of curcumin or vehicle (curcumin, 0 mg/kg) were pretreated for 3 days by oral gavage, and then gastric mucosal lesions were caused by 80 mg/kg naproxen applied for 3 days. Curcumin significantly inhibited the naproxen-induced gastric antral ulcer area and lipid peroxidation in a dose-dependent manner. In addition, curcumin markedly increased activities of radical scavenging enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase in a dose-dependent manner. Specifically, 100 mg/kg curcumin completely protected the gastric mucosa against the loss in the enzyme, resulting in a drastic increase of activities of radical scavenging enzymes up to more than the level of untreated normal rats. Histological examination obviously showed that curcumin prevents naproxen-induced gastric antral ulceration as a result of direct protection of the gastric mucosa. These results suggest that curcumin blocks naproxen-induced gastric antral ulcerations through prevention of lipid peroxidation and activation of radical scavenging enzymes, and it may offer a potential remedy of gastric antral ulcerations.

  20. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress.

    PubMed

    Zhu, Xiancan; Song, Fengbin; Xu, Hongwen

    2010-06-01

    The influence of the arbuscular mycorrhizal (AM) fungus, Glomus etunicatum, on characteristics of growth, membrane lipid peroxidation, osmotic adjustment, and activity of antioxidant enzymes in leaves and roots of maize (Zea mays L.) plants was studied in pot culture under temperature stress. The maize plants were placed in a sand and soil mixture under normal temperature for 6 weeks and then exposed to five different temperature treatments (5 degrees C, 15 degrees C, 25 degrees C, 35 degrees C, and 40 degrees C) for 1 week. AM symbiosis decreased membrane relative permeability and malondialdehyde content in leaves and roots. The contents of soluble sugar content and proline in roots were higher, but leaf proline content was lower in mycorrhizal than nonmycorrhizal plants. AM colonization increased the activities of superoxide dismutase, catalase, and peroxidase in leaves and roots. The results indicate that the AM fungus is capable of alleviating the damage caused by temperature stress on maize plants by reducing membrane lipid peroxidation and membrane permeability and increasing the accumulation of osmotic adjustment compounds and antioxidant enzyme activity. Consequently, arbuscular mycorrhiza formation highly enhanced the extreme temperature tolerance of maize plant, which increased host biomass and promoted plant growth.

  1. Curcumin Blocks Naproxen-Induced Gastric Antral Ulcerations through Inhibition of Lipid Peroxidation and Activation of Enzymatic Scavengers in Rats.

    PubMed

    Kim, Jeong-Hwan; Jin, Soojung; Kwon, Hyun Ju; Kim, Byung Woo

    2016-08-28

    Curcumin is a polyphenol derived from the plant Curcuma longa, which is used for the treatment of diseases associated with oxidative stress and inflammation. The present study was undertaken to determine the protective effect of curcumin against naproxen-induced gastric antral ulcerations in rats. Different doses (10, 50, and 100 mg/kg) of curcumin or vehicle (curcumin, 0 mg/kg) were pretreated for 3 days by oral gavage, and then gastric mucosal lesions were caused by 80 mg/kg naproxen applied for 3 days. Curcumin significantly inhibited the naproxen-induced gastric antral ulcer area and lipid peroxidation in a dose-dependent manner. In addition, curcumin markedly increased activities of radical scavenging enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase in a dose-dependent manner. Specifically, 100 mg/kg curcumin completely protected the gastric mucosa against the loss in the enzyme, resulting in a drastic increase of activities of radical scavenging enzymes up to more than the level of untreated normal rats. Histological examination obviously showed that curcumin prevents naproxen-induced gastric antral ulceration as a result of direct protection of the gastric mucosa. These results suggest that curcumin blocks naproxen-induced gastric antral ulcerations through prevention of lipid peroxidation and activation of radical scavenging enzymes, and it may offer a potential remedy of gastric antral ulcerations. PMID:27197667

  2. Antioxidant activity of white rice, brown rice and germinated brown rice (in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemic rabbits.

    PubMed

    Mohd Esa, Norhaizan; Abdul Kadir, Khairul-Kamilah; Amom, Zulkhairi; Azlan, Azrina

    2013-11-15

    Antioxidant activity of different rice extract and the effect on the levels of antioxidant enzyme activity, superoxide dismutase (SOD) and glutathione peroxidase (GPx), vitamin E, lipid peroxidation and liver enzymes in hyperlipidaemia rabbits were investigated. Germinated brown rice (GBR) has the highest antioxidant activity compared to white rice (WR) and brown rice (BR). All rice grains increased the activity of SOD and GPx. However, vitamin E levels increased only in the groups that received the BR and GBR diets. The reduction of lipid peroxidation levels and activity of hepatic enzymes (alanine transferase, ALT and aspartate transaminase, AST) were only significantly observed in the GBR group. In conclusion, GBR supplementation has the greatest impact on increasing antioxidant enzyme activity and vitamin E level and on reducing lipid peroxidation in hypercholesterolaemia rabbit, thereby preventing the formation of atherosclerotic plaques. Furthermore, GBR diet can also reduce the level of hepatic enzymes. PMID:23790918

  3. Effect of hypoxia on the calcium and magnesium content, lipid peroxidation level, and Ca²⁺-ATPase activity of syncytiotrophoblast plasma membranes from placental explants.

    PubMed

    Chiarello, Delia I; Marín, Reinaldo; Proverbio, Fulgencio; Benzo, Zully; Piñero, Sandy; Botana, Desirée; Abad, Cilia

    2014-01-01

    In the current study the possible relationship between the Ca(2+)/Mg(2+) ratio of human syncytiotrophoblast plasma membranes and their lipid peroxidation and Ca(2+)-ATPase activity was determined. Syncytiotrophoblast plasma membranes of placental explants cultured under hypoxia increased their lipid peroxidation and Ca(2+) content, diminished their Ca(2+)-ATPase activity, and kept their Mg(2+) content unchanged. Membranes preincubated with different concentrations of Ca(2+) increased their Ca(2+) content without changes in their Mg(2+) content. There is a direct relationship between Ca(2+) content and lipid peroxidation of the membranes, as well as an inverse relationship between their Ca(2+) content and Ca(2+)-ATPase activity. On the contrary, preincubation of membranes with different concentrations of Mg(2+) showed a higher Mg(2+) content without changing their lipid peroxidation and Ca(2+)-ATPase activity. Explants cultured under hypoxia in the presence of 4 mM MgSO4 showed similar values of lipid peroxidation and Ca(2+)-ATPase activity of their membranes compared to those of explants cultured under normoxia. Increased Ca(2+) content of the membranes by interacting with negatively charged phospholipids could result in destabilizing effects of the membrane structure, exposing hydrocarbon chains of fatty acids to the action of free radicals. Mg(2+) might exert a stabilizing effect of the membranes, avoiding their exposure to free radicals. PMID:25180187

  4. Effect of Hypoxia on the Calcium and Magnesium Content, Lipid Peroxidation Level, and Ca2+-ATPase Activity of Syncytiotrophoblast Plasma Membranes from Placental Explants

    PubMed Central

    Chiarello, Delia I.; Benzo, Zully; Piñero, Sandy; Botana, Desirée; Abad, Cilia

    2014-01-01

    In the current study the possible relationship between the Ca2+/Mg2+ ratio of human syncytiotrophoblast plasma membranes and their lipid peroxidation and Ca2+-ATPase activity was determined. Syncytiotrophoblast plasma membranes of placental explants cultured under hypoxia increased their lipid peroxidation and Ca2+ content, diminished their Ca2+-ATPase activity, and kept their Mg2+ content unchanged. Membranes preincubated with different concentrations of Ca2+ increased their Ca2+ content without changes in their Mg2+ content. There is a direct relationship between Ca2+ content and lipid peroxidation of the membranes, as well as an inverse relationship between their Ca2+ content and Ca2+-ATPase activity. On the contrary, preincubation of membranes with different concentrations of Mg2+ showed a higher Mg2+ content without changing their lipid peroxidation and Ca2+-ATPase activity. Explants cultured under hypoxia in the presence of 4 mM MgSO4 showed similar values of lipid peroxidation and Ca2+-ATPase activity of their membranes compared to those of explants cultured under normoxia. Increased Ca2+ content of the membranes by interacting with negatively charged phospholipids could result in destabilizing effects of the membrane structure, exposing hydrocarbon chains of fatty acids to the action of free radicals. Mg2+ might exert a stabilizing effect of the membranes, avoiding their exposure to free radicals. PMID:25180187

  5. Pharmacological screening of Hypericum androsaemum extracts for antioxidant, anti-lipid peroxidation, antiglycation and cytotoxicity activity.

    PubMed

    Saddiqe, Zeb; Maimoona, Alya; Abbas, Ghulam; Naeem, Ismat; Shahzad, Muhammad

    2016-03-01

    Oxidative stress and glycation processes have a combined effect on diabetes related complications. Crude plant extracts and plant derived compounds possessing both antiglycation and antioxidant activities have a high therapeutic potential for treating these complications. Antioxidant, antiglycation, anti-lipid per oxidation and cytotoxic activities of crude methanol extract and solvent fractions of Hypericum androsaemum L. (Hypericaceae) were evaluated and correlated with total content of phenolics and flavonoids. Significant radical scavenging activity was observed for the methanol extract against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical used as a basis for antioxidant activity with IC50 value of 92.70±2.85 μg mL(-1) (96.20±2.34% inhibition at 500 μg mL(-1)). In case of anion scavenging activity the results were not very significant (33.20±1.22% inhibition at 500 μg mL(-1)). Anti-lipid per oxidation activity was highest for n-hexane fraction (67.83±1.33% inhibition at 500 μg mL(-1)) while the ethyl acetate fraction had the highest antiglycation activity (62.77±2.54% inhibition at 500 μg mL(-1)). Statistically significant correlation was determined for antioxidant and antiglycation activity and phenolic and flavonoid contents. In cytotoxicity assay all the extracts had IC50 values >30 μg mL(-1) as compared to the standard cycloheximide (IC50 value 0.084±0.1 μg mL(-1)). The polar extracts of H. androsaemum can be a good source of non-toxic compounds with antioxidant, anti-lipid per oxidation and antiglycation activities.

  6. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  7. Local salt substitutes "Obu-otoyo" activate acetylcholinesterase and butyrylcholinesterase and induce lipid peroxidation in rat brain.

    PubMed

    Akinyemi, Ayodele J; Oboh, Ganiyu; Ademiluyi, Adedayo O

    2015-09-01

    Evidence has shown that ingestion of heavy metals can lead to neurodegenerative diseases. This study aimed to investigate the neurotoxic potential of salt substitutes (Obu-Otoyo); salt A (made by burning palm kernel shaft then soaked in water overnight and the extract from the resulting residue is used as the salt substitute) and salt B (an unrefined salt mined from a local site at Ilobu town, Osun-State, Nigeria) by assessing their effect on some key enzymes linked with neurodegenerative disease [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities] as well as on malondialdehyde (MDA) content of the rat brain. Salt substitutes were fed to normal rats as dietary inclusion at doses of 0.5 and 1.0% for 30 days. Thereafter, the effect of the salt substitutes on AChE and BChE activities as well as on MDA level in the rat brain was determined. The results revealed that the salt substitutes caused a significant (p<0.05) increase in both AChE and BChE activity and also induced lipid peroxidation in the brain of rats in vivo as well as under in vitro condition in a dose-dependent manner. The effect of the salt substitutes on AChE and BChE activities could be attributed to the presence of some toxic heavy metals. Therefore, the ability of the salt substitutes to induce lipid peroxidation and activate AChE and BChE activities could provide some possible mechanism for their neurotoxic effect. PMID:27486373

  8. Local salt substitutes “Obu-otoyo” activate acetylcholinesterase and butyrylcholinesterase and induce lipid peroxidation in rat brain

    PubMed Central

    Oboh, Ganiyu; Ademiluyi, Adedayo O.

    2015-01-01

    Evidence has shown that ingestion of heavy metals can lead to neurodegenerative diseases. This study aimed to investigate the neurotoxic potential of salt substitutes (Obu-Otoyo); salt A (made by burning palm kernel shaft then soaked in water overnight and the extract from the resulting residue is used as the salt substitute) and salt B (an unrefined salt mined from a local site at Ilobu town, Osun-State, Nigeria) by assessing their effect on some key enzymes linked with neurodegenerative disease [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities] as well as on malondialdehyde (MDA) content of the rat brain. Salt substitutes were fed to normal rats as dietary inclusion at doses of 0.5 and 1.0% for 30 days. Thereafter, the effect of the salt substitutes on AChE and BChE activities as well as on MDA level in the rat brain was determined. The results revealed that the salt substitutes caused a significant (p<0.05) increase in both AChE and BChE activity and also induced lipid peroxidation in the brain of rats in vivo as well as under in vitro condition in a dose-dependent manner. The effect of the salt substitutes on AChE and BChE activities could be attributed to the presence of some toxic heavy metals. Therefore, the ability of the salt substitutes to induce lipid peroxidation and activate AChE and BChE activities could provide some possible mechanism for their neurotoxic effect. PMID:27486373

  9. Salinity influences glutathione S-transferase activity and lipid peroxidation responses in the Crassostrea gigas oyster exposed to diesel oil.

    PubMed

    Zanette, Juliano; de Almeida, Eduardo Alves; da Silva, Angela Zaccaron; Guzenski, João; Ferreira, Jaime Fernando; Di Mascio, Paolo; Marques, Maria Risoleta Freire; Bainy, Afonso Celso Dias

    2011-04-15

    Biochemical responses in bivalve mollusks are commonly employed in environmental studies as biomarkers of aquatic contamination. The present study evaluated the possible influence of salinity (35, 25, 15 and 9ppt) in the biomarker responses of Crassostrea gigas oysters exposed to diesel at different nominal concentrations (0.01, 0.1 and 1mL.L(-1)) using a semi-static exposure system. Salinity alone did not resulted in major changes in the gill's catalase activity (CAT), glutathione S-transferase activity (GST) and lipid peroxidation levels (measured as malondialdehyde, MDA), but influenced diesel related responses. At 25ppt salinity, but not at the other salinity levels, oysters exposed to diesel showed a strikingly positive concentration-dependent GST response. At 25ppt and 1mL.L(-1) diesel, the GST activity in the gills remained elevated, even after one week of depuration in clean water. The increased MDA levels in the oysters exposed to diesel comparing to control groups at 9, 15 and 35ppt salinities suggest the occurrence of lipid peroxidation in those salinities, but not at 25ppt salinity. The MDA quickly returned to basal levels after 24h of depuration. CAT activity was unaltered by the treatments employed. High toxicity for 1mL.L(-1) diesel was observed only at 35ppt salinity, but not in the other salinities. Results from this study strongly suggest that salinity influences the diesel related biomarker responses and toxicity in C. gigas, and that some of those responses remain altered even after depuration.

  10. Lipid peroxidation in experimental uveitis: sequential studies.

    PubMed

    Goto, H; Wu, G S; Chen, F; Kristeva, M; Sevanian, A; Rao, N A

    1992-06-01

    Previously we have detected the occurrence of retinal lipid peroxidation initiated by phagocyte-derived oxygen radicals in experimental autoimmune uveitis (EAU). In the current studies, the confirmation of inflammation-mediated lipid peroxidation was proceeded further to include measurement of multiple parameters, including conjugated dienes, ketodienes, thiobarbituric acid reactive substances and fluorescent chromolipids. The assay for myeloperoxidase, a measure for the number of polymorphonuclear leukocytes in the inflammatory sites was also carried out. The levels of all these parameters were followed through the course of EAU development. The sequential evaluation of histologic changes using both light and electron microscopy was also carried out and the results were correlated with lipid peroxidation indices. These data suggest that the retinal lipid peroxidation plays a causative role in the subsequent retinal degeneration.

  11. Biphasic change in correlation between ovarian lipid peroxides and progestational activity during pseudopregnancy induced in immature rats.

    PubMed

    Kurusu, S; Tsukamoto, K; Konishi, H; Tachibana, M; Kawaminami, M; Hashimoto, I

    1999-09-01

    We measured ovarian lipid peroxide (LP) levels and plasma progestins, progesterone (P4) and 20alpha-dihydroprogesterone, throughout pseudopregnancy in gonadotropin-primed immature rats. Plasma P4 fluctuated, with two peaks on days 5 (PSP5) and 8 of pseudopregnancy, and then declined to the basal level by PSP12. Ovarian LP increased from PSP1 to PSP4, decreased temporarily until PSP8, and then rose gradually until PSP14. From PSP1 through PSP7, ovarian LP was positively correlated with total progestins according to the Spearman ranked correlation coefficient (r=+0.829, p<0.05). In contrast, a negative correlation between ovarian LP and plasma P4 was apparent (r=-0.816, p<0.05) from PSP8 to PSP14. These results show the biphasic correlation of LP with luteal progestational activity depending on the luteal stage.

  12. Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonella.

    PubMed

    Büyükgüzel, Ender; Büyükgüzel, Kemal; Snela, Milena; Erdem, Meltem; Radtke, Katarzyna; Ziemnicki, Kazimierz; Adamski, Zbigniew

    2013-04-01

    Boric acid is widely used as an insecticide, acaricide, herbicide, and fungicide and also during various industrial processings. Hence, numerous populations are subjects to this toxic compound. Its action on animals is still not fully known and understood. We examined the effect of boric acid on larvae of greater wax moth (Galleria mellonella). The chemical appeared to be toxic for larvae, usually in a concentration-dependent manner. Exposed groups revealed increased lipid peroxidation and altered activity of catalase, superoxide dismutase, glutathione S-transferase, and glutathione peroxidase. We also observed changes of ultrastructure, which were in tune with biochemical assays. We suggest that boric acid has a broad mode of action, which may affect exposed larvae, and even if sublethal, they may lead to disturbances within exposed populations.

  13. The electroanalytical approach to lipid peroxide determinations.

    PubMed

    Funk, M O

    1987-01-01

    An electroanalytical method for the determination of lipid peroxides in physiological material is described. The technique is based on electrochemical detection for HPLC as the means for enhancing sensitivity. Samples containing organic peroxides, including lipid peroxides, can be analyzed directly using a modified polarographic detector (Lloyd, J.B.F.; Optimization of the operational parameters of the supported mercury drop electrode detector in high performance liquid chromatography. Anal. Chim. Acta 154:121-131; 1983.) for reversed phase HPLC determinations. Detection limits for fatty acid hydroperoxides were found to be in the low nanogram range.

  14. 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus).

    PubMed

    Batish, D R; Singh, H P; Setia, N; Kaur, S; Kohli, R K

    2006-01-01

    2-Benzoxazolinone (BOA), a well-known allelochemical with strong phytotoxicity, is a potential herbicidal candidate. The aim of the present study was to determine whether phytotoxicity of BOA is due to induction of oxidative stress caused by generation of reactive oxygen species (ROS) and the changes in levels of antioxidant enzymes induced in response to BOA. Effect of BOA was studied on electrolyte leakage, lipid peroxidation (LP), hydrogen peroxide (H(2)O(2)) generation, proline (PRO) accumulation, and activities of antioxidant enzymes-superoxide dismutase (SOD, 1.15.1.1), ascorbate peroxidase (APX, 1.11.1.11), guaiacol peroxidase (GPX, 1.11.1.7), catalase (CAT, 1.11.1.6) and glutathione reductase (GR, 1.6.4.2) in Phaseolus aureus (mung bean). BOA significantly enhanced malondialdehyde (MDA) content, a product of LP, in both leaves and roots of mung bean. The amount of H(2)O(2), a product of oxidative stress, and endogenous PRO increased many-fold in response to BOA. Accumulation of PRO, MDA and H(2)O(2) indicates the cellular damage in the target tissue caused by ROS generated by BOA. In response to BOA, there was a significant increase in the activities of scavenging enzymes SOD, APX, GPX, CAT, and GR in root and leaf tissue of mung bean. At 5 mM BOA, GR activity in roots showed a nearly 22-fold increase over that in control. The present study concludes that BOA induces oxidative stress in mung bean through generation of ROS and upregulation of activities of various scavenging enzymes.

  15. Lipid bilayer membrane affinity rationalizes inhibition of lipid peroxidation by a natural lignan antioxidant.

    PubMed

    Podloucká, Pavlína; Berka, Karel; Fabre, Gabin; Paloncýová, Markéta; Duroux, Jean-Luc; Otyepka, Michal; Trouillas, Patrick

    2013-05-01

    Lipid peroxidation is a degenerative oxidative process that modifies the structure of membranes, influencing their biological functions. Lignans, natural polyphenolic antioxidants widely distributed in plants, can prevent this membrane damage by free-radical scavenging. Here, we rationalize the difference in lipid peroxidation inhibition activity of argenteane, a natural dilignan isolated from wild nutmeg, and 3,3'-dimethoxy-1,1'-biphenyl-2,2'-diol, which represents the central part of argenteane responsible for its antioxidant activity. Although both compounds have the same capacity to scavenge free radicals, argenteane is a more active inhibitor of lipid peroxidation. We show that both compounds penetrate into DOPC and PLPC lipid bilayers and adopt similar positions and orientations, which therefore does not explain the difference in their lipid peroxidation inhibition activity. However, free energy profiles indicate that argenteane has a significantly higher affinity to the lipid bilayer, and thus a higher effective concentration to scavenge radicals formed during lipid peroxidation. This finding explains the higher activity of argenteane to inhibit lipid peroxidation. PMID:23560800

  16. Microsomal lipid peroxidation. II. Stimulation by carbon tetrachloride

    SciTech Connect

    Kornbrust, D.J.; Mavis, R.D.

    1980-01-01

    Carbon tetrachloride initiated lipid peroxidation in isolated rat liver microsomes in the absence of free metal ions. In contrast to the nonenzymatic process stimulated by ferrous iron, CCl/sub 4/-induced peroxidation showed an absolute requirement for NADPH and appeared dependent on the integrity of cytochrome. No detectable peroxidation was induced by CCl/sub 4/ in microsomes from brain, kidney, or lung, and microsomal aminopyrine demethylase and aniline hydroxylase activities were more than 10-fold lower in these tissues compared to liver. These results are consistent with activation of CCl/sub 4/ by cytochrome P-450 to a reactive short lived radical which initiated peroxidation in the immediate vicinity of the cytochrome and thereby initiates peroxidation in the immediate vicinity of the cytochrome and thereby inhibits enzyme activity either by destruction of essential lipids or by direct attack on the enzyme by reactive intermediates of the peroxidative process. Loss of cytochrome P-450 activity then results in cessation of the CCl/sub 4/-induced peroxidative response prior to more extensive reaction of membrane polyunsaturated lipids.

  17. Lipid peroxidation induced by shockwave lithotripsy.

    PubMed

    Cohen, T D; Durrani, A F; Brown, S A; Ferraro, R; Preminger, G M

    1998-06-01

    To determine the relation between high-energy shockwaves (HESW) and the presence of lipid peroxidation produces, juvenile pigs were subjected to shockwave lithotripsy (SWL). After lithotripsy, both treated and control kidneys were analyzed, along with urine samples collected before, during, and after SWL. Thiobarbituric acid-reactive substance (TBARS) and lipid-conjugated diene (CD) concentrations, used as markers for membrane lipid peroxidation, were determined in the kidney and urine samples. Significantly increased mean TBARS concentrations (146%) were associated with homogenates of lithotripsy-treated kidneys, 77.8 +/- 14.4 (SD) mmol/g v the controls, 31.4 +/- 14.9 mmol/g. Lithotripsy induction of lipid peroxidation products in the cortex, the gross damage site, and the respective medulla were also examined. In HESW-treated cortex samples, increased TBARS concentrations were seen--75.0 +/- 21.3 mmol/g--compared with untreated controls-- 45.2+/- 5.6 mmol/g--while increased CD concentrations (168%) were observed in the medulla of HESW-treated samples. No significant differences were observed in TBARS or CD concentrations in urine samples from control or treated kidneys, yet specific lipid hydroperperoxides were detected in the urine of HESW-treated kidneys. We conclude that HESW lithotripsy of swine kidneys is associated with increased lipid peroxidation products that may cause further cellular damage. Lipid peroxidation induced by SWL may be one of several mechanisms that lead to other potential bioeffects. Finally, analysis of specific lipid hydroperoxides in the urine of HESW-treated kidneys may serve as a noninvasive marker of renal injury after clinical SWL.

  18. Effect of Carissa opaca leaves extract on lipid peroxidation, antioxidant activity and reproductive hormones in male rats

    PubMed Central

    2013-01-01

    Background Carissa opaca leaves are traditionally used in the treatment of male dysfunction and hormonal disorder as well as in oxidative stress in Pakistan and Asia. The present study was designed to assess the protective effects of methanolic extract of Carissa opaca leaves (MLC) on carbon tetrachloride (CCl4)-induced reproductive stress in male rats and bioactive constituents responsible for the activity. Methods CCl4 was induced in 42 male rats for eight weeks and checked the protective efficacy of methanolic extract of Carissa opaca leaves at various hormonal imbalances, alteration of antioxidant enzymes, DNA fragmentation levels and lipid peroxidation caused testicular fibrosis in testis while High performance Liquid Chromatography (HPLC) was used for detection of bioactive components. Results HPLC characterization revealed the presence of isoquercitin , hyperoside , vitexin , myricetin and kaempherol. CCl4 caused significant alteration in the secretion of reproductive hormones. Activity of antioxidant enzymes viz; catalase, superoxide dimutase and phase II metabolizing enzymes including glutathione peroxidase, glutathione reductase and reduced glutathione was decreased while DNA fragmentation, hydrogen per oxide contents and thiobarbituric acid reactive substances (TBARS) were increased with CCl4 treatment. Co-administration of 100 mg/kg and 200 mg/kg b.w. MLC effectively ameliorated the alterations in the biochemical markers; hormonal and molecular levels. Conclusion Protective effects of methanolic extract of Carissa opaca against CCl4−induced antioxidant and hormonal dysfunction which might be due to bioactive compound present in extract. PMID:23786717

  19. The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats.

    PubMed

    Ince, Sinan; Kucukkurt, Ismail; Cigerci, Ibrahim Hakki; Fatih Fidan, A; Eryavuz, Abdullah

    2010-07-01

    The aims of this study were to clarify the effects of high dietary supplementation with boric acid and borax, called boron (B) compounds, on lipid peroxidation (LPO), antioxidant activity, some vitamin levels, and DNA damage in rats. Thirty Sprague Dawley male rats were divided into three equal groups: the animals in the first group (control) were fed with a standard rodent diet containing 6.4 mg B/kg, and the animals in the experimental group were fed with a standard rodent diet added with a supra-nutritional amount of boric acid and borax (100 mg B/kg) throughout the experimental period of 28 days. The B compounds decreased malondialdehyde (MDA), DNA damage, the protein carbonyl content (PCO) level in blood, and glutathione (GSH) concentration in the liver, Cu-Zn superoxide dismutase (SOD), and catalase (CAT) activity in the kidney. The B compounds increased GSH concentration in blood and the vitamin C level in plasma. Consequently, our results demonstrate that B supplementation (100 mg/kg) in diet decreases LPO, and enhances the antioxidant defense mechanism and vitamin status. There are no differences in oxidant/antioxidant balance and biochemical parameters except for serum vitamin A and liver GSH concentration, between the boron compounds used in this study.

  20. [Effects of di-n-butyl phthalate on the antioxidant enzyme activities and lipid peroxidation level of Perna viridis].

    PubMed

    Qin, Jie-fang; Chen, Hai-gang; Cai, Wen-gui; Yang, Tao; Jia, Xiao-ping

    2011-07-01

    A laboratory experiment was conducted to examine the superoxide dismutase (SOD) and catalase (CAT) activities and the lipid peroxidation (LPO) level presented by malondialdehyde (MDA) in visceral mass and mantle of green mussel (Perna viridis) after exposure to 0.5- 62.5 mg x L(-1) of di-n-butyl phthalate (DBP) for 15 days, and to study the change characteristics of these biochemical indicators after the green mussel released into DBP-free seawater for 10 days. During exposure period, the SOD activity in visceral mass was inhibited first and then reached the level of the control at 0.5 and 2.5 mg x L(-1) of DBP, but inhibited significantly (P< 0.01) at 12.5 and 62.5 mg L(-1) of DBP. The CAT activity in visceral mass was inhibited at all test concentrations of DBP, while the LPO level was obviously induced. During the chronic DBP exposure, the SOD and CAT activities in the mantle were induced significantly but had no regular pattern, and the LPO level was also obviously induced. After the exposed green mussel was released into clean seawater, the SOD and CAT activities in the visceral mass in 12.5 and 62.5 mg DBP x L(-1) groups recovered much slowly, but the LPO level gradually recovered to control level. During the recovery period, the SOD activity in the mantle showed an increasing trend with time, but the CAT activity and LPO level reached gradually to the level of the control.

  1. Stimulation of lipid peroxidation by methyl mercury in rats

    SciTech Connect

    Yonaha, M.; Saito, M.; Sagai, M.

    1983-03-28

    As an index of lipid peroxidation, thiobarbituric acid (TBA)-reactive substances in the liver, kidney, and serum, and hydrocarbons (ethane and pentane) in the exhalation of rats injected subcutaneously with 10 mg/kg/day of methylmercuric chloride (MMC) were determined. Formation of TBA-reactive substances in the liver and kidney of rats was significantly increased 4 and 2 days after initial injection of MMC, respectively. The result for serum was similar to that for the kidney. The maximum ethane production in the exhaled gases was observed 4 days after initial injection of MMC, and thereafter decreased slowly. Pentane production was significantly increased 5 days after initial injection of MMC, and thereafter continued to increase. Glutathione peroxidase activity and amount of vitamin C in the liver were depleted 4 days after initial injection of MMC; vitamin E was not depleted. In the kidney, significant decreases of glutathione peroxidase activity and vitamin C content were also seen 4 days after initial injection of MMC, but vitamin E content was unaltered. Thus, a clear increase of lipid peroxidation as determined by measurement of TBA-reactive substances in tissues and of hydrocarbons in the exhaled gases of rats after MMC treatment was demonstrated, though there was a lag phase of several days before the increase of lipid peroxidation. It is suggested that the significant increase of lipid peroxide formation may be a result of depletion of defending factors against lipid peroxidation.

  2. Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of the predatory mite, Neoseiulus cucumeris (Acari: Phytoseiidae).

    PubMed

    Zhang, Guo-Hao; Liu, Huai; Wang, Jin-Jun; Wang, Zi-Ying

    2014-01-01

    Changes in temperature are known to cause a variety of physiological stress responses in insects and mites. Thermal stress responses are usually associated with the increased generation of reactive oxygen species (ROS), resulting in oxidative damage. In this study, we examined the time-related effect (durations for 1, 2, 3, and 5 h) of thermal stress conditions-i.e., relatively low (0, 5, 10, and 15 °C) or high (35, 38, 41, and 44 °C) temperatures-on the activities of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), peroxidase (POX), glutathione S-transferases (GSTs), and total antioxidant capacity (T-AOC) of the predatory mite Neoseiulus cucumeris. Also the lipid peroxidation (LPO) levels of the predatory mite were measured under thermal stress conditions. The results confirmed that thermal stress results in a condition of so-called oxidative stress and the four antioxidant enzymes play an important role in combating the accumulation of ROS in N. cucumeris. CAT and POX activity changed significantly when the mites were exposed to cold and heat shock, respectively. The elevated levels of SOD and GSTs activity, expressed in a time-dependent manner, may have an important role in the process of antioxidant response to thermal stress. However, the levels of LPO in N. cucumeris were high, serving as an important signal that these antioxidant enzyme-based defense mechanisms were not always adequate to counteract the surplus ROS. Thus, we hypothesize that thermal stress, especially extreme temperatures, may contribute much to the generation of ROS in N. cucumeris, and eventually to its death. PMID:24687176

  3. Lipid peroxidation in the pathogenesis of neuroborreliosis.

    PubMed

    Moniuszko-Malinowska, Anna; Łuczaj, Wojciech; Jarocka-Karpowicz, Iwona; Pancewicz, Sławomir; Zajkowska, Joanna; Andrisic, Luka; Zarkovic, Neven; Skrzydlewska, Elżbieta

    2016-07-01

    This study analyzed the onset of lipid peroxidation (LPO) in neuroborreliosis and the effects of ceftriaxone therapy on LPO. Twenty-two patients with early neuroborreliosis and 22 healthy subjects were studied. LPO in the cerebrospinal fluid (CSF), as well as the plasma and urine was estimated by the levels of reactive aldehydes: 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal, malondialdehyde, and 4-oxononenal, F2-isoprostanes and A4/J4-neuroprostanes (NPs). The plasma level of 4-HNE-protein adducts arachidonic acid (AA), docosahexaenoic acid (DHA) and vitamin E was determined. Additionally, enzymatic activities of phospholipase A2 (PLA2), platelet-activating factor acetylhydrolase (PAF-AH) and glutathione peroxidase (GSH-Px) were determined. A decrease of AA, DHA levels and GSH-Px activity in plasma was associated with a significant increase of aldehydes in the CSF, plasma and urine. Similarly, the increase of F2-isoprostanes and NPs in the CSF and plasma was associated with the decreased activity of PLA2 and PAF-AH. Ceftriaxone therapy cured patients and reduced the levels of F2-isoprostanes, NPs and reactive aldehydes. However, the activities of PLA2 and PAF-AH increased. Pathophysiological association of neuroborreliosis with systemic LPO was revealed. Effective antibiotic therapy attenuated LPO. Biomarkers of LPO could be useful to monitor the onset of neuroborreliosis and show the effectiveness of pharmacotherapy. PMID:27140232

  4. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenus royleanus leaves

    PubMed Central

    2013-01-01

    Background Maytenus royleanus is traditionally used in gastro-intestinal disorders. The aim of this study was to evaluate the methanol extract of leaves and its derived fractions for various antioxidant assays and for its potential against lipid peroxidation and hemolytic activity. Methods Various parameters including scavenging of free-radicals (DPPH, ABTS, hydroxyl and superoxide radical), hydrogen peroxide scavenging, Fe3+ to Fe2+ reducing capacity, total antioxidant capacity, anti-lipid peroxidation and anti-hemolytic activity were investigated. Methanol extract and its derived fractions were also subjected for chemical constituents. LC-MS was also performed on the methanol extract. Results Qualitative analysis of methanol extract exhibited the presence of alkaloids, anthraquinones, cardiac glycosides, coumarins, flavonoids, saponins, phlobatannins, tannins and terpenoids. LC-MS chromatogram indicated the composition of diverse compounds including flavonoids, phenolics and phytoestrogens. Methanol extract, its ethyl acetate and n-butanol fractions constituted the highest amount of total phenolic and flavonoid contents and showed a strong correlation coefficient with the IC50 values for the scavenging of DPPH, hydrogen peroxide radicals, superoxide radicals, anti-lipid peroxidation and anti-hemolytic efficacy. Moreover, n-butanol fraction showed the highest scavenging activity for ABTS radicals and for reduction of Fe3+ to Fe2+. Conclusions Present results suggested the therapeutic potential of Maytenus royleanus leaves, in particular, methanol extract, ethyl acetate and n-butanol fraction as therapeutic agent against free-radical associated damages. The protective potential of the extract and or fraction may be attributed due to the high concentration of phenolic, flavonoid, tannins and terpenoids. PMID:23800043

  5. Cu/Zn superoxide dismutase mRNA and enzyme activity, and susceptibility to lipid peroxidation, increases with aging in murine brains.

    PubMed

    de Haan, J B; Newman, J D; Kola, I

    1992-04-01

    To protect against reactive oxygen species, prokaryotic and eukaryotic cells have developed an antioxidant defence mechanism where O2- is converted to H2O2 by superoxide dismutase (Sod), and in a second step, H2O2 is converted to H2O by catalase (Cat) and/or glutathione peroxidase (Gpx). If Sod levels are increased without a concomitant Gpx increase, then the intermediate H2O2 accumulates. This intermediate could undergo the Fenton's reaction, generating hydroxyl radicals which may lead to lipid peroxidation in cells. In this study, we investigate the expression of Sod1, Gpx1 and susceptibility to lipid peroxidation during the aging process in mouse brains. We demonstrate that the mRNA levels and enzyme activity of Sod1 are higher in brains from adult mice compared to neonatal mice. Furthermore, we show that a linear increase in Sod1 mRNA and enzyme activity occurs with aging (1-100 weeks). On the contrary, we find that the mRNA and enzyme activity for Gpx1 does not increase with aging in mouse brains. In addition, our results demonstrate that the susceptibility of murine brains to lipid peroxidation increases with aging. The data in this study are consistent with the notion that reactive oxygen species may contribute to the aging process in mammalian brains. These results are discussed in relation to the normal aging process in mammals, and to the premature aging and mental retardation in Down syndrome.

  6. Effect of Drought Stress on Total Phenolic, Lipid Peroxidation, and Antioxidant Activity of Achillea Species.

    PubMed

    Gharibi, Shima; Tabatabaei, Badraldin Ebrahim Sayed; Saeidi, Ghodratollah; Goli, Sayed Amir Hossein

    2016-02-01

    The changes in total phenolic content (TPC), total flavonoid content (TFC), proline, malondialdehyde (MDA), H2O2, and antioxidant activity were assessed based on three model systems in three Achillea species (Achillea millefolium, A. nobilis, and A. filipendulina) growing under four irrigation regimes, including 100% FC (field capacity as normal irrigation) 75% FC (low stress), 50% FC (moderate stress), and 25% FC (severe stress) conditions. The highest TPC (47.13 mg tannic acid/g DW) and TFC (20.86 mg quercetin/g W) were obtained in A. filipendulina under moderate and severe stress conditions. In 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, the highest and the lowest antioxidant activity was obtained for A. millefolium (70.28%) and A. filipendulina (53.21%), respectively, while in the FTC model system A. nobilis revealed the highest antioxidant activity (1.934) in severe drought condition. In the linoleic model system, the highest antioxidant activity was observed under low drought stress condition in A. nobilis. MDA and H2O2 content were increased due to both low (75% FC) and moderate (50% FC) drought stress, but they were decreased under severe stress condition (25% FC). Furthermore, A. millefolium revealed the lowest H2O2 (4.96 nm/g FW) and MDA content (176.32 μmol/g). Investigation of the relationship among different metabolites showed a strong positive correlation with TPC and TFC. Finally, the moderate drought stress treatment (50% FC) was introduced as the optimum condition to obtain appreciable TPC and TFC,, while the highest antioxidant activity was obtained in severe stress condition (25%FC).

  7. [Role of activation of lipid peroxidation in the mechanisms of cardiovascular disease system under the action of heavy metals in the experiment].

    PubMed

    Mitsiev, A K

    2015-01-01

    The main anthropogenic air pollutants are heavy metals, World Health Organization related to toxic substances hazard class 1. Penetrating into the body in different ways, metals have a strong toxic effect on all body systems, but one of the most vulnerable, due to a number of reasons, is the cardiovascular system. There are many mechanisms of pathogenic influence of xenobiotics, leading to the development of disorders of the cardiovascular system, but our attention was attracted by the ability of metals to realize their negative effects through the activation of free radical. To confirm this assumption, it was necessary to conduct a pilot study of the effect of antioxidants in long-term effect of heavy metals. As an antioxidant agent used melatonin. Investigation of the state of systemic hemodynamics is to determine the mean arterial pressure, specific peripheral vascular resistance, stroke index and cardiac index. The intensity of free radical concentration was estimated by malondialdehyde and hydroperoxides in the blood of animals. The results of experimental studies revealed that prolonged intake of heavy metals (cobalt, cadmium and mercury) leads to the development of marked hemodynamic disturbances, combined with a sharp increase in the level of lipid peroxidation products in the blood. Melatonin under intoxication by heavy metals significantly reduced hypertensive effect of heavy metals on systemic hemodynamics, which together with a reduction of lipid peroxidation processes allows us to consider the activation of lipid peroxidation one of the major pathogenic factor in the development of hemodynamic disorders in conditions of heavy metal poisoning.

  8. Lipid Peroxidation in Psychiatric Illness: Overview of Clinical Evidence

    PubMed Central

    Joshi, Yash B.; Praticò, Domenico

    2014-01-01

    The brain is known to be sensitive to oxidative stress and lipid peroxidation. While lipid peroxidation has been shown to contribute to many disease processes, its role in psychiatric illness has not been investigated until recently. In this paper, we provide an overview of lipid peroxidation in the central nervous system as well as clinical data supporting a link between lipid peroxidation and disorders such as schizophrenia, bipolar disorder, and major depressive disorder. These data support further investigation of lipid peroxidation in the effort to uncover therapeutic targets and biomarkers of psychiatric disease. PMID:24868318

  9. Saffron (its active constituent, crocin) supplementation attenuates lipid peroxidation and protects against tissue injury.

    PubMed

    Altinoz, E; Ozmen, T; Oner, Z; Elbe, H; Erdemli, M E; Bag, H G

    2016-01-01

    The aim of the current study was to investigate the outcomes in a rat model of an acute swimming exercise induced oxidative stress in brain, kidney, liver, skeletal and cardiac muscles using supplementation with crocin. Rats were divided into the eight groups; Normal Control (NC: Untreated and did not swim), Crocin Control (CC: Received crocin and did not swim), Exercise-1 (E-1: Untreated and swam), Exercise-24 (E-24: Untreated and swam), Exercise-48 (E-48: Untreated and swam), Exercise+Crocin-1 (EC-1: Received crocin and swam), Exercise+Crocin-24 (EC-24: Received crocin and swam), Exercise+Crocin-48 (EC-48: Received crocin and swam). The malondialdehyde (MDA) and xanthine oxidase (XO) enzymes levels increased after swimming in untreated and crocin treated groups, but there was a lower increase in crocin treated groups. The highest MDA levels in all tissues were observed in E-1 compared to all other groups. There were significant differences between control and exercise groups in MDA levels of tissues (p < 0.001). In contrast, there were significant differences between control and exercise groups in glutathione (GSH) levels of tissues.In addition, the crocin supplementation significantly increased GSH levels and decreased MDA and XO enzyme levels when compared to untreated exercise groups. Crocin can protect the tissues against exercise induced oxidative stress by enhancing antioxidant activity (Tab. 3, Fig. 1, Ref. 37). PMID:27546539

  10. Minocycline increases the life span and motor activity and decreases lipid peroxidation in manganese treated Drosophila melanogaster.

    PubMed

    Bonilla, E; Contreras, R; Medina-Leendertz, S; Mora, M; Villalobos, V; Bravo, Y

    2012-03-29

    The objective of this study was to investigate the effect of Minocycline in the life span, motor activity, and lipid peroxidation of Drosophila melanogaster treated with manganese. Two days after emerging from the pupa male wild-type D. melanogaster were fed for 13 days with corn media containing 15 mM manganese. Then, they were divided in six groups of 300 flies each: group (a) remained treated with manganese (Mn group); group (b) began treatment with Minocycline (0.05 mM) (Mn-Minocycline group); group (c) received no additional treatment (Mn-no treatment group); group (d) simultaneously fed with manganese and Minocycline (Mn+Minocycline group). Additionally, a control (group e) with no treatment and another group (f) fed only with Minocycline after emerging from the pupa were added. All the manganese treated flies (group a) were dead on the 25th day. The life span in group f (101.66±1.33 days, mean S.E.M.) and of group b (97.00±3.46 days) were similar, but in both cases it was significantly higher than in group e (68.33±1.76 days), group c (67.05±2.30 days) and in those of group d (37.33±0.88). Manganese (groups a and d) decreased motor activity in D. melanogaster. In the Minocycline fed flies (groups b and f) a higher motor activity was detected. In Mn-Minocycline and Mn+Minocycline treated flies a significant decrease of MDA levels was detected when compared to the Minocycline group indicating that Minocycline and Mn appear to have a synergistic effect. In conclusion, Minocycline increased the life span and motor activity and decreased MDA formation of manganese treated D. melanogaster, probably by an inhibition of the production of reactive oxygen species. Manganese also exerted an antioxidant effect as shown by the significant decrease of MDA levels when compared to control flies.

  11. [Effects of essential oil on lipid peroxidation and lipid metabolism in patients with chronic bronchitis].

    PubMed

    Siurin, S A

    1997-01-01

    Natural concentrations of some essential oils were examined for effects on the system lipid peroxidation-antioxidant defense and lipid metabolism in 150 patients with chronic bronchitis. Lowering of plasm levels of dienic conjugates and ketons, activation of catalase in red cells characteristic of antioxidant effect were observed in exposure to essential oils of rosemary, basil, fir, eucalyptus. Lavender essential oil promotes normalization of the level of total lipids, ratio of total cholesterol to its alpha-fraction. PMID:9490339

  12. Methods to create thermally oxidized lipids and comparison of analytical procedures to characterize peroxidation.

    PubMed

    Liu, P; Kerr, B J; Chen, C; Weber, T E; Johnston, L J; Shurson, G C

    2014-07-01

    The objective of this experiment was to evaluate peroxidation in 4 lipids, each with 3 levels of peroxidation. Lipid sources were corn oil (CN), canola oil (CA), poultry fat, and tallow. Peroxidation levels were original lipids (OL), slow-oxidized lipids (SO), and rapid-oxidized lipids (RO). To produce peroxidized lipids, OL were either heated at 95°C for 72 h to produce SO or heated at 185°C for 7 h to produce RO. Five indicative measurements (peroxide value [PV], p-anisidine value [AnV], thiobarbituric acid reactive substances [TBARS] concentration, hexanal concentration, 4-hydroxynonenal [HNE] concentration, and 2,4-decadienal [DDE]) and 2 predictive tests (active oxygen method [AOM] stability and oxidative stability index [OSI]) were performed to quantify the level of oxidation of the subsequent 12 lipids with varying levels of peroxidation. Analysis showed that a high PV accurately indicated the high level of lipid peroxidation, but a moderate or low PV may be misleading due to the unstable characteristics of hydroperoxides as indicated by the unchanged PV of rapidly oxidized CN and CA compared to their original state (OL). However, additional tests, which measure secondary peroxidation products such as AnV, TBARS, hexanal, HNE, and DDE, may provide a better indication of lipid peroxidation than PV for lipids subjected to a high level of peroxidation. Similar to PV analysis, these tests may also not provide irrefutable information regarding the extent of peroxidation because of the volatile characteristics of secondary peroxidation products and the changing stage of lipid peroxidation. For the predictive tests, AOM accurately reflected the increased lipid peroxidation caused by SO and RO as indicated by the increased AOM value in CN and CA but not in poultry fat and tallow, which indicated a potential disadvantage of the AOM test. Oxidative stability index successfully showed the increased lipid peroxidation caused by SO and RO in all lipids, but it too may

  13. Crocidolite-induced lipid peroxidation. II. Role of antioxidants

    SciTech Connect

    Gulumian, M.; Kilroe-Smith, T.A.

    1987-12-01

    Asbestos fibers in vitro produce lipid peroxidation in rat lung microsomes. Butylated hydroxytoluene prevented this peroxidation. Ascorbate in low concentrations enhanced peroxidation of lipids but inhibited it at concentrations above 4 mmole/liter so that it partially protected membrane lipids from peroxidation produced by asbestos fibers. Reduced glutathione added to microsomes gave increased peroxidation at increased concentrations up to 20 mmol/liter. At 40 mmol/liter peroxidation was prevented. Glutathione had no obvious effect on the level of peroxidation produced by asbestos fibers. The 105,000g supernatant cell fraction added either with or without glutathione gave a decrease in the amount of lipid peroxidation produced by asbestos fibers. The protective action of these reducing agents suggests a possible use as prophylactic agents against the harmful effects of inhaled asbestos.

  14. Effect of bile acids on lipid peroxidation: the role of iron.

    PubMed

    Sreejayan, N; von Ritter, C

    1998-07-01

    The toxic effect of hydrophobic bile acids is claimed to be in part mediated by lipid peroxidation. Conversely, antioxidant properties of tauroursodeoxycholic acid (TUDC), a hydrophilic bile acid, have been suggested as a possible mechanism by which TUDC confers its beneficial effect in a variety of diseases. We have investigated the effect of taurodeoxycholic acid (TDC), a hydrophobic bile acid and TUDC on lipid peroxidation using a pure lipid system both in the presence and absence of iron ions. Neither TDC nor TUDC showed any effect on spontaneous lipid peroxidation of phosphatidylcholine liposomes or sodium arachidonate solution. This lack of effect excludes the possibility of direct prooxidant or antioxidant properties for TDC and TUDC. Addition of ferrous ions (0.1 mM) to the lipid system brought about a linear increase in lipid peroxidation with time. The presence of TDC caused an increase in the rate and extent of iron-stimulated lipid peroxidation. The propensity of bile acids to increase iron-induced lipid peroxidation was related to hydrophobicity of the individual bile acids, with the highest effect observed with taurolithocholic acid, whereas TUDC did not have any influence. The TDC-induced increase in the iron-stimulated lipid peroxidation was concentration dependent. Addition of TUDC (10 mM) completely abolished the effect of TDC (2 mM) on iron-induced lipid peroxidation. This finding suggests that TUDC does not function as an antioxidant per se but may prevent lipid peroxidation caused by TDC. In conclusion, only in the presence of iron ions, hydrophobic bile acids may enhance lipid peroxidation. TUDC has no antioxidant activity per se but may counter the TDC-induced increase in iron-stimulated lipid peroxidation. PMID:9655521

  15. [Features of the lipid peroxidation process and antioxidant activity of white rats in extreme, multi-stage supercooling].

    PubMed

    Serebrennikova, E G; Mamaev, A T; Akhmedov, I G

    1992-01-01

    High content of polyenic fatty acids, slight increase in antioxidative activity and decrease in content of malonic dialdehyde (MDA) in rat myocardial tissues were observed in supercooling. The data obtained suggest that intensive oxidation of fatty acids occurred in the tissues, which may be essential for synthesis of biologically active substances involved in development of resistance to supercooling. Multiple supercooling caused an opposite effect in lung tissue: saturation of lipids was increased, antioxidative activity was maintained on the level similar to the control values, while content of MDA was markedly increased apparently due to destruction of metabolic products penetrating from other tissues. The dissimilar impairments of lipid metabolism were detected in liver tissue, where multiple supercooling did not alter the rate of lipid saturation, antioxidative activity was unaltered and content of MDA was as low as in the control animals.

  16. Antioxidative effect of sesamol and related compounds on lipid peroxidation.

    PubMed

    Uchida, M; Nakajin, S; Toyoshima, S; Shinoda, M

    1996-04-01

    The effect of sesamol and 20 related compounds on the lipid peroxidation of liposomes induced by Fe(2)+, on the lipid peroxidation of rat liver microsomes induced by CCl(4) or NADPH and on the lipid peroxidation of mitochondria induced by ascorbate/Fe(2)+ were demonstrated. Consequently, sesamol and related compounds, such as 3-methoxy-4-hydroxyquinone, isosafrol, isoeugenol, eugenol, 3,4-methylenedioxyaniline, catechol, hydroxy-hydroquinone, 3,4-dimethoxyaniline and caffeic acid, exhibited powerful inhibitory effects on the lipid peroxidation system investigated. In particular, isoeugenol was the most powerful inhibitor among all the sesamol-related compounds tested on the lipid peroxidation system. In addition, 1,2-methylenedioxybenzene, ferulic acid, and 3,4-methylenedioxynitrobenzene were also effective on the lipid peroxidation system of liposomes induced by Fe(2)+. The correlation between the structures of sesamol-related compounds and their inhibitory effect is discussed. PMID:9132170

  17. Assessing the Effects of Amoxicillin on Antioxidant Enzyme Activities, Lipid Peroxidation and Protein Carbonyl Content in the Clam Ruditapes philippinarum and the Mussel Mytilus galloprovincialis.

    PubMed

    Matozzo, Valerio; Battistara, Margherita; Marisa, Ilaria; Bertin, Valeria; Orsetti, Alessandro

    2016-10-01

    In this study, we evaluated the capability of amoxicillin (AMX)-one of the most widely used antibiotics worldwide-to induce oxidative stress in both gills and digestive gland from two bivalve species, the clam Ruditapes philippinarum and the mussel Mytilus galloprovincialis. Superoxide dismutase (SOD) and catalase (CAT) activities, as well as the lipid peroxidation levels (LPO) and protein carbonyl content (PCC), were measured in bivalves exposed to 100, 200 and 400 µg AMX/L for 1, 3 and 7 days. The results obtained demonstrated that AMX affected slightly biomarker responses of molluscs. PMID:27510994

  18. [Impact of Opisthorchis invasion on lipid peroxidation and hemostasis during pregnancy].

    PubMed

    Solov'eva, A V

    2008-12-01

    Blood cell lipid peroxidation processes and the state of thrombocytic and coagulative hemostasis were studied in 214 pregnant women and parturients with Opisthorchis invasion amongst the indigenous population and newcomers of the Khanty-Mansi Autonomic District-Yugra. Chronic opisthorchiasis was found to enhance lipid peroxidation in the blood cells, to accelerate the activation of thrombocytic and coagulative hemostasis during gestation, at labor, and in the postpartum period. Opisthorchis invasion variously affected the state of lipid peroxidation and hemostasis in the examined groups. In the indigenous women, the number of activated forms of platelets increased, without any obvious change in their functional potential, which was unaccompanied by changes in the parameters of coagulative hemostasis and lipid peroxidation. Increased activation of platelets, their hyperaggregability, and subsequent depletion of their functional potential were revealed in the newcomers. This was attended by hypercoagulation with signs of acceleration of continuous blood coagulation, by enhanced lipid peroxidation and reduced antioxidative potential in the blood cells.

  19. Lipid Peroxidation Inhibition Blunts Nuclear Factor-κB Activation, Reduces Skeletal Muscle Degeneration, and Enhances Muscle Function in mdx Mice

    PubMed Central

    Messina, Sonia; Altavilla, Domenica; Aguennouz, M’hammed; Seminara, Paolo; Minutoli, Letteria; Monici, Maria C.; Bitto, Alessandra; Mazzeo, Anna; Marini, Herbert; Squadrito, Francesco; Vita, Giuseppe

    2006-01-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease resulting from lack of the sarcolemmal protein dystrophin. However, the mechanism leading to the final disease status is not fully understood. Several lines of evidence suggest a role for nuclear factor (NF)-κB in muscle degeneration as well as regeneration in DMD patients and mdx mice. We investigated the effects of blocking NF-κB by inhibition of oxidative stress/lipid peroxidation on the dystrophic process in mdx mice. Five-week-old mdx mice received three times a week for 5 weeks either IRFI-042 (20 mg/kg), a strong antioxidant and lipid peroxidation inhibitor, or its vehicle. IRFI-042 treatment increased forelimb strength (+22%, P < 0.05) and strength normalized to weight (+23%, P < 0.05) and decreased fatigue (−45%, P < 0.05). It also reduced serum creatine kinase levels (P < 0.01) and reduced muscle-conjugated diene content and augmented muscle-reduced glutathione (P < 0.01). IRFI-042 blunted NF-κB DNA-binding activity and tumor necrosis factor-α expression in the dystrophic muscles (P < 0.01), reducing muscle necrosis (P < 0.01) and enhancing regeneration (P < 0.05). Our data suggest that oxidative stress/lipid peroxidation represents one of the mechanisms activating NF-κB and the consequent pathogenetic cascade in mdx muscles. Most importantly, these new findings may have clinical implications for the pharmacological treatment of patients with DMD. PMID:16507907

  20. Effect of Maximal Versus Supra-Maximal Exhausting Race on Lipid Peroxidation, Antioxidant Activity and Muscle-Damage Biomarkers in Long-Distance and Middle-Distance Runners

    PubMed Central

    Mohamed, Said; Lamya, Ncir; Hamda, Mansour

    2016-01-01

    Background Exhausting physical exercise increases lipid peroxidation and causes important muscle damages. The human body tries to mitigate these adverse effects by mobilizing its antioxidant defenses. Objectives This study aims to investigate the effect of a maximal versus supra-maximal race sustained until exhaustion on lipid peroxidation, antioxidant activity and muscle-damage biomarkers in trained (i.e. long-distance and middle-distance runners) and sedentary subjects. Materials and Methods The study has been carried out on 8 middle-distance runners (MDR), 9 long-distance runners (LDR), and 8 sedentary subjects (SS). Each subject has undergone two exhaustive running tests, the first one is an incremental event (VAMEVAL test), the second one is a constant supra-maximal intensity test (limited-time test). Blood samples were collected at rest and immediately after each test. Results A significant increase in malondialdehyde (MDA) concentrations was observed in SS and MDR after the VAMEVAL test and in LDR after the Limited-Time test. A significant difference was also observed between LDR and the other two groups after the VAMEVAL test, and between LDR and MDR after the Limited-Time test. Significant modifications, notably, in myoglobin, CK, LDH, IL-6, TNF-α, and TAS were likewise noted but depending on the race-type and the sportive specialty. Conclusions Maximal and supra-maximal races induce a significant increase in lipid peroxidation and cause non-negligible inflammation and muscle damage. These effects were relatively related to the physical exercise type and the sportive specialty. PMID:27217926

  1. Antioxidant effect of bisphosphonates and simvastatin on chondrocyte lipid peroxidation

    SciTech Connect

    Dombrecht, E.J.; De Tollenaere, C.B.; Aerts, K.; Cos, P.; Schuerwegh, A.J.; Bridts, C.H.; Van Offel, J.F.; Ebo, D.G.; Stevens, W.J. . E-mail: immuno@ua.ac.be; De Clerck, L.S.

    2006-09-22

    The objective of this study was to evaluate the effect of bisphosphonates (BPs) and simvastatin on chondrocyte lipid peroxidation. For this purpose, a flow cytometrical method using C11-BODIPY{sup 581/591} was developed to detect hydroperoxide-induced lipid peroxidation in chondrocytes. Tertiary butylhydroperoxide (t-BHP) induced a time and concentration dependent increase in chondrocyte lipid peroxidation. Addition of a Fe{sup 2+}/EDTA complex to t-BHP or hydrogen peroxide (H{sub 2}O{sub 2}) clearly enhanced lipid peroxidation. The lipophilic simvastatin demonstrated a small inhibition in the chondrocyte lipid peroxidation. None of three tested BPs (clodronate, pamidronate, and risedronate) had an effect on chondrocyte lipid peroxidation induced by t-BHP. However, when Fe{sup 2+}/EDTA complex was added to t-BHP or H{sub 2}O{sub 2}, BPs inhibited the lipid peroxidation process varying from 25% to 58%. This study demonstrates that BPs have antioxidant properties as iron chelators, thereby inhibiting the chondrocyte lipid peroxidation. These findings add evidence to the therapeutic potential of bisphosphonates and statins in rheumatoid arthritis.

  2. Antiatherogenic activity of extracts of Argania spinosa L. pericarp: beneficial effects on lipid peroxidation and cholesterol homeostasis.

    PubMed

    Berrougui, Hicham; Cherki, Mounia; Koumbadinga, Geremy Abdull; Isabelle, Maxim; Douville, Jasmin; Spino, Claude; Khalil, Abdelouahed

    2007-09-01

    Prevention of lipoprotein oxidation by natural compounds may prevent atherosclerosis via reducing early atherogenesis. In this study, we investigated for the first time the beneficial properties of methanolic extract of argania pericarp (MEAP) towards atherogenesis by protecting human low-density lipoprotein (LDL) against oxidation while promoting high-density lipoprotein (HDL)-mediated cholesterol efflux. By measuring the formation of malondialdehyde (MDA) and conjugated diene as well as the lag phase and the progression rate of lipid peroxidation, the MEAP was found to possess an inhibitory effect. In addition, MEAP reduced the rate of disappearance of alpha-tocopherol as well as the apoB electrophoretic mobility in a dose-dependent manner. These effects are related to the free radical scavenging and copper-chelating effects of MEAP. In terms of cell viability, MEAP has shown a cytotoxic effect (0-40 microg/mL). Incubation of 3H-cholesterol-loaded J774 macrophages with HDL in the presence of increasing concentrations of MEAP enhanced HDL-mediated cholesterol efflux independently of ABCA1 receptor pathways. Our findings suggest that argania seed pericarp provides a source of natural antioxidants that inhibit LDL oxidation and enhance cholesterol efflux and thus can prevent development of cardiovascular diseases. PMID:18066138

  3. A natural xanthone increases catalase activity but decreases NF-kappa B and lipid peroxidation in U-937 and HepG2 cell lines.

    PubMed

    Sahoo, Binay K; Zaidi, Adeel H; Gupta, Pankaj; Mokhamatam, Raveendra B; Raviprakash, Nune; Mahali, Sidhartha K; Manna, Sunil K

    2015-10-01

    Mangiferin, a C-glycosyl xanthone, has shown anti-inflammatory, antioxidant, and anti-tumorigenic activities. In the present study, we investigated the molecular mechanism for the antioxidant property of mangiferin. Considering the role of nuclear transcription factor kappa B (NF-κB) in inflammation and tumorigenesis, we hypothesized that modulating its activity will be a viable therapeutic target in regulating the redox-sensitive ailments. Our results show that mangiferin blocks several inducers, such as tumor necrosis factor (TNF), lypopolysaccharide (LPS), phorbol-12-myristate-13-acetate (PMA) or hydrogen peroxide (H2O2) mediated NF-κB activation via inhibition of reactive oxygen species generation. In silico docking studies predicted strong binding energy of mangiferin to the active site of catalase (-9.13 kcal/mol), but not with other oxidases such as myeloperoxidase, glutathione peroxidase, or inducible nitric oxide synthase. Mangiferin increased activity of catalase by 44%, but had no effect on myeloperoxidase activity in vitro. Fluorescence spectroscopy further revealed the binding of mangiferin to catalase at the single site with binding constant and binding affinity of 3.1×10(-7) M(-1) and 1.046 respectively. Mangiferin also inhibits TNF-induced lipid peroxidation and thereby protects apoptosis. Hence, mangiferin with its ability to inhibit NF-κB and increase the catalase activity may prove to be a potent therapeutic.

  4. Glutathione peroxidase and iron-thiol dependent lipid peroxidation.

    PubMed

    Punekar, N S; Lardy, H A

    1989-12-01

    Role of glutathione peroxidase in iron-thiol-mediated lipid peroxidation was examined. The enzyme was unable to prevent peroxidation of extracted rat liver microsomal lipids. In contrast, when arachidonic acid was the substrate, glutathione peroxidase did decrease the formation of thiobarbituric acid-reactive material. Superoxide dismutase produced a consistent but partial inhibition of peroxidation and catalase was without effect. Our results suggest that iron-thiol-dependent lipid peroxidation cannot be completely blocked by protective enzymes that are effective in other systems. PMID:2635868

  5. Are Sensory TRP Channels Biological Alarms for Lipid Peroxidation?

    PubMed Central

    Choi, Seung-In; Yoo, Sungjae; Lim, Ji Yeon; Hwang, Sun Wook

    2014-01-01

    Oxidative stress induces numerous biological problems. Lipid oxidation and peroxidation appear to be important steps by which exposure to oxidative stress leads the body to a disease state. For its protection, the body has evolved to respond to and eliminate peroxidation products through the acquisition of binding proteins, reducing and conjugating enzymes, and excretion systems. During the past decade, researchers have identified a group of ion channel molecules that are activated by oxidized lipids: transient receptor potential (TRP) channels expressed in sensory neurons. These ion channels are fundamentally detectors and signal converters for body-damaging environments such as heat and cold temperatures, mechanical attacks, and potentially toxic substances. When messages initiated by TRP activation arrive at the brain, we perceive pain, which results in our preparing defensive responses. Excessive activation of the sensory neuronal TRP channels upon prolonged stimulations sometimes deteriorates the inflammatory state of damaged tissues by promoting neuropeptide release from expresser neurons. These same paradigms may also work for pathologic changes in the internal lipid environment upon exposure to oxidative stress. Here, we provide an overview of the role of TRP channels and oxidized lipid connections during abnormally increased oxidative signaling, and consider the sensory mechanism of TRP detection as an alert system. PMID:25233127

  6. Lycopene control of benzophenone-sensitized lipid peroxidation

    NASA Astrophysics Data System (ADS)

    Cvetković, Dragan; Marković, Dejan

    2012-05-01

    Lycopene antioxidant activity in the presence of two different mixtures of phospholipids in hexane solution, under continuous regime of UV-irradiation from three different ranges (UV-A, UV-B, and UV-C) has been evaluated in this work. Lycopene expected role was to control lipid peroxidation, by scavenging free radicals generated by UV-irradiation, in the presence and in the absence of selected photosensitizer, benzophenone. This work shows that lycopene undergoes to UV-induced destruction (bleaching), highly dependent on the incident photons energy input, more expressed in the presence than in the absence of benzophenone. The further increase ("excess") of its bleaching is undoubtedly related to the further increase of its antioxidant activity in the presence of benzophenone, having the same cause: increase of (phospholipids peroxidation) chain-breaking activities.

  7. Minor iridoids from Scutellaria albida ssp. albida. Inhibitory potencies on lipoxygenase, linoleic acid lipid peroxidation and antioxidant activity of iridoids from Scutellaria sp.

    PubMed

    Gousiadou, Chrysoula; Gotfredsen, Charlotte H; Matsa, Marina; Hadjipavlou-Litina, Dimitra; Skaltsa, Helen

    2013-08-01

    A new iridoid glycoside, 6'-O-E-caffeoyl-mussaenosidic acid , in addition to one known aglycon, four known triterpenes and one known flavonoid, were isolated from the aerial parts of Scutellaria albida subsp. albida. Furthermore, 12 iridoids with similar structures isolated from Scutellaria sp., were examined for their inhibitory potency on lipoxygenase and lipid peroxidation, as well as their antioxidant activity, in comparison to known antioxidants e.g. caffeic acid, nordihydroguaretic acid (NDGA) and trolox. AAPH, DPPH and soybean lipoxygenase (LOX) assays were used for the tests. This investigation led to interesting observations considering the Structure-Activity Relationship. According to our results, the presence of a p-coumaroyl group optimized and even dramatically changed the biological responses of the investigated iridoids.

  8. [Effects of cadmium stress on active oxygen generation, lipid peroxidation and antioxidant enzyme activities in radish seedlings].

    PubMed

    Tang, Chun-Fang; Liu, Yun-Guo; Zeng, Guang-Ming; Li, Cheng-Feng; Xu, Wei-Hua

    2004-08-01

    When seedlings of radish were treated with Cd2+ from 125 to 500 micromol/L, for a period of 12 to 96 h in hydroponic system, increase in ratio of SOD to CAT and levels of O(-.)(2), H(2)O(2), MDA indicate that Cd2+ induces oxidative stress in radish plants. Antioxidant enzyme activities responded differently to the level and time of Cd2+ treatment. Under 125 micromol/L Cd2+ treatment a gradual increase in SOD activity was observed; at 250, 500 micromol/L Cd2+ treatment SOD activity increased first, then declined considerably to even lower than that of the control during later Cd2+ treatment. A gradual decrease in roots and a marked increase in leaves in CAT activity were detected. GR activity in both leaves and roots were enhanced significantly with the increase in content of Cd2+ and time of treatment. The increase in GR activity suggests that AsA-GsH cycle may be activated to scavenge the AOS or the synthesis of PC may be stimulated to chelate cadmium.

  9. Silicon Reverses Lipid Peroxidation but not Acetylcholinesterase Activity Induced by Long-Term Exposure to Low Aluminum Levels in Rat Brain Regions.

    PubMed

    Noremberg, Simone; Bohrer, Denise; Schetinger, Maria R C; Bairros, André V; Gutierres, Jessié; Gonçalves, Jamile F; Veiga, Marlei; Santos, Francielli W

    2016-01-01

    Aluminum (Al) is the most widely distributed metal in the environment and is extensively used in daily life leading to easy exposure to human beings. Besides not having a recognized physiological role, Al may produce adverse effects through the interaction with the cholinergic system contributing to oxidative stress. The present study evaluated, in similar conditions of parenteral nutrition, whether the reaction of silicon (SiO2) with Al(3+) to form hydroxyaluminosilicates (HAS) reduces its bioavailability and toxicity through intraperitoneal administrations of 0.5 mg Al/kg/day and/or 2 mg Si/kg/day in Wistar rats. Al and Si concentrations were determined in rat brain tissue and serum. Acetylcholinesterase (AChE) activity and lipid peroxidation (LPO) were analyzed in the cerebellum, cortex, hippocampus, striatum, hypothalamus, and blood. An increase in the Al concentration was verified in the Al + Si group in the brain. All the groups demonstrated enhanced Si compared to the control animals. Al(3+) increased LPO measured by thiobarbituric acid reactive substances (TBARS) in cerebellum and hippocampus, whereas SiO2 reduced it when compared with the control group. An increase of AChE activity was observed in the Al-treated group in the cerebellum whereas a decrease of this enzyme activity was observed in the cortex and hippocampus in the Al and Al + Si groups. Al and Si concentrations increased in rat serum; however, no effect was observed in blood TBARS levels and AChE activity. SiO2 showed a protective effect in the hippocampus and cerebellum against cellular damage caused by Al(3+)-induced lipid peroxidation. Thus, SiO2 may be considered an important protector in LPO induced by Al(3+).

  10. Lipid peroxidation of plants under microgravity and its simulation

    NASA Astrophysics Data System (ADS)

    Zhadko, S. I.; Polulyakh, Yu. A.; Vorobyeva, T. V.; Baraboy, V. A.

    1994-08-01

    In series of space experiments a board the biosatellites ``Cosmos 1887'', ``Bion 9'', the orbital stations ``Salut'', ``Mir'' and under clinostating, changes of lipid peroxidation (LPO) and antioxidation activity (AOA) of Chlorella, Haplopappus tissue culture, wheat and pea roots were determined. The changes had a complex fluctuation character three steps of response were established; LPO decreasing accompanied by AOA increase; stabilization LPO⇄AOA balance; secondary LPO activation. Most early and highly amplitude decreasing of LPO were fixed in mitochondria. The rate of response have been increased on multicellular level of plants organization.

  11. Aluminium-induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid.

    PubMed

    Yousef, Mokhtar I

    2004-06-01

    For a long time, aluminium (Al) has been considered an indifferent element from a toxicological point of view. In recent years, however, Al has been implicated in the pathogenesis of several clinical disorders, such as dialysis dementia, the fulminant neurological disorder that can develop in patients on renal dialysis. Therefore, the present experiment was carried out to determine the effectiveness of l-ascorbic acid (AA) in alleviating the toxicity of aluminium chloride (AlCl3) on certain hemato-biochemical parameters, lipid peroxidation and enzyme activities of male New Zealand white rabbits. Six rabbits per group were assigned to 1 of 4 treatment groups: 0mg AA and 0mg AlCl3/kg body weight (BW) (control); 40 mg AA/kg BW; 34 mg AlCl3/kg BW (1/25 LD50); 34 mg AlCl3 plus 40 mg AA/kg BW. Rabbits were orally administered their respective doses every other day for 16 weeks. Evaluations were made for lipid peroxidation, enzyme activities and hemato-biochemical parameters. Results obtained showed that AlCl3 significantly (P<0.05) induced free radicals and decreased the activity of glutathione S-transferase (GST) and the levels of sulfhydryl groups (SH groups) in rabbit plasma, liver, brain, testes and kidney. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AlP), acid phosphatase (AcP), and phosphorylase activities were significantly decreased in liver and testes due to AlCl3 administration. While, plasma, liver, testes and brain lactate dehydrogenase (LDH) activities were significantly increased. Contrariwise, the activity of acetylcholinesterase (AChE) was significantly decreased in brain and plasma. Aluminium treatment caused a significant decrease in plasma total lipids (TL), blood haemoglobin (Hb), total erythrocytic count (TEC) and packed cell volume (PCV), and increased total leukocyte count (TLC) and the concentrations of glucose, urea, creatinine, bilirubin and cholesterol. Ascorbic acid alone significantly decreased the

  12. Effects of ultraviolet A on the activity of two metabolic enzymes, DNA damage and lipid peroxidation during early developmental stages of the African catfish, Clarias gariepinus (Burchell, 1822)

    PubMed Central

    Mekkawy, Imam A. A.; Mahmoud, Usama M.; Osman, Alaa G.

