Science.gov

Sample records for activity membrane potential

  1. Versatile Membrane Deformation Potential of Activated Pacsin

    PubMed Central

    Byrnes, Laura J.; Sondermann, Holger

    2012-01-01

    Endocytosis is a fundamental process in signaling and membrane trafficking. The formation of vesicles at the plasma membrane is mediated by the G protein dynamin that catalyzes the final fission step, the actin cytoskeleton, and proteins that sense or induce membrane curvature. One such protein, the F-BAR domain-containing protein pacsin, contributes to this process and has been shown to induce a spectrum of membrane morphologies, including tubules and tube constrictions in vitro. Full-length pacsin isoform 1 (pacsin-1) has reduced activity compared to its isolated F-BAR domain, implicating an inhibitory role for its C-terminal Src homology 3 (SH3) domain. Here we show that the autoinhibitory, intramolecular interactions in pacsin-1 can be released upon binding to the entire proline-rich domain (PRD) of dynamin-1, resulting in potent membrane deformation activity that is distinct from the isolated F-BAR domain. Most strikingly, we observe the generation of small, homogenous vesicles with the activated protein complex under certain experimental conditions. In addition, liposomes prepared with different methods yield distinct membrane deformation morphologies of BAR domain proteins and apparent activation barriers to pacsin-1's activity. Theoretical free energy calculations suggest bimodality of the protein-membrane system as a possible source for the different outcomes, which could account for the coexistence of energetically equivalent membrane structures induced by BAR domain-containing proteins in vitro. Taken together, our results suggest a versatile role for pacsin-1 in sculpting cellular membranes that is likely dependent both on protein structure and membrane properties. PMID:23236520

  2. Modification of trout sperm membranes associated with activation and cryopreservation. Implications for fertilizing potential.

    PubMed

    Purdy, P H; Barbosa, E A; Praamsma, C J; Schisler, G J

    2016-08-01

    We investigated the effects of two trout sperm activation solutions on sperm physiology and membrane organization prior to and following cryopreservation using flow cytometry and investigated their impact on in vitro fertility. Overall, frozen-thawed samples had greater phospholipid disorder when compared with fresh samples (high plasma membrane fluidity; P < 0.0001) and sperm activated with water also had high plasma membrane fluidity when compared to sperm activated with Lahnsteiner solution (LAS; P < 0.0001). Following cryopreservation water activated samples had membranes with greater membrane protein disorganization compared with LAS but the membrane protein organization of LAS samples was similar to samples prior to freezing (P < 0.0001). Post-thaw water activation resulted in significant increases in intracellular calcium compared to LAS (P < 0.002). In vitro fertility trials with frozen-thawed milt and LAS activation resulted in greater fertility (45%) compared to water activated samples (10%; P < 0.0001). Higher fertility rates correlated with lower intracellular calcium with water (R(2) = -0.9; P = 0.01) and LAS (R(2) = -0.85; P = 0.03) activation. Greater plasma membrane phospholipid (R(2) = -0.89; P = 0.02) and protein (R(2) = -0.84; P = 0.04) disorder correlated with lower water activation fertility rates. These membrane organization characteristics only approached significance with LAS activation in vitro fertility (P = 0.09, P = 0.06, respectively). Potentially the understanding of sperm membrane reorganizations and the physiology associated with activation following cryopreservation may enable users in a repository or hatchery setting to estimate the fertilizing potential of a sample and determine its value. PMID:27234987

  3. Requirement for membrane potential in active transport of glutamine by Escherichia coli.

    PubMed Central

    Plate, C A

    1979-01-01

    The effect of reducing the membrane potential on glutamine transport in cells of Escherichia coli has been investigated. Addition of valinomycin to tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid-treated E. coli cells in the presence of 20 mM exogenous potassium reduced the membrane potential, as measured by the uptake of the lipophilic cation triphenylmethylphosphonium, and caused a complete inhibition of glutamine transport. Valinomycin plus potassium also caused a rapid decrease in the intracellular levels of ATP of normal E. coli cells, but had little if any effect on the ATP levels of two mutants of E. coli carrying lesions in the energy-transducing ATP complex (unc mutants). Yet both the membrane potential and the capacity to transport glutamine were depressed in the unc mutants by valinomycin and potassium. These findings are consistent with the hypothesis that both ATP and a membrane potential are essential to the active transport of glutamine by E. coli cells. PMID:153897

  4. Sweetness-induced activation of membrane dipole potential in STC-1 taste cells.

    PubMed

    Chen, Li-Chun; Xie, Ning-Ning; Deng, Shao-Ping

    2016-12-01

    The biological functions of cell membranes strongly influence the binding and transport of molecular species. We developed STC-1 cell line stably expressing the sweet taste receptor (T1R2/T1R3), and explored the possible correlation between sweeteners and membrane dipole potential of STC-1 cells. In this study, sweetener-induced dipole potential activation was elucidated using a fluorescence-based measurement technique, by monitoring the voltage sensitive probe Di-8-ANEPPS using a dual wavelength ratiometric approach. It indicated that the presence of sweeteners resulted in cell membrane dipole potential change, and interaction of artificial sweeteners with taste cells resulted in a greater reduction in potential compared with natural sweeteners. Our work presents a newly developed approach using a fluorescence-based measurement technique to study sweetener-induced dipole potential activation of STC-1 cells. This new approach could be used as a complementary tool to study the function of sweet taste receptors or other GPCRs and helps to understand the basis sweetness mechanism. PMID:27374594

  5. Interactions of membrane potential and cations in regulation of ciliary activity in Paramecium.

    PubMed

    Machemer, H

    1976-10-01

    Ciliary activity in Paramecium was investigated in different external solutions using techniques of voltage clamp and high frequency cinematography. An increase in the external concentration of K, Ca or Mg ions decreased the resting potential. It had no effect on ciliary activity. When the membrane potential was fixed, an increase in external Ca or Mg and, to a lesser extent, an increase in K concentration, raised the frequency of normal beating or decreased the frequency of reversed beating of the cilia. Similar effects resulted from membrane hyperpolarization with constant ionic conditions. Increase in concentration of Ca, but not of Mg or K, enhanced hyperpolarization-induced augmentation of ciliary frequency. Increase in Ca concentration also specifically augmented the delayed increase in inward current during rapid hyperpolarizing clamp. The results support the view that [Ca]i regulates the frequency and direction of ciliary beating. It is suggested that the insensitivity of the ciliary motor system to elevations of the external concentrations of ions results from compensation of their effects on [Ca]i. Depolarization itself appears to increase [Ca]i while elevation of the external ion concentrations at a fixed membrane potential appears to decrease [Ca]i. PMID:1003088

  6. Membrane Potential Dynamics of Spontaneous and Visually Evoked Gamma Activity in V1 of Awake Mice

    PubMed Central

    Perrenoud, Quentin; Pennartz, Cyriel M. A.; Gentet, Luc J.

    2016-01-01

    Cortical gamma activity (30–80 Hz) is believed to play important functions in neural computation and arises from the interplay of parvalbumin-expressing interneurons (PV) and pyramidal cells (PYRs). However, the subthreshold dynamics underlying its emergence in the cortex of awake animals remain unclear. Here, we characterized the intracellular dynamics of PVs and PYRs during spontaneous and visually evoked gamma activity in layers 2/3 of V1 of awake mice using targeted patch-clamp recordings and synchronous local field potentials (LFPs). Strong gamma activity patterned in short bouts (one to three cycles), occurred when PVs and PYRs were depolarizing and entrained their membrane potential dynamics regardless of the presence of visual stimulation. PV firing phase locked unconditionally to gamma activity. However, PYRs only phase locked to visually evoked gamma bouts. Taken together, our results indicate that gamma activity corresponds to short pulses of correlated background synaptic activity synchronizing the output of cortical neurons depending on external sensory drive. PMID:26890123

  7. Membrane potential oscillations in reticulospinal and spinobulbar neurons during locomotor activity.

    PubMed

    Einum, James F; Buchanan, James T

    2005-07-01

    Feedback from the spinal locomotor networks provides rhythmic modulation of the membrane potential of reticulospinal (RS) neurons during locomotor activity. To further understand the origins of this rhythmic activity, the timings of the oscillations in spinobulbar (SB) neurons of the spinal cord and in RS neurons of the posterior and middle rhombencephalic reticular nuclei were measured using intracellular microelectrode recordings in the isolated brain stem-spinal cord preparation of the lamprey. A diffusion barrier constructed just caudal to the obex allowed induction of locomotor activity in the spinal cord by bath application of an excitatory amino acid to the spinal bath. All of the ipsilaterally projecting SB neurons recorded had oscillatory membrane potentials with peak depolarizations in phase with the ipsilateral ventral root bursts, whereas the contralaterally projecting SB neurons were about evenly divided between those in phase with the ipsilateral ventral root bursts and those in phase with the contralateral bursts. In the brain stem under these conditions, 75% of RS neurons had peak depolarizations in phase with the ipsilateral ventral root bursts while the remainder had peak depolarizations during the contralateral bursts. Addition of a high-Ca2+, Mg2+ solution to the brain stem bath to reduce polysynaptic activity had little or no effect on oscillation timing in RS neurons, suggesting that direct inputs from SB neurons make a major contribution to RS neuron oscillations under these conditions. Under normal conditions when the brain is participating in the generation of locomotor activity, these spinal inputs will be integrated with other inputs to RS neurons. PMID:15744013

  8. Modification of trout sperm membranes associated with activation and cryopreservation. Implications for fertilizing potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract We investigated the effects of two trout sperm activation solutions on sperm physiology and membrane organization prior to and following cryopreservation using flow cytometry and investigated their impact on in vitro fertility. Cryopreservation caused greater phospholipid disorder (high pl...

  9. Controlling the Activity of a Phosphatase and Tensin Homolog (PTEN) by Membrane Potential*

    PubMed Central

    Lacroix, Jérôme; Halaszovich, Christian R.; Schreiber, Daniela N.; Leitner, Michael G.; Bezanilla, Francisco; Oliver, Dominik; Villalba-Galea, Carlos A.

    2011-01-01

    The recently discovered voltage-sensitive phosphatases (VSPs) hydrolyze phosphoinositides upon depolarization of the membrane potential, thus representing a novel principle for the transduction of electrical activity into biochemical signals. Here, we demonstrate the possibility to confer voltage sensitivity to cytosolic enzymes. By fusing the tumor suppressor PTEN to the voltage sensor of the prototypic VSP from Ciona intestinalis, Ci-VSP, we generated chimeric proteins that are voltage-sensitive and display PTEN-like enzymatic activity in a strictly depolarization-dependent manner in vivo. Functional coupling of the exogenous enzymatic activity to the voltage sensor is mediated by a phospholipid-binding motif at the interface between voltage sensor and catalytic domains. Our findings reveal that the main domains of VSPs and related phosphoinositide phosphatases are intrinsically modular and define structural requirements for coupling of enzymatic activity to a voltage sensor domain. A key feature of this prototype of novel engineered voltage-sensitive enzymes, termed Ci-VSPTEN, is the novel ability to switch enzymatic activity of PTEN rapidly and reversibly. We demonstrate that experimental control of Ci-VSPTEN can be obtained either by electrophysiological techniques or more general techniques, using potassium-induced depolarization of intact cells. Thus, Ci-VSPTEN provides a novel approach for studying the complex mechanism of activation, cellular control, and pharmacology of this important tumor suppressor. Moreover, by inducing temporally precise perturbation of phosphoinositide concentrations, Ci-VSPTEN will be useful for probing the role and specificity of these messengers in many cellular processes and to analyze the timing of phosphoinositide signaling. PMID:21454672

  10. Membrane potential governs calcium influx into microvascular endothelium: integral role for muscarinic receptor activation.

    PubMed

    Behringer, Erik J; Segal, Steven S

    2015-10-15

    In resistance arteries, coupling a rise of intracellular calcium concentration ([Ca(2+)]i) to endothelial cell hyperpolarization underlies smooth muscle cell relaxation and vasodilatation, thereby increasing tissue blood flow and oxygen delivery. A controversy persists as to whether changes in membrane potential (V(m)) alter endothelial cell [Ca(2+)]i. We tested the hypothesis that V(m) governs [Ca(2+)]i in endothelium of resistance arteries by performing Fura-2 photometry while recording and controlling V(m) of intact endothelial tubes freshly isolated from superior epigastric arteries of C57BL/6 mice. Under resting conditions, [Ca(2+)]i did not change when V(m) shifted from baseline (∼-40 mV) via exposure to 10 μM NS309 (hyperpolarization to ∼-80 mV), via equilibration with 145 mm [K(+)]o (depolarization to ∼-5 mV), or during intracellular current injection (±0.5 to 5 nA, 20 s pulses) while V(m) changed linearly between ∼-80 mV and +10 mV. In contrast, during the plateau (i.e. Ca(2+) influx) phase of the [Ca(2+)]i response to approximately half-maximal stimulation with 100 nm ACh (∼EC50), [Ca(2+)]i increased as V(m) hyperpolarized below -40 mV and decreased as V(m) depolarized above -40 mV. The magnitude of [Ca(2+)]i reduction during depolarizing current injections correlated with the amplitude of the plateau [Ca(2+)]i response to ACh. The effect of hyperpolarization on [Ca(2+)]i was abolished following removal of extracellular Ca(2+), was enhanced subtly by raising extracellular [Ca(2+)] from 2 mm to 10 mm and was reduced by half in endothelium of TRPV4(-/-) mice. Thus, during submaximal activation of muscarinic receptors, V(m) can modulate Ca(2+) entry through the plasma membrane in accord with the electrochemical driving force. PMID:26260126

  11. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity.

    PubMed

    Cerbón, J; Calderón, V

    1995-04-12

    During growth a cyclic exposure of anionic phospholipids to the external surface of the plasma membrane was found. The surface charge density (sigma) increased gradually reaching a maximum in the first 5 h of growth and returned gradually to their initial value at the end of the logarithmic phase of growth (10-12 h). Phosphatidylinositol, that determines to a large extent the magnitude of the sigma, increased 83% in the yeast cells during the first 4 h of growth and returned gradually to their initial level at 10-12 h. During the stationary phase (12-24 h), both sigma and the anionic/zwitterionic phospholipid ratio, remained without any significant variation. The high-affinity H-linked glutamate transport system that behaves as a sensor of the changes in the membrane surface potential (phi) increased its activity in the first 5 h and then decreased it, following with great accuracy the sigma variations and remained without changes during the stationary phase of growth. The phosphatidylserine (PS) relative concentration in the cells (9.0%) did not significantly change during the whole growth curve, but their asymmetric distribution varied, contributing to the changes in sigma. PS facing the outer membrane surface increased 2.45-times during the first 5 h of growth and then returned to their original value at the end of the log phase (12 h). Phosphatidylcholine (PC) remained constant during the whole growth curve (50%), while phosphatidylethanolamine (PE) decreased 3-fold in the first 4 h and then increased to its original value at 10 h. Interestingly, PE at the outer membrane surface remained constant (3% of the total phospholipids) during the whole growth curve. During growth yeast cells change their phospholipid composition originating altered patterns of the plasma membrane phospholipid composition and IN-OUT distribution. This dynamic asymmetry is involved in the regulation of the surface potential and membrane protein activity. PMID:7718598

  12. Label-Free Imaging of Membrane Potential Using Membrane Electromotility

    PubMed Central

    Oh, Seungeun; Fang-Yen, Christopher; Choi, Wonshik; Yaqoob, Zahid; Fu, Dan; Park, YongKeun; Dassari, Ramachandra R.; Feld, Michael S.

    2012-01-01

    Electrical activity may cause observable changes in a cell's structure in the absence of exogenous reporter molecules. In this work, we report a low-coherence interferometric microscopy technique that can detect an optical signal correlated with the membrane potential changes in individual mammalian cells without exogenous labels. By measuring milliradian-scale phase shifts in the transmitted light, we can detect changes in the cells' membrane potential. We find that the observed optical signals are due to membrane electromotility, which causes the cells to deform in response to the membrane potential changes. We demonstrate wide-field imaging of the propagation of electrical stimuli in gap-junction-coupled cell networks. Membrane electromotility-induced cell deformation may be useful as a reporter of electrical activity. PMID:22828327

  13. Membrane potential and cancer progression

    PubMed Central

    Yang, Ming; Brackenbury, William J.

    2013-01-01

    Membrane potential (Vm), the voltage across the plasma membrane, arises because of the presence of different ion channels/transporters with specific ion selectivity and permeability. Vm is a key biophysical signal in non-excitable cells, modulating important cellular activities, such as proliferation and differentiation. Therefore, the multiplicities of various ion channels/transporters expressed on different cells are finely tuned in order to regulate the Vm. It is well-established that cancer cells possess distinct bioelectrical properties. Notably, electrophysiological analyses in many cancer cell types have revealed a depolarized Vm that favors cell proliferation. Ion channels/transporters control cell volume and migration, and emerging data also suggest that the level of Vm has functional roles in cancer cell migration. In addition, hyperpolarization is necessary for stem cell differentiation. For example, both osteogenesis and adipogenesis are hindered in human mesenchymal stem cells (hMSCs) under depolarizing conditions. Therefore, in the context of cancer, membrane depolarization might be important for the emergence and maintenance of cancer stem cells (CSCs), giving rise to sustained tumor growth. This review aims to provide a broad understanding of the Vm as a bioelectrical signal in cancer cells by examining several key types of ion channels that contribute to its regulation. The mechanisms by which Vm regulates cancer cell proliferation, migration, and differentiation will be discussed. In the long term, Vm might be a valuable clinical marker for tumor detection with prognostic value, and could even be artificially modified in order to inhibit tumor growth and metastasis. PMID:23882223

  14. ECUT: Energy Conversion and Utilization Technologies program biocatalysis research activity. Potential membrane applications to biocatalyzed processes: Assessment of concentration polarization and membrane fouling

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.

    1983-01-01

    Separation and purification of the products of biocatalyzed fermentation processes, such as ethanol or butanol, consumes most of the process energy required. Since membrane systems require substantially less energy for separation than most alternatives (e.g., distillation) they have been suggested for separation or concentration of fermentation products. This report is a review of the effects of concentration polarization and membrane fouling for the principal membrane processes: microfiltration, ultrafiltration, reverse osmosis, and electrodialysis including a discussion of potential problems relevant to separation of fermentation products. It was concluded that advanced membrane systems may result in significantly decreased energy consumption. However, because of the need to separate large amounts of water from much smaller amounts of product that may be more volatile than wate, it is not clear that membrane separations will necessarily be more efficient than alternative processes.

  15. Equilibrium Potentials of Membrane Electrodes

    PubMed Central

    Wang, Jui H.; Copeland, Eva

    1973-01-01

    A simple thermodynamic theory of the equilibrium potentials of membrane electrodes is formulated and applied to the glass electrode for measurement of pH. The new formulation assumes the selective adsorption or binding of specific ions on the surface of the membrane which may or may not be permeable to the ion, and includes the conventional derivation based on reversible ion transport across membranes as a special case. To test the theory, a platinum wire was coated with a mixture of stearic acid and methyl-tri-n-octyl-ammonium stearate. When this coated electrode was immersed in aqueous phosphate solution, its potential was found to be a linear function of pH from pH 2 to 12 with a slope equal to the theoretical value of 59.0 mV per pH unit at 24°. PMID:4516194

  16. Innervation of Gill Lateral Cells in the Bivalve Mollusc Crassostrea virginica Affects Cellular Membrane Potential and Cilia Activity

    PubMed Central

    Catapane, Edward J; Nelson, Michael; Adams, Trevon; Carroll, Margaret A

    2016-01-01

    Gill lateral cells of Crassostrea virginica are innervated by the branchial nerve, which contains serotonergic and dopaminergic fibers that regulate cilia beating rate. Terminal release of serotonin or dopamine results in an increase or decrease, respectively, of cilia beating rate in lateral gill cells. In this study we used the voltage sensitive fluorescent probe DiBAC4(3) to quantify changes in gill lateral cell membrane potential in response to electrical stimulation of the branchial nerve or to applications of serotonin and dopamine, and correlate these changes to cilia beating rates. Application of serotonin to gill lateral cells caused prolonged membrane depolarization, similar to plateau potentials, while increasing cilia beating rate. Application of dopamine hyperpolarized the resting membrane while decreasing cilia beating rate. Low frequency (5 Hz) electrical stimulations of the branchial nerve, which cause terminal release of endogenous serotonin, or high frequency (20 Hz) stimulations, which cause terminal release of endogenous dopamine, had the same effects on gill lateral cell membrane potentials and cilia beating rate as the respective applications of serotonin or dopamine. The study shows that innervation of gill lateral cells by the branchial nerve affects membrane potential as well as cilia beating rate, and demonstrates a strong correlation between changes in membrane potential and regulation of cilia beating rate. The study furthers the understanding of serotonin and dopamine signaling in the innervation and regulation of gill cilia in bivalves. The study also shows that voltage sensitive fluorescent probes like DiBAC 4(3) can be successfully used as an alternative to microelectrodes to measure changes in membrane potential of ciliated gill cells and other small cells with fast moving cilia. PMID:27489887

  17. Measuring potential denitrification enzyme activity rates using the membrane inlet mass spectrometer

    EPA Science Inventory

    The denitrification enzyme activity (DEA) assay, provides a quantitative assessment of the multi enzyme, biological process of reactive nitrogen removal via the reduction of N03 to N2. Measured in soil, usually under non limiting carbon and nitrate concentrations, this short ter...

  18. Pancreatic islet cells: effects of monosaccharides, glycolytic intermediates and metabolic inhibitors on membrane potential and electrical activity.