    2009-01-01

    Many ultraviolet-A (UVA)-induced biochemical and physiological changes are valid as biomarkers using aquatic species for detection of the degree of stress. Changes in the concentration and activities of enzymes, such as glucose-6-phosphate dehyderogenase (G6PDH), lactate dehyderogenase (LDH), DNA damage and lipid peroxidation (LPO), can be used as biomarkers to identify possible environmental contamination in fish. This study aimed to investigate the impact of UVA on the activity of the selected enzymes, DNA damage and LPO during early developmental stages of the African catfish Clarias gariepinus. Embryo hemogenates were used for measurements of G6PDH, LDH, DNA damage and LPO concentrations and activities spectrophotometrically at 37°C. The normal ontogenetic variations in enzyme activities, DNA damage and LPO of the early developmental stages (24–168 h-PFS; hours-post fertilization stage) were studied. There was a significant decrease in the activity of G6PDH till 120 h-PFS. Then after 120 h-PFS, the activity of such enzymes insignificantly increased toward higher stages. The LDH activity was recorded with a pattern of decrease till 96 h-PFS, followed by a significant increase toward 168 h-PFS. The polynomial pattern of variations in DNA damage and LPO was also evident. The patterns of the enzyme activities, corresponding DNA damage and LPO of the early ontogenetic stages under the influence of three different UVA doses (15, 30 and 60 min), were recorded. The pattern of variations in G6PDH activity in UVA-induced groups was similar to that of the control group with variation in the magnitude of such activity. In all treated groups, LDH activity decreased till 96 h-PFS, then increased till 168 h-PFS. Within each of the embryonic stages, the increase in UVA led to a significant increase in DNA damage. A significant increase in lipid peroxidation under UVA doses was recorded. The variability in number and molecular weight of proteins under exposure to UVA

  13. Dependence of Guaiacol Peroxidase Activity and Lipid Peroxidation Rate in Drooping Birch (Betula pendula Roth) and Tillet (Tilia cordata Mill) Leaf on Motor Traffic Pollution Intensity.

    PubMed

    Erofeeva, Elena A

    2015-01-01

    Hormesis and paradoxical effects are frequently found for different plant parameters. These phenomena were also observed for lipid peroxidation (LP) rate at environmental pollution. However, the role of antioxidant enzymes, particularly guaiacol peroxidases (GPX), in a nonmonotonic variation in the LP rate remains insufficiently explored. Therefore, dependence of GPX activity and LP rate in Betula pendula and Tilia cordata leaf on motor traffic pollution intensity was studied. Regression analysis revealed dependences of LP rate and GPX activity on traffic intensity. In B pendula, GPX activity enhanced significantly (up to 2.8 times relatively control) under increased traffic that induced biphasic paradoxical effect for LP rate. In the first phase, LP level increased in comparison with the control, and in the second phase, it was normalized by enhanced GPX activity. In T cordata, dependences of GPX activity and LP rate on traffic pollution were paradoxical effects. However, there was no connection between change of GPX activity and LP rate under middle- and high-level pollution: LP level reduced relatively the control or normalized even if GPX activity was lower than the control. This indicates that in T cordata, other regulatory mechanisms instead of GPX were activated which could control LP rate under middle- and high-level pollution.

  14. Effect of process parameters upon the dopamine and lipid peroxidation activity of selected MIG welding fumes as a marker of potential neurotoxicity.

    PubMed

    Hudson, N J; Evans, A T; Yeung, C K; Hewitt, P J

    2001-04-01

    There is growing concern over the neurotoxic effects of chronic occupational exposure to metal fume produced by welding. Elevated iron and manganese levels in the brain have been linked to an increase in lipid peroxidation, dopamine depletion and predisposition to the development of a Parkinson's type condition in advanced cases. Chemical and toxicological analysis of selected welding fumes, generated by model processes, were used in order to evaluate their potential to release solutes that promote oxidation of dopamine and peroxidation of brain lipids in cell free assays. This study compared the effect of shield gas, electrode type and voltage/currect upon the dopamine and brain lipid peroxidation potential of selected welding fume, obtained from metal inert gas (MIG) welding systems. Overall, fume extracts were found to enhance dopamine oxidation and inhibit lipid peroxidation. Significant differences were also found in the oxidising potential of fume generated under differing process conditions; it may therefore be possible to determine the potential neurotoxicity of fumes using this system.

  15. [State of lipid peroxidation in workers engaged into chrysotile-asbestos production].

    PubMed

    Koigel'dinova, Sh S; Ibraev, S A; Kasymova, A K

    2015-01-01

    To study influence of chrysotile-asbestos dust on health of asbestos production workers, the authors conducted biochemical study of serum lipids peroxidation in workers of mining transport enterprise and ore-dressing complex, in accordance with length of service. According to comparative analysis of the resuts obtained, the workers of mining transport enterprise and ore-dressing complex demonstrate more active lipid peroxidation with longer length of service, more pronounced in ore-dressing complex workers.

  16. Novel approaches to identify protein adducts produced by lipid peroxidation.

    PubMed

    Codreanu, S G; Liebler, D C

    2015-01-01

    Lipid peroxidation is responsible for the generation of chemically reactive, diffusible lipid-derived electrophiles (LDEs) that covalently modify cellular protein targets. These protein modifications modulate protein activity and macromolecular interactions and induce adaptive and toxic cell signaling. Protein modifications induced by LDEs can be identified and quantified by affinity enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based techniques. Tagged LDE analog probes with different electrophilic groups can be covalently captured by click chemistry for LC-MS/MS analyses, thereby enabling in-depth studies of proteome damage at the protein and peptide sequence levels. Conversely, click-reactive, thiol-directed probes can be used to evaluate thiol damage caused by LDE by difference. These analytical approaches permit systematic study of the dynamics of protein damage caused by LDE and mechanisms by which oxidative stress contribute to toxicity and diseases. PMID:25819163

  17. Chloroplast pigments, proteins, lipid peroxidation and activities of antioxidative enzymes during maturation and senescence of leaves and reproductive organs of Cajanus cajan L.

    PubMed

    Jakhar, Somveer; Mukherjee, D

    2014-04-01

    A comparative investigation was undertaken with pigeon pea leaves and attached flower buds/flowers/pods during their developmental stages including senescence in a natural system in experimental plots. Alterations in chloroplast pigments, total soluble proteins, lipid peroxidation, malondialdehyde (MDA) content and activities of guaiacol peroxidase (POD, EC 1.11.1.7) and superoxide dismutase (SOD, EC 1.15.1.1) were studied at 5-day interval from initial to 40-day stage. Chloroplast pigments and proteins of leaves increased upto 15 and 20-day stages respectively followed by a steady decline. Reproductive parts, however, exhibited rise in chloroplast pigments upto 25-day and protein till last stage as developing pods gain the amount from the senescing leaves which are nearest to them. Senescing leaves show very high POD activity than the developing and senescing pods and POD appears to be associated with chlorophyll degradation. Considerably higher activity and amount of LOX and MDA respectively have been noticed in senescing leaves than in flowers and pods. Increase in SOD activity during early stage of leaf growth and maturation indicates protective role that declined at senescent stages. Pods are unique in having very high SOD activity, only last stage of senescence does show a decline. PMID:24757321

  18. Intraperitoneal Exposure to Nano/Microparticles of Fullerene (C60) Increases Acetylcholinesterase Activity and Lipid Peroxidation in Adult Zebrafish (Danio rerio) Brain

    PubMed Central

    Dal Forno, Gonzalo Ogliari; Kist, Luiza Wilges; de Azevedo, Mariana Barbieri; Fritsch, Rachel Seemann; Pereira, Talita Carneiro Brandão; Britto, Roberta Socoowski; Guterres, Sílvia Stanisçuaski; Külkamp-Guerreiro, Irene Clemes; Bonan, Carla Denise; Monserrat, José María; Bogo, Maurício Reis

    2013-01-01

    Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxidant responses, and oxidative damage using adult zebrafish as an animal model. None of the doses tested (7.5, 15, and 30 mg/kg) altered AChE activity, antioxidant responses, and oxidative damage when zebrafish were exposed to nonphotoexcited C60 nano/microparticles during 6 and 12 hours. However, adult zebrafish exposed to the 30 mg/kg dose for 24 hours have shown enhanced AChE activity and augmented lipid peroxidation (TBARS assays) in brain. In addition, the up-regulation of brain AChE activity was neither related to the transcriptional control (RT-qPCR analysis) nor to the direct action of nonphotoexcited C60 nano/microparticles on the protein (in vitro results) but probably involved a posttranscriptional or posttranslational modulation of this enzymatic activity. Taken together these findings provided further evidence of toxic effects on brain after C60 exposure. PMID:23865059

  19. Modulation of radiation induced lipid peroxidation by phospholipase A 2 and calmodulin antagonists: Relevance to detoxification

    NASA Astrophysics Data System (ADS)

    Varshney, Rajeev; Kale, R. K.

    1995-04-01

    Ghost membranes prepared from erythrocytes of Swiss albino mice were irradiated with 0.9 Gy s -1. Lipid peroxidation initiated by ionizing radiation was enhanced by phospholipase A 2, and required both phospholipase A 2 and GSH-peroxidase for consecutive action to convert fatty acid peroxides into corresponding alcohols. The ability of phospholipase A 2 to enhance lipid peroxidation was increased in presence of Ca 2+. However, in combination, phospholipase A 2 and GSH-peroxidase were effective in inhibiting lipid peroxidation. These findings show that free fatty acid peroxides considerably increase the peroxidation. Calmodulin antagonists inhibit lipid peroxidation and decrease the radiation induced release of Ca 2+ from the membranes. Our results suggest the importance of Ca 2+ dependent phospholipase A 2 in detoxification of fatty acid peroxides in the membranes. It is quite possible that scavenging of free radicals by calmodulin antagonists lower the formation of hydroperoxides, resulting in the decrease in activity of phospholipase A 2. Alternatively, decrease in Ca 2+ release due to the calmodulin antagonists might have affected the activity of phospholipase A 2. Our observations might be of considerable significance in the understanding of post irradiation effect on biological membranes.

  20. Modulatory effects of curcumin on lipid peroxidation and antioxidant status during nicotine-induced toxicity.

    PubMed

    Kalpana, C; Menon, V P

    2004-01-01

    Nicotine, a pharmacologically active substance in tobacco, has been identified as a major risk factor for lung diseases. In the present study, we evaluated the protective effects of curcumin on tissue lipid peroxidation and antioxidants in nicotine-treated Wistar rats. Lung toxicity was induced by subcutaneous injection of nicotine at a dose of 2.5 mg/kg (5 days a week, for 22 weeks). Curcumin (80 mg/kg) was given simultaneously by intragastric intubation for 22 weeks. The enhanced level of tissue lipid peroxides in nicotine-treated rats was accompanied by a significant decrease in the levels of ascorbic acid, vitamin E, reduced glutathione, glutathione peroxidase, superoxide dismutase and catalase. Administration of curcumin significantly lowered the level of lipid peroxidation and enhanced the antioxidant status. The results of the present study suggest that curcumin exerts its protective effect against nicotine-induced lung toxicity by modulating the extent of lipid peroxidation and augmenting antioxidant defense system. PMID:15591646

  1. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    PubMed Central

    Omotayo, T.I.; Akinyemi, G.S.; Omololu, P.A.; Ajayi, B.O.; Akindahunsi, A.A.; Rocha, J.B.T.; Kade, I.J.

    2014-01-01

    The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA) inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump. PMID:25618580

  2. Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays.

    PubMed

    Apak, Reşat; Özyürek, Mustafa; Güçlü, Kubilay; Çapanoğlu, Esra

    2016-02-10

    Measuring the antioxidant activity/capacity levels of food extracts and biological fluids is useful for determining the nutritional value of foodstuffs and for the diagnosis, treatment, and follow-up of numerous oxidative stress-related diseases. Biologically, antioxidants play their health-beneficial roles via transferring a hydrogen (H) atom or an electron (e(-)) to reactive species, thereby deactivating them. Antioxidant activity assays imitate this action; that is, antioxidants are measured by their H atom transfer (HAT) or e(-) transfer (ET) to probe molecules. Antioxidant activity/capacity can be monitored by a wide variety of assays with different mechanisms, including HAT, ET, and mixed-mode (ET/HAT) assays, generally without distinct boundaries between them. Understanding the principal mechanisms, advantages, and disadvantages of the measurement assays is important for proper selection of method for valid evaluation of antioxidant properties in desired applications. This work provides a general and up-to-date overview of HAT-based, mixed-mode (ET/HAT), and lipid peroxidation assays available for measuring antioxidant activity/capacity and the chemistry behind them, including a critical evaluation of their advantages and drawbacks.

  3. Inhibition of lipid peroxidation and enhancement of GST activity by cardamom and cinnamon during chemically induced colon carcinogenesis in Swiss albino mice.

    PubMed

    Bhattacharjee, Shamee; Rana, Tapasi; Sengupta, Archana

    2007-01-01

    Globally, colorectal cancer is the third commonest cancer in men since 1975.The present study focuses on the preventive strategies aimed at reducing the incidences and mortality of large bowel cancer. Chemoprevention of colon cancer appears to be a very realistic possibility because various intermediate stages have been identified preceding the development of malignant colonic tumors. Several studies have demonstrated that generous consumption of vegetables reduces the risk of colon cancer. This idea has prompted the present investigation to search for some novel plant products, which may have possible anticarcinogenic activity. It has already been proved from various experiments that chemopreventive agents, by virtue of their anti-oxidant, anti-inflammatory, anti-proliferative, apoptosis-inducing activity, act at various levels including molecular, cellular, tissue and organ levels to interfere with carcinogens. Previous studies from our laboratory have already reported the inhibitory effect of cinnamon and cardamom on azoxymethane induced colon carcinogenesis by virtue of their anti-inflammatory, anti-proliferative and pro-apoptotic activity. This particular experiment was carried out to assess the anti-oxidative potential of these spices. Aqueous suspensions of cinnamon and cardamom have been shown to enhance the level of detoxifying enzyme (GST activity) with simultaneous decrease in lipid peroxidation levels in the treatment groups when compared to that of the carcinogen control group.

  4. [A method for assessing lipid peroxidation in a biological substrate].

    PubMed

    Shvetsova, M M; Zatolokin, V D; Kaznacheev, N N; Luk'ianchikov, G F

    1990-01-01

    A new method for the assessment of lipid peroxidation permits simultaneous assays of total lipids and formed malonic dialdehyde in the examined chloroform substrate; this will help define the criteria of cellular membrane destruction in various biological media of the body.

  5. Induction of lipid peroxidation in biomembranes by dietary oil components.

    PubMed

    Udilova, Natalia; Jurek, Daniela; Marian, Brigitte; Gille, Lars; Schulte-Hermann, Rolf; Nohl, Hans

    2003-11-01

    Prooxidant formation and resulting lipid peroxidation are supposed to be involved in the pathogenesis of various diseases including cancer. Cancer risk is possibly influenced by the composition of diet with high intake of fat and red meat being harmful and high consumption of fruits and vegetables being protective. Since dietary oils may contain potential prooxidants, the aim of the present study was to prove (i) whether oxidative stress in biomembranes may be induced by dietary oils and if, (ii) which impact it has on the viability and proliferation of cultured colon (carcinoma) cells. Lipid hydroperoxide content in dietary oils increased after heating. Linoleic acid hydroperoxide (LOOH) and/or oils with different hydroperoxide contents induced lipid peroxidation in liposomes, erythrocyte ghosts and colon cells. Upon incubation with liposomes, both LOOH and heated oil induced lipid peroxidation only in the presence of iron and ascorbate. LOOH was sufficient to start lipid peroxidation of erythrocyte ghosts. LOOH incorporates into the lipid bilayer decreasing membrane fluidity and initiating lipid peroxidation in the lipid phase. When cultured cells (IEC18 intestinal epithelial cells, SW480 and HT29/HI1 colon carcinoma cells) were exposed to LOOH, they responded by cell death both via apoptosis and necrosis. Cells with higher degree of membrane unsaturation were more susceptible and antioxidants (vitamin E and selenite) were protective indicating the involvement of oxidative stress. Thus, peroxidation of biomembranes can be initiated by lipid hydroperoxides from heated oils. Dietary consumption of heated oils may lead to oxidative damage and to cell death in the colon. This may contribute to the enhanced risk of colon cancer due to regenerative cell proliferation.

  6. Muscular cholinesterase activities and lipid peroxidation levels as biomarkers in several Mediterranean marine fish species and their relationship with ecological variables.

    PubMed

    Solé, Montserrat; Baena, Miguel; Arnau, Susana; Carrasson, Maite; Maynou, Francesc; Cartes, Joan E

    2010-02-01

    Muscular cholinesterase activities, as potential markers of neurotoxic exposure, and lipid peroxidation levels, indicative of oxidative stress damage, both currently used in early-warning pollution monitoring, were characterised in eighteen fish species of ecologic and/or economic importance. These species comprise five orders and eleven families of teleosts and two species of elasmobranchs, feed using different strategies (benthic, epibenthic, endobenthic and pelagic), belong to different trophic levels and express different swimming behaviour. Their habitat ranges from 50 to 60 m (shallow or continental shelf) and 600 to 850 m (middle continental slope). Sampling took place in front of the Barcelona coast (NW Mediterranean) during four seasonal cruises in 2007. In the summer sampling, another site potentially exposed to a different pollution load (Vilanova) was included for comparison. Species, seasonal and site differences were tested and discussed in relation to chemical analysis of the local sediment, systematic position, habitat depth, feeding strategy, trophic level and swimming activity. Greater inter species differences rather than seasonal or site trends were seen in accordance to little pollution fluctuations. Higher cholinesterase activities were recorded in suprabenthos feeders, regardless of depth habitat, whereas LP levels were similar in all species except for the shark Scyliorhinus canicula in which they were consistently elevated. This study confirms and broadens former observations carried out with a more reduced number of fish species (Solé et al., 2008a). PMID:20022635

  7. Methods to create thermally oxidized lipids and comparison of analytical procedures to characterize peroxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this experiment was to evaluate peroxidation in 4 lipids, each with 3 degrees of peroxidation. Lipid sources were: corn oil (CN), canola oil (CA), poultry fat, and tallow. Peroxidation levels were: original lipids (OL), slow-oxidized lipids (SO), and rapid-oxidized lipids (RO). To p...

  8. Levels of lipid peroxidation and antioxidants in vegetarians.

    PubMed

    Krajcovicová-Kudlácková, M; Simoncic, R; Babinská, K; Béderová, A

    1995-04-01

    Age dependence of lipid peroxidation levels estimated as conjugated dienes (CD) of plasma fatty acids was investigated in vegetarian and non-vegetarian males and females aged 11-14, 15-18, 19-39 and 40-60 years. The increase of CD levels with age was found in probands on both types of nutrition up to the age of 40 years. In the first three age groups, lipid peroxidation was insignificantly lower in vegetarians when compared to nonvegetarians. The increase of conjugated dienes was on the level of significance (p < 0.05) in the oldest vegetarians vs nonvegetarians. Therefore, content of defense parameters--antioxidative vitamin and enzyme--was estimated in blood of vegetarians aged 40-60 years. Significantly higher levels of vitamin C and catalase activity were found in vegetarians (C-63.6 and 86.5 mumol/l; CAT-1497 and 1313 U/ml for males and females, respectively) when compared to nonvegetarians (C-41.3 and 54.4 mumol/l; CAT-1192 and 1086 U/ml). A significant negative linear correlation (p < 0.001) for CD-C and CD-CAT was found in both sexes of vegetarians and in nonvegetarian females (p < 0.05 for nonvegetarian males). Important finding is a more pronounced in vegetarians (2.5-3.4 times higher slope of regression lines) indicating positive effect of vegetarian nutrition on efficiency of protection system.

  9. Nitric oxide consumption through lipid peroxidation in brain cell suspensions and homogenates.

    PubMed

    Keynes, Robert G; Griffiths, Charmaine H; Hall, Catherine; Garthwaite, John

    2005-05-01

    Mechanisms which inactivate NO (nitric oxide) are probably important in governing the physiological and pathological effects of this ubiquitous signalling molecule. Cells isolated from the cerebellum, a brain region rich in the NO signalling pathway, consume NO avidly. This property was preserved in brain homogenates and required both particulate and supernatant fractions. A purified fraction of the particulate component was rich in phospholipids, and NO consumption was inhibited by procedures that inhibited lipid peroxidation, namely a transition metal chelator, the vitamin E analogue Trolox and ascorbate oxidase. The requirement for the supernatant was accounted for by its content of ascorbate which catalyses metal-dependent lipid peroxidation. The NO-degrading activity of the homogenate was mimicked by a representative mixture of brain lipids together with ascorbate and, under these conditions, the lipids underwent peroxidation. In a suspension of cerebellar cells, there was a continuous low level of lipid peroxidation, and consumption of NO by the cells was decreased by approx. 50% by lipid-peroxidation inhibitors. Lipid peroxidation was also abolished when NO was supplied at a continuously low rate (approximately 100 nM/min), which explains why NO consumption by this process is saturable. Part of the activity remaining after the inhibition of lipid peroxidation was accounted for by contaminating red blood cells, but there was also another component whose activity was greatly enhanced when the cells were maintained under air-equilibrated conditions. A similar NO-consuming process was present in cerebellar glial cells grown in tissue culture but not in blood platelets or leucocytes, suggesting a specialized mechanism.

  10. High intensity interval training in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation in physically active men.

    PubMed

    Souza-Silva, Ana Angélica; Moreira, Eduardo; de Melo-Marins, Denise; Schöler, Cinthia M; de Bittencourt, Paulo Ivo Homem; Laitano, Orlando

    2016-01-01

    Aim. The purpose of this study was to determine the response of circulating markers of lipid and protein oxidation following an incremental test to exhaustion before and after 4 weeks of high-intensity interval training performed in the heat. Methods. To address this question, 16 physically active men (age = 23 ± 2 years; body mass = 73 ± 12 kg; height = 173 ± 6 cm; % body fat = 12.5 ± 6 %; body mass index = 24 ± 4 kg/m(2)) were allocated into 2 groups: control group (n = 8) performing high-intensity interval training at 22°C, 55% relative humidity and heat group (n = 8) training under 35°C, 55% relative humidity. Both groups performed high-intensity interval training 3 times per week for 4 consecutive weeks, accumulating a total of 12 training sessions. Before and after the completion of 4 weeks of high-intensity interval training, participants performed an incremental cycling test until exhaustion under temperate environment (22°C, 55% relative humidity) where blood samples were collected after the test for determination of exercise-induced changes in oxidative damage biomarkers (thiobarbituric acid reactive species and protein carbonyls). Results. When high-intensity interval training was performed under control conditions, there was an increase in protein carbonyls (p < 0.05) following the incremental test to exhaustion with no changes in thiobarbituric acid reactive species. Conversely, high-intensity interval training performed in high environmental temperature enhanced the incremental exercise-induced increases in thiobarbituric acid reactive species (p < 0.05) with no changes in protein carbonyls. Conclusion. In conclusion, 4 weeks of high-intensity interval training performed in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation following a maximal incremental exercise in healthy active men.

  11. High intensity interval training in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation in physically active men

    PubMed Central

    Souza-Silva, Ana Angélica; Moreira, Eduardo; de Melo-Marins, Denise; Schöler, Cinthia M.; de Bittencourt, Paulo Ivo Homem; Laitano, Orlando

    2016-01-01

    ABSTRACT Aim. The purpose of this study was to determine the response of circulating markers of lipid and protein oxidation following an incremental test to exhaustion before and after 4 weeks of high-intensity interval training performed in the heat. Methods. To address this question, 16 physically active men (age = 23 ± 2 years; body mass = 73 ± 12 kg; height = 173 ± 6 cm; % body fat = 12.5 ± 6 %; body mass index = 24 ± 4 kg/m2) were allocated into 2 groups: control group (n = 8) performing high-intensity interval training at 22°C, 55% relative humidity and heat group (n = 8) training under 35°C, 55% relative humidity. Both groups performed high-intensity interval training 3 times per week for 4 consecutive weeks, accumulating a total of 12 training sessions. Before and after the completion of 4 weeks of high-intensity interval training, participants performed an incremental cycling test until exhaustion under temperate environment (22°C, 55% relative humidity) where blood samples were collected after the test for determination of exercise-induced changes in oxidative damage biomarkers (thiobarbituric acid reactive species and protein carbonyls). Results. When high-intensity interval training was performed under control conditions, there was an increase in protein carbonyls (p < 0.05) following the incremental test to exhaustion with no changes in thiobarbituric acid reactive species. Conversely, high-intensity interval training performed in high environmental temperature enhanced the incremental exercise-induced increases in thiobarbituric acid reactive species (p < 0.05) with no changes in protein carbonyls. Conclusion. In conclusion, 4 weeks of high-intensity interval training performed in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation following a maximal incremental exercise in healthy active men. PMID:27227083

  12. High intensity interval training in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation in physically active men.

    PubMed

    Souza-Silva, Ana Angélica; Moreira, Eduardo; de Melo-Marins, Denise; Schöler, Cinthia M; de Bittencourt, Paulo Ivo Homem; Laitano, Orlando

    2016-01-01

    Aim. The purpose of this study was to determine the response of circulating markers of lipid and protein oxidation following an incremental test to exhaustion before and after 4 weeks of high-intensity interval training performed in the heat. Methods. To address this question, 16 physically active men (age = 23 ± 2 years; body mass = 73 ± 12 kg; height = 173 ± 6 cm; % body fat = 12.5 ± 6 %; body mass index = 24 ± 4 kg/m(2)) were allocated into 2 groups: control group (n = 8) performing high-intensity interval training at 22°C, 55% relative humidity and heat group (n = 8) training under 35°C, 55% relative humidity. Both groups performed high-intensity interval training 3 times per week for 4 consecutive weeks, accumulating a total of 12 training sessions. Before and after the completion of 4 weeks of high-intensity interval training, participants performed an incremental cycling test until exhaustion under temperate environment (22°C, 55% relative humidity) where blood samples were collected after the test for determination of exercise-induced changes in oxidative damage biomarkers (thiobarbituric acid reactive species and protein carbonyls). Results. When high-intensity interval training was performed under control conditions, there was an increase in protein carbonyls (p < 0.05) following the incremental test to exhaustion with no changes in thiobarbituric acid reactive species. Conversely, high-intensity interval training performed in high environmental temperature enhanced the incremental exercise-induced increases in thiobarbituric acid reactive species (p < 0.05) with no changes in protein carbonyls. Conclusion. In conclusion, 4 weeks of high-intensity interval training performed in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation following a maximal incremental exercise in healthy active men. PMID:27227083

  13. Studies of Paroxysmal Nocturnal Hemoglobinuria Erythrocytes: Increased Lysis and Lipid Peroxide Formation by Hydrogen Peroxide*

    PubMed Central

    Mengel, Charles E.; Kann, Herbert E.; Meriwether, Wilhelm D.

    1967-01-01

    When paroxysmal nocturnal hemoglobinuria (PNH) erythrocytes were exposed to H2O2 they lysed excessively and formed greater than normal quantities of lipid peroxides when compared to red cells of normal subjects and patients with most types of hematologic disease. It was also shown that lytic sensitivity to acidified serum was related to the enhanced lytic sensitivity to H2O2. If the lipid of PNH cells was first extracted then exposed to ultraviolet radiation more lipid peroxides were formed than in extracts of normal red blood cells. The possible explanations for these findings and their relationship to the PNH hemolytic mechanism are discussed. Images PMID:6061745

  14. Photoirradiation of dehydropyrrolizidine alkaloids--formation of reactive oxygen species and induction of lipid peroxidation.

    PubMed

    Zhao, Yuewei; Xia, Qingsu; Yin, Jun Jie; Lin, Ge; Fu, Peter P

    2011-09-10

    Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and are probably the most common poisonous plants affecting livestock, wildlife, and human. PAs require metabolic activation to generate pyrrolic metabolites (dehydro-PAs) that bind cellular protein and DNA, leading to hepatotoxicity and genotoxicity, including tumorigenicity. In this study we report that UVA photoirradiation of a series of dehydro-PAs, e.g., dehydromonocrotaline, dehydroriddelliine, dehydroretrorsine, dehydrosenecionine, dehydroseneciphylline, dehydrolasiocarpine, dehydroheliotrine, and dehydroretronecine (DHR) at 0-70 J/cm2 in the presence of a lipid, methyl linoleate, resulted in lipid peroxidation in a light dose-responsive manner. When irradiated in the presence of sodium azide, the level of lipid peroxidation decreased; lipid peroxidation was enhanced when methanol was replaced by deuterated methanol. These results suggest that singlet oxygen is a photo-induced product. When irradiated in the presence of superoxide dismutase, the level of lipid peroxidation decreased, indicating that lipid peroxidation is also mediated by superoxide. Electron spin resonance (ESR) spin trapping studies confirmed that both singlet oxygen and superoxide anion radical were formed during photoirradiation. These results indicate that UVA photoirradiation of dehydro-PAs generates reactive oxygen species (ROS) that mediated the initiation of lipid peroxidation. UVA irradiation of the parent PAs and other PA metabolites, including PA N-oxides, under similar experimental conditions did not produce lipid peroxidation. It is known that PAs induce skin cancer and are secondary (hepatogenous) photosensitization agents. Our results suggest that dehydro-PAs are the active metabolites responsible for skin cancer formation and PA-induced secondary photosensitization. PMID:21723383

  15. Exposure to oxidized nitrogen: lipid peroxidation and neonatal health risk.

    PubMed

    Tabacova, S; Baird, D D; Balabaeva, L

    1998-01-01

    Pregnant women exposed to extensive environmental contamination by oxidized nitrogen compounds were studied at parturition, their neonatal health status was assessed and the involvement of oxidative stress in pathology was evaluated. Methemoglobin in maternal and cord blood was measured as a biomarker of individual exposure. Blood lipid peroxides and glutathione (reduced and total) were determined as oxidative stress biomarkers. Birthweight, Apgar scores, and clinical diagnosis at birth were used as neonatal health endpoints. Elevated exposure to oxidized nitrogen compounds was associated with increased lipid peroxidation in both maternal and cord blood. Poor birth outcome was associated with high blood lipid peroxides. Controlling for maternal age, parity, and smoking did not affect the relationships materially. The results showed that maternal/fetal exposure to oxidized nitrogen compounds is associated with increased risk of adverse birth outcome and suggest a role of oxidative damage in the pathogenic pathway.

  16. Steady magnetic fields effect on lipid peroxidation kinetics.

    PubMed

    Lalo, U V; Pankratov, Y V; Mikhailik, O M

    1994-10-01

    The effect of steady magnetic fields (ranging from 0 to 280 mT) has been investigated on the kinetics of non-enzymatic lipid peroxidation occurring in a model system consisting of liposomes obtained from 1, 2-dioleoylphosphatidylcholine by oxygen consumption. The process was found to be accelerated by weak steady magnetic fields. A computer simulation method was employed to detect the reactions that govern the process kinetics, to elucidate magneto-sensitive stages (initiation and reduction of iron(III), as well as lipid peroxide radical recombination) and to determine their rate constants at various external magnetic fields. The kinetics of peroxidation of lipid cell membranes have been modeled mathematically at oxygen and 'free' iron concentrations close to those in the cells and also at increased free iron concentrations at different external magnetic field values.

  17. Antioxidant enzyme activity and lipid peroxidation in the blood of rats co-treated with vanadium (V(+5)) and chromium (Cr (+3)).

    PubMed

    Scibior, Agnieszka; Zaporowska, Halina; Wolińska, Agnieszka; Ostrowski, Jarosław

    2010-12-01

    Selected biochemical parameters were studied in the blood of outbred, male Wistar rats which daily received to drink deionized water (Group I, control) or solutions of: sodium metavanadate (SMV; 0.100 mg V/mL)-Group II; chromium chloride (CC; 0.004 mg Cr/mL)-Group III; and SMV-CC (0.100 mg V and 0.004 mg Cr/mL)-Group IV for a 12-week period. The diet and fluid intake, body weight gain, and food efficiency ratio (FER) diminished significantly in the rats of Groups II and IV, compared with Groups I and III. The plasma total antioxidant status (TAS) as well as the MDA and the L: -ascorbic acid level in the erythrocytes (RBCs) remained unchanged in all the groups, whereas the plasma L: -ascorbic acid concentration decreased markedly in Group II, compared with Group III. The activities of Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), cellular glutathione peroxidase (cGSH-Px), and glutathione reductase (GR) in RBCs remained unaltered in all the treated rats. However, the activity of glutathione S-transferase (GST) and the content of reduced glutathione (GSH) in RBCs decreased and increased, respectively, in Groups II, III, and IV, compared with Group I. A vanadium-chromium interaction which affected the GST activity was also found. To summarize, SMV and CC administered separately or in combination in drinking water for 12 weeks did not alter either lipid peroxidation (LPO) or the activities of Cu,Zn-SOD, CAT, cGSH-Px, and GR, which allows a conclusion that both metals in the doses ingested did not reveal their pro-oxidant potential on RBCs.

  18. Turmeric and black pepper spices decrease lipid peroxidation in meat patties during cooking

    PubMed Central

    Zhang, Yanjun; Henning, Susanne M.; Lee, Ru-Po; Huang, Jianjun; Zerlin, Alona; Li, Zhaoping; Heber, David

    2015-01-01

    Abstract Spices are rich in natural antioxidants and have been shown to be potent inhibitors of lipid peroxidation during cooking of meat. Turmeric contains unique conjugated curcuminoids with strong antioxidant activity. Piperine, one of the main constituents of black pepper, is known to increase the bioavailability of curcuminoids in mouse and human studies when consumed with turmeric. We investigated whether adding black pepper to turmeric powder may further inhibit lipid peroxidation when added to meat patties prior to cooking. The addition of black pepper to turmeric significantly decreased the lipid peroxidation in hamburger meat. When investigating the antioxidant activity of the main chemical markers, we determined that piperine did not exhibit any antioxidant activity. Therefore, we conclude that other black pepper ingredients are responsible for the increased antioxidant activity of combining black pepper with turmeric powder. PMID:25582173

  19. Turmeric and black pepper spices decrease lipid peroxidation in meat patties during cooking.

    PubMed

    Zhang, Yanjun; Henning, Susanne M; Lee, Ru-Po; Huang, Jianjun; Zerlin, Alona; Li, Zhaoping; Heber, David

    2015-05-01

    Spices are rich in natural antioxidants and have been shown to be potent inhibitors of lipid peroxidation during cooking of meat. Turmeric contains unique conjugated curcuminoids with strong antioxidant activity. Piperine, one of the main constituents of black pepper, is known to increase the bioavailability of curcuminoids in mouse and human studies when consumed with turmeric. We investigated whether adding black pepper to turmeric powder may further inhibit lipid peroxidation when added to meat patties prior to cooking. The addition of black pepper to turmeric significantly decreased the lipid peroxidation in hamburger meat. When investigating the antioxidant activity of the main chemical markers, we determined that piperine did not exhibit any antioxidant activity. Therefore, we conclude that other black pepper ingredients are responsible for the increased antioxidant activity of combining black pepper with turmeric powder.

  20. Turmeric and black pepper spices decrease lipid peroxidation in meat patties during cooking.

    PubMed

    Zhang, Yanjun; Henning, Susanne M; Lee, Ru-Po; Huang, Jianjun; Zerlin, Alona; Li, Zhaoping; Heber, David

    2015-05-01

    Spices are rich in natural antioxidants and have been shown to be potent inhibitors of lipid peroxidation during cooking of meat. Turmeric contains unique conjugated curcuminoids with strong antioxidant activity. Piperine, one of the main constituents of black pepper, is known to increase the bioavailability of curcuminoids in mouse and human studies when consumed with turmeric. We investigated whether adding black pepper to turmeric powder may further inhibit lipid peroxidation when added to meat patties prior to cooking. The addition of black pepper to turmeric significantly decreased the lipid peroxidation in hamburger meat. When investigating the antioxidant activity of the main chemical markers, we determined that piperine did not exhibit any antioxidant activity. Therefore, we conclude that other black pepper ingredients are responsible for the increased antioxidant activity of combining black pepper with turmeric powder. PMID:25582173

  1. Induced lipid peroxidation in ram sperm: semen profile, DNA fragmentation and antioxidant status.

    PubMed

    Hamilton, Thais Rose dos Santos; de Castro, Letícia Signori; Delgado, Juliana de Carvalho; de Assis, Patrícia Monken; Siqueira, Adriano Felipe Perez; Mendes, Camilla Mota; Goissis, Marcelo Demarchi; Muiño-Blanco, Teresa; Cebrián-Pérez, José Álvaro; Nichi, Marcílio; Visintin, José Antonio; D'Ávila Assumpção, Mayra Elena Ortiz

    2016-04-01

    Action of reactive oxygen species, protamination failures and apoptosis are considered the most important etiologies of sperm DNA fragmentation. This study evaluated the effects of induced lipid peroxidation susceptibility on native semen profile and identified the mechanisms involved in sperm DNA fragmentation and testicular antioxidant defense on Santa Ines ram sperm samples. Semen was collected from 12 adult rams (Ovis aries) performed weekly over a 9-week period. Sperm analysis (motility, mass motility, abnormalities, membrane and acrosome status, mitochondrial potential, DNA fragmentation, lipid peroxidation and intracellular free radicals production); protamine deficiency; PRM1, TNP1 and TNP2 gene expression; and determination of glutathione peroxidase (GPx), glutathione reductase, catalase (CAT) and superoxide dismutase activity and immunodetection in seminal plasma were performed. Samples were distributed into four groups according to the sperm susceptibility to lipid peroxidation after induction with ascorbate and ferrous sulfate (low, medium, high and very high). The results were analyzed by GLM test and post hoc least significant difference. We observed an increase in native GPx activity and CAT immunodetection in groups with high susceptibility to induced lipid peroxidation. We also found an increase in total sperm defects, acrosome and membrane damages in the group with the highest susceptibility to induced lipid peroxidation. Additionally, the low mitochondrial membrane potential, susceptible to chromatin fragmentation and the PRM1 mRNA were increased in the group showing higher susceptibility to lipid peroxidation. Ram sperm susceptibility to lipid peroxidation may compromise sperm quality and interfere with the oxidative homeostasis by oxidative stress, which may be the main cause of chromatin damage in ram sperm. PMID:26811546

  2. Induced lipid peroxidation in ram sperm: semen profile, DNA fragmentation and antioxidant status.

    PubMed

    Hamilton, Thais Rose dos Santos; de Castro, Letícia Signori; Delgado, Juliana de Carvalho; de Assis, Patrícia Monken; Siqueira, Adriano Felipe Perez; Mendes, Camilla Mota; Goissis, Marcelo Demarchi; Muiño-Blanco, Teresa; Cebrián-Pérez, José Álvaro; Nichi, Marcílio; Visintin, José Antonio; D'Ávila Assumpção, Mayra Elena Ortiz

    2016-04-01

    Action of reactive oxygen species, protamination failures and apoptosis are considered the most important etiologies of sperm DNA fragmentation. This study evaluated the effects of induced lipid peroxidation susceptibility on native semen profile and identified the mechanisms involved in sperm DNA fragmentation and testicular antioxidant defense on Santa Ines ram sperm samples. Semen was collected from 12 adult rams (Ovis aries) performed weekly over a 9-week period. Sperm analysis (motility, mass motility, abnormalities, membrane and acrosome status, mitochondrial potential, DNA fragmentation, lipid peroxidation and intracellular free radicals production); protamine deficiency; PRM1, TNP1 and TNP2 gene expression; and determination of glutathione peroxidase (GPx), glutathione reductase, catalase (CAT) and superoxide dismutase activity and immunodetection in seminal plasma were performed. Samples were distributed into four groups according to the sperm susceptibility to lipid peroxidation after induction with ascorbate and ferrous sulfate (low, medium, high and very high). The results were analyzed by GLM test and post hoc least significant difference. We observed an increase in native GPx activity and CAT immunodetection in groups with high susceptibility to induced lipid peroxidation. We also found an increase in total sperm defects, acrosome and membrane damages in the group with the highest susceptibility to induced lipid peroxidation. Additionally, the low mitochondrial membrane potential, susceptible to chromatin fragmentation and the PRM1 mRNA were increased in the group showing higher susceptibility to lipid peroxidation. Ram sperm susceptibility to lipid peroxidation may compromise sperm quality and interfere with the oxidative homeostasis by oxidative stress, which may be the main cause of chromatin damage in ram sperm.

  3. Induction of lipid peroxidation by hexachlorocyclohexane, dieldrin, TCDD, carbon tetrachloride, and hexachlorobenzene in rats

    SciTech Connect

    Goel, M.R.; Shara, M.A.; Stohs, S.J.

    1988-02-01

    Hexachlorobenzene (HCB), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), hexachlorocyclohexane (HCCH) and dieldrin are all halogenated lipophilic environmental contaminants. A common biologic property of these compounds is their ability to induce hepatic microsomal drug metabolizing enzymes. Furthermore, exposure of laboratory animals to these xenobiotics elicits a number of similar effects including porphyria, hypothyroidism, a wasting syndrome and lethality. Perturbation of membrane lipids and lipid peroxidation may be responsible for at least part of the toxic effects of HCCH. TCDD has been shown to induce lipid peroxidation in hepatic and extrahepatic tissues. Based on the similar toxic manifestations of HCB, HCCH, TCDD and dieldrin, the authors have examined the effects of these xenobiotics on hepatic lipid peroxidation following an acutely toxic dose. Lipid peroxidation was assessed by determining the content of thiobarbituric acid reactive substance (TBARS) in the liver, employing malondialdehyde as the standard. Animals were also treated with carbon tetrachloride, a well know inducer of lipid peroxidation, as a positive control. Furthermore, the ability of these xenobiotics to inhibit selenium dependent glutathione peroxidase (GSHPX) activity was determined.

  4. Effect of Yerbimat herbicide on lipid peroxidation, catalase activity, and histological damage in gills and liver of the freshwater fish Goodea atripinnis.

    PubMed

    Ortiz-Ordoñez, Esperanza; Uría-Galicia, Esther; Ruiz-Picos, Ricardo Arturo; Duran, Angela Georgina Sánchez; Trejo, Yoseline Hernández; Sedeño-Díaz, Jacinto Elías; López-López, Eugenia

    2011-10-01

    The use of herbicides for agricultural and aquatic weed control has increased worldwide. These substances are potentially toxic pollutants because they induce the production of reactive oxygen species for biological systems and exert oxidative stress in nontarget organisms living in the treated aquatic systems. Recent evidence suggests differences in the toxicity of glyphosate in the form of an active ingredient compared to the toxicity of glyphosate in combination with surfactants, such as those found in commercial formulations. In Mexico, one of the most widely used glyphosate-based herbicides is Yerbimat, which has agricultural as well as aquatic weed control applications. However, there are no aquatic toxicity data, particularly regarding native fish. Therefore, we determined the acute toxicity of commercial-formulation Yerbimat in a static bioassay at 96 h (LC(50)). We also determined its toxicity at 96 h in sublethal concentrations to assess the lipid peroxidation levels (LPX), catalase activity, hepatic glycogen content, and histological damage in the liver and gills of the fish Goodea atripinnis associated with chronic exposure (75 days). The LC(50) was 38.95 ± 0.33 mg/L. The results of the short-term exposure study indicate that Yerbimat can potentially induce oxidative stress in G. atripinnis, because LPX was increased in the gills and liver. Catalase activity was reduced in the gills but increased in the liver, whereas hepatic glycogen was depleted. Chronic exposure was associated with histopathological damage in the gills and liver, some of which was irreversible. Yerbimat represents a potential risk for aquatic biota; therefore, we recommend that its application be carefully considered.

  5. Glutathione redox system, GSH-Px activity and lipid peroxidation (LPO) levels in tadpoles of R.r.ridibunda and B.viridis.

    PubMed

    Cavas, Levent; Tarhan, Leman

    2003-03-01

    Total glutathione (t-GSH), reduced glutathione (GSH), glutathione disulphide (GSSG) levels, t-GSH/GSSG ratio, glutathione peroxidase (GSH-Px) activity and lipid peroxidation (LPO) levels were investigated during the development period of a predominantly aquatic amphibian R.r.ridibunda and a predominantly terrestrial amphibian B. viridis. While t-GSH and GSH showed a similar trend, GSSG concentration increased significantly (p<0.05) during the larval stages in R.r.ridibunda larvae. In contrast to R.r.ridibunda larvae, there was no significant (p>0.05) change between 1 and 5 weeks in the t-GSH and GSH concentrations of B. viridis. t-GSH and GSH concentrations of B. viridis larvae became sharply elevated after the fifth week, GSSG levels increased 3.25-fold during the metamorphosis. The t-GSH/GSSG ratio fluctuated and the lowest t-GSH/GSSG ratios were observed at the third week for both species. GSH-Px activities for both species increased significantly (p<0.05) during the growing period. The highest GSH-Px activities in R.r.ridibunda and B.viridis were observed at the eighth week and they were 3.45 +/- 0.17 and 4.1 +/- 0.21 IU mg(-1), respectively. The membrane LPO levels in the R.r.ridibunda and B. viridis tadpoles significantly (p<0.001) decreased from 206 +/- 10.3 to 146 +/- 7.3 and from 198 +/- 9.9 to 23 +/- 1.15 nmol MDA g(-1) w.w., respectively.

  6. Current status of acrolein as a lipid peroxidation product.

    PubMed

    Uchida, K

    1999-07-01

    There is increasing evidence that aldehydes generated endogenously during lipid peroxidation contribute to the pathophysiologic effects associated with oxidative stress in cells and tissues. A number of reactive lipid aldehydes, such as 4-hydroxy-2-alkenals and malondialdehyde, have been implicated as causative agents in cytotoxic processes initiated by the exposure of biologic systems to oxidizing agents. Recently, acrolein (CH2 = CH-CHO), a ubiquitous pollutant in the environment, was identified as a product of lipid peroxidation reactions. The basis for this finding is an experimental approach that provides a measure of acrolein bound to lysine residues of protein. The identification of acrolein as an endogenous lipid-derived product suggests an examination of the possible role of this aldehyde as a mediator of oxidative damage in a variety of human diseases.

  7. Carvedilol inhibition of lipid peroxidation. A new antioxidative mechanism.

    PubMed

    Tadolini, B; Franconi, F

    1998-11-01

    To define the molecular mechanism(s) of carvedilol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Carvedilol inhibits the peroxidation of sonicated phosphatidylcholine liposomes triggered by FeCl2 addition whereas atenolol, pindolol and labetalol are ineffective. The inhibition proved not to be ascribable (a) to an effect on Fe2+ autoxidation and thus on the generation of oxygen derived radical initiators; (b) to the scavenging of the inorganic initiators O2*- and *OH; (c) to an effect on the reductive cleavage of organic hydroperoxides by FeCl2; (d) to the scavenging of organic initiators. The observations that (a) carvedilol effectiveness is inversely proportional to the concentration of FeCl2 and lipid hydroperoxides in the assay; (b) the drug prevents the onset of lipid peroxidation stimulated by FeCl3 addition and; (c) it can form a complex with Fe3+, suggest a molecular mechanism for carvedilol action. It may inhibit lipid peroxidation by binding the Fe3+ generated during the oxidation of Fe2+ by lipid hydroperoxides in the substrate. The lag time that carvedilol introduces in the peroxidative process would correspond to the time taken for carvedilol to be titrated by Fe3+; when the drug is consumed the Fe3+ accumulates to reach the critical parameter that stimulates peroxidation. According to this molecular mechanism the antioxidant potency of carvedilol can be ascribed to its ability to bind a species, Fe3+, that is a catalyst of the process and to its lipophilic nature that concentrates it in the membranes where Fe3+ is generated by a site specific mechanism. PMID:9925030

  8. Fluoresceinated phosphoethanolamine for flow-cytometric measurement of lipid peroxidation.

    PubMed

    Maulik, G; Kassis, A I; Savvides, P; Makrigiorgos, G M

    1998-10-01

    A new lipophilic fluorescein probe (fluor-DHPE) has been identified that can assay lipid peroxidation in mammalian cells on a cell-by-cell or selected-cell-subpopulation basis by flow cytometry. Application of this approach requires that the fluorescent probe be nonexchangeable among cells. Fluorescein is an appropriate fluorophore, since its fluorescence matches the specifications of common flow cytometers and the compound loses its fluorescence upon reaction with peroxyl radicals. Upon examination of four lipophilic derivatives of fluorescein, fluor-DHPE was found to be the only probe that was nonexchangeable among labeled and unlabeled rat RBC for at least 24 h. The exposure of fluor-DHPE-labeled RBC to benzoyl peroxide followed by mixing the sample with RBC unexposed to peroxide led to a decrease in fluorescence. Furthermore, the flow cytometer could clearly select the subpopulation of cells undergoing lipid peroxidation from those cells that were not. Fluor-DHPE-labeled-RBC obtained from rats and exposed to cumene hydroperoxide also displayed a gradual decrease in fluorescence. This decrease was preventable by either regulation of the vitamin E content in the animal diet or in vitro supplementation of cells with vitamin E. We conclude that fluor-DHPE is a stable and nonexchangeable probe for monitoring lipid peroxidation in cell subpopulations by flow cytometry. PMID:9801063

  9. The protective effect of Aloysia triphylla aqueous extracts against brain lipid-peroxidation.

    PubMed

    Lasagni Vitar, Romina M; Reides, Claudia G; Ferreira, Sandra M; Llesuy, Susana F

    2014-03-01

    In a normal diet, the use of herbs may contribute significantly to the total intake of plant antioxidants and even be a better source of dietary antioxidants than many other food groups. Therefore, the aims of this study were to evaluate the protective effect of aqueous extracts of Aloysia triphylla (infusion and decoction) against lipid-peroxidation of brain homogenates and to determine changes in the prooxidant/antioxidant balance when the plant material is added. In order to elucidate a possible antioxidant mechanism in vitro evaluation of total antioxidant capacity, oxygen species scavenging ability and reducing power (RP) were studied. Tested extracts had shown a strong inhibition of lipid-peroxidation measured as thiobarbituric acid-reactive products of lipid-peroxidation (TBARS) and chemiluminescence. Furthermore, infusion and decoction exhibited free radical trapping ability, expressed by the capacity to scavenge superoxide and hydrogen peroxide. Additionally, both aqueous extracts presented antioxidant activity measured as total reactive antioxidant potential (TRAP), 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS) scavenging activity and RP. These results suggest that the lipid-peroxidation inhibition mechanism proposed is that the antioxidants present in Aloysia triphylla could act as strong scavengers of reactive oxygen species not only at the initiation of the lipid-peroxidation chain reaction, but also at the propagation step. Therefore, they could be used as prophylactic and therapeutic agents for those diseases where the occurrence of oxidative stress and lipid-peroxidation contributes to the progression of damage.

  10. The protective effect of Aloysia triphylla aqueous extracts against brain lipid-peroxidation.

    PubMed

    Lasagni Vitar, Romina M; Reides, Claudia G; Ferreira, Sandra M; Llesuy, Susana F

    2014-03-01

    In a normal diet, the use of herbs may contribute significantly to the total intake of plant antioxidants and even be a better source of dietary antioxidants than many other food groups. Therefore, the aims of this study were to evaluate the protective effect of aqueous extracts of Aloysia triphylla (infusion and decoction) against lipid-peroxidation of brain homogenates and to determine changes in the prooxidant/antioxidant balance when the plant material is added. In order to elucidate a possible antioxidant mechanism in vitro evaluation of total antioxidant capacity, oxygen species scavenging ability and reducing power (RP) were studied. Tested extracts had shown a strong inhibition of lipid-peroxidation measured as thiobarbituric acid-reactive products of lipid-peroxidation (TBARS) and chemiluminescence. Furthermore, infusion and decoction exhibited free radical trapping ability, expressed by the capacity to scavenge superoxide and hydrogen peroxide. Additionally, both aqueous extracts presented antioxidant activity measured as total reactive antioxidant potential (TRAP), 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS) scavenging activity and RP. These results suggest that the lipid-peroxidation inhibition mechanism proposed is that the antioxidants present in Aloysia triphylla could act as strong scavengers of reactive oxygen species not only at the initiation of the lipid-peroxidation chain reaction, but also at the propagation step. Therefore, they could be used as prophylactic and therapeutic agents for those diseases where the occurrence of oxidative stress and lipid-peroxidation contributes to the progression of damage. PMID:24477466

  11. The role of route of vitamin E administration on the plasma antioxidant activity and lipid peroxidation in newborn calves.

    PubMed

    Mokhber-Dezfouli, Mohammad Reza; Rahimikia, Edris; Asadi, Farzad; Nadalian, Mohammad Gholi

    2008-11-01

    The aim of our study was to evaluate plasma values of alpha-tocopherol, malondialdehyde (MDA) and antioxidant activity after a single-dose administration of vitamin E as intramuscular injection, oral supplementation and intramuscular injection plus oral supplementation at 4 hr after birth. Thirty calves were bled at birth and assigned to treatments as follows: control (n = 8), intramuscular injection (40 IU/kg, n = 7), oral supplementation (25 IU/kg, n = 7) and intramuscular injection (20 IU/kg) plus oral supplementation (12.5 IU/kg, n = 8). Blood was collected at 12 and 24 hr after birth and plasma alpha-tocopherol, MDA and antioxidant activity values were determined. Results showed that no changes in MDA values were observed after oral administration (P > 0.05). However, antioxidant activity values showed an increase at both 12 (9.57 +/- 0.65 mmol/l) and 24 hr (10.42 +/- 0.54 mmol/l) after birth when compared to control (3.73 +/- 0.75 mmol/l). Injection with or without oral supplementation increased serum antioxidant activity values at 12 (about 102%, 46%) and 24 hr (94%, 115%) after birth, when compared to control. In addition, MDA values were found to be lower in those animals receiving an injection of vitamin E or injection plus oral supplementation of vitamin E as compared to control at both time-points (P < 0.001). Injection of vitamin E provided beneficial effects to plasma antioxidant activity and MDA values. Therefore, injection may be the best method of vitamin E administration in newborn calves for protecting them in the stressful postnatal condition.

  12. [Change lipid peroxidation as a mechanism of renal disease under heavy metals].

    PubMed

    Mitsiev, A K

    2015-01-01

    Heavy metals are the most dangerous anthropogenic pollutants human environment. With an extensive range of pathological effects of heavy metals lead to the development of irreversible changes in the tissues of living organisms and systems. The main target organ destructive influence of metals are the kidneys, which is associated with the peculiarities of running these bodies physiological functions. There are many mechanisms allowing heavy metals to exercise their pathogenic effects on the body, the most significant of which is the mechanism of activation of free radical oxidation, due to the inherent heavy metals prooxidant activity. On this basis, the main objective of the pilot study was to investigate the influence of lipid peroxidation in the kidney function. To determine the functional state of the kidneys was performed to study the basic processes of urine formation, protein excretion and urine osmolarity. The intensity of lipid peroxidation was judged by the concentration of malondialdehyde and hydroperoxide in the blood of animals. Results of the study revealed that long-term administration of heavy metals in experimental animals leads to the development of a powerful oxidative stress, characterized by an increase in the content of lipid peroxidation products in the blood of animals. The paper found that the activation of lipid peroxidation in the conditions of long-term administration of heavy metals associated with the development of marked disorders of renal function. A strong antioxidant effect of melatonin in long-term poisoning with heavy metal salts reduces the activity of lipid peroxidation, which in turn weakens the pathological effects of xenobiotics on renal function. The findings suggest that the activation of heavy metals, lipid peroxidation is one of the mechanisms leading to the development of pathophysiological changes in the kidneys. PMID:26571810

  13. [Change lipid peroxidation as a mechanism of renal disease under heavy metals].

    PubMed

    Mitsiev, A K

    2015-01-01

    Heavy metals are the most dangerous anthropogenic pollutants human environment. With an extensive range of pathological effects of heavy metals lead to the development of irreversible changes in the tissues of living organisms and systems. The main target organ destructive influence of metals are the kidneys, which is associated with the peculiarities of running these bodies physiological functions. There are many mechanisms allowing heavy metals to exercise their pathogenic effects on the body, the most significant of which is the mechanism of activation of free radical oxidation, due to the inherent heavy metals prooxidant activity. On this basis, the main objective of the pilot study was to investigate the influence of lipid peroxidation in the kidney function. To determine the functional state of the kidneys was performed to study the basic processes of urine formation, protein excretion and urine osmolarity. The intensity of lipid peroxidation was judged by the concentration of malondialdehyde and hydroperoxide in the blood of animals. Results of the study revealed that long-term administration of heavy metals in experimental animals leads to the development of a powerful oxidative stress, characterized by an increase in the content of lipid peroxidation products in the blood of animals. The paper found that the activation of lipid peroxidation in the conditions of long-term administration of heavy metals associated with the development of marked disorders of renal function. A strong antioxidant effect of melatonin in long-term poisoning with heavy metal salts reduces the activity of lipid peroxidation, which in turn weakens the pathological effects of xenobiotics on renal function. The findings suggest that the activation of heavy metals, lipid peroxidation is one of the mechanisms leading to the development of pathophysiological changes in the kidneys.

  14. Additive effect of alcohol and nicotine on lipid peroxidation and antioxidant defence mechanism in rats.

    PubMed

    Ashakumary, L; Vijayammal, P L

    1996-01-01

    Cigarette smoking has been established as a major risk factor for atherosclerosis and also for lung cancer. Nicotine is one of the major toxic components of cigarette smoke that is believed to be partly responsible for the deleterious effect of cigarette smoke. Alcohol intake is another major risk factor for the development of cardiovascular disease. Lipid peroxidation is a process associated with the pathogenesis of atherosclerosis. The concentration of lipid peroxides is found to be increased in alcohol-treated rats. On nicotine administration along with alcohol, an additive effect was observed in lipid peroxidation and the antioxidant defence mechanism. The activity of scavenging enzymes superoxide dismutase, catalase and glutathione reductase was found to be decreased, while the activity of glutathione peroxidase and the concentration of glutathione were increased. PMID:8854216

  15. Triacontanol inhibits both enzymatic and nonenzymatic lipid peroxidation.

    PubMed

    Ramanarayan, K; Bhat, A; Shripathi, V; Swamy, G S; Rao, K S

    2000-09-01

    The effect of the plant growth regulator, triacontanol (TRIA) on lipid peroxidation was studied in three different systems: (i) isolated chloroplasts of spinach (Spinacea oleracea L.) leaves; (ii) egg lecithin liposomes; and (iii) soybean lipoxygenase (LOX) system. The nonenzymatic lipid peroxidation in isolated chloroplasts and egg lecithin liposomes was measured as the amount of thiobarbituric acid reactive substances (TBARS) formed. Inhibition of Fe2+ and/or light-induced lipid peroxidation by TRIA was observed in both isolated chloroplasts and egg lecithin liposomes. The kinetics of soybean lipoxygenase-1 (LOX-1) was studied using linoleic acid as the substrate. The enzyme was competitively inhibited by TRIA. The Ki for TRIA inhibition of the enzyme was estimated to be 3.2-5.0 microM according to different methods of estimation. TRIA has been known to exhibit anti-inflammatory action in animals and this anti-inflammatory effect of TRIA might be mediated through inhibition of lipid peroxidation. Since LOX inhibitors have been extensively used as therapeutic agents, TRIA, being a natural compound has been suggested to be an effective anti-inflammatory drug.

  16. The role of lipid peroxidation in the N-oxidation of 4-chloroaniline.

    PubMed

    Golly, I; Hlavica, P; Wolf, J

    1984-12-01

    Irradiation with u.v. light of aerobic aqueous media containing both rabbit liver microsomal fraction and 4-chloroaniline results in N-oxidation of the arylamine. The reaction is severely blocked by exhaustive extraction with organic solvents of the microsomal membranes to remove lipids. Further, scavengers of OH. and O2.-impair the photochemical process. These findings suggest that the observed phenomenon may be closely associated with light-induced lipid peroxidation. Indeed, N-oxidation of 4-chloroaniline is fully preserved when either phospholipid liposomes or dispersed linoleic acid substitute for intact microsomal fraction. Co-oxidation of the amine substrate occurs during iron/ascorbate-promoted lipid peroxidation also, but H2O2 or free OH. radicals do not appear to be involved. Cumene hydroperoxide-sustained rabbit liver microsomal turnover of the amine generates N-oxy product via O2-dependent and -independent pathways; propagation of lipid peroxidation is presumed to govern the former route. Lipid hydroperoxides, either exogenously added to rabbit liver microsomal suspensions or enzymically formed from arachidonic acid in ram seminal-vesicle microsomal preparations, support N-oxidation of 4-chloroaniline. The significance, in arylamine activation, of lipid peroxidation in certain extrahepatic tissues exhibiting but low mono-oxygenase activity is discussed.

  17. Plant water status, ethylene evolution, N(2)-fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinization and desalinization.

    PubMed

    Nandwal, Ajit Singh; Kukreja, Sarvjeet; Kumar, Neeraj; Sharma, Praveen Kumar; Jain, Monika; Mann, Anita; Singh, Sunder

    2007-09-01

    ethylene in relation to water status and lipid peroxidation and along with other metabolic processes has an important role in induced nodules senescence under salinity.

  18. Plant water status, ethylene evolution, N(2)-fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinization and desalinization.

    PubMed

    Nandwal, Ajit Singh; Kukreja, Sarvjeet; Kumar, Neeraj; Sharma, Praveen Kumar; Jain, Monika; Mann, Anita; Singh, Sunder

    2007-09-01

    ethylene in relation to water status and lipid peroxidation and along with other metabolic processes has an important role in induced nodules senescence under salinity. PMID:16987567

  19. Lipid peroxidation inhibitory compounds from daylily (Hemerocallis fulva) leaves.

    PubMed

    Zhang, Yanjun; Cichewicz, Robert H; Nair, Muraleedharan G

    2004-06-25

    Daylilies (Hemerocallis spp.) have been used as food and in traditional medicine for thousands of years in eastern Asia. The leaves of the plant are used in the treatment of inflammation and jaundice. In studies of the aqueous methanol extracts of fresh Hemerocallis fulva leaves, 1',2',3',4'-tetrahydro-5'-deoxy-pinnatanine (1), pinnatanine (2), roseoside (3), phlomuroside (4), lariciresinol (5), adenosine (6), quercetin 3-O-beta-D-glucoside (7), quercetin 3,7-O-beta-D-diglucopyranoside (8), quercetin 3-O-alpha-L-rhamnopyransol-(1-->6)-beta-D-glucopyranosol-7-O-beta-D-glucopyranoside (9), isorhamnetin-3-O-beta-D-6'-acetylglucopyranoside (10) and isorhamnetin-3-O-beta-D-6'-acetylgalactopyranoside (11) were isolated. All of these compounds were tested for their in vitro lipid peroxidation inhibitory activities. Compounds 3-5 and 7-11 were found to possess strong antioxidant properties, inhibiting lipid oxidation by 86.4, 72.7, 90.1, 79.7, 82.4, 89.3, 82.2, and 93.2%, respectively at 50 microg/mL. Compound 1 is novel and compounds 3-6 and 8-11 described here in are isolated for the first time from daylily leaves. PMID:15172183

  20. Assay to detect lipid peroxidation upon exposure to nanoparticles.

    PubMed

    Potter, Timothy M; Neun, Barry W; Stern, Stephan T

    2011-01-01

    This chapter describes a method for the analysis of human hepatocarcinoma cells (HEP G2) for lipid peroxidation products, such as malondialdehyde (MDA), following treatment with nanoparticle formulations. Oxidative stress has been identified as a likely mechanism of nanoparticle toxicity, and cell-based in vitro systems for evaluation of nanoparticle-induced oxidative stress are widely considered to be an important component of biocompatibility screens. The products of lipid peroxidation, lipid hydroperoxides, and aldehydes, such as MDA, can be measured via a thiobarbituric acid reactive substances (TBARS) assay. In this assay, which can be performed in cell culture or in cell lysate, MDA combines with thiobarbituric acid (TBA) to form a fluorescent adduct that can be detected at an excitation wavelength of 530 nm and an emission wavelength of 550 nm. The results are then expressed as MDA equivalents, normalized to total cellular protein (determined by Bradford assay).

  1. Toxicity of the Herbicide Atrazine: Effects on Lipid Peroxidation and Activities of Antioxidant Enzymes in the Freshwater Fish Channa Punctatus (Bloch)

    PubMed Central

    Nwani, Christopher Ddidigwu; Lakra, Wazir Singh; Nagpure, Naresh Sahebrao; Kumar, Ravindra; Kushwaha, Basdeo; Srivastava, Satish Kumar

    2010-01-01

    The present study was undertaken to evaluate the toxicity and effects of a commercial formulation of the herbicide atrazine (Rasayanzine) on lipid peroxidation and antioxidant enzyme system in the freshwater air breathing fish Channa punctatus. The 12, 24, 48, 72 and 96 h LC50 of atrazine, calculated by probit analysis, were determined to be 77.091, 64.053, 49.100, 44.412 and 42.381 mg·L−1, respectively, in a semi static system with significant difference (p < 0.05) in LC10–90 values obtained for different times of exposure. In addition to concentration and time dependent decrease in mortality rate, stress signs in the form of behavioral changes were also observed in response to the test chemical. In fish exposed for 15 days to different sublethal concentrations of the herbicide (1/4 LC50 = ∼10.600 mg·L−1, 1/8 LC50 = ∼5.300 mg·L−1 and 1/10 LC50 = ∼4.238 mg·L−1) induction of oxidative stress in the liver was evidence by increased lipid peroxidation levels. The antioxidants superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) responded positively in a concentration dependent pattern, thus, suggesting the use of these antioxidants as potential biomarkers of toxicity associated with contaminations exposure in freshwater fishes. PMID:20948961

  2. Membrane lipid peroxidation by UV-A: Mechanism and implications

    SciTech Connect

    Bose, B.; Agarwal, S.; Chatterjee, S.N. )

    1990-10-01

    UV-A produced a dose-dependent linear increase of lipid peroxidation in liposomal membrane, as detected by the assay of (i) conjugated dienes, (ii) lipid hydroperoxides, (iii) malondialdehydes (MDA), and (iv) the fluorescent adducts formed by the reaction of MDA with glycine and also a linear dose-dependent increase of ({sup 14}C)glucose efflux from the liposomes. UV-A-induced MDA production could not be inhibited by any significant degree by sodium formate, dimethyl sulfoxide, EDTA, or superoxide dismutase but was very significantly inhibited by butylated hydroxytoluene, alpha-tocopherol, sodium azide, L-histidine, dimethylfuran, and beta-carotene. MDA formation increased with an increase in the D{sub 2}O content in water, leading to a maximal amount of nearly 50% enhancement of lipid peroxidation in 100% D{sub 2}O vis-a-vis water used as dispersion medium. The experimental findings indicate the involvement of singlet oxygen as the initiator of the UV-A-induced lipid peroxidation.

  3. A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent.

    PubMed

    el-Saadani, M; Esterbauer, H; el-Sayed, M; Goher, M; Nassar, A Y; Jürgens, G

    1989-04-01

    A method is described for measuring lipid peroxides by means of the color reagent of a commercially available test kit for cholesterol estimation. In principle, this assay makes use of the oxidative capacity of lipid peroxides to convert iodide to iodine, which can be measured photometrically at 365 nm. Calibration curves were obtained using peroxides such as H2O2, t-butyl hydroperoxide, and cumene hydroperoxide. A stoichiometric relationship was observed between the amount of organic peroxides assayed and the concentration of iodine produced. Concentrations of lipid peroxides as small as 1 nmol/ml could be measured. The ability to estimate lipid peroxides of isolated low density lipoprotein was demonstrated.

  4. Lipid peroxidation: pathophysiological and pharmacological implications in the eye

    PubMed Central

    Njie-Mbye, Ya Fatou; Kulkarni-Chitnis, Madhura; Opere, Catherine A.; Barrett, Aaron; Ohia, Sunny E.

    2013-01-01

    Oxygen-derived free radicals such as hydroxyl and hydroperoxyl species have been shown to oxidize phospholipids and other membrane lipid components leading to lipid peroxidation. In the eye, lipid peroxidation has been reported to play an important role in degenerative ocular diseases (age-related macular degeneration, cataract, glaucoma, diabetic retinopathy). Indeed, ocular tissues are prone to damage from reactive oxygen species due to stress from constant exposure of the eye to sunlight, atmospheric oxygen and environmental chemicals. Furthermore, free radical catalyzed peroxidation of long chain polyunsaturated acids (LCPUFAs) such as arachidonic acid and docosahexaenoic acid leads to generation of LCPUFA metabolites including isoprostanes and neuroprostanes that may further exert pharmacological/toxicological actions in ocular tissues. Evidence from literature supports the presence of endogenous defense mechanisms against reactive oxygen species in the eye, thereby presenting new avenues for the prevention and treatment of ocular degeneration. Hydrogen peroxide (H2O2) and synthetic peroxides can exert pharmacological and toxicological effects on tissues of the anterior uvea of several mammalian species. There is evidence suggesting that the retina, especially retinal ganglion cells can exhibit unique characteristics of antioxidant defense mechanisms. In the posterior segment of the eye, H2O2 and synthetic peroxides produce an inhibitory action on glutamate release (using [3H]-D-aspartate as a marker), in vitro and on the endogenous glutamate and glycine concentrations in vivo. In addition to peroxides, isoprostanes can elicit both excitatory and inhibitory effects on norepinephrine (NE) release from sympathetic nerves in isolated mammalian iris ciliary bodies. Whereas isoprostanes attenuate dopamine release from mammalian neural retina, in vitro, these novel arachidonic acid metabolites exhibit a biphasic regulatory effect on glutamate release from retina and

  5. Lipid peroxidation: pathophysiological and pharmacological implications in the eye.

    PubMed

    Njie-Mbye, Ya Fatou; Kulkarni-Chitnis, Madhura; Opere, Catherine A; Barrett, Aaron; Ohia, Sunny E

    2013-01-01

    Oxygen-derived free radicals such as hydroxyl and hydroperoxyl species have been shown to oxidize phospholipids and other membrane lipid components leading to lipid peroxidation. In the eye, lipid peroxidation has been reported to play an important role in degenerative ocular diseases (age-related macular degeneration, cataract, glaucoma, diabetic retinopathy). Indeed, ocular tissues are prone to damage from reactive oxygen species due to stress from constant exposure of the eye to sunlight, atmospheric oxygen and environmental chemicals. Furthermore, free radical catalyzed peroxidation of long chain polyunsaturated acids (LCPUFAs) such as arachidonic acid and docosahexaenoic acid leads to generation of LCPUFA metabolites including isoprostanes and neuroprostanes that may further exert pharmacological/toxicological actions in ocular tissues. Evidence from literature supports the presence of endogenous defense mechanisms against reactive oxygen species in the eye, thereby presenting new avenues for the prevention and treatment of ocular degeneration. Hydrogen peroxide (H2O2) and synthetic peroxides can exert pharmacological and toxicological effects on tissues of the anterior uvea of several mammalian species. There is evidence suggesting that the retina, especially retinal ganglion cells can exhibit unique characteristics of antioxidant defense mechanisms. In the posterior segment of the eye, H2O2 and synthetic peroxides produce an inhibitory action on glutamate release (using [(3)H]-D-aspartate as a marker), in vitro and on the endogenous glutamate and glycine concentrations in vivo. In addition to peroxides, isoprostanes can elicit both excitatory and inhibitory effects on norepinephrine (NE) release from sympathetic nerves in isolated mammalian iris ciliary bodies. Whereas isoprostanes attenuate dopamine release from mammalian neural retina, in vitro, these novel arachidonic acid metabolites exhibit a biphasic regulatory effect on glutamate release from retina

  6. Laser-based assessment of lipid peroxidation in humans

    NASA Astrophysics Data System (ADS)

    Giubileo, Gianfranco

    1998-07-01

    Infrared absorption spectroscopy can be performed at very high resolution by tunable diode laser (TDL) based optical systems for any gas with well resolved absorption spectra. In a double beam setup atmospheric trace gas concentration can be measured down to ppb levels. The analysis of trace gases may have useful applications in detecting chemicals in the human breath for non invasive medical diagnostic. The capability of TDL based breath analysis was well demonstrated by monitoring ammonia and methane. In the human body the formation of free radicals does induce oxidative degradation of polyunsaturated fatty acids (lipid peroxidation) which is a damage for cells and organs in the organism. Specific volatile hydrocarbons generated as end product by lipid peroxidation (LP) can be found inside circulating blood and expired breath. TDL based analysis of those specific hydrocarbons (ethane and pentane) in the expired breath can allow a non invasive assessment of the LP extent.