    PubMed Central

    Dean, P M; Matthews, E K; Sakamoto, Y

    1975-01-01

    1. The effects of monosaccharides, glycolytic intermediates, metabolic inhibitors and anxia, have been studied on the membrane electrical activity of mouse pancreatic islet cells in vitro using a single intracellular micro-electrode for both voltage recording and current injection. 2. In addition to D-glucose (28mM), D-mannose (16-6mM), and L-leucin (10mM), the substances D-glyceraldehyde (11mM), and acetoacetate (20 mM), induced action potentials in islet cells but other glucos analogues and metabolic intermediates including L-glucose dod not. 3. Mannoheptulose 20 mM), but not D-galactose or 2-deoxy-D-glucose, antagonized the electrical activity induced in islet cells by D-glucose, 28mM. Prior treatment of the cells with mannoheptulose caused them to hyperpolarize and completely prevented the appearance of electrical activity on subsequent exposure to D-glucose. 4. Electrical activity induced by D0glucose 28mM, was progressively inhibited by phloridzin, 10mM, if the cells were exposed to D-glucose and inhibitor simultaneously, and abolished on pretreatment with inhibitor for 30-60 min. Phloridzin also caused depolarization of the islet cells which was independent of extracellular glucose. 5. Anoxia completely blocked the electrical activity induced by glucose but not that evoked by D-glyceraldehyde, L-leucine, tolbutamide or glibenclamide. 6. Iodoacetic acid, 5 mM, rapidly blocked glucose-induced electrical activity whilst that elicited by tolbutamide was relatively resistant to inhibition. 7. The nature and possible location of the glucoreceptor in pancreatic islet cells is discussed in relation to the origin and functional significance of glucose-induced electrical activity and insulin secretion. PMID:1095722

  19. A biophysically detailed model of neocortical Local Field Potentials predicts the critical role of active membrane currents

    PubMed Central

    Reimann, Michael W.; Anastassiou, Costas A.; Perin, Rodrigo; Hill, Sean; Markram, Henry; Koch, Christof

    2013-01-01

    Summary Brain activity generates extracellular voltage fluctuations recorded as local field potentials (LFPs). While known that the relevant micro-variables, the ionic currents across membranes, jointly generate the macro-variables, the extracellular voltage, neither the detailed biophysical knowledge nor the required computational power has been available to model these processes. We simulated the LFP in a model of the rodent neocortical column composed of >12,000 reconstructed, multi-compartmental and spiking cortical layer 4 and 5 pyramidal neurons and basket cells, including five million dendritic and somatic compartments with voltage- and ion-dependent currents, realistic connectivity and probabilistic AMPA, NMDA and GABA synapses. We found that, depending on a number of factors, the LFP reflects local and cross-layer processing and active currents dominate the generation of LFPs rather than synaptic ones. Spike-related currents impact the LFP not only at higher frequencies but lower than 50 Hz. This work calls for re-evaluating the genesis of LFPs. PMID:23889937

  20. Membrane potential generated by ion adsorption.

    PubMed

    Tamagawa, Hirohisa; Morita, Sachi

    2014-01-01

    It has been widely acknowledged that the Goldman-Hodgkin-Katz (GHK) equation fully explains membrane potential behavior. The fundamental facet of the GHK equation lies in its consideration of permeability of membrane to ions, when the membrane serves as a separator for separating two electrolytic solutions. The GHK equation describes that: variation of membrane permeability to ion in accordance with ion species results in the variation of the membrane potential. However, nonzero potential was observed even across the impermeable membrane (or separator) separating two electrolytic solutions. It gave rise to a question concerning the validity of the GHK equation for explaining the membrane potential generation. In this work, an alternative theory was proposed. It is the adsorption theory. The adsorption theory attributes the membrane potential generation to the ion adsorption onto the membrane (or separator) surface not to the ion passage through the membrane (or separator). The computationally obtained potential behavior based on the adsorption theory was in good agreement with the experimentally observed potential whether the membrane (or separator) was permeable to ions or not. It was strongly speculated that the membrane potential origin could lie primarily in the ion adsorption on the membrane (or separator) rather than the membrane permeability to ions. It might be necessary to reconsider the origin of membrane potential which has been so far believed explicable by the GHK equation. PMID:24957176

  1. Membrane Potential Generated by Ion Adsorption

    PubMed Central

    Tamagawa, Hirohisa; Morita, Sachi

    2014-01-01

    It has been widely acknowledged that the Goldman-Hodgkin-Katz (GHK) equation fully explains membrane potential behavior. The fundamental facet of the GHK equation lies in its consideration of permeability of membrane to ions, when the membrane serves as a separator for separating two electrolytic solutions. The GHK equation describes that: variation of membrane permeability to ion in accordance with ion species results in the variation of the membrane potential. However, nonzero potential was observed even across the impermeable membrane (or separator) separating two electrolytic solutions. It gave rise to a question concerning the validity of the GHK equation for explaining the membrane potential generation. In this work, an alternative theory was proposed. It is the adsorption theory. The adsorption theory attributes the membrane potential generation to the ion adsorption onto the membrane (or separator) surface not to the ion passage through the membrane (or separator). The computationally obtained potential behavior based on the adsorption theory was in good agreement with the experimentally observed potential whether the membrane (or separator) was permeable to ions or not. It was strongly speculated that the membrane potential origin could lie primarily in the ion adsorption on the membrane (or separator) rather than the membrane permeability to ions. It might be necessary to reconsider the origin of membrane potential which has been so far believed explicable by the GHK equation. PMID:24957176

  2. Liquid membrane potential in nonisothermal systems.

    PubMed Central

    Scibona, G; Fabiani, C; Scuppa, B; Danesi, P R

    1976-01-01

    Electrical membrane potential equations for liquid ion exchange membranes, characterized by the presence of uncharged associated species and by exclusion of co-ions (no electrolyte uptake) have been derived. The irreversible thermodynamic theories already developed for solid membranes with fixed charged site density have been extended to include the different physicochemical aspects of the liquid membranes. To this purpose the dissipation function has been written with reference to the fluxes of all the species present in the membrane. It has been found that the mobile charged site, the counterions, and the uncharged associated species contribute to the electrical membrane potential through their phenomenological coefficients. The electrical membrane potential equations have been integrated in isothermal and nonisothermal conditions for monoionic and biionic systems. The theoretical predictions have been experimentally tested by studying the electrical potential of liquid membranes formed with solutions of tetraheptylammonium salts in omicron-dichlorobenzene. PMID:1276391

  3. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    mechanism by which these membrane-active peptides lyse membranes. The last class of membrane-active peptides discussed are the CPPs, which translocate across the lipid bilayer without inducing severe disruption and have potential as drug vehicles. CPPs are typically highly charged and can show antimicrobial activity by targeting an intracellular target rather than via a direct membrane lytic mechanism. A critical aspect in the structure-function relationship of membrane-active peptides is their specific activity relative to the lipid membrane composition of the cell target. Cell membranes have a wide diversity of lipids, and those of eukaryotic and prokaryotic species differ greatly in composition and structure. The activity of AMPs from Australian tree frogs, toxins, and CPPs has been investigated within various lipid systems to assess whether a relationship between peptide and membrane composition could be identified. NMR spectroscopy techniques are being used to gain atomistic details of how these membrane-active peptides interact with model membranes and cells, and in particular, competitive assays demonstrate the difference between affinity and activity for a specific lipid environment. Overall, the interactions between these relatively small sized peptides and various lipid bilayers give insight into how these peptides function at the membrane interface. PMID:27187572

  4. Toxic effects of mercury on PSI and PSII activities, membrane potential and transthylakoid proton gradient in Microsorium pteropus.

    PubMed

    Deng, Chunnuan; Zhang, Daoyong; Pan, Xiangliang; Chang, Fengqin; Wang, Shuzhi

    2013-10-01

    Mercury (Hg) is one of the top toxic metals in environment and it poses a great risk to organisms. This study aimed to elucidate the toxic effects of Hg(2+) on energy conversion of photosystem I (PSI) and photosystem II (PSII), membrane potential and proton gradient of Microsorium pteropus (an aquatic plant species). Contents of chlorophyll a, chlorophyll b and carotenoids, quantum yield and electron transfer of PSI and PSII of M. pteropus exposed to various concentrations of Hg(2+) were measured. With increasing Hg(2+) concentration, quantum yield and electron transport of PSI [Y(I) and ETR(I)] and PSII [Y(II) and ETR(II)] decreased whereas limitation of donor side of PSI [Y(ND)] increased. At ⩾165μgL(-1) Hg(2+), quantum yield of non-light-induced non-photochemical fluorescence quenching in PSII [Y(NO)] significantly increased but quantum yield of light-induced non-photochemical fluorescence quenching [Y(NPQ)] decreased. Membrane potential (Δψ) and proton gradient (ΔpH) of M. pteropus were reduced significantly at 330μg L(-1) Hg(2+) compared to control. Mercury exposure affected multiple sites in PSII and PSI of M. pteropus. PMID:23920143

  5. Active membrane phased array radar

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Huang, John; Sadowy, Greg; Hoffman, James; Smith, Phil; Hatake, Toshiro; Derksen, Chuck; Lopez, Bernardo; Caro, Ed

    2005-01-01

    We have developed the first membrane-based active phased array in L-band (1.26GHz). The array uses membrane compatible Transmit/Receive (T/R) modules (membrane T/R) for each antenna element. We use phase shifters within each T/R module for electronic beam steering. We will discuss the T/R module design and integration with the membrane, We will also present transmit and receive beam-steering results for the array.

  6. Enzyme Activities in Polarized Cell Membranes

    PubMed Central

    Bass, L.; McIlroy, D. K.

    1968-01-01

    The theoretical pH dependence of enzyme activities in membranes of low dielectric constant is estimated. It is shown that in biological membranes some types of enzymes may attain a limiting pH sensitivity such that an increment of only 0.2 pH unit (sufficient to induce action potentials in squid axons) causes a relative activity change of over 25%. The transients of enzyme activity generated by membrane depolarization and by pH increments in the bathing solution are discussed in relation to the transients of nervous excitation. PMID:5641405

  7. Enzymatically active ultrathin pepsin membranes.

    PubMed

    Raaijmakers, Michiel J T; Schmidt, Thomas; Barth, Monika; Tutus, Murat; Benes, Nieck E; Wessling, Matthias

    2015-05-11

    Enzymatically active proteins enable efficient and specific cleavage reactions of peptide bonds. Covalent coupling of the enzymes permits immobilization, which in turn reduces autolysis-induced deactivation. Ultrathin pepsin membranes were prepared by facile interfacial polycondensation of pepsin and trimesoyl chloride. The pepsin membrane allows for simultaneous enzymatic conversion and selective removal of digestion products. The large water fluxes through the membrane expedite the transport of large molecules through the pepsin layers. The presented method enables the large-scale production of ultrathin, cross-linked, enzymatically active membranes. PMID:25779668

  8. A non-inactivating high-voltage-activated two-pore Na+ channel that supports ultra-long action potentials and membrane bistability

    NASA Astrophysics Data System (ADS)

    Cang, Chunlei; Aranda, Kimberly; Ren, Dejian

    2014-09-01

    Action potentials (APs) are fundamental cellular electrical signals. The genesis of short APs lasting milliseconds is well understood. Ultra-long APs (ulAPs) lasting seconds to minutes also occur in eukaryotic organisms, but their biological functions and mechanisms of generation are largely unknown. Here, we identify TPC3, a previously uncharacterized member of the two-pore channel protein family, as a new voltage-gated Na+ channel (NaV) that generates ulAPs, and that establishes membrane potential bistability. Unlike the rapidly inactivating NaVs that generate short APs in neurons, TPC3 has a high activation threshold, activates slowly and does not inactivate—three properties that help generate long-lasting APs and guard the membrane against unintended perturbation. In amphibian oocytes, TPC3 forms a channel similar to channels induced by depolarization and sperm entry into eggs. TPC3 homologues are present in plants and animals, and they may be important for cellular processes and behaviours associated with prolonged membrane depolarization.

  9. Scalable Production of Recombinant Membrane Active Peptides and Its Potential as a Complementary Adjunct to Conventional Chemotherapeutics

    PubMed Central

    Rothan, Hussin A.; Ambikabothy, Jamunaa; Abdulrahman, Ammar Y.; Bahrani, Hirbod; Golpich, Mojtaba; Amini, Elham; A. Rahman, Noorsaadah; Teoh, Teow Chong; Mohamed, Zulqarnain; Yusof, Rohana

    2015-01-01

    The production of short anticancer peptides in recombinant form is an alternative method for costly chemical manufacturing. However, the limitations of host toxicity, bioactivity and column purification have impaired production in mass quantities. In this study, short cationic peptides were produced in aggregated inclusion bodies by double fusion with a central protein that has anti-cancer activity. The anticancer peptides Tachiplicin I (TACH) and Latarcin 1 (LATA) were fused with the N- and C-terminus of the MAP30 protein, respectively. We successfully produced the recombinant TACH-MAP30-LATA protein and MAP30 alone in E. coli that represented 59% and 68% of the inclusion bodies. The purified form of the inclusion bodies was prepared by eliminating host cell proteins through multiple washing steps and semi-solubilization in alkaline buffer. The purified active protein was recovered by inclusive solubilization at pH 12.5 in the presence of 2 M urea and refolded in alkaline buffer containing oxides and reduced glutathione. The peptide-fusion protein showed lower CC50 values against cancer cells (HepG2, 0.35±0.1 μM and MCF-7, 0.58±0.1 μM) compared with normal cells (WRL68, 1.83±0.2 μM and ARPE19, 2.5±0.1 μM) with outstanding activity compared with its individual components. The presence of the short peptides facilitated the entry of the peptide fusion protein into cancer cells (1.8 to 2.2-fold) compared with MAP30 alone through direct interaction with the cell membrane. The cancer chemotherapy agent doxorubicin showed higher efficiency and selectivity against cancer cells in combination with the peptide- fusion protein. This study provides new data on the mass production of short anticancer peptides as inclusion bodies in E. coli by fusion with a central protein that has similar activity. The product was biologically active against cancer cells compared with normal cells and enhanced the activity and selective delivery of an anticancer chemotherapy agent

  10. Scalable Production of Recombinant Membrane Active Peptides and Its Potential as a Complementary Adjunct to Conventional Chemotherapeutics.

    PubMed

    Rothan, Hussin A; Ambikabothy, Jamunaa; Abdulrahman, Ammar Y; Bahrani, Hirbod; Golpich, Mojtaba; Amini, Elham; A Rahman, Noorsaadah; Teoh, Teow Chong; Mohamed, Zulqarnain; Yusof, Rohana

    2015-01-01

    The production of short anticancer peptides in recombinant form is an alternative method for costly chemical manufacturing. However, the limitations of host toxicity, bioactivity and column purification have impaired production in mass quantities. In this study, short cationic peptides were produced in aggregated inclusion bodies by double fusion with a central protein that has anti-cancer activity. The anticancer peptides Tachiplicin I (TACH) and Latarcin 1 (LATA) were fused with the N- and C-terminus of the MAP30 protein, respectively. We successfully produced the recombinant TACH-MAP30-LATA protein and MAP30 alone in E. coli that represented 59% and 68% of the inclusion bodies. The purified form of the inclusion bodies was prepared by eliminating host cell proteins through multiple washing steps and semi-solubilization in alkaline buffer. The purified active protein was recovered by inclusive solubilization at pH 12.5 in the presence of 2 M urea and refolded in alkaline buffer containing oxides and reduced glutathione. The peptide-fusion protein showed lower CC50 values against cancer cells (HepG2, 0.35±0.1 μM and MCF-7, 0.58±0.1 μM) compared with normal cells (WRL68, 1.83±0.2 μM and ARPE19, 2.5±0.1 μM) with outstanding activity compared with its individual components. The presence of the short peptides facilitated the entry of the peptide fusion protein into cancer cells (1.8 to 2.2-fold) compared with MAP30 alone through direct interaction with the cell membrane. The cancer chemotherapy agent doxorubicin showed higher efficiency and selectivity against cancer cells in combination with the peptide- fusion protein. This study provides new data on the mass production of short anticancer peptides as inclusion bodies in E. coli by fusion with a central protein that has similar activity. The product was biologically active against cancer cells compared with normal cells and enhanced the activity and selective delivery of an anticancer chemotherapy agent

  11. Rapid Ca2+ flux through the transverse tubular membrane, activated by individual action potentials in mammalian skeletal muscle

    PubMed Central

    Launikonis, Bradley S; Stephenson, D George; Friedrich, Oliver

    2009-01-01

    Periods of low frequency stimulation are known to increase the net Ca2+ uptake in skeletal muscle but the mechanism responsible for this Ca2+ entry is not known. In this study a novel high-resolution fluorescence microscopy approach allowed the detection of an action potential-induced Ca2+ flux across the tubular (t-) system of rat extensor digitorum longus muscle fibres that appears to be responsible for the net uptake of Ca2+ in working muscle. Action potentials were triggered in the t-system of mechanically skinned fibres from rat by brief field stimulation and t-system [Ca2+] ([Ca2+]t-sys) and cytoplasmic [Ca2+] ([Ca2+]cyto) were simultaneously resolved on a confocal microscope. When initial [Ca2+]t-sys was ≥ 0.2 mm a Ca2+ flux from t-system to the cytoplasm was observed following a single action potential. The action potential-induced Ca2+ flux and associated t-system Ca2+ permeability decayed exponentially and displayed inactivation characteristics such that further Ca2+ entry across the t-system could not be observed after 2–3 action potentials at 10 Hz stimulation rate. When [Ca2+]t-sys was closer to 0.1 mm, a transient rise in [Ca2+]t-sys was observed almost concurrently with the increase in [Ca2+]cyto following the action potential. The change in direction of Ca2+ flux was consistent with changes in the direction of the driving force for Ca2+. This is the first demonstration of a rapid t-system Ca2+ flux associated with a single action potential in mammalian skeletal muscle. The properties of this channel are inconsistent with a flux through the L-type Ca2+ channel suggesting that an as yet unidentified t-system protein is conducting this current. This action potential-activated Ca2+ flux provides an explanation for the previously described Ca2+ entry and accumulation observed with prolonged, intermittent muscle activity. PMID:19332499

  12. Changes in the Sterol Composition of the Plasma Membrane Affect Membrane Potential, Salt Tolerance and the Activity of Multidrug Resistance Pumps in Saccharomyces cerevisiae

    PubMed Central

    Kodedová, Marie; Sychrová, Hana

    2015-01-01

    We investigated the impact of the deletions of genes from the final steps in the biosynthesis of ergosterol (ERG6, ERG2, ERG3, ERG5, ERG4) on the physiological function of the Saccharomyces cerevisiae plasma membrane by a combination of biological tests and the diS-C3(3) fluorescence assay. Most of the erg mutants were more sensitive than the wild type to salt stress or cationic drugs, their susceptibilities were proportional to the hyperpolarization of their plasma membranes. The different sterol composition of the plasma membrane played an important role in the short-term and long-term processes that accompanied the exposure of erg strains to a hyperosmotic stress (effect on cell size, pH homeostasis and survival of yeasts), as well as in the resistance of cells to antifungal drugs. The pleiotropic drug-sensitive phenotypes of erg strains were, to a large extent, a result of the reduced efficiency of the Pdr5 efflux pump, which was shown to be more sensitive to the sterol content of the plasma membrane than Snq2p. In summary, the erg4Δ and erg6Δ mutants exhibited the most compromised phenotypes. As Erg6p is not involved in the cholesterol biosynthetic pathway, it may become a target for a new generation of antifungal drugs. PMID:26418026

  13. Cellular membrane potentials induced by alternating fields

    PubMed Central

    Grosse, Constantino; Schwan, Herman P.

    1992-01-01

    Membrane potentials induced by external alternating fields are usually derived assuming that the membrane is insulating, that the cell has no surface conductance, and that the potentials are everywhere solutions of the Laplace equation. This traditional approach is reexamined taking into account membrane conductance, surface admittance, and space charge effects. We find that whenever the conductivity of the medium outside the cell is low, large corrections are needed. Thus, in most of the cases where cells are manipulated by external fields (pore formation, cell fusion, cell rotation, dielectrophoresis) the field applied to the cell membrane is significantly reduced, sometimes practically abolished. This could have a strong bearing on present theories of pore formation, and of the influence of weak electric fields on membranes. PMID:19431866

  14. Membrane potential changes during chemokinesis in Paramecium.

    PubMed

    Van Houten, J

    1979-06-01

    Intracellular recordings show that (i) paramecia hyperpolarize slightly in attractants and depolarize in repellents that depend on the avoiding reaction (an abrupt change of swimming direction), and (ii) paramecia more strongly hyperpolarize in repellents and more strongly depolarize in attractants that depend on changes of swimming velocity. These membrane potential changes are in agreement with a hypothesis of membrane potential control of chemokinesis in Paramecium. PMID:572085

  15. Genetically encoded fluorescent sensors of membrane potential

    PubMed Central

    Baker, B. J.; Mutoh, H.; Dimitrov, D.; Akemann, W.; Perron, A.; Iwamoto, Y.; Jin, L.; Cohen, L. B.; Isacoff, E. Y.; Pieribone, V. A.; Hughes, T.; Knöpfel, T.

    2009-01-01

    Imaging activity of neurons in intact brain tissue was conceived several decades ago and, after many years of development, voltage-sensitive dyes now offer the highest spatial and temporal resolution for imaging neuronal functions in the living brain. Further progress in this field is expected from the emergent development of genetically encoded fluorescent sensors of membrane potential. These fluorescent protein (FP) voltage sensors overcome the drawbacks of organic voltage sensitive dyes such as non-specificity of cell staining and the low accessibility of the dye to some cell types. In a transgenic animal, a genetically encoded sensor could in principle be expressed specifically in any cell type and would have the advantage of staining only the cell population determined by the specificity of the promoter used to drive expression. Here we critically review the current status of these developments. PMID:18679801

  16. Evaluation of potential implication of membrane estrogen binding sites on ERE-dependent transcriptional activity and intracellular estrogen receptor-alpha regulation in MCF-7 breast cancer cells.