  7. Lipid-Induced Peroxidation in the Intestine Is Involved in Glucose Homeostasis Imbalance in Mice

    PubMed Central

    Marsollier, Nicolas; Masseboeuf, Myriam; Payros, Gaëlle; Kabani, Catherine; Denom, Jessica; Lacombe, Amélie; Thiers, Jean-Claude; Negre-Salvayre, Anne; Luquet, Serge; Burcelin, Rémy; Cruciani-Guglielmacci, Céline; Magnan, Christophe

    2011-01-01

    Background Daily variations in lipid concentrations in both gut lumen and blood are detected by specific sensors located in the gastrointestinal tract and in specialized central areas. Deregulation of the lipid sensors could be partly involved in the dysfunction of glucose homeostasis. The study aimed at comparing the effect of Medialipid (ML) overload on insulin secretion and sensitivity when administered either through the intestine or the carotid artery in mice. Methodology/Principal Findings An indwelling intragastric or intracarotid catheter was installed in mice and ML or an isocaloric solution was infused over 24 hours. Glucose and insulin tolerance and vagus nerve activity were assessed. Some mice were treated daily for one week with the anti-lipid peroxidation agent aminoguanidine prior to the infusions and tests. The intestinal but not the intracarotid infusion of ML led to glucose and insulin intolerance when compared with controls. The intestinal ML overload induced lipid accumulation and increased lipid peroxidation as assessed by increased malondialdehyde production within both jejunum and duodenum. These effects were associated with the concomitant deregulation of vagus nerve. Administration of aminoguanidine protected against the effects of lipid overload and normalized glucose homeostasis and vagus nerve activity. Conclusions/Significance Lipid overload within the intestine led to deregulation of gastrointestinal lipid sensing that in turn impaired glucose homeostasis through changes in autonomic nervous system activity. PMID:21698161

  8. Measuring oxidative stress: the confounding effect of lipid concentration in measures of lipid peroxidation.

    PubMed

    Pérez-Rodríguez, Lorenzo; Romero-Haro, Ana A; Sternalski, Audrey; Muriel, Jaime; Mougeot, Francois; Gil, Diego; Alonso-Alvarez, Carlos

    2015-01-01

    Lipid peroxidation products are widely used as markers of oxidative damage in the organism. To properly interpret the information provided by these markers, it is necessary to know potential sources of bias and control confounding factors. Here, we investigated the relationship between two indicators of lipid mobilization (circulating levels of triglycerides and cholesterol) and two common markers of oxidative damage (plasma levels of malondialdehyde and hydroperoxides; the latter estimated from the d-ROMs assay kit). The following five avian species were studied: red-legged partridge (Alectoris rufa), zebra finch (Taeniopygia guttata), spotless starling (Sturnus unicolor), marsh harrier (Circus aeroginosus), and Montagu's harrier (Circus pygargus). In all cases, plasma triglyceride levels positively and significantly correlated with lipid peroxidation markers, explaining between 8% and 34% of their variability. Plasma cholesterol, in contrast, showed a significant positive relationship only among spotless starling nestlings and a marginally significant association in zebra finches. These results indicate that lipid peroxidation marker levels covary with circulating lipid levels. We discuss the potential causes and implications of this covariation and recommend that future studies that measure oxidative damage using lipid peroxidation markers report both raw and relative levels (i.e., corrected for circulating triglycerides). Whether the observed pattern also holds for other tissues and in other taxa would deserve further research.

  9. Sex-related differences in lipid peroxidation and photoprotection in Pistacia lentiscus.

    PubMed

    Juvany, Marta; Müller, Maren; Pintó-Marijuan, Marta; Munné-Bosch, Sergi

    2014-03-01

    Sex-related differences in the response of dioecious plants to abiotic stress have been poorly studied to date. This work explored to what extent sex may affect plant stress responses in Pistacia lentiscus L. (Anacardiaceae), a tree well adapted to Mediterranean climatic conditions. It was hypothesized that a greater reproductive effort in females may increase oxidative stress in leaves, particularly when plants are exposed to abiotic stress. Measurements of oxidative stress markers throughout the year revealed increased lipid peroxidation in females, but only during the winter. Enhanced lipid peroxidation in females was associated with reduced photoprotection, as indicated by reduced tocopherol levels and nonphotochemical quenching (NPQ) of chlorophyll fluorescence. Enhanced lipid peroxidation in females was also observed at predawn, which was associated with increased lipoxygenase activity and reduced cytokinin levels. An analysis of the differences between reproductive (R) and nonreproductive (NR) shoots showed an enhanced photoprotective capacity in R shoots compared to NR shoots in females. This capacity was characterized by an increased NPQ and a better antioxidant protection (increased carotenoid and tocopherol levels per unit of chlorophyll) in R compared to NR shoots. It is concluded that (i) females exhibit higher lipid peroxidation in leaves than males, but only during the winter (when sex-related differences in reproductive effort are the highest), (ii) this is associated with a lower photoprotective capacity at midday, as well as enhanced lipoxygenase activity and reduced cytokinin levels at predawn, and (iii) photoprotection capacity is higher in R relative to NR shoots in females.

  10. Sex-related differences in lipid peroxidation and photoprotection in Pistacia lentiscus.

    PubMed

    Juvany, Marta; Müller, Maren; Pintó-Marijuan, Marta; Munné-Bosch, Sergi

    2014-03-01

    Sex-related differences in the response of dioecious plants to abiotic stress have been poorly studied to date. This work explored to what extent sex may affect plant stress responses in Pistacia lentiscus L. (Anacardiaceae), a tree well adapted to Mediterranean climatic conditions. It was hypothesized that a greater reproductive effort in females may increase oxidative stress in leaves, particularly when plants are exposed to abiotic stress. Measurements of oxidative stress markers throughout the year revealed increased lipid peroxidation in females, but only during the winter. Enhanced lipid peroxidation in females was associated with reduced photoprotection, as indicated by reduced tocopherol levels and nonphotochemical quenching (NPQ) of chlorophyll fluorescence. Enhanced lipid peroxidation in females was also observed at predawn, which was associated with increased lipoxygenase activity and reduced cytokinin levels. An analysis of the differences between reproductive (R) and nonreproductive (NR) shoots showed an enhanced photoprotective capacity in R shoots compared to NR shoots in females. This capacity was characterized by an increased NPQ and a better antioxidant protection (increased carotenoid and tocopherol levels per unit of chlorophyll) in R compared to NR shoots. It is concluded that (i) females exhibit higher lipid peroxidation in leaves than males, but only during the winter (when sex-related differences in reproductive effort are the highest), (ii) this is associated with a lower photoprotective capacity at midday, as well as enhanced lipoxygenase activity and reduced cytokinin levels at predawn, and (iii) photoprotection capacity is higher in R relative to NR shoots in females. PMID:24378602

  11. Sex-related differences in lipid peroxidation and photoprotection in Pistacia lentiscus

    PubMed Central

    Munné-Bosch, Sergi

    2014-01-01

    Sex-related differences in the response of dioecious plants to abiotic stress have been poorly studied to date. This work explored to what extent sex may affect plant stress responses in Pistacia lentiscus L. (Anacardiaceae), a tree well adapted to Mediterranean climatic conditions. It was hypothesized that a greater reproductive effort in females may increase oxidative stress in leaves, particularly when plants are exposed to abiotic stress. Measurements of oxidative stress markers throughout the year revealed increased lipid peroxidation in females, but only during the winter. Enhanced lipid peroxidation in females was associated with reduced photoprotection, as indicated by reduced tocopherol levels and nonphotochemical quenching (NPQ) of chlorophyll fluorescence. Enhanced lipid peroxidation in females was also observed at predawn, which was associated with increased lipoxygenase activity and reduced cytokinin levels. An analysis of the differences between reproductive (R) and nonreproductive (NR) shoots showed an enhanced photoprotective capacity in R shoots compared to NR shoots in females. This capacity was characterized by an increased NPQ and a better antioxidant protection (increased carotenoid and tocopherol levels per unit of chlorophyll) in R compared to NR shoots. It is concluded that (i) females exhibit higher lipid peroxidation in leaves than males, but only during the winter (when sex-related differences in reproductive effort are the highest), (ii) this is associated with a lower photoprotective capacity at midday, as well as enhanced lipoxygenase activity and reduced cytokinin levels at predawn, and (iii) photoprotection capacity is higher in R relative to NR shoots in females. PMID:24378602

  12. Role of nitric oxide and lipid peroxidation in pathophysiological mechanisms of audiogenic seizures in GEP Rats and DBA/2 mice.

    PubMed

    Bashkatova, V G; Mikoyan, V D; Malikova, L A; Raevskii, K S

    2003-07-01

    We evaluated the role of nitric oxide and lipid peroxidation in the pathophysiological mechanisms of seizures in genetically epilepsy prone (GEP) rats and DBA/2 mice with genetically determined audiogenic epilepsy. In rats and mice acoustic stimulation led to locomotor activation followed by clonic-tonic seizures. The contents of nitric oxide and lipid peroxidation products at the peak of seizures markedly surpassed the control level. PMID:14534598

  13. Lipid Peroxidation in Membranes: The Peroxyl Radical Does Not "Float".

    PubMed

    Garrec, Julian; Monari, Antonio; Assfeld, Xavier; Mir, Lluis M; Tarek, Mounir

    2014-05-15

    Lipid peroxidation is a fundamental phenomenon in biology and medicine involved in a wide range of diseases. Some key microscopic aspects of this reaction in cell membranes are still poorly studied. In particular, it is commonly accepted that the propagation of the radical reaction in lipid bilayers is hampered by the rapid diffusion of peroxyl intermediates toward the water interface, that is, out of the reaction region. We investigated the validity of this "floating peroxyl radical" hypothesis by means of molecular modeling. Combining quantum calculations of model systems and atomistic simulations of lipid bilayers containing lipid oxidation products, we show that the peroxyl radical does not "float" at the surface of the membrane. Instead, it remains located quite deep inside the bilayer. In light of our findings, several critical aspects of biological membranes' peroxidation, such as their protection mechanisms, need to be revisited. Our data moreover help in the design of more efficient antioxidants, localized within reach of the reaction propagating radical. PMID:26270361

  14. UVA Photoirradiation of Nitro-Polycyclic Aromatic Hydrocarbons—Induction of Reactive Oxygen Species and Formation of Lipid Peroxides

    PubMed Central

    Xia, Qingsu; Yin, Jun J.; Zhao, Yuewei; Wu, Yuh-Sen; Wang, Yu-Qui; Ma, Liang; Chen, Shoujun; Sun, Xin; Fu, Peter P.; Yu, Hongtao

    2013-01-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which nitro-PAHs induce genotoxicity. Although the metabolic activation of nitro-PAHs leading to toxicological activities has been well studied, the photo-induced activation of nitro-PAHs has seldom been reported. In this paper, we report photo-induced lipid peroxidation by 19 nitro-PAHs. The results indicated that all but two of the nitro-PAHs can induce lipid peroxidation. Mechanistic studies suggest that lipid peroxidation by nitro-PAHs is mediated by free radicals generated in the reaction. There was no structural correlation between the nitro-PAHs and their ability to induce lipid peroxidation upon UVA irradiation, or between the HOMO-LUMO gap and the ability to cause lipid peroxidation. Most of the nitro-PAHs are less potent in terms of causing lipid peroxidation than their parent PAHs. The lack of correlation is attributed to the complex photophysics and photochemistry of the nitro-PAHs and the yield of reactive oxygen species (ROS) and other factors. PMID:23493032

  15. Oxidized Docosahexaenoic Acid Species and Lipid Peroxidation Products Increase Amyloidogenic Amyloid Precursor Protein Processing.

    PubMed

    Grimm, Marcus O W; Haupenthal, Viola J; Mett, Janine; Stahlmann, Christoph P; Blümel, Tamara; Mylonas, Nadine T; Endres, Kristina; Grimm, Heike S; Hartmann, Tobias

    2016-01-01

    One of the main characteristics of Alzheimer's disease (AD) is the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of the amyloid precursor protein (APP). Previously it has been demonstrated that polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), are associated with a reduced risk of AD caused by decreased Aβ production. However, in epidemiological studies and nutritional approaches, the outcomes of DHA-dependent treatment were partially controversial. PUFAs are very susceptible to reactive oxygen species and lipid peroxidation, which are increased during disease pathology. In line with published results, lipid peroxidation was elevated in human postmortem AD brains; especially 4-hydroxy-nonenal (HNE) was increased. To investigate whether lipid peroxidation is only a consequence or might also influence the processes leading to AD, we analyzed 7 different oxidized lipid species including 5 oxidized DHA derivatives and the lipid peroxidation products of ω-3 and ω-6 PUFAs, HNE and 4-hydroxy-hexenal, in human neuroblastoma cells and mouse mixed cortical neurons. In the presence of oxidized lipids Aβ and soluble β-secreted APP levels were elevated, whereas soluble α-secreted APP was decreased, suggesting a shift from the nonamyloidogenic to the amyloidogenic pathway of APP processing. Furthermore, β- and γ-secretase activity was increased by oxidized lipids via increased gene expression and additionally by a direct effect on β-secretase activity. Importantly, only 1% oxidized DHA was sufficient to revert the protective effect of DHA and to significantly increase Aβ production. Therefore, our results emphasize the need to prevent DHA from oxidation in nutritional approaches and might help explain the divergent results of clinical DHA studies. PMID:26642316

  16. Ulinastatin suppresses burn-induced lipid peroxidation and reduces fluid requirements in a Swine model.

    PubMed

    Luo, Hong-Min; Du, Ming-Hua; Lin, Zhi-Long; Hu, Quan; Zhang, Lin; Ma, Li; Wang, Huan; Wen, Yu; Lv, Yi; Lin, Hong-Yuan; Pi, Yu-Li; Hu, Sen; Sheng, Zhi-Yong

    2013-01-01

    Objective. Lipid peroxidation plays a critical role in burn-induced plasma leakage, and ulinastatin has been reported to reduce lipid peroxidation in various models. This study aims to examine whether ulinastatin reduces fluid requirements through inhibition of lipid peroxidation in a swine burn model. Methods. Forty miniature swine were subjected to 40% TBSA burns and were randomly allocated to the following four groups: immediate lactated Ringer's resuscitation (ILR), immediate LR containing ulinastatin (ILR/ULI), delayed LR resuscitation (DLR), and delayed LR containing ulinastatin (DLR/ULI). Hemodynamic variables, net fluid accumulation, and plasma thiobarbituric acid reactive substances (TBARS) concentrations were measured. Heart, liver, lung, skeletal muscle, and ileum were harvested at 48 hours after burn for evaluation of TBARS concentrations, activities of antioxidant enzymes, and tissue water content. Results. Ulinastatin significantly reduced pulmonary vascular permeability index (PVPI) and extravascular lung water index (ELWI), net fluid accumulation, and water content of heart, lung, and ileum in both immediate or delayed resuscitation groups. Furthermore, ulinastatin infusion significantly reduced plasma and tissue concentrations of TBARS in both immediate or delayed resuscitation groups. Conclusions. These results indicate that ulinastatin can reduce fluid requirements through inhibition of lipid peroxidation.

  17. Protective effect of curcumin on circulatory lipid peroxidation and antioxidant status during nicotine-induced toxicity.

    PubMed

    Kalpana, C; Menon, Venugopal P

    2004-01-01

    Nicotine, an active substance present in tobacco has been identified as a major risk factor for lung related diseases. In the present study, we have evaluated the protective effect of curcumin on circulatory lipid peroxidation and antioxidants in nicotine administered Wistar rats. Lung toxicity was induced by subcutaneous injection of nicotine at a dose of 2.5 mg/kg body weight (5 days a week, for 22 weeks) and curcumin (80 mg/kg body weight) was given simultaneously along with nicotine by intragastric intubation for 22 weeks. Enhanced lipid peroxidation (41.68%) in the circulation of nicotine treated animals was accompanied by a significant decrease in the levels of ascorbic acid, vitamin E, reduced glutathione, glutathione peroxidase, superoxide dismutase and catalase. Further, reduction in the levels of zinc and elevation of copper and ferritin were observed in circulation of nicotine treated rats. Administration of curcumin significantly lowered the concentrations of lipid peroxides (36%) and enhanced the antioxidant status with modulation in the levels of zinc, copper and ferritin. Our data suggest that curcumin exerts its preventive effects by modulating the degree of lipid peroxidation, antioxidant status and trace element levels. PMID:20021100

  18. Suppressive effects of bifidobacteria on lipid peroxidation in the colonic mucosa of iron-overloaded mice.

    PubMed

    Ito, M; Sawada, H; Ohishi, K; Yoshida, Y; Yokoi, W; Watanabe, T; Yokokura, T

    2001-07-01

    The antioxidative effects of live bifidobacteria on lipid peroxidation in the colonic mucosa were investigated. Bifidobacterium bifidum strain Yakult, which has been used for production of fermented milk, most effectively inhibited lipid peroxidation catalyzed by ferrous iron in liposomes among 10 species of bifidobacteria from human intestinal flora. Oral administration of B. bifidum strain Yakult for 2 wk significantly decreased the level of lipid peroxide (thiobarbituric acid reactive substance) in the colonic mucosa of iron-overload mice (Fe 0.07% in diet). The iron concentrations in plasma and cecum contents were not affected by administration of B. bifidum strain Yakult. Bifidobacterium bifidum strain Yakult had no chelating or incorporating activity for ferrous iron in vitro. Therefore, the antioxidative effect of B. bifidum strain Yakult in the colonic mucosa was not thought to be based on the removal of ferrous iron from the reaction system of lipid peroxidation. These results suggested that B. bifidum strain Yakult protected the colonic mucosa from oxidative injury without inhibiting iron absorption. PMID:11467806

  19. In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe2+-induced lipid peroxidation in rat pancreas

    PubMed Central

    Adefegha, Stephen Adeniyi; Oboh, Ganiyu

    2012-01-01

    Objective To investigate and compare the inhibitory properties of free and bound phenolic extracts of clove bud against carbohydrate hydrolyzing enzymes (alpha-amylase & alpha-glucosidase) and Fe2+-induced lipid peroxidation in rat pancreas in vitro. Methods The free phenolics were extracted with 80% (v/v) acetone, while bound phenolics were extracted from the alkaline and acid hydrolyzed residue with ethyl acetate. Then, the interaction of the extracts with alpha-amylase and alpha-glucosidase was subsequently assessed. Thereafter, the total phenolic contents and antioxidant activities of the extracts were determined. Results The result revealed that both extracts inhibited alpha-amylase and alpha-glucosidase in a dose-dependent manner. However, the alpha-glucosidase inhibitory activity of the extracts were significantly (P<0.05) higher than their alpha-amylase inhibitory activity. The free phenolics (31.67 mg/g) and flavonoid (17.28 mg/g) contents were significantly (P<0.05) higher than bound phenolic (23.52 mg/g) and flavonoid (13.70 mg/g) contents. Both extracts also exhibited high antioxidant activities as typified by their high reducing power, 1,1 diphenyl-2- picrylhydrazyl (DPPH) and 2, 2-azinobis-3-ethylbenzo-thiazoline-6-sulfonate (ABTS) radical scavenging abilities, as well as inhibition of Fe2+-induced lipid peroxidation in rat pancreas in vitro. Conclusions This study provides a biochemical rationale by which clove elicits therapeutic effect on type 2 diabetes. PMID:23569846

  20. Antioxidant enzymes and lipid peroxidation in endometrium of patients with polyps, myoma, hyperplasia and adenocarcinoma

    PubMed Central

    2009-01-01

    Background Oxidative stress and impaired antioxidant system have been proposed as a potential factors involved in the pathophysiology of diverse disease states, including carcinogenesis. In this study, we explored the lipid peroxidation levels and antioxidant enzyme activities in women diagnosed with different forms of gynecological diseases in order to evaluate the antioxidant status in endometrium of such patients. Methods Endometrial tissues of gynecological patients with different diagnoses were collected and subjected to assays for superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and lipid hydroperoxides. Results Superoxide dismutase activity was significantly decreased (50% in average) in hyperplastic and adenocarcinoma patients. Activities of both glutathione peroxidase and glutathione reductase were increased 60% and 100% on average, in hyperplastic patients, while in adenocarcinoma patients only glutathione reductase activity was elevated 100%. Catalase activity was significantly decreased in adenocarcinoma patients (47%). Lipid hydroperoxides level was negatively correlated to superoxide dismutase and catalase activities, and positively correlated to glutathione peroxidase and glutathione reductase activities. Conclusions This study provided the first comparison of antioxidant status and lipid peroxidation in endometrial tissues of patients with polyps, myoma, hyperplasia and adenocarcinoma. The results showed that patients with premalignant (hyperplastic) and malignant (adenocarcinoma) lesions had enhanced lipid peroxidation and altered uterine antioxidant enzyme activities than patients with benign uterine diseases, polyps and myoma, although the extent of disturbance varied with the diagnosis. Further investigation is needed to clarify the mechanisms responsible for the observed alterations and whether lipid hydroperoxide levels and antioxidant enzyme activities in uterus of gynecological patients might be used as

  1. Ultraviolet- and sunlight-induced lipid peroxidation in liposomal membrane

    SciTech Connect

    Mandal, T.K.; Chatterjee, S.N.

    1980-08-01

    Ultraviolet radiation and sunlight caused lipid peroxidation in the liposomal membrane (as detected by measurement of the oxidation index, A/sub 233//A/sub 215/, and the amount of malondialdehyde formed) and made the membrane leaky (as revealed by the release of the trapped chromate anions). The oxidation index and the formation of malondialdehyde increased linearly with increasing dose of radiation and depended significantly on the dose rate. The effects were smaller in liposomes derived from Vibrio cholerae phospholipid than in those derived from egg lecithin. The effects of the radiation dose and dose rate on hemolysis and peroxidation (MDA formation) of the erythrocyte membrane followed a similar pattern. A direct correlation between the percentage leakage of chromate (Y) and the oxidation index (X) of the liposomal system was obtained as Y = 236.5 x X.

  2. Lipid peroxidation is increased in tears from the elderly.

    PubMed

    Benlloch-Navarro, Soledad; Franco, Ilenia; Sánchez-Vallejo, Violeta; Silvestre, Dolores; Romero, Francisco Javier; Miranda, María

    2013-10-01

    We describe a procedure in which tears, obtained from Schirmer strips, are used to measure a marker of lipid peroxidation, malondialdehyde (MDA). We also compared the levels of proteins and MDA in tears from two groups of people: young adults (18-30 years old) and elderly adults (65-85 years old), because the data related to total protein concentration of human tears vary widely and because the majority of people over the age of 65 experience some symptoms of dry eyes and this condition has been recognized as an oxidative stress-induced disease. Our results show a significant difference in the protein concentration of the tears taken from the two age categories, younger adults (18-30 years old) and older adults (65-85 years old). Herein, we report for the first time an increase in MDA concentrations determined by HPLC in human tears based on age. It is possible that alterations in the tear lipid layer may lead to an increase in lipid peroxidation. Further studies are needed to understand the nature and function of tear film and stability in order to obtain new methods to analyze tears in patients with different diseases. In this sense, it would be interesting to compare MDA concentration in tears from control subjects and from people with meibomian gland dysfunction.

  3. Almonds reduce biomarkers of lipid peroxidation in older hyperlipidemic subjects.

    PubMed

    Jenkins, David J A; Kendall, Cyril W C; Marchie, Augustine; Josse, Andrea R; Nguyen, Tri H; Faulkner, Dorothea A; Lapsley, Karen G; Blumberg, Jeffrey

    2008-05-01

    Nut consumption has been associated with reduced coronary heart disease (CHD) risk. In addition to cholesterol-lowering properties, almonds have been shown to lower oxidized LDL concentrations. However, little is known regarding their effects on other markers of oxidative stress. The dose-response effects of whole almonds, taken as snacks, were compared with low-saturated fat (<5% energy) whole-wheat muffins (control) in the therapeutic diets of hyperlipidemic subjects. In a randomized crossover study, 27 hyperlipidemic men and women consumed 3 isoenergetic (mean 423 kcal/d or 1770 kJ/d) supplements each for 1 mo. Supplements consisted of full-dose almonds (73 +/- 3 g/d), half-dose almonds plus half-dose muffins (half-dose almonds), and full-dose muffins (control). Subjects were assessed at wk 0, 2 and 4. Mean body weights differed < or = 300 g between treatments, although the weight loss on the half-dose almond treatment was greater than on the control (P < 0.01). At 4 wk, the full-dose almonds reduced serum concentrations of malondialdehyde (MDA) (P = 0.040) and creatinine-adjusted urinary isoprostane output (P = 0.026) compared with the control. Serum concentrations of alpha- or gamma-tocopherol, adjusted or unadjusted for total cholesterol, were not affected by the treatments. Almond antioxidant activity was demonstrated by their effect on 2 biomarkers of lipid peroxidation, serum MDA and urinary isoprostanes, and supports the previous finding that almonds reduced oxidation of LDL-C. Antioxidant activity provides an additional possible mechanism, in addition to lowering cholesterol, that may account for the reduction in CHD risk with nut consumption.

  4. Lipid peroxidation induced by maternal cadmium exposure in mouse pups

    SciTech Connect

    Baohui Xu |; Yapin Jin; Zhaoliang Feng; Zhaofa Xu; Matsushita, Toshio

    1993-11-01

    Cadmium as an environmental pollutant has received considerable attention and its toxic effects have been studied extensively in human and adult animals. Moreover, an International Task Group on Metal Accumulation (1973) has established that although it is in a limited quantity cadmium can be transported across placenta and excreted through milk in animals. Likewise, it can pass through placenta in humans. Furthermore, the fact is that women in the cadmium-polluted areas are continuously exposed to cadmium during gestation and lactation. Even if they are removed from the exposure, the body burden of cadmium probably remains high because of the very long biological half-time of cadmium which is estimated to be between 17.6 and 33 years. Thus, it is possible that fetuses and pups may be exposed to cadmium during maternal gestation and lactation. Although placenta affords some protection from cadmium exposure, cadmium exposure prior to day 10-11 when placenta forms may be deleterious. Cadmium exposure during pregnancy and its effects on offsprings, which were mainly focused on litter size, pup survival, pup growth and cadmium contents in pups following maternal cadmium exposure have been reported. Lipid peroxide has been considered as a sensitive toxicological index for environmental pollutants. The inhibited antioxidant enzymes and enhanced lipid peroxidation due to cadmium exposure have been demonstrated both in humans and animals. Therefore, the present study was designed to evaluate the toxic effects of maternal cadmium exposure on mouse pups using both the indices used in the previous studies and determinations of lipid peroxide concentrations in various pup organs. In conclusion, data from the present study indicate that the detection of LPO concentration in selected pup tissues is a sensitive index for evaluating the effects of maternal cadmium exposure on mouse pups. 16 refs., 4 tabs.

  5. 4-Hydroxy-nonenal—A Bioactive Lipid Peroxidation Product †

    PubMed Central

    Schaur, Rudolf J.; Siems, Werner; Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE) has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho-) physiological consequences discussed), and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress. PMID:26437435

  6. Resveratrol alters the lipid composition, metabolism and peroxide level in senescent rat hepatocytes.

    PubMed

    Momchilova, Albena; Petkova, Diana; Staneva, Galya; Markovska, Tania; Pankov, Roumen; Skrobanska, Ralica; Nikolova-Karakashian, Mariana; Koumanov, Kamen

    2014-01-25

    Investigations were performed on the influence of resveratrol on the lipid composition, metabolism, fatty acid and peroxide level in plasma membranes of hepatocytes, isolated from aged rats. Hepatocytes were chosen due to the central role of the liver in lipid metabolism and homeostasis. The obtained results showed that the level of sphingomyelin (SM) and phosphatidylserine (PS) was augmented in plasma membranes of resveratrol-treated senescent hepatocytes. The saturated/unsaturated fatty acids ratio of the two most abundant membrane phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), was decreased as a result of resveratrol treatment. The neutral sphingomyelinase was found to be responsible for the increase of SM and the decrease of ceramide in plasma membranes of resveratrol-treated senescent hepatocytes. Using labeled acetate as a precursor of lipid synthesis we demonstrated, that resveratrol treatment resulted in inhibition mainly of phospholipid synthesis, followed by fatty acids synthesis. Resveratrol induced reduction of specific membrane-associated markers of apoptosis such as localization of PS in the external plasma membrane monolayer and ceramide level. Finally, the content of lipid peroxides was investigated, because the unsaturated fatty acids, which were augmented as a result of resveratrol treatment, are an excellent target of oxidative attack. The results showed that the lipid peroxide level was significantly lower, ROS were slightly reduced and GSH was almost unchanged in resveratrol-treated hepatocytes. We suggest, that one possible biochemical mechanism, underlying the reported resveratrol-induced changes, is the partial inactivation of neutral sphingomyelinase, leading to increase of SM, the latter acting as a native membrane antioxidant. In conclusion, our studies indicate that resveratrol treatment induces beneficial alterations in the phospholipid and fatty acid composition, as well as in the ceramide and peroxide

  7. Age-related decline in multiple unit action potentials of CA3 region of rat hippocampus: correlation with lipid peroxidation and lipofuscin concentration and the effect of centrophenoxine.

    PubMed

    Sharma, D; Maurya, A K; Singh, R

    1993-01-01

    Changes in lipid peroxidation, lipofuscin concentration, and multiple unit activity (MUA recorded in conscious animals) in the CA3 region were studied in the hippocampus of male Wistar rats aged 4, 8, 16, and 24 months. The lipid peroxidation and lipofuscin concentration were increased with age. The MUA, however, declined with age. Correlational analyses were performed for the four age groups to determine the relationship between the age-associated decline in MUA with the age-related alterations in lipid peroxidation and lipofuscin concentrations. The age-related increase in lipid peroxidation correlated positively with the age-associated increase in lipofuscin concentration. The age-related increases in lipid peroxidation and lipofuscin concentration correlated negatively with the changes in MUA. Since lipid peroxidation may affect neuronal electrophysiology, our data suggested that age-related increase in lipid peroxidation may contribute to an age-associated decline in neuronal electrical activity. Centrophenoxine effects were studied on the three above-mentioned age-associated changes in the hippocampus. The drug had no effect on all three parameters in 4- and 8-month-old rats. In 16- and 24-month-old rats, however, the drug significantly increased the MUA but concomitantly decreased lipofuscin concentration and lipid peroxidation. Correlational analyses of the data on MUA, lipid peroxidation and lipofuscin concentration from the centrophenoxine-treated animals showed that the drug-induced diminution in both lipofuscin and lipid peroxidation was significantly correlated with the drug-induced increase in MUA. The differential effect of the drug in younger (4-8 months) and older (16-24 months) animals indicated that the stimulation of MUA was clearly associated with concomitant decrease in lipid peroxidation and lipofuscin concentration.

  8. Beneficial effects of cocoa on lipid peroxidation and inflammatory markers in type 2 diabetic patients and investigation of probable interactions of cocoa active ingredients with prostaglandin synthase-2 (PTGS-2/COX-2) using virtual analysis

    PubMed Central

    2014-01-01

    of Cocoa on the lipid peroxidation prevention and inflammatory markers in type 2 diabetic patients. Cocoa ingredients block the Cox-2 activation and reduce inflammatory prostanoids synthesis according to virtual analysis. PMID:24495354

  9. Histamine-3 receptor antagonists reduce superoxide anion generation and lipid peroxidation in rat brain homogenates.

    PubMed

    Badenhorst, H E; Maharaj, D S; Malan, S F; Daya, S; van Dyk, S

    2005-06-01

    Using a cyanide model to induce neurotoxic effects in rat brain homogenates, we examined the neuroprotective properties of three H3 antagonists, namely clobenpropit, thioperamide and impentamine, and compared them to aspirin, a known neuroprotective agent. Superoxide anion levels and malondialdehyde concentration were assessed using the nitroblue tetrazolium and lipid peroxidation assays. Clobenpropit and thioperamide significantly reduced superoxide anion generation and lipid peroxidation. Impentamine reduced lipid peroxidation at all concentrations used, but only reduced superoxide anion generation at a concentration of 1 mM. In the lipid peroxidation assay, all the drugs compared favourably to aspirin. This study demonstrates the potential of these agents to be neuroprotective by exerting antioxidant effects.

  10. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls

    PubMed Central

    Singh, Mahavir; Kapoor, Aniruddh; Bhatnagar, Aruni

    2015-01-01

    Extensive research has shown that increased production of reactive oxygen species (ROS) results in tissue injury under a variety of pathological conditions and chronic degenerative diseases. While ROS are highly reactive and can incite significant injury, polyunsaturated lipids in membranes and lipoproteins are their main targets. ROS-triggered lipid peroxidation reactions generate a range of reactive carbonyl species (RCS), and these RCS spread and amplify ROS-related injury. Several RCS generated in oxidizing lipids, such as 4-hydroxy trans-2-nonenal (HNE), 4-oxo-2-(E)-nonenal (ONE), acrolein, malondialdehyde (MDA) and phospholipid aldehydes have been shown to be produced under conditions of oxidative stress and contribute to tissue injury and dysfunction by depleting glutathione and other reductants leading to the modification of proteins, lipids, and DNA. To prevent tissue injury, these RCS are metabolized by several oxidoreductases, including members of the aldo-keto reductase (AKR) superfamily, aldehyde dehydrogenases (ALDHs), and alcohol dehydrogenases (ADHs). Metabolism via these enzymes results in RCS inactivation and detoxification, although under some conditions, it can also lead to the generation of signaling molecules that trigger adaptive responses. Metabolic transformation and detoxification of RCS by oxidoreductases prevent indiscriminate ROS toxicity, while at the same time, preserving ROS signaling. A better understanding of RCS metabolism by oxidoreductases could lead to the development of novel therapeutic interventions to decrease oxidative injury in several disease states and to enhance resistance to ROS-induced toxicity. PMID:25559856

  11. Exploring the biology of lipid peroxidation-derived protein carbonylation.

    PubMed

    Fritz, Kristofer S; Petersen, Dennis R

    2011-09-19

    The sustained overproduction of reactive oxygen and nitrogen species results in an imbalance of cellular prooxidant-antioxidant systems and is implicated in numerous disease states, including alcoholic liver disease, cancer, neurological disorders, inflammation, and cardiovascular disease. The accumulation of reactive aldehydes resulting from sustained oxidative stress and lipid peroxidation is an underlying factor in the development of these pathologies. Determining the biochemical factors that elicit cellular responses resulting from protein carbonylation remains a key element to developing therapeutic approaches and ameliorating disease pathologies. This review details our current understanding of the generation of reactive aldehydes via lipid peroxidation resulting in protein carbonylation, focusing on pathophysiologic factors associated with 4-hydroxynonenal-protein modification. Additionally, an overview of in vitro and in vivo model systems used to study the physiologic impact of protein carbonylation is presented. Finally, an update of the methods commonly used in characterizing protein modification by reactive aldehydes provides an overview of isolation techniques, mass spectrometry, and computational biology. It is apparent that research in this area employing state-of-the-art proteomics, mass spectrometry, and computational biology is rapidly evolving, yielding foundational knowledge concerning the molecular mechanisms of protein carbonylation and its relation to a spectrum of diseases associated with oxidative stress. PMID:21812433

  12. [Effect of fullerene C60 on free-radical induced lipid peroxidation processes in bronchial asthma].

    PubMed

    Bobrova, N A; Mikitiuk, M V; Kutsenko, L A; Kaĭdashev, I P

    2012-01-01

    Lipids peroxidative oxidation as well as antioxidative enzymes superoxidedismutase and catalase activity state at the mice sensibilization with ovalbumine, its correction with fulleren FC60 as well as by its forms (FC60-OVA, mFC60 mFC60-OVA) modified and conjugated with ovalbumines have been studied. It has been demonstrated that the mice sensibilization with ovalbumin leads to the tissues peroxidative lipid oxidation processes enforcement as well as lowering antioxidative enzymes activity in lungs and spleen. Used different rulleren forms expressed antioxidative effect and modifying effect to antioxidative protection enzymes at a given pathology. The influence of fulleren FC 60 and its modified form (1,2-methanofulleren-C60)61-carbolacid was the mostly effective. The data recieved testify to the prospects of the fullerens further investigation as the potential medicines. PMID:23072122

  13. [Peculiarities of lipid peroxidation indices in Ligula intestinalis (Cestoda: Pseudophyllidea) and its host--Abramis brama (L.)].

    PubMed

    Silkina, N I; Mikriakov, V R

    2005-01-01

    A comparative analysis of indices of peroxidation lipids in tissues of Ligula inteslinalis plerocercoids and in the intermediate fish host, the bream Abramis brama, was performed for the content of common lipids (CL), malonate di-aldehyde (MDA), which is a product of lipid peroxidation (POL), and common antioxidate activity (CAA). The dependence of indices upon size of parasites is recovered. The long-sized parasites had higher rate of MDA and intense CAA. The higher rate of MDA and low one of CAA was observed in the infected fishers comparing to the healthy ones.

  14. Regulation of lipid peroxidation by nitric oxide and PGF2alpha during luteal regression in rats.

    PubMed

    Motta, A B; Estevez, A; Franchi, A; Perez-Martinez, S; Farina, M; Ribeiro, M L; Lasserre, A; Gimeno, M F

    2001-04-01

    Corpus luteum regression is related to an increased generation of reactive oxygen species. Although several studies indicate that PGF(2alpha) is involved in regression of the corpus luteum in mammalian species through an increase in reactive oxygen species, the exact mechanism remains unknown. In the present study, the relationship between nitric oxide and PGF(2alpha) in regulation of lipid peroxidation was studied. Ovarian tissue from pseudopregnant rats at mid- (day 5) or late phase or at the time of regression (day 9 of pseudopregnancy) of corpus luteum development was used. Thiobarbituric acid reactants, used as a lipid peroxidation index, were higher on day 9 of pseudopregnancy than on day 5. In contrast, glutathione content (an antioxidant metabolite) was lower on day 9 than on day 5 of pseudopregnancy. These results indicate that there was an enhanced oxidative status in ovarian tissue during luteolysis. Administration of N(omega)-nitro-L-arginine methyl ester (L-NAME: 600 micromol l(-1)), a competitive nitric oxide synthase (NOS) inhibitor, led to a decrease in basal thiobarbituric acid reactant content in ovarian tissue from rats on day 9 of pseudopregnancy only, indicating that during regression of the corpus luteum, NO could act as intermediary in ovarian lipid peroxidation. Administration of a luteolytic dose (3 microg kg(-1) body weight i.p.) of a synthetic PGF(2alpha) increased thiobarbituric acid reactant content in ovaries from rats on day 9 of pseudopregnancy. As this effect was reversed partially by L-NAME, it is proposed that during regression of corpora lutea, PGF(2alpha) and NO are involved in regulation of lipid peroxidation. As this effect was only reversed partially, it is possible that there is another mechanism involving PGF(2alpha) (but not the NO-NOS pathway) in regulation of ovarian lipid peroxidation. Furthermore, the administration of PGF(2alpha) enhanced ovarian NOS activity, whereas cyclooxygenase inhibition (by indomethacin

  15. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Effects of the hexose monophosphate shunt as mediated by glutathione and ascorbate.

    PubMed

    Trotta, R J; Sullivan, S G; Stern, A

    1982-05-15

    Lipid peroxidation and haemoglobin degradation were the two extremes of a spectrum of oxidative damage in red cells exposed to t-butyl hydroperoxide. The exact position in this spectrum depended on the availability of glucose and the ligand state of haemoglobin. In red cells containing oxy- or carbonmono-oxy-haemoglobin, hexose monophosphate-shunt activity was mainly responsible for metabolism of t-butyl hydroperoxide; haem groups were the main scavengers in red cells containing methaemoglobin. Glutathione, via glutathione peroxidase, accounted for nearly all of the hydroperoxide metabolizing activity of the hexose monophosphate shunt. Glucose protection against lipid peroxidation was almost entirely mediated by glutathione, whereas glucose protection of haemoglobin was only partly mediated by glutathione. Physiological concentrations of intracellular or extracellular ascorbate had no effect on consumption of t-butyl hydroperoxide or oxidation of haemoglobin. Ascorbate was mainly involved in scavenging chain-propagating species involved in lipid peroxidation. The protective effect of intracellular ascorbate against lipid peroxidation was about 100% glucose-dependent and about 50% glutathione-dependent. Extracellular ascorbate functioned largely without a requirement for glucose metabolism, although some synergistic effects between extracellular ascorbate and glutathione were observed. Lipid peroxidation was not dependent on the rate or completion of t-butyl hydroperoxide consumption but rather on the route of consumption. Lipid peroxidation appears to depend on the balance between the presence of initiators of lipid peroxidation (oxyhaemoglobin and low concentrations of methaemoglobin) and terminators of lipid peroxidation (glutathione, ascorbate, high concentrations of methaemoglobin).

  16. Effects of glycowithanolides on lipid peroxidation and lipofuscinogenesis in male reproductive organs of mice

    PubMed Central

    Walvekar, Madhuri; Shaikh, Nilofar; Sarvalkar, Priti

    2013-01-01

    Background: Glycowithanolides (Withaferin A), is one of the main withanolides active principle isolated from plant Withania somnifera and is claimed that it possess the aphrodisiac, sedative, rejuvenate and life prolonging properties. Objective: In the present investigation, antioxidant activity of active principles of Withania somnifera was tested against D-galactose induced oxidative stress in mouse testes, epididymis and seminal vesicle. Materials and Methods: For the present investigation Swiss male albino mice Mus musculus (Linn) were used. They were grouped in to control (I), D-galactose treated (II), protective (III) and curative groups (IV). Oxidative stress was induced in six month old mice by injecting a low dose of D-galactose. Antioxidant effect of plant extract was studied in testes, epididymis, and seminal vesicle of oxidative stressed mice on Lipid peroxidation (LPO) and fluorescence product. Results: In the present study, both total as well as mitochondrial lipid peroxidation and fluorescence product in testes, epididymis and seminal vesicle were increased in D-galactose induced mice. After the treatment of glycowithanolides there was significantly decrease in total as well as mitochondrial lipid peroxidation and fluorescence product in protective and curative groups. Conclusion: Our results indicate that Withania somnifera has a capability of preventing oxidative stress and also combating stress induced infertility. PMID:24639810

  17. Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers.

    PubMed

    Banerjee, B D; Seth, V; Bhattacharya, A; Pasha, S T; Chakraborty, A K

    1999-06-30

    Oxidative stress was studied in blood samples obtained from lindane, malathion and propoxur poisoning cases admitted to the Guru Teg Bahadur Hospital, Delhi and evaluated for lipid peroxidation, oxygen free radical (OFR) scavenging enzymes, and glutathione (GSH) and related enzymes. Acetylcholine esterase (AChE), gamma glutamyl transpeptidase (GGT) and GSH level were also assayed in lymphocytes. The level of thiobarbituric acid reacting substances and activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and GGT were increased and GSH level was decreased in pesticide poisoning. Apparently lindane (at the concentration examined) was more potent than malathion and propoxur in producing alteration in lipid peroxidation, GSH related parameters and OFR scavenging enzymes. However, AChE activity and GSH level in lymphocytes of malathion poisoning cases were reduced and GGT activity was enhanced in comparison to control subjects. The present results suggest that OFR scavenging enzymes were induced while combating oxidative stress in a differential manner in organochlorine, organophosphate and carbamate poisoning. Increased lipid peroxidation, coupled with altered levels of GSH and OFR scavenging enzymes in the blood are discussed in the light of oxidative stress.

  18. IFN-γ ameliorates autoimmune encephalomyelitis by limiting myelin lipid peroxidation.

    PubMed

    Sosa, Rebecca A; Murphey, Cathi; Robinson, Rachel R; Forsthuber, Thomas G

    2015-09-01

    Evidence has suggested both a pathogenic and a protective role for the proinflammatory cytokine IFN-γ in experimental autoimmune encephalomyelitis (EAE). However, the mechanisms underlying the protective role of IFN-γ in EAE have not been fully resolved, particularly in the context of CNS antigen-presenting cells (APCs). In this study we examined the role of IFN-γ in myelin antigen uptake by CNS APCs during EAE. We found that myelin antigen colocalization with APCs was decreased substantially and that EAE was significantly more severe and showed a chronic-progressive course in IFN-γ knockout (IFN-γ-/-) or IFN-γ receptor knockout (IFN-γR-/-) mice as compared with WT animals. IFN-γ was a critical regulator of phagocytic/activating receptors on CNS APCs. Importantly, "free" myelin debris and lipid peroxidation activity at CNS lesions was increased in mice lacking IFN-γ signaling. Treatment with N-acetyl-l-cysteine, a potent antioxidant, abolished lipid peroxidation activity and ameliorated EAE in IFN-γ-signaling-deficient mice. Taken together the data suggest a protective role for IFN-γ in EAE by regulating the removal of myelin debris by CNS APCs and thereby limiting the substrate available for the generation of neurotoxic lipid peroxidation products.

  19. The mechanism of Fe(2+)-initiated lipid peroxidation in liposomes: the dual function of ferrous ions, the roles of the pre-existing lipid peroxides and the lipid peroxyl radical.

    PubMed

    Tang, L; Zhang, Y; Qian, Z; Shen, X

    2000-11-15

    The mechanism of Fe(2+)-initiated lipid peroxidation in a liposomal system was studied. It was found that a second addition of ferrous ions within the latent period lengthened the time lag before lipid peroxidation started. The apparent time lag depended on the total dose of Fe(2+) whenever the second dose of Fe(2+) was added, which indicates that Fe(2+) has a dual function: to initiate lipid peroxidation on one hand and suppress the species responsible for the initiation of the peroxidation on the other. When the pre-existing lipid peroxides (LOOH) were removed by incorporating triphenylphosphine into liposomes, Fe(2+) could no longer initiate lipid peroxidation and the acceleration of Fe(2+) oxidation by the liposomes disappeared. However, when extra LOOH were introduced into liposomes, both enhancement of the lipid peroxidation and shortening of the latent period were observed. When the scavenger of lipid peroxyl radicals (LOO(.)), N,N'-diphenyl-p-phenylene-diamine, was incorporated into liposomes, neither initiation of the lipid peroxidation nor acceleration of the Fe(2+) oxidation could be detected. The results may suggest that both the pre-existing LOOH and LOO(.) are necessary for the initiation of lipid peroxidation. The latter comes initially from the decomposition of the pre-existing LOOH by Fe(2+) and can be scavenged by its reaction with Fe(2+). Only when Fe(2+) is oxidized to such a degree that LOO(.) is no longer effectively suppressed does lipid peroxidation start. It seems that by taking the reactions of Fe(2+) with LOOH and LOO(.) into account, the basic chemistry in lipid peroxidation can explain fairly well the controversial phenomena observed in Fe(2+)-initiated lipid peroxidation, such as the existence of a latent period, the critical ratio of Fe(2+) to lipid and the required oxidation of Fe(2+). PMID:11062055

  20. Ameliorative effect of ajwain extract on hexachlorocyclohexane-induced lipid peroxidation in rat liver.

    PubMed

    Anilakumar, K R; Saritha, V; Khanum, Farhath; Bawa, A S

    2009-02-01

    Effect of ajwain extract on hexachlorocyclohexane-induced oxidative stress and toxicity in rats were investigated. Six groups of rats were maintained for 12 weeks as (1) Control; (2) HCH (300 mg/kg body weight) injected (3) 1% ajwain extract incorporated diet (4)1% ajwain extract incorporated diet+HCH (5) 2% ajwain extract incorporated diet and (6) 2% ajwain extract incorporated diet+HCH. Results revealed that HCH administration lead to an increase in hepatic lipid peroxidation associated with reduction in, levels of glutathione (GSH), activity of superoxide dismutase (SOD), catalase and glucose-6-phosphate dehydrogenase. Prefeeding of ajwain extract resulted in decreased hepatic levels of lipid peroxides and increased GSH, GSH-peroxidase, G-6-PDH, SOD, catalase and glutathione S-transferase (GST) activities. At the same time there was a significant reduction in hepatic levels of HCH-induced raise in lipid peroxides as a result of the prefeeding the extract. Prefeeding of ajwain extract at 1% level to rats injected with HCH reverted the significant changes in catalase, G-6-PDH, GST and -glutamyl transpeptidase. HCH-induced formation of micronuclei in femur bone marrow was also reduced significantly. It was concluded that HCH administration resulted in hepatic free radical stress, causing toxicity, which could be reduced by the dietary ajwain extract. PMID:18940228

  1. Drought stress induced changes in lipid peroxidation and antioxidant system in genus Avena.

    PubMed

    Pandey, Harish C; Baig, M J; Chandra, A; Bhatt, R K

    2010-07-01

    Seven species of genus Avena viz., Avena sativa, Avena strigosa, Avena brevis, Avena vaviloviana, Avena abyssinica, Avena marocana and Avena sterilis were used to study the impact of drought stress on lipid peroxidation and other antioxidant enzymes. Maximum increase in the catalase activity was recorded in A. vaviloviana (129.97%) followed by A. sativa (122.82%) and A. brevis (83.38%) at vegetative stage; however at flowering stage the maximum increase was reported in A. sativa (25.62%) followed by A. sterilis (20.46%) and A. brevis (18.53%). At vegetative stage drought, maximum increase in peroxidase activity was recorded in A. sativa (122.82%) followed by A. brevis (83.38%) and A. sterilis (49.78%). Flowering stage drought, showed maximum increase in A. Sativa (27.09%) followed by A. marocana (23.50%) and A. sterilis (20.46%). A. sativa and A. sterilis showed stress tolerance at both the stages by accumulating higher percentage of peroxidase followed by A. brevis at vegetative and A. marocana at flowering stage. Level of lipid peroxidation in terms of Malondialdehyde (MDA) content was increased in the leaves when plants were subjected to moisture stress. The rate of increase in lipid peroxidation occurs irrespective of stage however; maximum increase was recorded in A. strigosa at both the stages. Avena species which showed high level of MDA content, indicates more lipid peroxidation and more membrane permeability and are comparatively more susceptible for water stress than those which produce less Malondialdehyde (MDA) content at higher magnitude of water stress such species have better capability for moisture stress tolerance.

  2. [Lipid peroxidation in patients with multiple peptic ulcers in the stomach and duodenum].

    PubMed

    Ioffe, I V

    2004-08-01

    Under the observation there were 62 patients with multiple ulcers of a stomach and duodenum from 23 till 65 years old, randomized under the sex, age and character of pathological process (sizes and localization of peptical ulcers). In all patients the parameters of lipids peroxidation were studied. The increase of intensity the peroxidation of lipids were revealed, at the expense of augmentation in a peripheric blood of the patients of concentration of a final metabolite peroxidation of lipids--malon's dialdehyde and intermediate products--dien's conjugates. The rising of a parameter hemolysis peroxidation of erythrocytes is marked also.

  3. A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent.

    PubMed

    el-Saadani, M; Esterbauer, H; el-Sayed, M; Goher, M; Nassar, A Y; Jürgens, G

    1989-04-01

    A method is described for measuring lipid peroxides by means of the color reagent of a commercially available test kit for cholesterol estimation. In principle, this assay makes use of the oxidative capacity of lipid peroxides to convert iodide to iodine, which can be measured photometrically at 365 nm. Calibration curves were obtained using peroxides such as H2O2, t-butyl hydroperoxide, and cumene hydroperoxide. A stoichiometric relationship was observed between the amount of organic peroxides assayed and the concentration of iodine produced. Concentrations of lipid peroxides as small as 1 nmol/ml could be measured. The ability to estimate lipid peroxides of isolated low density lipoprotein was demonstrated. PMID:2754343

  4. Targeting lipid peroxidation and mitochondrial imbalance in Friedreich's ataxia.

    PubMed

    Abeti, Rosella; Uzun, Ebru; Renganathan, Indhushri; Honda, Tadashi; Pook, Mark A; Giunti, Paola

    2015-09-01

    Friedreich's ataxia (FRDA) is an autosomal recessive disorder, caused by reduced levels of the protein frataxin. This protein is located in the mitochondria, where it functions in the biogenesis of iron-sulphur clusters (ISCs), which are important for the function of the mitochondrial respiratory chain complexes. Moreover, disruption in iron biogenesis may lead to oxidative stress. Oxidative stress can be the cause and/or the consequence of mitochondrial energy imbalance, leading to cell death. Fibroblasts from two FRDA mouse models, YG8R and KIKO, were used to analyse two different categories of protective compounds: deuterised poly-unsaturated fatty acids (dPUFAs) and Nrf2-inducers. The former have been shown to protect the cell from damage induced by lipid peroxidation and the latter trigger the well-known Nrf2 antioxidant pathway. Our results show that the sensitivity to oxidative stress of YG8R and KIKO mouse fibroblasts, resulting in cell death and lipid peroxidation, can be prevented by d4-PUFA and Nrf2-inducers (SFN and TBE-31). The mitochondrial membrane potential (ΔΨm) of YG8R and KIKO fibroblasts revealed a difference in their mitochondrial pathophysiology, which may be due to the different genetic basis of the two models. This suggests that variable levels of reduced frataxin may act differently on mitochondrial pathophysiology and that these two cell models could be useful in recapitulating the observed differences in the FRDA phenotype. This may reflect a different modulatory effect towards cell death that will need to be investigated further. PMID:26141703

  5. Mechanism of lipid peroxide formation in polychlorinated biphenyls (PCB) and dichlorodiphenyltrichloroethane (DDT)-poisoned rats

    SciTech Connect

    Kamohara, K.; Yagi, N.; Itokawa, Y.

    1984-06-01

    To clarify the mechanism of lipid peroxide formation in polychlorinated biphenyls (PCB)-poisoned rats, the following two experiments were carried out. Experiment No. 1: Rats were separated into three groups. Group 1 was fed a normal diet, group 2 was fed a PCB-supplemented diet, and group 3 was fed a dichlorodiphyltrichloroethane (DDT)-supplemented diet. After 5 months, the rats were killed. The thiobarbituric acid (TBA) values in livers of the PCB- and DDT-exposed rats had increased. The activity of catalase was increased in the PCB-fed rats but decreased after the administered of DDT. The glutathione peroxidase activity was decreased only in the PCB-administered rats. These results indicate that PCB and DDT have some effects to enhance lipid oxidation. It is probable that the decrease in glutathione peroxidase is the major reason for the increase of lipid oxidation in PCB-poisoned rats. The mechanism of lipid peroxidate production in DDT-poisoned rats could be different from the case of PCB poisoning. Experiment No. 2: Rats were separated into two groups. To one group, normal diet was given and to the other group PCB-supplemented diet was given. After 1 month, the rats were killed. In PCB-exposed rats, activities of glutathione reductase and glutathione S-transferase were increased. The increase in glutathione reductase could be compensation for a decrease in glutathione peroxidase. It is probable that PCB is metabolized to make glutathione conjugates by the action of glutathione S-transferase.

  6. Effect of rutin and its copper complex on superoxide formation and lipid peroxidation in rat liver microsomes.

    PubMed

    Afanas'ev, I B; Ostrachovich, E A; Korkina, L G

    1998-03-27

    Two free radical scavengers, bioflavonoid rutin and the copper-rutin complex Cu(Rut)Cl2, inhibited lucigenin-amplified chemiluminescence and lipid peroxidation in rat liver microsomes, Cu(Rut)Cl2 being a 5-9 times more efficient inhibitor than rutin. The enhanced inhibitory activity of Cu(Rut)Cl2 was due to the presence of the additional superoxide-dismutating center (Cu), as follows from the comparison of its effects on microsomal chemiluminescence and cytochrome c reduction by xanthine oxidase. Similar effects of both inhibitors on superoxide production and lipid peroxidation as well as the elevated activity of Cu(Rut)Cl2 indicate an important role of superoxide ion in the initiation of microsomal lipid peroxidation. PMID:9559660

  7. Antioxidant properties of resveratrol and piceid on lipid peroxidation in micelles and monolamellar liposomes.

    PubMed

    Fabris, Sabrina; Momo, Federico; Ravagnan, Giampietro; Stevanato, Roberto

    2008-06-01

    The antioxidant activities of trans-resveratrol (trans-3,5,4'-trihydroxystilbene) and trans-piceid (trans-5,4'-dihydroxystilbene-3-O-beta-D-glucopyranoside), its more widespread glycosilate derivative, have been compared measuring their inhibitory action on peroxidation of linoleic acid (LA) and the radical scavenging ability towards different free radicals (such as DPPH) and radical initiators. It has been found that the two stilbenes have similar antioxidant capacity, while the comparison with BHT (2,6-di-tert-butyl-4-methylphenol) and alpha-tocopherol (vitamin E, vit. E), taken as reference, points out a slower but prolonged protective action against lipid peroxidation. Furthermore, piceid appears more efficacious than resveratrol as a consequence of the reaction of the latter with its radical form. The DSC profiles of phosphatidylcholine liposomes of various chain lengths, and EPR measurements of spin labelled liposomes demonstrated that the susceptible hydroxyl group of these compounds are located in the lipid region of the bilayer close to the double bonds of polyunsaturated fatty acids, making these stilbenes particularly suitable for the prevention and control of the lipid peroxidation of the membranes.

  8. UVA photoirradiation of methylated benzo[a]pyrene and benzo[e]pyrene leading to induction of lipid peroxidation.

    PubMed

    Sáenz, Diógenes Herreño; Xia, Qingsu; Fu, Peter P

    2007-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread genotoxic environmental pollutants and potentially pose a health risk to humans. Although the biological and toxicological activities, including metabolism, mutagenicity and carcinogenicity of PAHs have been thoroughly studied, their phototoxicity and photo-induced biological activities have not been well examined. In this research, we studied the photoirradiation of isomeric methylbenzo[a]pyrene (MBaP) and methylbenzo[e]pyrene (MBeP) by UVA light in the presence of a lipid, methyl linoleate, and evaluated the potential of these compounds to induce lipid peroxidation. The compounds chosen for study included BaP, 3-MBaP, 4-MBaP, 6-MBaP, 7-MBaP, 10-MBaP, BeP, 4-MBeP, and 9-MBeP. The results indicate that upon photoirradiation by UVA at 7 and 21 J/cm2, these compounds induced lipid peroxidation. The levels of the induced lipid peroxidation were similar among BaP and the isomeric MBaPs, and among the BeP and MBePs, with the BaP group higher than the BeP group. There was also a co-relation between the UV A light dose and the level of lipid peroxidation induced. Lipid peroxide formation was inhibited by NaN3 (singlet oxygen and free radical scavenger) and was enhanced by the presence of deuterium oxide (D2O) (extends singlet oxygen lifetime). These results suggest that photoirradiation of MBaPs and MBePs by UVA light generates reactive oxygen species (ROS), which induce lipid peroxidation.

  9. CALCIUM-INDUCED LIPID PEROXIDATION IS MEDIATED BY RHODNIUS HEME-BINDING PROTEIN (RHBP) AND PREVENTED BY VITELLIN.

    PubMed

    Paes, Marcia C; Silveira, Alan B; Ventura-Martins, Guilherme; Luciano, Monalisa; Coelho, Marsen G P; Todeschini, Adriane R; Bianconi, M Lucia; Atella, Georgia C; Silva-Neto, Mário A C

    2015-10-01

    Lipid peroxidation is promoted by the quasi-lipoxygenase (QL) activity of heme proteins and enhanced by the presence of free calcium. Unlike mammalian plasma, the hemolymph of Rhodnius prolixus, a vector of Chagas disease, contains both a free heme-binding protein (RHBP) and circulating lipoproteins. RHBP binds and prevents the heme groups of the proteins from participating in lipid peroxidation reactions. Herein, we show that despite being bound to RHBP, heme groups promote lipid peroxidation through a calcium-dependent QL reaction. This reaction is readily inhibited by the presence of ethylene glycol tetraacetic acid (EGTA), the antioxidant butylated hydroxytoluene or micromolar levels of the main yolk phosphoprotein vitellin (Vt). The inhibition of lipid peroxidation is eliminated by the in vitro dephosphorylation of Vt, indicating that this reaction depends on the interaction of free calcium ions with negatively charged phosphoamino acids. Our results demonstrate that calcium chelation mediated by phosphoproteins occurs via an antioxidant mechanism that protects living organisms from lipid peroxidation. PMID:26111116

  10. Lipid peroxidation causes endosomal antigen release for cross-presentation

    PubMed Central

    Dingjan, Ilse; Verboogen, Daniëlle RJ; Paardekooper, Laurent M; Revelo, Natalia H; Sittig, Simone P; Visser, Linda J; Mollard, Gabriele Fischer von; Henriet, Stefanie SV; Figdor, Carl G; ter Beest, Martin; van den Bogaart, Geert

    2016-01-01

    Dendritic cells (DCs) present foreign antigen in major histocompatibility complex (MHC) class I molecules to cytotoxic T cells in a process called cross-presentation. An important step in this process is the release of antigen from the lumen of endosomes into the cytosol, but the mechanism of this step is still unclear. In this study, we show that reactive oxygen species (ROS) produced by the NADPH-oxidase complex NOX2 cause lipid peroxidation, a membrane disrupting chain-reaction, which in turn results in antigen leakage from endosomes. Antigen leakage and cross-presentation were inhibited by blocking ROS production or scavenging radicals and induced when using a ROS-generating photosensitizer. Endosomal antigen release was impaired in DCs from chronic granulomatous disease (CGD) patients with dysfunctional NOX2. Thus, NOX2 induces antigen release from endosomes for cross-presentation by direct oxidation of endosomal lipids. This constitutes a new cellular function for ROS in regulating immune responses against pathogens and cancer. PMID:26907999

  11. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash.

    PubMed

    Cervini-Silva, Javiera; Antonio-Nieto-Camacho; Gomez-Vidales, Virginia; Ramirez-Apan, María Teresa; Palacios, Eduardo; Montoya, Ascención; Kaufhold, Stephan; Abidin, Zeanal; Theng, Benny K G

    2014-06-15

    This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe(3+), and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 ± 0.2 nmol TBARS mg prot(-1). LP was surface controlled but not restricted by structural or surface-bound Fe(3+), because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe(3+) soluble species stemming from surface-bound Fe(3+) or small-sized Fe(3+) refractory minerals in allophane surpassed that of structural Fe(3+) located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell-viability values were as low as 68.5 ± 6.7%.

  12. A meta-analysis of lipid peroxidation markers in major depression

    PubMed Central

    Mazereeuw, Graham; Herrmann, Nathan; Andreazza, Ana C; Khan, Maisha M; Lanctôt, Krista L

    2015-01-01

    Background Major depressive disorder (MDD) may be associated with oxidative damage to lipids, which can potentially affect mood-regulating pathways. This meta-analysis summarizes current knowledge regarding lipid peroxidation markers in clinical samples of MDD and the effects of antidepressant pharmacotherapy on those markers. Methods MEDLINE, EMBASE, CINAHL, PsycINFO, and Cochrane Collaboration were searched for original, peer-reviewed articles measuring markers of lipid peroxidation in patients with MDD and nondepressed healthy controls up to April 2015. Standardized mean differences (SMDs) were generated from random effects models summarizing mean (± standard deviations) concentrations of selected markers. Results Lipid peroxidation was greater in MDD than in controls (studies =17, N=857 MDD/782 control, SMD =0.83 [0.56–1.09], z=6.11, P<0.01, I2=84.0%) and was correlated with greater depressive symptom severity (B=0.05, df=8, P<0.01). Antidepressant treatment was associated with a reduction in lipid peroxidation in MDD patients (studies=5, N=222, SMD=0.71 [0.40–0.97], P<0.01; I2=42.5%). Limitations Lipid peroxidation markers were sampled from peripheral blood, included studies comparing MDD to controls were all cross-sectional, and only five antidepressant treatment studies were eligible for inclusion. Conclusion Increased lipid peroxidation was associated with MDD and may be normalized by antidepressants. Continued investigation of lipid peroxidation in MDD is warranted. PMID:26491326

  13. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal

    PubMed Central

    Muñoz, Mario F.; Argüelles, Sandro

    2014-01-01

    Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown. PMID:24999379

  14. Menadione-induced cell degeneration is related to lipid peroxidation in human cancer cells.

    PubMed

    Chiou, T J; Chou, Y T; Tzeng, W F

    1998-01-01

    The role of lipid peroxidation, intracellular glutathione and Ca2+ concentration in menadione-mediated toxicity was investigated in human hepatoma cell lines, Hep G2 and Hep 3B, and in human leukemia cell lines, CCRF-CEM and MOLT-3. Incubation of these cells with 80 microM menadione at 37 degrees C resulted in depletion of intracellular glutathione, increased intracellular Ca2+, and increased lipid peroxidation, events leading to cell degeneration. The sensitivity of these cells to menadione, in order, was: Hep G2 cells > Hep 3B cells > CCRF-CEM cells and MOLT-3 cells. The extent of menadione-induced lipid peroxidation in different cell types followed the same order as did their susceptibility to menadione-induced cell degeneration. The menadione-induced depletion in glutathione level was in the following sequence: Hep G2 cells > MOLT-3 and CCRF-CEM cells > Hep 3B cells. The extent of the menadione-induced increase in the intracellular Ca2+ concentration was: Hep G2 cells > Molt-3 cells > CCRF-CEM cells and Hep 3B cells. Pre-treatment of Hep G2 cells with 20 mM deferoxamine mesylate, an iron chelator, reduced both the menadione-induced cell degeneration and lipid peroxidation; however, it did not prevent the menadione-induced increase in intracellular Ca2+ nor the depletion of glutathione. These data suggest that menadione-induced cell degeneration is directly linked to lipid peroxidation, and that it is less related to the rise in intracellular Ca2+ and the depletion in glutathione content. Dicumarol (an inhibitor of DT diaphorase) enhanced the capacity of menadione to induce Hep 3B cell degeneration from 71.3% to 86.2% after 120 min of menadione treatment at 37 degrees C, but did not have this effect in Hep G2, CCRF-CEM or MOLT-3 cells. The activities of DT diaphorase were 52.4, 39.6, 1.5 and 1.8 nmol cytochrome c reduced/min/mg protein in Hep G2, Hep 3B, CCRF-CEM and MOLT-3 cells, respectively. The activity of DT diaphorase was much higher in Hep G2 cells than

  15. The Effects of Boron on Arsenic-Induced Lipid Peroxidation and Antioxidant Status in Male and Female Rats.

    PubMed

    Kucukkurt, Ismail; Ince, Sinan; Demirel, Hasan Huseyin; Turkmen, Ruhi; Akbel, Erten; Celik, Yasemin

    2015-12-01

    The aim of the present study was to investigate the possible protective effects of boron, an antioxidant agent, against arsenic-induced oxidative stress in male and female rats. In total, 42 Wistar albino male and female rats were divided into three equal groups: The animals in the control group were given normal drinking water, the second group was given drinking water with 100 mg/L arsenic, and the third group was orally administered drinking water with 100 mg/kg boron together with arsenic. At the end of the 28-day experiment, arsenic increased lipid peroxidation and damage in the tissues of rats. However, boron treatment reversed this arsenic-induced lipid peroxidation and activities of antioxidant enzymes in rats. Moreover, boron exhibited a protective action against arsenic-induced histopathological changes in the tissues of rats. In conclusion, boron was found to be effective in protecting rats against arsenic-induced lipid peroxidation by enhancing antioxidant defense mechanisms.

  16. Neurotoxic lipid peroxidation species formed by ischemic stroke increase injury

    PubMed Central

    Zeiger, Stephanie L. H.; Musiek, Erik S.; Zanoni, Giuseppe; Vidari, Giovanni; Morrow, Jason D.; Milne, Ginger J.; McLaughlin, BethAnn

    2009-01-01

    Stroke is the third leading cause of death in the United States yet no neuroprotective agents for treatment are clinically available. There is a pressing need to understand the signaling molecules which mediate ischemic cell death and identify novel neuroprotective targets. Cyclopentenone isoprostanes (IsoP), formed following free radical mediated peroxidation of arachidonic acid, are used as markers of stress but their bioactivity is poorly understood. We have recently shown that 15-A2t-Isop is a potent neurotoxin in vitro and increases the free radical burden in neurons. In this work, we demonstrate that 15-A2t-IsoP is abundantly produced in stroke infarcted human cortical tissue. Using primary neuronal cultures we found that minimally toxic exposure to 15-A2t-IsoP does not alter ATP content, but in combination with oxygen glucose deprivation resulted in a significant hyperpolarization of the mitochondrial membrane and dramatically increased neuronal cell death. In the presence of Ca2+, 15-A2t-IsoP led to a rapid induction of the permeability transition pore and release of cytochrome c. Taken with our previous work, these data support a model in which ischemia causes generation of reactive oxygen species, calcium influx, lipid peroxidation and 15-A2t-IsoP formation. These factors combine to enhance opening of the permeability transition pore leading to cell death subsequent to mitochondrial cytochrome c release. This data is the first documentation of significant 15-A2t-IsoP formation following acute ischemic stroke and suggests addition of 15-A2t-IsoP to in vitro models of ischemia may help to more fully recapitulate stroke injury. PMID:19699297

  17. Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels.

    PubMed Central

    Ramos, O; Carrizales, L; Yáñez, L; Mejía, J; Batres, L; Ortíz, D; Díaz-Barriga, F

    1995-01-01

    The role of lipid peroxidation in the mechanism of arsenic toxicity was investigated in female rats pretreated with N-acetylcysteine (NAC, a glutathione [GSH] inducer) or with buthionine sulfoximine (BSO, a GSH depletor). Rats were challenged with sodium arsenite, and sacrificed 1 hr after this treatment. Results showed that arsenic decreased GSH levels and increased lipid peroxidation in liver, kidney, and heart, with a larger effect at 18.2 mg/kg than at 14.8 mg/kg for lipid peroxidation induction. In the liver of rats treated with arsenic, pretreatment with NAC increased the levels of GSH and decreased lipid peroxidation. In kidney and heart, NAC pretreatment protected the tissues against arsenic-induced depletion of GSH levels, but the same degree of protection was not found for lipid peroxidation induction. In its turn, BSO had an additive effect with arsenic in lowering the levels of GSH in the liver and kidney, but an inverse correlation between GSH levels and lipid peroxidation was found only in liver. Arsenic content in tissues of rats pretreated with NAC was lower than in rats treated only with arsenic. In rats with depleted levels of GSH (BSO-pretreated rats), a shift in arsenic tissue distribution was found, with higher levels in skin and lower levels in kidney. A clear tendency for a positive correlation between arsenic concentration and lipid peroxidation levels was found in liver, kidney, and heart. PMID:7621808

  18. Singlet oxygen in copper-catalyzed lipid peroxidation in erythrocyte membranes

    SciTech Connect

    Ding, A.H.; Chan, P.C.