    PubMed

    Seo, Hye Sook; Leclercq, Guy

    2002-01-01

    The potential involvement of membrane estrogen binding sites in the induction of ERE-dependent transcriptional activity as well as in the regulation of intracellular estrogen receptor alpha (ER-alpha) level under estradiol (E2) stimulation was investigated. Our approach relied upon the use of two DCC-treated E2-BSA (bovine serum albumin) solutions (E2-6-BSA and E2-17-BSA). The absence of detectable free E2 in these solutions was established. Both E2-BSA conjugates led to a transient dose-dependent stimulation of the expression of ERE-luciferase (LUC) reporter gene in MVLN cells (MCF-7 cells stably transfected with a pVit-tk-LUC reporter plasmid), a property not recorded with free E2, which maintained enhanced transcriptional activity during the whole experiment. A very low concentration of E2 (10 pM) synergistically acted with E2-BSA conjugates. Hence, ERE-dependent transcriptional activity induced by these conjugates appeared to result from their known interactions with membrane estrogen binding sites. Anti-estrogens (AEs: 4-OH-TAM and RU 58,668), which antagonize genomic ER responses, abrogated the luciferase activity induced by E2-BSA conjugates, confirming a potential relationship between membrane-related signals and intracellular ER. Moreover, induction of luciferase was recorded when the cells were exposed to IBMX (3-isobutyl-1-methylxanthine) and cyclic nucleotides (cAMP/cGMP), suggesting the implication of the latter in the signal transduction pathway leading to the expression of the reporter gene. Growth factors (IGF-I, EGF and TGF-alpha) also slightly stimulated luciferase and synergistically acted with 10 pM E2, or 1 microM E2-BSA conjugates, in agreement with the concept of a cross-talk between steroids and peptides acting on the cell membrane. Remarkably, E2-BSA conjugates, IBMX and all investigated growth factors failed to down-regulate intracellular ER in MCF-7 cells, indicating the need for a direct intracellular interaction of the ligand with the

  17. Probing membrane potential with nonlinear optics.

    PubMed Central

    Bouevitch, O; Lewis, A; Pinevsky, I; Wuskell, J P; Loew, L M

    1993-01-01

    The nonlinear optical phenomenon of second harmonic generation is shown to have intrinsic sensitivity to the voltage across a biological membrane. Our results demonstrate that this second order nonlinear optical process can be used to monitor membrane voltage with excellent signal to noise and other crucial advantages. These advantages suggest extensive use of this novel approach as an important new tool in elucidating membrane potential changes in biological systems. For this first demonstration of the effect we use a chiral styryl dye which exhibits gigantic second harmonic signals. Possible mechanisms of the voltage dependence of the second harmonic signal are discussed. PMID:8218895

  18. Toward Better Genetically Encoded Sensors of Membrane Potential.

    PubMed

    Storace, Douglas; Sepehri Rad, Masoud; Kang, BokEum; Cohen, Lawrence B; Hughes, Thom; Baker, Bradley J

    2016-05-01

    Genetically encoded optical sensors of cell activity are powerful tools that can be targeted to specific cell types. This is especially important in neuroscience because individual brain regions can include a multitude of different cell types. Optical imaging allows for simultaneous recording from numerous neurons or brain regions. Optical signals of membrane potential are useful because membrane potential changes are a direct sign of both synaptic and action potentials. Here we describe recent improvements in the in vitro and in vivo signal size and kinetics of genetically encoded voltage indicators (GEVIs) and discuss their relationship to alternative sensors of neural activity. PMID:27130905

  19. Two Trichothecene Mycotoxins from Myrothecium roridum Induce Apoptosis of HepG-2 Cells via Caspase Activation and Disruption of Mitochondrial Membrane Potential.

    PubMed

    Ye, Wei; Chen, Yuchan; Li, Haohua; Zhang, Weimin; Liu, Hongxin; Sun, Zhanghua; Liu, Taomei; Li, Saini

    2016-01-01

    Trichothecene mycotoxins are a type of sesquiterpenoid produced by various kinds of plantpathogenic fungi. In this study, two trichothecene toxins, namely, a novel cytotoxic epiroridin acid and a known trichothecene, mytoxin B, were isolated from the endophytic fungus Myrothecium roridum derived from the medicinal plant Pogostemon cablin. The two trichothecene mytoxins were confirmed to induce the apoptosis of HepG-2 cells by cytomorphology inspection, DNA fragmentation detection, and flow cytometry assay. The cytotoxic mechanisms of the two mycotoxins were investigated by quantitative real time polymerase chain reaction, western blot, and detection of mitochondrial membrane potential. The results showed that the two trichothecene mycotoxins induced the apoptosis of cancer cell HepG-2 via activation of caspase-9 and caspase-3, up-regulation of bax gene expression, down-regulation of bcl-2 gene expression, and disruption of the mitochondrial membrane potential of the HepG-2 cell. This study is the first to report on the cytotoxic mechanism of trichothecene mycotoxins from M. roridum. This study provides new clues for the development of attenuated trichothecene toxins in future treatment of liver cancer. PMID:27322225

  20. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells.

    PubMed

    Zhu, Yue-Yong; Huang, Hong-Yan; Wu, Yin-Lian

    2015-10-01

    Hepatocellular carcinoma (HCC) is an aggressive form of cancer, with high rates of morbidity and mortality, a poor prognosis and limited therapeutic options. The objective of the present study was to demonstrate the anticancer activity of oleanolic acid in HepG2 human HCC cells. Cell viability was evaluated using an MTT assay, following administration of various doses of oleanolic acid. The effect of oleanolic acid on cell cycle phase distribution and mitochondrial membrane potential was evaluated using flow cytometry with propidium iodide and rhodamine‑123 DNA‑binding cationic fluorescent dyes. Fluorescence microscopy was employed to detect morphological changes in HepG2 cells following oleanolic acid treatment. The results revealed that oleanolic acid induced a dose‑dependent, as well as time‑dependent inhibition in the growth of HepG2 cancer cells. Following acridine orange and ethidium bromide staining, treatment with various doses (0, 5, 25 and 50 µM) of oleanolic acid induced typical morphological changes associated with apoptosis, including cell shrinkage, membrane blebbing, nuclear condensation and apoptotic body formation. Cell cycle analysis revealed that oleanolic acid induced cell cycle arrest in HepG2 cells at the sub‑G1 (apoptotic) phase of the cell cycle, in a dose‑dependent manner. Staining with Annexin V‑fluorescein isothiocyanate and propidium iodide revealed that apoptosis occurred early in these cells. Oleanolic acid treatment also resulted in fragmentation of nuclear DNA in a dose‑dependent manner, producing the typical features of DNA laddering on an agarose gel. The results also demonstrated that oleanolic acid treatment resulted in a potent loss of mitochondrial membrane potential, which also occurred in a dose‑dependent manner. Therefore, oleanolic acid may be used as a therapeutic agent in the treatment of human HCC. PMID:26151733

  1. Purinergically induced membrane fluidization in ciliary cells: characterization and control by calcium and membrane potential.

    PubMed Central

    Alfahel, E; Korngreen, A; Parola, A H; Priel, Z

    1996-01-01

    To examine the role of membrane dynamics in transmembrane signal transduction, we studied changes in membrane fluidity in mucociliary tissues from frog palate and esophagus epithelia stimulated by extracellular ATP. Micromolar concentrations of ATP induced strong changes in fluorescence polarization, possibly indicating membrane fluidization. This effect was dosage dependent, reaching a maximum at 10-microM ATP. It was dependent on the presence of extracellular Ca2+ (or Mg2+), though it was insensitive to inhibitors of voltage-gated calcium channels. It was inhibited by thapsigargin and by ionomycin (at low extracellular Ca2+ concentration), both of which deplete Ca2+ stores. It was inhibited by the calcium-activated potassium channel inhibitors quinidine, charybdotoxin, and apamine and was reduced considerably by replacement of extracellular Na+ with K+. Hyperpolarization, or depolarization, of the mucociliary membrane induced membrane fluidization. The degree of membrane fluidization depended on the degree of hyperpolarization or depolarization of the ciliary membrane potential and was considerably lower than the effect induced by extracellular ATP. These results indicate that appreciable membrane fluidization induced by extracellular ATP depends both on an increase in intracellular Ca2+, mainly from its internal stores, and on hyperpolarization of the membrane. Calcium-dependent potassium channels couple the two effects. In light of recent results on the enhancement of ciliary beat frequency, it would appear that extracellular ATP-induced changes both in ciliary beat frequency and in membrane fluidity are triggered by similar signal transduction pathways. PMID:8789123

  2. Planar asymmetric lipid bilayers of glycosphingolipid or lipopolysaccharide on one side and phospholipids on the other: membrane potential, porin function, and complement activation.

    PubMed Central

    Wiese, A; Reiners, J O; Brandenburg, K; Kawahara, K; Zähringer, U; Seydel, U

    1996-01-01

    We have determined some physicochemical properties of the monosaccharide-type fraction (GSL-1) of glycosphingolipids, the major glycolipid components of the outer leaflet of the Gram-negative species Sphingomonas paucimobilis. These properties included the state of order of the hydrocarbon moiety, the effective molecular area, surface charge density, and intrinsic transmembrane potential profile of reconstituted planar asymmetric GSL-1/phospholipid bilayer membranes. We have, furthermore, investigated the insertion into and the function of porin channels in the reconstituted bilayers and the complement-activating capability of GSL-1 surfaces. All results were compared with respective data for deep rough mutant lipopolysaccharide of Salmonella minnesota R595. We found a remarkable agreement in most functional properties of the two glycolipids. PMID:8770208

  3. Membrane-to-Nucleus Signals and Epigenetic Mechanisms for Myofibroblastic Activation and Desmoplastic Stroma: Potential Therapeutic Targets for Liver Metastasis?

    PubMed Central

    Kang, Ningling; Shah, Vijay H.; Urrutia, Raul

    2015-01-01

    Cancer associated fibroblasts (CAFs), the most abundant cells in the tumor microenvironment (TME), are a key source of extracellular matrix (ECM) that constitutes the desmoplastic stroma. Through remodeling of the reactive tumor stroma and paracrine actions, CAFs regulate cancer initiation, progression, and metastasis, as well as tumor resistance to therapies. The CAFs found in stroma-rich primary hepatocellular carcinomas (HCCs) and liver metastases of primary cancers of other organs predominantly originate from hepatic stellate cells (HSTCs), which are pericytes associated with hepatic sinusoids. During tumor invasion, HSTCs transdifferentiate into myofibroblasts in response to paracrine signals emanating from either tumor cells or a heterogenous cell population within the hepatic tumor microenvironment. Mechanistically, HSTC-to-myofibroblast transdifferentiation, also known as, HSTC activation, requires cell surface receptor activation, intracellular signal transduction, gene transcription and epigenetic signals, which combined ultimately modulate distinct gene expression profiles that give rise to and maintain a new phenotype. The current review, defines a paradigm that explains how HSTCs are activated into CAFs to promote liver metastasis. Furthermore, focus on the most relevant intracellular signaling networks and epigenetic mechanisms that control HSTC activation is provided. Finally, we discuss the feasibility of targeting CAF/activated HSTCs, in isolation or in conjunction with targeting cancer cells, which constitutes a promising and viable therapeutic approach for the treatment of primary stroma-rich liver cancers and liver metastasis. PMID:25548101

  4. Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions

    PubMed Central

    Kang, Bok Eum; Baker, Bradley J.

    2016-01-01

    An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response. PMID:27040905

  5. Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions.

    PubMed

    Kang, Bok Eum; Baker, Bradley J

    2016-01-01

    An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response. PMID:27040905

  6. Mitochondrial membrane potential is regulated by vimentin intermediate filaments

    PubMed Central

    Chernoivanenko, Ivan S.; Matveeva, Elena A.; Gelfand, Vladimir I.; Goldman, Robert D.; Minin, Alexander A.

    2015-01-01

    This study demonstrates that the association of mitochondria with vimentin intermediate filaments (VIFs) measurably increases their membrane potential. This increase is detected by quantitatively comparing the fluorescence intensity of mitochondria stained with the membrane potential-sensitive dye tetramethylrhodamine-ethyl ester (TMRE) in murine vimentin-null fibroblasts with that in the same cells expressing human vimentin (∼35% rise). When vimentin expression is silenced by small hairpin RNA (shRNA) to reduce vimentin by 90%, the fluorescence intensity of mitochondria decreases by 20%. The increase in membrane potential is caused by specific interactions between a subdomain of the non-α-helical N terminus (residues 40 to 93) of vimentin and mitochondria. In rho 0 cells lacking mitochondrial DNA (mtDNA) and consequently missing several key proteins in the mitochondrial respiratory chain (ρ0 cells), the membrane potential generated by an alternative anaerobic process is insensitive to the interactions between mitochondria and VIF. The results of our studies show that the close association between mitochondria and VIF is important both for determining their position in cells and their physiologic activity.—Chernoivanenko, I. S., Matveeva, E. A., Gelfand, V. I., Goldman, R. D., Minin, A. A. Mitochondrial membrane potential is regulated by vimentin intermediate filaments. PMID:25404709

  7. Fractionation of Plant Bioactives from Black Carrots (Daucus carota subspecies sativus varietas atrorubens Alef.) by Adsorptive Membrane Chromatography and Analysis of Their Potential Anti-Diabetic Activity.

    PubMed

    Esatbeyoglu, Tuba; Rodríguez-Werner, Miriam; Schlösser, Anke; Liehr, Martin; Ipharraguerre, Ignacio; Winterhalter, Peter; Rimbach, Gerald

    2016-07-27

    Black and purple carrots have attracted interest as colored extracts for coloring food due to their high content of anthocyanins. This study aimed to investigate the polyphenol composition of black carrots. Particularly, the identification and quantification of phenolic compounds of the variety Deep Purple carrot (DPC), which presents a very dark color, was performed by HPLC-PDA and HPLC-ESI-MS(n) analyses. The separation of polyphenols from a DPC XAD-7 extract into an anthocyanin fraction (AF) and co-pigment fraction (CF; primarily phenolic acids) was carried out by membrane chromatography. Furthermore, possible anti-diabetic effects of the DPC XAD-7 extract and its AF and CF were determined. DPC samples (XAD-7, CF, and AF) inhibited α-amylase and α-glucosidase in a dose-dependent manner. Moreover, DPC XAD-7 and chlorogenic acid, but not DPC CF and DPC AF, caused a moderate inhibition of intestinal glucose uptake in Caco-2 cells. However, DPC samples did not affect glucagon-like peptide-1 (GLP-1) secretion and dipeptidyl peptidase IV (DPP-4) activity. Overall, DPC exhibits an inhibitory effect on α-amylase and α-glucosidase activity and on cellular glucose uptake indicating potential anti-diabetic properties. PMID:27362825

  8. Membrane stretching triggers mechanosensitive Ca2+ channel activation in Chara.

    PubMed

    Kaneko, Toshiyuki; Takahashi, Naoya; Kikuyama, Munehiro

    2009-03-01

    In order to confirm that mechanosensitive Ca(2+) channels are activated by membrane stretching, we stretched or compressed the plasma membrane of Chara by applying osmotic shrinkage or swelling of the cell by varying the osmotic potential of the bathing medium. Aequorin studies revealed that treatments causing membrane stretching induced a transient but large increase in cytoplasmic concentration of Ca(2+) (Delta[Ca(2+)](c)). However, the observed Delta[Ca(2+)](c) decreased during the treatments, resulting in membrane compression. A second experiment was carried out to study the relationship between changes in membrane potential (DeltaE(m)) and stretching or compression of the plasma membrane. Significant DeltaE(m) values, often accompanied by an action potential, were observed during the initial exchange of the bathing medium from a hypotonic medium to a hypertonic one (plasmolysis). DeltaE(m) appears to be triggered by a partial stretching of the membrane as it was peeled from the cell wall. After plasmolysis, other exchanges from hypertonic to hypotonic media, with their accompanying membrane stretching, always induced large DeltaE(m) values and were often accompanied by an action potential. By contrast, action potentials were scarcely observed during other exchanges from hypotonic to hypertonic solutions (=membrane compression). Thus, we concluded that activation of the mechanosensitive channels is triggered by membrane stretching in Chara. PMID:19234734

  9. Fluid transport by active elastic membranes

    NASA Astrophysics Data System (ADS)

    Evans, Arthur A.; Lauga, Eric

    2011-09-01

    A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape and the resulting fluid motion result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.

  10. Inhibition of NADPH oxidase 1 activity and blocking the binding of cytosolic and membrane-bound proteins by honokiol inhibit migratory potential of melanoma cells.

    PubMed

    Prasad, Ram; Kappes, John C; Katiyar, Santosh K

    2016-02-16

    Overexpression of NADPH oxidase 1 (Nox1) in melanoma cells is often associated with increased migration/metastasis rate. To develop effective treatment options, we have examined the effect of honokiol, a phytochemical from Magnolia plant, on the migratory potential of human melanoma cell lines (A375, Hs294t, SK-Mel119 and SK-Mel28) and assessed whether Nox1 is the target. Using an in vitro cell migration assay, we observed that treatment of different melanoma cell lines with honokiol for 24 h resulted in a dose-dependent inhibition of cell migration that was associated with reduction in Nox1 expression and reduced levels of oxidative stress. Treatment of cells with N-acetyl-L-cysteine, an anti-oxidant, also inhibited the migration of melanoma cells. Treatment of cells with diphenyleneiodonium chloride, an inhibitor of Nox1, significantly decreased the migration ability of Hs294t and SK-Mel28 cells. Further, we examined the effect of honokiol on the levels of core proteins (p22phox and p47phox) of the NADPH oxidase complex. Treatment of Hs294t and SK-Mel28 cells with honokiol resulted in accumulation of the cytosolic p47phox protein and decreased levels of the membrane-bound p22phox protein, thus blocking their interaction and inhibiting Nox1 activation. Our in vivo bioluminescence imaging data indicate that oral administration of honokiol inhibited the migration/extravasation and growth of intravenously injected melanoma cells in internal body organs, such as liver, lung and kidney in nude mice, and that this was associated with an inhibitory effect on Nox1 activity in these internal organs/tissues. PMID:26760964

  11. Inhibition of NADPH oxidase 1 activity and blocking the binding of cytosolic and membrane-bound proteins by honokiol inhibit migratory potential of melanoma cells

    PubMed Central

    Prasad, Ram; Kappes, John C.; Katiyar, Santosh K.

    2016-01-01

    Overexpression of NADPH oxidase 1 (Nox1) in melanoma cells is often associated with increased migration/metastasis rate. To develop effective treatment options, we have examined the effect of honokiol, a phytochemical from Magnolia plant, on the migratory potential of human melanoma cell lines (A375, Hs294t, SK-Mel119 and SK-Mel28) and assessed whether Nox1 is the target. Using an in vitro cell migration assay, we observed that treatment of different melanoma cell lines with honokiol for 24 h resulted in a dose-dependent inhibition of cell migration that was associated with reduction in Nox1 expression and reduced levels of oxidative stress. Treatment of cells with N-acetyl-L-cysteine, an anti-oxidant, also inhibited the migration of melanoma cells. Treatment of cells with diphenyleneiodonium chloride, an inhibitor of Nox1, significantly decreased the migration ability of Hs294t and SK-Mel28 cells. Further, we examined the effect of honokiol on the levels of core proteins (p22phox and p47phox) of the NADPH oxidase complex. Treatment of Hs294t and SK-Mel28 cells with honokiol resulted in accumulation of the cytosolic p47phox protein and decreased levels of the membrane-bound p22phox protein, thus blocking their interaction and inhibiting Nox1 activation. Our in vivo bioluminescence imaging data indicate that oral administration of honokiol inhibited the migration/extravasation and growth of intravenously injected melanoma cells in internal body organs, such as liver, lung and kidney in nude mice, and that this was associated with an inhibitory effect on Nox1 activity in these internal organs/tissues. PMID:26760964

  12. Association with the Plasma Membrane Is Sufficient for Potentiating Catalytic Activity of Regulators of G Protein Signaling (RGS) Proteins of the R7 Subfamily.

    PubMed

    Muntean, Brian S; Martemyanov, Kirill A

    2016-03-25

    Regulators of G protein Signaling (RGS) promote deactivation of heterotrimeric G proteins thus controlling the magnitude and kinetics of responses mediated by G protein-coupled receptors (GPCR). In the nervous system, RGS7 and RGS9-2 play essential role in vision, reward processing, and movement control. Both RGS7 and RGS9-2 belong to the R7 subfamily of RGS proteins that form macromolecular complexes with R7-binding protein (R7BP). R7BP targets RGS proteins to the plasma membrane and augments their GTPase-accelerating protein (GAP) activity, ultimately accelerating deactivation of G protein signaling. However, it remains unclear if R7BP serves exclusively as a membrane anchoring subunit or further modulates RGS proteins to increase their GAP activity. To directly answer this question, we utilized a rapidly reversible chemically induced protein dimerization system that enabled us to control RGS localization independent from R7BP in living cells. To monitor kinetics of Gα deactivation, we coupled this strategy with measuring changes in the GAP activity by bioluminescence resonance energy transfer-based assay in a cellular system containing μ-opioid receptor. This approach was used to correlate changes in RGS localization and activity in the presence or absence of R7BP. Strikingly, we observed that RGS activity is augmented by membrane recruitment, in an orientation independent manner with no additional contributions provided by R7BP. These findings argue that the association of R7 RGS proteins with the membrane environment provides a major direct contribution to modulation of their GAP activity. PMID:26811338

  13. Wafer-scale Mitochondrial Membrane Potential Assays

    PubMed Central

    Lim, Tae-Sun; Davila, Antonio; Zand, Katayoun; Douglas, Wallace C.; Burke, Peter J.