    1984-04-01

    Lipid hydroperoxide was generated in human erythrocyte membranes by irradiation with near ultraviolet (UV) light in the presence of a photosensitizer, hematoporphyrin, but no production of 2-thiobarbituric acid-reactive materials (malonaldehyde and its precursors) was detected. Incubation of the irradiated membranes with CuSO4 led to increased levels of hydroperoxide and formation of malonaldehyde. Hydroperoxides were essential for initiating the Cu(II)-catalyzed peroxidation as no significant activity was observed with nonirradiated membranes and Cu(II) unless an organic peroxide, either t-butyl hydroperoxide or cumene hydroperoxide, was added. Catalytic activity was also found with Fe(II), but not with other metal ions tested. The peroxidation catalyzed with Cu(II) was partially inhibited by several singlet oxygen quenchers but was not affected by superoxide dismutase, catalase or OH radical scavengers. The possible involvement of singlet oxygen in the Cu(II)-catalyzed peroxidation reaction was further supported by a 3-fold enhancement of malonaldehyde production in D/sub 2/O.

  19. Lipoproteins accumulate in immune deposits and are modified by lipid peroxidation in passive Heymann nephritis.

    PubMed Central

    Exner, M.; Susani, M.; Witztum, J. L.; Hovorka, A.; Curtiss, L. K.; Spitzauer, S.; Kerjaschki, D.

    1996-01-01

    Proteinuria in passive Heymann nephritis is primarily caused by reactive oxygen species that are produced by glomerular cells. Reactive oxygen species apparently exert their damaging effects on the glomerular filter by lipid peroxidation and subsequent adduct formation on matrix proteins of glomerular basement membranes. This raised the question as to the source of polyunsaturated fatty acids required as substrates for lipid peroxidation. Here we have localized by immunocytochemistry rat apolipoprotein E and apolipoprotein B within subepithelial immune deposits. Moreover, apolipoprotein B extracted from isolated glomeruli of proteinuric passive Heymann nephritis rats shows degradation and lipid peroxidation adduct formation, similar to apoproteins of oxidized lipoproteins in atherosclerotic lesions. These data provide evidence that lipoproteins accumulate within immune deposits and suggest that their lipids generate lipid-peroxidation-derived reactive compounds. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8863678

  20. The lipid peroxidation product 4-hydroxy-trans-2-nonenal causes protein synthesis in cardiac myocytes via activated mTORC1-p70S6K-RPS6 signaling.

    PubMed

    Calamaras, Timothy D; Lee, Charlie; Lan, Fan; Ido, Yasuo; Siwik, Deborah A; Colucci, Wilson S

    2015-05-01

    Reactive oxygen species (ROS) are elevated in the heart in response to hemodynamic and metabolic stress and promote hypertrophic signaling. ROS also mediate the formation of lipid peroxidation-derived aldehydes that may promote myocardial hypertrophy. One lipid peroxidation by-product, 4-hydroxy-trans-2-nonenal (HNE), is a reactive aldehyde that covalently modifies proteins thereby altering their function. HNE adducts directly inhibit the activity of LKB1, a serine/threonine kinase involved in regulating cellular growth in part through its interaction with the AMP-activated protein kinase (AMPK), but whether this drives myocardial growth is unclear. We tested the hypothesis that HNE promotes myocardial protein synthesis and if this effect is associated with impaired LKB1-AMPK signaling. In adult rat ventricular cardiomyocytes, exposure to HNE (10 μM for 1h) caused HNE-LKB1 adduct formation and inhibited LKB1 activity. HNE inhibited the downstream kinase AMPK, increased hypertrophic mTOR-p70S6K-RPS6 signaling, and stimulated protein synthesis by 27.1 ± 3.5%. HNE also stimulated Erk1/2 signaling, which contributed to RPS6 activation but was not required for HNE-stimulated protein synthesis. HNE-stimulated RPS6 phosphorylation was completely blocked using the mTOR inhibitor rapamycin. To evaluate if LKB1 inhibition by itself could promote the hypertrophic signaling changes observed with HNE, LKB1 was depleted in adult rat ventricular myocytes using siRNA. LKB1 knockdown did not replicate the effect of HNE on hypertrophic signaling or affect HNE-stimulated RPS6 phosphorylation. Thus, in adult cardiac myocytes HNE stimulates protein synthesis by activation of mTORC1-p70S6K-RPS6 signaling most likely mediated by direct inhibition of AMPK. Because HNE in the myocardium is commonly increased by stimuli that cause pathologic hypertrophy, these findings suggest that therapies that prevent activation of mTORC1-p70S6K-RPS6 signaling may be of therapeutic value.

  1. The generation of oxidation products of benzo(a)pyrene by lipid peroxidation: a study using gamma-irradiation

    SciTech Connect

    Gower, J.D.; Wills, E.D.

    1984-09-01

    The role which active oxygen and radicals generated by the peroxidation of unsaturated fatty acids could play in the oxidation of benzo(a)pyrene has been studied using gamma-irradiation. Irradiation of benzo(a)pyrene resulted in the formation of benzo(a)pyrene 1,6-, 3,6- and 6,12-quinones and other more polar products which were analysed by h.p.l.c. OH. radicals are believed to be involved in this oxidation. The presence of polyunsaturated fatty acids and polyunsaturated lipids stimulated the formation of benzo(a)pyrene products following gamma-irradiation. Oxidation of benzo(a)pyrene also occurred over a period of days in the presence of autoxidising mackerel oil. The rate of benzo(a)pyrene oxidation was related to the extent of lipid peroxidation as determined by malonaldehyde formation. Malonaldehyde production as a result of peroxidising lipids was inhibited by benzo(a)pyrene which suggested that benzo(a)pyrene reacted directly with lipid peroxy radicals or hydroperoxides generated in the process of lipid peroxidation. These results demonstrate that oxidation products of the peroxidation of lipids and fatty acids are able to react directly with benzo(a)pyrene to form products including benzo(a)pyrene quinones without the presence of enzymes such as the cytochrome P-450 mixed function oxidase system and prostaglandin synthetase. It is possible that benzo(a)pyrene may be activated by these types of reactions in vivo or in vitro when benzo(a)pyrene is in contact with polyunsaturated lipids in foodstuffs or the intestinal lumen and peroxidation of unsaturated fats may play an important role in human carcinogenesis.

  2. Impact of dietary oils and fats on lipid peroxidation in liver and blood of albino rats

    PubMed Central

    Haggag, Mohammad El-Sayed Yassin El-Sayed; Elsanhoty, Rafaat Mohamed; Ramadan, Mohamed Fawzy

    2014-01-01

    Objective To investigate the effects of different dietary fat and oils (differing in their degree of saturation and unsaturation) on lipid peroxidation in liver and blood of rats. Methods The study was conducted on 50 albino rats that were randomly divided into 5 groups of 10 animals. The groups were fed on dietary butter (Group I), margarine (Group II), olive oil (Group III), sunflower oil (Group IV) and corn oil (Group V) for 7 weeks. After 12 h of diet removal, livers were excised and blood was collected to measure malondialdehyde (MDA) levels in the supernatant of liver homogenate and in blood. Blood superoxide dismutase activity (SOD), glutathione peroxidase activity (GPx), serum vitamin E and total antioxidant capacity (TAC) levels were also measured to determine the effects of fats and oils on lipid peroxidation. Results The results indicated that no significant differences were observed in SOD activity, vitamin E and TAC levels between the five groups. However, there was significant decrease of GPx activity in groups IV and V when compared with other groups. The results indicated that feeding corn oil caused significant increases in liver and blood MDA levels as compared with other oils and fats. There were positive correlations between SOD and GPx, vitamin E and TAC as well as between GPx and TAC (r: 0.743; P<0.001) and between blood MDA and liver MDA (r: 0.897; P<0.001). The results showed also negative correlations between blood MDA on one hand and SOD, GPx, vitamin E and TAC on the other hand. Conclusions The results demonstrated that feeding oils rich in polyunsaturated fatty acids (PUFA) increases lipid peroxidation significantly and may raise the susceptibility of tissues to free radical oxidative damage. PMID:24144131

  3. [Lipid peroxidation in cardiac mitochondrial fraction of rats exposed to different supplementation with polyunsaturated fatty acids].

    PubMed

    Ketsa, O V; Shmarakov, I O; Marchenko, M M

    2016-01-01

    The effect of diet supplementation with polyunsaturated fatty acids (PUFAs) used at different ratios of w-6/w-3 was studied on the content of primary (diene conjugates, DC; triene conjugates, TC), secondary (ketodienes, CD; coupled trienes, CT; TBA-active products) and terminal (Schiff bases) lipid peroxidation products (LPO) and generation of superoxide anion-radical in rat heart mitochondrial fraction. It was shown that diet supplementation with high doses of w-6 or w-3 PUFAs increased the content of primary, secondary and terminal LPO in rat heart mitochondrial fraction. Llipid peroxidation was accompanied by the intensification of superoxide anion-radical generation in rat heart mitochondrial fraction. During diet consumption with the PUFAs leading factor affecting the intensity of lipoperoxidation in rat heart mitochondria is fatty acid composition, rather than the level of their saturation.

  4. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. PMID:24927388

  5. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity.

  6. Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts.

    PubMed

    Gutteridge, J M; Quinlan, G J; Clark, I; Halliwell, B

    1985-07-31

    Aluminium salts do not themselves stimulate peroxidation of ox-brain phospholipid liposomes, but they greatly accelerate the peroxidation induced by iron(II) salts at acidic pH values. This effect of Al(III) is not seen at pH 7.4, perhaps because Al(III) salts form insoluble complexes at this pH in aqueous solution. Peroxidation of liposomes in the presence of Al(III) and Fe(II) salts is inhibited by the chelating agent desferrioxamine, and by EDTA and diethylenetriaminepentaacetic acid at concentrations greater than those of Fe(II) salt. Aluminium salts slightly stimulate the peroxidation of peroxide-depleted linolenic acid micelles, but they do not accelerate the peroxidation induced by addition of iron(II) salts to the micelles at acidic pH. Aluminium salts accelerate the peroxidation observed when human erythrocytes are treated with hydrogen peroxide at pH 7.4. Desferrioxamine decreases the peroxidation. We suggest that Al(III) ions produce an alteration in membrane structure that facilitates lipid peroxidation, and that the increased formation of fluorescent age pigments in the nervous system of patients exposed to toxic amounts of Al(III) may be related to this phenomenon. The ability of desferal to bind both iron (III) and aluminium(III) salts and to inhibit lipid peroxidation makes it an especially useful chelating agent in the treatment of 'aluminium overload'. PMID:2861853

  7. Effect of mild iron overload on liver and kidney lipid peroxidation.

    PubMed

    Galleano, M; Puntarulo, S

    1994-10-01

    1. Hepatotoxicity is the most common finding in patients with iron overload since the liver is the major recipient of iron excess, even though the kidney could be a target of iron toxicity. The effect of iron overload was studied in the early stages after iron-dextran injection in rats, as a model for secondary hemocromatosis. 2. Total hepatic and kidney iron content was markedly elevated over control values 20 h after the iron administration. Plasma GOT, GPT and LDH activities were not affected, suggesting that liver cell permeability was not affected by necrosis. 3. Spontaneous liver chemiluminescence was measured as an indicator of oxidative stress and lipid peroxidation. Light emission was increased four-fold 6 h after iron supplementation. 4. Increases in the generation of thiobarbituric acid reactive substances (TBARS in liver and kidney homogenates were detected after iron administration. 5. The activities of catalase, SOD and glutathione peroxidase were determined. Enzymatic activities declined in liver homogenates by 25, 36 and 32%, respectively, 20 h after iron injection. These activities were not affected in kidney as compared to control values, except for SOD activity that was decreased by 26%. 6. The content of alpha-tocopherol was decreased by 31% in whole kidney homogenates and by 40% in plasma. 7. Our data indicate that lipid peroxidation occurs after mild iron overload both in liver and kidney. Enzymatic antioxidants are consumed significantly in liver and alpha-tocopherol content decreases in kidney, suggesting an organ-specific antioxidant effect.

  8. Amelioration of ionizing radiation induced lipid peroxidation in mouse liver by Moringa oleifera Lam. leaf extract.

    PubMed

    Sinha, Mahuya; Das, Dipesh Kr; Datta, Sanjukta; Ghosh, Santinath; Dey, Sanjit

    2012-03-01

    Protective effect of Moringa oleifera leaf extract (MoLE) against radiation-induced lipid peroxidation has been investigated. Swiss albino mice, selected from an inbred colony, were administered with MoLE (300 mg/kg body wt) for 15 days before exposing to a single dose of 5 Gy 60Co-gamma radiation. After treatments, animals were necropsied at different post irradiation intervals (days 1, 7 and 15) and hepatic lipid peroxidation and reduced glutathione (GSH) contents were estimated to observe the relative changes due to irradiation and its possible amelioration by MoLE. It was observed that, MoLE treatment restored GSH in liver and prevented radiation induced augmentation in hepatic lipid peroxidation. Phytochemical analysis showed that MoLE possess various phytochemicals such as ascorbic acid, phenolics (catechin, epicatechin, ferulic acid, ellagic acid, myricetin) etc., which may play the key role in prevention of hepatic lipid peroxidation by scavenging radiation induced free radicals. PMID:22439436

  9. Initiation of in vitro lipid peroxidation by N-hydroxynorcocaine and norcocaine nitroxide.

    PubMed

    Rosen, G M; Kloss, M W; Rauckman, E J

    1982-11-01

    Norcocaine nitroxide and N-hydroxynorcocaine were found to stimulate hepatic microsomal lipid peroxidation in vitro, as measured by spin-trapping techniques using the spin trap alpha-[4-pyridyl-1-oxide]-N-tert-butylnitrone. It was determined that either norcocaine nitroxide or N-hydroxynorcocaine markedly enhanced the rate of spin trapping of lipid peroxyl radicals when added to hepatic microsomal preparations. Glutathione, in the presence of dialyzed cytosol, inhibited the formation of lipid peroxyl spin-trapped adducts. This finding suggests that cytosolic glutathione-dependent enzymes perhaps including glutathione peroxidase play an important role in the prevention of norcocaine nitroxide-or N-hydroxynorcocaine-mediated lipid peroxidation.

  10. Effect of occupation on lipid peroxidation and antioxidant status in coal-fired thermal plant workers

    PubMed Central

    Kaur, Sandeep; Gill, Manmeet Singh; Gupta, Kapil; Manchanda, KC

    2013-01-01

    Background: Air pollution from coal-fired power units is large and varied, and contributes to a significant number of negative environmental and health effects. Reactive oxygen species (ROS) have been implicated in the pathogenesis of coal dust-induced toxicity in coal-fired power plants. Aim: The aim of the study was to measure free radical damage and the antioxidant activity in workers exposed to varying levels of coal dust. Material and Methods: The study population consisted of workers in coal handling unit, turbine unit, and boiler unit (n = 50 each), working in thermal power plant; and electricians (n = 50) from same department were taken as controls. Lipid peroxidation was measured by malondialdehyde (MDA) levels and antioxidant activity was determined by superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. Statistical analysis was carried out by Student's unpaired t-test. Result: MDA levels showed significant increase (P > 0.001) in the thermal power plant workers than the electricians working in the city. The levels of SOD and GPx were significantly higher (P > 0.001) in electricians as compared to subjects working in thermal plant. Among the thermal plant workers, the coal handling unit workers showed significant increase (P > 0.001) in MDA and significant decrease in SOD and GPx than the workers of boiler and turbine unit workers. Conclusion: Oxidative stress due to increase in lipid peroxidation and decrease in antioxidant activity results from exposure to coal dust and coal combustion products during thermal plant activities. PMID:24083143

  11. Effect of ethanol and the catalase inhibitor aminotriazole on lipid peroxidation in the rat myocardium

    SciTech Connect

    Panchenko, L.F.; Pirozhkov, S.V.; Popova, S.V.; Antonenkov, V.D.

    1987-09-01

    The authors study the effect of chronic administration of ethanol and aminotriazole on the level of lipid peroxidation in the ray myocardium. The action of natural and artificial antioxidants on alcohol-induced lipid peroxidation also was studied. To determine the level of chemiluminescence, 1 ml of a sample of nuclear free homogenate or of the total fraction of particles was introduced for radioactivity measurement. After incubation the spontaneous weak luminescence was measured.

  12. Role of nitric oxide and lipid peroxidation in mechanisms of febrile convulsions in Wistar rat pups.

    PubMed

    Klyueva, Y A; Bashkatova, V G; Vitskova, G Y; Narkevich, V B; Mikoyan, V D; Vanin, A F; Chepurnov, S A; Chepurnova, N E

    2001-01-01

    Generation of nitric oxide and the content of lipid peroxidation products in the brain are increased in rat pups during febrile convulsions. NO-synthase inhibitor N-nitro-L-arginine in a dose of 250 mg/kg prevented hyperthermia-induced accumulation of nitric oxide, increased the latency febrile convulsions, and had no effect on the content of lipid peroxidation products. PMID:11329081

  13. [The effect of transvenous laser therapy on lipid peroxidation function in patients with ischemic heart disease].

    PubMed

    Vakhliaev, V D; Smirnova, I E; Uchaĭkina, L V; Barsel', V A; Aksiutina, M S; Matveeva, S A; Paramonova, M A; Shchedrina, I S; Syrkin, A L

    1992-07-01

    The papers deals with changes in the levels of lipid peroxidation products in patients with stable angina of effort, which occurred with intravenous helium-neon blood irradiation. The therapy was highly effective in patients with lower functional classes and persons with normal circulation, resulting in a reduction in lipid peroxidation intensity. Predictors are recommended to determine the efficiency and expediency of laser therapy in patients with coronary heart disease. PMID:1487878

  14. [Terahertz radiations application of nitrogen oxide frequencies for correction of antioxidant properties of blood and lipid peroxidation in the conditions of stress].

    PubMed

    Kirichuk, B F; Tsymbal, A A

    2010-02-01

    The effect of terahertz radiations of oxide nitrogen 150.176-150.664 GHz frequencies on intensity of lipid peroxidation processes and antioxidant properties of the white rat blood in stress condition was studied. It was shown that under terahertz radiations 150.176-150.664 GHz its effect in the form of full normalization of the lipid peroxidation processes flow and functional activity of antioxidants against a background of stress in white rats was observed. PMID:20432719

  15. 'Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich's ataxia'

    PubMed Central

    Abeti, R; Parkinson, M H; Hargreaves, I P; Angelova, P R; Sandi, C; Pook, M A; Giunti, P; Abramov, A Y

    2016-01-01

    Friedreich's ataxia (FRDA) is an inherited neurodegenerative disease. The mutation consists of a GAA repeat expansion within the FXN gene, which downregulates frataxin, leading to abnormal mitochondrial iron accumulation, which may in turn cause changes in mitochondrial function. Although, many studies of FRDA patients and mouse models have been conducted in the past two decades, the role of frataxin in mitochondrial pathophysiology remains elusive. Are the mitochondrial abnormalities only a side effect of the increased accumulation of reactive iron, generating oxidative stress? Or does the progressive lack of iron-sulphur clusters (ISCs), induced by reduced frataxin, cause an inhibition of the electron transport chain complexes (CI, II and III) leading to reactive oxygen species escaping from oxidative phosphorylation reactions? To answer these crucial questions, we have characterised the mitochondrial pathophysiology of a group of disease-relevant and readily accessible neurons, cerebellar granule cells, from a validated FRDA mouse model. By using live cell imaging and biochemical techniques we were able to demonstrate that mitochondria are deregulated in neurons from the YG8R FRDA mouse model, causing a decrease in mitochondrial membrane potential (▵Ψm) due to an inhibition of Complex I, which is partially compensated by an overactivation of Complex II. This complex activity imbalance leads to ROS generation in both mitochondrial matrix and cytosol, which results in glutathione depletion and increased lipid peroxidation. Preventing this increase in lipid peroxidation, in neurons, protects against in cell death. This work describes the pathophysiological properties of the mitochondria in neurons from a FRDA mouse model and shows that lipid peroxidation could be an important target for novel therapeutic strategies in FRDA, which still lacks a cure. PMID:27228352

  16. Influence of cow or goat milk consumption on antioxidant defence and lipid peroxidation during chronic iron repletion.

    PubMed

    Díaz-Castro, Javier; Pérez-Sánchez, Luis J; Ramírez López-Frías, Mercedes; López-Aliaga, Inmaculada; Nestares, Teresa; Alférez, María J M; Ojeda, M Luisa; Campos, Margarita S

    2012-07-14

    Despite Fe deficiency and overload having been widely studied, no studies are available about the influence of milk consumption on antioxidant defence and lipid peroxidation during the course of these highly prevalent cases. The objective of the present study was to assess the influence of cow or goat milk-based diets, either with normal or Fe-overload, on antioxidant defence and lipid peroxidation in the liver, brain and erythrocytes of control and anaemic rats after chronic Fe repletion. Weanling male rats were randomly divided into two groups: a control group receiving a normal-Fe diet (45 mg/kg) and an anaemic group receiving a low-Fe diet (5 mg/kg) for 40 d. Control and anaemic rats were fed goat or cow milk-based diets, either with normal Fe or Fe-overload (450 mg/kg), for 30 or 50 d. Fe-deficiency anaemia did not have any effect on antioxidant enzymes or lipid peroxidation in the organs studied. During chronic Fe repletion, superoxide dismutase (SOD) activity was higher in the group of animals fed the cow milk diet compared with the group consuming goat milk. The slight modification of catalase and glutathione peroxidise activities in animals fed the cow milk-based diet reveals that these enzymes are unable to neutralise and scavenge the high generation of free radicals produced. The animals fed the cow milk diet showed higher rates of lipid peroxidation compared with those receiving the goat milk diet, which directly correlated with the increase in SOD activity. It was concluded that goat milk has positive effects on antioxidant defence, even in a situation of Fe overload, limiting lipid peroxidation. PMID:22018161

  17. Lipid peroxidation by "free" iron ions and myoglobin as affected by dietary antioxidants in simulated gastric fluids.

    PubMed

    Lapidot, Tair; Granit, Rina; Kanner, Joseph

    2005-05-01

    Grilled red turkey muscle (Doner Kabab) is a real "fast food" containing approximately 200 microM hydroperoxides, homogenized in simulated gastric fluid and oxidized more rapidly at pH 3.0 than at pH 5.0, after 180 min, producing 1200 and 600 microM hydroperoxides, respectively. The effects of "free" iron ions and metmyoglobin, two potential catalyzers of lipid peroxidation in muscle foods, were evaluated for linoleic acid peroxidation at pH 3.0 of simulated gastric fluid. The prooxidant effects of free iron ions on linoleic acid peroxidation in simulated gastric fluid was evaluated in the presence of ascorbic acid. At low concentrations of ascorbic acid, the effects were prooxidative, which was reversed at high concentrations. In the presence of metmyoglobin, ascorbic acid with or without free iron enhanced the antioxidative effect. Lipid peroxidation by an iron-ascorbic acid system was inhibited totally by 250-500 microM catechin at pH 3.0. The catechin antioxidant effect was determined also in the iron-ascorbic acid system containing metmyoglobin. In this system, catechin totally inhibited lipid peroxidation at a concentration 20-fold lower than without metmyoglobin. The ability of catechin to inhibit lipid peroxidation was also determined at a low pH with beta-carotene as a sensitive target molecule for oxidation. The results show that a significant protection was achieved only with almost 100-fold higher antioxidant concentration. Polyphenols from different groups were determined for the antioxidant activity at pH 3.0. The results show a high antioxidant activity of polyphenols with orthodihydroxylated groups at the B ring, unsaturation, and the presence of a 4-oxo group in the heterocyclic ring, as demonstrated by quercetin. PMID:15853376

  18. Lipid peroxidation by "free" iron ions and myoglobin as affected by dietary antioxidants in simulated gastric fluids.

    PubMed

    Lapidot, Tair; Granit, Rina; Kanner, Joseph

    2005-05-01

    Grilled red turkey muscle (Doner Kabab) is a real "fast food" containing approximately 200 microM hydroperoxides, homogenized in simulated gastric fluid and oxidized more rapidly at pH 3.0 than at pH 5.0, after 180 min, producing 1200 and 600 microM hydroperoxides, respectively. The effects of "free" iron ions and metmyoglobin, two potential catalyzers of lipid peroxidation in muscle foods, were evaluated for linoleic acid peroxidation at pH 3.0 of simulated gastric fluid. The prooxidant effects of free iron ions on linoleic acid peroxidation in simulated gastric fluid was evaluated in the presence of ascorbic acid. At low concentrations of ascorbic acid, the effects were prooxidative, which was reversed at high concentrations. In the presence of metmyoglobin, ascorbic acid with or without free iron enhanced the antioxidative effect. Lipid peroxidation by an iron-ascorbic acid system was inhibited totally by 250-500 microM catechin at pH 3.0. The catechin antioxidant effect was determined also in the iron-ascorbic acid system containing metmyoglobin. In this system, catechin totally inhibited lipid peroxidation at a concentration 20-fold lower than without metmyoglobin. The ability of catechin to inhibit lipid peroxidation was also determined at a low pH with beta-carotene as a sensitive target molecule for oxidation. The results show that a significant protection was achieved only with almost 100-fold higher antioxidant concentration. Polyphenols from different groups were determined for the antioxidant activity at pH 3.0. The results show a high antioxidant activity of polyphenols with orthodihydroxylated groups at the B ring, unsaturation, and the presence of a 4-oxo group in the heterocyclic ring, as demonstrated by quercetin.

  19. Visible Light-Induced Lipid Peroxidation of Unsaturated Fatty Acids in the Retina and the Inhibitory Effects of Blueberry Polyphenols.

    PubMed

    Liu, Yixiang; Zhang, Di; Hu, Jimei; Liu, Guangming; Chen, Jun; Sun, Lechang; Jiang, Zedong; Zhang, Xichun; Chen, Qingchou; Ji, Baoping

    2015-10-28

    The lipid peroxidation of unsaturated fatty acids (UFAs) in the retina not only threatens visual cells but also affects the physiological health of the retina. In this work, the potential damages caused by daily visible light exposure on retinal UFAs were evaluated via a simulated in vitro model. At the same time, the benefits of dietary supplementation of blueberries to the eyes were also assessed. After prolonged light exposure, lipid peroxidation occurred for both docosahexaenoic and arachidonic acids (DHA and AA, respectively). The oxidized UFAs presented obvious cytotoxicity and significantly inhibited cell growth in retinal pigment epithelium cells. Among the different blueberry polyphenol fractions, the flavonoid-rich fraction, in which quercetin was discovered as the main component, was considerably better in preventing visible light-induced DHA lipid peroxidation than the anthocyanin- and phenolic acid-rich fractions. Then the retinal protective activity of blueberry polyphenols against light-induced retinal injury was confirmed in vivo. On the basis of the above results, inhibiting lipid peroxidation of UFAs in the retina is proposed to be another important function mechanism for antioxidants to nourish eyes. PMID:26456696

  20. Visible Light-Induced Lipid Peroxidation of Unsaturated Fatty Acids in the Retina and the Inhibitory Effects of Blueberry Polyphenols.

    PubMed

    Liu, Yixiang; Zhang, Di; Hu, Jimei; Liu, Guangming; Chen, Jun; Sun, Lechang; Jiang, Zedong; Zhang, Xichun; Chen, Qingchou; Ji, Baoping

    2015-10-28

    The lipid peroxidation of unsaturated fatty acids (UFAs) in the retina not only threatens visual cells but also affects the physiological health of the retina. In this work, the potential damages caused by daily visible light exposure on retinal UFAs were evaluated via a simulated in vitro model. At the same time, the benefits of dietary supplementation of blueberries to the eyes were also assessed. After prolonged light exposure, lipid peroxidation occurred for both docosahexaenoic and arachidonic acids (DHA and AA, respectively). The oxidized UFAs presented obvious cytotoxicity and significantly inhibited cell growth in retinal pigment epithelium cells. Among the different blueberry polyphenol fractions, the flavonoid-rich fraction, in which quercetin was discovered as the main component, was considerably better in preventing visible light-induced DHA lipid peroxidation than the anthocyanin- and phenolic acid-rich fractions. Then the retinal protective activity of blueberry polyphenols against light-induced retinal injury was confirmed in vivo. On the basis of the above results, inhibiting lipid peroxidation of UFAs in the retina is proposed to be another important function mechanism for antioxidants to nourish eyes.

  1. The effect of ghee (clarified butter) on serum lipid levels and microsomal lipid peroxidation.

    PubMed

    Sharma, Hari; Zhang, Xiaoying; Dwivedi, Chandradhar

    2010-04-01

    Ghee, also known as clarified butter, has been utilized for thousands of years in Ayurveda as a therapeutic agent. In ancient India, ghee was the preferred cooking oil. In the last several decades, ghee has been implicated in the increased prevalence of coronary artery disease (CAD) in Asian Indians due to its content of saturated fatty acids and cholesterol and, in heated ghee, cholesterol oxidation products. Our previous research on Sprague-Dawley outbred rats, which serve as a model for the general population, showed no effect of 5 and 10% ghee-supplemented diets on serum cholesterol and triglycerides. However, in Fischer inbred rats, which serve as a model for genetic predisposition to diseases, results of our previous research showed an increase in serum total cholesterol and triglyceride levels when fed a 10% ghee-supplemented diet. In the present study, we investigated the effect of 10% dietary ghee on microsomal lipid peroxidation, as well as serum lipid levels in Fischer inbred rats to assess the effect of ghee on free radical mediated processes that are implicated in many chronic diseases including cardiovascular disease. Results showed that 10% dietary ghee fed for 4 weeks did not have any significant effect on levels of serum total cholesterol, but did increase triglyceride levels in Fischer inbred rats. Ghee at a level of 10% in the diet did not increase liver microsomal lipid peroxidation or liver microsomal lipid peroxide levels. Animal studies have demonstrated many beneficial effects of ghee, including dose-dependent decreases in serum total cholesterol, low density lipoprotein (LDL), very low density lipoprotein (VLDL), and triglycerides; decreased liver total cholesterol, triglycerides, and cholesterol esters; and a lower level of nonenzymatic-induced lipid peroxidation in liver homogenate. Similar results were seen with heated (oxidized) ghee which contains cholesterol oxidation products. A preliminary clinical study showed that high doses of

  2. Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction

    PubMed Central

    Castillo-Quan, Jorge Iván; Bartolome, Fernando; Angelova, Plamena R.; Li, Li; Pope, Simon; Cochemé, Helena M.; Khan, Shabana; Asghari, Shabnam; Bhatia, Kailash P.; Hardy, John; Abramov, Andrey Y.; Partridge, Linda

    2015-01-01

    The PLA2G6 gene encodes a group VIA calcium-independent phospholipase A2 beta enzyme that selectively hydrolyses glycerophospholipids to release free fatty acids. Mutations in PLA2G6 have been associated with disorders such as infantile neuroaxonal dystrophy, neurodegeneration with brain iron accumulation type II and Karak syndrome. More recently, PLA2G6 was identified as the causative gene in a subgroup of patients with autosomal recessive early-onset dystonia-parkinsonism. Neuropathological examination revealed widespread Lewy body pathology and the accumulation of hyperphosphorylated tau, supporting a link between PLA2G6 mutations and parkinsonian disorders. Here we show that knockout of the Drosophila homologue of the PLA2G6 gene, iPLA2-VIA, results in reduced survival, locomotor deficits and organismal hypersensitivity to oxidative stress. Furthermore, we demonstrate that loss of iPLA2-VIA function leads to a number of mitochondrial abnormalities, including mitochondrial respiratory chain dysfunction, reduced ATP synthesis and abnormal mitochondrial morphology. Moreover, we show that loss of iPLA2-VIA is strongly associated with increased lipid peroxidation levels. We confirmed our findings using cultured fibroblasts taken from two patients with mutations in the PLA2G6 gene. Similar abnormalities were seen including elevated mitochondrial lipid peroxidation and mitochondrial membrane defects, as well as raised levels of cytoplasmic and mitochondrial reactive oxygen species. Finally, we demonstrated that deuterated polyunsaturated fatty acids, which inhibit lipid peroxidation, were able to partially rescue the locomotor abnormalities seen in aged flies lacking iPLA2-VIA gene function, and restore mitochondrial membrane potential in fibroblasts from patients with PLA2G6 mutations. Taken together, our findings demonstrate that loss of normal PLA2G6 gene activity leads to lipid peroxidation, mitochondrial dysfunction and subsequent mitochondrial membrane

  3. Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats.

    PubMed

    Ince, Sinan; Kucukkurt, Ismail; Demirel, Hasan Huseyin; Acaroz, Damla Arslan; Akbel, Erten; Cigerci, Ibrahim Hakki

    2014-08-01

    The aim of the present study was to evaluate the possible protective effect of boron (B) on cyclophosphamide (CYC) induced oxidative stress in rats. Totally, thirty Wistar albino male rats were fed standard rodent diet and divided into 5 equal groups: physiological saline was given intraperitoneally (i.p.) to the control group (vehicle treated), to the second group only 75 mg kg(-1) CYC was given i.p. on the 14th d, and boron was administered (5, 10, and 20 mg kg(-1), i.p.) to the other groups for 14 d and CYC (75 mg kg(-1), i.p.) on the 14th d. CYC caused increase of malondialdehyde and decrease of glutathione levels, decrease of superoxide dismutase activities in erythrocyte and tissues, decrease of erythrocyte, heart, lung, and brain catalase, and plasma antioxidant activities. Also, CYC treatment caused to DNA damage in mononuclear leukocytes. Moreover, B exhibited protective action against the CYC-induced histopathological changes in tissues. However, treatment of B decreased severity of CYC-induced lipid peroxidation and genotoxicity on tissues. In conclusion, B has ameliorative effects against CYC-induced lipid peroxidation and genotoxicity by enhancing antioxidant defence mechanism in rat.

  4. Effect of tramadol on behavioral alterations and lipid peroxidation after transient forebrain ischemia in rats.

    PubMed

    Nagakannan, Pandian; Shivasharan, Basavaraj D; Thippeswamy, Boreddy S; Veerapur, Veeresh P

    2012-11-01

    N-methyl-D-aspartate (NMDA) antagonists and γ-aminobutyric acid (GABA) agonists are proven protective in various animal models of ischemic brain damage. Tramadol, a centrally acting opioid analgesic reportedly possesses NMDA antagonistic and GABA agonistic properties, with additional ion channel blocking activity. The aim of the present study was to evaluate the possible neuroprotective effect of tramadol hydrochloride in a rat model of transient forebrain ischemia. Male Wistar rats were pretreated with tramadol hydrochloride at doses of 10 and 20 mg/kg b.w. intraperitoneally for 4 days and were subjected to 30 min occlusion of bilateral common carotid arteries followed by reperfusion for 24 h. Impairment in sensorimotor functions was evaluated by beam walking task, spontaneous locomotor activity and hanging wire test. Animals were sacrificed and the brain homogenates were used for estimating the levels of lipid peroxidation, a marker for extent of oxidative stress. Ischemic rats exhibited a significant decrease in locomotion, grip strength and increase in beam walking latency. Tramadol attenuated the post ischemic motor impairment evidenced by improvement in the performance in sensorimotor tests. The extent of lipid peroxidation was significantly (p < 0.001) reduced by tramadol pretreatment which was higher in ischemic control. This study demonstrates the neuroprotective effect of tramadol against transient forebrain ischemia in rats. PMID:22871232

  5. A possible mechanism for initiation of lipid peroxidation by ascorbate in rat liver microsomes.

    PubMed

    Casalino, E; Sblano, C; Landriscina, C

    1996-02-01

    The mechanism by which lipid peroxidation progresses has been known for years, but there is disagreement regarding the mode of its initiation. The aim of this study was to examine: (a) the role of endogenous iron in the initiation of ascorbate-induced lipid peroxidation in microsomal and liposomal membranes; (b) the role of oxygen-free radicals in this process; and (c) the redox state of ascorbate during the course of lipid peroxidation. Ascorbate-induced lipid peroxidation was assessed by measuring hydroperoxide and thiobarbituric acid reactive substances (TBARS) formation in membranes after incubation in Tris-HCl buffer (pH 7.4) for 15 min. To confirm the role of endogenous iron and oxygen-free radicals, the effect of iron chelating agents (EDTA and thiourea) and radical scavengers (benzoate, mannitol, catalase and SOD) on lipid peroxidation was examined. Spectrophotometric measurements and ESR spectra have made it possible to determine ascorbate concentration and its redox state. Ascorbate promoted lipid peroxidation in both rat liver microsomes and liposomes without addition of exogenous iron. Iron chelating agents such as EDTA and thiourea inhibited lipid peroxidation, while SOD, catalase, mannitol and benzoate had no effect. The addition of 5 microM Fe2+ (or Fe3+) to the incubation mixture did not significantly alter hydroperoxide production, but that of TBARS was increased. Lipid peroxidation significantly altered the fatty acid profile in microsomes and liposomes, the most affected being the C20:4 and C22:6 species. Ascorbate in Tris-HCl buffer (pH 7.4) autoxidized very slowly. Its oxidation was catalyzed by Fe3+ ions at a rate determined by incubation time and iron concentration. In contrast, no ascorbate oxidation occurred in the presence of microsomes when lipid peroxidation was proceeding at a maximal rate. Under these conditions a typical ascorbyl radical ESR spectrum signal greater than that arising from ascorbate alone was obtained and the magnitude

  6. Lipid peroxidation affects red blood cells membrane properties in patients with systemic lupus erythematosus.

    PubMed

    Spengler, M I; Svetaz, M J; Leroux, M B; Bertoluzzo, S M; Parente, F M; Bosch, P

    2014-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune, chronic inflammatory, non-organ specific disease with an important morbimortality affecting several organs and systems. Oxidative stress is a well documented mechanism of red blood cells (RBC) mechanical impairment. Free radicals could produced, through lipid peroxidation, physical and chemical alterations in the cellular membrane properties modifying its composition, packing and lipid distribution on the membrane erythrocyte. The aim of the present work is to study the lipid peroxidation in the RBC membrane in SLE patients (n = 42) affecting so far the lipid membrane fluidity and erythrocyte deformability in comparison with healthy controls (n = 52). Malonildialdehyde (MDA) is a subrogate assessing lipidic peroxidation, rigidity index estimating erythrocyte deformability and the anisotropy coefficient estimating lipid membrane fluidity were used. Our results show that MDA values are increased, while erythrocyte deformability and membrane fluidity are significantly decreased in erythrocyte membrane from SLE patients in comparison with normal controls. The association of thiobarbituric acid reactive substances (TBARS) with membrane lipid fluidity and erythrocyte deformability confirms that the damage of membrane properties is produced by lipid peroxidation. PMID:23603321

  7. In vivo activation of N-methyl-D-aspartate receptors in the rat hippocampus increases prostaglandin E(2) extracellular levels and triggers lipid peroxidation through cyclooxygenase-mediated mechanisms.

    PubMed

    Pepicelli, O; Fedele, E; Bonanno, G; Raiteri, M; Ajmone-Cat, M A; Greco, A; Levi, G; Minghetti, L

    2002-06-01

    Cyclooxygenases (COX) are a family of enzymes involved in the biosynthesis of prostaglandin (PG) and thromboxanes. The inducible enzyme cyclooxygenase-2 (COX-2) is the major isoform found in normal brain, where it is constitutively expressed in neurons and is further up-regulated during several pathological events, including seizures and ischaemia. Emerging evidence suggests that COX-2 is implicated in excitotoxic neurodegenerative phenomena. It remains unclear whether PGs or other products associated to COX activity take part in these processes. Indeed, it has been suggested that reactive oxygen species, produced by COX, could mediate neuronal damage. In order to obtain direct evidence of free radical production during COX activity, we undertook an in vivo microdialysis study to monitor the levels of PGE(2) and 8-epi-PGF(2alpha) following infusion of N-methyl-D-aspartate (NMDA). A 20-min application of 1 mm NMDA caused an immediate, MK-801-sensitive increase of both PGE(2) and 8-epi-PGF(2alpha) basal levels. These effects were largely prevented by the specific cytosolic phospholipase A(2) (cPLA(2) ) inhibitor arachidonyl trifluoromethyl ketone (ATK), by non- selective COX inhibitors indomethacin and flurbiprofen or by the COX-2 selective inhibitor NS-398, suggesting that the NMDA-evoked prostaglandin synthesis and free radical-mediated lipid peroxidation are largely dependent on COX-2 activity. As several lines of evidence suggest that prostaglandins may be potentially neuroprotective, our findings support the hypothesis that free radicals, rather than prostaglandins, mediate the toxicity associated to COX-2 activity.

  8. Effect of aluminum ion on Fe(2+)-induced lipid peroxidation in phospholipid liposomes under acidic conditions.

    PubMed

    Ohyashiki, T; Karino, T; Suzuki, S; Matsui, K

    1996-11-01

    The effects of Al3+ on Fe(2+)-induced lipid peroxidation in phospholipid liposomes consisting of phosphatidylcholine (PC) and phosphatidylserine (PS) were examined under acidic conditions. The stimulatory effect of Al3+ on Fe(2+)-induced lipid peroxidation in the liposomes showed a biphasic response against pH variation, and the maximum stimulation was observed around pH 6.0. In addition, it was found that the stimulatory effect of Al3+ on the lipid peroxidation was dependent on the proportion of PS in the liposomes. On the other hand, the lipid peroxidation in PC liposomes was not stimulated by the addition of Al3+. From these findings, it is suggested that the Al3+ effect on Fe(2+)-induced lipid peroxidation under acidic conditions is largely dependent on the phospholipid composition. Trivalent cations such as Tb3+ and Ga3+ also stimulated Fe(2+)-induced lipid peroxidation in PC/PS liposomes under acidic conditions, but divalent cations (Zn2+ and Mn2+) showed no stimulatory effect. The extents of Fe2+ disappearance and Fe3+ formation during the reaction were enhanced by the addition of Al3+ or Ga2+, but Tb3+ had no effect on Fe2+ disappearance. The results with 1,6-diphenyl-1,3,5-hexatriene (DPH) showed that the fluorescence anisotropy of DPH-labeled PC/PS liposomes under acidic conditions was increased by the addition of Al3+. Furthermore, there is a relation between the extents of the fluorescence anisotropy of the complex and TBARS production. In contrast, the fluorescence anisotropy of DPH molecules embedded in PC liposomes was not changed by the addition of Al3+. Based on these results, a possible mechanism of the stimulatory effect of Al3+ on Fe(2+)-induced lipid peroxidation under acidic conditions is discussed. PMID:8982853

  9. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis.

    PubMed

    Trotta, R J; Sullivan, S G; Stern, A

    1983-06-15

    Red cells exposed to t-butyl hydroperoxide undergo lipid peroxidation, haemoglobin degradation and hexose monophosphate-shunt stimulation. By using the lipid-soluble antioxidant 2,6-di-t-butyl-p-cresol, the relative contributions of t-butyl hydroperoxide and membrane lipid hydroperoxides to oxidative haemoglobin changes and hexose monophosphate-shunt stimulation were determined. About 90% of the haemoglobin changes and all of the hexose monophosphate-shunt stimulation were caused by t-butyl hydroperoxide. The remainder of the haemoglobin changes appeared to be due to reactions between haemoglobin and lipid hydroperoxides generated during membrane peroxidation. After exposure of red cells to t-butyl hydroperoxide, no lipid hydroperoxides were detected iodimetrically, whether or not glucose was present in the incubation. Concentrations of 2,6-di-t-butyl-p-cresol, which almost totally suppressed lipid peroxidation, significantly inhibited haemoglobin binding to the membrane but had no significant effect on hexose monophosphate shunt stimulation, suggesting that lipid hydroperoxides had been decomposed by a reaction with haem or haem-protein and not enzymically via glutathione peroxidase. The mechanisms of lipid peroxidation and haemoglobin oxidation and the protective role of glucose were also investigated. In time-course studies of red cells containing oxyhaemoglobin, methaemoglobin or carbonmono-oxyhaemoglobin incubated without glucose and exposed to t-butyl hydroperoxide, haemoglobin oxidation paralleled both lipid peroxidation and t-butyl hydroperoxide consumption. Lipid peroxidation ceased when all t-butyl hydroperoxide was consumed, indicating that it was not autocatalytic and was driven by initiation events followed by rapid propagation and termination of chain reactions and rapid non-enzymic decomposition of lipid hydroperoxides. Carbonmono-oxyhaemoglobin and oxyhaemoglobin were good promoters of peroxidation, whereas methaemoglobin relatively spared the

  10. [The composition of lipids and lipid peroxidation in the pancreas of quails exposed to nitrates and correction by the amaranth's seeds].

    PubMed

    Tsekhmistrenko, S I; Ponomarenko, N V

    2013-01-01

    Researches of features of lipid composition, functioning of the system of antioxidant defense, maintenance of lipid peroxidation products in the quail's pancreas on the early postnatal ontogenesis stages are conducted for actions of nitrates and feeding with amaranth's seeds in mixed fodder. The arrival of nitrates in the organism of quails results in the decline of general lipids maintenance and nonetherified fat acids in the pancreas. Using of amaranth's seeds in mixed fodder on the background of the nitrate loading results in the increase of activity of the enzimes system of antioxidant defence, the growth of general lipid level in the quail's pancreas. Thus in correlation with separate classes of lipid maintenance of cholesterol goes down for certain, whereas the maintenance of triacylglycerols and ethers of cholesterol rises. The results obtained in the researches show the ability of amaranth's seeds to avert oxidative stress in quail's pancreas under nitrates influence.

  11. Carbon Monoxide Modulates Connexin Function through a Lipid Peroxidation-Dependent Process: A Hypothesis.

    PubMed

    Retamal, Mauricio A

    2016-01-01

    Hemichannels are ion channels composed of six connexins (Cxs), and they have the peculiarity to be permeable not only to ions, but also to molecules such as ATP and glutamate. Under physiological conditions they present a low open probability, which is sufficient to enable them to participate in several physiological functions. However, massive and/or prolonged hemichannel opening induces or accelerates cell death. Therefore, the study of the molecular mechanisms that control hemichannel activity appears to be essential for understanding several physiological and pathological processes. Carbon monoxide (CO) is a gaseous transmitter that modulates many cellular processes, some of them through modulation of ion channel activity. CO exerts its biological actions through the activation of guanylate cyclase and/or inducing direct carbonylation of proline, threonine, lysine, and arginine. It is well accepted that guanylate cyclase dependent pathway and direct carbonylation, are not sensitive to reducing agents. However, it is important to point out that CO-through a lipid peroxide dependent process-can also induce a secondary carbonylation in cysteine groups, which is sensitive to reducing agents. Recently, in our laboratory we demonstrated that the application of CO donors to the bath solution inhibited Cx46 hemichannel currents in Xenopus laevis oocytes, a phenomenon that was fully reverted by reducing agents. Therefore, a plausible mechanism of CO-induced Cx46 hemichannel inhibition is through Cx46-lipid oxidation. In this work, I will present current evidence and some preliminary results that support the following hypothesis: Carbon monoxide inhibits Cx46 HCs through a lipid peroxidation-dependent process. The main goal of this paper is to broaden the scientific community interest in studying the relationship between CO-Fatty acids and hemichannels, which will pave the way to more research directed to the understanding of the molecular mechanism(s) that control the

  12. Carbon Monoxide Modulates Connexin Function through a Lipid Peroxidation-Dependent Process: A Hypothesis.

    PubMed

    Retamal, Mauricio A

    2016-01-01

    Hemichannels are ion channels composed of six connexins (Cxs), and they have the peculiarity to be permeable not only to ions, but also to molecules such as ATP and glutamate. Under physiological conditions they present a low open probability, which is sufficient to enable them to participate in several physiological functions. However, massive and/or prolonged hemichannel opening induces or accelerates cell death. Therefore, the study of the molecular mechanisms that control hemichannel activity appears to be essential for understanding several physiological and pathological processes. Carbon monoxide (CO) is a gaseous transmitter that modulates many cellular processes, some of them through modulation of ion channel activity. CO exerts its biological actions through the activation of guanylate cyclase and/or inducing direct carbonylation of proline, threonine, lysine, and arginine. It is well accepted that guanylate cyclase dependent pathway and direct carbonylation, are not sensitive to reducing agents. However, it is important to point out that CO-through a lipid peroxide dependent process-can also induce a secondary carbonylation in cysteine groups, which is sensitive to reducing agents. Recently, in our laboratory we demonstrated that the application of CO donors to the bath solution inhibited Cx46 hemichannel currents in Xenopus laevis oocytes, a phenomenon that was fully reverted by reducing agents. Therefore, a plausible mechanism of CO-induced Cx46 hemichannel inhibition is through Cx46-lipid oxidation. In this work, I will present current evidence and some preliminary results that support the following hypothesis: Carbon monoxide inhibits Cx46 HCs through a lipid peroxidation-dependent process. The main goal of this paper is to broaden the scientific community interest in studying the relationship between CO-Fatty acids and hemichannels, which will pave the way to more research directed to the understanding of the molecular mechanism(s) that control the

  13. Carbon Monoxide Modulates Connexin Function through a Lipid Peroxidation-Dependent Process: A Hypothesis

    PubMed Central

    Retamal, Mauricio A.

    2016-01-01

    Hemichannels are ion channels composed of six connexins (Cxs), and they have the peculiarity to be permeable not only to ions, but also to molecules such as ATP and glutamate. Under physiological conditions they present a low open probability, which is sufficient to enable them to participate in several physiological functions. However, massive and/or prolonged hemichannel opening induces or accelerates cell death. Therefore, the study of the molecular mechanisms that control hemichannel activity appears to be essential for understanding several physiological and pathological processes. Carbon monoxide (CO) is a gaseous transmitter that modulates many cellular processes, some of them through modulation of ion channel activity. CO exerts its biological actions through the activation of guanylate cyclase and/or inducing direct carbonylation of proline, threonine, lysine, and arginine. It is well accepted that guanylate cyclase dependent pathway and direct carbonylation, are not sensitive to reducing agents. However, it is important to point out that CO—through a lipid peroxide dependent process—can also induce a secondary carbonylation in cysteine groups, which is sensitive to reducing agents. Recently, in our laboratory we demonstrated that the application of CO donors to the bath solution inhibited Cx46 hemichannel currents in Xenopus laevis oocytes, a phenomenon that was fully reverted by reducing agents. Therefore, a plausible mechanism of CO-induced Cx46 hemichannel inhibition is through Cx46-lipid oxidation. In this work, I will present current evidence and some preliminary results that support the following hypothesis: Carbon monoxide inhibits Cx46 HCs through a lipid peroxidation-dependent process. The main goal of this paper is to broaden the scientific community interest in studying the relationship between CO-Fatty acids and hemichannels, which will pave the way to more research directed to the understanding of the molecular mechanism(s) that control

  14. Effects of glycyl-histidyl-lysyl chelated Cu(II) on ferritin dependent lipid peroxidation.

    PubMed

    Miller, D M; DeSilva, D; Pickart, L; Aust, S D

    1990-01-01

    The copper binding tripeptide, glycyl-L-histidyl-L-lysine [GHK:Cu(II)] has a plethora of biological effects related to the wound healing process. The presence of iron complexes in damaged tissues is detrimental to wound healing, due to local inflammation, as well as microbial infection mediated by iron. To test if the wound healing properties of GHK:Cu(II) are due to an affect on iron metabolism, we examined the effects of GHK:Cu(II) on iron catalyzed lipid peroxidation. GHK:Cu(II) inhibited lipid peroxidation only if the iron source was ferritin. Whereas GHK:Cu(II) inhibited ferritin iron release it did not exhibit significant superoxide dismutase-like or ceruloplasmin-like activity. We propose that GHK:Cu(II) binds to the channels of ferritin involved in iron release and physically prevents the release of Fe(II). Thus, a biological effect of GHK:Cu(II), possibly related to wound healing, may be the inhibition of ferritin iron release in damaged tissues, preventing inflammation and microbial infections. PMID:2244543

  15. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells

    NASA Astrophysics Data System (ADS)

    Clark, Andrea J.; Petty, Howard R.

    2016-02-01

    Although metal-metal oxide nanoparticles have attracted considerable interest as catalysts, they have attracted little interest in nanomedicine. This is likely due to the fact that metal oxide semiconductors generally require biologically harmful ultraviolet excitation. In contrast, this study focuses upon WO3/Pt nanoparticles, which can be excited by visible light. To optimize the nanoparticles’ catalytic performance, platinization was performed at alkaline pH. These nanoparticles destroyed organic dyes, consumed dissolved oxygen and produced hydroxyl radicals. 4T1 breast cancer cells internalized WO3/Pt nanoparticles within the membrane-bound endo-lysosomal compartment as shown by electron and fluorescence microscopy. During visible light exposure, but not in darkness, WO3/Pt nanoparticles manufacture reactive oxygen species, promote lipid peroxidation, and trigger lysosomal membrane disruption. As cells of the immune system degrade organic molecules, produce reactive oxygen species, and activate the lipid peroxidation pathway within target cells, these nanoparticles mimic the chemical attributes of immune effector cells. These biomimetic nanoparticles should become useful in managing certain cancers, especially ocular cancer.

  16. Lipid peroxidation product 4-hydroxynonenal as factor of oxidative homeostasis supporting bone regeneration with bioactive glasses.

    PubMed

    Mrakovcic, Lidija; Wildburger, Renate; Jaganjac, Morana; Cindric, Marina; Cipak, Ana; Borovic-Sunjic, Suzana; Waeg, Georg; Milankovic, Andrea M; Zarkovic, Neven

    2010-01-01

    Bone regeneration is a process of vital importance since fractures of long bones and large joints have a highly deleterious impact on both, individuals and society. Numerous attempts have been undertaken to alleviate this severe medical and social problem by development of novel bioactive materials, among which bioactive glass is the most attractive because of its osteoconductive and osteostimulative properties. Since lipid peroxidation is an important component of systematic stress response in patients with traumatic brain injuries and bone fractures, studies have been undertaken of the molecular mechanisms of the involvement of 4-hydroxynonenal (HNE), an end product of lipid peroxidation, in cellular growth regulation. We found that HNE generated in bone cells grown in vitro on the surfaces of bioactive glasses 45S5 and 13-93. This raises an interesting possibility of combined action of HNE and ionic bioglass dissolution products in enhanced osteogenesis probably through a mitogen-activated protein kinase (MAPK) pathway. While the proposed mechanism still has to be elucidated, the finding of HNE generation on bioglass offers a new interpretation of the osteoinducting mechanisms of bioglass and suggests the possibility of tissue engineering based on manipulations of oxidative homeostasis.

  17. Effects of Resveratrol Supplementation on Oxidative Damage and Lipid Peroxidation Induced by Strenuous Exercise in Rats.

    PubMed

    Xiao, Ning-Ning

    2015-07-01

    The purpose of the present study was to investigate the effects of resveratrol supplementation on oxidative damage and lipid peroxidation induced by strenuous exercise in rats. The rats were randomly divided into five groups: a sedentary control group, an exercise control group, and three treatment exercise groups administered increasing doses of resveratrol (25, 50, and 100 mg/kg body weight). Resveratrol was administered by oral gavage once daily for four weeks. At the end of the four-week period, the rats performed a strenuous exercise on the treadmill, and the levels of lactate dehydrogenase (LDH), creatine kinase (CK), malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured. The results showed that resveratrol supplementation had protective effects against strenuous exercise-induced oxidative damage and lipid peroxidation by lowering the levels of LDH, CK, MDA, 4-HNE, and 8-OHdG in the serum or muscle of rats. These beneficial effects are probably owing to the inherent antioxidant activities of resveratrol.

  18. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells.

    PubMed

    Clark, Andrea J; Petty, Howard R

    2016-02-19

    Although metal-metal oxide nanoparticles have attracted considerable interest as catalysts, they have attracted little interest in nanomedicine. This is likely due to the fact that metal oxide semiconductors generally require biologically harmful ultraviolet excitation. In contrast, this study focuses upon WO3/Pt nanoparticles, which can be excited by visible light. To optimize the nanoparticles' catalytic performance, platinization was performed at alkaline pH. These nanoparticles destroyed organic dyes, consumed dissolved oxygen and produced hydroxyl radicals. 4T1 breast cancer cells internalized WO3/Pt nanoparticles within the membrane-bound endo-lysosomal compartment as shown by electron and fluorescence microscopy. During visible light exposure, but not in darkness, WO3/Pt nanoparticles manufacture reactive oxygen species, promote lipid peroxidation, and trigger lysosomal membrane disruption. As cells of the immune system degrade organic molecules, produce reactive oxygen species, and activate the lipid peroxidation pathway within target cells, these nanoparticles mimic the chemical attributes of immune effector cells. These biomimetic nanoparticles should become useful in managing certain cancers, especially ocular cancer.

  19. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells.

    PubMed

    Clark, Andrea J; Petty, Howard R

    2016-02-19

    Although metal-metal oxide nanoparticles have attracted considerable interest as catalysts, they have attracted little interest in nanomedicine. This is likely due to the fact that metal oxide semiconductors generally require biologically harmful ultraviolet excitation. In contrast, this study focuses upon WO3/Pt nanoparticles, which can be excited by visible light. To optimize the nanoparticles' catalytic performance, platinization was performed at alkaline pH. These nanoparticles destroyed organic dyes, consumed dissolved oxygen and produced hydroxyl radicals. 4T1 breast cancer cells internalized WO3/Pt nanoparticles within the membrane-bound endo-lysosomal compartment as shown by electron and fluorescence microscopy. During visible light exposure, but not in darkness, WO3/Pt nanoparticles manufacture reactive oxygen species, promote lipid peroxidation, and trigger lysosomal membrane disruption. As cells of the immune system degrade organic molecules, produce reactive oxygen species, and activate the lipid peroxidation pathway within target cells, these nanoparticles mimic the chemical attributes of immune effector cells. These biomimetic nanoparticles should become useful in managing certain cancers, especially ocular cancer. PMID:26788907

  20. Dexpanthenol attenuates lipid peroxidation and testicular damage at experimental ischemia and reperfusion injury.

    PubMed

    Etensel, Barlas; Ozkisacik, Sezen; Ozkara, Esra; Karul, Aslihan; Oztan, Onur; Yazici, Mesut; Gürsoy, Harun

    2007-02-01

    Prevention of tissue damage after testicular torsion caused by I/R injury is still a clinical and experimental problem. There are many experimental studies made with several chemicals in the literature for decreasing the effect of reactive oxygen species after ischemia and reperfusion. Dexpanthenol (Dxp) is the biologically active alcohol of pantothenic acid. Pantothenic acid increases the content of reduced glutathione, Coenzyme A and ATP in cell. We studied the effect of Dxp on lipid peroxidation and testicular damage. Forty adult rats were separated randomly into five groups: group Sh, Sham-operation; group TD, torsion-detorsion; group NS, torsion-normal saline-detorsion; group D, torsion-Dxp 250 mg/kg detorsion; group D2, torsion-Dxp 500 mg/kg detorsion group. Serum MDA levels were taken before detorsion, after torsion at the first and fifth minute and at the first hour. Tissue sample was taken at the first hour. The alterations of I/R injury on testis were histological graded. Serum MDA levels were significantly lower in group D2 compared to all groups. The histopathology score of group D2 was significantly lower than groups TD, NS and D. Histopathological score and serum MDA levels are strikingly compatible. Dxp attenuated lipid peroxidation and tissue damage at I/R injury. This effect depends on its antioxidant effect with increasingly reduced glutathione, Coenzyme A and ATP. The effect of Dxp on I/R injury has been shown for the first time in the experimental testicular torsion.

  1. [Effect of Arnica montana on the state of lipid peroxidation and protective glutathione system of rat liver in experimental toxic hepatitis].

    PubMed

    Iamemiĭ, I M; Grygor'iea, N P; Meshchyshen, I F

    1998-01-01

    Effects of Tinctura Arnica on lipids peroxidation and on the protective glutathions system of liver in rats in case of experimental toxic hepatitis have been studied. Toxic hepatitis is accompanied by deep alterations of the oxidant-antioxidant status of the body. Intoxication of the body by CCl4 results in intensification of the free radicals formation particularly in liver: accumulation of lipids peroxidation molecular products, glutathione system enzyme activity inhibition in early terms and its partial restoration in remote terms has been seen. Our studies revealed that Arnica montana infusion inhibits the rate of lipids perioxidation products formation, affects the glutathione system enzymes activity.

  2. The role of Fe3+ on Fe2+-dependent lipid peroxidation in phospholipid liposomes.

    PubMed

    Ohyashiki, Takao; Kadoya, Akinori; Kushida, Katsumi

    2002-02-01

    Fe2+-dependent lipid peroxidation in phosphatidylcholine (PC) liposomes, assessed by thiobarbituric acid-reactive substances (TBARS) production, was stimulated in the presence of Fe3+ in a concentration-dependent manner. The rates of nitroblue tetrazolium (NBT) reduction and Fe2+ oxidation (Fe2+ disappearance and Fe3+ formation) were also enhanced by the addition of Fe3+ to the reaction mixture, and there is a good linear relationship between these parameters. These results suggest that the facilitation of reactive oxygen species (ROS) production via Fe2+ oxidation is closely related to the onset of the stimulatory effect of Fe3+ on Fe2+-dependent lipid peroxidation. On the other hand, results using the liposomes containing various concentrations of endogenous lipid hydroperoxides (LOOH) indicated that endogenous LOOH is not directly involved in the onset of the Fe3+ stimulatory effect on Fe2+-dependent TBARS production and ROS production. This hypothesis was further confirmed by the evidence that Fe2+-dependent ROS production and Fe2+ oxidation of dipalmitoylphosphatidylcholine liposomes were also stimulated by the addition of Fe3+. The results with several antioxidants and radical scavengers suggested that ROS related to Fe2+-dependent lipid peroxidation and its stimulation by Fe3+ are ferrous-oxygen complexes rather than superoxide anion, hydrogen peroxide and hydroxyl radicals. Based on these results, we proposed a possible mechanism for the onset of the Fe3+ stimulation in Fe2+-dependent lipid peroxidation. PMID:11848210

  3. Membrane lipid peroxidation: propagation and inhibition by antioxidants

    SciTech Connect

    Leung, H.W.

    1981-01-01

    Peroxidation studies in microsomes and liposomes were performed to evaluate the importance of the interaction between ascorbate and ..cap alpha..-tocopherol. The peroxidation of rat liver microsomes by FeSO/sub 4/ in the presence of ascorbate was delayed compared to when NADPH replaced ascorbate as the electron donor. To further investigate the cooperation between ascorbate and vitamin E, a liposomal system containing polyunsaturated phospholipids was used. Ascorbic acid alone (30 to 100 ..mu..M) delayed peroxidation by 20, and at higher concentrations, 60 minutes. Physiological levels of vitamin E decreased peroxidation at early times but was apparently consumed during incubation. Vitamin C and vitamin E together suppressed peroxidation at early times at approximately the sum of the individual inhibitions. At longer times, the mixture was more effective than the sum of both vitamins alone. The role of glutathione and the significance of its interaction with ascorbate were studied. Glutathione was able to reduce dehydroascorbic acid, but ascorbic acid was unable to reduce oxidized glutathione disulfide. Glutathione and ascorbic acid were oxidized by NO/sub 2/ in vitro. Pulmonary levels of glutathione and ascorbic acid in guinea pigs exposed to NO/sub 2/ were lowered. After the administration of diethyl maleate, the glutathione concentration was decreased, but the ascorbic acid concentration was unaffected. Simultaneous exposure further depressed glutathione concentration, but not the ascorbic acid concentration. (ERB)

  4. Effects of pyrene on antioxidant systems and lipid peroxidation level in mangrove plants, Bruguiera gymnorrhiza.

    PubMed

    Song, Hui; Wang, You-Shao; Sun, Cui-Ci; Wang, Yu-Tu; Peng, Ya-Lan; Cheng, Hao

    2012-08-01

    The effects of polycyclic aromatic hydrocarbon (PAH) (pyrene) on superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase, peroxidase, malondialdehyde (MDA) and proline were studied in leaves, stems and roots of Bruguiera gymnorrhiza. The results showed that the responses of enzymatic and non-enzymatic antioxidants varied significantly among the three tissues studied. The activities of antioxidant enzymes in PAH-treated stems and roots fluctuated in different stress levels compared to the controls, while the antioxidant enzymes such as SOD, APX in leaves increased when stressed by PAH with a significant positive relation between PAH and leaf SOD or APX activity. Low PAH treatments could also stimulate proline in leaves and stems. MDA content was obviously accumulated in stems and roots under PAH stress while decreased in leaves, indicating that the increased antioxidant enzymes in leaves may partly alleviate lipid peroxidation. For pollution monitoring purpose, SOD and APX in leaves may be potential biomarkers of PAH pollution in intertidal estuaries.

  5. Antioxidant enzymes activity, lipid peroxidation, oxidative damage in the testis and epididymis, and steroidogenesis in rats after co-exposure to atrazine and ethanol.

    PubMed

    Abarikwu, S O; Duru, Q C; Chinonso, O V; Njoku, R-C

    2016-06-01

    Concomitant alcohol use and exposure to xenobiotics can adversely affect gonadal functions. This study investigated the oxidative status of the testis and epididymis and steroidogenesis of rats co-exposed to ethanol (EtoH, 5 mg kg(-1) b.wt.) and atrazine (ATZ, 50, 100, 300 mg kg(-1) b.wt.) for 3 weeks. The activities of catalase, superoxide dismutase, glutathione peroxidase, as well as the concentrations of glutathione and malondialdehyde, as indicators of oxidative stress were measured in the homogenates of the testis and epididymis. Testosterone and cholesterol concentrations as well as 17β-hydroxysteroid dehydrogenase (17β-HSD) activity were assayed in the plasma and testis respectively. After the administration of EtoH alone, or in combination with different doses of ATZ, oxidative damage as evident by malondialdehyde level was not observed in both the testis and epididymis. The combine exposure group showed dose-dependent decrease in plasma testosterone and testis cholesterol level and increase in testis 17β-HSD activity compared to the EtoH group. Furthermore, the testes and epididymis of the EtoH-exposed rats treated with high dose of ATZ had severe histopathological damage. Therefore, ATZ-exposed alcohol-treated rats have histological damage of the testis and epididymis and lower testosterone level than EtoH-treated rats. PMID:26364937

  6. [Effects of ozone stress upon winter wheat photosynthesis, lipid peroxidation and antioxidant systems].

    PubMed

    Zheng, You-fei; Hu, Cheng-da; Wu, Rong-jun; Liu, Rui-na; Zhao, Ze; Zhang, Jin-en

    2010-07-01

    Stress effects of surface increased ozone concentration on winter wheat photosynthesis, lipid peroxidation and antioxidant systems in varied growth stages (jointing stage, booting stage, blooming stage and grain filling stage) were studied, the winter wheat was exposed to open top chambers (OTCs) in an open field conditions to three levels ozone concentrations (CK, 100 nmol x mol(-1), 150 nmol x mol(-1)). The results revealed that within 150 nmol x mol(-1) ozone concentration, as the ozone concentration and time increased,total chlorophyll content,chlorophyll a and b contents of winter wheat leaves were general declined,but compared to CK, the total chlorophyll and chlorophyll a content of T1 treatment groups were a little higher at booting and blooming stage; the conductance of stomatal was affected, the activation of unit leaf area decreased, intercellular CO2 concentration and stomatal limitation value showed a fluctuation change tendency. At the same time, a self-protective mechanism of winter wheat were launched. Concrete expression of SOD activity first increased rapidly and then gradually decreased, the activity of POD showed a decrease firstly and then rapidly increased. From the jointing stage to the blooming stage and from the grain filling stage one to grain filling stage two, the activity of CAT rapidly increased first and then comparatively decreased, but the content of MDA kept steadily rising. The carotenoid content increased first and then decreased, heat dissipation of unit leaf area increased. These results indicate that antioxidant enzymes can not completely eliminate excessive reactive oxygen species in vivo of winter wheat, then lead to accumulation of reactive oxygen species, further exacerbate the lipid peroxidation, that result in the increase of membrane permeability, degradation of chlorophyll, reduction of net photosynthetic rate, imposing on the winter wheat leaves senescence process. PMID:20825039

  7. Medicinal Mushroom Cracked-Cap Polypore, Phellinus rimosus (Higher Basidiomycetes) Attenuates Acute Ethanol-Induced Lipid Peroxidation in Mice.

    PubMed

    Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K

    2015-01-01

    Alcohol abuse and alcoholism remain one of the major health issues worldwide, especially in developing countries. The protective effect of Phellinus rimosus against acute alcohol-induced lipid peroxidation in the liver, kidney, and brain as well as its effect against antioxidant enzyme activity such as superoxide (SOD) and catalase (CAT) in the liver was evaluated in mice. Ethyl acetate extract of Ph. Rimosus (50 mg/kg body wt, p.o.) 1 h before each administration of alcohol (3 mL/kg, p.o.; total 2 doses at 24-h intervals) protected against lipid peroxidation in all organs and attenuated the decline of SOD and CAT activity in the liver. The fold increase in lipid peroxidation, including conjugated diene and thiobarbituric acid reactive substance (TBARS) levels, was highest in the liver. There were 2.6- and 1.5- fold increases in TBARS levels in the liver of the alcohol alone- and alcohol+Ph. Rimosus-treated groups, compared with that of the normal group. Activity of SOD and CAT in the liver of alcohol- and alcohol+Ph. Rimosus- treated animals was 9.05±1.38, 18.76±1.71, and 11.26±1.02, 31.58±3.35 IU/mg protein, respectively. Extract at 1 mg/mL inhibited 50.6% activity of aniline hydroxylase (CYP2E1) in liver homogenate. From these results, we concluded that the extract significantly protected against the lipid peroxidation. Protection in the liver may be due to the inhibitory effect on CYP2E1 as well as the direct radical scavenging effect of Ph. Rimosus, which warrants further research.

  8. Continuous millimeter-wave radiation has no effect on lipid peroxidation in liposomes

    SciTech Connect

    Logani, M.K.; Ziskin, M.C.

    1996-02-01

    The effect of millimeter waves on lipid peroxidation was studied in the presence and absence of melanin. Irradiation of liposomes with continuous millimeter electromagnetic waves at frequencies of 53.6, 61.2 and 78.2 GHz and incident power densities of 10, 1 and 500 mW/cm{sup 2}, respectively, did not show an enhancement in the formation of lipid peroxides compared to unirradiated samples. Liposomes exposed to 254 nm UVC radiation at 0.32 mW/cm{sup 2} and 302 nm UVB radiation at 1.12 mW/cm{sup 2} served as positive controls. No increment in the formation of lipid peroxides was observed when irradiation of liposomes was carried out in the presence of ADP-Fe{sup +3} and EDTA-Fe{sup +3}. Direct irradiation of melanin with millimeter waves did not exhibit an increased formation of superoxide or hydrogen peroxide. The present results indicate that millimeter waves of the above frequencies and intensities do not cause lipid peroxidation in liposomal membranes. 19 refs., 2 figs., 1 tab.