    2012-01-01

    It has been reported that mitochondrial metabolic and biophysical parameters are associated with degenerative diseases and the aging process. To evaluate these biochemical parameters, current technology requires several hundred milligrams of isolated mitochondria for functional assays. Here, we demonstrate manufacturable wafer-scale mitochondrial functional assay lab-on-a-chip devices, which require mitochondrial protein quantities three orders of magnitude less than current assays, integrated onto 4” standard silicon wafer with new fabrication processes and materials. Membrane potential changes of isolated mitochondria from various well-established cell lines such as human HeLa cell line (Heb7A), human osteosarcoma cell line (143b) and mouse skeletal muscle tissue were investigated and compared. This second generation integrated lab-on-a-chip system developed here shows enhanced structural durability and reproducibility while increasing the sensitivity to changes in mitochondrial membrane potential by an order of magnitude as compared to first generation technologies. We envision this system to be a great candidate to substitute current mitochondrial assay systems. PMID:22627274

  14. Measuring H(+) Pumping and Membrane Potential Formation in Sealed Membrane Vesicle Systems.

    PubMed

    Wielandt, Alex Green; Palmgren, Michael G; Fuglsang, Anja Thoe; Günther-Pomorski, Thomas; Justesen, Bo Højen

    2016-01-01

    The activity of enzymes involved in active transport of matter across lipid bilayers can conveniently be assayed by measuring their consumption of energy, such as ATP hydrolysis, while it is more challenging to directly measure their transport activities as the transported substrate is not converted into a product and only moves a few nanometers in space. Here, we describe two methods for the measurement of active proton pumping across lipid bilayers and the concomitant formation of a membrane potential, applying the dyes 9-amino-6-chloro-2-methoxyacridine (ACMA) and oxonol VI. The methods are exemplified by assaying transport of the Arabidopsis thaliana plasma membrane H(+)-ATPase (proton pump), which after heterologous expression in Saccharomyces cerevisiae and subsequent purification has been reconstituted in proteoliposomes. PMID:26695032

  15. Role of the Transmembrane Potential in the Membrane Proton Leak

    PubMed Central

    Rupprecht, Anne; Sokolenko, Elena A.; Beck, Valeri; Ninnemann, Olaf; Jaburek, Martin; Trimbuch, Thorsten; Klishin, Sergey S.; Jezek, Petr; Skulachev, Vladimir P.; Pohl, Elena E.

    2010-01-01

    Abstract The molecular mechanism responsible for the regulation of the mitochondrial membrane proton conductance (G) is not clearly understood. This study investigates the role of the transmembrane potential (ΔΨm) using planar membranes, reconstituted with purified uncoupling proteins (UCP1 and UCP2) and/or unsaturated FA. We show that high ΔΨm (similar to ΔΨm in mitochondrial State IV) significantly activates the protonophoric function of UCPs in the presence of FA. The proton conductance increases nonlinearly with ΔΨm. The application of ΔΨm up to 220 mV leads to the overriding of the protein inhibition at a constant ATP concentration. Both, the exposure of FA-containing bilayers to high ΔΨm and the increase of FA membrane concentration bring about the significant exponential Gm increase, implying the contribution of FA in proton leak. Quantitative analysis of the energy barrier for the transport of FA anions in the presence and absence of protein suggests that FA− remain exposed to membrane lipids while crossing the UCP-containing membrane. We believe this study shows that UCPs and FA decrease ΔΨm more effectively if it is sufficiently high. Thus, the tight regulation of proton conductance and/or FA concentration by ΔΨm may be key in mitochondrial respiration and metabolism. PMID:20409469

  16. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes.

    PubMed Central

    Flewelling, R F; Hubbell, W L

    1986-01-01

    The total potential energy profile for hydrophobic ion interactions with lipid bilayers can be written as the sum of four terms: the electrical Born, image and dipole contributions, and a neutral energy term. We introduce a specific model for the membrane dipole potential, treating it as a two-dimensional array of point dipoles located near each membrane-water interface. Together with specific theoretical models for the other energy terms, a total potential profile is developed that successfully describes the complete set of thermodynamic parameters for binding and translocation for the two hydrophobic ion structural analogues, tetraphenylphosphonium (TPP+) and tetraphenylboron (TPB-). A reasonable fit to the data is possible if the dipole potential energy has a magnitude of 5.5 + 0.5 kcal/mol (240 + 20 mV), positive inside, and if the neutral energy contribution for TPP+ and TPB- is -7.0 + 1.0 kcal/mol. These results may also have important implications for small ion interactions with membranes and the energetics of charged groups in membrane proteins. PMID:3955184

  17. Cell membrane potentials induced during exposure to EMP fields

    SciTech Connect

    Gailey, P.C.; Easterly, C.E.

    1994-09-01

    Internal current densities and electric fields induced in the human body during exposure to EMP fields are reviewed and used to predict resulting cell membrane potentials. Using several different approaches, membrane potentials of about 100 mV are predicted. These values are comparable to the static membrane potentials maintained by cells as a part of normal physiological function, but the EMP-induced potentials persist for only about 10 ns. Possible biological implications of EMP-induced membrane potentials including conformational changes and electroporation are discussed.

  18. Effect of EMP fields on cell membrane potentials

    SciTech Connect

    Gailey, P.C.; Easterly, C.E.

    1993-06-01

    A simple model is presented for cell membrane potentials induced during exposure to electromagnetic pulse (EMP). Using calculated values of internal electric field strength induced during EMP exposure, the model predicts that cell membrane potentials of about 100 mV may be induced for time frames on the order of 10 ns. Possible biological effects of these potentials including electroporation area discussed.

  19. Photogeneration of membrane potential hyperpolarization and depolarization in non-excitable cells.

    PubMed

    Ando, Jun; Smith, Nicholas I; Fujita, Katsumasa; Kawata, Satoshi

    2009-02-01

    We monitored femtosecond laser induced membrane potential changes in non-excitable cells using patchclamp analysis. Membrane potential hyperpolarization of HeLa cells was evoked by 780 nm, 80 fs laser pulses focused in the cellular cytoplasm at average powers of 30-60 mW. Simultaneous detection of intracellular Ca2+ concentration and membrane potential revealed coincident photogeneration of Ca2+ waves and membrane potential hyperpolarization. By using non-excitable cells, the cell dynamics are slow enough that we can calculate the membrane potential using the steady-state approximation for ion gradients and permeabilities, as formulated in the GHK equations. The calculations predict hyperpolarization that matches the experimental measurements and indicates that the cellular response to laser irradiation is biological, and occurs via laser triggered Ca2+ which acts on Ca2+ activated K+ channels, causing hyperpolarization. Furthermore, by irradiating the cellular plasma membrane, we observed membrane potential depolarization in combination with a drop in membrane resistance that was consistent with a transient laser-induced membrane perforation. These results entail the first quantitative analysis of location-dependent laser-induced membrane potential modification and will help to clarify cellular biological responses under exposure to high intensity ultrashort laser pulses. PMID:19137284

  20. Imaging cellular membrane potential through ionization of quantum dots

    NASA Astrophysics Data System (ADS)

    Rowland, Clare E.; Susumu, Kimihiro; Stewart, Michael H.; Oh, Eunkeu; Mäkinen, Antti J.; O'Shaughnessy, Thomas J.; Kushto, Gary; Wolak, Mason A.; Erickson, Jeffrey S.; Efros, Alexander L.; Huston, Alan L.; Delehanty, James B.

    2016-03-01

    Recent interest in quantum dots (QDs) stems from the plethora of potential applications that arises from their tunable absorption and emission profiles, high absorption cross sections, resistance to photobleaching, functionalizable surfaces, and physical robustness. The emergent use of QDs in biological imaging exploits these and other intrinsic properties. For example, quantum confined Stark effect (QCSE), which describes changes in the photoluminescence (PL) of QDs driven by the application of an electric field, provides an inherent means of detecting changes in electric fields by monitoring QD emission and thus points to a ready mean of imaging membrane potential (and action potentials) in electrically active cells. Here we examine the changing PL of various QDs subjected to electric fields comparable to those found across a cellular membrane. By pairing static and timeresolved PL measurements, we attempt to understand the mechanism driving electric-field-induced PL quenching and ultimately conclude that ionization plays a substantial role in initiating PL changes in systems where QCSE has traditionally been credited. Expanding on these findings, we explore the rapidity of response of the QD PL to applied electric fields and demonstrate changes amply able to capture the millisecond timescale of cellular action potentials.

  1. Active Nuclear Import of Membrane Proteins Revisited

    PubMed Central

    Laba, Justyna K.; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M.

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker’s yeast. PMID:26473931

  2. Active Nuclear Import of Membrane Proteins Revisited.

    PubMed

    Laba, Justyna K; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker's yeast. PMID:26473931

  3. Potential scorpionate antibiotics: targeted hydrolysis of lipid II containing model membranes by vancomycin-TACzyme conjugates and modulation of their antibacterial activity by Zn-ions.

    PubMed

    Bauke Albada, H; Arnusch, Christopher J; Branderhorst, Hilbert M; Verel, Anne-Marie; Janssen, Wouter T M; Breukink, Eefjan; de Kruijff, Ben; Pieters, Roland J; Liskamp, Rob M J

    2009-07-15

    The antibiotic vancomycin-that binds lipid II in the bacterial cell membrane-was conjugated to a mono- and tetravalent mimic of the tris-histidine catalytic triad of metalloenzymes. Targeted hydrolysis by the conjugate was observed using model membranes containing lipid II, and in vitro MIC-values of the targeted mimic constructs could be modulated by Zn-ions. PMID:19524434

  4. Scanning Ion Conductance Microscopy for living cell membrane potential measurement

    NASA Astrophysics Data System (ADS)

    Panday, Namuna

    Recently, the existence of multiple micro-domains of extracellular potential around individual cells have been revealed by voltage reporter dye using fluorescence microscopy. One hypothesis is that these long lasting potential patterns play a vital role in regulating important cell activities such as embryonic patterning, regenerative repair and reduction of cancerous disorganization. We used multifunctional Scanning Ion Conductance Microscopy (SICM) to study these extracellular potential patterns of single cell with higher spatial resolution. To validate this novel technique, we compared the extracellular potential distribution on the fixed HeLa cell surface and Polydimethylsiloxane (PDMS) surface and found significant difference. We then measured the extracellular potential distributions of living melanocytes and melanoma cells and found both the mean magnitude and spatial variation of extracellular potential of the melanoma cells are bigger than those of melanocytes. As compared to the voltage reporter dye based fluorescence microscope method, SICM can achieve quantitative potential measurements of non-labeled living cell membranes with higher spatial resolution.

  5. Hydrolysis of ITP generates a membrane potential in submitochondrial particles.

    PubMed

    Sorgato, M C; Galiazzo, F; Valente, M; Cavallini, L; Ferguson, S J

    1982-08-20

    ITP hydrolysis catalysed by the ATPase of submitochondrial particles from both bovine heart and rat liver is shown to be linked to the generation of a membrane potential, and therefore also to proton translocation. The magnitude of the membrane potential is similar to that observed during ATP hydrolysis at equivalent concentrations of phosphate and nucleoside tri- and diphosphates. An explanation is suggested for why in other reports ITP was found to be a poor substrate for supporting energy-linked reactions that are driven by the membrane potential. PMID:6214275

  6. Effects of DIDS on the chick retinal pigment epithelium. I. Membrane potentials, apparent resistances, and mechanisms.

    PubMed

    Gallemore, R P; Steinberg, R H

    1989-06-01

    While little is known about the transport properties of the retinal pigment epithelium (RPE) basal membrane, mechanisms for anion movement across the basal membrane appear to be present (Miller and Steinberg, 1977; Hughes et al., 1984; Miller and Farber, 1984). This work examines the electrophysiological effects of the anion conductance blocker, 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) on the basal membrane of an in vitro preparation of chick retina-RPE-choroid. DIDS (10-125 microM), added to the choroidal bath, decreased the transtissue potential by decreasing the potential across the RPE. Intracellular RPE recordings showed that DIDS affected the membrane potential in 2 phases, initially hyperpolarizing the basal membrane and then, after prolonged exposure, depolarizing the apical membrane. Resistance assessment by transtissue current pulses and intracellular c-wave recordings suggested that DIDS increased basal membrane resistance (Rba) during the first phase and increased apical membrane resistance (Rap) during the second phase. Measurements of intracellular Cl- activity (aiCl) showed that Cl- was actively accumulated by the chick RPE since it was distributed above equilibrium across both the apical and basal membranes. Perfusion of the basal membrane with 50 microM DIDS significantly increased aiCl-. The DIDS-induced basal membrane hyperpolarization, apparent increase in Rba, and increase in aiCl- are all consistent with Cl- -conductance blockade. During the second phase, apical membrane responsiveness to the light-evoked decrease in subretinal [K+]o (Oakley, 1977) was reduced an average of 58%. This finding, given the second-phase apical membrane depolarization and apparent increase in Rap, is consistent with a decrease in apical membrane K+ conductance.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2723761

  7. Kinetic Analysis of Membrane Potential Dye Response to NaV1.7 Channel Activation Identifies Antagonists with Pharmacological Selectivity against NaV1.5.

    PubMed

    Finley, Michael; Cassaday, Jason; Kreamer, Tony; Li, Xinnian; Solly, Kelli; O'Donnell, Greg; Clements, Michelle; Converso, Antonella; Cook, Sean; Daley, Chris; Kraus, Richard; Lai, Ming-Tain; Layton, Mark; Lemaire, Wei; Staas, Donnette; Wang, Jixin

    2016-06-01

    The NaV1.7 voltage-gated sodium channel is a highly valued target for the treatment of neuropathic pain due to its expression in pain-sensing neurons and human genetic mutations in the gene encoding NaV1.7, resulting in either loss-of-function (e.g., congenital analgesia) or gain-of-function (e.g., paroxysmal extreme pain disorder) pain phenotypes. We exploited existing technologies in a novel manner to identify selective antagonists of NaV1.7. A full-deck high-throughput screen was developed for both NaV1.7 and cardiac NaV1.5 channels using a cell-based membrane potential dye FLIPR assay. In assay development, known local anesthetic site inhibitors produced a decrease in maximal response; however, a subset of compounds exhibited a concentration-dependent delay in the onset of the response with little change in the peak of the response at any concentration. Therefore, two methods of analysis were employed for the screen: one to measure peak response and another to measure area under the curve, which would capture the delay-to-onset phenotype. Although a number of compounds were identified by a selective reduction in peak response in NaV1.7 relative to 1.5, the AUC measurement and a subsequent refinement of this measurement were able to differentiate compounds with NaV1.7 pharmacological selectivity over NaV1.5 as confirmed in electrophysiology. PMID:26861708

  8. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  9. Thioredoxin-like activity of thylakoid membranes

    SciTech Connect

    Ashton, A.R.; Brennan, T.; Anderson, L.E.

    1980-10-01

    The inactivation of pea leaf chloroplast glucose-6-phosphate dehydrogenase by dithiothreitol can be catalyzed by thioredoxin-like molecules that are present in chloroplasts. This thioredoxin activity occurs predominantly as a soluble species, but washed thylakoid membranes also exhibit some thioredoxin-like activity. The membrane-associated thioredoxin can be extracted by treatment with the detergent Triton X-100. The solubilized thioredoxing appears to have a molecular size similar to that of the soluble thioredoxin which catalyzes the same reaction. The thylakoid-bound activity constitutes only about 5% of the total chloroplast thioredoxin activity. The thioredoxin occurring in the membrane fraction cannot, however, be ascribed to the trapping of stroma since less than 0.1% of three stromal marker enzymes are found in the same thylakoid extract.

  10. Organelle morphogenesis by active membrane remodeling

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, N.; Ipsen, John H.; Rao, Madan; Kumar, P. B. Sunil

    Intracellular organelles are subject to a steady flux of lipids and proteins through active, energy consuming transport processes. Active fission and fusion are promoted by GTPases, e.g., Arf-Coatamer and the Rab-Snare complexes, which both sense and generate local membrane curvature. Here we investigate through Dynamical Triangulation Monte Carlo simulations, the role that these active processes play in determining the morphology and compositional segregation in closed membranes. Our results suggest that the ramified morphologies of organelles observed in-vivo are a consequence of driven nonequilibrium processes rather than equilibrium forces.

  11. EB-virus latent membrane protein 1 potentiates the stemness of nasopharyngeal carcinoma via preferential activation of PI3K/AKT pathway by a positive feedback loop.

    PubMed

    Yang, C-F; Yang, G-D; Huang, T-J; Li, R; Chu, Q-Q; Xu, L; Wang, M-S; Cai, M-D; Zhong, L; Wei, H-J; Huang, H-B; Huang, J-L; Qian, C-N; Huang, B-J

    2016-06-30

    Our previous study reported that Epstein-Barr virus(EBV)-encoded latent membrane protein 1 (LMP1) could induce development of CD44(+/High) stem-like cells in nasopharyngeal carcinoma (NPC). However, the molecular mechanisms that underlie modulation of cancer stem cells (CSCs) in NPC remain unclear. Here, we show that LMP1 induced CSC-like properties through promotion of the expression of epithelial-mesenchymal transition-like cellular markers and through alterations in differentiation markers. Furthermore, LMP1 activated and triggered phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, which subsequently stimulated expression of CSC markers, development of side population and tumor sphere formation. This suggests that PI3K/AKT pathway has an important role in the induction and maintenance of CSC properties in NPC. Similarly, PI3K/AKT pathway was also activated by phosphorylase in LMP1-induced CD44(+/High) cells. In addition, LMP1 greatly increased expression of miR-21 and downregulated expression of the miR-21 target, PTEN. Overexpression of miR-21 by transfection of miR-21 mimics into LMP1-transformed cells led to phosphorylase-mediated activation of the PI3K/AKT pathway and induction of CSCs. On the contrary, phosphorylation of the PI3K/AKT pathway and the expression of CSC were reversed by an miR-21 inhibitor. The specific inhibitor (Ly294002) of PI3K/AKT pathway significantly decreased expression of miR-21 and CSC markers and upregulated the expression of PTEN, which indicates that miR-21 and PTEN are the downstream effectors of PI3K/AKT and that expression of these two effectors are related to the development of NPC CSCs. Taken together, our novel findings indicate that LMP1, PI3K/AKT, miR-21 and PTEN constitute a positive feedback loop and have a key role in LMP1-induced CSCs in NPC. PMID:26568302

  12. Membrane Transport of Singlet Oxygen Monitored by Dipole Potential Measurements

    PubMed Central

    Sokolov, Valerij S.; Pohl, Peter

    2009-01-01

    Abstract The efficiency of photodynamic reactions depends on 1), the penetration depth of the photosensitizer into the membrane and 2), the sidedness of the target. Molecules which are susceptible to singlet oxygen (1O2) experience less damage when separated from the photosensitizer by the membrane. Since 1O2 lifetime in the membrane environment is orders of magnitude longer than the time required for nonexcited oxygen (O2) to cross the membrane, this observation suggests that differences between the permeabilities or membrane partition of 1O2 and O2 exist. We investigated this hypothesis by releasing 1O2 at one side of a planar membrane while monitoring the kinetics of target damage at the opposite side of the same membrane. Damage to the target, represented by dipole-modifying molecules (phloretin or phlorizin), was indicated by changes in the interleaflet dipole potential difference Δϕb. A simple analytical model allowed estimation of the 1O2 interleaflet concentration difference from the rate at which Δϕb changed. It confirmed that the lower limit of 1O2 permeability is ∼2 cm/s; i.e., it roughly matches O2 permeability as predicted by Overton's rule. Consequently, the membrane cannot act as a barrier to 1O2 diffusion. Differences in the reaction rates at the cytoplasmic and extracellular membrane leaflets may be attributed only to 1O2 quenchers inside the membrane. PMID:18931253

  13. Aluminum chloride and membrane potentials of barley root cells

    SciTech Connect

    Etherton, B.; Shane, M.

    1986-04-01

    Aluminum chloride at pH 4 hyperpolarizes the membrane potentials of barley root epidermal cells. The authors tested to see whether this hyperpolarization could be caused by an aluminum induced alteration of the permeability of the membrane to potassium or sodium ions by measuring the effect of .04 mM aluminum ions (the Ca/sup + +/ conc. was 0.1 mM) on the membrane potential changes induced by changing the potassium or sodium concentrations in the medium bathing the roots. Aluminum ions did not change the magnitude of potassium or sodium induced changes in membrane potentials but significantly altered the rates of potassium and sodium induced changes of the potential. The results indicate that aluminum ions did not change sodium or potassium ion permeabilities of barley root cells.

  14. Active membrane cholesterol as a physiological effector.

    PubMed

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily. PMID:26874289

  15. Reconstitution of Membrane Proteins into Model Membranes: Seeking Better Ways to Retain Protein Activities

    PubMed Central

    Shen, Hsin-Hui; Lithgow, Trevor; Martin, Lisandra L.