  9. Lens opacity induced by lipid peroxidation products as a model of cataract associated with retinal disease.

    PubMed

    Babizhayev, M A; Deyev, A I

    1989-07-17

    The cataractous lenses of patients with retinitis pigmentosa have been studied by electron microscopy. The posterior subcapsular opacities showed common ultrastructural features. Large areas of disruption of the lens fibre pattern were observed which showed an increase in the number of fibre membranes per unit area. In many regions an elaborate and regular folding of membranes was noted which produced complex 'figure-of-eight' and 'tramline' patterns, as well as membranous lamellar bodies. Masses of various size globules were also identified. It has been established that injection into the vitreous body of the rabbit eye of a suspension of liposomes prepared from phospholipids containing lipid peroxidation products induces the development of posterior subcapsular cataract. Such modelling of cataract is based on a type of clouding of the crystalline lens similar to that observed in cataract resulting from diffusion of toxic lipid peroxidation products from the retina to the lens through the vitreous body on degeneration of the photoreceptors. Saturated liposomes (prepared from beta-oleoyl-gamma-palmitoyl-L-alpha-phosphatidylcholine) do not cause clouding of the lens, which demonstrates the peroxide mechanism of the genesis of this form of cataract. Clouding of the lens is accompanied by accumulation of fluorescing lipid peroxidation products in the vitreous body, aqueous humor and the lens and also by a fall in the concentration of reduced glutathione in the lens. From the results it is concluded that lipid peroxidation may initiate the development of cataract. PMID:2742866

  10. Fat accumulation in Caenorhabditis elegans triggered by the electrophilic lipid peroxidation product 4-Hydroxynonenal (4-HNE)

    PubMed Central

    Singh, Sharda P.; Niemczyk, Maciej; Zimniak, Ludwika; Zimniak, Piotr

    2009-01-01

    Deposition and mobilization of fat in an organism are tightly controlled by multiple levels of endocrine and neuroendocrine regulation. Because these hormonal mechanisms ultimately act by affecting biochemical reactions of fat synthesis or utilization, obesity could be also modulated by altering directly the underlying lipid biochemistry. We have previously shown that genetically modified mice with an elevated level of the lipid peroxidation product 4-HNE become obese. We now demonstrate that the process is phylogenetically conserved and thus likely to be universal. In the nematode C. elegans, disruption of either conjugation or oxidation of 4-HNE leads to fat accumulation, whereas augmentation of 4-HNE conjugation results in a lean phenotype. Moreover, direct treatment of C. elegans with synthetic 4-HNE causes increased lipid storage, directly demonstrating a causative role of 4-HNE. The postulated mechanism, which involves modulation of acetyl-CoA carboxylase activity, could contribute to the triggering and maintenance of the obese phenotype on a purely metabolic level. PMID:20157589

  11. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro

    PubMed Central

    Shodehinde, Sidiqat Adamson; Oboh, Ganiyu

    2013-01-01

    Objective To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Methods Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. Results The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe2+ chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Conclusions Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress. PMID:23730557

  12. [Metabolism, intensity of lipid peroxidation and the antioxidant defense system in humans during chamber experiments with long-term isolation].

    PubMed

    Markin, A A; Stroganova, L B; Vostrikova, L V; Balashov, O I; Nichiporuk, I A

    1997-01-01

    Blood biochemical parameters of lipid, protein, carbohydrate and energy metabolism were measured in a 135-day chamber experiment. Also, dynamics of the intensity of lipid peroxidation and status of the antioxidant defence system were evaluated. Results of the investigation showed that extended chamber isolation led to modifications of several biochemical parameters including hemoglobin, bilirubin, cholesterol and its fractions, elevated transaminase activity which are typical for long-term space mission. However, these were not accompanied by substantive changes in protein, energy and carbohydrate metabolisms, or intensity of free radical processes. Effects of prolonged stay in chamber was successfully counterbalanced by organism.

  13. [Effect of five kinds of vegetable seed oil on serum lipid and lipid peroxidation in rats].

    PubMed

    Guo, Y; Cai, X; Zhao, X; Shi, R

    2001-01-01

    The effects of vegetable seed oil on hyperlipidemia induced by high lipid diet in rats. Male adult Wistar rats were fed on the test diet containing 94% high lipid diet and 6% lard pinon seed oil, perilla seed oil, blackcurrent seed oil, borage seed oil and evening primrose seed oil respectively for 3 weeks. The results showed that the vale of trilyceride(TG), total cholesterol(TC), low density lipoprotein cholesterol (LDL-C), LDL-C/HDL-C(high density lipoprotein cholesterol) ratio increased and the vale of HDL-C/TC ratio and lecithin-cholesterol acyltransferase(LCAT) activity decreased in the groups with vegetable seed oil were less than that of the control group. The results suggested that all the five kinds of vegetable seed oil had the effect of regulating lipid metabolism of hyperlipidemia rats to some extent. Pinon seed oil and borage seed oil may be well suited for the prevention of atherosclerosis. PMID:11255765

  14. Identification of components of Prunus africana extract that inhibit lipid peroxidation.

    PubMed

    Hass, M A; Nowak, D M; Leonova, E; Levin, R M; Longhurst, P A

    1999-11-01

    Extractive and chromatographic separations were performed on V-1326, a chloroform extract from the bark of Prunus africana (also referred to as Pygeum africanum), which is used to treat the symptoms associated with benign prostate hyperplasia (BPH). The relative amounts of eleven identified constituents in crude V-1326 and in separated fractions were determined using gas chromatographic analysis. The ability of V-1326 and its separated fractions to inhibit ferrous ion-induced stimulation of lipid peroxidation in microsomal preparations from rabbit livers was evaluated. The extract, V-1326, and fractions containing high levels of myristic acid potently inhibited lipid peroxidation.

  15. [Stimulation of microsomal lipid peroxidation as the effect of combined action of xylene and ethanol].

    PubMed

    Jajte, J; Wiśniewska-Knypl, J M; Wrońska-Nofer, T

    1990-01-01

    The aim of the study was to evaluate if in the case of combined exposure of rats to xylene and ethanol stimulation of lipid peroxidation in the liver microsomes (an index of interaction with lipids and derangements of integrity/fluidity of membranes) might occur. Experiments were carried out on male Wistar rats in the conditions of prolonged, inhalatory preexposure to m-xylene at concentration of 4000 mg/m3 for 6 and 12 weeks, and next joint 5-fold treatment with ethanol (2.5 g/kg oral doses in 12 hours intervals for 3 days). The degree of lipid peroxidation was assessed both in vivo and in vitro under chemical stimulation: enzymatically (NADPH, Fe2+) and nonenzymatically (ascorbic acid, Fe2+). The chemical stimulation permits to measure multiplied biological effects of chemicals acting in vivo. As a results of performed studies it was found that the highest increase of lipid peroxidation appeared in the case of prolonged, 12 weeks exposure to m-xylene (4000 mg/m3) and successively under subacute ethanol treatment and 6-week m-xylene exposure. Thus, it was evidenced that stimulation of lipid peroxidation depends on the duration of exposure to m-xylene. Stimulation of lipid peroxidation, revealed here, may arise from the processes of biotransformation of xylene in cyt. P-450 monooxygenase system where generated oxygen free radicals may attack the lipid components of microsomal membrane as well as from the mechanisms leading to decrease of antioxidant ability of the organism (decrease of glutathione-SH and vitamins E and C levels).

  16. [Effect of N-stearoylethanolamine on the lipid peroxidation process and lipid composition of the rat liver in acute morphine intoxication].

    PubMed

    Horid'ko, T M; Hula, N M; Stohniĭ, N A; Mehed', O F; Klimashevs'kyĭ, V M; Shovkun, S A; Kindruk, N L; Berdyshev, A H

    2007-01-01

    The effect of N-stearoylethanolamine (NSE) on the lipid peroxidation process, antioxidant enzymes activity, phospholipid and fatty acid content in the rat liver tissues under acute morphine administration was studied. It was shown that morphine administration (30 mg/kg of body weight) caused an increase of the amount of thiobarbituric acid reactive substances (TBARS), alteration of antioxidant enzymes activity, decrease the protein level, quantity of total lipids and phospholipids, phosphatidylcholine, cholesterol esters; altered the content of some individual fatty acids. NSE administration (50 mg/kg of body weight) promoted normalization of the antioxidant enzymes activity and prevented the TBARS accumulation and decreased the total lipid and phospholipid quantity, increased the content of free and total cholesterol, corrected the level of free and individual fatty acids. It was assumed that NSE possessed antioxidative, membranoprotective and adaptive properties.

  17. New assays for detection and localization of endogenous lipid peroxidation products in living boar sperm after BTS dilution or after freeze-thawing.

    PubMed

    Brouwers, Jos F; Silva, Patricia F N; Gadella, Barend M

    2005-01-15

    Reactive oxygen species have been implicated in sperm aberrations causing multiple pathologies including sub- and infertility. Freeze/thawing of sperm samples is routinely performed in the cattle breeding industries for semen storage prior to artificial insemination but unusual in porcine breeding industries as semen dilution and storage at 17 degrees C is sufficient for artificial insemination within 2-3 days. However, longer semen storage requires cryopreservation of boar semen. Freeze/thawing procedures induce sperm damage and induce reactive oxygen species in mammalian sperm and boar sperm seems to be more vulnerable for this than bull sperm. We developed a new method to detect reactive oxygen species induced damage at the level of the sperm plasma membrane in bull sperm. Lipid peroxidation in freshly stored and frozen/thawed sperm cells was assessed by mass spectrometric analysis of the main endogenous lipid classes, phosphatidylcholine and cholesterol and by fluorescence techniques using the lipid peroxidation reporter probe C11-BODIPY(581/591). Peroxidation as reported by the fluorescent probe, clearly corresponded with the presence of hydroxy- and hydroperoxyphosphatidylcholine in the sperm membranes, which are early stage products of lipid peroxidation. This allowed us, for the first time, to correlate endogenous lipid peroxidation with localization of this process in the living sperm cells. Cytoplasmatic droplets in incompletely matured sperm cells were intensely peroxidized. Furthermore, lipid peroxidation was particularly strong in the mid-piece and tail of frozen/thawed spermatozoa and significantly less intense in the sperm head. Induction of peroxidation in fresh sperm cells with the lipid soluble reactive oxygen species tert-butylhydroperoxide gave an even more pronounced effect, demonstrating antioxidant activity in the head of fresh sperm cells. Furthermore, we were able to show using the flow cytometer that spontaneous peroxidation was not a

  18. [Effects of exogenous salicylic acid on membrane lipid peroxidation and photosynthetic characteristics of Cucumis sativus seedlings under drought stress].

    PubMed

    Hao, Jing-Hong; Yi, Yang; Shang, Qing-Mao; Dong, Chun-Juan; Zhang, Zhi-Gang

    2012-03-01

    To approach the related mechanisms of exogenous salicylic acid (SA) in improving plant drought-resistance, this paper studied the effects of applying exogenous SA to the rhizosphere on the plant growth, membrane lipid peroxidation, proline accumulation, water use efficiency, net photosynthetic rate (Pn), and chlorophyll fluorescence parameters of cucumber (Cucumis sativus) seedlings under drought stresses (60% and 50% of saturated water capacity). Applying SA relieved the inhibitory effects of drought stress on plant growth, Pn, and water use efficiency, decreased membrane lipid peroxidation, and promoted proline accumulation. Meanwhile, the SA decreased the decrements of the maximum photochemical efficiency of PS II, actual photochemical efficiency of PS II, potential activity of PS II, effective photochemical efficiency of PS II, and photochemical quenching coefficient under drought stress significantly, and limited the increase of non-photochemical quenching coefficient. All the results suggested that applying exogenous SA could alleviate the oxidation damage of cell membrane resulted from the drought-caused membrane lipid peroxidation, improve the Pn by increasing PS II activity to benefit water utilization, enhance the regulation capability of osmosis to decrease water loss and increase water use efficiency, and thereby, improve the plant drought-resistance.

  19. Changes in the initial phase of lipid peroxidation induced by elicitor from Phytophthora infestans in Solanum species.

    PubMed

    Polkowska-Kowalczyk, Lidia; Montillet, Jean-Luc; Agnel, Jean-Pierre; Triantaphylidès, Christian; Wielgat, Bernard; Maciejewska, Urszula

    2008-12-01

    The initial phase of the lipid peroxidation process in leaves of Solanum nigrum var. gigantea, Solanum tuberosum cv Bzura and clone H-8105, which represent non-host resistance, field resistance and susceptibility, respectively, against Phytophthora infestans, was investigated. Based on quantitative and qualitative high-performance liquid chromatography (HPLC) analyses of free and esterified fatty acid hydroperoxides (FAHs), we characterized the lipid peroxidation process induced by the pathogen-derived elicitor, culture filtrate (CF), in leaves of the studied genotypes. In all plants, FAHs generated due to 13-lipoxygenase (LOX) action dominated over those from the non-enzymatic pathway. The FAHs derived from 9-LOX activity were found only in CF-treated leaves of the non-host resistant S. nigrum. However, experiments in vitro and in planta with exogenous linoleic acid (LA) as a substrate for LOX revealed high constitutive activity of 9-LOX in all genotypes, which increased in response to CF treatment. The time course changes in polyunsaturated fatty acid (PUFA) pools in the total lipid fractions as well as the degree of their oxidation suggested that CF-induced PUFA peroxidation was enhanced mostly in S. nigrum, less so in Bzura and least in the susceptible clone H-8105. The obtained results are discussed in light of the overall biochemical cell status of plants in the studied interactions.

  20. Potential role of conjugated bilirubin and copper in the metabolism of lipid peroxides in bile.

    PubMed

    Stocker, R; Ames, B N

    1987-11-01

    Conjugated bilirubin and copper ions at their physiological concentrations in bile may play an important role in hydroperoxide and other detoxification. Conjugated bilirubin may also be an important chain-breaking antioxidant preventing lipid peroxidation. Bilirubin ditaurine (BR-DT), a water-soluble model compound of conjugated bilirubin, completely prevents the peroxyl radical-induced oxidation of phosphatidylcholine in either multilamellar liposomes or micelles. This antioxidant activity is associated with the bilirubin moiety of BR-DT, since taurine alone is inefficient in scavenging peroxyl radicals. The number of peroxyl radicals trapped per molecule of BR-DT is 1.9, compared to 4.7 trapped per molecule of biliverdin, the water-soluble physiological precursor of bilirubin. Peroxyl radical-induced oxidation of BR-DT results in a spectral shift in maximal absorbance toward shorter wavelengths; biliverdin is not formed as a major oxidation product. BR-DT, but neither taurine nor biliverdin, greatly accelerates the cupric ion-catalyzed decomposition of linoleic acid hydroperoxide. In the presence of ferric ion, BR-DT shows no lipid hydroperoxide-degrading activity. Addition of cupric ion to BR-DT results in formation of a complex with spectral features similar to that of a biliverdin-cupric ion complex, indicating that BR-DT and cupric ion undergo redox reactions.

  1. Bioactive potential of Vitis labrusca L. grape juices from the Southern Region of Brazil: phenolic and elemental composition and effect on lipid peroxidation in healthy subjects.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; Alves, Tatiana de Lima; de Gois, Jefferson Santos; Borges, Daniel L G; Cunha, Heloisa Pamplona; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2015-04-15

    Grapes are rich in polyphenols with biologically active properties. Although the bioactive potential of grape constituents are frequently reported, the effects of Brazilian Vitis labrusca L. grape juices ingestion have not been demonstrated in humans. This study identified the phenolic and elemental composition of red and white grape juices and the effect of organic and conventional red grape juice consumption on lipid peroxidation in healthy individuals. Concentrations of anthocyanins, flavanols and phenolic acids and the in vitro antioxidant activity were significantly higher in the organic juice. The macro-elements K, Ca, Na and Mg were the most abundant minerals in all juices. The acute consumption of red grape juices promoted significant decrease of lipid peroxides in serum and TBARS levels in plasma. It is concluded that red V. labrusca L. grape juices produced in Southern Brazil showed lipid peroxidation inhibition abilities in healthy subjects, regardless of the cultivation system. PMID:25466055

  2. Bioactive potential of Vitis labrusca L. grape juices from the Southern Region of Brazil: phenolic and elemental composition and effect on lipid peroxidation in healthy subjects.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; Alves, Tatiana de Lima; de Gois, Jefferson Santos; Borges, Daniel L G; Cunha, Heloisa Pamplona; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2015-04-15

    Grapes are rich in polyphenols with biologically active properties. Although the bioactive potential of grape constituents are frequently reported, the effects of Brazilian Vitis labrusca L. grape juices ingestion have not been demonstrated in humans. This study identified the phenolic and elemental composition of red and white grape juices and the effect of organic and conventional red grape juice consumption on lipid peroxidation in healthy individuals. Concentrations of anthocyanins, flavanols and phenolic acids and the in vitro antioxidant activity were significantly higher in the organic juice. The macro-elements K, Ca, Na and Mg were the most abundant minerals in all juices. The acute consumption of red grape juices promoted significant decrease of lipid peroxides in serum and TBARS levels in plasma. It is concluded that red V. labrusca L. grape juices produced in Southern Brazil showed lipid peroxidation inhibition abilities in healthy subjects, regardless of the cultivation system.

  3. Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation.

    PubMed

    Mark, R J; Pang, Z; Geddes, J W; Uchida, K; Mattson, M P

    1997-02-01

    A deficit in glucose uptake and a deposition of amyloid beta-peptide (A beta) each occur in vulnerable brain regions in Alzheimer's disease (AD). It is not known whether mechanistic links exist between A beta deposition and impaired glucose transport. We now report that A beta impairs glucose transport in cultured rat hippocampal and cortical neurons by a mechanism involving membrane lipid peroxidation. A beta impaired 3H-deoxy-glucose transport in a concentration-dependent manner and with a time course preceding neurodegeneration. The decrease in glucose transport was followed by a decrease in cellular ATP levels. Impairment of glucose transport, ATP depletion, and cell death were each prevented in cultures pretreated with antioxidants. Exposure to FeSO4, an established inducer of lipid peroxidation, also impaired glucose transport. Immunoprecipitation and Western blot analyses showed that exposure of cultures to A beta induced conjugation of 4-hydroxynonenal (HNE), an aldehydic product of lipid peroxidation, to the neuronal glucose transport protein GLUT3. HNE induced a concentration-dependent impairment of glucose transport and subsequent ATP depletion. Impaired glucose transport was not caused by a decreased energy demand in the neurons, because ouabain, which inhibits Na+/K(+)-ATPase activity and thereby reduces neuronal ATP hydrolysis rate, had little or no effect on glucose transport. Collectively, the data demonstrate that lipid peroxidation mediates A beta-induced impairment of glucose transport in neurons and suggest that this action of A beta may contribute to decreased glucose uptake and neuronal degeneration in AD. PMID:8994059

  4. Effect of cyclosporin A and trifluoperazine on rat liver mitochondria swelling and lipid peroxidation.

    PubMed

    Nepomuceno, M F; Pereira-da-Silva, L

    1993-10-01

    The effect of cyclosporin A (CsA) or trifluoperazine (TFP) on lipid peroxidation and mitochondrial swelling was determined using liver mitochondria incubated with 30 microM Ca2+ and 250 microM t-butylhydroperoxide or 5 mM inorganic phosphate (P(i)). Lipid peroxidation was not modified by either 1 microM CsA or 40 microM TFP. These compounds presented a distinct effect on mitochondrial permeability. Under oxidative conditions, CsA only showed a transient protective effect whereas TFP completely inhibited mitochondrial swelling. Conversely, CsA was very efficient when Ca2+ and P(i) were used, a condition under which TFP was unable to prevent the swelling. These data are consistent with our previous results (M.F. Nepomuceno, D.V. Macedo and L. Pereira-da-Silva (1991). Brazilian Journal of Medical and Biological Research, 24: 833-836) showing that lipid peroxidation is one among other different components of the permeabilization process. The data suggest that lipid peroxidation is independent of swelling, occurring later than swelling, presumably when the mitochondrial reductant systems are depleted. The differential effects of CsA and TFP suggest that these compounds can be used as specific probes in the elucidation of the two distinct mechanisms responsible for mitochondrial swelling.

  5. Protective effect of Sargassum polycystum (brown alga) against acetaminophen-induced lipid peroxidation in rats.

    PubMed

    Raghavendran, Hanumantha Rao Balaji; Sathivel, Arumugam; Devaki, Thiruvengadam

    2005-02-01

    Lipid peroxidation is believed to play an important role in the pathogenesis of several diseases, such as cancer, diabetic mellitus and liver injury. Aqueous and ethanol extracts of Sargassum polycystum C. Agardh (Phaeophyta) were screened for their protective effects against acetaminophen (ACP; Paracetamol)-induced lipid peroxidation in rats. A single dose of acetaminophen significantly elevated the levels of lipid peroxides (LPO) with decreased levels of free radical scavenger enzymes (SOD, CAT, GSH, GPx, GST) in liver homogenate. The oral pretreatment of rats with ethanol and aqueous extracts of Sargassum polycystum C. Agardh (100 mg, 200 mg[sol ]kg body wt[sol ]day respectively, for a period of 15 days) significantly reduced the acetaminophen-induced oxidative stress in rats. The animals treated with the ethanol and aqueous extracts alone did not show any toxicity on liver tissue. This observation shows that the seaweed crude extracts probably acted to protect against acetaminophen-induced lipid peroxidation through their free radical scavenging property. PMID:15852486

  6. Real-time monitoring of endogenous lipid peroxidation by exhaled ethylene in patients undergoing cardiac surgery

    PubMed Central

    Cristescu, Simona M.; Kiss, Rudolf; te Lintel Hekkert, Sacco; Dalby, Miles; Harren, Frans J. M.; Risby, Terence H.

    2014-01-01

    Pulmonary and systemic organ injury produced by oxidative stress including lipid peroxidation is a fundamental tenet of ischemia-reperfusion injury, inflammatory response to cardiac surgery, and cardiopulmonary bypass (CPB) but is not routinely measured in a surgically relevant time frame. To initiate a paradigm shift toward noninvasive and real-time monitoring of endogenous lipid peroxidation, we have explored pulmonary excretion and dynamism of exhaled breath ethylene during cardiac surgery to test the hypothesis that surgical technique and ischemia-reperfusion triggers lipid peroxidation. We have employed laser photoacoustic spectroscopy to measure real-time trace concentrations of ethylene from the patient breath and from the CPB machine. Patients undergoing aortic or mitral valve surgery-requiring CPB (n = 15) or off-pump coronary artery bypass surgery (OPCAB) (n = 7) were studied. Skin and tissue incision by diathermy caused striking (>30-fold) increases in exhaled ethylene resulting in elevated levels until CPB. Gaseous ethylene in the CPB circuit was raised upon the establishment of CPB (>10-fold) and decreased over time. Reperfusion of myocardium and lungs did not appear to enhance ethylene levels significantly. During OPCAB surgery, we have observed increased ethylene in 16 of 30 documented reperfusion events associated with coronary and aortic anastomoses. Therefore, novel real-time monitoring of endogenous lipid peroxidation in the intraoperative setting provides unparalleled detail of endogenous and surgery-triggered production of ethylene. Diathermy and unprotected regional myocardial ischemia and reperfusion are the most significant contributors to increased ethylene. PMID:25128523

  7. Clinical implications of lipid peroxidation in acne vulgaris: old wine in new bottles

    PubMed Central

    2010-01-01

    Acne vulgaris is a common dermatological disorder, one that is frequently associated with depression, anxiety and other psychological sequelae. In recent years there has been an increasing focus on the extent to which oxidative stress is involved in the pathophysiology of acne. Emerging studies have shown that patients with acne are under increased cutaneous and systemic oxidative stress. Indeed, there are indications that lipid peroxidation itself is a match that lights an inflammatory cascade in acne. The notion that lipid peroxidation is a 'starter gun' in acne is not a new one; here we review the nearly 50-year-old lipid peroxidation theory and provide a historical perspective to the contemporary investigations and clinical implications. In addition, we present a novel hypothesis in which lipid peroxidation may be priming an increased susceptibility to co-morbid depression and anxiety in those with acne. The emerging research on the systemic burden of oxidative stress in acne sheds further light on the brain-skin axis. The recent findings also suggest potential avenues of approach for the treatment of acne via specific nutrients, dietary modifications, oral and topical interventions. PMID:21143923

  8. Melatonin and pinoline prevent aluminium-induced lipid peroxidation in rat synaptosomes.

    PubMed

    Millán-Plano, Sergio; García, Joaquin J; Martínez-Ballarín, Enrique; Reiter, Russel J; Ortega-Gutiérrez, Santiago; Lázaro, Rosa Maria; Escanero, Jesos Fernando

    2003-01-01

    The serum concentrations of aluminum, a metal potentially involved in the pathogenesis of Alzheimer's disease, increase with age. Also, intense and prolonged exposure to aluminum may result in dementia. Melatonin and pinoline are two well known antioxidants that efficiently reduce lipid peroxidation due to oxidative stress. Herein, we investigated the effects of melatonin and pinoline in preventing aluminum promotion of lipid peroxidation when the metal was combined with FeCl3 and ascorbic acid in rat synaptosomal membranes. Lipid peroxidation was estimated by quantifying malondialdehyde (MDA) and 4-hydroxyalkenal (4-HDA) concentrations in the membrane suspension. Under the experimental conditions used herein, the addition of aluminum (0.0001 to 1 mmol/L) enhanced MDA + 4-HDA formation in the synaptosomes. Melatonin and pinoline reduced, in a concentration-dependent manner, lipid peroxidation due to aluminum, FeCl3 and ascorbic acid in the synaptosomal membranes. These results suggest that the indoleamine melatonin and the beta-carboline pinoline may potentially act as neuroprotectant agents in the therapy of those diseases with elevated aluminum concentrations in the tissues.

  9. In situ detection of lipid peroxidation by-products in chronic liver diseases.

    PubMed

    Paradis, V; Kollinger, M; Fabre, M; Holstege, A; Poynard, T; Bedossa, P

    1997-07-01

    Lipid peroxidation is an autocatalytic mechanism leading to oxidative destruction of cellular membranes. The deleterious consequences of this mechanism are related in part to the formation of reactive aldehydic products that bind to intra- or extracellular molecules to form adducts. Specific antibodies directed against malondialdehyde (MDA) and 4-hydroxynonenal (HNE) adducts, major aldehydic metabolites of lipid peroxidation, allowed us to investigate in situ, with an immunohistochemical procedure, the occurrence of lipid peroxidation in a panel of different chronic liver diseases. Intracellular HNE and MDA adducts were detected respectively in 24 of 39 cases (62%) and in 12 of 34 cases investigated (35%). They were localized mainly in the cytoplasm of hepatocytes, with the strongest staining observed in hemochromatosis, Wilson's disease, and in areas of acute alcoholic hepatitis in cases of alcoholic liver diseases. A peculiar pattern of immunostaining was observed in primary biliary cirrhosis where biliary cells of destroyed but also intact bile ducts strongly expressed HNE adducts. The liver extracellular matrix also displayed MDA adducts (30 of 34 cases, 88%) and HNE adducts (23 of 39 cases, 59%). While HNE adducts were specifically localized on large bundles of collagen fibers, MDA adducts were detected in a thin reticular network and in sinusoidal cells around portal tracts or fibrous septa. In conclusion, lipid peroxidation by-products are detectable in chronic liver diseases. Immunohistochemical results suggest that this mechanism is implicated very early in the pathogenesis of some of these diseases.

  10. Region specific increase in the antioxidant enzymes and lipid peroxidation products in the brain of rats exposed to lead.

    PubMed

    Bennet, Christopher; Bettaiya, Rajanna; Rajanna, Sharada; Baker, Levenia; Yallapragada, Prabhakara Rao; Brice, Jon J; White, Samuel L; Bokara, Kiran Kumar

    2007-03-01

    The objective of this study is to determine the effect of lead (pb) on antioxidant enzymes and lipid peroxidation products in different regions of rat brain. Wistar male rats were treated with lead acetate (500 ppm) through drinking water for a period of 8 weeks. Control animals were maintained on sodium acetate. Treated and control rats were sacrificed at intervals of 1st, 4th and 8th week and the whole brains were dissected on ice into four regions namely the cerebellum, the hippocampus, the frontal cortex and the brain stem. Antioxidant enzymes namely catalase and superoxide dismutase in all the four regions of brain were determined. In addition, lipid peroxidation products were also estimated. The results indicated a gradual increase in the activity of antioxidant enzymes in different regions of the brain and this response was time-dependent. However, the increase was more in the cerebellum and the hippocampus compared to other regions of the brain. The lipid peroxidation products also showed a similar trend suggesting increased effect of lead in these two regions of the brain. The data indicated a region-specific oxidative stress in the brain exposed to lead. PMID:17364954

  11. Prevention of lipid peroxidation induced by ochratoxin A in Vero cells in culture by several agents.

    PubMed

    Baudrimont, I; Ahouandjivo, R; Creppy, E E

    1997-04-18

    Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus ochraceus as well as other moulds. This mycotoxin contaminates animal feed and food and is nephrotoxic for all animal species studied so far. OTA is immunosuppressive, genotoxic, teratogenic and carcinogenic. It is a structural analogue of phenylalanine and contains a chlorinated dihydroisocoumarinic moiety. Ochratoxin A inhibits protein synthesis by competition with phenylalanine in the phenylalanine-tRNA aminoacylation reaction. Recently lipid peroxidation induced by OTA has been reported, indicating that the lesions induced by this toxin could also be related to oxidative damage. An attempt to prevent its toxic effect, mainly the lipid peroxidation, has been made using aspartame (L-aspartyl-L-phenylalanine methyl ester) a structural analogue of both OTA and phenylalanine, piroxicam, a non steroidal anti-inflammatory drug and superoxide dismutase+catalase (endogenous oxygen radical scavengers). Lipid peroxidation was assayed in monkey kidney cells (Vero cells) treated by increasing concentrations of OTA (5-50 microM). After 24 h incubation OTA induced lipid peroxidation in Vero cells in a concentration dependent manner, as measured by malonaldehyde (MDA) production. The MDA production, in Vero cells, was significantly increased by 50.5% from 694.1 +/- 21.0 to 1041.5 +/- 23.5 pmol/mg of protein. In the presence of superoxide dismutase (SOD)+catalase (25 micrograms/ml each) the MDA production induced by OTA was significantly decreased. At 50 microM of OTA concentration (optimal production of MDA) the MDA production decreased from 1041.5 +/- 23.5 to 827.5 +/- 21.3 pmol/mg of protein. SOD and catalase, when applied prior to the toxin, seemed to prevent lipid peroxidation more efficiently than piroxicam (at a ten-fold higher concentration than OTA) and aspartame (at equimolar concentration). These molecules also partially prevented the OTA-induced leakage of MDA in the culture medium. PMID:9158693

  12. Prevention of lipid peroxidation induced by ochratoxin A in Vero cells in culture by several agents.

    PubMed

    Baudrimont, I; Ahouandjivo, R; Creppy, E E

    1997-04-18

    Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus ochraceus as well as other moulds. This mycotoxin contaminates animal feed and food and is nephrotoxic for all animal species studied so far. OTA is immunosuppressive, genotoxic, teratogenic and carcinogenic. It is a structural analogue of phenylalanine and contains a chlorinated dihydroisocoumarinic moiety. Ochratoxin A inhibits protein synthesis by competition with phenylalanine in the phenylalanine-tRNA aminoacylation reaction. Recently lipid peroxidation induced by OTA has been reported, indicating that the lesions induced by this toxin could also be related to oxidative damage. An attempt to prevent its toxic effect, mainly the lipid peroxidation, has been made using aspartame (L-aspartyl-L-phenylalanine methyl ester) a structural analogue of both OTA and phenylalanine, piroxicam, a non steroidal anti-inflammatory drug and superoxide dismutase+catalase (endogenous oxygen radical scavengers). Lipid peroxidation was assayed in monkey kidney cells (Vero cells) treated by increasing concentrations of OTA (5-50 microM). After 24 h incubation OTA induced lipid peroxidation in Vero cells in a concentration dependent manner, as measured by malonaldehyde (MDA) production. The MDA production, in Vero cells, was significantly increased by 50.5% from 694.1 +/- 21.0 to 1041.5 +/- 23.5 pmol/mg of protein. In the presence of superoxide dismutase (SOD)+catalase (25 micrograms/ml each) the MDA production induced by OTA was significantly decreased. At 50 microM of OTA concentration (optimal production of MDA) the MDA production decreased from 1041.5 +/- 23.5 to 827.5 +/- 21.3 pmol/mg of protein. SOD and catalase, when applied prior to the toxin, seemed to prevent lipid peroxidation more efficiently than piroxicam (at a ten-fold higher concentration than OTA) and aspartame (at equimolar concentration). These molecules also partially prevented the OTA-induced leakage of MDA in the culture medium.

  13. Drinking orange juice increases total antioxidant status and decreases lipid peroxidation in adults.

    PubMed

    Foroudi, Shahrzad; Potter, Andrew S; Stamatikos, Alexis; Patil, Bhimanagouda S; Deyhim, Farzad

    2014-05-01

    Cardiovascular disease (CVD) is the leading cause of death in the world and is the primary cause of mortality among Americans. One of the many reasons for the pathogenesis of CVD is attributed to eating diets high in saturated fat and refined carbohydrates and low in fruits and vegetables. Epidemiological evidence has supported a strong association between eating diets rich in fruits and vegetables and cardiovascular health. An experiment was conducted utilizing 24 adults with hypercholesterolemia and hypertriglyceridemia to evaluate the impact of drinking 20 fl oz of freshly squeezed orange juice daily for 90 days on blood pressure, lipid panels, plasma antioxidant capacity, metabolic hormones, lipid peroxidation, and inflammatory markers. Except for addition of drinking orange juice, subjects did not modify their eating habits. The findings suggested that drinking orange juice does not affect (P>.1) blood pressure, lipid panels, metabolic hormones, body fat percentage, or inflammatory markers. However, total plasma antioxidant capacity was significantly increased (P<.05) and lipid peroxidation was significantly decreased (P<.05) after orange juice consumption. Drinking orange juice may protect the cardiovascular system by increasing total plasma antioxidant status and by lowering lipid peroxidation independent of other cardiovascular risk markers evaluated in this study.

  14. Lipid peroxides as endogenous oxidants forming 8-oxo-guanosine and lipid-soluble antioxidants as suppressing agents

    PubMed Central

    Kanazawa, Kazuki; Sakamoto, Miku; Kanazawa, Ko; Ishigaki, Yoriko; Aihara, Yoshiko; Hashimoto, Takashi; Mizuno, Masashi

    2016-01-01

    The oxidation of guanosine to 8-oxo-2'-deoxyguanosine (8-oxo-dG) in DNA is closely associated with induction of various diseases, but the endogenous oxidant species involved remains unclear. Hydrogen peroxides (H2O2) have been considered to be the oxidant, while lipid peroxides are another possible oxidant because generated easily in bio-membranes surrounding DNA. The oxidant potency was compared between lipid peroxides and H2O2. Linoleic acid hydroperoxides (LOOH) formed 8-oxo-dG at a higher level than H2O2 in guanosine or double-stranded DNA. In the presence of a physiological concentration of Fe2+ to produce hydroxyl radicals, LOOH was also a stronger oxidant. In a lipid micelle, LOOH markedly produced 8-oxo-dG at a concentration one-tenth of that of H2O2. Upon adding to rat hepatic mitochondria, phosphatidylcholine hydroperoxides produced 8-oxo-dG abundantly. Employing HepG2 cells after pretreated with glutathione peroxidase inhibitor, LOOH formed 8-oxo-dG more abundantly than H2O2. Then, antioxidants to suppress the 8-oxo-dG formation were examined, when the nuclei of pre-incubated HepG2 with antioxidants were exposed to LOOH. Water-soluble ascorbic acid, trolox, and N-acetyl cysteine showed no or weak antioxidant potency, while lipid-soluble 2,6-dipalmitoyl ascorbic acid, α-tocopherol, and lipid-soluble phytochemicals exhibited stronger potency. The present study shows preferential formation of 8-oxo-dG upon LOOH and the inhibition by lipid-soluble antioxidants. PMID:27499574

  15. Involvement of inducible nitric oxide synthase in hydroxyl radical-mediated lipid peroxidation in streptozotocin-induced diabetes

    PubMed Central

    Stadler, Krisztian; Bonini, Marcelo G.; Dallas, Shannon; Jiang, JinJie; Radi, Rafael; Mason, Ronald P.; Kadiiska, Maria B.

    2008-01-01

    Free radical production is implicated in the pathogenesis of diabetes mellitus, where several pathways and different mechanisms were suggested in the pathophysiology of the complications. In this study, we used electron paramagnetic resonance (EPR) spectroscopy combined with in vivo spin-trapping techniques to investigate the sources and mechanisms of free radical formation in streptozotocin-induced diabetic rats. Free radical production was directly detected in the diabetic bile, which correlated with lipid peroxidation in the liver and kidney. EPR spectra showed the trapping of a lipid-derived radical. Such radicals were demonstrated to be induced by hydroxyl radical through isotope labeling experiments. Multiple enzymes and metabolic pathways were examined as the potential source of the hydroxyl radicals using specific inhibitors. Neither xanthine oxidase, cytochrome P450s, the Fenton reaction, nor macrophage activation were required for the production of radical adducts. Interestingly, inducible nitric oxide synthase (apparently uncoupled) was identified as the major source of radical generation. The specific iNOS inhibitor 1400W as well as l-arginine pretreatment reduced the EPR signals to baseline levels, implicating peroxynitrite as the source of hydroxyl radical production. Applying immunological techniques, we localized iNOS overexpression in the liver and kidney of diabetic animals, which was closely correlated with the lipid radical generation and 4-hydroxynonenal-adducted protein formation, indicating lipid peroxidation. In addition, protein oxidation to protein free radicals occurred in the diabetic target organs. Taken together, our studies support inducible nitric oxide synthase as a significant source of EPR-detectable reactive intermediates, which leads to lipid peroxidation and may contribute to disease progression as well. PMID:18620046

  16. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    PubMed

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (P<0.001) protected the lipid peroxidation in all the tissue homogenate/mitochondria. The extract at 2 and 0.5 mg/ml could protect 92 % of the lipid peroxidation in brain homogenate and liver mitochondria respectively. The percent inhibition of lipid peroxidation at 1mg/ml of Z. officinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments. PMID:23105887

  17. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb

    PubMed Central

    Jiang, Hongqin; Wang, Zhenzhen; Ma, Yong; Qu, Yanghua; Lu, Xiaonan; Luo, Hailing

    2015-01-01

    Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old) were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate) or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p<0.05, linearly), total triglycerides (TG, p<0.05) and low-density lipoprotein cholesterol (LDL-C, p<0.05), as well as atherogenic index (p<0.001), whereas no change was observed in high-density lipoprotein cholesterol (p>0.05). The levels of TG (p<0.001) and LDL-C (p<0.001) were decreased with the feeding time extension, and both showed a linear trend (p<0.01). Malondialdehyde level in plasma and liver decreased linearly with the increase of lycopene inclusion levels (p<0.01). Dietary lycopene intake linearly increased the plasma antioxidant vitamin E level (p<0.001), total antioxidant capacity (T-AOC, p<0.05), and activities of catalase (CAT, p<0.01), glutathione peroxidase (GSH-Px, p<0.05) and superoxide dismutase (SOD, p<0.05). The plasma T-AOC and activities of GSH-Px and SOD decreased with the extension of the feeding time. In liver, dietary lycopene inclusion showed similar antioxidant effects with respect to activities of CAT (p<0.05, linearly) and SOD (p<0.001, linearly). Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment

  18. Compositional Factors that Influence Lipid Peroxidation in Beef Juice and Standard Sausages.

    PubMed

    Yi, Gu; Haug, Anna; Nordvi, Berit; Saarem, Kristin; Oostindjer, Marije; Langsrud, Øyvind; Egelandsdal, Bjørg

    2015-12-01

    In order to identify how different additives influenced lipid peroxidation formation, a sausage only using beef juice as pigment source and a standard beef-pork meat sausage were studied. The effects of different additives, including fish oil, myoglobin, nitrite, clove extract, and calcium sources on oxidation and sensory properties were examined. Both sausage systems were stored in 3 different manners prior to testing: (1) frozen immediately at -80 °C; (2) chilled stored for 2.5 weeks followed by fluorescent light illumination at 4 °C for another 2 wk; (3) frozen at -20 °C for 5 mo. The frozen group 3 showed the highest peroxide formation and thiobarbituric acid reactive substances (TBARS) for both sausage systems. Unpolar peroxides dominated in both systems. The clove extract could offset the peroxide formation from myoglobin/beef juice and/or fish oil, but the addition of clove flavor was recognized by the sensory panelists. Calcium addition reduced lipid peroxide formation. Added nitrite and fish oil seemed to interact to stimulate nitroso-myoglobin formation. Nitrite was identified to interact with clove addition and thereby, relatively speaking, increased TBARS. The 2 sausage systems generally ranked the additives similarly as pro- and antioxidants.

  19. Analysis of the kinetics of lipid peroxidation in terms of characteristic time-points.

    PubMed

    Pinchuk, Ilya; Lichtenberg, Dov

    2014-02-01

    Measuring peroxidation of aggregated lipids in model systems (liposomes, micelles, emulsions or microemulsions) as well as in samples of biological origin ex vivo (isolated lipoproteins, blood sera or plasma) is widely used in medical and biological investigations, to evaluate the oxidative stress, antioxidants' efficiency and lipid oxidizability in different pathophysiological states. To avoid possible artifacts, such investigations must be based on the time course of peroxidation (i.e. on kinetic studies). To be able to compare complex kinetic profiles, it is important to characterize them in terms of mechanistically meaningful and experimentally unequivocal parameters. In this review, we characterize the typically observed continuous kinetic profiles in terms of a limited number of characteristic time-points (both commonly used and additional time-points and their combinations) that can be derived from experimental time-dependencies. The meaning of each of the experimentally observed characteristic parameters is presented in terms of rate constants and concentrations, derived on the basis of mechanistic considerations. Theoretical expressions for these characteristic parameters are based on a model that includes both the inhibited peroxidation and the uninhibited peroxidation occurring after consumption of the antioxidant(s). Comparison between theoretically predicted dependencies and experimental data support our treatment considered with special emphasis on transition metals-induced peroxidation of lipoproteins. PMID:24333462

  20. Compositional Factors that Influence Lipid Peroxidation in Beef Juice and Standard Sausages.

    PubMed

    Yi, Gu; Haug, Anna; Nordvi, Berit; Saarem, Kristin; Oostindjer, Marije; Langsrud, Øyvind; Egelandsdal, Bjørg

    2015-12-01

    In order to identify how different additives influenced lipid peroxidation formation, a sausage only using beef juice as pigment source and a standard beef-pork meat sausage were studied. The effects of different additives, including fish oil, myoglobin, nitrite, clove extract, and calcium sources on oxidation and sensory properties were examined. Both sausage systems were stored in 3 different manners prior to testing: (1) frozen immediately at -80 °C; (2) chilled stored for 2.5 weeks followed by fluorescent light illumination at 4 °C for another 2 wk; (3) frozen at -20 °C for 5 mo. The frozen group 3 showed the highest peroxide formation and thiobarbituric acid reactive substances (TBARS) for both sausage systems. Unpolar peroxides dominated in both systems. The clove extract could offset the peroxide formation from myoglobin/beef juice and/or fish oil, but the addition of clove flavor was recognized by the sensory panelists. Calcium addition reduced lipid peroxide formation. Added nitrite and fish oil seemed to interact to stimulate nitroso-myoglobin formation. Nitrite was identified to interact with clove addition and thereby, relatively speaking, increased TBARS. The 2 sausage systems generally ranked the additives similarly as pro- and antioxidants. PMID:26579877

  1. Terazosin-induced alterations in catalase expression and lipid peroxidation in the rat seminal vesicles.

    PubMed

    Mitropoulos, D; Patris, E; Deliconstantinos, G; Kyroudi-Voulgari, A; Anastasiou, I; Perea, D

    2013-04-01

    Previous studies have shown that alpha1-adrenergic receptor antagonists may alter seminal vesicle contractility and impair fertility in male rats. This study was designed to investigate the effects of terazosin on the catalase expression in the seminal vesicles and the lipid peroxidation of the seminal fluid in normal adult rats. Wistar rats were treated with terazosin (1.2 mg kg(-1) body weight, given orally every second day) for 120 days. Catalase expression was assessed immunohistochemically in tissue sections of the seminal vesicles, and lipid peroxidation was estimated by measuring the malondialdehyde (MDA) levels in the seminal vesicles' fluid. The seminal vesicles in terazosin-treated rats were particularly distended in comparison with those of controls, and their secreting epithelium was suppressed. Cytoplasmic catalase expression in the secreting epithelial cells (% of cells) was increased in terazosin-treated specimens in comparison with controls (76.1 ± 17.1 versus 51.3 ± 25.1, P = 0.005). MDA levels (μm) were also higher in samples from treated subjects in comparison with controls (2.67 ± 1.19 versus 1.39 ± 0.19, P = 0.01). Although the direct effect of terazosin treatment on the seminal vesicles is that of impaired contractility, an indirect effect is that on fertility by increasing lipid peroxidation in the seminal fluid and/or through degrading of hydrogen peroxide that is essential for sperm capacitation.

  2. Comparative activity of benzoyl peroxide and hexachlorophene. In vivo studies against propionibacterium acnes in humans.

    PubMed

    Nacht, S; Gans, E H; McGinley, K J; Kligman, A M

    1983-07-01

    The bactericidal effects of benzoyl peroxide (5% lotion) and hexachlorophene (3% colloidal suspension) against Propionibacterium acnes were compared in nine healthy college students who had the microbiological and skin lipid characteristics typical of acne vulgaris, but no active lesions. Each of the two medications was applied twice daily, to opposite sides of the face, for four consecutive weeks. Hexachlorophene was effective against surface aerobes but only slightly active against P acnes. It marginally reduced free fatty acid concentrations in surface lipids and in follicular porphyrin fluorescence. Conversely, benzoyl peroxide virtually eliminated P acnes and aerobes and induced substantially decreased free fatty acid concentrations and follicular fluorescence. We conclude that benzoyl peroxide exerts its antimicrobial action in the follicles and inhibits P acnes, while the antimicrobial effectiveness of hexachlorophene is limited to the skin surface.

  3. The metabolism of carbohydrates and lipid peroxidation in lead-exposed workers.

    PubMed

    Kasperczyk, Aleksandra; Dobrakowski, Michal; Ostałowska, Alina; Zalejska-Fiolka, Jolanta; Birkner, Ewa

    2015-12-01

    The present study was undertaken to estimate the effect of occupational exposure to lead on the blood concentration of glucose and several enzymes involved in glycolysis, the citric acid cycle, and the pentose phosphate pathway. To estimate the degree of lipid peroxidation, the concentrations of conjugated dienes were determined. The examined group included 145 healthy male employees of lead-zinc works. Taking into account the mean blood lead levels, the examined group was divided into two subgroups. The control group was composed of 36 healthy male administrative workers. The markers of lead exposure were significantly elevated in both subgroups when compared with the controls. There were no significant changes in fasting glucose concentration and fructose-1,6-bisphosphate aldolase activity in the study population. The concentration of conjugated dienes was significantly higher in both subgroups, whereas the activity of malate dehydrogenase was significantly higher only in the group with higher exposure. The activities of lactate dehydrogenase and sorbitol dehydrogenase were significantly decreased in the examined subgroups. The activity of glucose-6-phosphate dehydrogenase decreased significantly in the group with higher exposure and could be the cause of the elevated concentrations of conjugated dienes. It is possible to conclude that lead interferes with carbohydrate metabolism, but compensatory mechanisms seem to be efficient, as glucose homeostasis in lead-exposed workers was not disturbed.

  4. Effect of Potentilla fulgens on lipid peroxidation and antioxidant status in alloxan-induced diabetic mice

    PubMed Central

    Saio, Valrielyn; Syiem, Donkupar; Sharma, Ramesh

    2012-01-01

    Potentilla fulgens (Rosaceae) root traditionally used as a folk remedy by local health practitioners of Khasi Hills, Meghalaya was investigated for its effects on lipid peroxidation and antioxidant status in alloxan-induced diabetic mice. Significant increase in levels of thiobarbituric acid reactive substances (TBARS) and decrease in activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were observed under diabetic condition. Intraperitoneal administration of methanol extract of P. fulgens roots at a dose of 250 mg/kg body weight to male swiss albino diabetic mice for 14 days caused significant reduction in the elevated TBARS level, while increasing the activities of the antioxidant enzymes in diabetic mice. Maximum reduction in TBARS level was observed in liver tissue (75%, p<0.001). Kidney exhibited the highest elevation in the activity for catalase (68%, p<0.001) and superoxide dismutase (29%, p<0.001) while maximum increase in glutathione peroxidase activity was seen in brain (50%, p<0.001). The effects of P. fulgens was compared against known antioxidant, vitamin C. Results indicate that Potentilla fulgens methanolic root extract can reduce free radical mediated oxidative stress in experimental diabetes mellitus. PMID:24826032

  5. [Effect of Silybum marianum oil and legalon on lipid peroxidation and liver antioxidant systems in rats intoxicated with carbon tetrachloride].

    PubMed

    Batakov, E A

    2001-01-01

    An oil obtained from the seeds of Saint-Mary thistle (Silybum marianum) and the drug legalon (silybinin) prepared from this plant produce an antioxidant effect on liver tissues of rats poisoned with carbon tetrachloride. Legalon (25 mg/kg) and the oil (2000 mg) reduced the level of lipid peroxidation, increased the catalase activity, but did not reduce the concentration of selenium in liver (which decreased as a result of CCl4 intoxication). Legalon significantly increased the activity of superoxide dismutase in liver tissues, while the Saint-Mary thistle oil did not produce such effect.

  6. Oxidative Stress and Lipid Peroxidation Products in Cancer Progression and Therapy

    PubMed Central

    Barrera, Giuseppina

    2012-01-01

    The generation of reactive oxygen species (ROS) and an altered redox status are common biochemical aspects in cancer cells. ROS can react with the polyunsaturated fatty acids of lipid membranes and induce lipid peroxidation. The end products of lipid peroxidation, 4-hydroxynonenal (HNE), have been considered to be a second messenger of oxidative stress. Beyond ROS involvement in carcinogenesis, increased ROS level can inhibit tumor cell growth. Indeed, in tumors in advanced stages, a further increase of oxidative stress, such as that occurs when using several anticancer drugs and radiation therapy, can overcome the antioxidant defenses of cancer cells and drive them to apoptosis. High concentrations of HNE can also induce apoptosis in cancer cells. However, some cells escape the apoptosis induced by chemical or radiation therapy through the adaptation to intrinsic oxidative stress which confers drug resistance. This paper is focused on recent advances in the studies of the relation between oxidative stress, lipid peroxidation products, and cancer progression with particular attention to the pro-oxidant anticancer agents and the drug-resistant mechanisms, which could be modulated to obtain a better response to cancer therapy. PMID:23119185

  7. Rapid SERS monitoring of lipid-peroxidation-derived protein modifications in cells using photonic crystal fiber sensor.

    PubMed

    Gong, Tianxun; Zhang, Nan; Kong, Kien Voon; Goh, Douglas; Ying, Cui; Auguste, Jean-Louis; Shum, Perry Ping; Wei, Lei; Humbert, Georges; Yong, Ken-Tye; Olivo, Malini

    2016-01-01

    We proposed a side channel photonic crystal fiber (SC-PCF) based Surface enhanced Raman spectroscopy (SERS) platform which is able to accurately monitor lipid peroxidation derived protein modifications in cells. This platform incorporates linoleamide alkyne (LAA), which is oxidized and subsequently modifies proteins in cells with alkyne functional group upon lipid peroxidation. By loading the side channel of SC-PCF with a mixture of gold nanoparticles and LAA treated cells, and subsequently measuring the interference-free alkyne Raman peak from these proteins in cells, strong SERS signal was obtained. The platform provides a method for the rapid monitoring of lipid peroxidation derived protein modification in cells. PMID:26366883

  8. Myeloperoxidase-dependent Lipid Peroxidation Promotes the Oxidative Modification of Cytosolic Proteins in Phagocytic Neutrophils*

    PubMed Central

    Wilkie-Grantham, Rachel P.; Magon, Nicholas J.; Harwood, D. Tim; Kettle, Anthony J.; Vissers, Margreet C.; Winterbourn, Christine C.; Hampton, Mark B.

    2015-01-01

    Phagocytic neutrophils generate reactive oxygen species to kill microbes. Oxidant generation occurs within an intracellular phagosome, but diffusible species can react with the neutrophil and surrounding tissue. To investigate the extent of oxidative modification, we assessed the carbonylation of cytosolic proteins in phagocytic neutrophils. A 4-fold increase in protein carbonylation was measured within 15 min of initiating phagocytosis. Carbonylation was dependent on NADPH oxidase and myeloperoxidase activity and was inhibited by butylated hydroxytoluene and Trolox, indicating a role for myeloperoxidase-dependent lipid peroxidation. Proteomic analysis of target proteins revealed significant carbonylation of the S100A9 subunit of calprotectin, a truncated form of Hsp70, actin, and hemoglobin from contaminating erythrocytes. The addition of the reactive aldehyde 4-hydroxynonenal (HNE) caused carbonylation, and HNE-glutathione adducts were detected in the cytosol of phagocytic neutrophils. The post-translational modification of neutrophil proteins will influence the functioning and fate of these immune cells in the period following phagocytic activation, and provides a marker of neutrophil activation during infection and inflammation. PMID:25697357

  9. Inhibition of membrane lipid peroxidation by a radical scavenging mechanism: a novel function for hydroxyl-containing ionophores.

    PubMed

    Grijalba, M T; Andrade, P B; Meinicke, A R; Castilho, R F; Vercesi, A E; Schreier, S

    1998-03-01

    In the present study we show that K+/H+ hydroxyl-containing ionophores lasalocid-A (LAS) and nigericin (NIG) in the nanomolar concentration range, inhibit Fe2+-citrate and 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP)-induced lipid peroxidation in intact rat liver mitochondria and in egg phosphatidylcholine (PC) liposomes containing negatively charged lipids--dicetyl phosphate (DCP) or cardiolipin (CL)--and KCl as the osmotic support. In addition, monensin (MON), a hydroxyl-containing ionophore with higher affinity for Na+ than for K+, promotes a similar effect when NaCl is the osmotic support. The protective effect of the ionophores is not observed when the osmolyte is sucrose. Lipid peroxidation was evidenced by mitochondrial swelling, antimycin A-insensitive O2 consumption, formation of thiobarbituric acid-reactive substances (TBARS), conjugated dienes, and electron paramagnetic resonance (EPR) spectra of an incorporated lipid spin probe. A time-dependent decay of spin label EPR signal is observed as a consequence of lipid peroxidation induced by both inductor systems in liposomes. Nitroxide destruction is inhibited by butylated hydroxytoluene, a known antioxidant, and by the hydroxyl-containing ionophores. In contrast, valinomycin (VAL), which does not possess alcoholic groups, does not display this protective effect. Effective order parameters (Seff), determined from the spectra of an incorporated spin label are larger in the presence of salt and display a small increase upon addition of the ionophores, as a result of the increase of counter ion concentration at the negatively charged bilayer surface. This condition leads to increased formation of the ion-ionophore complex, the membrane binding (uncharged) species. The membrane-incorporated complex is the active species in the lipid peroxidation inhibiting process. Studies in aqueous solution (in the absence of membranes) showed that NIG and LAS, but not VAL, decrease the Fe2+-citrate-induced production

  10. Lipid peroxidation and changes of trace elements in mice treated with paradichlorobenzene.

    PubMed

    Suhua, Wang; Rongzhu, Lu; Changqing, Yin; Guangwei, Xing; Fangan, Han; Junjie, Jing; Wenrong, Xu; Aschner, Michael

    2010-09-01

    Paradichlorobenzene (pDCB) has been used as a space deodorant and moth repellant, as well as an intermediate in the chemical industry. Given its broad applications and high volatility, considerable concern exists regarding the adverse health effects of pDCB in the home and the workplace. In this study, changes in lipid peroxidation, antioxidants, and trace element levels in the liver and kidney of pDCB-treated mice were investigated to determine their roles in toxicity. Mice were orally gavaged once daily for seven consecutive days with pDCB (0 (corn oil control), 450, and 900 mg/kg). The level of malondialdehyde (MDA), an end product of lipid peroxidation, markedly increased in the high-dose pDCB group in both the liver and kidney compared with the control group. Changes in hepatic levels of reduced glutathione (GSH) in the pDCB groups were indistinguishable from the control group, while renal levels of reduced GSH in the high-dose pDCB group were significantly lowered in comparison to the control and the low-dose groups. Superoxide dismutase (SOD) activity in the liver of mice treated with pDCB showed a downward trend, whereas there was no consistent trend associated with changes in SOD activity in the kidney. Additionally, renal iron levels in the high-dose pDCB group were significantly decreased compared with the low-dose group and the controls, whereas hepatic iron content in the low-dose pDCB group was significantly lower compared with the controls. Selenium and zinc levels in the kidney were both significantly decreased in the high-dose pDCB group vs. the control and low-dose groups. There were no treatment-induced changes in copper levels in either the kidney or liver. However, a significant increase was found in the liver zinc/copper ratio in the high-dose pDCB group vs. the controls. In addition, blood zinc levels showed a downward trend with increased pDCB dosage. These results suggest that pDCB toxicity is mediated by oxidative damage and tissue

  11. Lipid peroxidation and changes of trace elements in mice treated with paradichlorobenzene.

    PubMed

    Suhua, Wang; Rongzhu, Lu; Changqing, Yin; Guangwei, Xing; Fangan, Han; Junjie, Jing; Wenrong, Xu; Aschner, Michael

    2010-09-01

    Paradichlorobenzene (pDCB) has been used as a space deodorant and moth repellant, as well as an intermediate in the chemical industry. Given its broad applications and high volatility, considerable concern exists regarding the adverse health effects of pDCB in the home and the workplace. In this study, changes in lipid peroxidation, antioxidants, and trace element levels in the liver and kidney of pDCB-treated mice were investigated to determine their roles in toxicity. Mice were orally gavaged once daily for seven consecutive days with pDCB (0 (corn oil control), 450, and 900 mg/kg). The level of malondialdehyde (MDA), an end product of lipid peroxidation, markedly increased in the high-dose pDCB group in both the liver and kidney compared with the control group. Changes in hepatic levels of reduced glutathione (GSH) in the pDCB groups were indistinguishable from the control group, while renal levels of reduced GSH in the high-dose pDCB group were significantly lowered in comparison to the control and the low-dose groups. Superoxide dismutase (SOD) activity in the liver of mice treated with pDCB showed a downward trend, whereas there was no consistent trend associated with changes in SOD activity in the kidney. Additionally, renal iron levels in the high-dose pDCB group were significantly decreased compared with the low-dose group and the controls, whereas hepatic iron content in the low-dose pDCB group was significantly lower compared with the controls. Selenium and zinc levels in the kidney were both significantly decreased in the high-dose pDCB group vs. the control and low-dose groups. There were no treatment-induced changes in copper levels in either the kidney or liver. However, a significant increase was found in the liver zinc/copper ratio in the high-dose pDCB group vs. the controls. In addition, blood zinc levels showed a downward trend with increased pDCB dosage. These results suggest that pDCB toxicity is mediated by oxidative damage and tissue

  12. Potentiation of ethanol-induced lipid peroxidation of biological membranes by vitamin C.

    PubMed

    Ahmad, F F; Cowan, D L; Sun, A Y

    1988-01-01

    The hydroxyl free radical (.OH) was generated by the system of ADP-Fe++ and H2O2, trapped by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and analyzed by electron spin resonance (ESR) spectroscopy. The addition of vitamin C to the system decreased considerably the amount of hydroxyl adduct of DMPO formed. In the presence of ethanol, the ESR spectrum observed was a composite signal of the hydroxyl and hydroxyethyl (HE) adducts of DMPO. However, in the presence of vitamin C and ethanol, pure HE adduct of DMPO was detected. We also detected the increase in lipid peroxidation in the presence of ethanol and vitamin C. These data lead us to hypothesize that in the biological system, formation of these long-lived HE free radicals may result in membrane damage due to an increase in lipid peroxidation.

  13. Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure

    PubMed Central

    Boutaud, Olivier; Moore, Kevin P.; Reeder, Brandon J.; Harry, David; Howie, Alexander J.; Wang, Shuhe; Carney, Clare K.; Masterson, Tina S.; Amin, Taneem; Wright, David W.; Wilson, Michael T.; Oates, John A.; Roberts, L. Jackson

    2010-01-01

    Hemoproteins, hemoglobin and myoglobin, once released from cells can cause severe oxidative damage as a consequence of heme redox cycling between ferric and ferryl states that generates radical species that induce lipid peroxidation. We demonstrate in vitro that acetaminophen inhibits hemoprotein-induced lipid peroxidation by reducing ferryl heme to its ferric state and quenching globin radicals. Severe muscle injury (rhabdomyolysis) is accompanied by the release of myoglobin that becomes deposited in the kidney, causing renal injury. We previously showed in a rat model of rhabdomyolysis that redox cycling between ferric and ferryl myoglobin yields radical species that cause severe oxidative damage to the kidney. In this model, acetaminophen at therapeutic plasma concentrations significantly decreased oxidant injury in the kidney, improved renal function, and reduced renal damage. These findings also provide a hypothesis for potential therapeutic applications for acetaminophen in diseases involving hemoprotein-mediated oxidative injury. PMID:20133658

  14. Vanadium-mediated lipid peroxidation in microsomes from human term placenta

    SciTech Connect

    Byczkowski, J.Z.; Wan, B.; Kulkarni, A.P.

    1988-11-01

    Vanadium is considered an essential element present in living organisms in trace amounts but it is toxic when introduced in excessive doses to animals and humans. Vanadium compounds are extensively used in modern industry and occupational exposure to high doses of vanadium is quite common. In pregnant mice, vanadium accumulates preferentially in the placenta and to lower extent in fetal skeleton and mammary gland during exposure to radioactive vanadium. Accumulation of vanadium in fetoplacental unit may present threat to the fetus by interacting with enzymes and ion-transporting systems in membranes. It is also possible that accumulation of vanadium with its concomitant reduction to vanadyl may lead to lipid peroxidation, followed by damage to biological membranes, lysosomal enzymes release and destruction of placental tissue. To explore some of these possibilities the authors decided to examine whether vanadate can undergo redox cycling in microsomes from human term placenta (HTP) that can lead to lipid peroxidation.

  15. An in vitro model to test relative antioxidant potential: Ultraviolet-induced lipid peroxidation in liposomes

    SciTech Connect

    Pelle, E.; Maes, D.; Padulo, G.A.; Kim, E.K.; Smith, W.P. )

    1990-12-01

    Since antioxidants have been shown to play a major role in preventing some of the effects of aging and photoaging in skin, it is important to study this phenomenon in a controlled manner. This was accomplished by developing a simple and reliable in vitro technique to assay antioxidant efficacy. Inhibition of peroxidation by antioxidants was used as a measure of relative antioxidant potential. Liposomes, high in polyunsaturated fatty acids (PUFA), were dispersed in buffer and irradiated with ultraviolet (UV) light. Irradiated liposomes exhibited a significantly higher amount of hydroperoxides than liposomes containing antioxidants in a dose- and concentration-dependent manner. Lipid peroxidation was determined spectrophotometrically by an increase in thiobarbituric acid reacting substances. To further substantiate the production of lipid peroxides, gas chromatography was used to measure a decrease in PUFA substrate. In order of decreasing antioxidant effectiveness, the following results were found among lipophilic antioxidants: BHA greater than catechin greater than BHT greater than alpha-tocopherol greater than chlorogenic acid. Among hydrophilic antioxidants, ascorbic acid and dithiothreitol were effective while glutathione was ineffective. In addition, ascorbic acid was observed to act synergistically with alpha-tocopherol, which is in agreement with other published reports on the interaction of these two antioxidants. Although peroxyl radical scavengers seem to be at a selective advantage in this liposomal/UV system, these results demonstrate the validity of this technique as an assay for measuring an antioxidant's potential to inhibit UV-induced peroxidation.

  16. Exploration of scalp surface lipids reveals squalene peroxide as a potential actor in dandruff condition.

    PubMed

    Jourdain, Roland; Moga, Alain; Vingler, Philippe; El Rawadi, Charles; Pouradier, Florence; Souverain, Luc; Bastien, Philippe; Amalric, Nicolas; Breton, Lionel

    2016-04-01

    Dandruff is a common but complex disorder with three major contributing factors: (1) individual predisposition, (2) scalp sebum and (3) Malassezia yeast colonization. To obtain further insights into the role of sebum in dandruff biogenesis, we analyzed scalp lipid species in a cohort of ten dandruff-free (control) and ten dandruff-afflicted volunteers by gas chromatography coupled to mass spectrometry. Lipid peroxidation levels and biochemical markers of oxidative stress were also assessed. Squalene, a major sebum component, was significantly more peroxidized in dandruff-affected scalps, resulting in significantly higher ratios of squalene monohydroperoxide (SQOOH)/squalene. This was observed when comparing dandruff-affected zones of dandruff subjects to both their non-affected zones and control subjects. In addition, other biomarkers such as malondialdehyde indicated that oxidative stress levels were raised on dandruff scalps. Surprisingly, differences regarding either free or bound fatty acids were fairly rare and minor. Certain novel findings, especially squalene peroxidation levels, were then confirmed in a validation cohort of 24 dandruff-affected subjects, by comparing dandruff-affected and non-dandruff zones from the same individuals. As SQOOH can induce both keratinocyte inflammatory responses and hyperproliferation in vitro, we hypothesized that increased SQOOH could be considered as a new etiological dandruff factor via its ability to impair scalp barrier function. Our results also indicated that Malassezia could be a major source of squalene peroxidation on the scalp. PMID:26842231

  17. Effect of testosterone and steroids homologues on indolamines and lipid peroxidation in rat brain.

    PubMed

    Guzmán, David Calderón; Mejía, Gerardo Barragán; Vázquez, Ivonne Espitia; García, Ernestina Hernández; del Angel, Daniel Santamaría; Olguín, Hugo Juárez

    2005-03-01

    The purpose of the present study was to evaluate the effect of 4-pregnen-17-hydroxy-3-one (A) and two steroids homologues: 3beta-acetoxy-5,16-pregnadien-20-one (B) and 3beta-acetoxy-16alpha-17alpha-epoxy-4-pregnen-20-one (C). Male Wistar rats were treated with o-cresol combined (A, B or C) steroids. Lipid peroxidation status as result of measurement reactive substances to thiobarbituric acid (TBARS) as well as serotonin (5-HT) and its precursor 5-hydroxytryptophan (5-HTP) were measured. The prostate glands were weighed, the 5alpha-reductase activity was determined. The animals treated with A, B, and C steroids showed a slight increase in both 5alpha-reductase activity and prostate size. 5-HT and 5-HTP levels did not change significantly, and TBARS showed an increase in the group treated with B steroid and a decrease in the A steroid group with significant differences in both groups (p<0.05) versus control group. Results suggest that A steroid reduces TBARS in rat brain, perhaps as a result of the interaction between the testosterone unsaturated carbons and OH(-) groups with free radicals.

  18. Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors.

    PubMed

    Reddy, Muntha K; Alexander-Lindo, Ruby L; Nair, Muraleedharan G

    2005-11-16

    The most abundant water soluble natural food colors are betacyanins and anthocyanins. Similarly, lycopene, bixin, beta-carotene, and chlorophyll are water insoluble colors. Pure betanin, bixin, lycopene, chlorophyll, beta-carotene, and cyanidin-3-O-glucoside were isolated from Beta vulgaris, Bixa orellana,Lycopersicum esculentum, Spinacia oleracea, Daucus carrota, and Prunus cerasus, respectively. These natural pigments, alone and in combination, were evaluated for their relative potencies against cyclooxygenase enzymes and tumor cell growth inhibition by using MCF-7 (breast), HCT-116 (colon), AGS (stomach), CNS (central nervous system), and NCI-H460 (lung) tumor cell lines. Among the colors tested, betanin, cyanidin-3-O-glucoside, lycopene, and beta-carotene inhibited lipid peroxidation. However, all pigments tested gave COX-1 and COX-2 inhibition and showed a dose-dependent growth inhibition against breast, colon, stomach, central nervous system, and lung tumor cells, respectively. The mixtures of these pigments were also evaluated for their synergistic effects and chemical interactions at various concentrations. The mixture of anthocyanin and betanin negated their efficacy in the cell growth inhibitory assay and did not enhance the COX enzyme inhibitory activity. This is the first report of a comparative evaluation and the impact on biological activities of these pigments alone and in combination. PMID:16277432

  19. Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors.

    PubMed

    Reddy, Muntha K; Alexander-Lindo, Ruby L; Nair, Muraleedharan G

    2005-11-16

    The most abundant water soluble natural food colors are betacyanins and anthocyanins. Similarly, lycopene, bixin, beta-carotene, and chlorophyll are water insoluble colors. Pure betanin, bixin, lycopene, chlorophyll, beta-carotene, and cyanidin-3-O-glucoside were isolated from Beta vulgaris, Bixa orellana,Lycopersicum esculentum, Spinacia oleracea, Daucus carrota, and Prunus cerasus, respectively. These natural pigments, alone and in combination, were evaluated for their relative potencies against cyclooxygenase enzymes and tumor cell growth inhibition by using MCF-7 (breast), HCT-116 (colon), AGS (stomach), CNS (central nervous system), and NCI-H460 (lung) tumor cell lines. Among the colors tested, betanin, cyanidin-3-O-glucoside, lycopene, and beta-carotene inhibited lipid peroxidation. However, all pigments tested gave COX-1 and COX-2 inhibition and showed a dose-dependent growth inhibition against breast, colon, stomach, central nervous system, and lung tumor cells, respectively. The mixtures of these pigments were also evaluated for their synergistic effects and chemical interactions at various concentrations. The mixture of anthocyanin and betanin negated their efficacy in the cell growth inhibitory assay and did not enhance the COX enzyme inhibitory activity. This is the first report of a comparative evaluation and the impact on biological activities of these pigments alone and in combination.

  20. Alterations in hepatic lipid peroxides and antioxidant profile in Indian water buffaloes suffering from sarcoptic mange.

    PubMed

    Dimri, U; Sharma, M C; Swarup, D; Ranjan, R; Kataria, M

    2008-08-01

    The present study was aimed to examine the status of antioxidants in water buffaloes with sarcoptic mange. Sixty-three buffaloes were divided into three groups, healthy control (group I, n=19), subclinical sarcoptic mange (group II, n=22) and clinical sarcoptic mange (group III, n=22). Lipid peroxides (LPO), superoxide dismutase (SOD), catalase (CAT), zinc and copper in hepatic tissues and serum alpha-tocopherol concentrations were measured. In comparison to group I, LPO was significantly (P<0.05) higher, while SOD and CAT were significantly (P<0.05) lower in group III. LPO and SOD activities were comparable between group I and II, but CAT was significantly (P<0.05) lower in group II. In group III, zinc, copper and alpha-tocopherol concentrations were significantly (P<0.05) lower than group I. Decrease in antioxidant enzyme activities and trace mineral concentrations suggested that sarcoptic mange in buffaloes is associated with compromise in antioxidant defense and oxidative stress may play important role in pathogenesis.

  1. [Interrelation between the composition of lipids and products of their peroxidation and the secretion of ligninolytic enzymes during growth of Lentinus (Panus) tigrinus].