    2013-01-01

    The function of any given biological membrane is determined largely by the specific set of integral membrane proteins embedded in it, and the peripheral membrane proteins attached to the membrane surface. The activity of these proteins, in turn, can be modulated by the phospholipid composition of the membrane. The reconstitution of membrane proteins into a model membrane allows investigation of individual features and activities of a given cell membrane component. However, the activity of membrane proteins is often difficult to sustain following reconstitution, since the composition of the model phospholipid bilayer differs from that of the native cell membrane. This review will discuss the reconstitution of membrane protein activities in four different types of model membrane—monolayers, supported lipid bilayers, liposomes and nanodiscs, comparing their advantages in membrane protein reconstitution. Variation in the surrounding model environments for these four different types of membrane layer can affect the three-dimensional structure of reconstituted proteins and may possibly lead to loss of the proteins activity. We also discuss examples where the same membrane proteins have been successfully reconstituted into two or more model membrane systems with comparison of the observed activity in each system. Understanding of the behavioral changes for proteins in model membrane systems after membrane reconstitution is often a prerequisite to protein research. It is essential to find better solutions for retaining membrane protein activities for measurement and characterization in vitro. PMID:23344058

  16. Sodium and potassium conductance changes during a membrane action potential.

    PubMed

    Bezanilla, F; Rojas, E; Taylor, R E

    1970-12-01

    1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231

  17. Membrane optical activity: some facts and fallacies.

    PubMed

    Wallach, D F; Low, D A; Bertland, A V

    1973-11-01

    The circular dichroism of hypothetical, water-filled, spherical shells, 75-3500 nm in radius, with walls 7.5 nm thick, composed of poly(L-lysine) in various conformational proportions, and suspended in water, were computed from the known optical properties of this polypeptide by classical general light-scattering theory (Mie theory). Comparison of the computed curves of circular dichroism spectra with those of diverse membranes reveals large discrepancies below 215 nm and shows that light scattering does not adequately account for the optical activity of membranes containing appreciable proportions of nonhelical conformation. However, turbidity effects can explain the anomalies of membrane optical rotatory dispersion near 233 nm, if not uniquely so. We conclude that the optical activity of neither most soluble proteins nor membrane proteins can provide accurate conformational information when synthetic polypeptides are used as standards and list the reasons for this argument. We also show that present techniques to "correct" membrane optical activity are likely to produce additional artifact. PMID:4522300

  18. Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane

    PubMed Central

    Richardson, Ben D.; Saha, Kaustuv; Krout, Danielle; Cabrera, Elizabeth; Felts, Bruce; Henry, L. Keith; Swant, Jarod; Zou, Mu-Fa; Newman, Amy Hauck; Khoshbouei, Habibeh

    2016-01-01

    The dopaminergic system is essential for cognitive processes, including reward, attention and motor control. In addition to DA release and availability of synaptic DA receptors, timing and magnitude of DA neurotransmission depend on extracellular DA-level regulation by the dopamine transporter (DAT), the membrane expression and trafficking of which are highly dynamic. Data presented here from real-time TIRF (TIRFM) and confocal microscopy coupled with surface biotinylation and electrophysiology suggest that changes in the membrane potential alone, a universal yet dynamic cellular property, rapidly alter trafficking of DAT to and from the surface membrane. Broadly, these findings suggest that cell-surface DAT levels are sensitive to membrane potential changes, which can rapidly drive DAT internalization from and insertion into the cell membrane, thus having an impact on the capacity for DAT to regulate extracellular DA levels. PMID:26804245

  19. Stability of membrane potential in heart mitochondria: Single mitochondrion imaging

    SciTech Connect

    Uechi, Yukiko; Yoshioka, Hisashi; Morikawa, Daisuke; Ohta, Yoshihiro . E-mail: ohta@cc.tuat.ac.jp

    2006-06-16

    Mitochondrial membrane potential ({delta}{psi} {sub m}) plays an important role in cellular activity. Although {delta}{psi} {sub m} of intracellular mitochondria are relatively stable, the recent experiments with isolated mitochondria demonstrate that individual mitochondria show frequent fluctuations of {delta}{psi} {sub m}. The current study is performed to investigate the factors that stabilize {delta}{psi} {sub m} in cells by observing {delta}{psi} {sub m} of individual isolated mitochondria with fluorescence microscopy. Here, we report that (1) the transient depolarizations are also induced for mitochondria in plasma membrane permeabilized cells, (2) almost all mitochondria isolated from porcine hearts show the transient depolarizations that is enhanced with the net efflux of protons from the matrix to the intermembrane space, and (3) ATP and ADP significantly inhibit the transient depolarizations by plural mechanisms. These results suggest that the suppression of acute alkalinization of the matrix together with the presence of ATP and ADP contributes to the stabilization of {delta}{psi} {sub m} in cells.

  20. Direct measurements of membrane potential and membrane resistance of human red cells

    PubMed Central

    Lassen, U. V.; Sten-Knudsen, O.

    1968-01-01

    1. In order to evaluate the membrane potentials calculated from the distribution of chloride ions in human red cells and plasma, it is desirable to have a direct measurement of the transmembrane potential of these cells. 2. A method has been devised for introducing a capillary micro-electrode into human red cells. The method allows simultaneous measurements of potential and membrane resistance with only one micro-electrode located in the cell. 3. Upon impalement of single cells in plasma, a scatter of membrane potentials and of resistance values was obtained. The potential drop never exceeded -14 mV and the maximum resistances were about 7 Ω. cm2. Positive potentials were obtained on impalement of red cell aggregates. 4. Arguments are given to support the view that it is in these cells which suffer least damage from the impalement that maximum values of membrane potentials and resistances are observed. The errors caused by the change in the liquid junction during the impalement have been estimated. 5. As judged from this study, it seems permissible under normal conditions to calculate the membrane potential of the red cell from the chloride concentrations in plasma and in intracellular water. PMID:5649641

  1. Activation of Membrane Cholesterol by 63 Amphipaths†

    PubMed Central

    Lange, Yvonne; Ye, Jin; Duban, Mark-Eugene; Steck, Theodore L.

    2009-01-01

    A few membrane-intercalating amphipaths have been observed to stimulate the interaction of cholesterol with cholesterol oxidase, saponin and cyclodextrin, presumably by displacing cholesterol laterally from its phospholipid complexes. We now report that this effect, referred to as cholesterol activation, occurs with dozens of other amphipaths, including alkanols, saturated and cis- and trans-unsaturated fatty acids, fatty acid methyl esters, sphingosine derivatives, terpenes, alkyl ethers, ketones, aromatics and cyclic alkyl derivatives. The apparent potency of the agents tested ranged from 3 μM to 7 mM and generally paralleled their octanol/water partition coefficients, except that relative potency declined for compounds with> 10 carbons. Some small amphipaths activated cholesterol at a membrane concentration of ~3 moles per 100 moles bilayer lipids, about equimolar with the cholesterol they displaced. Lysophosphatidylserine countered the effects of all these agents, consistent with its ability to reduce the pool of active membrane cholesterol. Various amphipaths stabilized red cells against the hemolysis elicited by cholesterol depletion, presumably by substituting for the extracted sterol. The number and location of cis and trans fatty acid unsaturations and the absolute stereochemistry of enantiomer pairs had only small effects on amphipath potency. Nevertheless, potency varied ~7-fold within a group of diverse agents with similar partition coefficients. We infer that a wide variety of amphipaths can displace membrane cholesterol by competing stoichiometrically but with only limited specificity for its weak association with phospholipids. Any number of other drugs and experimental agents might do the same. PMID:19655814

  2. Membrane activity of biomimetic facially amphiphilic antibiotics.

    PubMed

    Arnt, Lachelle; Rennie, Jason R; Linser, Sebastian; Willumeit, Regine; Tew, Gregory N

    2006-03-01

    Membranes are a central feature of all biological systems, and their ability to control many cellular processes is critically important. As a result, a better understanding of how molecules bind to and select between biological membranes is an active area of research. Antimicrobial host defense peptides are known to be membrane-active and, in many cases, exhibit discrimination between prokaryotic and eukaryotic cells. The design of synthetic molecules that capture the biological activity of these natural peptides has been shown. In this report, the interaction between our biomimetic structures and different biological membranes is reported using both model vesicle and in vitro bacterial cell experiments. Compound 1 induces 12% leakage at 20 microg/mL against phosphatidylglycerol (PG)-phosphatidylethanolamine (PE) vesicles vs only 3% leakage at 200 microg/mL against phosphatidyl-L-serine (PS)-phosphatidylcholine (PC) vesicles. Similarly, a 40% reduction in fluorescence is measured in lipid movement experiments for PG-PE compared to 10% for PS-PC at 600 s. A 30 degrees C increase in the phase transition of stearoyl-oleoyl-phosphatidylserine is observed in the presence of 1. These results show that lipid composition is more important for selectivity than overall net charge. Additionally, the overall concentration of a given lipid is another important factor. An effort is made to connect model vesicle studies with in vitro data and naturally occurring lipid compositions. PMID:16494408

  3. Quinone reduction by Rhodothermus marinus succinate:menaquinone oxidoreductase is not stimulated by the membrane potential

    SciTech Connect

    Fernandes, Andreia S.; Konstantinov, Alexander A.; Teixeira, Miguel; Pereira, Manuela M. . E-mail: mpereira@itqb.unl.pt

    2005-05-06

    Succinate:quinone oxidoreductase (SQR), a di-haem enzyme purified from Rhodothermus marinus, reveals an HQNO-sensitive succinate:quinone oxidoreductase activity with several menaquinone analogues as electron acceptors that decreases with lowering the redox midpoint potential of the quinones. A turnover with the low-potential 2,3-dimethyl-1,4-naphthoquinone that is the closest analogue of menaquinone, although low, can be detected in liposome-reconstituted SQR. Reduction of the quinone is not stimulated by an imposed K{sup +}-diffusion membrane potential of a physiological sign (positive inside the vesicles). Nor does the imposed membrane potential increase the reduction level of the haems in R. marinus SQR poised with the succinate/fumarate redox couple. The data do not support a widely discussed hypothesis on the electrogenic transmembrane electron transfer from succinate to menaquinone catalysed by di-haem SQRs. The role of the membrane potential in regulation of the SQR activity is discussed.

  4. Descending Vasa Recta Endothelial Membrane Potential Response Requires Pericyte Communication

    PubMed Central

    Zhang, Zhong; Payne, Kristie; Pallone, Thomas L.

    2016-01-01

    Using dual-cell electrophysiological recording, we examined the routes for equilibration of membrane potential between the pericytes and endothelia that comprise the descending vasa recta (DVR) wall. We measured equilibration between pericytes in intact vessels, between pericytes and endothelium in intact vessels and between pericytes physically separated from the endothelium. Dual pericyte recording on the abluminal surface of DVR showed that both resting potential and subsequent time-dependent voltage fluctuations after vasoconstrictor stimulation remained closely equilibrated, regardless of the agonist employed (angiotensin II, vasopressin or endothelin 1). When pericytes where removed from the vessel wall but retained physical contact with one another, membrane potential responses were also highly coordinated. In contrast, responses of pericytes varied independently when they were isolated from both the endothelium and from contact with one another. When pericytes and endothelium were in contact, their resting potentials were similar and their temporal responses to stimulation were highly coordinated. After completely isolating pericytes from the endothelium, their mean resting potentials became discordant. Finally, complete endothelial isolation eliminated all membrane potential responses to angiotensin II. We conclude that cell-to-cell transmission through the endothelium is not needed for pericytes to equilibrate their membrane potentials. AngII dependent responses of DVR endothelia may originate from gap junction coupling to pericytes rather than via receptor dependent signaling in the endothelium, per se. PMID:27171211

  5. A Potential Role for Bat Tail Membranes in Flight Control

    PubMed Central

    Gardiner, James D.; Dimitriadis, Grigorios; Codd, Jonathan R.; Nudds, Robert L.

    2011-01-01

    Wind tunnel tests conducted on a model based on the long-eared bat Plecotus auritus indicated that the positioning of the tail membrane (uropatagium) can significantly influence flight control. Adjusting tail position by increasing the angle of the legs ventrally relative to the body has a two-fold effect; increasing leg-induced wing camber (i.e., locally increased camber of the inner wing surface) and increasing the angle of attack of the tail membrane. We also used our model to examine the effects of flying with and without a tail membrane. For the bat model with a tail membrane increasing leg angle increased the lift, drag and pitching moment (nose-down) produced. However, removing the tail membrane significantly reduced the change in pitching moment with increasing leg angle, but it had no significant effect on the level of lift produced. The drag on the model also significantly increased with the removal of the tail membrane. The tail membrane, therefore, is potentially important for controlling the level of pitching moment produced by bats and an aid to flight control, specifically improving agility and manoeuvrability. Although the tail of bats is different from that of birds, in that it is only divided from the wings by the legs, it nonetheless, may, in addition to its prey capturing function, fulfil a similar role in aiding flight control. PMID:21479137

  6. Membrane, action, and oscillatory potentials in simulated protocells.

    PubMed

    Przybylski, A T; Stratten, W P; Syren, R M; Fox, S W

    1982-12-01

    Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KC1) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells. PMID:7162535

  7. Membrane, action, and oscillatory potentials in simulated protocells

    NASA Astrophysics Data System (ADS)

    Przybylski, Aleksander T.; Stratten, Wilford P.; Syren, Robert M.; Fox, Sidney W.

    1982-12-01

    Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KCl) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells.

  8. Membrane, action, and oscillatory potentials in simulated protocells

    NASA Technical Reports Server (NTRS)

    Syren, R. M.; Fox, S. W.; Przybylski, A. T.; Stratten, W. P.

    1982-01-01

    Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KCl) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells.

  9. Ion separations based on electrical potentials nanoporous and microporous membranes

    NASA Astrophysics Data System (ADS)

    Armstrong, Jason

    This dissertation examines several types of ion separations in nanometer to micrometer pores in membranes. Membranes provide an attractive platform for ion separations, primarily because they operate continuously (i.e. not in a batch mode), and small pores offer the potential for ion separation based on charge and electrophoretic mobility differences. Initial studies employed charged, nanoporous membranes to separate monovalent and divalent ions. Adsorption of polyelectrolyte multilayers in nanoporous membranes afforded control over the surface charge and pore radii in track-etched membranes, and electrostatic ion-exclusion, particularly for divalent ions, occurred in these membranes because the electrical double layer filled the entire nanopore. Initial experiments employed adsorption of (PSS/PAH) multilayers in the 50-nm diameter pores of PCTE membranes to give a K+/Mg2+ selectivity of ~10 in pressure-driven dead-end filtration. Adsorption of (PSS/PAH) 1 films in 30-nm pores gave a similar K+/Mg2+ selectivity with a simpler modification procedure. Separations utilizing (PSS/PAH)1 films in 30-nm pores showed the lowest ion rejections with high ion concentrations, consistent with enhanced screening of the electrical double layer at high ionic strength. However, solutions with < 5 mM ionic strength exhibited essentially 100% Mg2+ rejections (the Mg2+ concentration in the permeate was below the method detection limit). Moreover, K+ rejections increased in the presence of Mg2+, which may stem from Mg2+-adsorption within the PEM and increased surface charge. Finally, separation of Br- and SO42- with a PSS1-modified, 30-nm PCTE membrane validated the exclusion mechanism for anions. The average Br-/SO42- selectivity was 3.4 +/- 0.8 for a solution containing 0.5 mM NaBr and 0.5 mM Na2SO4. The low selectivity in this case likely stems from a relatively large pore. The membranes used for the separation of monovalent and divalent ions also facilitated separation of

  10. The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle fibres.

    PubMed Central

    Dulhunty, A F

    1978-01-01

    1. The steady-state intracellular membrane potential of fibres in thin bundles dissected from mouse extensor digitorum longus or soleus muscles or rat sternomastoid muscles was measured with 3 M-KCl glass micro-electrodes. The steady-state membrane potential was found to depend on the extracellular concentrations of Na, K and Cl ions. 2. The resting membrane potential (3.5 mM-[K]o, 160 mM-[Cl]o) was -74 +/- 1 mV (mean +/- S.E.) and a reduction in [Cl]o to 3.5 mM caused a reversible steady-state hyperpolarization to -94 +/- 1 mV (mean +/- S.E.). 3. The steady-state membrane potentials recorded in fibres exposed to different [K]o and zero [Cl]o were consistent with potentials predicted by the Goldman, Hodgkin & Katz (GHK) equation for Na and K. The results of similar experiments done with Cl as the major external anion could not be fitted by the same equation. 4. The GHK equation for Na, K and Cl did fit data obtained from fibres in solutions containing different [K]o with Cl as the major external anion if the intracellular Cl concentration was allowed to be out of equilibrium with the steady-state membrane potential. 5. It is suggested that an active influx of Cl ions controls the intracellular Cl concentrations in these fibres and hence maintains the Cl equilibrium potential at a depolarized value with respect to the resting membrane potential. 6. The steady-state membrane potential of rat diaphragm fibres was independent of [Cl]o and it seems likely that the intracellular Cl concentration of these fibres is not controlled by active Cl transport. PMID:650497

  11. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions.

    PubMed

    Martínez-Reyes, Inmaculada; Diebold, Lauren P; Kong, Hyewon; Schieber, Michael; Huang, He; Hensley, Christopher T; Mehta, Manan M; Wang, Tianyuan; Santos, Janine H; Woychik, Richard; Dufour, Eric; Spelbrink, Johannes N; Weinberg, Samuel E; Zhao, Yingming; DeBerardinis, Ralph J; Chandel, Navdeep S

    2016-01-21

    Mitochondrial metabolism is necessary for the maintenance of oxidative TCA cycle function and mitochondrial membrane potential. Previous attempts to decipher whether mitochondria are necessary for biological outcomes have been hampered by genetic and pharmacologic methods that simultaneously disrupt multiple functions linked to mitochondrial metabolism. Here, we report that inducible depletion of mitochondrial DNA (ρ(ο) cells) diminished respiration, oxidative TCA cycle function, and the mitochondrial membrane potential, resulting in diminished cell proliferation, hypoxic activation of HIF-1, and specific histone acetylation marks. Genetic reconstitution only of the oxidative TCA cycle function specifically in these inducible ρ(ο) cells restored metabolites, resulting in re-establishment of histone acetylation. In contrast, genetic reconstitution of the mitochondrial membrane potential restored ROS, which were necessary for hypoxic activation of HIF-1 and cell proliferation. These results indicate that distinct mitochondrial functions associated with respiration are necessary for cell proliferation, epigenetics, and HIF-1 activation. PMID:26725009

  12. Spatially distinct and metabolically active membrane domain in mycobacteria.

    PubMed

    Hayashi, Jennifer M; Luo, Chu-Yuan; Mayfield, Jacob A; Hsu, Tsungda; Fukuda, Takeshi; Walfield, Andrew L; Giffen, Samantha R; Leszyk, John D; Baer, Christina E; Bennion, Owen T; Madduri, Ashoka; Shaffer, Scott A; Aldridge, Bree B; Sassetti, Christopher M; Sandler, Steven J; Kinoshita, Taroh; Moody, D Branch; Morita, Yasu S

    2016-05-10

    Protected from host immune attack and antibiotic penetration by their unique cell envelope, mycobacterial pathogens cause devastating human diseases such as tuberculosis. Seamless coordination of cell growth with cell envelope elongation at the pole maintains this barrier. Unraveling this spatiotemporal regulation is a potential strategy for controlling mycobacterial infections. Our biochemical analysis previously revealed two functionally distinct membrane fractions in Mycobacterium smegmatis cell lysates: plasma membrane tightly associated with the cell wall (PM-CW) and a distinct fraction of pure membrane free of cell wall components (PMf). To provide further insight into the functions of these membrane fractions, we took the approach of comparative proteomics and identified more than 300 proteins specifically associated with the PMf, including essential enzymes involved in cell envelope synthesis such as a mannosyltransferase, Ppm1, and a galactosyltransferase, GlfT2. Furthermore, comparative lipidomics revealed the distinct lipid composition of the PMf, with specific association of key cell envelope biosynthetic precursors. Live-imaging fluorescence microscopy visualized the PMf as patches of membrane spatially distinct from the PM-CW and notably enriched in the pole of the growing cells. Taken together, our study provides the basis for assigning the PMf as a spatiotemporally distinct and metabolically active membrane domain involved in cell envelope biogenesis. PMID:27114527

  13. Chemical Modulation of the Biological Activity of Reutericyclin: a Membrane-Active Antibiotic from Lactobacillus reuteri

    PubMed Central

    Cherian, Philip T.; Wu, Xiaoqian; Maddox, Marcus M.; Singh, Aman P.; Lee, Richard E.; Hurdle, Julian G.

    2014-01-01

    Whilst the development of membrane-active antibiotics is now an attractive therapeutic concept, progress in this area is disadvantaged by poor knowledge of the structure-activity relationship (SAR) required for optimizing molecules to selectively target bacteria. This prompted us to explore the SAR of the Lactobacillus reuteri membrane-active antibiotic reutericyclin, modifying three key positions about its tetramic acid core. The SAR revealed that lipophilic analogs were generally more active against Gram-positive pathogens, but introduction of polar and charged substituents diminished their activity. This was confirmed by cytometric assays showing that inactive compounds failed to dissipate the membrane potential. Radiolabeled substrate assays indicated that dissipation of the membrane potential by active reutericyclins correlated with inhibition of macromolecular synthesis in cells. However, compounds with good antibacterial activities also showed cytotoxicity against Vero cells and hemolytic activity. Although this study highlights the challenge of optimizing membrane-active antibiotics, it shows that by increasing antibacterial potency the selectivity index could be widened, allowing use of lower non-cytotoxic doses. PMID:24739957

  14. Initial conditioning of polymer eelectrolyte membrane fuel cell by temperature and potential cycling.

    PubMed

    Bezmalinović, Dario; Radošević, Jagoda; Barbir, Frano

    2015-01-01

    Polymer electrolyte membrane fuel cells need initial conditioning, activation or break-in the first time they are operated after being assembled. During this period performance of the fuel cell improves until it reaches its nominal performance. The exact mechanism of this initial conditioning is not completely understood, but it is assumed that during the conditioning process the polymer membrane, as well as the polymer in the catalyst layer, get humidified, and the number of active catalyst sites increases. Activation procedure proposed here consists of temperature and potential cycling. Temperature cycling is a new approach for the conditioning and the idea is to rapidly cool the running cell at some point to allow the membrane to equilibrate with condensed water which should result in higher intake of water within the membrane. The results show that proposed procedure is better or at least comparable to some conventional procedures for the initial conditioning. PMID:25830963

  15. Etiology of the membrane potential of rat white fat adipocytes.

    PubMed

    Bentley, Donna C; Pulbutr, Pawitra; Chan, Sue; Smith, Paul A

    2014-07-15

    The plasma membrane potential (Vm) is key to many physiological processes; however, its ionic etiology in white fat adipocytes is poorly characterized. To address this question, we employed the perforated patch current clamp and cell-attached patch clamp methods in isolated primary white fat adipocytes and their cellular model 3T3-L1. The resting Vm of primary and 3T3-L1 adipocytes were -32.1 ± 1.2 mV (n = 95) and -28.8 ± 1.2 mV (n = 87), respectively. Vm was independent of cell size and fat content. Elevation of extracellular K(+) to 50 mM by equimolar substitution of bath Na(+) did not affect Vm, whereas substitution of bath Na(+) with the membrane-impermeant cation N-methyl-D-glucamine(+)-hyperpolarized Vm by 16 mV, data indicative of a nonselective cation permeability. Substitution of 133 mM extracellular Cl(-) with gluconate-depolarized Vm by 25 mV, whereas Cl(-) substitution with I(-) caused a -9 mV hyperpolarization. Isoprenaline (10 μM), but not insulin (100 nM), significantly depolarized Vm. Single-channel ion activity was voltage independent; currents were indicative for Cl(-) with an inward slope conductance of 16 ± 1.3 pS (n = 11) and a reversal potential close to the Cl(-) equilibrium potential, -29 ± 1.6 mV. Although the reduction of extracellular Cl(-) elevated the intracellular Ca(2+) of adipocytes, this was not as large as that produced by elevation of extracellular K(+). In conclusion, the Vm of white fat adipocytes is well described by the Goldman-Hodgkin-Katz equation with a predominant permeability to Cl(-), where its biophysical and single-channel properties suggest a volume-sensitive anion channel identity. Consequently, changes in serum Cl(-) homeostasis or the adipocyte's permeability to this anion via drugs will affect its Vm, intracellular Ca(2+), and ultimately its function and its role in metabolic control. PMID:24865982

  16. Membrane phase characteristics control NA-CATH activity.

    PubMed

    Samuel, Robin; Gillmor, Susan

    2016-09-01

    Our studies presented in this report focus on the behavior of NA-CATH, an α-helical cathelicidin antimicrobial peptide, originally discovered in the Naja atra snake. It has demonstrated high potency against gram-positive and gram-negative bacteria with minimal hemolysis. Here we examine the kinetics, behaviors and potential mechanisms of the peptide in the presence of membrane liposome, modeling Escherichia coli, whose membrane exhibits distinct lipid phases. To understand NA-CATH interactions, the role of lipid phases is critical. We test three different lipid compositions to detangle the effect of phase on NA-CATH's activity using a series of leakage experiments. From these studies, we observe that NA-CATH changes from membrane disruption to pore-based lysing, depending on phases and lipid composition. This behavior also plays a major role in its kinetics. PMID:27216315

  17. [Cooperative phenomena in the membrane potential of parathyroid cells induced by divalent cations].

    PubMed

    Hirose, T

    1985-01-01

    Membrane potentials of mouse parathyroid cells were measured by means of the intracellular microelectrode method. The membrane potential in external Krebs solution containing 2.5 mM of Ca++ was -23.6 +/- 0.4 mV (mean +/- standard error of mean). The low concentration of Ca++ (1.0 mM) caused hyperpolarization of the membrane potential to -61.7 +/- 0.8 mV. The membrane potential was proportional to the logarithm of the concentration of K ion in the solution of low Ca ion. The concentration of external Na+, C1- and HPO4-- had no effect on the membrane potential. The sigmoidal transition of membrane potentials was induced by the change of Ca ion concentration in the range from 2.5 to 1.0 mM. The change of the membrane potentials in low Ca ion is originated from increase in potassium permeability of the cell membrane. The similar sigmoidal changes of the membrane potentials were observed in the solution containing 4 to 3 mM of Sr ion. The Mg and Ba ion showed smaller effect on the membrane potential. The Goldman equation was extended to divalent ions. Appling the extended membrane potential equation, ratios of the permeability coefficients were obtained as follows: PK/PCa = 0.067 for 2.5 mM Ca++, 0.33 for 1.0 mM Ca++; PK/PSr = 0.08 for 4 mM Sr++ and 0.4 for 3 mM Sr++; PK/PMg = 0.5; PK/PBa = 0.67 for all range of concentration. The Hill constants of Sr ion and Ca ion were 20; the relationship between Sr ion and Ca ion was competitive. The Hill constants of Mg and Ba ion were 1 each. The Hill constant of Ca ion was depend of the temperature; nmax = 20 at 36 degrees C, n = 9 at 27 degrees C, n = 2 at 22 degrees C. The enthalpy of Ca-binding reaction was obtained from the Van't Hoff plot as 0.58 kcal. The activation energies of the K+ permeability increase were obtained from the Arrhenius plots as 3.3 kcal and 4 kcal. The difference, 0.7 kcal, corresponds to the enthalpy change of this reaction, of which value is close to that of the Ca-binding reaction. PMID:4093891

  18. Modulation of the effect of acetylcholine on insulin release by the membrane potential of B cells

    SciTech Connect

    Hermans, M.P.; Schmeer, W.; Henquin, J.C.

    1987-05-01

    Mouse islets were used to test the hypothesis that the B cell membrane must be depolarized for acetylcholine to increase insulin release. The resting membrane potential of B cells (at 3 mM glucose) was slightly decreased (5 mV) by acetylcholine, but no electrical activity appeared. This depolarization was accompanied by a Ca-independent acceleration of /sup 86/Rb and /sup 45/Ca efflux but no insulin release. When the B cell membrane was depolarized by a stimulatory concentration of glucose (10 mM), acetylcholine potentiated electrical activity, accelerated /sup 86/Rb and /sup 45/Ca efflux, and increased insulin release. This latter effect, but not the acceleration of /sup 45/Ca efflux, was totally dependent on extracellular Ca. If glucose-induced depolarization of the B cell membrane was prevented by diazoxide, acetylcholine lost all effects but those produced at low glucose. In contrast, when the B cell membrane was depolarized by leucine or tolbutamide (at 3 mM glucose), acetylcholine triggered a further depolarization with appearance of electrical activity, accelerated /sup 86/Rb and /sup 45/Ca efflux, and stimulated insulin release. Acetylcholine produced similar effects (except for electrical activity) in the presence of high K or arginine which, unlike the above test agents, depolarize the B cell membrane by a mechanism other than a decrease in K+ permeability. Omission of extracellular Ca abolished the releasing effect of acetylcholine under all conditions but only partially decreased the stimulation of /sup 45/Ca efflux. The results show thus that acetylcholine stimulation of insulin release does not result from mobilization of cellular Ca but requires that the B cell membrane be sufficiently depolarized to reach the threshold potential where Ca channels are activated. This may explain why acetylcholine alone does not initiate release but becomes active in the presence of a variety of agents.

  19. Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations.

    PubMed

    Rottenberg, H

    1984-01-01

    The uptake and binding of the lipophilic cations ethidium+, tetraphenylphosphonium+ (TPP+), triphenylmethylphosphonium+ (TPMP+), and tetraphenylarsonium+ (TPA+) in rat liver mitochondria and submitochondrial particles were investigated. The effects of membrane potential, surface potentials and cation concentration on the uptake and binding were elucidated. The accumulation of these cations by mitochondria is described by an uptake and binding to the matrix face of the inner membrane in addition to the binding to the cytosolic face of the inner membrane. The apparent partition coefficients between the external medium and the cytosolic surface of the inner membrane (K'o) and the internal matrix volume and matrix face of the inner membrane (K'i) were determined and were utilized to estimate the membrane potential delta psi from the cation accumulation factor Rc according to the relation delta psi = RT/ZF ln [(RcVo - K'o)/(Vi + K'i)] where Vo and Vi are the volume of the external medium and the mitochondrial matrix, respectively, and Rc is the ratio of the cation content of the mitochondria and the medium. The values of delta psi estimated from this equation are in remarkably good agreement with those estimated from the distribution of 86Rb in the presence of valinomycin. The results are discussed in relation to studies in which the membrane potential in mitochondria and bacterial cells was estimated from the distribution of lipophilic cations. PMID:6492133

  20. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry.

    PubMed

    Guthrie, H D; Welch, G R

    2006-08-01

    The use of frozen semen in the swine industry is limited by problems with viability and fertility compared with liquid semen. Part of the reduction in sperm motility and fertility associated with cryopreservation may be due to oxidative damage from excessive or inappropriate formation of reactive oxygen species (ROS). Chemiluminescence measurements of ROS are not possible in live cells and are problematic because of poor specificity. An alternative approach, flow cytometry, was developed to identify viable boar sperm containing ROS utilizing the dyes hydroethidine and 2', 7'-dichlorodihydrofluorescein diacetate as oxidizable substrates and impermeant DNA dyes to exclude dead sperm. The percentage of sperm with high mitochondrial transmembrane potential was determined by flow cytometry using the mitochondrial probe 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazolylcarbocyanine iodide with propidium iodide staining to exclude nonviable cells. Sperm were incubated with and without ROS generators and free radical scavengers. Basal ROS formation was low (less than 4%) and did not differ (P = 0.26) between viable fresh and frozen-thawed boar sperm. In addition, fresh and frozen-thawed viable sperm were equally susceptible (P = 0.20) to intracellular formation of ROS produced by xanthine/xanthine oxidase (94.4 and 87.9% of sperm, respectively). Menadione increased (P < 0.05) ROS formation, decreased (P < 0.05) JC-1-aggregate fluorescence intensity, and decreased (P < 0.05) motion variables by 25 to 60%. The mechanism of inhibition of motility by ROS formation may be related to a decrease in mitochondrial charge potential below a critical threshold. Catalase and superoxide dismutase treatment in the presence of xanthine/xanthine oxidase indicated that hydrogen peroxide was the primary intracellular ROS measured. Further, catalase, but not superoxide dismutase, was capable of attenuating ROS-induced inhibition of motility. Whereas basal intracellular hydrogen

  1. Flow cytometric-membrane potential detection of sodium channel active marine toxins: application to ciguatoxins in fish muscle and feasibility of automating saxitoxin detection.

    PubMed

    Manger, Ronald; Woodle, Doug; Berger, Andrew; Dickey, Robert W; Jester, Edward; Yasumoto, Takeshi; Lewis, Richard; Hawryluk, Timothy; Hungerford, James

    2014-01-01

    Ciguatoxins are potent neurotoxins with a significant public health impact. Cytotoxicity assays have allowed the most sensitive means of detection of ciguatoxin-like activity without reliance on mouse bioassays and have been invaluable in studying outbreaks. An improvement of these cell-based assays is presented here in which rapid flow cytometric detection of ciguatoxins and saxitoxins is demonstrated using fluorescent voltage sensitive dyes. A depolarization response can be detected directly due to ciguatoxin alone; however, an approximate 1000-fold increase in sensitivity is observed in the presence of veratridine. These results demonstrate that flow cytometric assessment of ciguatoxins is possible at levels approaching the trace detection limits of our earlier cytotoxicity assays, however, with a significant reduction in analysis time. Preliminary results are also presented for detection of brevetoxins and for automation and throughput improvements to a previously described method for detecting saxitoxins in shellfish extracts. PMID:24830140

  2. Designing Mimics of Membrane Active Proteins

    PubMed Central

    Sgolastra, Federica; deRonde, Brittany M.; Sarapas, Joel M.; Som, Abhigyan; Tew, Gregory N.

    2014-01-01

    CONSPECTUS As a semi-permeable barrier that controls the flux of biomolecules in and out the cell, the plasma membrane is critical in cell function and survival. Many proteins interact with the plasma membrane and modulate its physiology. Within this large landscape of membrane-active molecules, researchers have focused significant attention on two specific classes of peptides, antimicrobial peptides (AMPs) and cell penetrating peptides (CPPs) because of their unique properties. In this account, we describe our efforts over the last decade to build and understand synthetic mimics of antimicrobial peptides (SMAMPs). These endeavors represent one specific example of a much larger effort to understand how synthetic molecules interact with and manipulate the plasma membrane. Using both defined molecular weight oligomers and easier to produce, but heterogeneous, polymers, it has been possible to generate scaffolds with biological potency superior to the natural analogs. In one case, a compound has progressed through a phase II clinical trial for pan)staph infections. Modern biophysical assays highlighted the interplay between the synthetic scaffold and lipid composition leading to negative Gaussian curvature, a requirement for both pore formation and endosomal escape. The complexity of this interplay between lipids, bilayer components, and the scaffolds remains to be better resolved, but significant new insight has been provided. It is worthwhile to consider the various aspects of permeation and how these are related to ‘pore formation.’ More recently, our efforts have expanded toward protein transduction domains, or cell penetrating peptide, mimics. The combination of unique molecular scaffolds and guanidinium) rich side chains has produced an array of polymers with robust transduction (and delivery) activity. Being a new area, the fundamental interactions between these new scaffolds and the plasma membrane are just beginning to be understood. Negative Gaussian

  3. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    PubMed Central

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  4. Peptidergic modulation of the membrane potential of the Schwann cell of the squid giant nerve fibre.

    PubMed Central

    Evans, P D; Reale, V; Villegas, J

    1986-01-01

    The effects of a range of neuropeptides were investigated on the membrane potential of the Schwann cells of the giant nerve fibre of the tropical squid. Vasoactive intestinal peptide (VIP) produced a dose-dependent, long-lasting hyperpolarization of the Schwann-cell membrane potential. Among peptides structurally related to VIP, similar effects were produced by peptide histidine isoleucine (PHI) but not by secretin and glucagon. Substance P and somatostatin also hyperpolarized the Schwann-cell membrane potential but via receptor systems distinct from those activated by VIP. Methionine enkephalin ([Met]-enkephalin) blocked the actions of all the above peptides as well as the effects of DL-octopamine and carbachol. The actions of [Met]-enkephalin upon the VIP responses were antagonized by naloxone. VIP produces its effects on the Schwann-cell membrane potential via a receptor system that is independent from those described previously which mediate the effects of carbachol and DL-octopamine. However, VIP can potentiate the effects of the latter systems. The actions of VIP on the Schwann cell are unlikely to be mediated via changes in adenosine 3',5'-cyclic monophosphate (cyclic AMP) levels and are insensitive to changes in the level of extracellular calcium in the superfusate. The actions of VIP are, however, potentiated in the presence of low concentrations of lithium ions suggesting that the VIP receptor may mediate its effects by inducing the hydrolysis of polyphosphatidylinositols in the Schwann-cell membrane. Evidence is presented for the existence of an endogenous VIP-like component in the normal hyperpolarizing action of giant-axon activity on the membrane potential of the Schwann cell. PMID:2435897

  5. The potential and electric field in the cochlear outer hair cell membrane

    PubMed Central

    Harland, Ben; Lee, Wen-han; Brownell, William E.; Sun, Sean X.; Spector, Alexander A.

    2015-01-01

    Outer hair cell electromechanics, critically important to mammalian active hearing, is driven by the cell membrane potential. The membrane protein prestin is a crucial component of the active outer hair cell’s motor. The focus of the paper is the analysis of the local membrane potential and electric field resulting from the interaction of electric charges involved. Here the relevant charges are the ions inside and outside the cell, lipid bilayer charges, and prestin-associated charges (mobile-transferred by the protein under the action of the applied field and stationary-relatively unmoved by the field). The electric potentials across and along the membrane are computed for the case of an applied DC-field. The local amplitudes and phases of the potential under different frequencies are analyzed for the case of a DC+AC-field. We found that the effect of the system of charges alters the electric potential and internal field, which deviate significantly from their traditional linear and constant distributions. Under DC+AC conditions, the strong frequency dependence of the prestin mobile charge has a relatively small effect on the amplitude and phase of the resulting potential. The obtained results can help in a better understanding and experimental verification of the mechanism of prestin performance. PMID:25687712

  6. The potential and electric field in the cochlear outer hair cell membrane.

    PubMed

    Harland, Ben; Lee, Wen-han; Brownell, William E; Sun, Sean X; Spector, Alexander A

    2015-05-01

    Outer hair cell electromechanics, critically important to mammalian active hearing, is driven by the cell membrane potential. The membrane protein prestin is a crucial component of the active outer hair cell's motor. The focus of the paper is the analysis of the local membrane potential and electric field resulting from the interaction of electric charges involved. Here the relevant charges are the ions inside and outside the cell, lipid bilayer charges, and prestin-associated charges (mobile-transferred by the protein under the action of the applied field, and stationary-relatively unmoved by the field). The electric potentials across and along the membrane are computed for the case of an applied DC-field. The local amplitudes and phases of the potential under different frequencies are analyzed for the case of a DC + AC-field. We found that the effect of the system of charges alters the electric potential and internal field, which deviate significantly from their traditional linear and constant distributions. Under DC + AC conditions, the strong frequency dependence of the prestin mobile charge has a relatively small effect on the amplitude and phase of the resulting potential. The obtained results can help in a better understanding and experimental verification of the mechanism of prestin performance. PMID:25687712

  7. Excitable Membranes and Action Potentials in Paramecia: An Analysis of the Electrophysiology of Ciliates.

    PubMed

    Schlaepfer, Charles H; Wessel, Ralf

    2015-01-01

    The ciliate Paramecium caudatum possesses an excitable cell membrane whose action potentials (APs) modulate the trajectory of the cell swimming through its freshwater environment. While many stimuli affect the membrane potential and trajectory, students can use current injection and extracellular ionic concentration changes to explore how APs cause reversal of the cell's motion. Students examine these stimuli through intracellular recordings, also gaining insight into the practices of electrophysiology. Paramecium's large size of around 150 µm, simple care, and relative ease to penetrate make them ideal model organisms for undergraduate students' laboratory study. The direct link between behavior and excitable membranes has thought provoking evolutionary implications for the study of paramecia. Recording from the cell, students note a small resting potential around -30 mV, differing from animal resting potentials. By manipulating ion concentrations, APs of the relatively long length of 20-30 ms up to several minutes with depolarizations maxing over 0 mV are observed. Through comparative analysis of membrane potentials and the APs induced by either calcium or barium, students can deduce the causative ions for the APs as well as the mechanisms of paramecium APs. Current injection allows students to calculate quantitative electric characteristics of the membrane. Analysis will follow the literature's conclusion in a V-Gated Ca(++) influx and depolarization resulting in feedback from intracellular Ca(++) that inactivates V-Gated Ca(++) channels and activates Ca-Dependent K(+) channels through a secondary messenger cascade that results in the K(+) efflux and repolarization. PMID:26557800

  8. Tuning the membrane surface potential for efficient toxin import

    PubMed Central

    Zakharov, Stanislav D.; Rokitskaya, Tatyana I.; Shapovalov, Vladimir L.; Antonenko, Yuri N.; Cramer, William A.

    2002-01-01

    Membrane surface electrostatic interactions impose structural constraints on imported proteins. An unprecedented sensitive dependence on these constraints was seen in the voltage-gated import and channel formation by the C-terminal pore-forming domain of the bacteriocin, colicin E1. At physiological ionic strengths, significant channel current was observed only in a narrow interval of anionic lipid content ([L−]), with the maximum current (Imax) at 25–30 mol% (dioleoyl)-phosphatidylglycerol ([L−]max) corresponding to a surface potential of the lipid bilayer in the absence of protein, ψ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{o}^{max}}}\\end{equation*}\\end{document} = −60 ± 5 mV. Higher ionic strength shifted [L−]max to larger values, but ψ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{o}^{max}}}\\end{equation*}\\end{document} remained approximately constant. It is proposed that the channel current (i) increases and (ii) decreases at |ψo| values <55 mV and >65 mV, because of (i) electrostatic interactions needed for effective insertion of the channel polypeptide and (ii) constraints due to electrostatic forces on the flexibility needed for cooperative insertion into the membrane. The loss of flexibility for |ψo| ≫ 65 mV was demonstrated by the absence of thermally induced intraprotein distance changes of the bound polypeptide. The anionic lipid content, 25–30 mol%, corresponding to the channel current maxima, is similar to that of the target Escherichia coli cytoplasmic membrane and membranes of mesophilic microorganisms. This suggests that one

  9. Correlation of Daptomycin Bactericidal Activity and Membrane Depolarization in Staphylococcus aureus

    PubMed Central

    Silverman, Jared A.; Perlmutter, Nancy G.; Shapiro, Howard M.

    2003-01-01

    The objective of this study was to further elucidate the role of membrane potential in the mechanism of action of daptomycin, a novel lipopeptide antibiotic. Membrane depolarization was measured by both fluorimetric and flow cytometric assays. Adding daptomycin (5 μg/ml) to Staphylococcus aureus gradually dissipated membrane potential. In both assays, cell viability was reduced by >99% and membrane potential was reduced by >90% within 30 min of adding daptomycin. Cell viability decreased in parallel with changes in membrane potential, demonstrating a temporal correlation between bactericidal activity and membrane depolarization. Decreases in viability and potential also showed a dose-dependent correlation. Depolarization is indicative of ion movement across the cytoplasmic membrane. Fluorescent probes were used to demonstrate Ca2+-dependent, daptomycin-triggered potassium release from S. aureus. Potassium release was also correlated with bactericidal activity. This study demonstrates a clear correlation between dissipation of membrane potential and the bactericidal activity of daptomycin. A multistep model for daptomycin's mechanism of action is proposed. PMID:12878516

  10. K+ transport and membrane potentials in isolated rat parotid acini

    SciTech Connect

    Nauntofte, B.; Dissing, S.

    1988-10-01

    42K+ transport properties of isolated rat parotid acini were characterized concomitant with measurements of membrane potentials (Em) by means of the fluorescent dye diSC3-(5). In unstimulated acini suspended in a 5 mM K+ buffer, Em was governed by the K+ and Cl- gradients and amounted to about -59 mV, a value that remained unaffected on cholinergic stimulation. In unstimulated acini, 42K+ influx was largely mediated by the Na+-K+ pump, and the residual influxes were mediated by a bumetanide-sensitive component (cotransport system) and by K+ channels. Efflux of 42K+ was largely mediated by a bumetanide-sensitive component and by K+ channels. In the unstimulated state, the cotransport system was mediating K+-K+ exchange without contributing to the net uptake of K+. Within 10 s after stimulation, a approximately 10-fold increase in the acinar K+ conductance (gK) occurred, resulting in a rapid net efflux of K+ that amounted to approximately 3.8 mmol.l cells-1.s-1. Measurements of 42K+ fluxes as a function of the external K+ concentration revealed that in the stimulated state gK increases when external K+ is raised from 0.7 to 10 mM, consistent with an activation of acinar gK by the binding of external K+ to the channel. 42K+ flux ratios as well as the effect of the K+ channel inhibitor from scorpion venom (LQV) suggest that approximately 90% of K+ transport in the stimulated state is mediated by ''maxi'' K+ channels.