    PubMed

    Kadimaliev, D A; Nadezhina, O S; Atykian, N A; Revin, V V; Samuilov, V D

    2006-01-01

    Lipid composition, intracellular products of lipid peroxidation (LPO), and the activities of extracellular enzymes were studied during submerged cultivation of the xylotrophic fungus Lentinus (Panus) tigrinus VKM F-3616D. The maximum secretion of ligninolytic enzymes during the phase of active mycelium growth correlated with increased content of readily oxidized phospholipids and unsaturated fatty acids and with low content of the LPO products. In the idiophase, which was characterized by lower excretion of extracellular ligninolytic enzymes, the content of more stable phospholipids, saturated fatty acids, and LPO products increased. A relationship between the composition of mycelial lipids and the secretion of ligninolytic enzymes was revealed. PMID:17091587

  2. Inhibition by the bioflavonoid ternatin of aflatoxin B1-induced lipid peroxidation in rat liver.

    PubMed

    Souza, M F; Tomé, A R; Rao, V S

    1999-02-01

    Aflatoxin B1, a metabolite of Aspergillus flavus is a potent hepatotoxic and hepatocarcinogenic mycotoxin. Lipid peroxidation and oxidative DNA damage are the principal manifestations of aflatoxin B1-induced toxicity which could be mitigated by antioxidants. Many plant constituents, e.g. flavonoids, lignans and spice principles (capsaicin, curcumin, eugenol, etc.) have been reported to prevent liver damage associated with lipid peroxidation. In this study we investigated ternatin, a tetramethoxyflavone isolated from Egletes viscosa, for possible protection against liver injury induced by aflatoxin B1 in rats. Seventy two hours after a single intraperitoneal dose of aflatoxin B1 (1 mg kg(-1)), the concentration of malondialdehyde, the product of lipid peroxidation in liver homogenates, and serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly elevated (P<0.001). Subcutaneous ternatin (25 mg kg(-1)) pretreatment greatly reduced aflatoxin B1-induced increases in the levels of serum enzymes (ALT from 5071+/-763 to 293+/-66 international units L(-1) and AST from 4241+/-471 to 449+/-108 international units L(-1)) and elevated malondialdehyde levels (from 11.37+/-1.27 to 0.79+/-0.22 nmol (mg wet tissue)(-1)) in a manner similar to oral vitamin E (300 mg kg(-1)), a standard antioxidant. Further, histological changes induced by aflatoxin B1 such as hepatocellular necrosis and bile-duct proliferation were markedly inhibited in animals pretreated with ternatin or vitamin E. These data provide evidence that ternatin inhibits lipid peroxidation and affords protection against liver damage induced by aflatoxin B1. Ternatin might, therefore, be a suitable candidate for the chemoprevention of aflatoxicosis associated liver cancer.

  3. [Effect of liuwei dihuang decoction and its compatible prescriptions on lipid peroxide and lipofuscin].

    PubMed

    Jiang, Y; Zhao, L; Yan, Y; Xu, L; Ji, Y

    1991-03-01

    Our experiment has shown that liuwei dihuang Decoction can decrease the contents of lipid peroxide in the serum as well as lipofuscin in the liver of the older mice to the level of the younger ones, while the two compatible prescriptions derived from the decoction, "Three invigorators" and "Three purges", cannot produce the same effect. All the three forms of prescription have no action on the lipofuscin in the heart.

  4. Enhancement of lipid peroxidation and its amelioration by vitamin E in a subject with mutations in the SBP2 gene.

    PubMed

    Saito, Yoshiro; Shichiri, Mototada; Hamajima, Takashi; Ishida, Noriko; Mita, Yuichiro; Nakao, Shohei; Hagihara, Yoshihisa; Yoshida, Yasukazu; Takahashi, Kazuhiko; Niki, Etsuo; Noguchi, Noriko

    2015-11-01

    Selenocysteine (Sec) insertion sequence-binding protein 2 (SBP2) is essential for the biosynthesis of Sec-containing proteins, termed selenoproteins. Subjects with mutations in the SBP2 gene have decreased levels of several selenoproteins, resulting in a complex phenotype. Selenoproteins play a significant role in antioxidative defense, and deficiencies in these proteins can lead to increased oxidative stress. However, lipid peroxidation and the effects of antioxidants in subjects with SBP2 gene mutations have not been studied. In the present study, we evaluated the lipid peroxidation products in the blood of a subject (the proband) with mutations in the SBP2 gene. We found that the proband had higher levels of free radical-mediated lipid peroxidation products, such as 7β-hydroxycholesterol, than the control subjects. Treatment of the proband with vitamin E (α-tocopherol acetate, 100 mg/day), a lipid-soluble antioxidant, for 2 years reduced lipid peroxidation product levels to those of control subjects. Withdrawal of vitamin E treatment for 7 months resulted in an increase in lipid peroxidation products. Collectively, these results clearly indicate that free radical-mediated oxidative stress is increased in the subject with SBP2 gene mutations and that vitamin E treatment effectively inhibits the generation of lipid peroxidation products. PMID:26411970

  5. Mitochondria as a Source and Target of Lipid Peroxidation Products in Healthy and Diseased Heart

    PubMed Central

    Anderson, Ethan J.; Katunga, Lalage A.; Willis, Monte S.

    2013-01-01

    Summary The heart is a highly oxidative organ in which cardiomyocyte turnover is virtually absent, making it particularly vulnerable to accumulation of lipid peroxidation products (LPPs) formed as a result of oxidative damage.Reactive oxygen and nitrogen species are the most common electrophiles formed during lipid peroxidation and lead to the formation of both stable and unstable lipid peroxidation products (LPPs). Of the LPPs formed, highly reactive aldehydes are a well-recognized causative factor in aging and age-associated diseases including cardiovascular disease and diabetes.Recent studies have identified that the mitochondria are both a primary source and target of LPPs, with specific emphasis on aldehydes in cardiomyocytes, and how these affect the electron transport system and Ca2+ balance.A number of studies have found that there are functional consequences in the heart as a consequence of exposure to specific aldehydes (acrolein, trans-2-hexanal, 4-hydroxynonenal, and acetaldehyde). Since these LPPs are known to form in heart failure, cardiac ischemia/reperfusion injury, and diabetes, they may have an underappreciated role in the pathophysiology of these disease processes.LPPs are involved in transcriptionally regulating endogenous anti-oxidant systems. Recent evidence has demonstrated that transient increases in LPPs might be beneficial in cardioprotection by contributing to mito-hormesis (i.e. this induction of anti-oxidant systems) in cardiomyocytes. Thus, exploitation of cardioprotective actions of LPPs may represent a novel therapeutic strategy for future treatment of heart disease. PMID:22066679

  6. Glutathione delays varies as-tocopherol oxidation and subsequent lipid peroxidation in rat liver microsomes

    SciTech Connect

    Robey, S.; Mavis, R.

    1986-05-01

    A method has been developed for in vitro trace radiolabeling of rat liver microsomes with /sup 3/H-..cap alpha..-tocopherol (..cap alpha..T*) which allows virtually complete oxidation of the ..cap alpha..T* under oxidizing conditions. The supernatant of a 16,000 xg centrifugation of homogenized rat liver, containing the cytosolic rat liver vitamin E (VE) transfer protein, was incubated with an ethanolic solution of ..cap alpha..T* for 10 minutes at 37/sup 0/C. Labeled microsomes were collected in the washed 100,000 xg pellet. Microsomes were then incubated with 30 ..mu..M Fe/sup 2 +/ in an NADPH-generating system, and both production of malondialdehyde (MDA) (a product of lipid peroxidation) and oxidation of ..cap alpha..T* were monitored over a time course in the presence and absence of glutathione (GSH). The results indicate virtually complete oxidation of ..cap alpha..T* precedes significant membrane lipid peroxidation, and that addition of 5 mM GSH delays both ..cap alpha..T* oxidation and subsequent MDA production. This suggests that the previously observed VE-dependent heat labile inhibition of microsomal lipid peroxidation by GSH involves maintaining membrane levels of ..cap alpha..-tocopherol.

  7. Urinary Lipid Peroxidation Byproducts: Are They Relevant for Predicting Neonatal Morbidity in Preterm Infants?

    PubMed Central

    Kuligowski, Julia; Aguar, Marta; Rook, Denise; Lliso, Isabel; Torres-Cuevas, Isabel; Escobar, Javier; Quintás, Guillermo; Brugada, María; Sánchez-Illana, Ángel; van Goudoever, Johannes B.

    2015-01-01

    Abstract Preterm infants have an immature antioxidant system; however, they frequently require supplemental oxygen. Oxygen-free radicals cause both pulmonary and systemic inflammation, and they are associated with increased morbidity and mortality. Consequently, screening of metabolite profiles representing the amount of lipid peroxidation is considered of great relevance for the evaluation of in vivo oxidative stress and derived inflammation and damage. Ranges for total relative contents of isoprostanes (IsoPs), isofurans (IsoFs), neuroprostanes (NeuroPs), and neurofurans (NeuroFs) within targeted SpO2 ranges were determined in urine samples of 254 preterm infants <32 weeks of gestation within the frame of two randomized, controlled, and blinded clinical trials employing ultra-performance liquid chromatography–tandem mass spectrometry. A total of 536 serial urine samples collected during the first 4 weeks after birth in recruited infants who did not develop free radical associated conditions were analyzed. A reference range for lipid peroxidation byproducts, including isoprostanes, isofurans, neuroprostanes, and neurofurans, was calculated and possible correlations with neonatal conditions were investigated. Urinary elimination of isofurans in the first 4 days after birth correlated with later development of bronchopulmonary dysplasia. Our observations lead to the hypothesis that early urinary determination of lipid peroxidation byproducts, especially isofurans, is relevant to predict development of chronic lung conditions. Antioxid. Redox Signal. 23, 178–184. PMID:25714759

  8. Daily supplementation with iron increases lipid peroxidation in young women with low iron stores.

    PubMed

    King, Sarah M; Donangelo, Carmen M; Knutson, Mitchell D; Walter, Patrick B; Ames, Bruce N; Viteri, Fernando E; King, Janet C

    2008-06-01

    The aim of this study was to determine whether women with low iron stores (plasma ferritin lipid peroxidation as measured by ethane exhalation rates and plasma malondialdehyde. The women served as their own control as pre- and post-supplementation periods were compared. Twelve women participated in the study for a 70-day period and consumed daily iron supplements (98 mg of iron as ferrous sulfate) from day 14 to day 70. Baseline blood and expired air samples were obtained on days 1 and 14; measurements during supplementation were performed on days 56 and 70, that is at 6 and 8 weeks of supplementation. Iron status improved during the iron supplementation period; biochemical indicators of lipid peroxidation also increased. After 6 wks of iron supplementation, serum ferritin almost doubled and body iron more than doubled. Hemoglobin levels increased slightly and other indicators of iron status became normal. However, plasma malondialdehyde (MDA) and breath ethane exhalation rates (BEER) increased by more than 40% between baseline and 6 wks of supplementation; these increases correlated significantly with plasma iron and ferritin levels. MDA was positively correlated with BEER. BEER increased further after 8 wks of iron supplementation. The increased indicators of lipid peroxidation with duration of supplementation and as iron status improved suggest that providing daily nearly 100 mg iron may not be a totally innocuous regimen for correcting iron depletion in women.

  9. Regulation of the hepatitis C virus RNA replicase by endogenous lipid peroxidation

    PubMed Central

    Yamane, Daisuke; McGivern, David R.; Wauthier, Eliane; Yi, MinKyung; Madden, Victoria J.; Welsch, Christoph; Antes, Iris; Wen, Yahong; Chugh, Pauline E.; McGee, Charles E.; Widman, Douglas G.; Misumi, Ichiro; Bandyopadhyay, Sibali; Kim, Seungtaek; Shimakami, Tetsuro; Oikawa, Tsunekazu; Whitmire, Jason K.; Heise, Mark T.; Dittmer, Dirk P.; Kao, C. Cheng; Pitson, Stuart M; Merrill, Alfred H.; Reid, Lola M.; Lemon, Stanley M.

    2014-01-01

    Although oxidative tissue injury often accompanies viral infection, there is little understanding of how it influences virus replication. We show that multiple hepatitis C virus (HCV) genotypes are exquisitely sensitive to oxidative membrane damage, a property distinguishing them from other pathogenic RNA viruses. Lipid peroxidation, regulated in part through sphingosine kinase 2, severely restricts HCV replication in Huh-7 cells and primary human hepatoblasts. Endogenous oxidative membrane damage lowers the 50% effective concentration of direct-acting antivirals, suggesting critical regulation of the conformation of the NS3/4A protease and NS5B polymerase, membrane-bound HCV replicase components. Resistance to lipid peroxidation maps genetically to trans-membrane and membrane-proximal residues within these proteins, and is essential for robust replication in cell culture, as exemplified by the atypical JFH1 strain. Thus, the typical, wild-type HCV replicase is uniquely regulated by lipid peroxidation, providing a novel mechanism for attenuating replication in stressed tissue and possibly facilitating long-term viral persistence. PMID:25064127

  10. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product

    SciTech Connect

    Zheng, Ruijin; Heck, Diane E.; Mishin, Vladimir; Black, Adrienne T.; Shakarjian, Michael P.; Kong, Ah-Ng Tony; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-03-01

    4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of

  11. Mercury induced time-dependent alterations in lipid profiles and lipid peroxidation in different body organs of cat-fish Heteropneustes fossilis

    SciTech Connect

    Bano, Y.; Hasan, M.

    1989-04-01

    The effects of mercuric chloride (HgCl/sub 2/) on lipid profiles and lipid peroxidation in different body organs of fresh water cat-fish Heteropneustes fossilis were studied. The daily exposure of HgCl/sub 2/ 0.2 mg/L for 10, 20 and 30 days depleted the total lipids in brain. But the content of phospholipids enhanced significantly at 30 days. Significant diminution in C/P ratio was discernible with 30 days of exposure following mercury toxicosis. Liver exhibited elevated levels of total lipids, phospholipids, cholesterol and C/P ratio. Interestingly kidney showed marked decrease in the concentration of total lipids, cholesterol and C/P ratio at higher exposure. However, the phospholipid values increased during the longer exposure. The content of total lipids and phospholipids was high in muscle but the level of cholesterol and C/P ratio were depleted. Significant increment in lipid peroxidation was discernible in brain, liver and muscle. In kidney the rate of lipid peroxidation was significantly reduced. The results suggest that exposure of HgCl/sub 2/ enhances the peroxidation of endogenous lipids in brain, liver and muscle. Interestingly the lipid contents are affected differently in different body organs.

  12. Mitochondrial dysfunction and lipid peroxidation in rat frontal cortex by chronic NMDA administration can be partially prevented by lithium treatment.

    PubMed

    Kim, Helena K; Isaacs-Trepanier, Cameron; Elmi, Nika; Rapoport, Stanley I; Andreazza, Ana C

    2016-05-01

    Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder.

  13. Age-dependent changes in lipid peroxide levels in peripheral organs, but not in brain, in senescence-accelerated mice.

    PubMed

    Matsugo, S; Kitagawa, T; Minami, S; Esashi, Y; Oomura, Y; Tokumaru, S; Kojo, S; Matsushima, K; Sasaki, K

    2000-01-01

    The tissue concentration of lipid peroxides was determined in the brain, heart, liver, lung and kidney of accelerated senescence-prone (SAMP-8) and -resistant (SAMR-1) mice at 3, 6 and 9 months of age by a method involving chemical derivatization and high performance liquid chromatography. The level of lipid peroxides in the brain did not show an age-dependent change, but at each age the brain level of lipid peroxides was significantly higher in SAMP-8 than in SAMR-1. In contrast, the lipid peroxide levels in the peripheral organs showed increases with aging in both strains, and they were significantly higher in SAMP-8 than in SAMR-1 at both 3 and 6 months of age (except at 3 months of age in the kidney). These results suggest that increased oxidative stress in the brain and peripheral organs is a cause of the senescence-related degeneration and impairments seen in SAMP-8. PMID:10643812

  14. Ethanol induced changes in lipid peroxidation and nonprotein sulfhydryl content. Different sensitivities in rat liver and kidney.

    PubMed

    Kera, Y; Komura, S; Ohbora, Y; Kiriyama, T; Inoue, K

    1985-02-01

    Acute ethanol ingestion (5 g/Kg) led to an acceleration of lipid peroxidation and reduction in non-proteinic free sulfhydryl (NPFSH) levels in the rat liver and kidney. In the liver, progressive changes of these phenomena were inversely related, and maximal effects were observed 6 hr after ethanol ingestion. Unlike the liver, in the kidney, there was a rapid fall in NPFSH content followed by constantly reduced levels during ethanol intoxication, whereas acceleration of lipid peroxidation was detected only after 6-8 hr of ethanol. In addition, a lower dose (2 g/Kg) which caused no significant change in the liver, was effective in reducing renal NPFSH, but not in enhancing lipid peroxidation. These results suggest that acceleration of lipid peroxidation may not be required for the NPFSH decrease, at least in case of kidney.

  15. Sub-chronic exposure to arsenic and dichlorvos on erythrocyte antioxidant defense systems and lipid peroxidation in rats.

    PubMed

    Dwivedi, Nidhi; Flora, S J S

    2015-03-01

    The effect of combined exposure to arsenic (25 ppm in drinking water) and dichlorvos (2.5 mg kg1, orally) for 56 days on biochemical variables, indicative of lipid peroxidation, antioxidant enzyme system and AChE activity in erythrocytes of rats, were examined. While arsenic caused a significant increase in AChE, DDVP produced marked depletion. Combined exposure to arsenic and DDVP produced no additional decrease in AChE activity, which was comparable to DDVP. Arsenic and DDVP also increased the levels of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS), suggesting free radical generation. Interestingly, glutathione linked enzymes (GSH, GPx, GST and GR) significantly increased on arsenic and DDVP exposure. SOD activity also increased significantly in the individually exposed groups, while catalase activity remained unchanged. Blood arsenic level increased significantly on coexposure to arsenic alone and with DDVP exposed group. However, arsenic content in co-exposed group depleted marginally as compared to arsenic alone group, indicating possible arsenic redistribution. It might be concluded from the study that the combined exposure to arsenic and DDVP may lead to synergistic effects on certain biochemical indicators of oxidative stress like ROS, GSH and SOD, suggesting a more pronounced induction of lipid peroxidation in erythrocytes.

  16. Use of fluorescence-activated flow cytometry to determine membrane lipid peroxidation during hypothermic liquid storage and freeze-thawing of viable boar sperm loaded with 4, 4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid.

    PubMed

    Guthrie, H D; Welch, G R

    2007-06-01

    Part of the reduction in boar sperm motility and fertility associated with hypothermic liquid storage and cryopreservation may be due to membrane lipid peroxidation. Lipid peroxidation was monitored by the shift from red to green fluorescence emission of the lipophilic probe 4, 4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid, C(11)BODIPY(581/591) (BODIPY), as measured by fluorescence-activated flow cytometry in live sperm (negative for propidium iodide). Experiments were conducted with Percoll-washed sperm to determine the specificity of BODIPY oxidation in the presence of different reactive oxygen species generators and metal chelators. Compared with no FeSO(4) and Na ascorbate, the combination of FeSO(4) and Na ascorbate (FeAc) increased (P < 0.01) the percentage of sperm containing oxidized BODIPY from 70% and increased (P < 0.05) BOD-IPY fluorescence intensity/cell by 5- to 10-fold after a 30-min incubation. Motility was depressed (P < 0.05) after exposure to FeAc, but viability was not affected. Of the reactive oxygen species generators tested, BODIPY oxidation was specific for FeAc, because menadione and H(2)O(2) had little or no effect. The oxidization of hydroethidine to ethidium was specific for menadione and H(2)O(2); FeAc had no effect. The presence of the metal chelators EDTA or deferoxamine mesylate at 3 and 9 muM inhibited FeAc-induced BODIPY oxidation and maintained motility. Experiments were conducted to determine the effect of liquid storage at 17 degrees C for 1 and 5 d and the effect of freeze-thawing on basal and FeAc-induced BODIPY oxidation. Basal BODIPY oxidation (no FeAc) was low in liquid stored and thawed viable sperm (1.3 and 3.4%, respectively). Although the incidence of basal or spontaneous membrane lipid peroxidation was low during liquid storage and after freeze-thawing, viable boar sperm were susceptible to FeAc-induced lipid peroxidation. PMID:17296775

  17. Effect of dietary aloe vera on growth and lipid peroxidation indices in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Golestan, Ghazale; Salati, Amir Parviz; Keyvanshokooh, Saeed; Zakeri, Mohammad; Moradian, Hossein

    2015-01-01

    Aloe vera has been used worldwide in pharmaceutical, food and cosmetic industries due to the plethora of biological activities of its constituents. This study was done to evaluate the effects of dietary aloe vera on growth and lipid peroxidation in rainbow trout (Oncorhynchus mykiss). A total number of 480 O. mykiss (mean weight 9.50 ± 0.85 g) were randomized into four experimental groups including one control and three experimental groups that aloe vera was incorporated in their diet at 0.5, 1.0 and 2.0 g kg(-1). Trial was done for eight weeks. Then biometry and blood sampling were done. Plasma malondialdehyde, ferric reducing ability of plasma and growth index were estimated at the end of study. The results showed that aloe vera extract did not affect growth indices. Malondialdehyde was increased in the experimental group compared to the control group but ferric reducing ability of plasma showed a decrease in experimental groups (p < 0.05) compared to the control group. Our findings showed that dietary aloe vera have adverse effects on antioxidant defense system in O. mykiss.

  18. Polyamines reduces lipid peroxidation induced by different pro-oxidant agents.

    PubMed

    Bellé, Nádia Aléssio Velloso; Dalmolin, Gerusa Duarte; Fonini, Graciela; Rubin, Maribel Antonello; Rocha, João Batista Teixeira

    2004-05-22

    Polyamines, among other functions, are considered to act as a free radical scavenger and antioxidant. The quinolinic acid (QA), sodium nitroprusside (SNP) and iron (Fe+2) stimulate production of free radicals and lipid peroxidation. In the present study, we investigated the free radical and/or aldehyde scavenger effects of polyamines spermine and spermidine on thiobarbituric acid reactive species (TBARS) production induced by QA, SNP, Fe+2/EDTA system and free Fe2+ in rat brain. Spermine and spermidine inhibited QA-induced TBARS production; however spermine was a better antioxidant than spermidine. Spermine also inhibited SNP-, Fe+2/EDTA- and free Fe2+-induced TBARS production, but had a modest effect. Spermidine, in turn, also discretely inhibited SNP-, Fe+2/EDTA- and free Fe2+-induced TBARS production. In the presence of MK-801, QA-induced TBARS production was considerably more inhibited by polyamines. In addition, arcaine does not affect the reducer effect of polyamines. The present findings suggest that the observed effects of polyamines are not related to the activation of NMDA receptor but with their antioxidant and free radical scavenger properties.

  19. Effects of aldicarb and propoxur on cytotoxicity and lipid peroxidation in CHO-K1 cells.

    PubMed

    Maran, E; Fernández-Franzón, M; Font, G; Ruiz, M J

    2010-06-01

    Cytotoxic effects of aldicarb, its sulfone and sulfoxide, and propoxur, lipid peroxidation and antioxidant parameters in Chinese Hamster Ovary (CHO-K1) cells were determined. D,L-buthionine-(S,R)-sulfoximine (BSO) was assayed to determine the role of GSH in the protection against carbamate cytotoxicity. Pre-treatment with 60 microM BSO, induced a significant decrease in the glutathione reductase (GR; 64-141%), the glutathione peroxidase (GPx; 10-30%) and the glutathione S-transferase (GST; 59-93%) activities, and its GSH levels (79-85%), while the oxidized glutathione (GSSG) levels significantly increased (64-78%) respect to experiment non-BSO-pretreated. Carbamates BSO pre-treated vs. non-BSO pre-treated showed a significant increase in malondialdehyde (MDA) production (from 13% to 52% vs. 25% to 93%). These data suggest that carbamates could injure CHO-K1 cells via oxidative stress by the increase of MDA production; moreover, BSO enhance the oxidative damage caused by carbamates. However, the glutathione system protects cells from carbamates damage.

  20. Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product, acrolein

    PubMed Central

    Kang, Jung Hoon

    2013-01-01

    Acrolein is the most reactive aldehydic product of lipid peroxidation and is found to be elevated in the brain when oxidative stress is high. The effects of acrolein on the structure and function of human Cu,Zn-superoxide dismutase (SOD) were examined. When Cu,Zn-SOD was incubated with acrolein, the covalent crosslinking of the protein was increased, and the loss of enzymatic activity was increased in a dose-dependent manner. Reactive oxygen species (ROS) scavengers and copper chelators inhibited the acrolein-mediated Cu,Zn-SOD modification and the formation of carbonyl compound. The present study shows that ROS may play a critical role in acrolein-induced Cu,Zn-SOD modification and inactivation. When Cu,Zn-SOD that has been exposed to acrolein was subsequently analyzed by amino acid analysis, serine, histidine, arginine, threonine and lysine residues were particularly sensitive. It is suggested that the modification and inactivation of Cu,Zn-SOD by acrolein could be produced by more oxidative cell environments. [BMB Reports 2013; 46(11): 555-560] PMID:24152914

  1. Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product, acrolein.

    PubMed

    Kang, Jung Hoon

    2013-11-01

    Acrolein is the most reactive aldehydic product of lipid peroxidation and is found to be elevated in the brain when oxidative stress is high. The effects of acrolein on the structure and function of human Cu,Zn-superoxide dismutase (SOD) were examined. When Cu,Zn-SOD was incubated with acrolein, the covalent crosslinking of the protein was increased, and the loss of enzymatic activity was increased in a dose-dependent manner. Reactive oxygen species (ROS) scavengers and copper chelators inhibited the acrolein-mediated Cu,Zn-SOD modification and the formation of carbonyl compound. The present study shows that ROS may play a critical role in acrolein-induced Cu,Zn-SOD modification and inactivation. When Cu,Zn-SOD that has been exposed to acrolein was subsequently analyzed by amino acid analysis, serine, histidine, arginine, threonine and lysine residues were particularly sensitive. It is suggested that the modification and inactivation of Cu,Zn-SOD by acrolein could be produced by more oxidative cell environments.

  2. [Dipeptide nootropic agent GVS-111 prevents accumulation of the lipid peroxidation products during immobilization].

    PubMed

    Lysenko, A V; Uskova, N I; Ostrovskaia, R U; Gudasheva, T A; Voronina, T A

    1997-01-01

    Immobilization of rats in a narrow plastic chamber for 24 h caused a sharp increase in the level of diene conjugates and the content of schiff bases in the synaptosomes of the brain cortex as well as accumulation of extraerythrocytic hemoglobin in blood serum. The dipeptide nootropic agent GVS-111 (ethyl ether of phenylacetylprolylglycine), when administered 15 and particularly 60 min before immobilization reduced the accumulation of these products of lipid peroxidation in the brain and blood. GVS-111 demonstrated these signs of its antioxidant effect after a single i.p. injection in doses of 0.12 and 0.5 mg/kg. Pyracetam produced a similar effect on the listed parameters in injection in a dose of 300 mg/kg for three successive days. The protective effect of the new pyracetam dipeptide analog GVS-111 in relation to activation of free-radical processes induced by immobilization is additional proof of the antistress action of this dipeptide. PMID:9483398

  3. Protective effects of ginger toward cadmium-induced testes and kidney lipid peroxidation and hematological impairment in albino rats.

    PubMed

    Onwuka, Frank C; Erhabor, Osaro; Eteng, M U; Umoh, I B

    2011-01-01

    This study was carried out to investigate the effect of oral dietary supplementation with ginger on cadmium-induced toxic effects on biochemical, hematological, and pathophysiological indices of albino rats. The effect of cadmium and cadmium/ginger treatment on lipid peroxidation was measured by malondialdehyde (MDA) levels in testes and kidney; serum activities of alkaline phosphatase (ALP), acid phosphatase (ACP), and prostatic acid phosphatase (PAP) enzyme were investigated alongside hematological indices. The results showed that cadmium induces a significant increase in both testicular and kidney MDA, whereas cadmium/ginger treatment produced a significant reversal of the effect of lipid peroxidation (P=.004). Cadmium treatment induced 75%, 78%, and 22% increases in activities of ACP, PAP, and ALP, respectively, whereas the cadmium/ginger-treated group reversed these values for enzyme activities (P=.001). Results of organ weight and hematological indices analysis in the cadmium-treated rats showed a decrease in organ weight and distortion of the hemopoietic features, whereas the cadmium/ginger-treated rats showed an improvement in organ weight and hematological indices (P=.04 and .001, respectively). The reversal of the toxic effects of cadmium in the cadmium/ginger-treated albino rats heralds the antioxidant potency of ginger toward cadmium toxicity-associated oxidative stress. PMID:21476888

  4. [Participation of final products of lipid peroxidation in the anticancer mechanism of ionizing radiation and radiomimetic cytostatics].

    PubMed

    Przybyszewski, W M

    2001-01-01

    This review reports the evidence for the participation of final products of lipid peroxidation in the anticancer mechanism of ionising radiation and radiomimetic cytostatics. Processes of lipid peroxidation occur endogenously in response to oxidative stress and great diversity of reactive metabolites is formed. However, direct observation of radical reaction in pathophysiology of cells, tissues and organs is limited technically. Most investigations focused on the indirect assessment of their final products, aldehydes. The peroxidative breakdown of polyunsaturated fatty acids is believed to be involved in the regulation of cell division, and antitumor effect through biochemical and genetic processes.

  5. 4-Hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on G alpha(q/11).

    PubMed

    Blanc, E M; Kelly, J F; Mark, R J; Waeg, G; Mattson, M P

    1997-08-01

    Considerable data indicate that oxidative stress and membrane lipid peroxidation contribute to neuronal degeneration in an array of age-related neurodegenerative disorders. In contrast, the impact of subtoxic levels of membrane lipid peroxidation on neuronal function is largely unknown. We now report that 4-hydroxynonenal (HNE), an aldehydic product of lipid peroxidation, disrupts coupling of muscarinic cholinergic receptors and metabotropic glutamate receptors to phospholipase C-linked GTP-binding proteins in cultured rat cerebrocortical neurons. At subtoxic concentrations, HNE markedly inhibited GTPase activity, inositol phosphate release, and elevation of intracellular calcium levels induced by carbachol (muscarinic agonist) and (RS)-3,5-dihydroxyphenyl glycine (metabotropic glutamate receptor agonist). Maximal impairment of agonist-induced responses occurred within 30 min of exposure to HNE. Other aldehydes, including malondialdehyde, had little effect on agonist-induced responses. Antioxidants that suppress lipid peroxidation did not prevent impairment of agonist-induced responses by HNE, whereas glutathione, which is known to bind and detoxify HNE, did prevent impairment of agonist-induced responses. HNE itself did not induce oxidative stress. Immunoprecipitation-western blot analysis using an antibody to HNE-protein conjugates showed that HNE can bind to G alpha(q/11). HNE also significantly suppressed inositol phosphate release induced by aluminum fluoride. Collectively, our data suggest that HNE plays a role in altering receptor-G protein coupling in neurons under conditions of oxidative stress that may occur both normally, and before cell degeneration and death in pathological settings. PMID:9231714

  6. Aerobic training suppresses exercise-induced lipid peroxidation and inflammation in overweight/obese adolescent girls.

    PubMed

    Youssef, Hala; Groussard, Carole; Lemoine-Morel, Sophie; Pincemail, Joel; Jacob, Christophe; Moussa, Elie; Fazah, Abdallah; Cillard, Josiane; Pineau, Jean-Claude; Delamarche, Arlette

    2015-02-01

    This study aimed to determine whether aerobic training could reduce lipid peroxidation and inflammation at rest and after maximal exhaustive exercise in overweight/obese adolescent girls. Thirty-nine adolescent girls (14-19 years old) were classified as nonobese or overweight/obese and then randomly assigned to either the nontrained or trained group (12-week multivariate aerobic training program). Measurements at the beginning of the experiment and at 3 months consisted of body composition, aerobic fitness (VO2peak) and the following blood assays: pre- and postexercise lipid peroxidation (15F2a-isoprostanes [F2-Isop], lipid hydroperoxide [ROOH], oxidized LDL [ox-LDL]) and inflammation (myeloperoxidase [MPO]) markers. In the overweight/ obese group, the training program significantly increased their fat-free mass (FFM) and decreased their percentage of fat mass (%FM) and hip circumference but did not modify their VO2peak. Conversely, in the nontrained overweight/obese group, weight and %FM increased, and VO2peak decreased, during the same period. Training also prevented exercise-induced lipid peroxidation and/or inflammation in overweight/obese girls (F2-Isop, ROOH, ox-LDL, MPO). In addition, in the trained overweight/obese group, exercise-induced changes in ROOH, ox-LDL and F2-Isop were correlated with improvements in anthropometric parameters (waist-to-hip ratio, %FM and FFM). In conclusion aerobic training increased tolerance to exercise-induced oxidative stress in overweight/obese adolescent girls partly as a result of improved body composition. PMID:25387489

  7. Aerobic training suppresses exercise-induced lipid peroxidation and inflammation in overweight/obese adolescent girls.

    PubMed

    Youssef, Hala; Groussard, Carole; Lemoine-Morel, Sophie; Pincemail, Joel; Jacob, Christophe; Moussa, Elie; Fazah, Abdallah; Cillard, Josiane; Pineau, Jean-Claude; Delamarche, Arlette

    2015-02-01

    This study aimed to determine whether aerobic training could reduce lipid peroxidation and inflammation at rest and after maximal exhaustive exercise in overweight/obese adolescent girls. Thirty-nine adolescent girls (14-19 years old) were classified as nonobese or overweight/obese and then randomly assigned to either the nontrained or trained group (12-week multivariate aerobic training program). Measurements at the beginning of the experiment and at 3 months consisted of body composition, aerobic fitness (VO2peak) and the following blood assays: pre- and postexercise lipid peroxidation (15F2a-isoprostanes [F2-Isop], lipid hydroperoxide [ROOH], oxidized LDL [ox-LDL]) and inflammation (myeloperoxidase [MPO]) markers. In the overweight/ obese group, the training program significantly increased their fat-free mass (FFM) and decreased their percentage of fat mass (%FM) and hip circumference but did not modify their VO2peak. Conversely, in the nontrained overweight/obese group, weight and %FM increased, and VO2peak decreased, during the same period. Training also prevented exercise-induced lipid peroxidation and/or inflammation in overweight/obese girls (F2-Isop, ROOH, ox-LDL, MPO). In addition, in the trained overweight/obese group, exercise-induced changes in ROOH, ox-LDL and F2-Isop were correlated with improvements in anthropometric parameters (waist-to-hip ratio, %FM and FFM). In conclusion aerobic training increased tolerance to exercise-induced oxidative stress in overweight/obese adolescent girls partly as a result of improved body composition.

  8. Monitoring by cis-parinaric fluorescence of free radical induced lipid peroxidation in aqueous liposome suspensions.

    PubMed

    Di Giulio, A; Saletti, A; Oratore, A; Bozzi, A

    1996-01-01

    Cis-parinaric acid is fluorescent when partioned into a lipid environment and its fluorescence is destroyed upon reaction with free radicals. In our study 1-palmitoyl-2-parinoyl-phosphatidylcholine (cis-PnA) has been used to monitor the time-course of liposomal lipid peroxidation, using reverse-phase evaporation vesicles (REV) of different composition exposed to oxidative stress in various conditions. This methodology allowed us to estimate the potential damage produced by two different oxidizing systems, namely hydrogen peroxide (H2O2), a water soluble oxidant, and t-butyl hydroperoxide (t-BHP), a hydrophobic hydroperoxide. Furthermore, we evaluated the protective effects of bilayer-associated antioxidants, namely alpha-tocopherol acetate (alpha-THA), vitamin K1 and beta-carotene, as well as of two antioxidants dissolved in the aqueous bulk solution, that is, biverdin and uric acid. Under our experimental conditions, the results suggest that (i) both oxidizing compounds were able to interact with liposomal PnA leading to decay either of the excitation and of emission spectra of the probe; (ii) hydrogen peroxide seemed to be of most effective among the two stressing agents, when employed at similar concentrations; (iii) the alpha-THA appeared to be a stronger antioxidant than vitamin K1 and beta-carotene, resulting in a decrease of the liposomal membrane stress caused by those two oxidizing agents; (iv) among the water soluble antioxidant compounds, biliverdin displayed a protective effect at least 10 x higher than uric acid; (v) the overall damage, as well as the protection mechanisms, seemed to be dependent either on the lipid composition of the vesicles and on the pH of the liposomal suspension. This relatively easy experimental approach suggests the validity of the use of the bilayer associated fluorescent probe PnA in the monitoring of spontaneous and/or chemically induced liposomal lipid damage. PMID:8808780

  9. Valeriana officinalis Extracts Ameliorate Neuronal Damage by Suppressing Lipid Peroxidation in the Gerbil Hippocampus Following Transient Cerebral Ischemia.

    PubMed

    Yoo, Dae Young; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Kwak, Youn-Gil; Yoo, Miyoung; Lee, Sanghee; Yoon, Yeo Sung; Hwang, In Koo

    2015-06-01

    As a medicinal plant, the roots of Valeriana officinalis have been used as a sedative and tranquilizer. In the present study, we evaluated the neuroprotective effects of valerian root extracts (VE) on the hippocampal CA1 region of gerbils after 5 min of transient cerebral ischemia. Gerbils were administered VE orally once a day for 3 weeks, subjected to ischemia/reperfusion injury, and continued on VE for 3 weeks. The administration of 100 mg/kg VE (VE100 group) significantly reduced the ischemia-induced spontaneous motor hyperactivity 1 day after ischemia/reperfusion. Four days after ischemia/reperfusion, animals treated with VE showed abundant cresyl violet-positive neurons in the hippocampal CA1 region when compared to the vehicle or 25 mg/kg VE-treated groups. In addition, the VE treatment markedly decreased microglial activation in the hippocampal CA1 region 4 days after ischemia. Compared to the other groups, the VE100 group showed the lowest level of lipid peroxidation during the first 24 h after ischemia/reperfusion. In summary, the findings in this study suggest that pretreatment with VE has protective effects against ischemic injury in the hippocampal pyramidal neurons by decreasing microglial activation and lipid peroxidation. PMID:25785762

  10. Valeriana officinalis Extracts Ameliorate Neuronal Damage by Suppressing Lipid Peroxidation in the Gerbil Hippocampus Following Transient Cerebral Ischemia

    PubMed Central

    Yoo, Dae Young; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Kwak, Youn-Gil; Yoo, Miyoung; Lee, Sanghee; Yoon, Yeo Sung

    2015-01-01

    Abstract As a medicinal plant, the roots of Valeriana officinalis have been used as a sedative and tranquilizer. In the present study, we evaluated the neuroprotective effects of valerian root extracts (VE) on the hippocampal CA1 region of gerbils after 5 min of transient cerebral ischemia. Gerbils were administered VE orally once a day for 3 weeks, subjected to ischemia/reperfusion injury, and continued on VE for 3 weeks. The administration of 100 mg/kg VE (VE100 group) significantly reduced the ischemia-induced spontaneous motor hyperactivity 1 day after ischemia/reperfusion. Four days after ischemia/reperfusion, animals treated with VE showed abundant cresyl violet-positive neurons in the hippocampal CA1 region when compared to the vehicle or 25 mg/kg VE-treated groups. In addition, the VE treatment markedly decreased microglial activation in the hippocampal CA1 region 4 days after ischemia. Compared to the other groups, the VE100 group showed the lowest level of lipid peroxidation during the first 24 h after ischemia/reperfusion. In summary, the findings in this study suggest that pretreatment with VE has protective effects against ischemic injury in the hippocampal pyramidal neurons by decreasing microglial activation and lipid peroxidation. PMID:25785762

  11. Effect of thinner inhalation on lipid peroxidation and some antioxidant enzymes of people working with paint thinner.

    PubMed

    Halifeoglu, I; Canatan, H; Ustundag, B; Ilhan, N; Inanc, F

    2000-12-01

    Paint thinner is a commonly used industrial solvent with considerable potential for abuse by inhalation. Paint thinner is taken into the body by inhalation or by contact with the skin. Paint thinner is oxidized gradually by cytochrome P450-dependent monooxygenase and consequently free radicals are produced. In the present study we measured plasma malondialdehyde (MDA, a product of lipid peroxidation) levels as an indicator of oxidative damage and activity levels of antioxidant enzymes gluthatione peroxidase (GSH-Px) and superoxide dismutase (SOD) in erythrocytes of a group of people (n = 18) working with paint thinner. The control group was composed of 18 healthy adults. There was a statistically significant (p < 0.001) increase in MDA (2.0+/-0.7 nmol ml(-1)) and GSH-Px (86.5+/-16.6 U g(-1) Hb) activity levels in people working with paint thinner compared with control subjects (MDA: 1.0+/-0.3 nmol ml(-1); GSH-Px: 53.9+/-14.5 U g(-1) Hb). Similarly, there was also an increase (p < 0.05) in the SOD levels (1079+/-214.6 U g(-1) Hb) of people working with paint thinner compared with controls (953.3+/-46.7 U g(-1) Hb). Based on our results, it can be concluded that paint thinner inhalation may increase lipid peroxidation and consequently induce antioxidant enzymes. PMID:11180289

  12. Lipid Peroxidation Is another Potential Mechanism besides Pore-Formation Underlying Hemolysis of Tentacle Extract from the Jellyfish Cyanea capillata

    PubMed Central

    Wang, Tao; Wen, Xiao-Juan; Mei, Xiao-Bin; Wang, Qian-Qian; He, Qian; Zheng, Jie-Min; Zhao, Jie; Xiao, Liang; Zhang, Li-Ming

    2013-01-01

    This study was performed to explore other potential mechanisms underlying hemolysis in addition to pore-formation of tentacle extract (TE) from the jellyfish Cyanea capillata. A dose-dependent increase of hemolysis was observed in rat erythrocyte suspensions and the hemolytic activity of TE was enhanced in the presence of Ca2+, which was attenuated by Ca2+ channel blockers (Diltiazem, Verapamil and Nifedipine). Direct intracellular Ca2+ increase was observed after TE treatment by confocal laser scanning microscopy, and the Ca2+ increase could be depressed by Diltiazem. The osmotic protectant polyethylenglycol (PEG) significantly blocked hemolysis with a molecular mass exceeding 4000 Da. These results support a pore-forming mechanism of TE in the erythrocyte membrane, which is consistent with previous studies by us and other groups. The concentration of malondialdehyde (MDA), an important marker of lipid peroxidation, increased dose-dependently in rat erythrocytes after TE treatment, while in vitro hemolysis of TE was inhibited by the antioxidants ascorbic acid—Vitamin C (Vc)—and reduced glutathione (GSH). Furthermore, in vivo hemolysis and electrolyte change after TE administration could be partly recovered by Vc. These results indicate that lipid peroxidation is another potential mechanism besides pore-formation underlying the hemolysis of TE, and both Ca2+ channel blockers and antioxidants could be useful candidates against the hemolytic activity of jellyfish venoms. PMID:23303301

  13. Protective effects of Carissa opaca fruits against CCl4-induced oxidative kidney lipid peroxidation and trauma in rat

    PubMed Central

    Sahreen, Sumaira; Khan, Muhammad Rashid; Khan, Rahmat Ali; Alkreathy, Huda Mohammad

    2015-01-01

    Background Carbon tetrachloride (CCl4) is a potent nephrotoxin, as it causes acute as well as chronic toxicity in kidneys. Therefore, this study was carried out to assess the pharmacological potential of different fractions of Carissa opaca fruits on CCl4-induced oxidative trauma in the kidney. Methods The parameters studied in this respect were the kidney function tests viz, serum profile, urine profile, genotoxicity, characteristic morphological findings, and antioxidant enzymatic level of kidneys. Result The protective effects of various fractions of C. opaca fruits against CCl4 administration were reviewed by rat renal function alterations. Chronic toxicity caused by 8-week treatment of CCl4 to the rats significantly decreased the pH level, activities of antioxidant enzymes, and glutathione contents, whereas a significant increase was found in the case of specific gravity, red blood cells, white blood cells, level of urea, and lipid peroxidation in comparison to control group. Administration of various fractions of C. opaca fruit with CCl4 showed protective ability against CCl4 intoxication by restoring the urine profile, activities of antioxidant enzymes, and lipid peroxidation in rat. CCl4 induction in rats also caused DNA fragmentation and glomerular atrophy by means of dilation, disappearance of Bowmen's space, congestion in the capillary loops, dilation in renal tubules, and foamy look of epithelial cells of tubular region, which were restored by co-admiration of various fractions of C. opaca. Conclusion Results revealed that the methanolic fractions of C. opaca are the most potent and helpful in kidney trauma. PMID:26350293

  14. Oxidative stress and lipid peroxidation in the earthworm Eisenia fetida induced by low doses of fomesafen.

    PubMed

    Zhang, Qingming; Zhu, Lusheng; Wang, Jun; Xie, Hui; Wang, Jinhua; Han, Yingnan; Yang, Jinhui

    2013-01-01

    Formesafen is a diphenyl ether herbicide that has adverse effects on non-target animals. However, knowledge about the effect of fomesafen on the antioxidant defense system in earthworms is vague. Thus, it is essential to investigate the effects of fomesafen on the antioxidant defense system in earthworms as a precautionary method. In the present study, earthworms (Eisenia fetida) were exposed to artificial soil treated with a range of concentrations of fomesafen (0, 10, 100, and 500 μg kg(-1)) and were collected on the 3rd, 7th, 14th, 21st, and 28th days of exposure. Subsequently, the antioxidant enzyme activities (superoxide dismutase (SOD); catalase (CAT); and guaiacol peroxidase (POD)), reactive oxygen species (ROS) level, and malondialdehyde (MDA) content due to fomesafen treatment were examined in earthworms. Compared with the control, the SOD activity increased on the third and seventh days but decreased on the 14th day due to treatment with 100 and 500 μg kg(-1) of fomesafen. The activities of CAT and POD increased significantly on the third, seventh, and 14th days of exposure. In addition, the ROS level was significantly enhanced throughout the entire experimental period and showed a statistically dose-dependent relationship on the seventh and 14th days. The MDA content markedly increased on the seventh day of exposure; however, obvious changes were not detected at other exposure period. Low doses of fomesafen (≤ 500 μg kg(-1)) may result in oxidative damage and lipid peroxidation in E. fetida by inducing the generation of ROS at short exposure periods (14 days). However, the adverse effects of fomesafen gradually disappear as the cooperation of antioxidant enzymes and exposure time are prolonged. This result may be helpful for further studies on the toxicological mechanisms of fomesafen to earthworms.

  15. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides

    SciTech Connect

    Wade, C.R.; van Rij, A.M.

    1988-01-01

    The effects of Fe/sup 3 +/, lipid peroxy radicals and the antioxidant butylated hydroxytoluene on the 2-thiobarbituric (TBA) acid quantitation of plasma lipid peroxides were investigated. Whole plasma and plasma fractions prepared by trichloroacetic acid (TCA) protein precipitation and lipid extraction, demonstrated markedly differing TBA reactivities in the presence or absence of added Fe/sup 3 +/. Examination of the spectral profiles of the TBA reacted whole plasma and TCA precipitated fractions demonstrated the presence of interfering compounds which gave rise to an artifactual increase in lipid peroxide concentrations. In contrast the TBA reacted lipid extracts had low levels of interfering compounds that could be removed by our previously described high pressure liquid chromatographic method. Further characterization of the TBA reactivity of the lipid extract showed that Fe/sup 3 +/ at an optimal concentration of 0.5 mM was necessary for the quantitative decomposition of the lipid peroxides to the TBA reactive product malondialdehyde (MDA). However the presence of Fe/sup 3 +/ resulted in further peroxidation of any unsaturated lipids present.

  16. Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain.

    PubMed

    Sultana, Rukhsana; Perluigi, Marzia; Allan Butterfield, D

    2013-09-01

    Lipid peroxidation involves a cascade of reactions in which production of free radicals occurs selectively in the lipid components of cellular membranes. Polyunsaturated fatty acids easily undergo lipid peroxidation chain reactions, which, in turn, lead to the formation of highly reactive electrophilic aldehydes. Among these, the most abundant aldehydes are 4-hydroxy-2-nonenal (HNE) and malondialdehyde, while acrolein is the most reactive. Proteins are susceptible to posttranslational modifications caused by aldehydes binding covalently to specific amino acid residues, in a process called Michael adduction, and these types of protein adducts, if not efficiently removed, may be, and generally are, dangerous for cellular homeostasis. In the present review, we focused the discussion on the selective proteins that are identified, by redox proteomics, as selective targets of HNE modification during the progression and pathogenesis of Alzheimer disease (AD). By comparing results obtained at different stages of the AD, it may be possible to identify key biochemical pathways involved and ideally identify therapeutic targets to prevent, delay, or treat AD.

  17. Lipid Peroxidation Triggers Neurodegeneration: A Redox Proteomics View into the Alzheimer Disease Brain

    PubMed Central

    Sultana, Rukhsana; Perluigi, Marzia; Butterfield, D. Allan

    2012-01-01

    Lipid peroxidation involves a cascade of reactions in which production of free radicals occurs selectively in the lipid components of cellular membranes. Polyunsaturated fatty acids easily undergo lipid peroxidation chain reactions, which, in turn, lead to the formation of highly reactive electrophilic aldehydes. Among these, the most abundant aldehydes are 4-hydroxy-2-nonenal (HNE) and malondialdehyde, while acrolein is the most reactive. Proteins are susceptible to post-translational modifications caused by aldehydes binding covalently to specific amino acid residues, in a process called Michael adduction, and these types of protein adducts, if not efficiently removed, may be, and generally are, dangerous for cellular homeostasis. In the present review, we focused the discussion on the selective proteins that are identified, by redox proteomics, as selective targets of HNE-modification during the progression and pathogenesis of Alzheimer disease (AD). By comparing results obtained at different stages of the AD, it may be possible to identify key biochemical pathways involved and ideally identify therapeutic targets to prevent, delay or treat AD. PMID:23044265

  18. Lipid peroxidation and oxidative stress responses in juvenile salmon exposed to waterborne levels of the organophosphate compounds tris(2-butoxyethyl)- and tris(2-chloroethyl) phosphates.

    PubMed

    Arukwe, Augustine; Carteny, Camilla Catarci; Eggen, Trine

    2016-01-01

    There is limited knowledge on the toxicological, physiological, and molecular effects attributed to organophosphate (OP) compounds currently used as flame retardants or additives in consumer products. This study investigated the effects on oxidative stress and lipid peroxidation in juvenile Atlantic salmon liver and brain samples after exposure to two OP compounds, tris(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroethyl) phosphate (TCEP). In this study, groups of juvenile Atlantic salmon were exposed using a semistatic experimental protocol over a 7-d period to 3 different concentrations (0.04, 0.2, or 1 mg/L) of TBOEP and TCEP. When toxicological factors such as bioaccumulation and bioconcentration, and chemical structural characteristics and behavior, including absorption to solid materials, are considered, these concentrations represent environmentally relevant concentrations. The concentrations of the contaminants were derived from levels of their environmental occurrence. The expression of genes related to oxidative stress-glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST)-and to lipid peroxidation-peroxisome proliferator-activated receptors (PPAR)-were determined using quantitative (real-time) polymerase chain reaction (PCR). The presence of PPAR proteins was also investigated using immunochemical methods. Levels of thiobarbituric acid-reactive substances (TBARS) in liver were used as a measure of lipid peroxidation. Overall, our data show an increase in lipid peroxidation, and this was associated with an augmented expression of genes from the glutathione family of responses. Interestingly, PPAR expression in liver after exposure to TBOEP and TCEP was consistently decreased compared to controls, while expression in brain did not show a similar trend. The results suggest that OP contaminants may induce oxidative stress and thus production of reactive oxygen substances (ROS), and modulate lipid peroxidation processes

  19. Degradation of vulcanized and nonvulcanized polyisoprene rubbers by lipid peroxidation catalyzed by oxidative enzymes and transition metals.

    PubMed

    Sato, Shin; Honda, Yoichi; Kuwahara, Masaaki; Watanabe, Takashi

    2003-01-01

    Despite numerous reports concerning the biodegradation of rubber materials, there has been no report of rubber degradation by fully characterized enzymes. In the present paper, we presented a new method to decompose nonvulcanized and vulcanized polyisoprene rubbers by controlling the free radical chain reactions of lipids using oxidative enzymes, manganese peroxidase (MnP), laccase (Lac), and horseradish peroxidase (HRP). Nonvulcanized synthetic polyisoprene (IR) was degraded by the free radicals from unsaturated fatty acids produced by MnP, HRP, and a combination of Lac/1-hydroxybenzotriazole. In contrast, lipoxygenase caused no apparent degradation. Degradation of IR was also observed in lipid peroxidation initiated by the Fenton reaction (FR) and Mn(III), an oxidation product produced by MnP. Vulcanized polyisoprene rubber sheets were degraded by the lipid peroxidation initiated by HRP, MnP, Mn(III), and FR. Pyrolysis GC-MS analysis demonstrated that the lipid peroxidation liberated isoprenoid fragments from the vulcanized rubbers. PMID:12625727

  20. Pyrroloquinoline quinone ameliorates oxidative stress and lipid peroxidation in the brain of streptozotocin-induced diabetic mice.

    PubMed

    Kumar, Narendra; Kar, Anand

    2015-01-01

    Diabetes, characterized by hyperglycemia, leads to several complications through the generation of reactive oxygen species and initiates tissue damage. Pyrroloquinoline quinone (PQQ) is believed to be a strong antioxidant, as it protects cells from oxidative damage. In this study, we elucidated the hitherto unknown potential of PQQ to ameliorate the brain damage caused by diabetes mellitus and the associated hyperglycemia-induced oxidative damage. Administration of a single dose of streptozotocin (STZ), i.e., 150 mg·(kg body mass)(-1) significantly enhanced the brain tissue levels of lipid peroxidation and hydroperoxidation and decreased the levels of antioxidants. It also increased the serum levels of glucose, cholesterol, and triglycerides. However, when STZ-treated animals received PQQ (20 mg·(kg body mass)(-1)·d(-1), for 15 days), this significantly decreased the serum levels of glucose and lipid peroxidation products, and increased the activities of antioxidants in the diabetic mouse brain. These findings suggest that PQQ has the potential to ameliorate STZ-induced oxidative damage in the brain, as well as the STZ-induced diabetes.

  1. Pyrroloquinoline quinone ameliorates oxidative stress and lipid peroxidation in the brain of streptozotocin-induced diabetic mice.

    PubMed

    Kumar, Narendra; Kar, Anand

    2015-01-01

    Diabetes, characterized by hyperglycemia, leads to several complications through the generation of reactive oxygen species and initiates tissue damage. Pyrroloquinoline quinone (PQQ) is believed to be a strong antioxidant, as it protects cells from oxidative damage. In this study, we elucidated the hitherto unknown potential of PQQ to ameliorate the brain damage caused by diabetes mellitus and the associated hyperglycemia-induced oxidative damage. Administration of a single dose of streptozotocin (STZ), i.e., 150 mg·(kg body mass)(-1) significantly enhanced the brain tissue levels of lipid peroxidation and hydroperoxidation and decreased the levels of antioxidants. It also increased the serum levels of glucose, cholesterol, and triglycerides. However, when STZ-treated animals received PQQ (20 mg·(kg body mass)(-1)·d(-1), for 15 days), this significantly decreased the serum levels of glucose and lipid peroxidation products, and increased the activities of antioxidants in the diabetic mouse brain. These findings suggest that PQQ has the potential to ameliorate STZ-induced oxidative damage in the brain, as well as the STZ-induced diabetes. PMID:25474723

  2. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure.

    PubMed

    Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin

    2016-09-01

    The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain.

  3. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure.

    PubMed

    Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin

    2016-09-01

    The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain. PMID:26836107

  4. Inhibitory effect of some tropical green leafy vegetables on key enzymes linked to Alzheimer's disease and some pro-oxidant induced lipid peroxidation in rats' brain.

    PubMed

    Oboh, Ganiyu; Akinyemi, Ayodele Jacobson; Ademiluyi, Adedayo Oluwaseun; Bello, Fatai Olumide

    2014-05-01

    This study sought to investigate the inhibitory effect of some commonly consumed Nigerian green leafy vegetables (raw and blanched) on acetylcholinesterase and butyrylcholinesterase (key enzyme linked to Alzheimer's disease) activities and some pro-oxidants (FeSO4, Sodium nitroprusside and Quinolinic acid) induced lipid peroxidation in rat brain in vitro. Three commonly consumed green leafy vegetables in Nigeria [Amarantus cruentus (Arowojeja), Struchium sparganophora (Ewuro-odo) and Telfairia occidentalis (Ugwu] were blanched in hot water for 10 min, and the extracts of the raw and blanched vegetables were prepared and used for subsequent analysis. The result revealed that all the vegetables inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity as well as the pro-oxidants induced lipid peroxidation in rat brain in a dose dependent manner; however, Amarantus cruentus extract (EC50 = 97.9 μg/ml) had the highest inhibitory effect on acetylcholinesterase activity while Telfairia occidentalis extract (EC50 = 52.7 μg/ml) had the highest inhibitory effect on butyrylcholinesterase activity. However, blanching of the vegetables caused a significant (P < 0.05) decrease in the inhibitory effect of the vegetables on AChE activities while it enhanced the inhibition of the pro-oxidants induced lipid peroxidation in rat brain in vitro. Therefore, some of the possible mechanism by which green leafy vegetables exert their neuroprotective activities could be through the inhibition of acetylcholinesterase and butyrylcholinesterase activities and prevention of lipid peroxidation in the brain. However, blanching of the vegetables could reduce their ability to inhibit acetylcholinesterase and butyrylcholinesterase activity. PMID:24803694

  5. Routes to 4-Hydroxynonenal: Fundamental Issues in the Mechanisms of Lipid Peroxidation*S⃞

    PubMed Central

    Schneider, Claus; Porter, Ned A.; Brash, Alan R.

    2008-01-01

    Although investigation of the toxicological and physiological actions of α/β-unsaturated 4-hydroxyalkenals has made great progress over the last 2 decades, understanding of the chemical mechanism of formation of 4-hydroxynonenal and related aldehydes has advanced much less. The aim of this review is to discuss mechanistic evidence for these non-enzymatic routes, especially of the underappreciated intermolecular pathways that involve dimerized and oligomerized fatty acid derivatives as key intermediates. These cross-molecular reactions of fatty acid peroxyls have also important implications for understanding of the basic initiation and propagation steps during lipid peroxidation and the nature of the products that arise. PMID:18285327

  6. Content of significant amounts of a cytotoxic end-product of lipid peroxidation in human semen.

    PubMed

    Selley, M L; Lacey, M J; Bartlett, M R; Copeland, C M; Ardlie, N G

    1991-07-01

    (E)-4-Hydroxy-2-nonenal (HNE), a cytotoxic end-product of lipid peroxidation, is present in significant amounts in human semen (0.902 +/- 0.190 microM; mean +/- s.e.; n = 18). The addition of the divalent cation ionophore A23187 to suspensions of human spermatozoa resulted in increased production of HNE. Exogenous HNE was powerfully spermicidal and as little as 50 microM caused an irreversible loss of motility of human spermatozoa within minutes. The addition of human seminal plasma protected spermatozoa from the toxic effects of HNE.

  7. Altered lipid peroxidation markers are related to post-traumatic stress disorder (PTSD) and not trauma itself in earthquake survivors.

    PubMed

    Atli, Abdullah; Bulut, Mahmut; Bez, Yasin; Kaplan, İbrahim; Özdemir, Pınar Güzel; Uysal, Cem; Selçuk, Hilal; Sir, Aytekin

    2016-06-01

    The traumatic life events, including earthquakes, war, and interpersonal conflicts, cause a cascade of psychological and biological changes known as post-traumatic stress disorder (PTSD). Malondialdehyde (MDA) is a reliable marker of lipid peroxidation, and paraoxonase is a known antioxidant enzyme. The aims of this study were to investigate the relationship between earthquake trauma, PTSD effects on oxidative stress and the levels of serum paraoxonase 1 (PON1) enzyme activity, and levels of serum MDA. The study was carried out on three groups called: the PTSD group, the traumatized with earthquake exercise group, and healthy control group, which contained 32, 31, and 38 individuals, respectively. Serum MDA levels and PON1 enzyme activities from all participants were measured, and the results were compared across all groups. There were no significant differences between the PTSD patients and non-PTSD earthquake survivors in terms of the study variables. The mean PON1 enzyme activity from PTSD patients was significantly lower, while the mean MDA level was significantly higher than that of the healthy control group (p < 0.01 for both measurements). Similarly, earthquake survivors who did not develop PTSD showed higher MDA levels and lower PON1 activity when compared to healthy controls. However, the differences between these groups did not reach a statistically significant level. Increased MDA level and decreased PON1 activity measured in PTSD patients after earthquake and may suggest increased oxidative stress in these patients. The nonsignificant trends that are observed in lipid peroxidation markers of earthquake survivors may indicate higher impact of PTSD development on these markers than trauma itself. For example, PTSD diagnosis seems to add to the effect of trauma on serum MDA levels and PON1 enzyme activity. Thus, serum MDA levels and PON1 enzyme activity may serve as biochemical markers of PTSD diagnosis.

  8. Determination of lipid peroxidation and cytotoxicity in calcium, magnesium, titanium and hectorite (SHCa-1) suspensions.

    PubMed

    Kibanova, Daria; Nieto-Camacho, Antonio; Ramírez-Apan, Teresa; Cervini-Silva, Javiera

    2011-01-01

    This paper reports data on the relative ability of CaO, CaCl2, MgO, MgCl2, TiO2, and hectorite (SHCa-1) to induce oxidative stress (as determined by lipid peroxidation, LP) in biological matrices. The effectiveness of structural (oxide form) versus soluble Ca and Mg to induce LP is compared. An assessment on cytotoxicity as affected by soluble and structural Ca, Mg, TiO2 and SHCa-1 is also addressed. LP was screened and monitored using the Thiobarbituric Acid Reactive Substances (TBARS). The extent of TBARS production was found to vary with the type and initial concentration of the soluble or structural cation, Ca or Mg respectively. Obtained results showed higher magnitude values for the latter set of experiments. In the presence of TiO2 no significant TBARS production was detected pointing out a negligible effect of TiO2 on LP. At solid concentrations ca. 100 ppm, CaO appears to be more effective than SHCa-1 to induce LP. By contrast at ca. 25 ppm, MgO appears to be more effective than the clay mineral. The SHCa-1 LP-inducing activity has been proven to closely relate to structural Ca. The prevalence of mechanisms that may induce LP but not cytotoxicity (as determined by cell growth inhibition) was also addressed. Results on cell growth inhibition as affected by soluble and structural Ca, Mg, TiO2 and hectorite provide evidence to support that structural Ca or Mg brings about significantly higher variations than soluble Ca.

  9. TNF-alpha and IL-1alpha induce apoptosis in subconfluent rat mesangial cells. Evidence for the involvement of hydrogen peroxide and lipid peroxidation as second messengers.

    PubMed

    Böhler, T; Waiser, J; Hepburn, H; Gaedeke, J; Lehmann, C; Hambach, P; Budde, K; Neumayer, H H

    2000-07-01

    Apoptosis of mesangial cells (MC) plays a role in glomerulonephritis (GN). In this study we investigated cytokine-induced apoptosis of cultured rat MC by morphological and biochemical features. TNF-alpha and IL-1alpha induced apoptosis in rat MC in a time- and concentration-dependent fashion. RT-PCR experiments revealed that MC express the TNF-receptor 1 (p60) gene constitutively. TNF-alpha as well as IL-1alpha stimulated the production of reactive oxygen species (ROS) and induced lipid peroxidation. Coincubation with catalase inhibited TNF-alpha and IL-1alpha induced apoptosis as well as lipid peroxidation. TNF-alpha, but not IL-1alpha increased the expression of c-jun. These results provide evidence that TNF-alpha and IL-1alpha induce apoptosis in rat MC with hydrogen peroxide and lipid peroxidation as second messengers. Increased c-jun expression may be a downstream intracellular signal of TNF-alpha-, but not IL-1alpha-induced apoptosis.

  10. Exposure to Anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells.

    PubMed

    Montanari, Ricardo M; Barbosa, Luiz C A; Demuner, Antonio J; Silva, Cleber J; Andrade, Nelio J; Ismail, Fyaz M D; Barbosa, Maria C A

    2012-08-14

    The chemical composition of the volatile oils from five Anacardiaceae species and their activities against Gram positive and negative bacteria were assessed. The peroxidative damage within bacterial cell membranes was determined through the breakdown product malondialdehyde (MDA). The major constituents in Anacardium humile leaves oil were (E)-caryophyllene (31.0%) and α-pinene (22.0%), and in Anacardium occidentale oil they were (E)-caryophyllene (15.4%) and germacrene-D (11.5%). Volatile oil from Astronium fraxinifolium leaves were dominated by (E)-β-ocimene (44.1%) and α-terpinolene (15.2%), whilst the oil from Myracrodruon urundeuva contained an abundance of δ-3-carene (78.8%). However, Schinus terebinthifolius leaves oil collected in March and July presented different chemical compositions. The oils from all species, except the one from A. occidentale, exhibited varying levels of antibacterial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli. Oil extracted in July from S. terebinthifolius was more active against all bacterial strains than the corresponding oil extracted in March. The high antibacterial activity of the M. urundeuva oil could be ascribed to its high δ-3-carene content. The amounts of MDA generated within bacterial cells indicate that the volatile oils induce lipid peroxidation. The results suggest that one putative mechanism of antibacterial action of these volatile oils is pro-oxidant damage within bacterial cell membrane explaining in part their preservative properties.

  11. Lipid peroxidation may not be important in an early stage of alcohol-induced liver injury

    SciTech Connect

    Inomata, T.; Rao, G.A.; Tsukamoto, H.

    1986-03-01

    Role of lipid peroxidation (LP) in alcoholic liver injury (ALI) is still controversial. The authors have previously described a rat model which produced the sequential injury from alcoholic fatty liver to liver necrosis and fibrosis. In the present study, the authors have examined the degree of LP and GSH/GSSG ratio in the liver to investigate whether the LP can be identified in an early stage of progressive ALI. Six pairs of male Wistar rats were continuously infused intragastrically for 30 days with a high fat diet (25% total calories) plus either ethanol or isocaloric amount of dextrose. Following intoxication, the content of diene conjugates in mitochondrial and microsomal lipids as well as the liver GSH/GSSG ratio were determined by the diene difference spectrum and fluorometry, respectively. The UV absorption at 234nm by mitochondrial lipid from alcoholic rats (0.668 +/- 0.023 OD/mg) was significantly (p<0.05) lower than that of controls (0.977 +/- 0.102 OD/mg). The microsomal lipid, however, exhibited a similar absorbance in the two groups (0.986 +/- 0.086 vs 1.149 +/- 0.091 OD/mg0. Similarly, no difference in the ratio of GSH/GSSG was found (6.05 +/- 0.27 vs 5.35 +/- 0.44). These results do not support a concept that LP is an important pathogenetic factor for the progression of alcoholic fatty liver to liver necrosis.

  12. In vitro lipid peroxidation of intestinal bile salt-based nanoemulsions: potential role of antioxidants.

    PubMed

    Courraud, J; Charnay, C; Cristol, J P; Berger, J; Avallone, S

    2013-12-01

    Over the last decades, oxidative stress has been described as a deleterious phenomenon contributing to numerous noncommunicable diseases such as cardiovascular disease, diabetes, and cancers. As many authors ascribed the healthy effect of fruit and vegetable consumption mainly to their antioxidant contents, it has been hypothesized that their protection could occur from the gut. Therefore, the aim of this study was to develop an original and physiological model of nanoemulsions to study lipid peroxidation within the intestine and to assess the properties of potential antioxidants in this setting. Several nanoemulsions were compared in terms of physical characteristics and reactivity to 2,2'-azobis-(2-amidinopropane) hydrochloride (AAPH)-induced oxidation. Formulations included different types of lipids, a detergent (a conjugated bile salt or sodium dodecyl sulfate) and, finally, lipophilic antioxidants. Hemin and myoglobin were also tested as relevant potential oxidants. Fatty acid (FA) peroxidation was monitored by gas chromatography while malondialdehyde and antioxidant contents were measured by HPLC. Investigated nanoemulsions were composed of spherical or cylindrical mixed micelles, the latter being the least resistant to oxidation. In the experimental conditions, AAPH was the only efficient oxidant. Alpha-tocopherol and lutein significantly slowed FA degradation from 4 to 1 μM, respectively. On the contrary, beta-carotene did not show any protective capacity at 4 μM. In conclusion, the tested nanoemulsions were appropriate to assess antioxidant capacity during the intestinal phase of digestion.

  13. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    PubMed Central

    Catalá, Angel

    2013-01-01

    I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others. PMID:24490074

  14. Lipid Peroxidation, Nitric Oxide Metabolites, and Their Ratio in a Group of Subjects with Metabolic Syndrome

    PubMed Central

    Caimi, Gregorio; Lo Presti, Rosalia; Montana, Maria; Canino, Baldassare; Averna, Maurizio R.

    2014-01-01

    Our aim was to evaluate lipid peroxidation, expressed as thiobarbituric acid-reactive substances (TBARS), nitric oxide metabolites (nitrite + nitrate) expressed as NOx, and TBARS/NOx ratio in a group of subjects with metabolic syndrome (MS). In this regard we enrolled 106 subjects with MS defined according to the IDF criteria, subsequently subdivided into diabetic (DMS) and nondiabetic (NDMS) and also into subjects with a low triglycerides/HDL-cholesterol (TG/HDL-C) index or with a high TG/HDL-C index. In the entire group and in the four subgroups of MS subjects we found an increase in TBARS and NOx levels and a decrease in TBARS/NOx ratio in comparison with normal controls. Regarding all these parameters no statistical difference between DMS and NDMS was evident, but a significant increase in NOx was present in subjects with a high TG/HDL-C index in comparison with those with a low index. In MS subjects we also found a negative correlation between TBARS/NOx ratio and TG/HDL-C index. Considering the hyperactivity of the inducible NO synthase in MS, these data confirm the altered redox and inflammatory status that characterizes the MS and suggest a link between lipid peroxidation, inflammation, and insulin resistance, evaluated as TG/HDL-C index. PMID:24987495

  15. Sodium metabisulfite induces lipid peroxidation and apoptosis in rat gastric tissue.

    PubMed

    Ercan, Sevim; Oztürk, Nihal; Celik-Ozenci, Ciler; Gungor, Nazli Ece; Yargicoglu, Piraye

    2010-08-01

    Sodium metabisulfite (Na( 2)S(2)O(5)) is used as an antioxidant and antimicrobial agent in a variety of drugs and functions as a preservative in many food preparations. This study was performed to elucidate the dose-dependent effects of sodium metabisulfite ingestion on rat gastric tissue apoptotic changes and lipid peroxidation. Forty male wistar rats, aged 3 months were used. They were randomly divided into four groups: control (C), the group treated with Na(2)S(2)O(5) (10 mg/kg; S1), the group treated with Na(2)S(2)O(5) (100 mg/kg; S2), the group treated with Na(2)S(2)O(5) (260 mg/kg; S3). Na( 2)S(2)O(5) was given by intragastric intubation for 35 days. In the S2 and S3 groups, malondialdehyde (MDA) levels increased markedly when compared with the control group. High doses of sulfite administration elevated number of apoptotic cells both in mucosa and submucosa layers of stomach in parallel with increased MDA levels. These results suggest that sodium metabisulfite increased lipid peroxidation and thus number of apoptotic cells on gastric tissue in dose-dependent manner.