  11. The Amniotic Membrane: Development and Potential Applications - A Review.

    PubMed

    Favaron, P O; Carvalho, R C; Borghesi, J; Anunciação, A R A; Miglino, M A

    2015-12-01

    Foetal membranes are essential tissues for embryonic development, playing important roles related to protection, breathing, nutrition and excretion. The amnion is the innermost extraembryonic membrane, which surrounds the foetus, forming an amniotic sac that contains the amniotic fluid (AF). In recent years, the amniotic membrane has emerged as a potential tool for clinical applications and has been primarily used in medicine in order to stimulate the healing of skin and corneal diseases. It has also been used in vaginal reconstructive surgery, repair of abdominal hernia, prevention of surgical adhesions and pericardium closure. More recently, it has been used in regenerative medicine because the amniotic-derived stem cells as well as AF-derived cells exhibit cellular plasticity, angiogenic, cytoprotective, immunosuppressive properties, antitumoural potential and the ability to generate induced pluripotent stem cells. These features make them a promising source of stem cells for cell therapy and tissue engineering. In this review, we discussed the development of the amnion, AF and amniotic cavity in different species, as well as the applicability of stem cells from the amnion and AF in cellular therapy. PMID:26510939

  12. Latent progenitor cells as potential regulators for tympanic membrane regeneration

    NASA Astrophysics Data System (ADS)

    Kim, Seung Won; Kim, Jangho; Seonwoo, Hoon; Jang, Kyung-Jin; Kim, Yeon Ju; Lim, Hye Jin; Lim, Ki-Taek; Tian, Chunjie; Chung, Jong Hoon; Choung, Yun-Hoon

    2015-06-01

    Tympanic membrane (TM) perforation, in particular chronic otitis media, is one of the most common clinical problems in the world and can present with sensorineural healing loss. Here, we explored an approach for TM regeneration where the latent progenitor or stem cells within TM epithelial layers may play an important regulatory role. We showed that potential TM stem cells present highly positive staining for epithelial stem cell markers in all areas of normal TM tissue. Additionally, they are present at high levels in perforated TMs, especially in proximity to the holes, regardless of acute or chronic status, suggesting that TM stem cells may be a potential factor for TM regeneration. Our study suggests that latent TM stem cells could be potential regulators of regeneration, which provides a new insight into this clinically important process and a potential target for new therapies for chronic otitis media and other eardrum injuries.

  13. Investigation of the effects of 2.1 GHz microwave radiation on mitochondrial membrane potential (ΔΨm), apoptotic activity and cell viability in human breast fibroblast cells.

    PubMed

    Esmekaya, Meric Arda; Seyhan, Nesrin; Kayhan, Handan; Tuysuz, Mehmet Zahid; Kurşun, Ayşe Canseven; Yağcı, Münci

    2013-01-01

    In the present study we aimed to investigate the effects of 2.1 GHz Wideband Code Division Multiple Access (W-CDMA) modulated Microwave (MW) Radiation on cell survival and apoptotic activity of human breast fibroblast cells. The cell cultures were exposed to W-CDMA modulated MW at 2.1 GHz at a SAR level of 0.607 W/kg for 4 and 24 h. The cell viability was assessed by MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] method. The percentage of apoptotic cells was analyzed by Annexin V-FITC and PI staining. 5,5',6,6'-Tetrachloro-1,1',3,3'- tetraethylbenzimidazolcarbocyanine iodide (JC-1) was used to measure Mitochondrial Membrane Potential (ΔΨm). sFasL and Fas/APO-1 protein levels were determined by ELISA method. 2.1 GHz MW radiation was shown to be able to inhibit cell proliferation and induce apoptosis in human breast fibroblast cells. The cell viability of MW-exposed cells was decreased significantly. The percentages of Annexin V-FITC positive cells were higher in MW groups. ΔΨm was decreased significantly due to MW radiation exposure. However, neither sFas nor FasL level was significantly changed in MW-exposed fibroblast cells. The results of this study showed that 2.1 GHz W-CDMA modulated MW radiation-induced apoptotic cell death via the mitochondrial pathway. PMID:23723005

  14. Bergamottin isolated from Citrus bergamia exerts in vitro and in vivo antitumor activity in lung adenocarcinoma through the induction of apoptosis, cell cycle arrest, mitochondrial membrane potential loss and inhibition of cell migration and invasion.

    PubMed

    Wu, Hui-Juan; Wu, Hong-Bo; Zhao, Yan-Qiu; Chen, Li-Juan; Zou, Hong-Zhi

    2016-07-01

    The objective of the present study was to investigate the in vitro and in vivo anticancer properties of bergamottin, a natural furanocoumarin, against human non-small cell lung carcinoma (NSCLC) A549 cells. We also studied its effect on cell proliferation, cell cycle arrest, cell invasion, cell migration as well as cell apoptosis. Antiproliferative activity of bergamottin was estimated by the MTT assay. Phase contrast and fluorescence microscopy as well as flow cytometry using Annexin V-FITC assay were used to study induction of apoptosis by bergamottin in these cells. The effects of bergamottin on cell cycle phase distribution as well as on mitochondrial membrane potential were also demonstrated using flow cytometry. In vitro wound healing assay was used to study the effect of bergamottin on cell migration. The effects of bergamottin on tumor progression were also observed using a nude mouse model. The mice were divided into 4 groups and treated with bergamottin injected intraperitoneally. Bergamottin induced dose-dependent as well as time-dependent cytotoxic effects as well as inhibition of colony formation in the A549 cancer cells. Bergamottin also suppressed cancer cell invasion as well as cancer cell migration. Phase contrast microscopy and fluorescence microscopy revealed that bergamottin induced cell shrinkage, chromatin condensation and the cells became rounded and detached from each other. Bergamottin also induced a potent cell cycle arrest at the G2/M phase of the cell cycle. Experiments in mice showed that 25, 50 and 100 mg/kg bergamottin injection reduced the tumor weight from 1.61 g in the phosphate-buffered saline (PBS)-treated group (control) to 1.21, 0.42 and 0.15 g in the bergamottin-treated groups, respectively. The results of the present study revealed that bergamottin was able to inhibit lung cancer cell growth both in a cell model and a xenograft mouse model by inducing apoptosis, mitochondrial membrane potential loss, G2/M cell cycle

  15. Thermoelectric Potential of Polymer-Scaffolded Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Datta, R. S.; Said, S. M.; Sahamir, S. R.; Karim, M. R.; Sabri, M. F. M.; Nakajo, T.; Kubouchi, M.; Hayashi, K.; Miyazaki, Y.

    2014-06-01

    Organic thin films have been viewed as potential thermoelectric (TE) materials, given their ease of fabrication, flexibility, cost effectiveness, and low thermal conductivity. However, their intrinsically low electrical conductivity is a main drawback which results in a relatively lower TE figure of merit for polymer-based TE materials than for inorganic materials. In this paper, a technique to enhance the ion transport properties of polymers through the introduction of ionic liquids is presented. The polymer is in the form of a nanofiber scaffold produced using the electrospinning technique. These fibers were then soaked in different ionic liquids based on substituted imidazolium such as 1-ethyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium bromide. This method was applied to electrospun polyacrylonitrile and a mixture of polyvinyl alcohol and chitosan polymers. The ion transport properties of the membranes have been observed to increase with increasing concentration of ionic liquid, with maximum electrical conductivity of 1.20 × 10-1 S/cm measured at room temperature. Interestingly, the maximum electrical conductivity value surpassed the value of pure ionic liquids. These results indicate that it is possible to significantly improve the electrical conductivity of a polymer membrane through a simple and cost-effective method. This may in turn boost the TE figures of merit of polymer materials, which are well known to be considerably lower than those of inorganic materials. Results in terms of the Seebeck coefficient of the membranes are also presented in this paper to provide an overall representation of the TE potential of the polymer-scaffolded ionic liquid membranes.

  16. Membrane potential and ion partitioning in an erythrocyte using the Poisson-Boltzmann equation.

    PubMed

    Barbosa, Nathalia S V; Lima, Eduardo R A; Boström, Mathias; Tavares, Frederico W

    2015-05-28

    In virtually all mammal cells, we can observe a much higher concentration of potassium ions inside the cell and vice versa for sodium ions. Classical theories ignore the specific ion effects and the difference in the thermodynamic reference states between intracellular and extracellular environments. Usually, this differential ion partitioning across a cell membrane is attributed exclusively to the active ion transport. Our aim is to investigate how much the dispersion forces contribute to active ion pumps in an erythrocyte (red blood cell) as well as the correction of chemical potential reference states between intracellular and extracellular environments. The ionic partition and the membrane potential in an erythrocyte are analyzed by the modified Poisson-Boltzmann equation, considering nonelectrostatic interactions between ions and macromolecules. Results show that the nonelectrostatic potential calculated by Lifshitz theory has only a small influence with respect to the high concentration of K(+) in the intracellular environment in comparison with Na(+). PMID:25941952

  17. Polymeric membrane systems of potential use for battery separators

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.

    1977-01-01

    Two membrane systems were investigated that may have potential use as alkaline battery separators. One system comprises two miscible polymers: a support polymer (e.g., polyvinyl formal) and an ion conductor such as polyacrylic acid. The other system involves a film composed of two immiscible polymers: a conducting polymer (e.g., calcium polyacrylate) suspended in an inert polymer support matrix, polyphenylene oxide. Resistivities in 45-percent potassium hydroxide and qualitative mechanical properties are presented for films comprising various proportions of conducting and support polymers. In terms of these parameters, the results are encouraging for optimum ratios of conducting to support polymers.

  18. Daptomycin exerts rapid bactericidal activity against Bacillus anthracis without disrupting membrane integrity

    PubMed Central

    Xing, Yu-hua; Wang, Wei; Dai, Su-qin; Liu, Ti-yan; Tan, Jun-jie; Qu, Guo-long; Li, Yu-xia; Ling, Yan; Liu, Gang; Fu, Xue-qi; Chen, Hui-peng

    2014-01-01

    Aim: To examine whether the novel cyclic lipopeptide antibiotic daptomycin could be used to treat anthrax and to study the mechanisms underlying its bactericidal action against Bacillus anthracis. Methods: Spore-forming B anthracis AP422 was tested. MIC values of antibiotics were determined. Cell membrane potential was measured using flow cytometric assays with membrane potential-sensitive fluorescent dyes. Cell membrane integrity was detected using To-Pro-3 iodide staining and transmission electron microscopy. K+ efflux and Na+ influx were measured using the fluorescent probes PBFI and SBFI-AM, respectively. Results: Daptomycin exhibited rapid bactericidal activity against vegetative B anthracis with a MIC value of 0.78 μg/mL, which was comparable to those of ciprofloxacin and penicillin G. Furthermore, daptomycin prevented the germinated spores from growing into vegetative bacteria. Daptomycin concentration-dependently dissipated the membrane potential of B anthracis and caused K+ efflux and Na+ influx without disrupting membrane integrity. In contrast, both ciprofloxacin and penicillin G did not change the membrane potential of vegetative bacteria or spores. Penicillin G disrupted membrane integrity of B anthracis, whereas ciprofloxacin had no such effect. Conclusion: Daptomycin exerts rapid bactericidal action against B anthracis via reducing membrane potential without disrupting membrane integrity. This antibiotic can be used as an alternate therapy for B anthracis infections. PMID:24362329

  19. Dynamical speckles patterns of action potential transmission effects in squid giant axon membrane

    NASA Astrophysics Data System (ADS)

    Llovera-González, Juan J.; Moreno-Yeras, Alfredo B.; Muramatsu, Mikiya; Soga, Diogo; Serra-Toledo, Rolando L.; Magalhães, Daniel S. F.

    2013-11-01

    Undoubtedly the most important result of the investigations in physiology and biophysics was the discovery of the electrochemical mechanism of propagation of the action potential in nerves that was made by Hodgkin and Huxley during the first half of the past century. Since some decades ago diverse experiments about the electro optical properties of the axon membrane there was published using the most diverse optical experimental procedures6-10. In this paper some results of a dynamical speckle technique applied for obtaining microscopic images of a section of a squid giant axon membrane during the activation by electrical impulses and his digital process are presented.

  20. Inward rectifier potassium conductance regulates membrane potential of canine colonic smooth muscle.

    PubMed

    Flynn, E R; McManus, C A; Bradley, K K; Koh, S D; Hegarty, T M; Horowitz, B; Sanders, K M

    1999-07-01

    1. The membrane potential of gastrointestinal smooth muscles determines the open probability of ion channels involved in rhythmic electrical activity. The role of Ba2+-sensitive K+ conductances in the maintenance of membrane potential was examined in canine proximal colon circular muscle. 2. Application of Ba2+ (1-100 microM) to strips of tunica muscularis produced depolarization of cells along the submucosal surface of the circular muscle layer. Significantly higher concentrations of Ba2+ were needed to depolarize preparations from which the submucosal and myenteric pacemaker regions were removed. 3. Elevation of extracellular [K+]o (from 5.9 to 12 mM) brought membrane potentials closer to EK (the Nernst potential for K+ ions), suggesting activation of a K+ conductance. This occurred at potentials much more negative than the activation range for delayed rectifier channels (Kv). 4. Forskolin (1 microM) caused hyperpolarization and a leftward shift in the dose-response relationship for Ba2+, suggesting that forskolin may activate a Ba2+-sensitive conductance. 5. Patch-clamp recordings from interstitial cells of Cajal (ICC) revealed the presence of a Ba2+-sensitive inward rectifier potassium conductance. Far less of this conductance was present in smooth muscle cells. 6. Kir2.1 was expressed in the circular muscle layer of the canine proximal colon, duodenum, jejunum and ileum. Kir2.1 mRNA was expressed in greater abundance along the submucosal surface of the circular muscle layer in the colon. 7. These results demonstrate that ICC express a Ba2+-sensitive conductance (possibly encoded by Kir2.1). This conductance contributes to the generation and maintenance of negative membrane potentials between slow waves. PMID:10373706

  1. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    PubMed

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  2. The Lipopeptide Antibiotic Paenibacterin Binds to the Bacterial Outer Membrane and Exerts Bactericidal Activity through Cytoplasmic Membrane Damage

    PubMed Central

    Huang, En

    2014-01-01

    Paenibacterin is a broad-spectrum lipopeptide antimicrobial agent produced by Paenibacillus thiaminolyticus OSY-SE. The compound consists of a cyclic 13-residue peptide and an N-terminal C15 fatty acyl chain. The mechanism of action of paenibacterin against Escherichia coli and Staphylococcus aureus was investigated in this study. The cationic lipopeptide paenibacterin showed a strong affinity for the negatively charged lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria. Addition of LPS (100 μg/ml) completely eliminated the antimicrobial activity of paenibacterin against E. coli. The electrostatic interaction between paenibacterin and LPS may have displaced the divalent cations on the LPS network and thus facilitated the uptake of antibiotic into Gram-negative cells. Paenibacterin also damaged the bacterial cytoplasmic membrane, as evidenced by the depolarization of membrane potential and leakage of intracellular potassium ions from cells of E. coli and S. aureus. Therefore, the bactericidal activity of paenibacterin is attributed to disruption of the outer membrane of Gram-negative bacteria and damage of the cytoplasmic membrane of both Gram-negative and Gram-positive bacteria. Despite the evidence of membrane damage, this study does not rule out additional bactericidal mechanisms potentially exerted by paenibacterin. PMID:24561581

  3. Membrane stretch and cytoplasmic Ca2+ independently modulate stretch-activated BK channel activity.

    PubMed

    Zhao, Hu-Cheng; Agula, Hasi; Zhang, Wei; Wang, Fa; Sokabe, Masahiro; Li, Lu-Ming

    2010-11-16

    Large conductance Ca(2+)-activated K(+) (BK) channels are responsible for changes in chemical and physical signals such as Ca(2+), Mg(2+) and membrane potentials. Previously, we reported that a BK channel cloned from chick heart (SAKCaC) is activated by membrane stretch. Molecular cloning and subsequent functional characterization of SAKCaC have shown that both the membrane stretch and intracellular Ca(2+) signal allosterically regulate the channel activity via the linker of the gating ring complex. Here we investigate how these two gating principles interact with each other. We found that stretch force activated SAKCaC in the absence of cytoplasmic Ca(2+). Lack of Ca(2+) bowl (a calcium binding motif) in SAKCaC diminished the Ca(2+)-dependent activation, but the mechanosensitivity of channel was intact. We also found that the abrogation of STREX (a proposed mechanosensing apparatus) in SAKCaC abolished the mechanosensitivity without altering the Ca(2+) sensitivity of channels. These observations indicate that membrane stretch and intracellular Ca(2+) could independently modulate SAKCaC activity. PMID:20673577

  4. Theoretical considerations on the role of membrane potential in the regulation of endosomal pH.

    PubMed Central

    Rybak, S L; Lanni, F; Murphy, R F

    1997-01-01

    Na+,K(+)-ATPase has been observed to partially inhibit acidification of early endosomes by increasing membrane potential, whereas chloride channels have been observed to enhance acidification in endosomes and lysosomes. However, little theoretical analysis of the ways in which different pumps and channels may interact has been carried out. We therefore developed quantitative models of endosomal pH regulation based on thermodynamic considerations. We conclude that 1) both size and shape of endosomes will influence steady-state endosomal pH whenever membrane potential due to the pH gradient limits proton pumping, 2) steady-state pH values similar to those observed in early endosomes of living cells can occur in endosomes containing just H(+)-ATPases and Na+,K(+)-ATPases when low endosomal buffering capacities are present, and 3) inclusion of active chloride channels results in predicted pH values well below those observed in vivo. The results support the separation of endocytic compartments into two classes, those (such as early endosomes) whose acidification is limited by attainment of a certain membrane potential, and those (such as lysosomes) whose acidification is limited by the attainment of a certain pH. The theoretical framework and conclusions described are potentially applicable to other membrane-enclosed compartments that are acidified, such as elements of the Golgi apparatus. PMID:9251786

  5. Toxicity and Loss of Mitochondrial Membrane Potential Induced by Alkyl Gallates in Trypanosoma cruzi

    PubMed Central

    Andréo, Rogério; Regasini, Luís Octávio; Petrônio, Maicon Segalla; Chiari-Andréo, Bruna Galdorfini; Tansini, Aline; Silva, Dulce Helena Siqueira; Cicarelli, Regina Maria Barretto

    2015-01-01

    American trypanosomiasis or Chagas disease is a debilitating disease representing an important social problem that affects, approximately, 10 million people in the world. The main aggravating factor of this situation is the lack of an effective drug to treat the different stages of this disease. In this context, the search for trypanocidal substances isolated from plants, synthetic or semi synthetic molecules, is an important strategy. Here, the trypanocidal potential of gallates was assayed in epimastigotes forms of T. cruzi and also, the interference of these substances on the mitochondrial membrane potential of the parasites was assessed, allowing the study of the mechanism of action of the gallates in the T. cruzi organisms. Regarding the preliminary structure-activity relationships, the side chain length of gallates plays crucial role for activity. Nonyl, decyl, undecyl, and dodecyl gallates showed potent antitrypanosomal effect (IC50 from 1.46 to 2.90 μM) in contrast with benznidazole (IC50 = 34.0 μM). Heptyl gallate showed a strong synergistic activity with benznidazole, reducing by 105-fold the IC50 of benznidazole. Loss of mitochondrial membrane potential induced by these esters was revealed. Tetradecyl gallate induced a loss of 53% of the mitochondrial membrane potential, at IC50 value.

  6. Fouling mitigation of anion exchange membrane by zeta potential control.

    PubMed

    Park, Jin-Soo; Lee, Hong-Joo; Choi, Seok-Ju; Geckeler, Kurt E; Cho, Jaeweon; Moon, Seung-Hyeon

    2003-03-15

    The feasibility of fouling mitigation of anion exchange membranes (AEMs) in the presence of humate was studied by adding three different types of water-soluble polymers, i.e., poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), and poly(ethylene imine) (PEI), during electrodialysis (ED) desalination. Measurement of zeta potential of the humate used in this study showed highly negative potential (about -30 mV), implying that the humate had a strong fouling potential on the AEMs in ED. Of the three water-soluble polymers, PEI showed a positive zeta potential (about +14 mV) and is able to form an interpolymer complex with the humate. PAA and PVA hardly formed interpolymer complexes with humate due to electrostatic repulsion. The PEI-humate mixture with a volume ratio of 1:20 (PEI:humate) showed zero zeta potential, and a complexed humate with zero surface charge was formed, resulting in no fouling effects on the AEMs. Accordingly, the desalting ED experiments with PEI showed improved ED performance. Further, black colloids formed in the mixture did not cause the cell resistance to increase. PMID:16256509

  7. Membrane dipole potential modulates proton conductance through gramicidin channel: movement of negative ionic defects inside the channel.