  16. Dehydroepiandrosterone alters vitamin E status and prevents lipid peroxidation in vitamin E-deficient rats

    PubMed Central

    Miyazaki, Hiroshi; Takitani, Kimitaka; Koh, Maki; Inoue, Akiko; Tamai, Hiroshi

    2016-01-01

    In humans, dehydroepiandrosterone and its sulfate ester metabolite DHEA-S are secreted predominantly from the adrenal cortex, and dehydroepiandrosterone is converted to steroid hormones, including androgens and estrogens, and neurosteroid. Dehydroepiandrosterone exerts protective effects against several pathological conditions. Although there are reports on the association between dehydroepiandrosterone and vitamins, the exact relationship between dehydroepiandrosterone and vitamin E remains to be determined. Therefore, we attempted to elucidate the effect of dehydroepiandrosterone on vitamin E status and the expression of various vitamin E-related proteins, including binding proteins, transporters, and cytochrome P450, in vitamin E-deficient rats. Plasma α-tocopherol levels in vitamin E-deficient rats increased in response to dehydroepiandrosterone administration. The expression of hepatic α-tocopherol transfer protein was repressed in vitamin E-deficient rats compared to that in control rats; however, dehydroepiandrosterone administration significantly upregulated this expression. Hepatic expression of CYP4F2, an α-tocopherol metabolizing enzyme, in vitamin E-deficient rats was decreased by dehydroepiandrosterone administration, whereas hepatic expression of ATP-binding cassette transporter A1, an α-tocopherol transporter, was not altered following dehydroepiandrosterone administration. Dehydroepiandrosterone repressed lipid peroxidation in the liver of vitamin E-deficient rats. Therefore, adequate dehydroepiandrosterone supplementation may improve lipid peroxidation under several pathological conditions, and dehydroepiandrosterone may modulate α-tocopherol levels through altered expression of vitamin E-related proteins. PMID:27257348

  17. Acrolein, a product of lipid peroxidation, inhibits glucose and glutamate uptake in primary neuronal cultures.

    PubMed

    Lovell, M A; Xie, C; Markesbery, W R

    2000-10-15

    Oxidative stress has been implicated in the pathogenesis of several neurodegenerative disorders including Alzheimer's disease (AD). Increased lipid peroxidation, decreased levels of polyunsaturated fatty acids, and increased levels of 4-hydroxynonenal (HNE), F(2)-isoprostanes, and F(4)-neuroprostanes are present in the brain in patients with AD. Acrolein, an alpha,beta-unsaturated aldehydic product of lipid peroxidation has been demonstrated to be approximately 100 times more reactive than HNE and is present in neurofibrillary tangles in the brain in AD. We recently demonstrated statistically significant elevated concentrations of extractable acrolein in the hippocampus/parahippocampal gyrus and amygdala in AD compared with age-matched control subjects. Concentrations of acrolein were two to five times those of HNE in the same samples. Treatment of hippocampal cultures with acrolein led to a time- and concentration-dependent decrease in cell survival as well as a concentration-dependent increase in intracellular calcium. In cortical neuron cultures, we now report that acrolein causes a concentration-dependent impairment of glutamate uptake and glucose transport in cortical neuron cultures. Treatment of cortical astrocyte cultures with acrolein led to the same pattern of impairment of glutamate uptake as observed in cortical neuron cultures. Collectively, these data demonstrate neurotoxicity mechanisms of arolein that might be important in the pathogenesis of neuron degeneration in AD.

  18. Interrelationships between lipid peroxidation and total antioxidant status in sedentary controls and unprofessional athletes.

    PubMed

    Caimi, Gregorio; Canino, Baldassare; Lo Presti, Rosalia

    2010-01-01

    We examined the thiobarbituric acid-reactive substances (TBARS) as an index of lipid peroxidation, and the total antioxidant status (TAS) in 81 unprofessional athletes subdivided into three subgroups. The first group included 28 subjects who practised endurance sports, the second included 30 subjects who practised mixed sports, the third included 23 subjects who practised power sports. We enrolled also a group of 61 sedentary controls (SC). TBARS were increased and TAS was decreased in the whole group of athletes in comparison with SC; an almost similar behaviour was present also subdividing athletes according to the practised sport. A significant negative correlation between these two parameters emerged in SC but not in the whole group of athletes. Unless for the athletes that practised endurance sports a similar trend was found in athletes that practised mixed and power sports. In conclusion, at rest the symmetrical behaviour between the lipid peroxidation increase and the TAS decrease, observed in sedentary controls, was not evident in unprofessional athletes who practised different sports.

  19. Specific markers of lipid peroxidation issued from n-3 and n-6 fatty acids.

    PubMed

    Guichardant, M; Chantegrel, B; Deshayes, C; Doutheau, A; Moliere, P; Lagarde, M

    2004-02-01

    Several markers of lipid peroxidation are available with different degrees of specificity, from malondialdehyde as a global marker, to F(2)-isoprostane, which is specifically produced from arachidonic acid. Among these, 4-hydroxynonenal is recognized as a breakdown product of fatty acid hydroperoxides, such as 15-hydroperoxy-eicosatetraenoic acid and 13-hydroperoxy-octade cadienoic acid from the n -6 fatty acids. Furthermore, 4-hydroxyhexenal (4-HHE) derives from n -3 fatty acid hydroperoxides. We have recently described the occurrence of 4-hydroxydodecadienal (4-HDDE) from the 12-lipoxygenase product of arachidonic acid 12-hydroperoxy-eicosatetraenoic acid. These three hydroxy-alkenals may be measured in human plasma by GC-MS, but they may partly be generated in the course of sampling, and the relative volatility of 4-HHE makes its measurement quite unreliable. We have successfully characterized and measured the stable oxidized carboxylic acid products from the hydroxy-alkenals 4-HNA, 4-HHA and 4-HDDA in urine. The ratio between 4-HHA and 4-HNA found in the same urinary sample might provide useful information on the location of lipid peroxidation, accounting for the high enrichment of the cerebrovascular system with docosahexaenoic acid, the main n -3 fatty acid in humans.

  20. Lipid peroxidation in small and large phospholipid unilamellar vesicles induced by water-soluble free radical sources.

    PubMed

    Li, Q T; Yeo, M H; Tan, B K

    2000-06-24

    The susceptibility of small and large egg yolk phosphatidylcholine unilamellar vesicles to Fe(2+)/histidine-Fe(3+)- and Fenton reagent (Fe(2+)-H(2)O(2))-induced lipid peroxidation was evaluated by measuring the formation of thiobarbituric acid reactive substances (TBARS). It has been found that surface curvature or phospholipid packing exerts significant effect on the oxidative susceptibility of the unsaturated lipid bilayers and the highly curved and loosely packed small unilamellar vesicles (SUVs) exhibit much less resistance to the oxidative stress induced by the water-soluble free radical sources. The presence of lipid hydroperoxides in sonicated vesicles was excluded as the cause for higher level of lipid peroxidation in the phospholipid SUVs. Instead, the experimental results can be explained by the difference in ability of the water-soluble oxidants to penetrate the two types of lipid membranes. This hypothesis is supported by data obtained from fluorescence lifetime and quenching studies. PMID:10873566

  1. Effect of endotoxin on lipid peroxidation in vivo in selenium and vitamin E deficient rats

    SciTech Connect

    Sword, J.T.; Pope, A.L.; Hoekstra, W.G.

    1986-03-01

    The authors have used respiratory ethane production by selenium (Se) and vitamin E (E) deficient rats, an index of lipid peroxidation, to identify oxidant stressors which might precipitate sudden tissue degeneration in deficient animals. Other studies have suggested that endotoxin (gram-negative bacterial lipopolysaccharide-LPS) might be such an oxidant stressor, especially in the lungs. Male weanling rats were fed a Se and E deficient diet for about 80 days. Rats were injected ip with Salmonella typhimurium LPS (.25, .5, or 1.0 mg/kg) or saline, and respiratory ethane was collected for 16 hr. In a representative experiment, mean rate of ethane production (nm/100g/hr) was increased (p < .01) by LPS: saline, .48 +/- .04 (SEM); .25 mg LPS/kg, 1.30 +/- .17; .5, 1.47 +/- .18 and 1.0, 1.68 +/- .18. E. coli and S. minnesota LPS gave similar results. Rats fed a supplemented diet (.2 ppm Se and 200 IU E/kg diet) produced less (p < .01) ethane: saline, .068 +/- .009 and .5 mg LPS/kg, .114 +/- .01. Over all experiments LPS produced a small yet significant increase in ethane in rats receiving Se or E supplementation but produced a marked increase in unsupplemented rats. In further studies with LPS treated rats, Se supplementation alone was 73%, and E supplementation alone 99% as effective as Se + E. These results showed that LPS stimulates lipid peroxidation in Se and E deficient rats and that infections may initiate oxidative cell damage in deficient animals. E was more protective than Se against LPS-induced peroxidation.

  2. Effect of hydrogen peroxide on ejection of cell nucleus from pigeon erythrocytes and state of membrane lipids.

    PubMed

    Devyatkin, A A; Revin, V V; Yudanov, M A; Kozlova, O V; Samuilov, V D

    2006-02-01

    The nuclei are ejected from the pigeon erythrocytes and apoptotic vesicles form in these cells in the presence of hydrogen peroxide. Hydrogen peroxide intensifies LPO processes and changes phospholipid content. The relative content of phosphatidylcholine, sphingomyelin, and phosphatidylserine decreased, while that of phosphatidylethanolamine and lisophosphatidylcholine increased. The content of unsaturated fatty acids also decreased under these conditions. Presumably, these changes in the lipid phase of the erythrocyte membrane are a mechanism preparing the cell to nucleus ejection and apoptosis.

  3. Peroxidation of the dried thin film of lipid by high-energy alpha particles from a cyclotron

    SciTech Connect

    Agarwal, S.; Chatterjee, S.N.

    1984-11-01

    High-energy ..cap alpha.. particles produced a dose-dependent linear increase in different lipid peroxidation products (e.g., malondialdehyde (MDA), conjugated dienes, and hydroperoxides) in the dried thin film state. An inverse dose-rate effect was observed when the dose rate was varied by changing either the ..cap alpha..-particle fluence rate or the ..cap alpha..-particle energy. The antioxidants ..cap alpha..-tocopherol and butylated hydroxytoluene (BHT) suppressed the ..cap alpha..-particle-induced lipid peroxidation in the dried thin film state, and in this respect ..cap alpha..-tocopherol was found superior to BHT. It was found that ..cap alpha..-tocopherol was equally efficient in inhibiting lipid peroxidations by ..cap alpha.. particles and ultraviolet light.

  4. Assessment of Lipid Peroxides in Multiple Biofluids of Leukoplakia and Oral Squamous Cell Carcinoma Patients-A Clinico- Biochemical Study

    PubMed Central

    Kumar N, Gautham

    2014-01-01

    Background: Oral pre cancer and oral cancer results in lipid peroxidation, and assessment of lipid peroxides in body fluids may give insights into the role of anti oxidants in its management. Aim: The study was conducted to discern the varying levels of lipid peroxides in saliva, serum and tissue in oral pre cancer and oral cancer and also various forms of tobacco usage with sex as an added parameter. Materials and Methods: The levels of lipid peroxides were measured in saliva, serum and tissue in a total of 50 patients, 20 belonging to control, and 30 study group in which 10 with oral leukoplakia and 20 with histologically proven oral squamous cell carcinoma (OSCC). The mean value of malondialdehyde (MDA) were also recorded in males and females among the patients with oral leukoplakia and OSCC. Among the study group patients, the levels of MDA were also recorded in habits of smoking and chewing tobacco. Statistical analysis used: Student’s independent t-test, one way ANOVA, Tukey HSD procedure. Results: Significantly elevated levels of lipid peroxides were seen in saliva, serum and tissue in oral leukoplakia and OSCC when compared to control patients. Among the study group, there were statistically significant increased levels of MDA in OSCC when compared to oral leukoplakia. There was also increase in MDA level in patients with smoking and chewing, but the variations seen in males and females were not very significant. Conclusion: The results clearly indicate the increase in lipid peroxidation in oral pre cancer and oral cancer with no significant difference between gender groups. The role of saliva as a relatively risk free and reliable, easy to obtain biofuid for diagnostic purposes has been highlighted. Also, since the levels of antioxidants are drastically decreased in carcinogenesis, the importance of anti oxidant supplements in the early stages of the disease has also been elucidated. PMID:25302269

  5. Mechanism of enhanced lipid peroxidation in the liver of Long-Evans cinnamon (LEC) rats.

    PubMed

    Yamamoto, H; Hirose, K; Hayasaki, Y; Masuda, M; Kazusaka, A; Fujita, S

    1999-11-01

    The Long-Evans Cinnamon (LEC) rat is a mutant strain of rats that accumulate copper (Cu) in the liver in much the same way as individuals who suffer from Wilson's disease (WD) and has been suggested as a model for this disease. Lipid peroxidation (LPO) is considered to be involved in the toxic action of Cu in the livers of LEC rats. We investigated the mechanism of LPO in the livers of LEC rats showing apparent signs of hepatitis. Several-fold higher LPO levels were observed in post-mitochondrial supernatant (S-9) fraction of livers from hepatitic LEC rats than in those from Wistar rats. To mimic living cells, we introduced NADPH-generating system (NADPH-gs) into the S-9 incubation system. Thus was ensured a constant supply of NADPH to vital enzymes that may be directly or indirectly involved in the generation and/or elimination of reactive oxygen species (ROSs), such as glutathione reductase (GSSG-R), which require NADPH for their reactions. The levels of LPO in liver S-9 from hepatitic LEC rats were further increased by incubating liver S-9 at 37 degrees C in the presence of NADPH-gs. This increase was inhibited by EDTA, butylated hydroxytoluene (BHT), and catalase (CAT), suggesting that some metal, most likely the accumulated Cu, and ROSs derived from hydrogen peroxide (H2O2) are involved in the increased levels of LPO in the livers of hepatitic LEC rats. The requirement of NADPH-gs for enhanced LPO in the livers of hepatitic LEC rats indicates the consumption of NADPH during reactions leading to LPO. It is known that H2O2, and consequently hydroxyl radical are generated during Cu-catalyzed glutathione (GSH) oxidation. The cyclic regeneration of GSH from GSSG by NADPH-dependent GSSG-R in the presence of NADPH-gs may cause sustained generation of hydroxyl radical in the presence of excess free Cu. The generation of H2O2 in S-9 fraction of livers from hepatitic LEC rats was observed to be significantly higher than that in S-9 fraction of livers from non

  6. Lipid peroxidation and antioxidant responses in zebrafish brain induced by Aphanizomenon flos-aquae DC-1 aphantoxins.

    PubMed

    Zhang, De Lu; Hu, Chun Xiang; Li, Dun Hai; Liu, Yong Ding

    2013-11-15

    Aphanizomenon flos-aquae is a cyanobacterium that is frequently encountered in eutrophic waters worldwide. It is source of neurotoxins known as aphantoxins or paralytic shellfish poisons (PSPs), which present a major threat to the environment and human health. The molecular mechanism of PSP action is known, however the in vivo effects of this neurotoxin on oxidative stress, lipid peroxidation and the antioxidant defense responses in zebrafish brain remain to be understood. Aphantoxins purified from a natural isolate of A. flos-aquae DC-1 were analyzed using high performance liquid chromatography. The major components of the toxins were gonyautoxins 1 and 5 (GTX1 and GTX5, 34.04% and 21.28%, respectively) and neosaxitoxin (neoSTX, 12.77%). Zebrafish (Danio rerio) were injected intraperitoneally with 7.73 μg/kg (low dose) and 11.13 μg/kg (high dose) of A. flos-aquae DC-1 aphantoxins. Oxidative stress, lipid peroxidation and antioxidant defense responses in the zebrafish brain were investigated at various timepoints at 1-24h post-exposure. Aphantoxin exposure was associated with significantly increased (>1-2 times) reactive oxygen species (ROS) and malondialdehyde (MDA) in zebrafish brain compared with the controls at 1-12h postexposure, suggestive of oxidative stress and lipid peroxidation. In contrast, reduced glutathione (GSH) levels in the zebrafish brain exposed to high or low doses of aphantoxins decreased by 44.88% and 41.33%, respectively, after 1-12h compared with the controls, suggesting that GSH participated in detoxification to ROS and MDA. Further analysis showed a significant increase in the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) compared with the controls, suggesting elimination of oxidative stress by the antioxidant response in zebrafish brain. All these changes were dose and time dependent. These results suggested that aphantoxins or PSPs increased ROS and MDA and decreased GSH in zebrafish brain

  7. In vitro lipid peroxidation of human serum catalyzed by cupric ion: Antioxidant rather than prooxidant role of ascorbate

    SciTech Connect

    Dasgupta, A.; Zdunek, T. )

    1992-01-01

    Ascorbate acts as an antioxidant by protecting human serum from lipid peroxidation induced by azo dye-generated free radicals. On the other hand, ascorbate is readily oxidized in the presence of transition metal ions, (especially cupric ion) and accelerates lipid peroxidation in tissue homogenates by producing free radicals. Interestingly, the authors observed an antioxidant rather than an expected prooxidant role of ascorbate when human serum supplemented with 1.2 mmol/L ascorbate underwent lipid peroxidations initiated by 2mmol/L copper sulfate. The antioxidant role of ascorbate was confirmed by studying the conventional thiobarbituric acid reactive substances (TBARS) as well as by observing the protective effect of ascorbate on the copper-induced peroxidation of unsaturated and polyunsaturated fatty acids. The antioxidation protection provided by ascorbate was comparable to that of equimolar {alpha}-tocopherol when incubated for 24h. However, lipid peroxidation products were lower in serum supplemented with {alpha}-tocopherol after 48h of incubation. This effect may be attributed to the binding of copper by serum proteins, thus preventing direct interaction between cupric ions and ascorbate. This proposed mechanisms is based on the observation that the concentration of ascorbate decreased more slowly in serum than in phosphate buffer at physiological pH.

  8. Lipid Peroxidation-Derived Reactive Aldehydes Directly and Differentially Impair Spinal Cord and Brain Mitochondrial Function

    PubMed Central

    Vaishnav, Radhika A.; Singh, Indrapal N.; Miller, Darren M.

    2010-01-01

    Abstract Mitochondrial bioenergetic dysfunction in traumatic spinal cord and brain injury is associated with post-traumatic free radical–mediated oxidative damage to proteins and lipids. Lipid peroxidation by-products, such as 4-hydroxy-2-nonenal and acrolein, can form adducts with proteins and exacerbate the effects of direct free radical–induced protein oxidation. The aim of the present investigation was to determine and compare the direct contribution of 4-hydroxy-2-nonenal and acrolein to spinal cord and brain mitochondrial dysfunction. Ficoll gradient–isolated mitochondria from normal rat spinal cords and brains were treated with carefully selected doses of 4-hydroxy-2-nonenal or acrolein, followed by measurement of complex I– and complex II–driven respiratory rates. Both compounds were potent inhibitors of mitochondrial respiration in a dose-dependent manner. 4-Hydroxy-2-nonenal significantly compromised spinal cord mitochondrial respiration at a 0.1-μM concentration, whereas 10-fold greater concentrations produced a similar effect in brain. Acrolein was more potent than 4-hydroxy-2-nonenal, significantly decreasing spinal cord and brain mitochondrial respiration at 0.01 μM and 0.1 μM concentrations, respectively. The results of this study show that 4-hydroxy-2-nonenal and acrolein can directly and differentially impair spinal cord and brain mitochondrial function, and that the targets for the toxic effects of aldehydes appear to include pyruvate dehydrogenase and complex I–associated proteins. Furthermore, they suggest that protein modification by these lipid peroxidation products may directly contribute to post-traumatic mitochondrial damage, with spinal cord mitochondria showing a greater sensitivity than those in brain. PMID:20392143

  9. Lipid Peroxides Promote Large Rafts: Effects of Excitation of Probes in Fluorescence Microscopy and Electrochemical Reactions during Vesicle Formation

    PubMed Central

    Ayuyan, Artem G.; Cohen, Fredric S.

    2006-01-01

    Raft formation and enlargement was investigated in liposomes and supported bilayers prepared from sphingomyelin (SM), cholesterol, and unsaturated phospholipids; NBD-DPPE and rhodamine-(DOPE) were employed as fluorescent probes. Rafts were created by lowering temperature. Maintaining 20 mol % SM, fluorescence microscopy showed that, in the absence of photooxidation, large rafts did not form in giant unilamellar vesicles (GUVs) containing 20 or more mol % cholesterol. But if photooxidation was allowed to proceed, large rafts were readily observed. In population, cuvette experiments, small rafts formed without photooxidation at high cholesterol concentrations. Thus, photooxidation was the cause of raft enlargement during microscopy experiments. Because photooxidation results in peroxidation at lipid double bonds, photosensitization experiments were performed to explicitly produce peroxides of SM and an unsaturated phospholipid. GUVs of high cholesterol content containing the breakdown products of SM-peroxide, but not phospholipid-peroxide, resulted in large rafts after lowering temperature. In addition, GUV production by electroswelling can result in peroxides that cause large raft formation. The use of titanium electrodes eliminates this problem. In conclusion, lipid peroxides and their breakdown products are the cause of large raft formation in GUVs containing biological levels of cholesterol. It is critical that experiments investigating rafts in bilayer membranes avoid the production of peroxides. PMID:16815906

  10. Effects of sulfasalazine on lipid peroxidation and histologic liver damage in a rat model of obstructive jaundice and obstructive jaundice with lipopolysaccharide-induced sepsis

    PubMed Central

    Dirlik, Musa; Karahan, Aydin; Canbaz, Hakan; Caglikulekci, Mehmet; Polat, Ayşe; Tamer, Lulufer; Aydin, Suha

    2009-01-01

    Background: Sulfasalazine, an inhibitor of cyclooxygenase, 5-lipoxygenase, and nuclear factor κB (NF-κB), has been found to alleviate oxidative damage, proinflammatory cytokine production, bile-duct proliferation, neutrophil infiltration, and fibrosis. Therefore, it may have a potential effect in attenuating lipid peroxidation and histologic liver damage in patients with biliary obstruction and biliary obstruction with sepsis. Objective: The aim of this study was to investigate the effect of sulfasalazine on lipid peroxidation and histologic liver damage due to obstructive jaundice (OJ) and to OJ with lipopolysaccharide (LPS)-induced sepsis in an experimental model. Methods: Male Wistar rats, weighing 150 to 220 g, were randomized into 6 groups: OJ; OJ + LPS; OJ + sulfasalazine; OJ + sulfasalazine + LPS (sulfasalazine administered before sepsis); OJ + LPS + sulfasalazine (sulfasalazine administered after sepsis); and sham. Liver malondialdehyde (MDA) and myeloperoxidase (MPO) activities were assessed to monitor lipid peroxidation and neutrophil infiltration in liver tissue. Histologic liver damage was evaluated with hematoxylin-eosin stained slides. Liver tissue NF-κB and caspase-3 expression were studied immunohistopathologically to evaluate lipid peroxidation, liver damage, and hepatocyte apoptosis. Results: Forty-eight rats were evenly randomized into 6 groups of 8. MDA (P = 0.001), MPO (P = 0.001), NF-κB (P = 0.003), caspase-3 expression (P = 0.002), and liver injury scores (P = 0.002) increased significantly in the OJ group compared with the sham group. Compared with the OJ group, MDA (P = 0.030) and MPO levels (P = 0.001), and liver injury scores (P = 0.033) were decreased significantly in the OJ + sulfasalazine group. In the OJ + sulfasalazine + LPS and OJ + LPS + sulfasalazine groups, MDA (P = 0.008 and P = 0.023, respectively) and MPO (both, P = 0.001) were significantly decreased; however, liver NF-κB, caspase-3 expression, and liver injury scores

  11. Evaluation of lipid peroxidation and antioxidant status on fenvalerate, nitrate and their co-exposure in Bubalus bubalis.

    PubMed

    Gill, Kamalpreet Kaur; Sandhu, Harpal Singh; Kaur, Rajdeep

    2015-09-01

    The toxic effects of pesticides and minerals have been explored in different species, but still there is paucity of information regarding their combined toxicological effects. The present investigation reports oxidative stress induced by oral subacute exposure to fenvalerate (1 mg/kg) and sodium nitrate (20 mg/kg) alone, as well as in combination daily for 21 days in buffalo calves. Fenvalerate exposure produced significant elevation in lipid peroxidation (LPO), glutathione peroxidase (GPx), while it produced significant decline in blood glutathione (GSH) levels, superoxide dismutase (SOD) and catalase (CAT). No significant alteration was evidenced in nitric oxide (NOx) levels. Oral exposure to sodium nitrate produced significant inclination in LPO and NOx, while on the other hand significant depreciation in SOD and CAT with no significant change in GPx activity. Combined exposure to fenvalerate and sodium nitrate produced severe effects with an appreciably more prominent elevation in extent of LPO and decline in blood GSH levels. PMID:26267048

  12. Protective effect of selenium on hemoglobin mediated lipid peroxidation in vivo.

    PubMed

    Simoni, J; Simoni, G; Garcia, E L; Prien, S D; Tran, R M; Feola, M; Shires, G T

    1995-01-01

    The toxicity of hemoglobin (Hb) solutions is related, at least in part, to the generation of oxygen free radicals with consequent induction of lipid peroxidation. The present study was designed to examine whether selenium (Se) may prevent the oxidative damage observed after Hb administration. Three groups of rats were compared; (I) the negative control group receiving autotransfusion; (II) the positive control group with replacement of 40% total blood volume (TBV) with modified bovine Hb solution; and (III) the experimental group which received dietary supplemented selenium (Na2SeO3) in daily doses of 5 micrograms.kg body wt-1 in drinking water, 4 days before and 3 days after administration of Hb solution in the same volume as in group II. Three days after Hb injection, all animals were sacrificed. Oxidative stress was determined by measuring conjugated dienes (CD) and thiobarbituric acid reactants (MDA) in homogenates of the perfused liver, heart, lungs, kidney, brain and plasma. Additionally, the 45k x g supernatants of the organs homogenates and plasma were assayed for the antioxidant enzymes activity: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and the intracellular level of reduced glutathione (GSH). Also, a measurement of nonprotein bound intracellular free iron (Fe) and tissue Se concentrations was performed. Simultaneously, injury dysfunction of vital organs was assessed by the measurement of plasma LDH, SGPT, creatinine, blood PaO2 and by histopathological studies. Results indicate that the exchange transfusion with Hb solution introduced significant increases in CD and MDA formation, particularly in the liver and heart tissues, and in plasma. While the values of the SOD and CAT in the liver and heart tissue were generally altered, the SOD/CAT ratio was also increased. After the Hb injection, activity of GSH-Px remained unchanged and was associated with significant depletion of GSH. The plasma levels of SGPT and LDH were

  13. Using Heavy Metal Content and Lipid Peroxidation Indicators in the Tissues of the Mussel Crenomytilus grayanus for Pollution Assessment After Marine Environmental Remediation.

    PubMed

    Belcheva, Nina; Istomina, Alexandra; Dovzhenko, Nadezhda; Lishavskaya, Tatiana; Chelomin, Victor

    2015-10-01

    We examined the effects of environmental remediation on the heavy metal concentration and lipid peroxidation activity in the digestive gland and gills of the marine mussel Crenomytilus grayanus. Changes in heavy metal concentrations and lipid peroxidation biomarkers in the tissues of mussels collected at a contaminated site were compared with those obtained from a reference site. Prior to remediation the concentration of Pb, Cu, Cd, Fe and Zn and the levels of malondialdehyde, conjugated dienes and lipofuscin in mussels collected from the contaminated site were significantly increased compared with those obtained from the reference site. Three years after remediation, these parameters did not significantly exceed the reference site parameters, except Pb, whose concentration, though markedly decreased, yet was much higher than in tissues of mussels from the reference site.

  14. A marked stimulation of Fe2+-initiated lipid peroxidation in phospholipid liposomes by a lipophilic aluminum complex, aluminum acetylacetonate.

    PubMed

    Ohyashiki, T; Suzuki, S; Satoh, E; Uemori, Y

    1998-01-15

    In the present study, the efficacy of a lipophilic Al complex, aluminum acetylacetonate, as a stimulator of Fe2+-initiated lipid peroxidation in phospholipid liposomes was examined, and results were compared with those from the liposomes treated with AlCl3. The extent of lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances (TBARS). The results indicated that the stimulatory effect of Al complex on Fe2+-initiated lipid peroxidation in phosphatidylcholine liposomes was more effective than that of AlCl3 under the same conditions. The concentration dependence of Al complex on TBARS production showed that the concentration of the complex required to induce half-maximal stimulation of TBARS production was 43 microM. In contrast, the stimulatory effect of AlCl3 was not observed until the AlCl3 concentration is increased above 300 microM. In addition, it was found that there is a linear relationship between the TBARS values and the residual amounts of Fe2+ at an earlier stage (within 2 min after the addition of Fe2+) of the lipid peroxidation in PC liposomes with different concentrations of Al complex, suggesting that Fe2+ oxidation process is closely related to the stimulatory effect of Al complex. The stimulatory effect of Al complex upon the lipid peroxidation completely disappeared by treatment of Al complex-treated liposomes with Triton X-100. The results of fluorescence anisotropy measurements using 12-(9-anthroyloxy)stearic acid-labeled liposomes suggested that treatment of the liposomes with Al complex caused a decrease in their lipid fluidity. Furthermore, it was found that there is a correlation between the extents of the fluorescence anisotropy and the Fe2+ oxidation parameters in the liposomes with different concentrations of Al complex. From these results, it is suggested that the Al effect on Fe2+-initiated lipid peroxidation in the phospholipid liposomes is markedly enhanced by incorporation of Al complex into the

  15. Synergistic hepatotoxic effects of ethanol on cocaine metabolism and lipid peroxidation

    SciTech Connect

    Odeleye, O.; Watson, R.R.; Eskelson, C.D.; Odeleye, A. )

    1991-03-15

    The authors evaluated the contribution of chronic ethanol (EtoH) consumption on cocaine-induced hepatotoxicity and the role lipid peroxidation (LP) plays as part of the toxic mechanisms in EtoH-cocaine induced liver damage. Male C57BL/6 mice were injected i.p. with 10-50 mg cocaine/kg body weight daily, and fed liquid diets containing 5 1/2% (w/v) EtoH for 5 or 9 weeks. Control mice received saline i.p. and an isocaloric diet without EtoH. EtoH and cocaine treatment increased hepatic malondialdehyde (MDA) 3.7 to 8.5 fold, while cocaine treatment during EtoH exposure increased MDA 11-20 fold over controls. Similarly, hepatic lipid fluorescence and conjugated dienes in the cocaine plus EtoH treated mice were 2-8 fold higher than in the cocaine or EtoH treated mice. Liver transaminases (ALT and AST) were higher in the cocaine plus EtoH treated group. Histologic changes including centrilobular necrosis and hepatic lipid infiltration were more pronounced in the EtoH plus cocaine treated mice. This study clearly shows that EtoH and cocaine synergistically enhanced hepatotoxicity and that increased LP is a participating mechanism is this hepatotoxicity.

  16. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate.

    PubMed

    Buettner, G R

    1993-02-01

    Free radicals vary widely in their thermodynamic properties, ranging from very oxidizing to very reducing. These thermodynamic properties can be used to predict a pecking order, or hierarchy, for free radical reactions. Using one-electron reduction potentials, the predicted pecking order is in agreement with experimentally observed free radical electron (hydrogen atom) transfer reactions. These potentials are also in agreement with experimental data that suggest that vitamin E, the primary lipid soluble small molecule antioxidant, and vitamin C, the terminal water soluble small molecule antioxidant, cooperate to protect lipids and lipid structures against peroxidation. Although vitamin E is located in membranes and vitamin C is located in aqueous phases, vitamin C is able to recycle vitamin E; i.e., vitamin C repairs the tocopheroxyl (chromanoxyl) radical of vitamin E, thereby permitting vitamin E to function again as a free radical chain-breaking antioxidant. This review discusses: (i) the thermodynamics of free radical reactions that are of interest to the health sciences; (ii) the fundamental thermodynamic and kinetic properties that are associated with chain-breaking antioxidants; (iii) the unique interfacial nature of the apparent reaction of the tocopherol free radical (vitamin E radical) and vitamin C; and (iv) presents a hierarchy, or pecking order, for free radical electron (hydrogen atom) transfer reactions.

  17. The effect of occupational lead exposure on lipid peroxidation, protein carbonylation, and plasma viscosity.

    PubMed

    Kasperczyk, Sławomir; Słowińska-Łożyńska, Ludmiła; Kasperczyk, Aleksandra; Wielkoszyński, Tomasz; Birkner, Ewa

    2015-12-01

    The aim of the study was to investigate the influence of occupational lead (Pb) exposure on lipid peroxidation, protein carbonylation, and plasma viscosity in workers. The examined group included 283 healthy male employees of manufacturing facilities using zinc and Pb. The mean blood concentrations of Pb and zinc protoporphyrin as well as the mean urine δ-aminolevulinic acid levels were used as markers of exposure for the examined group. Taking into account the obtained mean values of blood lead level, the examined group was divided into three subgroups. When comparing the control group with the subgroups, Pb exposure markers were significantly elevated in all the three subgroups. Concentrations of conjugated dienes (CD), lipid hydroperoxides, malondialdehyde (MDA), and protein carbonyl groups were also significantly increased. Conversely, the levels of total protein and protein sulfhydryls were significantly decreased in the subgroups compared with the controls. The plasma viscosity was significantly elevated in the subgroups. A dose-response between Pb levels and plasma viscosity was not observed. Pb supposedly elevates MDA and CD in a dose-dependent manner. In conclusion, occupational Pb exposure induces oxidative stress that results in lipid and protein damage. Moreover, Pb-induced oxidative stress is likely the primary factor that elevates plasma viscosity, despite decreased protein levels.

  18. Influence of Hemodialysis on Lipid Peroxidation, Enzymatic and Non-Enzymatic Antioxidant Capacity in Chronic Renal Failure Patients

    PubMed Central

    Zargari, Mehryar; Sedighi, Omid

    2015-01-01

    Background: Free radical induced damages are thought to be involved in chronic kidney disease (CKD), especially in patients who are on hemodialysis (HD) for prolonged periods. Hemodialysis can influence multiple biochemical factors, several of which are useful, although the rest can be harmful and increase the severity of disease. Objectives: The purpose of this study was to evaluate the effect of the HD membrane polysulfone on oxidative stress markers, by measuring the level of lipid peroxidation and total antioxidant activity (TAC), in the blood of HD patients. Patients and Methods: This study was carried out on 31 HD patients and 31 healthy persons, matched for age and sex, as control group. Blood samples were drawn before and after HD from arteriovenous fistulas, and once from the controls. Superoxide dismutase (SOD), catalase (CAT) and thiobarbituric acid-reactive substance (TBARS) in blood hemolyzate, Glutathione peroxidase (GpX) of whole blood and TAC of plasma were measured, respectively. Then, we investigated the association between TAC of plasma, measured by ferric reducing antioxidant power (FRAP), and lipid peroxidation level with its related parameters, in HD patients. Results: The SOD, GpX and CAT were decreased after HD (P < 0.05). Also, FRAP was shown to decrease after HD (P < 0.05). However, erythrocyte TBARS levels (μmol/gr of Hb) were increased after HD, in comparison with controls, and before HD (P < 0.05). There was a significant negative correlation between TBARS and antioxidant indices, such as SOD (r = -0.67, P = 0.001), GpX (r = -0.76, P = 0.001), CAT (r = -0.63, P = 0.001) and FRAP (r = -0.84, P = 0.001). The FRAP was significantly and directly correlated with uric acid (r = +0.62, P = 0.001), SOD (r = +0.72, P = 0.001), GpX (r = +0.87, P = 0.001) and CAT (r = +0.84, P = 0.001). Conclusions: The results of our study proposed that there is a loss or inactivation of antioxidant factors, coupled with increased lipid peroxidation during the

  19. In-vitro evaluation of bioactive compounds, anti-oxidant, lipid peroxidation and lipoxygenase inhibitory potential of Citrus karna L. peel extract.

    PubMed

    Singh, Jagdeep; Sood, Shailja; Muthuraman, Arunachalam

    2014-01-01

    Many medicinal plants have been studied for their antioxidant and their pharmacological activity. Citrus species were well documented as potential antioxidant based therapy for cancer, inflammation, heart disease. Citrus seeds and peels have been shown to possess high antioxidant activity. Therefore, the present study to explore the antioxidant and lipid peroxidation & lipoxygenase inhibitory action of Citrus karna peel extracts were undertaken. Extraction was performed with different solvents of increasing polarity and yield was calculated. Peel extracts were also analyzed for the presence of phenols, flavonoids, vitamin C, and carotenoids. Then the Citrus karna peel extracts were evaluated for the antioxidant and lipid peroxidation & lipoxygenase inhibitory action In-Vitro. In further, the quantification of hesperidin and naringin was carried out by HPLC-DAD method. The results indicated the presence of phenols, flavonoids, vitamin C, carotenoids, hesperidin and naringin in Citrus karna peel extracts with maximum yield of (3.91% w/w). Citrus karna peel extracts were also found to have potential antioxidant and lipid peroxidation & lipoxygenase inhibitory action. Therefore, Citrus karna peel extracts could be used for the future therapeutic medicine due to presence of potential bioactive compounds. PMID:24426049

  20. Antioxidant role of oils isolated from garlic (Allium sativum Linn) and onion (Allium cepa Linn) on nicotine-induced lipid peroxidation.

    PubMed

    Helen, A; Rajasree, C R; Krishnakumar, K; Augusti, K T; Vijayammal, P L

    1999-10-01

    Nicotine, a major component of tobacco, is partly responsible for the development of atherosclerosis. It has been suggested that antioxidant nutrients are protective against degenerative diseases. So we have studied the antioxidant effect of oils isolated from onion and garlic on nicotine-induced lipid peroxidation in rat tissues. The lipid peroxidation products and scavenging enzymes were assessed in liver, lungs, heart and kidney. The rats were treated with 0.6 mg nicotine/kg bw and simultaneously given 100 mg garlic or onion oils/kg bw for 21 d. Thiobarbituric acid reactive substances, conjugated dienes and hydroperoxides concentrations were significantly increased in the tissues of nicotine-treated rats. Both the garlic oil and onion oil supplementation to nicotine-treated rats increased resistance to lipid peroxidation. The activities of catalase, superoxide dismutase and glutathione peroxidase decreased in nicotine-treated rats, but there was a trend to increased glutathione content. With garlic oil or onion oil supplementation, nicotine-treated rats had increased activities of antioxidant enzymes and increased concentrations of glutathione. These results indicate that oils of garlic and onion are effective antioxidants against the oxidative damage caused by nicotine. PMID:10509436

  1. Inhibition of the iron-catalysed formation of hydroxyl radicals by nitrosouracil derivatives: protection of mitochondrial membranes against lipid peroxidation.

    PubMed

    Rabion, A; Verlhac, J B; Fraisse, L; Roche, B; Seris, J L

    1993-01-01

    A new series of metal ligands containing the 1,3-dimethyl-6-amino-5- nitrosouracil moiety has been synthesized and they have been studied as potential inhibitors of iron-dependent lipid peroxidation. For this purpose, these new derivatives have been tested in the Fenton induced deoxyribose degradation assay, which allows a quantitative measurement of their inhibitory effect towards hydroxyl radical generation. When iron(II) is complexed by these ligands, a strong inhibition of deoxyribose degradation is observed, especially in the case of tris-[2-(1,3-dimethyl-5-nitrosouracil-6-yl)aminoethyl] amine (5). This inhibitory effect is clearly related to a specific complexation of iron(II) and is not due to the direct scavenging of hydroxyl radical by the ligand. Inhibition of the iron mediated Fenton reaction presumably results from inactivation of the reactivity of the metal center towards hydrogen peroxide. These derivatives, as well as long alkyl chain substituted nitrosouracils were evaluated in the protection of biological membranes against lipid peroxidation (induced by iron(II)/dihydroxyfumaric acid and determined with the 2-thiobarbituric acid test). Ligand 5 inhibited lipid peroxidation at a rate similar to Desferal (desferrioxamine B) and slightly higher than bathophenanthroline sulphonate (BPS), which are respectively good iron(III) and iron(II) chelators. When covalently bound with a long alkyl chain, the increase of lipophilic character of the ligand allows its location near the mitochondrial membrane, where lipid peroxidation occurs. Lower concentrations (IC50 = 4 microM) are then necessary to inhibit lipid peroxidation. This IC50 concentration should be compared to those obtained for Trolox (IC50 = 3 microM) or the 21-aminosteroid U74500A (IC50 = 1 microM) described previously.

  2. Study of lipid profile, lipid peroxidation and vitamin E in pregnancy induced hypertension.

    PubMed

    Sahu, Suchanda; Abraham, Rebecca; Vedavalli, R; Daniel, Mary

    2009-01-01

    Pregnancy-induced hypertension (PIH) is a common medical complication of pregnancy with a high incidence. The study comprised of 30 normal and 30 PIH cases in their third trimester of pregnancy and the following estimations were done: Serum Malondialdehyde level (MDA), Vitamin E, triglycerides (TG), total cholesterol (TC), HDL-cholesterol (HDL-C) and LDL-C. The PIH cases had significant rise in both systolic and diastolic blood pressure (BP) (P=<0.0001). There was a significant rise in the fasting triglycerides, total cholesterol and LDL-C levels in PIH (P=<0.0001). MDA was twice in the cases and Vitamin E was half the levels that of controls (P=<0.0001). The level of rise of serum lipids did not significantly correlate with the rise or fall in MDA. In PIH cases there was a negative correlation of diastolic BP with MDA (P<0.05). Early detection of these parameters is going to aid in better management of PIH cases.

  3. Attenuation of lipid peroxidation by antioxidants in rat-1 fibroblasts: comparison of the lipid peroxidation reporter molecules cis-parinaric acid and C11-BODIPY(581/591) in a biological setting.

    PubMed

    Drummen, Gregor P C; Makkinje, Miriam; Verkleij, Arie J; Op den Kamp, Jos A F; Post, Jan A

    2004-03-22

    Lipid peroxidation is a major factor in the pathogenesis of many disease states. To detect the initial stages of lipid peroxidation or evaluate antioxidant efficacy, cis-parinaric acid (cis-PnA) has been successfully used and thoroughly validated. However, cis-PnA is not very well suited for medium throughput screening of antioxidants in living cells. We recently introduced and validated a lipid peroxidation reporter molecule, C11-BODIPY(581/591). To further explore this probe, we evaluated the protective effect of 12 natural antioxidants in rat-1 fibroblasts subjected to 50 microM cumene-hydroperoxide using both probes. The same pecking order for the individual antioxidant efficacies was obtained: alpha-tocopherol approximately gamma-tocopherol > quercetin approximately lycopene > kaempferol > palm oil > hydroxy-tyrosol > > alpha-carotene = beta-carotene = lutein = tyrosol = chlorogenic acid. This validates the accuracy of the C11-BODIPY(581/591) method and shows that this assay is an accurate and highly flexible method for indexing lipid peroxidation or determining antioxidant efficacy in living cells in a medium throughput scenario. The antioxidant efficacy was compared with their one-electron reduction potential, hydrophobicity and Trolox C equivalent antioxidant capacity. Our results show that although these parameters are valuable for determining structure-function relationships, they have limited predictive value for antioxidant efficacy in vivo.

  4. Lipid peroxidation and hemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Dependence on glucose metabolism and hemoglobin status.

    PubMed

    Trotta, R J; Sullivan, S G; Stern, A

    1981-12-01

    Changes in hemoglobin status and lipid peroxidation were followed in red cells containing either oxy-met-, or carbonmonoxyhemoglobin, incubated with t-butyl hydroperoxide in a medium with or without glucose. Loss of intact hemoglobin (the sum of oxyhemoglobin and methemoglobin) was inversely proportional to the degree of lipid peroxidation in red cells containing either oxy- or methemoglobin. When glucose was added to the medium, lipid peroxidation increased while there was a decreased loss of intact hemoglobin in red cells containing either oxy- or methemoglobin, while both lipid peroxidation and changes in hemoglobin decreased in red cells containing carbonmonoxyhemoglobin. Methemoglobin formation and loss of intact hemoglobin were directly proportional to the degree of lipid peroxidation in red cells containing carbonmonoxyhemoglobin. The greatest amount of lipid peroxidation occurred in red cells containing carbonmonoxyhemoglobin, incubated without glucose. These results indicate that methemoglobin and non-intact hemoglobin may protect the membrane against lipid peroxidation. We propose that, depending on the availability of glucose and the liganded state of hemoglobin, lipid peroxidation and hemoglobin alterations represent extremes of a spectrum of oxidative damage.

  5. Lipid Peroxidation and Antioxidant Status in Patients with Medullary Thyroid Carcinoma: A Case-Control Study

    PubMed Central

    Hosseini-Zijoud, Seyed-Mostafa; Ebadi, Seyed Alireza; Goodarzi, Mohammad Taghi; Hedayati, Mehdi; Abbasalipourkabir, Roghayeh; Mahjoob, Mohammad Parsa; Poorolajal, Jalal; Zicker, Fabio

    2016-01-01

    Introduction Oxidative stress or oxidant/antioxidant imbalance has a crucial role in the pathogenesis of some diseases like cancer. Medullary thyroid carcinoma (MTC) originates in the thyroid parafollicular cells and includes 3-4% of the malignant neoplasms that have an effect on this gland. The aetiology of MTC has not been clarified. However, oxidative stress may be one of the factors involved. Aim The aim of the current study was to evaluate the antioxidant enzyme activity of catalase (CAT), Glutathione (GSH), total antioxidant capacity (TAC) and the levels of the lipid peroxidation product malondialdehyde (MDA) in blood samples of MTC patients as compared to healthy controls. Materials and Methods A case-control study was designed enrolling patients with confirmed MTC diagnosis and age-and sex group matched healthy volunteers referred to the clinic of the Research Institute for Endocrine Sciences, Tehran, Iran from April 2013 to July 2015. Fasting blood samples were taken for study. Catalase, GSH, MDA and TAC levels were measured by colorimetry using commercial kits (ZellBio GmbH, Germany). Data were analysed using SPSS 17 software, comparing mean±SD through t-test and difference between proportions through chi-square. Results No statistical difference was observed in the demographic characteristic between cases and controls. The final MTC group included 40 males and 45 females with a mean age of 30±12.9 year, and the control group 40 males and 47 females, with a mean age of 31.2±12.3 year. Anthropometric parameters, dietary and thyroid hormones levels (T3, T4 and TSH) were similar. Serum TAC (p=0.015), GSH (p=0.029) and CAT (p<0.001) levels were found to be significantly lower in the MTC patients, while serum MDA levels were significantly higher in MTC patients than controls (p<0.001). Conclusion These preliminary findings suggest that oxidant/antioxidant imbalance may be associated with or possibly indicate an increased risk to medullary thyroid carcinoma

  6. DHA concentration of red blood cells is inversely associated with markers of lipid peroxidation in men taking DHA supplement

    PubMed Central

    Shichiri, Mototada; Adkins, Yuriko; Ishida, Noriko; Umeno, Aya; Shigeri, Yasushi; Yoshida, Yasukazu; Fedor, Dawn M.; Mackey, Bruce E.; Kelley, Darshan S.

    2014-01-01

    An increase in the proportion of fatty acids with higher numbers of double bonds is believed to increase lipid peroxidation, which augments the risk for many chronic diseases. (n-3) Polyunsaturated fatty acids provide various health benefits, but there is a concern that they might increase lipid peroxidation. We examined the effects of docosahexaenoic acid [22:6 (n-3)] supplementation on lipid peroxidation markers in plasma and red blood cells (RBC) and their associations with red blood cell and plasma fatty acids. Hypertriglyceridemic men (n = 17 per group) aged 39–66 years participated in a double-blind, randomized, placebo-controlled, parallel study. They received no supplements for the first 8 days and then received 7.5 g/day docosahexaenoic acid oil (3 g/day docosahexaenoic acid) or olive oil (placebo) for 90 days. Fasting blood samples were collected 0, 45, and 91 days after supplementation. Docosahexaenoic acid supplementation did not change plasma or RBC concentrations of lipid peroxidation markers (total hydroxyoctadecadienoic acid, total hydroxyeicosatetraenoic acid, total 8-isoprostaglandin F2α, 7α-hydroxycholesterol, 7β-hydroxycholesterol) when pre- and post-supplement values were compared. However, the post-supplement docosahexaenoic acid (DHA) concentration was inversely associated with RBC concentrations of ZE-HODE, EE-HODE, t-HODE, and total 8-isoprostaglandin F2α, (p<0.05). RBC concentration of hydroxycholesterol was also inversely associated with DHA but it did not attain significance (p = 0.07). Our results suggest that increased concentration of DHA in RBC lipids reduced lipid peroxidation. This may be another health benefit of DHA in addition to its many other health promoting effects. PMID:25411526

  7. Green tea extract alleviates arsenic-induced biochemical toxicity and lipid peroxidation in rats.

    PubMed

    Messarah, Mahfoud; Saoudi, Mongi; Boumendjel, Amel; Kadeche, Lilia; Boulakoud, Mohamed Salah; El Feki, Abdelfattah

    2013-05-01

    The present work was undertaken to evaluate the protective effect of an aqueous extract of green tea (GT, Camellia sinensis) leaves against arsenic (NaAsO₂)-induced biochemical toxicity and lipid peroxidation production in experimental rats. The treatment with arsenic exhibited a significant increase in some serum hepatic and renal biochemical parameters (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total protein, albumin, bilirubin, cholesterol, urea and creatinine). But the co-administration of GT has increased the level of plasmatic concentration of biochemical parameters. Exposure of rats to arsenic caused also a significant increase in liver, kidney and testicular thiobarbituric acid reactive substances compared to control. However, the co-administration of GT was effective in reducing its level. To conclude, our data suggest that arsenic exposure enhanced an oxidative stress by disturbing the tissue antioxidant defense system, but the GT co-administration alleviates the toxicity induced by arsenic exposure.

  8. Lipid peroxidation product acrolein as a predictive biomarker of prostate carcinoma relapse after radical surgery.

    PubMed

    Custovic, Zajim; Zarkovic, Kamelija; Cindric, Marina; Cipak, Ana; Jurkovic, Ilija; Sonicki, Zdenko; Uchida, Koji; Zarkovic, Neven

    2010-05-01

    Cancer recurrence after radical surgery might happen even in the case of patients with localized prostate carcinoma treated by radical prostatectomy. Therefore, identifying predictive markers of tumour recurrence is very important, so this study evaluated the presence of lipid peroxidation product acrolein in primary prostate carcinomas, assuming that acrolein could be involved in prostate carcinogenesis as was recently shown for colon cancer. Samples obtained by radical prostatectomy of 70 patients were analysed, out of which 27 patients suffered afterwards from tumour recurrence, while 43 patients were disease free. Immunohistochemistry using genuine monoclonal antibodies against acrolein-protein adducts revealed the association of acrolein with progression of carcinoma. The logistic regression combining clinical parameters together with the biochemical markers of disease and acrolein immunohistochemistry has shown that the relapse might be predicted with 90% accuracy if tumour-positive surgical margins, stage of disease and the intensity of acrolein presence in tumour stroma were taken together.

  9. The Effect of Selenium and +(-)Catechin on Lipid Peroxidation and Glutathione in Cadmium Fed Rats

    NASA Astrophysics Data System (ADS)

    Özdemir, Semra; Dursun, Şefik

    2007-04-01

    Cadmium performs its effect on living organisms by accumulating in various tissues and effects tissue antioxidant enzyme systems. The testes are critical target organ following cadmium exposure. The present study was planned to determine the possible protective roles of selenium and +(-) catechin against the toxic effects of cadmium. The study has been performed in Wistar Albino rats which divided into four groups as control, cadmium, cadmium+selenium and cadmium+ catechin received groups. Each experimental group consisted of ten rats. The experimental group rats have received cadmium sulphate, sodium selenite and +(-) catechin via there drinking water for thirty days. Cadmium concentration, lipid peroxidation and glutathione were measured in the homogenate of testes and blood. As a result of the study it may be said that: The cadmium accumulates in testes and its concentration increases in blood and possibly selenium administration is helpful against cadmium but not +(-)catechin.

  10. Trivalent arsenicals induce lipid peroxidation, protein carbonylation, and oxidative DNA damage in human urothelial cells.

    PubMed

    Wang, Tsing-Cheng; Jan, Kun-Yan; Wang, Alexander S S; Gurr, Jia-Ran

    2007-02-01

    Drinking arsenic-contaminated water is associated with an increased risk of bladder cancer. Arsenate (iAs(V)), arsenite (iAs(III)), monomethylarsonous acid (MMA(III)), monomethylarsonic acid (MMA(V)), dimethylarsinous acid (DMA(III)), and dimethylarsinic acid (DMA(V)) have all been detected in the urine of people who drink arsenic-contaminated water. The aim of this research was to investigate which of these arsenicals are more hazardous to human urothelial cells. The results indicate that iAs(III), MMA(III), and DMA(III) were more potent in inducing cytotoxicity, lipid peroxidation, protein carbonylation, oxidative DNA damage, nitric oxide, superoxide, hydrogen peroxide, and cellular free iron than MMA(V), DMA(V), and iAs(V) in human urothelial carcinoma and transformed cells. However, the results did not show convincingly that the trivalent arsenicals were more potent than pentavalent arsenicals in decreasing the intracellular contents of total thiol, protein thiol, and reduced glutathione. Induction of oxidative DNA damage was observed with 0.2 microM of iAs(III), MMA(III), or DMA(III) as early as 1h. Because of its high oxidative damage, higher proportion in urine, and lower cytotoxicity, DMA(III) may be the most hazardous arsenical to human urothelial cells.

  11. Nifedipine does not affect free radical induced lipid peroxidation following renal allograft reperfusion.

    PubMed

    Davenport, A; Hopton, M; Bolton, C

    1994-01-01

    We prospectively measured lipid peroxidation following reperfusion during 44 renal allograft transplant operations. Twenty-four (55%) recipients were taking nifedipine pre- and then postoperatively, and 20 (45%) were not. There were no differences between the groups in terms of recipient or donor status. Plasma malondialdehyde (MDA), mean 2.2 (0.2) mumol/L (SEM) vs. 1.73 (0.1) was greater in the group not prescribed nifedipine, p < .05, as were cholesterol; 5.89 (0.3) mmol/L vs. 5.58 (0.3) and triglycerides; 2.19 (0.2) mmol/L vs. 1.82 (0.2). Following allograft reperfusion there was a significant increase in the ratio of MDA/cholesterol (x 10(3)) (MDA corrected for changes in plasma volume) from 0.33 (0.03) in the nifedipine group to 0.38 (0.02) at 30 min after reperfusion and 0.38 (0.03) at 60 min, p < .01, and similarly from 0.4 (0.04) to 0.48 (0.03) at 30 min and 0.47 (0.05) after 60 min in the other group, p < .01. There was no difference in the percentage change in MDA/cholesterol ratio between the groups; 27 (5)% vs. 19 (6) at 30 min and 20 (8) vs. 15 (8) at 60 min for the nifedipine and no-nifedipine groups, respectively. There was no difference in postoperative renal function between the groups. This study suggests that the oral administration of nifedipine may not prevent the production of lipid peroxides, as measured by changes in plasma malondialdehyde, following renal allograft reperfusion and that it does not affect renal function in the early postoperative period.

  12. Monitoring lipid peroxidation within foam cells by lysosome-targetable and ratiometric probe.

    PubMed

    Zhang, Xinfu; Wang, Benlei; Wang, Chao; Chen, Lingcheng; Xiao, Yi

    2015-08-18

    Lipid peroxidation (LPO) in lysosomes is a valuable analyte because it is close associated with the evolutions of some major diseases. As a typical example, in the start-up phase of atherosclerosis, lysosomes get as swollen as foams, by accumulating a large amount of lipoproteins, which facilitates the free-radical chain propagation of LPO. Despite the existences of several fluorescent LPO probes, they are not appropriate for reporting the local extents of lysosomal LPO, for their unspecific intracellular localizations. Here, Foam-LPO, the first fluorescent LPO probe specifically targeting lysosomes, has been developed through straightforward synthesis using low-cost reagents. A basic tertiary amine group enables it to selectively localize in acidic lysosomes; and the conjugated diene moiety within the BODIPY fluorophore will degrade in response to lipid peroxidation, which results in fluorescence maximum shifting from 586 to 512 nm. Thus, under a confocal fluorescence microscope, Foam-LPO is able not only to visualize dynamic morphological changes of lysosomes during the evolution of foam cells, but also to relatively quantify local LPO extents in single lysosomes through ratiometric imaging. In addition, Foam-LPO proves applicable for two-color flow cytometry (FCM) analysis to make quantitative and high-throughput evaluation of LPO levels in large quantity of cells at different stages during the induction to form foam cells. Also importantly, with the aid of this new probe, the different roles played by low-density lipoprotein (LDL) and its oxidized form (ox-LDL) for the LPO processes of foam cells are distinguished and clarified, which benefits the understanding in the initiation and control factors of atherosclerosis.

  13. Effect of lipid peroxidation, antioxidants, macro minerals and trace elements on eczema.

    PubMed

    Amin, Mohammad Nurul; Liza, Kaniz Fatema; Sarwar, Md Shahid; Ahmed, Jamiuddin; Adnan, Md Tareek; Chowdhury, Manjurul Islam; Hossain, Mohammad Zahid; Islam, Mohammad Safiqul

    2015-09-01

    The exact etiology and pathogenesis of eczema are not yet fully understood, although different factors are considered as pathogenic mechanisms in the development of eczema. Our study was designed to determine extent of serum lipid peroxidation, antioxidants, macro minerals and trace elements in patients with eczema, and thereby, find any pathophysiological correlation. The study was conducted as a case-control study with 65 eczema patients as cases and 65 normal healthy individuals as controls. Lipid peroxidation was assessed by measuring the serum level of malondialdehyde (MDA). Antioxidants- vitamin A and E concentration was determined by RP-HPLC method whereas vitamin C was evaluated for serum ascorbic acid by UV spectrophotometric method. Serum macro minerals (Na, K, Ca) and trace elements (Zn, Fe) were determined by Atomic Absorption Spectroscopy (AAS). This study found significantly higher level of MDA (p < 0.001) and lower level of antioxidants (p < 0.05) in patients in comparison to the control subjects. Analysis of serum macro minerals (Na, K and Ca) and trace elements (Zn, Fe) found that the mean values of Na, K, Ca, Zn and Fe were 2771.60 ± 75.64, 66.33 ± 3.03, 48.41 ± 2.50, 0.30 ± 0.02 and 0.29 ± 0.009 mg/L for the patient group and 3284.81 ± 34.51, 162.18 ± 3.72, 87.66 ± 2.10, 0.75 ± 0.06 and 0.87 ± 0.06 mg/L for the control group, accordingly. There was a significant difference for all the minerals between the patients and controls (p < 0.001). This study suggests a strong association between the pathogenesis of eczema with the elevated level of MDA and depleted level of antioxidants, macro minerals, and trace elements.

  14. Assessment of semen function and lipid peroxidation among lead exposed men

    SciTech Connect

    Kasperczyk, Aleksandra; Kasperczyk, Slawomir Horak, Stanislaw; Ostalowska, Alina; Grucka-Mamczar, Ewa; Romuk, Ewa; Olejek, Anita; Birkner, Ewa

    2008-05-01

    The study population included healthy, fertile men, employees of Zinc and Lead Metalworks (n = 63). Workers exposed to lead were divided into two groups: a group with moderate exposure to lead (ME) - blood lead level (PbB) 25-40 {mu}g/dl and a group with high exposure to lead (HE) PbB = 40-81 {mu}g/dl. The control group consisted of office workers with no history of occupational exposure to lead. Evaluation of lead, cadmium and zinc level in blood and seminal plasma, zinc protoporphyrin in blood (ZPP), 5-aminolevulinic acid in urine (ALA), malondialdehyde (MDA) in seminal plasma and sperm analysis were performed. No differences were noted in the concentration of cadmium and zinc in blood and seminal plasma in the study population. Lipid peroxidation in seminal plasma, represented as MDA concentration, significantly increased by about 56% in the HE group and the percentage of motile sperm cells after 1 h decreased by about 34% in comparison to the control group. No statistically significant correlation between other parameters of sperm analysis and lead exposure parameters nor between lead, cadmium and zinc concentration in blood and seminal plasma were found. A positive association between lead intoxication parameters (PbB, ZPP, lead seminal plasma) and MDA concentration in sperm plasma and inverse correlation with sperm cells motility (PbB, ZPP) was found. An increased concentration of MDA was accompanied by a drop in sperm cells motility. In conclusion, we report that high exposure to lead causes a decrease of sperm motility in men most likely as a result of increased lipid peroxidation, especially if the level in the blood surpasses the concentration of 40 {mu}g/dl.

  15. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages.

    PubMed

    Allegra, M; D'Acquisto, F; Tesoriere, L; Attanzio, A; Livrea, M A

    2014-01-01

    Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA) metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from Opuntia Ficus Indica prevented activation of nuclear factor-κB (NF-κB) and over-expression of PGE2 synthase-1 (mPGES-1), but up-regulated cyclo-oxygenase-2 (COX-2) and PGD2 synthase (H-PGDS), with final production of the anti-inflammatory cyclopentenone. The effects were positively related with concentration between 50 and 100 µM. Indicaxanthin did not have any effect in the absence of LPS. A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50-100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5-3 h) modest inhibition, followed by a progressive (3-12 h) concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5-3 h) concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages.

  16. Protection against Photooxidative Injury of Tobacco Leaves by 2-Alkenal Reductase. Detoxication of Lipid Peroxide-Derived Reactive Carbonyls1

    PubMed Central

    Mano, Jun'ichi; Belles-Boix, Enric; Babiychuk, Elena; Inzé, Dirk; Torii, Yoshimitsu; Hiraoka, Eiji; Takimoto, Koichi; Slooten, Luit; Asada, Kozi; Kushnir, Sergei

    2005-01-01

    Degradation of lipid peroxides leads to the formation of cytotoxic 2-alkenals and oxenes (collectively designated reactive carbonyls). The novel NADPH-dependent oxidoreductase 2-alkenal reductase (AER; EC 1.3.1.74) from Arabidopsis (Arabidopsis thaliana), which is encoded by the gene At5g16970, catalyzes the reduction of the α,β-unsaturated bond of reactive carbonyls, and hence is presumed to function in antioxidative defense in plants. Here we show that Arabidopsis AER (At-AER) has a broad substrate spectrum to biologically relevant reactive carbonyls. Besides 2-alkenals, the enzyme recognized as substrates the lipid peroxide-derived oxenes 9-oxo-octadeca-(10E),(12Z)-dienoic acid and 13-oxo-octadeca-(9E),(11Z)-dienoic acid, as well as the potent genotoxin 4-oxo-(2E)-nonenal, altogether suggesting AER has a key role in the detoxification of reactive carbonyls. To validate this conclusion by in vivo studies, transgenic tobacco (Nicotiana tabacum) plants that had 100- to 250-fold higher AER activity levels than control plants were generated. The engineered plants exhibited significantly less damage from either (1) the exogenously administered 4-hydroxy-(2E)-nonenal, (2) treatment with methyl viologen plus light, or (3) intense light. We further show that the At-AER protein fused with the Aequorea victoria green fluorescent protein localizes in cytosol and the nucleus in Bright-Yellow 2 cells. These results indicate that reactive carbonyls mediate photooxidative injury in leaf cells, and At-AER in the cytosol protects the cells by reducing the α,β-unsaturated bond of the photoproduced reactive carbonyls. PMID:16299173

  17. Potential Effects of Pomegranate on Lipid Peroxidation and Pro-inflammatory Changes in Daunorubicin-induced Cardiotoxicity in Rats

    PubMed Central

    Al-Kuraishy, Hayder M.; Al-Gareeb, Ali I.

    2016-01-01

    Background: Daunorubicin-induced acute cardiotoxicity caused by oxidative stress and free radical formation. Pomegranate possessed a significant in vitro free radical scavenging activity. Therefore, the aim of this study was estimations of the role of pomegranate effects in daunorubicin-induced cardiotoxicity. Methods: A total of 21 Sprague male rats were allocated into three groups, seven animals in each group. Group A: Control group received distilled water. Group B: Treated group with daunorubicin 20 mg/kg via intraperitoneal injection daily for the 12th day for total cumulative dose of 240 mg/kg. Group C: Pretreatment group with pomegranate 25 mg/kg for 6 days orally, then daunorubicin 20 mg/kg administrated concomitantly for the next 6 days with a cumulative dose of 120 mg/kg. Cardiac troponin I([cTn I] pg/ml), malondialdehyde (MDA) (ng/ml), interleukin 17 (IL-17 pg/ml), and cardiac lactate dehydrogenase (LDH) (pm/ml), all these biomarkers were used to measure the severity of cardiotoxicity. Results: Daunorubicin at a dose of 20 mg/kg lead to pronounced cardiac damage that reflected on through elevations of serum cTn and serum LDH levels significantly P < 0.01, it induced lipid peroxidation during cardiotoxicity that reflected through an elevation in the serum MDA significantly P < 0.01, moreover, daunorubicin induces pro-inflammatory changes in cardiotoxicity; it raises the IL-17 serum level significantly P < 0.01 as compared with control. Pomegranate pretreatment demonstrated a significant cardioprotection from daunorubicin-induced cardiotoxicity; it attenuated the cardiac damage through reduction of cTn, LDH, MDA, and serum IL-17 level significantly P < 0.01 as compared with daunorubicin-treated group. Conclusions: Pomegranate demonstrated significant cardioprotection in daunorubicin-induced cardiotoxicity through reduction of oxidative stress, lipid peroxidation, pro-inflammatory, and cardiac injury biomarkers. PMID:27413516

  18. Estradiol prevents ozone-induced increases in brain lipid peroxidation and impaired social recognition memory in female rats.

    PubMed

    Guevara-Guzmán, R; Arriaga, V; Kendrick, K M; Bernal, C; Vega, X; Mercado-Gómez, O F; Rivas-Arancibia, S

    2009-03-31

    There is increasing concern about the neurodegenerative and behavioral consequences of ozone pollution in industrialized urban centers throughout the world and that women may be more susceptible to brain neurodegenerative disorders. In the present study we have investigated the effects of chronic (30 or 60 days) exposure to ozone on olfactory perception and memory and on levels of lipid peroxidation, alpha and beta estrogen receptors and dopamine beta-hydroxylase in the olfactory bulb in ovariectomized female rats. The ability of 17beta-estradiol to prevent these effects was then assessed. Results showed that ozone exposure for 30 or 60 days impaired formation/retention of a selective olfactory recognition memory 120 min after exposure to a juvenile stimulus animal with the effect at 60 days being significantly greater than at 30 days. They also showed impaired speed in locating a buried chocolate reward after 60 days of ozone exposure indicating some loss of olfactory perception. These functional impairments could all be prevented by coincident estradiol treatment. In the olfactory bulb, levels of lipid peroxidation were increased at both 30- and 60-day time-points and numbers of cells with immunohistochemical staining for alpha and beta estrogen receptors, and dopamine beta-hydroxylase were reduced as were alpha and beta estrogen receptor protein levels. These effects were prevented by estradiol treatment. Oxidative stress damage caused by chronic exposure to ozone does therefore impair olfactory perception and social recognition memory and may do so by reducing noradrenergic and estrogen receptor activity in the olfactory bulb. That these effects can be prevented by estradiol treatment suggests increased susceptibility to neurodegenerative disorders in aging women may be contributed to by reduced estrogen levels post-menopause.

  19. d-alpha-tocopherol inhibits collagen alpha 1(I) gene expression in cultured human fibroblasts. Modulation of constitutive collagen gene expression by lipid peroxidation.

    PubMed Central

    Houglum, K; Brenner, D A; Chojkier, M

    1991-01-01

    Ascorbic acid stimulates collagen gene transcription in cultured fibroblasts, and this effect is mediated through the induction of lipid peroxidation by ascorbic acid. Quiescent cultured fibroblasts in the absence of ascorbic acid have a high constitutive level of collagen production, but the mechanisms of collagen gene regulation in this unstimulated state are not known. Because lipid peroxidation also occurs in normal cells, we wondered if lipid peroxidation plays a role in the regulation of basal collagen gene expression. Inhibition of lipid peroxidation in cultured human fibroblasts with d-alpha-tocopherol or methylene blue decreased the synthesis of collagen, the steady-state levels of procollagen alpha 1(I) mRNA and the transcription of the procollagen alpha 1(I) gene. This effect on collagen gene expression was selective and not associated with cellular toxicity. Thus, these experiments suggest a role for lipid peroxidation in the modulation of constitutive collagen gene expression. Images PMID:2040703

  20. Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions.

    PubMed

    Hameed, Amjad; Bibi, Noreen; Akhter, Javed; Iqbal, Nayyer

    2011-02-01

    Changes in enzymatic antioxidants and oxidative injury were evaluated in flag leaves of seven wheat genotypes under well watered (WW), medium watered (MW), low watered (LW) and soil stored moisture (SSM) conditions maintained in lysimeters through neutron moisture prob. Genotypes behaved differentially in terms of antioxidant response and stress induced injury under above indicated water deficit levels. In general, antioxidant enzymes were rarely enhanced under MW condition, often increased under LW condition while remained unchanged, elevated or diminished under SSM condition (severe stress). Higher CAT and POD activities were observed in NR-234 and in Pfau followed by FD-83 respectively under LW conditions. Under SSM condition, APX and POD increased significantly in Nesser and Pfau and CAT in NR-234, Nesser and Pfau, while remained at control level or decreased in other genotypes. In NR-234, SOD activity enhanced only under LW condition. However, SOD rose in Nesser, FD-83 and Sarsabz while remained unaffected in NR-241, Sitta and Pfau under all water deficit conditions. Lipid peroxidation increased significantly in FD-83 only under MW condition along with raised protease activity and protein contents. However, peroxidation of lipids was significantly enhanced in all genotypes under LW and SSM conditions. It was concluded that response of genotypes vary under different levels of water deficit. Hydrogen peroxide scavenging system was more actively involved in detoxification of oxidative stress induced by water deficit. Raised antioxidants (CAT, POD) resulting in comparatively lower lipid peroxidation in Pfau under SSM condition and in Sitta under LW condition confer stress tolerance in these genotypes.

  1. Photoirradiation of Polycyclic Aromatic Hydrocarbons with UVA Light – A Pathway Leading to the Generation of Reactive Oxygen Species, Lipid Peroxidation, and DNA Damage

    PubMed Central

    Yu, Hongtao; Xia, Qingsu; Yan, Jian; Herreno-Saenz, Diogenes; Wu, Yuh-Shen; Tang, I-Wah; Fu, Peter P.

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which PAHs induce genotoxicity. Although the metabolic activation of PAHs leading to biological activities has been well studied, the photo-induced activation pathway has seldom reported. In this paper, we review the study of photoirradiation of PAHs with UVA irradiation results in (i) cytotoxicity and DNA damage (ii) DNA single strand cleavage; (iii) formation of 8-hydroxy -2′-deoxyguanosine adduct (8-OHdG), and (iv) formation of lipid peroxidation. Evidence has been shown that these photobiological activities are mediated by reactive oxygen species (ROS). PMID:17159277

  2. Enhanced level of n-3 fatty acid in membrane phospholipids induces lipid peroxidation in rats fed dietary docosahexaenoic acid oil.

    PubMed

    Song, J H; Miyazawa, T

    2001-03-01

    The effect of dietary docosahexaenoic acid (DHA, 22:6n-3) oil with different lipid types on lipid peroxidation was studied in rats. Each group of male Sprague-Dawley rats was pair fed 15% (w/w) of either DHA-triglycerides (DHA-TG), DHA-ethyl esters (DHA-EE) or DHA-phospholipids (DHA-PL) for up to 3 weeks. The palm oil (supplemented with 20% soybean oil) diet without DHA was fed as the control. Dietary DHA oils lowered plasma triglyceride concentrations in rats fed DHA-TG (by 30%), DHA-EE (by 45%) and DHA-PL (by 27%), compared to control. The incorporation of dietary DHA into plasma and liver phospholipids was more pronounced in the DHA-TG and DHA-EE group than in the DHA-PL group. However, DHA oil intake negatively influenced lipid peroxidation in both plasma and liver. Phospholipid peroxidation in plasma and liver was significantly higher than control in rats fed DHA-TG or DHA-EE, but not DHA-PL. These results are consistent with increased thiobarbituric acid reactive substances (TBARS) and decreased alpha-tocopherol levels in plasma and liver. In addition, liver microsomes from rats of each group were exposed to a mixture of chelated iron (Fe(3+)/ADP) and NADPH to determine the rate of peroxidative damage. During NADPH-dependent peroxidation of microsomes, the accumulation of phospholipid hydroperoxides, as well as TBARS, were elevated and alpha-tocopherol levels were significantly exhausted in DHA-TG and DHA-EE groups. During microsomal lipid peroxidation, there was a greater loss of n-3 fatty acids (mainly DHA) than of n-6 fatty acids, including arachidonic acid (20:4n-6). These results indicate that polyunsaturation of n-3 fatty acids is the most important target for lipid peroxidation. This suggests that the ingestion of large amounts of DHA oil enhances lipid peroxidation in the target membranes where greater amounts of n-3 fatty acids are incorporated, thereby increasing the peroxidizability and possibly accelerating the atherosclerotic process.

  3. Effect of methanolic extract of Vernonia amygdalina (common bitter leaf) on lipid peroxidation and antioxidant enzymes in rats exposed to cycasin.

    PubMed

    Lolodi, O; Eriyamremu, G E

    2013-07-01

    This study investigated the effect of a methanolic extract of Vernonia amygdalina (VA) on lipid peroxidation and antioxidant status of the colon of rats maintained on a normal diet containing 5% Cycas revoluta (cycads). Fifty male Wistar albino rats were randomly assigned into five groups of ten experimental animals in a study that lasted for six weeks. One control group was maintained on a normal diet only while another group was fed a normal diet containing 5% cycads. The other three groups were maintained on the normal diet and 5% cycads and orally fed 200 mg VA/kg body weight for 1, 5 or 6 weeks. The results obtained revealed that the level of malondialdehyde (an index of lipid peroxidation) was significantly elevated (p < 0.05) in rats exposed to cycads only compared with the control. However, oral administration of VA in conjunction with exposure to cycads appeared to reduce the extent of lipid peroxidation to values that are not significantly (p > 0.05) different from those of the control. The activity of Superoxide Dismutase (SOD) was significantly reduced (p < 0.05) in the experimental animals fed cycads compared with the controls. Oral administration of VA seemed to counteract the effect of cycads on SOD in the colon as no significant difference (p > 0.05) was observed in rats fed VA compared with the controls. The results of this study suggest that methanolic extract of VA may mitigate the biochemical consequences of cycasin-induced lipid peroxidation in the colon of rats. PMID:24505988

  4. Effect of methanolic extract of Vernonia amygdalina (common bitter leaf) on lipid peroxidation and antioxidant enzymes in rats exposed to cycasin.

    PubMed

    Lolodi, O; Eriyamremu, G E

    2013-07-01

    This study investigated the effect of a methanolic extract of Vernonia amygdalina (VA) on lipid peroxidation and antioxidant status of the colon of rats maintained on a normal diet containing 5% Cycas revoluta (cycads). Fifty male Wistar albino rats were randomly assigned into five groups of ten experimental animals in a study that lasted for six weeks. One control group was maintained on a normal diet only while another group was fed a normal diet containing 5% cycads. The other three groups were maintained on the normal diet and 5% cycads and orally fed 200 mg VA/kg body weight for 1, 5 or 6 weeks. The results obtained revealed that the level of malondialdehyde (an index of lipid peroxidation) was significantly elevated (p < 0.05) in rats exposed to cycads only compared with the control. However, oral administration of VA in conjunction with exposure to cycads appeared to reduce the extent of lipid peroxidation to values that are not significantly (p > 0.05) different from those of the control. The activity of Superoxide Dismutase (SOD) was significantly reduced (p < 0.05) in the experimental animals fed cycads compared with the controls. Oral administration of VA seemed to counteract the effect of cycads on SOD in the colon as no significant difference (p > 0.05) was observed in rats fed VA compared with the controls. The results of this study suggest that methanolic extract of VA may mitigate the biochemical consequences of cycasin-induced lipid peroxidation in the colon of rats.

  5. Formation of 7-(2-oxoethyl) guanine from lipid peroxidation and vinyl chloride exposure in male sprague dawley rats.

    EPA Science Inventory

    With a development of a new sensitive LC-MS/MS method to analyze 7-(2-oxoethylguanine) (7OEG), we confirmed and differentiated 7-0EG DNA adduct formation endogenously from lipid peroxidation and exogenously from Vinyl Chloride (VC) exposure. VC is an industrial chemical that is ...

  6. The effects of La(III) on the peroxidation of membrane lipids in wheat seedling leaves under osmotic stress.

    PubMed

    Zeng, F; An, Y; Zhang, H; Zhang, M

    1999-08-01

    The physiological effects of the rare earth ion La3+ on the peroxidation of membrane lipids in wheat (Triticum aestivum L.) seedling leaves under osmotic stress were determined. With the passage of time under osmotic stress, the inhibition ability of lanthanum ions to the relative membrane permeability and concentration of malondialdehyde, superoxide radicals, and hydrogen peroxide caused by osmotic stress increased substantially, but no changes were noted in ferrous and relative water content. It indicated that lanthanum ions could not retain the water content because of osmotic stress. However, La3+ appears to decrease the production of *OH by reducing the content of O2*- and H2O2 of Haber-Weiss and Fenton reactions, which efficiently alleviated peroxidation of membrane lipids under osmotic stress and, to some degree, protected the membrane from injury of free radicals. Thus, La3+ increased the tolerance ability of plant to osmotic stress, which could assure the function of membrane normal temporally after stressed.

  7. [In vivo toxicity, lipid peroxide lowering, and glutathione, ascorbic acid and copper elevation induced in mouse liver by low dose of oxine-copper, a fungicide].

    PubMed

    Hojo, Y; Hashimoto, I; Miyamoto, Y; Kawazoe, S; Mizutani, T

    2000-03-01

    While oxine-copper (OxCu) is generally used as an agricultural fungicide and induces a harmful effect on ecosystems, little information is available regarding a toxic effect of OxCu on mammals. In this article, we examined in vivo induction of toxicity and change of levels of glutathione and ascorbic acid, major biological antioxidants, lipid peroxide and copper (Cu) in liver and kidney 4 h and 24 h after intraperitoneal administration of OxCu at a low dose (0.05 mmol/kg) to mice. Increased hepatic ascorbic acid and Cu levels were found at 4 h after the treatment. In addition, body weight change was lowered and serum glutamic pyruvic transaminase activity was elevated significantly compared to control at 24 h after the treatment, suggesting induction of systemic and hepatic toxicity respectively. These were accompanied by lowered lipid peroxide level and enhanced glutathione, ascorbic acid and Cu levels in the mouse liver. On the other hand, OxCu induced no elevation in serum urea nitrogen concentration 4 h and 24 h after the treatment, suggesting no induction of nephrotoxicity, accompanied by no change in renal lipid peroxide, glutathione, ascorbic acid and Cu levels. These results suggest that hepatic Cu elevation may induce hepatotoxicity and no renal Cu elevation may lead to no induction of nephrotoxicity after the treatment with OxCu.

  8. [Experimental Evaluation of Radioprotective Efficacy of Synthetic Genistein on Criteria of Glutathione System and Lipid Peroxidation in Erythrocytes of Peripheral Blood in Irradiated Rats].

    PubMed

    Grebenyuk, A N; Tarumov, R A; Basharin, V A; Kovtun, V U

    2015-01-01

    The study was aimed to evaluate experimentally the radioprotective effectiveness of synthetic genistein in terms of the glutathione system and lipid peroxidation in erythrocytes of irradiated rats. The animals were exposed to single acute X-ray irradiation at a dose of 6 Gy. Genistein was administered intraperitoneally at 200 mg/kg 1 hour before radiation exposure. The irradiation caused the initiation of lipid peroxidation in the background depletion of reduced glutathione. Decrease by 25% in the number of malondialdehyde in the rats treated with genistein was registered 5 min after irradiation compared with the control. It is established thatl day after irradiation the level of reduced glutathione in the rats treated with genistein was 26% higher. However, intraperitoneal administration of genistein did not cause statistically significant changes in the activity of glutathione reductase, glutathione-S-transferase, or glucose-6-phosphate dehydrogenase during the whole period of observation. The results suggest that the radioprotective effect of synthetic genistein is implemented, along with other mechanisms, by stimulating the glutathione system and reducing the severity of lipid peroxidation. PMID:26863780

  9. Lipid nanoparticles for parenteral delivery of actives.

    PubMed

    Joshi, Medha D; Müller, Rainer H

    2009-02-01

    The present review compiles the applications of lipid nanoparticles mainly solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and lipid drug conjugates (LDC) in parenteral delivery of pharmaceutical actives. The attempts to incorporate anticancer agents, imaging agents, antiparasitics, antiarthritics, genes for transfection, agents for liver, cardiovascular and central nervous system targeting have been summarized. The utility of lipid nanoparticles as adjuvant has been discussed separately. A special focus of this review is on toxicity caused by these kinds of lipid nanoparticles with a glance on the fate of lipid nanoparticles after their parenteral delivery in vivo viz the protein adsorption patterns. PMID:18824097

  10. Evidence of lipid peroxidation and protein phosphorylation in cells upon oxidative stress photo generated by fullerols

    SciTech Connect

    Vileno, B.; Miller, L.; Sienkiewicz, A; Marcoux, P.R.; Forro, L.

    2010-09-27

    An oxidative stress (OS) state is characterized by the generation of Reactive Oxygen Species (ROS) in a biological system above its capacity to counterbalance them. Exposure to OS induces the accumulation of intracellular ROS, which in turn causes cell damage in the form of protein, lipid, and/or DNA oxidations. Such conditions are believed to be linked to numerous diseases or simply to the ageing of tissues. However, the controlled generation of ROS via photosensitizing drugs or photosensitizers (PS) is now widely used to treat various tumors and other infections. Here we present a method to track the chemical changes in a cell after exposure to oxidative stress. OS is induced via fullerols, a custom made water soluble derivative of fullerene (C{sub 60}), under visible light illumination. Synchrotron-based Fourier Transform InfraRed Microspectroscopy (S-FTIRM) was used to assess the chemical makeup of single cells after OS exposure. Consequently, a chemical fingerprint of oxidative stress was probed in this study through an increase in the bands linked with lipid peroxidation (carbonyl ester group at 1740 cm{sup -1}) and protein phosphorylation (asymmetric phosphate stretching at 1240 cm{sup -1}).

  11. Oxidative stress in severe dengue viral infection: association of thrombocytopenia with lipid peroxidation.

    PubMed

    Soundravally, R; Sankar, P; Bobby, Z; Hoti, S L

    2008-09-01

    Oxidative stress in viral infections has been suggested. The study was carried out to assess the oxidative stress in the different clinical spectrums of dengue infection and to evaluate if thrombocytopenia is associated with lipid and protein oxidative injury. Twenty-seven dengue fever (DF), 32 dengue hemorrhagic fever (DHF) and 21 dengue shock syndrome (DSS) cases were studied at 3, 5 and 7 days of illness. Sixty-three healthy subjects were selected as controls. Serum protein carbonyls (PCOs), malendialdehyde (MDA) and total antioxidant status (TAS) were estimated in blood. Dengue infected individuals had significantly high levels of PCOs and MDA on the three days tested in comparison to controls. In DF cases, no significant changes in the levels of MDA and PCOs were found in course of time. However, among DHF and DSS, significant increase in MDA levels was found in the fifth and seventh day samples in comparison to their respective third day sample (P < 0.05). Using one way ANOVA, high PCOs levels were found in DSS in comparison to DF and DHF cases on all the three days tested (P < 0.001). TAS levels were found to be low among DSS on days 5 and 7 and day 7 in DHF when compared with DF cases. Correlation analysis between MDA and hematocrit revealed a significant positive association between them in DHF and DSS on day 5 (DHF r = 0.372; p = 0.024 and DSS r = 0.535; p = 0.0-01) and day 7 (DHF r = 0.412; p = 0.003 and DSS r = 0.765; p < 0.0001). There was an important negative correlation between platelet count and plasma lipid peroxidation levels among DHF and DSS on all three days tested [day 3 (DHF r = -0.392; p = 0.012 and DSS r = -0.453; p = 0.004), day 5 (DHF r = -0.592; p < 0.001 and DSS r = -0.581; p < 0.001) and day 7 (DHF r = -0.418; p = 0.001 and DSS r = -0.515; p = 0.002)]. This study concludes that an increase in oxidative stress was found in dengue viral infection. The level of oxidative stress was maximal in DSS followed by DHF and its severity was

  12. The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants.

    PubMed

    Kanner, J; Lapidot, T

    2001-12-01

    Atherosclerosis may result partly from processes that occur following food consumption and that involve oxidized lipids in chylomicrons. We investigated reactions that could occur in the acidic pH of the stomach and accelerate the generation of lipid hydroperoxides and co-oxidation of dietary constituents. The ability of dietary polyphenols to invert catalysis from pro-oxidation to antioxidation was examined. The acidic pH of gastric fluid amplified lipid peroxidation catalyzed by metmyoglobin or iron ions. Metmyoglobin catalyzed peroxidation of edible oil, resulting in 8-fold increase of hydroperoxide concentration. The incubation of heated muscle tissue in simulated gastric fluid for 2 h enhanced hydroperoxides accumulation by 6-fold to 1200 microM. In the presence of catechin or red wine polyphenols, metmyoglobin catalyzed the breakdown of hydroperoxides to zero, totally preventing lipid peroxidation and beta-carotene cooxidation. We suggest that human gastric fluid may be an excellent medium for enhancing the oxidation of lipids and other dietary constituents. The results indicate the potentially harmful effects of oxidized fats intake in the presence of endogenous catalysts found in foods, and the major benefit of including in the meal plant dietary antioxidants. PMID:11728810

  13. The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants.

    PubMed

    Kanner, J; Lapidot, T

    2001-12-01

    Atherosclerosis may result partly from processes that occur following food consumption and that involve oxidized lipids in chylomicrons. We investigated reactions that could occur in the acidic pH of the stomach and accelerate the generation of lipid hydroperoxides and co-oxidation of dietary constituents. The ability of dietary polyphenols to invert catalysis from pro-oxidation to antioxidation was examined. The acidic pH of gastric fluid amplified lipid peroxidation catalyzed by metmyoglobin or iron ions. Metmyoglobin catalyzed peroxidation of edible oil, resulting in 8-fold increase of hydroperoxide concentration. The incubation of heated muscle tissue in simulated gastric fluid for 2 h enhanced hydroperoxides accumulation by 6-fold to 1200 microM. In the presence of catechin or red wine polyphenols, metmyoglobin catalyzed the breakdown of hydroperoxides to zero, totally preventing lipid peroxidation and beta-carotene cooxidation. We suggest that human gastric fluid may be an excellent medium for enhancing the oxidation of lipids and other dietary constituents. The results indicate the potentially harmful effects of oxidized fats intake in the presence of endogenous catalysts found in foods, and the major benefit of including in the meal plant dietary antioxidants.

  14. Combined nitrogen limitation and hydrogen peroxide treatment enhances neutral lipid accumulation in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Burch, Andrew R; Franz, Annaliese K

    2016-11-01

    Exogenous application of dilute hydrogen peroxide (H2O2) increases neutral lipid production in Phaeodactylum tricornutum. Exposing early stationary phase cultures of P. tricornutum to 0.25-2mM H2O2 increases the amount of neutral lipids per biomass (mg/mg) by >100% at 24h post H2O2 treatment as determined upon lipid extraction and analysis using a neutral lipid assay. H2O2 treatment increased the total levels of neutral lipids harvested up to 50%, from 64mg/L to 96mg/L, demonstrating its possible effectiveness as a pre-harvest strategy to enhance the biofuel feedstock potential of P. tricornutum. The effects of H2O2 on biomass are concentration dependent; increasing concentrations of H2O2 reduce the levels of isolated biomass. Analysis of combined stressors demonstrates that H2O2 treatment exhibits synergistic effects to enhance neutral lipid production under nitrogen-depleted, but not phosphorus-depleted conditions, suggesting that the effects of hydrogen peroxide on lipid production are influenced by environmental nitrogen levels. PMID:27529521

  15. Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes

    PubMed Central

    Anavi, Sarit; Ni, Zhixu; Tirosh, Oren; Fedorova, Maria

    2014-01-01

    Accumulating evidence suggests that fatty livers are particularly more susceptible to several pathological conditions, including hepatic inflammation, cirrhosis and liver cancer. However the exact mechanism of such susceptibility is still largely obscure. The current study aimed to elucidate the effect of hepatocytes lipid accumulation on the nuclear electrophilic stress. Accumulation of intracellular lipids was significantly increased in HepG2 cells incubated with fatty acid (FA) complex (1 mM, 2:1 oleic and palmitic acids). In FA-treated cells, lipid droplets were localized around the nucleus and seemed to induce mechanical force, leading to the disruption of the nucleus morphology. Level of reactive oxygen species (ROS) was significantly increased in FA-loaded cells and was further augmented by treatment with moderate stressor (CoCl2). Increased ROS resulted in formation of reactive carbonyls (aldehydes and ketones, derived from lipid peroxidation) with a strong perinuclear accumulation. Mass-spectroscopy analysis indicated that lipid accumulation per-se can results in modification of nuclear protein by reactive lipid peroxidation products (oxoLPP). 235 Modified proteins involved in transcription regulation, splicing, protein synthesis and degradation, DNA repair and lipid metabolism were identified uniquely in FA-treated cells. These findings suggest that steatosis can affect nuclear redox state, and induce modifications of nuclear proteins by reactive oxoLPP accumulated in the perinuclear space upon FA-treatment. PMID:25560244

  16. Metallothionein, essential elements and lipid peroxidation in mercury-exposed suckling rats pretreated with selenium.

    PubMed

    Orct, Tatjana; Lazarus, Maja; Ljubojević, Marija; Sekovanić, Ankica; Sabolić, Ivan; Blanuša, Maja

    2015-08-01

    Detoxification of mercury (Hg) with selenium (Se) in the early postnatal period with regard to the expression of metallothionein protein (MT), essential element status, and lipid peroxidation level in tissues has not been studied. Seven-day-old Wistar pups were orally pretreated with Se [6 μmol Na2SeO3/kg body weight (b.w.)] for 3 days and then cotreated with Hg (6 μmol HgCl2/kg b.w.) for the following 4 days. This group (Se + Hg) was compared to the groups treated with Hg, Se, or vehicle (control). Compared to the Hg-group, Se + Hg-group exhibited lower renal MT expression, reduced accumulation of Hg, Cu and Zn, and reduced excretion of Se, Hg and Zn in urine. In the liver, MT was stimulated by Se treatment in both, Se and Se + Hg-group. Hepatic and brain levels of the endogenous essential elements Cu, Fe, Mg, and Zn remained unchanged in all of the studied groups. Brain Hg levels and oxidation of lipids measured as thiobarbituric acid reactive substances were diminished in Se + Hg-group of pups compared to the Hg-group. This study suggests that Se pretreatment can help reduce Hg in the tissues of suckling rats, simultaneously preventing impairment of essential element levels in the kidneys and their excessive excretion via urine. Also, Se was shown to prevent oxidative damage of lipids in the brain, which is particularly susceptible to Hg during the early postnatal period.

  17. Lipid peroxidation and coupled vitamin oxidation in simulated and human gastric fluid inhibited by dietary polyphenols: health implications.

    PubMed

    Gorelik, Shlomit; Lapidot, Tair; Shaham, Inbal; Granit, Rina; Ligumsky, Moshe; Kohen, Ron; Kanner, Joseph

    2005-05-01

    The Western diet contains large quantities of oxidized lipids, because a large proportion of the food in the diet is consumed in a fried, heated, processed, or stored form. We investigated the reaction that could occur in the acidic pH of the stomach and accelerate the generation of lipid hydroperoxides and cooxidation of dietary vitamins. To estimate the oxygen content in the stomach after food consumption, oxygen released from masticated bread (20 g) into deoxygenated water (100 mL) was measured. Under these conditions, the oxygen concentration rose by 250 microM and reached a full oxygen saturation. The present study demonstrated that heated red meat homogenized in human gastric fluid, at pH 3.0, generated hydroperoxides and malondialdehyde. The cross-reaction between free radicals produced during this reaction cooxidized vitamin E, beta-carotene, and vitamin C. Both lipid peroxidation and cooxidation of vitamin E and beta-carotene were inhibited at pH 3.0 by red wine polyphenols. Ascorbic acid (44 mg) at a concentration that represented the amount that could be ingested during a meal inhibited lipid peroxidation only slightly. Red wine polyphenols failed to prevent ascorbic acid oxidation significantly but, in conjunction with ascorbic acid, did inhibit lipid peroxidation. In the presence of catechin, a well-known polyphenol found in red wine, ascorbic acid at pH 3.0 works in a synergistic manner preventing lipid peroxidation and beta-carotene cooxidation. The present data may explain the major benefits to our health and the crucial role of consuming food products rich in dietary antioxidants such as fruits, vegetables, red wines, or green tea during the meal. PMID:15853378

  18. Lipid peroxidation and coupled vitamin oxidation in simulated and human gastric fluid inhibited by dietary polyphenols: health implications.

    PubMed

    Gorelik, Shlomit; Lapidot, Tair; Shaham, Inbal; Granit, Rina; Ligumsky, Moshe; Kohen, Ron; Kanner, Joseph

    2005-05-01

    The Western diet contains large quantities of oxidized lipids, because a large proportion of the food in the diet is consumed in a fried, heated, processed, or stored form. We investigated the reaction that could occur in the acidic pH of the stomach and accelerate the generation of lipid hydroperoxides and cooxidation of dietary vitamins. To estimate the oxygen content in the stomach after food consumption, oxygen released from masticated bread (20 g) into deoxygenated water (100 mL) was measured. Under these conditions, the oxygen concentration rose by 250 microM and reached a full oxygen saturation. The present study demonstrated that heated red meat homogenized in human gastric fluid, at pH 3.0, generated hydroperoxides and malondialdehyde. The cross-reaction between free radicals produced during this reaction cooxidized vitamin E, beta-carotene, and vitamin C. Both lipid peroxidation and cooxidation of vitamin E and beta-carotene were inhibited at pH 3.0 by red wine polyphenols. Ascorbic acid (44 mg) at a concentration that represented the amount that could be ingested during a meal inhibited lipid peroxidation only slightly. Red wine polyphenols failed to prevent ascorbic acid oxidation significantly but, in conjunction with ascorbic acid, did inhibit lipid peroxidation. In the presence of catechin, a well-known polyphenol found in red wine, ascorbic acid at pH 3.0 works in a synergistic manner preventing lipid peroxidation and beta-carotene cooxidation. The present data may explain the major benefits to our health and the crucial role of consuming food products rich in dietary antioxidants such as fruits, vegetables, red wines, or green tea during the meal.

  19. Effect of atrazine, glyphosate and quinclorac on biochemical parameters, lipid peroxidation and survival in bullfrog tadpoles (Lithobates catesbeianus).

    PubMed

    Dornelles, Michele Flores; Oliveira, Guendalina Turcato

    2014-04-01

    Increased use of pesticides worldwide has led to damage not only to natural ecosystems but also to nontarget species. This study assessed the effects of different concentrations of the herbicides atrazine, glyphosate, and quinclorac on biochemical parameters, lipid peroxidation, and survival in tadpoles of Lithobates catesbeianus (bullfrog). Two hundred eighty-eight tadpoles were acquired from a frog farm in the south of Brazil. All animals were kept in aquariums under controlled laboratory conditions for 7 days and exposed to commercial formulations of atrazine (5, 10, and 20 μg/L), glyphosate (36, 72, and 144 μg/L), and quinclorac (0.05, 0.10, and 0.20 μg/L) for 7 days thereafter. The concentrations used in this study are similar to the levels of these herbicides found in natural water bodies. After exposure, gill, liver, and muscle samples were removed from each animal for quantitation of glycogen, total lipids, triglycerides, cholesterol, total proteins, and lipid peroxidation. Atrazine, glyphosate, and quinclorac exposure induced a significant decrease in levels of glycogen and total lipids in gill, liver, and muscle. Triglycerides levels in the gill increased after exposure to glyphosate, and decreased after exposure to atrazine and quinclorac; their levels in liver and muscle decreased on exposure to all herbicides. Cholesterol and total protein levels decreased in liver and muscle for all three herbicides. All tissues exhibited increased lipid peroxidation after exposure to all herbicides. In conclusion, exposure to the herbicides tested in this study induced significant changes in biochemical parameters and increased lipid peroxidation levels in tadpoles of L. catesbeianus.

  20. Effect of atrazine, glyphosate and quinclorac on biochemical parameters, lipid peroxidation and survival in bullfrog tadpoles (Lithobates catesbeianus).

    PubMed

    Dornelles, Michele Flores; Oliveira, Guendalina Turcato

    2014-04-01

    Increased use of pesticides worldwide has led to damage not only to natural ecosystems but also to nontarget species. This study assessed the effects of different concentrations of the herbicides atrazine, glyphosate, and quinclorac on biochemical parameters, lipid peroxidation, and survival in tadpoles of Lithobates catesbeianus (bullfrog). Two hundred eighty-eight tadpoles were acquired from a frog farm in the south of Brazil. All animals were kept in aquariums under controlled laboratory conditions for 7 days and exposed to commercial formulations of atrazine (5, 10, and 20 μg/L), glyphosate (36, 72, and 144 μg/L), and quinclorac (0.05, 0.10, and 0.20 μg/L) for 7 days thereafter. The concentrations used in this study are similar to the levels of these herbicides found in natural water bodies. After exposure, gill, liver, and muscle samples were removed from each animal for quantitation of glycogen, total lipids, triglycerides, cholesterol, total proteins, and lipid peroxidation. Atrazine, glyphosate, and quinclorac exposure induced a significant decrease in levels of glycogen and total lipids in gill, liver, and muscle. Triglycerides levels in the gill increased after exposure to glyphosate, and decreased after exposure to atrazine and quinclorac; their levels in liver and muscle decreased on exposure to all herbicides. Cholesterol and total protein levels decreased in liver and muscle for all three herbicides. All tissues exhibited increased lipid peroxidation after exposure to all herbicides. In conclusion, exposure to the herbicides tested in this study induced significant changes in biochemical parameters and increased lipid peroxidation levels in tadpoles of L. catesbeianus. PMID:24276472

  1. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza).

    PubMed

    Zhang, Feng-Qin; Wang, You-Shao; Lou, Zhi-Ping; Dong, Jun-De

    2007-02-01

    The effects of multiple heavy metal stress on the activity of antioxidative enzymes and lipid peroxidation were studied in leaves and roots of two mangrove plants, Kandelia candel and Bruguiera gymnorrhiza, grown under control (10 per thousand NaCl nutrient solution) or five levels of multiple heavy metal stress (10 per thousand NaCl nutrient solution containing different concentration of Pb2+, Cd2+, and Hg2+). Leaves and roots of control and heavy metal-stressed plants were harvested after two months. In leaves of heavy metal-stressed plants superoxide dismutase (SOD) and peroxidase (POD) activities fluctuated in different stress levels compared to the control, while catalase (CAT) activity increased with stress levels in K. candel, but remained unchanged in leaves of B. gymnorrhiza. In comparison with the control, the dynamic tendency of SOD, CAT, and POD activities in roots of heavy metal-stressed plants all ascended, and then declined. The increase in enzyme activities demonstrated that K. candel is more tolerant to heavy metals than B. gymnorrhiza. Lipid peroxidation was enhanced only in leaves of heavy metal-stressed B. gymnorrhiza. These results indicate that in heavy-metal stress antioxidative activities may play an important role in K. candel and B. gymnorrhiza and that cell membrane in leaves and roots of K. candel have greater stability than those of B. gymnorrhiza. For pollution monitoring purposes, POD activity in roots and leaves maybe serve as a biomarker of heavy metal stress in K. candel, while lipid peroxidation maybe serve as biomarker in B. gymnorrhiza.

  2. From balsamic to healthy: traditional balsamic vinegar melanoidins inhibit lipid peroxidation during simulated gastric digestion of meat.

    PubMed

    Verzelloni, Elena; Tagliazucchi, Davide; Conte, Angela

    2010-01-01

    In this work traditional balsamic vinegar (TBV) melanoidins were characterized for chemical composition and antioxidant activity and their anti-peroxidative effect during an in vitro gastric digestion of turkey meat was studied. The most important constituents of TBV melanoidins were carbohydrates (51% w/w) of which glucose (35% w/w) and fructose (10% w/w) are the main representatives, hydroxymethylfurfural (7.2% w/w), phenolic groups (4.6% w/w) and proteins (1.2% w/w). The antioxidant capacity of melanoidins was studied, measuring lipid hydroperoxides and secondary lipoxidation products formed during in vitro gastric digestion of turkey meat. The most important mechanisms in their antioxidant activity resulted radical scavenging and Fe(2+)-chelating activities. Pepsin inhibiting ability has been excluded. TBV melanoidins were also able to bind heme under gastric conditions potentially preventing its absorption and prooxidant and cytotoxic effects. Our results support the idea that TBV melanoidins may have a role in oxidative damage prevention. Fe(2+)-chelating and heme-binding activities as well as mechanisms of antioxidant activity of TBV melanoidins were also compared with coffee, barley coffee and dark beer melanoidins.

  3. [Lipid peroxidation and antioxidant defense system in rats after a 14-day space flight in the "Space-2044" spacecraft].

    PubMed

    Markin, A A; Zhuravlëva, O A

    1993-01-01

    After 14-day space flight of rats onboard Cosmos 2044 in their blood plasma, homogenates of liver, skeletal muscles and myocardium there were determined the parameters of peroxide oxidation of lipids (POL) and system of antioxidant defense: content of dienic conjugates (DC), malonic dialdehyde (MDA), schiff bases (SB), tocopherol (TF), total antioxidative activity (AOA, only in plasma), activity of antioxidative enzymes (only in tissues) superoxide (SOD), catalase, glutathione-peroxidase (GP), glutathione-reductase (GR). In the animal liver there was a decrease in SB content and an increase of SOD, catalase and GP activities. Skeletal muscles exhibited a reduced SB concentration. In myocardium there was a reduction of DC and SB levels, activity of GR with an increase of TF concentration, activity of SOD and catalase. In the blood plasma there occurred a decline of SB and TF contents and an elevation of MDA and total AOA concentrations. The authors drew a conclusion about a compensated process of POL in the tested animals and about the relation of the observed changes with body response to the final phase of the space mission and acute gravitational stress during a readaptation to the Earth environments. On the basis of the analysis of similar data from shorter-duration space experiments, the noted changes in the parameters of the system of POL and antioxidant defense are considered a universal response which does not directly depend on duration of the orbital phase of a space mission.

  4. Lipid Peroxide-Derived Short-Chain Carbonyls Mediate Hydrogen Peroxide-Induced and Salt-Induced Programmed Cell Death in Plants1[OPEN

    PubMed Central

    Biswas, Md. Sanaullah; Mano, Jun’ichi

    2015-01-01

    Lipid peroxide-derived toxic carbonyl compounds (oxylipin carbonyls), produced downstream of reactive oxygen species (ROS), were recently revealed to mediate abiotic stress-induced damage of plants. Here, we investigated how oxylipin carbonyls cause cell death. When tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells were exposed to hydrogen peroxide, several species of short-chain oxylipin carbonyls [i.e. 4-hydroxy-(E)-2-nonenal and acrolein] accumulated and the cells underwent programmed cell death (PCD), as judged based on DNA fragmentation, an increase in terminal deoxynucleotidyl transferase dUTP nick end labeling-positive nuclei, and cytoplasm retraction. These oxylipin carbonyls caused PCD in BY-2 cells and roots of tobacco and Arabidopsis (Arabidopsis thaliana). To test the possibility that oxylipin carbonyls mediate an oxidative signal to cause PCD, we performed pharmacological and genetic experiments. Carnosine and hydralazine, having distinct chemistry for scavenging carbonyls, significantly suppressed the increase in oxylipin carbonyls and blocked PCD in BY-2 cells and Arabidopsis roots, but they did not affect the levels of ROS and lipid peroxides. A transgenic tobacco line that overproduces 2-alkenal reductase, an Arabidopsis enzyme to detoxify α,β-unsaturated carbonyls, suffered less PCD in root epidermis after hydrogen peroxide or salt treatment than did the wild type, whereas the ROS level increases due to the stress treatments were not different between the lines. From these results, we conclude that oxylipin carbonyls are involved in the PCD process in oxidatively stressed cells. Our comparison of the ability of distinct carbonyls to induce PCD in BY-2 cells revealed that acrolein and 4-hydroxy-(E)-2-nonenal are the most potent carbonyls. The physiological relevance and possible mechanisms of the carbonyl-induced PCD are discussed. PMID:26025050

  5. Lipid Peroxide-Derived Short-Chain Carbonyls Mediate Hydrogen Peroxide-Induced and Salt-Induced Programmed Cell Death in Plants.

    PubMed

    Biswas, Md Sanaullah; Mano, Jun'ichi

    2015-07-01

    Lipid peroxide-derived toxic carbonyl compounds (oxylipin carbonyls), produced downstream of reactive oxygen species (ROS), were recently revealed to mediate abiotic stress-induced damage of plants. Here, we investigated how oxylipin carbonyls cause cell death. When tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells were exposed to hydrogen peroxide, several species of short-chain oxylipin carbonyls [i.e. 4-hydroxy-(E)-2-nonenal and acrolein] accumulated and the cells underwent programmed cell death (PCD), as judged based on DNA fragmentation, an increase in terminal deoxynucleotidyl transferase dUTP nick end labeling-positive nuclei, and cytoplasm retraction. These oxylipin carbonyls caused PCD in BY-2 cells and roots of tobacco and Arabidopsis (Arabidopsis thaliana). To test the possibility that oxylipin carbonyls mediate an oxidative signal to cause PCD, we performed pharmacological and genetic experiments. Carnosine and hydralazine, having distinct chemistry for scavenging carbonyls, significantly suppressed the increase in oxylipin carbonyls and blocked PCD in BY-2 cells and Arabidopsis roots, but they did not affect the levels of ROS and lipid peroxides. A transgenic tobacco line that overproduces 2-alkenal reductase, an Arabidopsis enzyme to detoxify α,β-unsaturated carbonyls, suffered less PCD in root epidermis after hydrogen peroxide or salt treatment than did the wild type, whereas the ROS level increases due to the stress treatments were not different between the lines. From these results, we conclude that oxylipin carbonyls are involved in the PCD process in oxidatively stressed cells. Our comparison of the ability of distinct carbonyls to induce PCD in BY-2 cells revealed that acrolein and 4-hydroxy-(E)-2-nonenal are the most potent carbonyls. The physiological relevance and possible mechanisms of the carbonyl-induced PCD are discussed.

  6. Membrane Lipid Peroxidation in Copper Alloy-Mediated Contact Killing of Escherichia coli

    PubMed Central

    Hong, Robert; Kang, Tae Y.; Michels, Corinne A.

    2012-01-01

    Copper alloy surfaces are passive antimicrobial sanitizing agents that kill bacteria, fungi, and some viruses. Studies of the mechanism of contact killing in Escherichia coli implicate the membrane as the target, yet the specific component and underlying biochemistry remain unknown. This study explores the hypothesis that nonenzymatic peroxidation of membrane phospholipids is responsible for copper alloy-mediated surface killing. Lipid peroxidation was monitored with the thiobarbituric acid-reactive substances (TBARS) assay. Survival, TBARS levels, and DNA degradation were followed in cells exposed to copper alloy surfaces containing 60 to 99.90% copper or in medium containing CuSO4. In all cases, TBARS levels increased with copper exposure levels. Cells exposed to the highest copper content alloys, C11000 and C24000, exhibited novel characteristics. TBARS increased immediately at a very rapid rate but peaked at about 30 min. This peak was associated with the period of most rapid killing, loss in membrane integrity, and DNA degradation. DNA degradation is not the primary cause of copper-mediated surface killing. Cells exposed to the 60% copper alloy for 60 min had fully intact genomic DNA but no viable cells. In a fabR mutant strain with increased levels of unsaturated fatty acids, sensitivity to copper alloy surface-mediated killing increased, TBARS levels peaked earlier, and genomic DNA degradation occurred sooner than in the isogenic parental strain. Taken together, these results suggest that copper alloy surface-mediated killing of E. coli is triggered by nonenzymatic oxidative damage of membrane phospholipids that ultimately results in the loss of membrane integrity and cell death. PMID:22247141

  7. Ibuprofen prevents oxidant lung injury and in vitro lipid peroxidation by chelating iron.

    PubMed Central

    Kennedy, T P; Rao, N V; Noah, W; Michael, J R; Jafri, M H; Gurtner, G H; Hoidal, J R

    1990-01-01

    Because ibuprofen protects from septic lung injury, we studied the effect of ibuprofen in oxidant lung injury from phosgene. Lungs from rabbits exposed to 2,000 ppm-min phosgene were perfused with Krebs-Henseleit buffer at 50 ml/min for 60 min. Phosgene caused no increase in lung generation of cyclooxygenase metabolites and no elevation in pulmonary arterial pressure, but markedly increased transvascular fluid flux (delta W = 31 +/- 5 phosgene vs. 8 +/- 1 g unexposed, P less than 0.001), permeability to albumin (125I-HSA) lung leak index 0.274 +/- 0.035 phosgene vs. 0.019 +/- 0.001 unexposed, P less than 0.01; 125I-HSA lavage leak index 0.352 +/- 0.073 phosgene vs. 0.008 +/- 0.001 unexposed, P less than 0.01), and lung malondialdehyde (50 +/- 7 phosgene vs. 24 +/- 0.7 mumol/g dry lung unexposed, P less than 0.01). Ibuprofen protected lungs from phosgene (delta W = 10 +/- 2 g; lung leak index 0.095 +/- 0.013; lavage leak index 0.052 +/- 0.013; and malondialdehyde 16 +/- 3 mumol/g dry lung, P less than 0.01). Because iron-treated ibuprofen failed to protect, we studied the effect of ibuprofen in several iron-mediated reactions in vitro. Ibuprofen attenuated generation of .OH by a Fenton reaction and peroxidation of arachidonic acid by FeCl3 and ascorbate. Ibuprofen also formed iron chelates that lack the free coordination site required for iron to be reactive. Thus, ibuprofen may prevent iron-mediated generation of oxidants or iron-mediated lipid peroxidation after phosgene exposure. This suggests a new mechanism for ibuprofen's action. PMID:2173723

  8. Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe(2+) induced lipid peroxidation in rat brain in vitro.

    PubMed

    Oboh, Ganiyu; Akinyemi, Ayodele J; Ademiluyi, Adedayo O

    2012-01-01

    Neurodegerative diseases have been linked to oxidative stress arising from peroxidation of membrane biomolecules and high levels of Fe have been reported to play an important role in neurodegenerative diseases and other brain disorder. Malondialdehyde (MDA) is the end-product of lipid peroxidation and the production of this aldehyde is used as a biomarker to measure the level of oxidative stress in an organism. The present study compares the protective properties of two varieties of ginger [red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe)] on Fe(2+) induced lipid peroxidation in rat brain in vitro. Incubation of the brain tissue homogenate in the presence of Fe caused a significant increase in the malondialdehyde (MDA) contents of the brain. However, the aqueous extract from both varieties of ginger caused a significant decrease in the MDA contents of the brain in a dose-dependent manner. However, the aqueous extract of red ginger had a significantly higher inhibitory effect on both Fe(2+)-induced lipid peroxidation in the rat brain homogenates than that of white ginger. This higher inhibitory effect of red ginger could be attributed to its significantly higher phytochemical content, Fe(2+) chelating ability, OH scavenging ability and reducing power. However, part of the mechanisms through which the extractable phytochemicals in ginger (red and white) protect the brain may be through their antioxidant activity, Fe(2+) chelating and OH scavenging ability. Therefore, oxidative stress in the brain could be potentially managed/prevented by dietary intake of ginger varieties (red ginger and white ginger rhizomes). PMID:20598871

  9. 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake.

    PubMed

    Springer, J E; Azbill, R D; Mark, R J; Begley, J G; Waeg, G; Mattson, M P

    1997-06-01

    Traumatic injury to the spinal cord initiates a host of pathophysiological events that are secondary to the initial insult. One such event is the accumulation of free radicals that damage lipids, proteins, and nucleic acids. A major reactive product formed following lipid peroxidation is the aldehyde, 4-hydroxynonenal (HNE), which cross-links to side chain amino acids and inhibits the function of several key metabolic enzymes. In the present study, we used immunocytochemical and immunoblotting techniques to examine the accumulation of protein-bound HNE, and synaptosomal preparations to study the effects of spinal cord injury and HNE formation on glutamate uptake. Protein-bound HNE increased in content in the damaged spinal cord at early times following injury (1-24 h) and was found to accumulate in myelinated fibers distant to the site of injury. Immunoblots revealed that protein-bound HNE levels increased dramatically over the same postinjury interval. Glutamate uptake in synaptosomal preparations from injured spinal cords was decreased by 65% at 24 h following injury. Treatment of control spinal cord synaptosomes with HNE was found to decrease significantly, in a dose-dependent fashion, glutamate uptake, an effect that was mimicked by inducers of lipid peroxidation. Taken together, these findings demonstrate that the lipid peroxidation product HNE rapidly accumulates in the spinal cord following injury and that a major consequence of HNE accumulation is a decrease in glutamate uptake, which may potentiate neuronal cell dysfunction and death through excitotoxic mechanisms. PMID:9166741

  10. Ethanolic extract of Nigella sativa protects Fe(II) induced lipid peroxidation in rat's brain, kidney and liver homogenates.

    PubMed

    Hassan, Waseem; Noreen, Hamsa; Khalil, ShafqatUllah; Hussain, Arshad; Rehman, Shakilla; Sajjad, Shagufta; Rahman, Ataur; da Rocha, Joao B T

    2016-01-01

    The study describes the effect of ethanolic extract of Nigella sativa against Fe(II) induced lipid peroxidation. Basal and Fe(II) induced thiobarbituric acid reactive species (TBARS) production was significantly inhibited by the ethanolic extract of Nigella sativa at 25-200 μg/ml. Our data revealed that the extract has high DPPH radical scavenging activity at highest tested concentrations. The extract significantly chelated Fe(II) and scavenged hydroxyl (OH) radical at 25-200μg/ml concentration. The nutritional analysis was performed and carbohydrate, fats, fiber, protein, moisture and ash content were measured in the studied extract. The phytochemical analysis confirmed the presence of alkaloid, carbohydrate & sugar, glycosides, phenolic compounds, flavonoids, protein and amino acid, phytosterols, tannins, gum and mucilage. The extract also showed significant antimicrobial activities against 10 bacterial strains i.e. Salmonella typhi, Bacillus subtilis, Bacillus cereus, Klebsiella pneumonia, Escheria coli, Xanthomonas, Salmonella heidelberg, Staphylococcus aureus, Clostridium and Escheria coli (human) and 5 fungal strains i.e. Aspergillus niger, Entomola, Aspergillus flavus, Alternaria alternata and Penicillium. This study confirms the potential antioxidant and antimicrobial activities of ethanolic extract of Nigella sativa which can be considered not only as a diet supplement but can be used against a variety of free radical induced damage diseases.

  11. Ethanolic extract of Nigella sativa protects Fe(II) induced lipid peroxidation in rat's brain, kidney and liver homogenates.

    PubMed

    Hassan, Waseem; Noreen, Hamsa; Khalil, ShafqatUllah; Hussain, Arshad; Rehman, Shakilla; Sajjad, Shagufta; Rahman, Ataur; da Rocha, Joao B T

    2016-01-01

    The study describes the effect of ethanolic extract of Nigella sativa against Fe(II) induced lipid peroxidation. Basal and Fe(II) induced thiobarbituric acid reactive species (TBARS) production was significantly inhibited by the ethanolic extract of Nigella sativa at 25-200 μg/ml. Our data revealed that the extract has high DPPH radical scavenging activity at highest tested concentrations. The extract significantly chelated Fe(II) and scavenged hydroxyl (OH) radical at 25-200μg/ml concentration. The nutritional analysis was performed and carbohydrate, fats, fiber, protein, moisture and ash content were measured in the studied extract. The phytochemical analysis confirmed the presence of alkaloid, carbohydrate & sugar, glycosides, phenolic compounds, flavonoids, protein and amino acid, phytosterols, tannins, gum and mucilage. The extract also showed significant antimicrobial activities against 10 bacterial strains i.e. Salmonella typhi, Bacillus subtilis, Bacillus cereus, Klebsiella pneumonia, Escheria coli, Xanthomonas, Salmonella heidelberg, Staphylococcus aureus, Clostridium and Escheria coli (human) and 5 fungal strains i.e. Aspergillus niger, Entomola, Aspergillus flavus, Alternaria alternata and Penicillium. This study confirms the potential antioxidant and antimicrobial activities of ethanolic extract of Nigella sativa which can be considered not only as a diet supplement but can be used against a variety of free radical induced damage diseases. PMID:26826815

  12. Effect of sub-chronic selenium toxicosis on lipid peroxidation, glutathione redox cycle and antioxidant enzymes in calves.

    PubMed

    Kaur, Rajdeep; Sharma, Sucheta; Rampal, Satyavan

    2003-08-01

    The present investigation reports the effect of sodium selenite-induced sub-chronic toxicity in crossbred cow calves on various antioxidant enzymes. Sodium selenite (0.25 mg/kg for 16 w) resulted in characteristic signs of sub-chronic selenosis, ie alopecia, cracking and enlargement of hooves, interdigital lesions, ring formation on the coronet region, and gangrene at tip of the tail. The sodium selenite resulted in significant rise of blood selenium levels and concurrent increase in erythrocytic glutathione peroxidase (GPx) activity. Blood selenium levels and GPx activity had a high positive correlation (r = 0.97). Blood glutathione levels were lowered from 211.1 +/- 13.4 to 95.56 +/- 11.8 microg/ml. Selenosis caused oxidative stress as evidenced by a 3-fold increase in lipid peroxidation: activities of glutathione-S-transferase, glutathione reductase, superoxide dismutase and catalase were significantly increased. These findings support the hypothesis that the pro-oxidant attributes of selenium play important roles in its toxicity. PMID:12882488

  13. Effect of dietary creatine monohydrate supplementation on muscle lipid peroxidation and antioxidant capacity of transported broilers in summer.

    PubMed

    Wang, X F; Zhu, X D; Li, Y J; Liu, Y; Li, J L; Gao, F; Zhou, G H; Zhang, L

    2015-11-01

    This experiment was to evaluate the effect of dietary supplementation with creatine monohydrate (CMH) during the finishing period on the muscle lipid peroxidation and antioxidant capacity of broilers that experienced transport stress in summer. A total of 320 male Arbor Acres broilers (28 d in age) were randomly allotted to 3 dietary treatments including a basal control diet without additional CMH (160 birds), or with 600 (80 birds) or 1,200 mg/kg (80 birds) CMH for 14 d. On the morning of d 42, after an 8-h fast, the birds fed the basal diets were divided into 2 equal groups, and all birds in the 4 groups of 80 birds were transported according to the following protocols: 1) a 0.75-h transport of birds on basal diets (as a lower-stress control group), 2) a 3-h transport of birds on basal diets, 3) a 3-h transport of birds on 600 or 4) 1,200 mg/kg CMH supplementation diets. The results showed that the 3-h transport decreased the concentration of creatine (Cr) in both the pectoralis major (PM) and the tibialis anterior (TA) muscles, increased the concentration of phosphocreatine (PCr) and PCr/Cr ratio in PM muscle, and elevated the concentrations of thiobarbituric acid-reactive substances and the activities of total superoxide dismutase and glutathione peroxidase in both the PM and TA muscles of birds (P < 0.05). In addition, transport also upregulated mRNA expression of avian uncoupling protein and heat shock protein 70 in both the PM and TA muscles, as well as avian peroxisome proliferator-activated receptor γ coactivator-1α in the TA muscle (P < 0.05). Dietary supplementation with 1,200 mg/kg CMH increased the concentrations of Cr and PCr in PM muscle, and Cr in TA muscle than those in the 3-h transport group (P < 0.05). However, contrary to our hypothesis, dietary CMH did not alter the measured parameters in relation to muscle lipid peroxidation and antioxidant capacity affected by 3-h transport (P > 0.05). These results indicate that dietary CMH

  14. Effect of dietary creatine monohydrate supplementation on muscle lipid peroxidation and antioxidant capacity of transported broilers in summer.

    PubMed

    Wang, X F; Zhu, X D; Li, Y J; Liu, Y; Li, J L; Gao, F; Zhou, G H; Zhang, L

    2015-11-01

    This experiment was to evaluate the effect of dietary supplementation with creatine monohydrate (CMH) during the finishing period on the muscle lipid peroxidation and antioxidant capacity of broilers that experienced transport stress in summer. A total of 320 male Arbor Acres broilers (28 d in age) were randomly allotted to 3 dietary treatments including a basal control diet without additional CMH (160 birds), or with 600 (80 birds) or 1,200 mg/kg (80 birds) CMH for 14 d. On the morning of d 42, after an 8-h fast, the birds fed the basal diets were divided into 2 equal groups, and all birds in the 4 groups of 80 birds were transported according to the following protocols: 1) a 0.75-h transport of birds on basal diets (as a lower-stress control group), 2) a 3-h transport of birds on basal diets, 3) a 3-h transport of birds on 600 or 4) 1,200 mg/kg CMH supplementation diets. The results showed that the 3-h transport decreased the concentration of creatine (Cr) in both the pectoralis major (PM) and the tibialis anterior (TA) muscles, increased the concentration of phosphocreatine (PCr) and PCr/Cr ratio in PM muscle, and elevated the concentrations of thiobarbituric acid-reactive substances and the activities of total superoxide dismutase and glutathione peroxidase in both the PM and TA muscles of birds (P < 0.05). In addition, transport also upregulated mRNA expression of avian uncoupling protein and heat shock protein 70 in both the PM and TA muscles, as well as avian peroxisome proliferator-activated receptor γ coactivator-1α in the TA muscle (P < 0.05). Dietary supplementation with 1,200 mg/kg CMH increased the concentrations of Cr and PCr in PM muscle, and Cr in TA muscle than those in the 3-h transport group (P < 0.05). However, contrary to our hypothesis, dietary CMH did not alter the measured parameters in relation to muscle lipid peroxidation and antioxidant capacity affected by 3-h transport (P > 0.05). These results indicate that dietary CMH

  15. Photoacoustic trace gas detection of ethene released by UV-induced lipid peroxidation in humans

    NASA Astrophysics Data System (ADS)

    Cristescu, Simona M.; Berkelmans, Rik; te Lintel Hekkert, Sacco; Timmerman, Brenda H.; Parker, David H.; Harren, Frans J. M.

    2000-11-01

    A sensitive CO2 laser-based photoacoustic (PA) detector has been used to perform non-invasive and on-line measurements of ethene (C2H4) production from exhaled air and directly emitted from the skin. Ethene was used as indicator for free- radicals induced lipid peroxidation in the skin of human subjects exposed to ultraviolet (UV) radiation from a solarium. Ethene from the exhaled air was analyzed for a group of 21 male subjects at rest. During 15 minutes of UV exposure, the average ethene emission was 17.2 pmol/kg/min (SD 7.3), while the pre-UV exposure levels were 1.4 pmol/kg/min (SD 0.38). Different types of sun protection creams were tested by means of ethene release in exhaled air. The influence of UV radiation intensity and of exposure time (10 and 15 minutes, respectively) on the ethene emission from the skin has been studied for a second group of 12 subjects. Comparison between measurements of exhaled air and directly on the skin is presented.

  16. Effect of Quercetin on lipid peroxidation and changes in lung morphology in experimental influenza virus infection.

    PubMed

    Kumar, Pankaj; Sharma, Sonal; Khanna, MadhU; Raj, Hanumantharao Guru

    2003-06-01

    Influenza virus infection, induced experimentally in mice, was associated with marked changes in lung morphology viz. epithelial damage with focal areas of reactive papillary hyperplasia, infiltration of leukocytes and development of oxidative stress, as evidenced by increased superoxide radical production and lipid peroxidation (LPO) products by alveolar macrophages. These effects were observed on the 5th day after virus instillation. The levels of superoxide and LPO were measured spectrophotometrically by the nitroblue tetrazolium (NBT) assay and thiobarbituric acid reactive species (TBARS) assay, respectively. The former increased by 1.5-2 fold and the latter was raised by 85% when compared with normal control. Supplementation of intranasal viral instillation with the anti-oxidant, Quercetin, given orally, resulted in a significant decrease in the levels of both superoxide radicals and LPO products. There was also a significant decrease in the number of infiltrating cells. A mild to moderate protective effect was observed in lung morphology. Thus, Quercetin may be useful as a drug in reducing the oxidative stress induced by influenza virus infection in the lung, and protect it from the toxic effects of the free radicals.

  17. Tomato powder in laying hen diets: effects on concentrations of yolk carotenoids and lipid peroxidation.

    PubMed

    Akdemir, F; Orhan, C; Sahin, N; Sahin, K; Hayirli, A

    2012-01-01

    1. The effects of tomato powder supplementation on performance, egg quality, serum and egg yolk carotenoids, vitamins and malondialdehyde (MDA) concentrations in were investigated in laying hens in mid-lay. 2. A total of 90 laying hens, 49 weeks old, were divided into 3 groups consisting of 6 replicate cages, 5 birds per cage. Birds were randomly fed on one of three diets: basal diet and basal diet added with 5 or 10 g tomato powder per kg diet. 3. As tomato powder concentration increased, there were linear increases in feed intake, egg production, egg weight and yolk colour and a linear decrease in feed conversion. Shell weight, shell thickness and Haugh unit remained unchanged in response to dietary treatments. 4. Concentrations of serum and egg yolk lycopene, β-carotene, lutein and vitamin A increased for both diets including tomato powder, whereas MDA decreased linearly with increasing supplemental tomato powder concentration. 5. Tomato powder supplementation increased egg production persistency and increased carotenoids and vitamin A contents in egg yolk, accompanied by reduced yolk lipid peroxidation. PMID:23281763

  18. Magnesium can protect against vanadium-induced lipid peroxidation in the hepatic tissue.

    PubMed

    Scibior, Agnieszka; Gołębiowska, Dorota; Niedźwiecka, Irmina

    2013-01-01

    The protective effect of magnesium as magnesium sulfate (MS) on sodium-metavanadate- (SMV-) induced lipid peroxidation (LPO) under in vivo and in vitro conditions was studied. The 18-week SMV intoxication (Group II, 0.125 V(end)/mL) enhanced spontaneous malondialdehyde (MDA) generation in rat liver, compared with the control (Group I) and MS-supplemented animals (Group III, 0.06 Mg(end)/mL). Coadministration of SMV with MS (Group IV, SMV-MS) caused a return of the MDA level to the control value range. The effect seems to result from the Mg(end)-independent action and its antagonistic interaction with V(end). The in vitro treatment of liver supernatants (LS) obtained from all the tested animals groups with selected exogenous concentrations of Fe(exg) or V(exg) exhibited enhanced MDA production, compared with spontaneously formed MDA. It also showed Mg(exg)-stimulating effect on LPO (LS I, Group I) and revealed that the changes in the MDA generation in LS IV (Group IV) might have resulted from the synergistic interactions of V(end) with Fe(exg) and V(exg) and from the antagonistic interactions of Mg(end) with Fe(exg) and V(exg). The findings allow a suggestion that adequate Mg intake for a specific period in the conditions of SMV exposure may prevent V-induced LPO in the liver. PMID:23766862

  19. Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats.

    PubMed

    Bueno-Nava, Antonio; Gonzalez-Pina, Rigoberto; Alfaro-Rodriguez, Alfonso; Nekrassov-Protasova, Vladimir; Durand-Rivera, Alfredo; Montes, Sergio; Ayala-Guerrero, Fructuoso

    2010-10-01

    The sensorimotor cortex and the cerebellum are interconnected by the corticopontocerebellar (CPC) pathway and by neuronal groups such as the serotonergic system. Our aims were to determine the levels of cerebellar serotonin (5-HT) and lipid peroxidation (LP) after cortical iron injection and to analyze the motor function produced by the injury. Rats were divided into the following three groups: control, injured and recovering. Motor function was evaluated using the beam-walking test as an assessment of overall locomotor function and the footprint test as an assessment of gait. We also determined the levels of 5-HT and LP two and twenty days post-lesion. We found an increase in cerebellar 5-HT and a concomitant increase in LP in the pons and cerebellum of injured rats, which correlated with their motor deficits. Recovering rats showed normal 5-HT and LP levels. The increase of 5-HT in injured rats could be a result of serotonergic axonal injury after cortical iron injection. The LP and motor deficits could be due to impairments in neuronal connectivity affecting the corticospinal and CPC tracts and dysmetric stride could be indicative of an ataxic gait that involves the cerebellum. PMID:20535555

  20. Succinic acid monoethyl ester, a novel insulinotropic agent: effect on lipid composition and lipid peroxidation in streptozotocin-nicotin-amide induced type 2 diabetic rats.

    PubMed

    Saravanan, Ramalingam; Pari, Leelavinothan

    2007-02-01

    Succinic acid monoethyl ester (EMS) is recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. Oxidative stress has been suggested to be a contributory factor in the development and complications of diabetes. In the present study the effect of EMS and Metformin on plasma glucose, insulin, serum and tissue lipid profile, lipoproteins and lipid peroxidation in streptozotocin-nicotinamide induced type 2 diabetic model was investigated. The carboxylic nutrient EMS was administered intraperitonially (8 micromol/g body weight) to streptozotocin diabetic rats for 30 days. The levels of thiobarbituric acid reactive substances (TBARS) and hydroperoxides in liver and kidney and serum and tissue lipids [cholesterol, triglycerides, phospholipids and free fatty acids] and very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C), were significantly increased in diabetic rats, whereas the levels of high-density lipoprotein-cholesterol (HDL-C) and antiatherogenic index (AAI) (ratio of HDL to total cholesterol) were significantly decreased. The effect of EMS was compared with metformin, a reference drug. Treatment with EMS and metformin resulted in a significant reduction of plasma glucose with increase plasma insulin in diabetic rats. EMS also resulted in a significant decrease in serum and tissue lipids and lipid peroxidation products. These biochemical observations were supplemented by histopathological examination of liver and kidney section. Our results suggest the possible antihyperlipidemic and antiperoxidative effect of EMS apart from its antidiabetic effect. PMID:17006620

  1. Protective Effect of Pulp Oil Extracted from Canarium odontophyllum Miq. Fruit on Blood Lipids, Lipid Peroxidation, and Antioxidant Status in Healthy Rabbits

    PubMed Central

    Shakirin, Faridah Hanim; Azlan, Azrina; Ismail, Amin; Amom, Zulkhairi; Cheng Yuon, Lau

    2012-01-01

    The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO) on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids). The pulp oil is rich in polyphenols. Male New Zealand white (NZW) rabbits were fed for 4 weeks on a normal diet containing pulp (NP) or kernel oil (NK) of CO while corn oil was used as control (NC). Total cholesterol (TC), HDL-C, LDL-c and triglycerides (TG) levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise), thiobarbiturate reactive substances (TBARSs), and plasma total antioxidant status (TAS) were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels) with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil. PMID:22685623

  2. Radiation-induced peroxidation of lipid dissolved in organic solvent and its inhibition by alpha-tocopherol and cepharanthine

    SciTech Connect

    Shiraishi, N.; Joja, I.; Kuroda, M.; Fujishima, M.; Miyake, M.; Aono, K.

    1985-01-01

    Effects of cepharanthine and alpha-tocopherol on radiation-induced peroxidation of lipids dissolved in methanol(MeOH)-chloroform (CHCl3)-H2O(v/v, 2/1/0.8) were examined. alpha-Tocopherol strongly inhibited radiation-induced peroxidation of lipids dissolved in MeOH-CHCl3-H2O. However, cepharanthine exhibited a weak inhibitory action in this system. The change in the absorption spectrum of alpha-tocopherol and cepharanthine by X-irradiation was measured. The reagents were dissolved in 95% EtOH acidified with 20 mM HCl and in MeOH-CHCl3-H2O. alpha-Tocopherol exhibited the change in its absorption spectrum in both systems, and seemed to be oxidized at a high rate by free radicals. However, cepharanthine slightly exhibited the change in its spectrum in MeOH-CHCl3-H2O, but not in acidified EtOH.

  3. Lipid peroxidation status, somatic mutations and micronuclei in peripheral lymphocytes: a case observation on a possible interrelationship.

    PubMed

    Mayer, C; Schmezer, P; Freese, R; Mutanen, M; Hietanen, E; Obe, G; Basu, S; Bartsch, H

    2000-05-01

    A controlled dietary study was conducted in healthy female volunteers and reported elsewhere [1]. In a subset of samples four different biomarkers were analyzed: plasma malondialdehyde (MDA) levels and urinary 8-isoprostaglandin-F(2alpha) were measured as markers for lipid peroxidation. The frequency of hprt (hypoxanthine guanine phosphoribosyl transferase) mutants and micronuclei in peripheral blood lymphocytes were analyzed as indicators of genotoxic effects. One of the ten individuals showed extremely high background levels in all of the four endpoints measured. This case observation raises the possibility that life style factors and dietary habits affect the level of DNA reactive lipid peroxidation products, which in turn increase mutagenic and cytogenetic effects. A possible association between these biomarkers, particularly in relation to dietary fat intake and antioxidant status, should now be studied in a larger trial.

  4. Enhancing activated-peroxide formulations for porous materials :

    SciTech Connect

    Krauter, Paula; Tucker, Mark D.; Tezak, Matthew S.; Boucher, Raymond

    2012-12-01

    During an urban wide-area incident involving the release of a biological warfare agent, the recovery/restoration effort will require extensive resources and will tax the current capabilities of the government and private contractors. In fact, resources may be so limited that decontamination by facility owners/occupants may become necessary and a simple decontamination process and material should be available for this use. One potential process for use by facility owners/occupants would be a liquid sporicidal decontaminant, such as pHamended bleach or activated-peroxide, and simple application devices. While pH-amended bleach is currently the recommended low-tech decontamination solution, a less corrosive and toxic decontaminant is desirable. The objective of this project is to provide an operational assessment of an alternative to chlorine bleach for low-tech decontamination applications activated hydrogen peroxide. This report provides the methods and results for activatedperoxide evaluation experiments. The results suggest that the efficacy of an activated-peroxide decontaminant is similar to pH-amended bleach on many common materials.

  5. Crucial Roles of Systemic and Tissue Lipid Peroxidation Levels and Anti-Oxidant Defences Following Contrast Agent Application

    PubMed Central

    Sitar, Gungor; Kucuk, Mehmet; Erinc Sitar, Mustafa; Yasar, Ozgur; Aydin, Seval; Yanar, Karolin; Cakatay, Ufuk; Buyukpınarbasili, Nur

    2016-01-01

    Background One of the most important side effects of contrast pharmaceutical agents, which are used very common in routine radiology practice, is contrast induced nephropathy. Even ischemia, oxidative stress and osmolality related cytotoxic effects are considered, the molecular mechanisms underlying this pathology have not been identified completely yet. Objectives The aim of the current study was to reveal the role of oxidative stress and antioxidant enzymatic defence mechanisms in the aetiopathogenesis of contrast-induced nephropathy. We also studied possible alleviating effects of N-acetylcysteine (NAC), a potent antioxidant, to obtain extra information regarding the molecular mechanisms underlying this pathology. Materials and Methods This is an clinical-experimental study, This study was conducted of Istanbul/Turkey between September 15, 2012 and April 15, 2013. Three groups of male rats were randomly set up as a control group (C), a 100 mg/kg intraperitoneal NAC + 7 mL/kg contrast agent group (N + CIN) and a 7 mL/kg intraperitoneal contrast agent group (CIN). They were placed in individual metabolic cages 48 hours after agent administration to obtain 24-hour urine samples. Renal function tests (albumin, urea, creatinine, total protein) were conducted, oxidative stress parameters (Cu, Zn superoxide dismutase activity - Cu, Zn-SOD; advanced oxidation protein products - AOPP; protein carbonyls - PCO; total thiol groups - T-SH; and lipid hydroperoxides -LHP) were measured and tissues were analysed histopathologically. Results Compared with the control group, groups CIN and N + CIN had significantly higher urea and LHP levels (P < 0.05 and P < 0.001, respectively) and significantly lower Cu, Zn-SOD activity and creatinine clearance (P < 0.05). There was no statistically significant difference between the groups in PCO or AOPP levels despite differences in descriptive statistics. Conclusions Contrast-agent-induced nephropathic changes are more closely related to

  6. Crucial Roles of Systemic and Tissue Lipid Peroxidation Levels and Anti-Oxidant Defences Following Contrast Agent Application

    PubMed Central

    Sitar, Gungor; Kucuk, Mehmet; Erinc Sitar, Mustafa; Yasar, Ozgur; Aydin, Seval; Yanar, Karolin; Cakatay, Ufuk; Buyukpınarbasili, Nur

    2016-01-01

    Background One of the most important side effects of contrast pharmaceutical agents, which are used very common in routine radiology practice, is contrast induced nephropathy. Even ischemia, oxidative stress and osmolality related cytotoxic effects are considered, the molecular mechanisms underlying this pathology have not been identified completely yet. Objectives The aim of the current study was to reveal the role of oxidative stress and antioxidant enzymatic defence mechanisms in the aetiopathogenesis of contrast-induced nephropathy. We also studied possible alleviating effects of N-acetylcysteine (NAC), a potent antioxidant, to obtain extra information regarding the molecular mechanisms underlying this pathology. Materials and Methods This is an clinical-experimental study, This study was conducted of Istanbul/Turkey between September 15, 2012 and April 15, 2013. Three groups of male rats were randomly set up as a control group (C), a 100 mg/kg intraperitoneal NAC + 7 mL/kg contrast agent group (N + CIN) and a 7 mL/kg intraperitoneal contrast agent group (CIN). They were placed in individual metabolic cages 48 hours after agent administration to obtain 24-hour urine samples. Renal function tests (albumin, urea, creatinine, total protein) were conducted, oxidative stress parameters (Cu, Zn superoxide dismutase activity - Cu, Zn-SOD; advanced oxidation protein products - AOPP; protein carbonyls - PCO; total thiol groups - T-SH; and lipid hydroperoxides -LHP) were measured and tissues were analysed histopathologically. Results Compared with the control group, groups CIN and N + CIN had significantly higher urea and LHP levels (P < 0.05 and P < 0.001, respectively) and significantly lower Cu, Zn-SOD activity and creatinine clearance (P < 0.05). There was no statistically significant difference between the groups in PCO or AOPP levels despite differences in descriptive statistics. Conclusions Contrast-agent-induced nephropathic changes are more closely related to

  7. Thermal Oxidation Induces Lipid Peroxidation and Changes in the Physicochemical Properties and β -Carotene Content of Arachis Oil.

    PubMed

    Falade, Ayodeji Osmund; Oboh, Ganiyu

    2015-01-01

    This study sought to investigate the effect of thermal oxidation on the physicochemical properties, malondialdehyde, and β-carotene content of arachis oil. Pure arachis oil was heated for 20 mins with a corresponding temperature of 220°C. Thereafter, changes in the physicochemical properties (acid, iodine, and peroxide values) of the oil samples were determined. Subsequently, the level of lipid peroxidation was determined using change in malondialdehyde content. Then, the total carotenoid and β-carotene contents were evaluated using spectrophotometric method and high performance liquid chromatography, respectively. The results of the study revealed a significant increase (P < 0.05) in the acid and peroxide values and malondialdehyde concentration of the heated oil when compared with the fresh arachis oil. In contrast, a significant decrease (P < 0.05) was observed in the iodine value, total carotenoid, 13-cis-, 15-cis-, trans-, and 9-cis-β-carotene, and total β-carotene content of the heated oil. Hence, thermal oxidation induced lipid peroxidation and caused changes in the physicochemical properties and carotenoid contents of arachis oil, thereby reducing its nutritive value and health benefit. Therefore, cooking and frying with arachis oil for a long period might not be appropriate as this might lead to a loss of significant amount of the insignificant β-carotene in arachis oil. PMID:26904665

  8. Thermal Oxidation Induces Lipid Peroxidation and Changes in the Physicochemical Properties and β-Carotene Content of Arachis Oil

    PubMed Central

    Falade, Ayodeji Osmund

    2015-01-01

    This study sought to investigate the effect of thermal oxidation on the physicochemical properties, malondialdehyde, and β-carotene content of arachis oil. Pure arachis oil was heated for 20 mins with a corresponding temperature of 220°C. Thereafter, changes in the physicochemical properties (acid, iodine, and peroxide values) of the oil samples were determined. Subsequently, the level of lipid peroxidation was determined using change in malondialdehyde content. Then, the total carotenoid and β-carotene contents were evaluated using spectrophotometric method and high performance liquid chromatography, respectively. The results of the study revealed a significant increase (P < 0.05) in the acid and peroxide values and malondialdehyde concentration of the heated oil when compared with the fresh arachis oil. In contrast, a significant decrease (P < 0.05) was observed in the iodine value, total carotenoid, 13-cis-, 15-cis-, trans-, and 9-cis-β-carotene, and total β-carotene content of the heated oil. Hence, thermal oxidation induced lipid peroxidation and caused changes in the physicochemical properties and carotenoid contents of arachis oil, thereby reducing its nutritive value and health benefit. Therefore, cooking and frying with arachis oil for a long period might not be appropriate as this might lead to a loss of significant amount of the insignificant β-carotene in arachis oil. PMID:26904665

  9. Effect of butachlor on antioxidant enzyme status and lipid peroxidation in fresh water African catfish, (Clarias gariepinus).

    PubMed

    Farombi, E O; Ajimoko, Y R; Adelowo, O A

    2008-12-01

    The present study was undertaken to evaluate the influence of butachlor, a widely used herbicide, on antioxidant enzyme system and lipid peroxidation formation in African cat fish (Clarias gariepinus). Fish were exposed to sub-lethal concentrations of butachlor 1, 2, 2.5 ppm and sacrificed 24hrs after treatment. A significant increase in malondialdehyde formation was observed in the liver, kidney, gills and heart of the fish following exposure to different concentrations of butachlor. Superoxide dismutase and catalase activities increased in the liver and kidney but decreased in the gills and heart in a concentration-dependent pattern. Glutathione level and glutathione-Stransferase activities increased (P<0.05) in the liver but decreased in the kidneys, gills and heart when fishes were exposed to the three concentrations of butachlor. The results suggest that butachlor induced oxidative stress in the various tissues of the fish particularly in the kidney and as such the organ may be subjected to severe oxidative toxicity due to depressed glutathione detoxification system.

  10. African Nutmeg (Monodora Myristica) Lowers Cholesterol and Modulates Lipid Peroxidation in Experimentally Induced Hypercholesterolemic Male Wistar Rats

    PubMed Central

    Onyenibe, Nwozo Sarah; Fowokemi, Kasumu Titilayo; Emmanuel, Oyinloye Babatunji

    2015-01-01

    To evaluate the cholesterol lowering potential and protective ability of aqueous extract of Monodora myristica experimental hypercholesterolemic rats, a short-term study was conducted. Hypercholesterolemia was induced by administering cholesterol orally at a dose of 40 mg/kg/0.3 ml. Plant extracts 100 or 200 mg/kg body weight and Questran 0.26 g/kg were administered five times a week for eight weeks for amelioration. Hypolipidemic effects were evaluated by measuring total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) in the serum, while the protective ability was measured by the extent of