    PubMed Central

    Rokitskaya, Tatyana I; Kotova, Elena A; Antonenko, Yuri N

    2002-01-01

    The effect of membrane dipole potential on gramicidin channel activity in bilayer lipid membranes (BLMs) was studied. Remarkably, it appeared that proton conductance of gramicidin A (gA) channels responded to modulation of the dipole potential oppositely as compared with gA alkali metal cation conductance. In particular, the addition of phloretin, known to reduce the membrane dipole potential, resulted in a decrease in gA proton conductance, on one hand, and an increase in gA alkali metal conductance, on the other hand, whereas 6-ketocholestanol, the agent raising the membrane dipole potential, provoked an increase in gA proton conductance as opposed to a decrease in the alkali metal cation conductance. The peculiarity of the 6-ketocholestanol effect consisted in its dependence on the H(+) concentration. The experiments with the impermeant dipolar compound, phloridzin, showed that the response of proton transport through gramicidin channels to varying the membrane dipole potential did not change qualitatively if the dipole potential of only one monolayer or both monolayers of the BLM was altered. In contrast to gA proton conductance, the single-channel lifetime changed similarly with varying the membrane dipole potential, regardless of the kind of permeant cations (protons or potassium ions). The results of this study could be tentatively accounted for by an assumption that one of the rate-limiting steps of proton conduction through gramicidin channels represents, in fact, movement of negatively charged species (negative ionic defects) across a membrane. PMID:11806928

  8. Water permeation through Nafion membranes: the role of water activity.

    PubMed

    Majsztrik, Paul; Bocarsly, Andrew; Benziger, Jay

    2008-12-25

    The permeation of water through 1100 equivalent weight Nation membranes has been measured for film thicknesses of 51-254 microm, temperatures of 30-80 degrees C, and water activities (a(w)) from 0.3 to 1 (liquid water). Water permeation coefficients increased with water content in Nafion. For feed side water activity in the range 0 < a(w) < 0.8, permeation coefficients increased linearly with water activity and scaled inversely with membrane thickness. The permeation coefficients were independent of membrane thickness when the feed side of the membrane was in contact with liquid water (a(w) = 1). The permeation coefficient for a 127 microm thick membrane increased by a factor of 10 between contacting the feed side of the membrane to water vapor (a(w) = 0.9) compared to liquid water (a(w) = 1). Water permeation couples interfacial transport across the fluid membrane interface with water transport through the hydrophilic phase of Nafion. At low water activity the hydrophilic volume fraction is small and permeation is limited by water diffusion. The volume fraction of the hydrophilic phase increases with water activity, increasing water transport. As a(w) --> 1, the effective transport rate increased by almost an order of magnitude, resulting in a change of the limiting transport resistance from water permeation across the membrane to interfacial mass transport at the gas/membrane interface. PMID:19053672

  9. The Structural Basis of Cholesterol Activity in Membranes

    SciTech Connect

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  10. Synthesis of Optical Molecular Probes for electric potential across a cell membrane

    NASA Astrophysics Data System (ADS)

    Lamichhane, Roshan

    Optical Imaging of neuronal activities is an attractive method, but the two widely used optical imaging methods based on Fluorescence Resonance Transfer (FRET) and electrochromism have some deficiencies that Photo Induced Electron Transfer (PeT) method has eliminated. In the paper we talk about the synthesis of optical molecular probes that rely on PeT mechanism, and which could possibly be used to measure the transmembrane potential across the neuronal cell membranes.

  11. [HOMOCYSTEINE-INDUCED MEMBRANE CURRENTS, CALCIUM RESPONSES AND CHANGES OF MITOCHONDRIAL POTENTIAL IN RAT CORTICAL NEURONS].

    PubMed

    Abushik, P A; Karelina, T V; Sibarov, D A; Stepanenko, J D; Giniatullin, R; Antonov, S M

    2015-01-01

    Homocysteine, a sulfur-containing amino acid, exhibits neurotoxic effects and is involved in the pathogenesis of several major neurodegenerative disorders. In contrast to well studied excitoxicity of glutamate, the mechanism of homocysteine neurotoxicity is not clearly understood. By using whole-cell patch-clamp, calcium imaging (fluo-3) and measurements of mitochondrial membrane potential (rhodamine 123) we studied transmembrane currents, calcium signals and changes in mitochondrial membrane potential induced by homocysteine versus responses induced by NMDA and glutamate in cultured rat cortical neurons. L-homocysteine (50 µM) induced inward currents that could be completely blocked by the selective antagonist of NMDA receptors - AP-5. In contrast to NMDA-induced currents, homocysteine-induced currents had a smaller steady-state amplitude. Comparison of calcium responses to homocysteine, NMDA or glutamate demonstrated that in all cortical neurons homocysteine elicited short, oscillatory-type calcium responses, whereas NMDA or glutamate induced sustained increase of intracellular calcium. Analysis of mitochondrial changes demonstrated that in contrast to NMDA homocysteine did not cause a drop of mitochondrial membrane potential at the early stages of action. However, after its long-term action, as in the case of NMDA and glutamate, the changes in mitochondrial membrane potential were comparable with the full drop of respiratory chain induced by protonophore FCCP. Our data suggest that in cultured rat cortical neuron homocysteine at the first stages of action induces neurotoxic effects through activation of NMDA-type ionotropic glutamate receptors with strong calcium influx through the channels of these receptors. The long-term action of homocysteine may lead to mitochondrial disfuction and appears as a drop of mitochondrial membrane potential. PMID:26547950

  12. Excitable Membranes and Action Potentials in Paramecia: An Analysis of the Electrophysiology of Ciliates

    PubMed Central

    Schlaepfer, Charles H.; Wessel, Ralf

    2015-01-01

    The ciliate Paramecium caudatum possesses an excitable cell membrane whose action potentials (APs) modulate the trajectory of the cell swimming through its freshwater environment. While many stimuli affect the membrane potential and trajectory, students can use current injection and extracellular ionic concentration changes to explore how APs cause reversal of the cell’s motion. Students examine these stimuli through intracellular recordings, also gaining insight into the practices of electrophysiology. Paramecium’s large size of around 150 µm, simple care, and relative ease to penetrate make them ideal model organisms for undergraduate students’ laboratory study. The direct link between behavior and excitable membranes has thought provoking evolutionary implications for the study of paramecia. Recording from the cell, students note a small resting potential around −30 mV, differing from animal resting potentials. By manipulating ion concentrations, APs of the relatively long length of 20–30 ms up to several minutes with depolarizations maxing over 0 mV are observed. Through comparative analysis of membrane potentials and the APs induced by either calcium or barium, students can deduce the causative ions for the APs as well as the mechanisms of paramecium APs. Current injection allows students to calculate quantitative electric characteristics of the membrane. Analysis will follow the literature’s conclusion in a V-Gated Ca++ influx and depolarization resulting in feedback from intracellular Ca++ that inactivates V-Gated Ca++ channels and activates Ca-Dependent K+ channels through a secondary messenger cascade that results in the K+ efflux and repolarization. PMID:26557800

  13. Development of active-transport membrane devices

    SciTech Connect

    Laciak, D.V.

    1994-07-01

    This report introduces the concept of Air Products` AT membranes for the separation of NH{sub 3} and CO{sub 2} from process gas streams and presents results from the first year fabrication concept development studies.

  14. Cortical membrane potential signature of optimal states for sensory signal detection

    PubMed Central

    McGinley, Matthew J.; David, Stephen V.; McCormick, David A.

    2015-01-01

    The neural correlates of optimal states for signal detection task performance are largely unknown. One hypothesis holds that optimal states exhibit tonically depolarized cortical neurons with enhanced spiking activity, such as occur during movement. We recorded membrane potentials of auditory cortical neurons in mice trained on a challenging tone-in-noise detection task while assessing arousal with simultaneous pupillometry and hippocampal recordings. Arousal measures accurately predicted multiple modes of membrane potential activity, including: rhythmic slow oscillations at low arousal, stable hyperpolarization at intermediate arousal, and depolarization during phasic or tonic periods of hyper-arousal. Walking always occurred during hyper-arousal. Optimal signal detection behavior and sound-evoked responses, at both sub-threshold and spiking levels, occurred at intermediate arousal when pre-decision membrane potentials were stably hyperpolarized. These results reveal a cortical physiological signature of the classically-observed inverted-U relationship between task performance and arousal, and that optimal detection exhibits enhanced sensory-evoked responses and reduced background synaptic activity. PMID:26074005

  15. Active membrane having uniform physico-chemically functionalized ion channels

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  16. Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes.

    PubMed

    Ramaswamy, S; Toner, J; Prost, J

    2000-04-10

    The stability of a flexible fluid membrane containing a distribution of mobile, active proteins (e.g., proton pumps) is shown to depend on the structure and functional asymmetry of the proteins. A stable active membrane is in a nonequilibrium steady state with height fluctuations whose statistical properties are governed by the protein activity. Disturbances are predicted to travel as waves at sufficiently long wavelength, with speed set by the normal velocity of the pumps. The unstable case involves a spontaneous, pump-driven undulation of the membrane, with clumping of the proteins in regions of high activity. PMID:11019123

  17. Salt stress in a membrane bioreactor: dynamics of sludge properties, membrane fouling and remediation through powdered activated carbon dosing.

    PubMed

    De Temmerman, L; Maere, T; Temmink, H; Zwijnenburg, A; Nopens, I

    2014-10-15

    Membrane bioreactors are a well-established technology for wastewater treatment. However, their efficiency is adversely impacted by membrane fouling, primarily inciting very conservative operations of installations that makes them less appealing from an economic perspective. This fouling propensity of the activated sludge is closely related to system disturbances. Therefore, improved insight into the impact of fouling is crucial towards increased membrane performance. In this work, the disturbance of a salt shock was investigated with respect to sludge composition and filterability in two parallel lab-scale membrane bioreactors. Several key sludge parameters (soluble microbial products, sludge-bound extracellular polymeric substances, supramicron particle size distributions (PSD), submicron particle concentrations) were intensively monitored prior to, during, and after a disturbance to investigate its impact as well as the potential governing mechanism. Upon salt addition, the supramicron PSD immediately shifted to smaller floc sizes, and the total fouling rate increased. Following a certain delay, an increase in submicron particles, supernatant proteins, and polysaccharides was observed as well as an increase in the irreversible membrane fouling rate. Recovery from the disturbance was evidenced with a simultaneous decrease in the above mentioned quantities. A similar experiment introducing powdered activated carbon (PAC) addition used for remediation resulted in either no or less significant changes in the above mentioned quantities, signifying its potential as a mitigation strategy. PMID:24999116

  18. Simultaneous evaluation of plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential in bovine spermatozoa by flow cytometry.

    PubMed

    Kanno, Chihiro; Kang, Sung-Sik; Kitade, Yasuyuki; Yanagawa, Yojiro; Takahashi, Yoshiyuki; Nagano, Masashi

    2016-08-01

    The present study aimed to develop an objective evaluation procedure to estimate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bull spermatozoa simultaneously by flow cytometry. Firstly, we used frozen-thawed semen mixed with 0, 25, 50, 75 or 100% dead spermatozoa. Semen was stained using three staining solutions: SYBR-14, propidium iodide (PI), and phycoerythrin-conjugated peanut agglutinin (PE-PNA), for the evaluation of plasma membrane integrity and acrosomal integrity. Then, characteristics evaluated by flow cytometry and by fluorescence microscopy were compared. Characteristics of spermatozoa (viability and acrosomal integrity) evaluated by flow cytometry and by fluorescence microscopy were found to be similar. Secondly, we attempted to evaluate the plasma membrane integrity, acrosomal integrity, and also mitochondrial membrane potential of spermatozoa by flow cytometry using conventional staining with three dyes (SYBR-14, PI, and PE-PNA) combined with MitoTracker Deep Red (MTDR) staining (quadruple staining). The spermatozoon characteristics evaluated by flow cytometry using quadruple staining were then compared with those of staining using SYBR-14, PI, and PE-PNA and staining using SYBR-14 and MTDR. There were no significant differences in all characteristics (viability, acrosomal integrity, and mitochondrial membrane potential) evaluated by quadruple staining and the other procedures. In conclusion, quadruple staining using SYBR-14, PI, PE-PNA, and MTDR for flow cytometry can be used to evaluate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bovine spermatozoa simultaneously. PMID:26369275

  19. Potential of novel antimicrobial peptide P3 from bovine erythrocytes and its analogs to disrupt bacterial membranes in vitro and display activity against drug-resistant bacteria in a mouse model.

    PubMed

    Zhang, Qinghua; Xu, Yanzhao; Wang, Qing; Hang, Bolin; Sun, Yawei; Wei, Xiaoxiao; Hu, Jianhe

    2015-05-01

    With the emergence of many antibiotic-resistant strains worldwide, antimicrobial peptides (AMPs) are being evaluated as promising alternatives to conventional antibiotics. P3, a novel hemoglobin peptide derived from bovine erythrocytes, exhibited modest antimicrobial activity in vitro. We evaluated the antimicrobial activities of P3 and an analog, JH-3, both in vitro and in vivo. The MICs of P3 and JH-3 ranged from 3.125 μg/ml to 50 μg/ml when a wide spectrum of bacteria was tested, including multidrug-resistant strains. P3 killed bacteria within 30 min by disrupting the bacterial cytoplasmic membrane and disturbing the intracellular calcium balance. Circular dichroism (CD) spectrometry showed that P3 assumed an α-helical conformation in bacterial lipid membranes, which was indispensable for antimicrobial activity. Importantly, the 50% lethal dose (LD50) of JH-3 was 180 mg/kg of mouse body weight after intraperitoneal (i.p.) injection, and no death was observed at any dose up to 240 mg/kg body weight following subcutaneous (s.c.) injection. Furthermore, JH-3 significantly decreased the bacterial count and rescued infected mice in a model of mouse bacteremia. In conclusion, P3 and an analog exhibited potent antimicrobial activities and relatively low toxicities in a mouse model, indicating that they may be useful for treating infections caused by drug-resistant bacteria. PMID:25753638

  20. Active Spacecraft Potential Control Investigation

    NASA Astrophysics Data System (ADS)

    Torkar, K.; Nakamura, R.; Tajmar, M.; Scharlemann, C.; Jeszenszky, H.; Laky, G.; Fremuth, G.; Escoubet, C. P.; Svenes, K.

    2016-03-01

    In tenuous plasma the floating potential of sunlit spacecraft reaches tens of volts, positive. The corresponding field disturbs measurements of the ambient plasma by electron and ion sensors and can reduce micro-channel plate lifetime in electron detectors owing to large fluxes of attracted photoelectrons. Also the accuracy of electric field measurements may suffer from a high spacecraft potential. The Active Spacecraft Potential Control (ASPOC) neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for the Magnetospheric Multiscale (MMS) mission includes new developments in the design of the emitters and the electronics. New features include the use of capillaries instead of needles, new materials for the emitters and their internal thermal insulators, an extended voltage and current range of the electronics, both for ion emission and heating purposes, and a more capable control software. This enables lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Results from on-ground testing demonstrate compliance with requirements. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. Finally, the various operating modes to adapt to changing boundary conditions are described along with the main data products.

  1. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity

    PubMed Central

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845

  2. Functional Implications of Plasma Membrane Condensation for T Cell Activation

    PubMed Central

    Quinn, Carmel M.; Engelhardt, Karin; Williamson, David; Grewal, Thomas; Jessup, Wendy; Harder, Thomas; Gaus, Katharina

    2008-01-01

    The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC), which is known to prevent the formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control, to assess the importance of membrane condensation for T cell activation. Upon 7KC treatment, T cell antigen receptor (TCR) triggered calcium fluxes and early tyrosine phosphorylation events appear unaltered. However, signaling complexes form less efficiently on the cell surface, fewer phosphorylated signaling proteins are retained in the plasma membrane and actin restructuring at activation sites is impaired in 7KC-enriched cells resulting in compromised downstream activation responses. Our data emphasizes lipids as an important medium for the organization at T cell activation sites and strongly indicates that membrane condensation is an important element of the T cell activation process. PMID:18509459

  3. Membrane Bioreactor Technology for the Development of Functional Materials from Sea-Food Processing Wastes and Their Potential Health Benefits

    PubMed Central

    Kim, Se-Kwon; Senevirathne, Mahinda

    2011-01-01

    Sea-food processing wastes and underutilized species of fish are a potential source of functional and bioactive compounds. A large number of bioactive substances can be produced through enzyme-mediated hydrolysis. Suitable enzymes and the appropriate bioreactor system are needed to incubate the waste materials. Membrane separation is a useful technique to extract, concentrate, separate or fractionate the compounds. The use of membrane bioreactors to integrate a reaction vessel with a membrane separation unit is emerging as a beneficial method for producing bioactive materials such as peptides, chitooligosaccharides and polyunsaturated fatty acids from diverse seafood-related wastes. These bioactive compounds from membrane bioreactor technology show diverse biological activities such as antihypertensive, antimicrobial, antitumor, anticoagulant, antioxidant and radical scavenging properties. This review discusses the application of membrane bioreactor technology for the production of value-added functional materials from sea-food processing wastes and their biological activities in relation to health benefits. PMID:24957872

  4. Membrane fouling potentials and cellular properties of bacteria isolated from fouled membranes in a MBR treating municipal wastewater.

    PubMed

    Ishizaki, So; Fukushima, Toshikazu; Ishii, Satoshi; Okabe, Satoshi

    2016-09-01

    Membrane fouling remains a major challenge for wider application of membrane bioreactors (MBRs) to wastewater treatment. Membrane fouling is mainly caused by microorganisms and their excreted microbial products. For development of more effective control strategies, it is important to identify and characterize the microorganisms that are responsible for membrane fouling. In this study, 41 bacterial strains were isolated from fouled microfiltration membranes in a pilot-scale MBR treating real municipal wastewater, and their membrane fouling potentials were directly measured using bench-scale cross-flow membrane filtration systems (CFMFSs) and related to their cellular properties. It was found that the fouling potential was highly strain dependent, suggesting that bacterial identification at the strain level is essential to identify key fouling-causing bacteria (FCB). The FCB showed some common cellular properties. The most prominent feature of FCB was that they formed convex colonies having swollen podgy shape and smooth lustrous surfaces with high water, hydrophilic organic matter and carbohydrate content. However, general and rigid biofilm formation potential as determined by microtiter plates and cell surface properties (i.e., hydrophobicity and surface charge) did not correlate with the fouling potential in this study. These results suggest that the fouling potential should be directly evaluated under filtration conditions, and the colony water content could be a useful indicator to identify the FCB. PMID:27232989

  5. Effects of Light on the Membrane Potential of Protoplasts from Samanea saman Pulvini 1

    PubMed Central

    Kim, Hak Yong; Coté, Gary G.; Crain, Richard C.

    1992-01-01

    Rhythmic light-sensitive movements of the leaflets of Samanea saman depend upon ion fluxes across the plasma membrane of extensor and flexor cells in opposing regions of the leaf-movement organ (pulvinus). We have isolated protoplasts from the extensor and flexor regions of S. saman pulvini and have examined the effects of brief 30-second exposures to white, blue, or red light on the relative membrane potential using the fluorescent dye, 3,3′-dipropylthiadicarbocyanine iodide. White and blue light induced transient membrane hyperpolarization of both extensor and flexor protoplasts; red light had no effect. Following white or blue light-induced hyperpolarization, the addition of 200 millimolar K+ resulted in a rapid depolarization of extensor, but not of flexor protoplasts. In contrast, addition of K+ following red light or in darkness resulted in a rapid depolarization of flexor, but not of extensor protoplasts. In both flexor and extensor protoplasts, depolarization was completely inhibited by tetraethylammonium, implicating channel-mediated movement of K+ ions. These results suggest that K+ channels are closed in extensor plasma membranes and open in flexor plasma membranes in darkness and that white and blue light, but not red light, close the channels in flexor plasma membranes and open them in extensor plasma membranes. Vanadate treatment inhibited hyperpolarization in response to blue or white light, but did not affect K+ -induced depolarization. This suggests that white or blue light-induced hyperpolarization results from activation of the H+ -ATPase, but this hyperpolarization is not the sole factor controlling the opening of K+ channels. PMID:16669070

  6. Spontaneous fluctuation of the resting membrane potential in Paramecium: amplification caused by intracellular Ca2+.

    PubMed

    Nakaoka, Yasuo; Imaji, Takafumi; Hara, Masahiro; Hashimoto, Noboru

    2009-01-01

    The ciliated protozoan Paramecium spontaneously changes its swimming direction in the absence of external stimuli. Such behavior is based on resting potential fluctuations, the amplitudes of which reach a few mV. When the resting potential fluctuation is positive and large, a spike-like depolarization is frequently elicited that reverses the beating of the cilia associated with directional changes during swimming. We aimed to study how the resting potential fluctuation is amplified. Simultaneous measurements of the resting potential and intracellular Ca(2+) ([Ca(2+)](i)) from a deciliated cell showed that positive potential fluctuations were frequently accompanied by a small increase in [Ca(2+)](i). This result suggests that Ca(2+) influx through the somatic membrane occurs during the resting state. The mean amplitude of the resting potential fluctuation was largely decreased by either an intracellular injection of a calcium chelater (BAPTA) or by an extracellular addition of Ba(2+). Hence, a small increase in [Ca(2+)](i) amplifies the resting potential fluctuation. Simulation analysis of the potential fluctuation was made by assuming that Ca(2+) and K(+) channels of surface membrane are fluctuating between open and closed states. The simulated fluctuation increased to exhibit almost the same amplitude as the measured fluctuation using the assumption that a small Ca(2+) influx activates Ca(2+) channels in a positive feedback manner. PMID:19112146

  7. Effects of perfluorooctane sulfonate (PFOS) on swimming behavior and membrane potential of paramecium caudatum.

    PubMed

    Kawamoto, Kosuke; Nishikawa, Yasuo; Oami, Kazunori; Jin, Yihe; Sato, Itaru; Saito, Norimitsu; Tsuda, Shuji

    2008-05-01

    Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were distributed widely in the global. PFOS (15 microM or higher) caused backward swimming of paramecia. The Triton-extracted paramecia, where the membrane was disrupted and the externally applied chemicals are freely accessible to the ciliary apparatus, showed forward swimming up to 0.1 microM Ca2+ in the medium and backward swimming at about 0.2 microM and higher. PFOS (0.1 mM) did not change the relationship between the swimming directions and free Ca2+ concentrations. Effects of various surfactants including PFOS and PFOA on the swimming direction of paramecia were compared with the hemolysis of mouse erythrocytes as an indicator of surfactant activities. The hemolysis did not correlate with their swimming behavior. PFOS caused triphasic membrane potential changes both in the wild-type paramecia and caudatum non-reversal (CNR) mutants, the latter is defective in voltage-gated Ca2+ channels. An action potential of the wild-type specimen was induced at lower current intensity when PFOS was present in the medium. Voltage-clamp study indicated that PFOS had no effect on the depolarization-induced Ca2+ influx responsible for the action potential. The membrane potential responses obtained were similar to those obtained by the application of some bitter substances such as quinine that activate chemoreceptors of paramecia. Since the CNR specimens did not exhibit PFOS-induced backward swimming at concentrations examined, the backward swimming is attributable to the influx of Ca2+ into the cilia through voltage-gated Ca2+ channels. The Ca2+ channels are most probably activated by the depolarizing receptor potentials resulted from the PFOS-induced activation of chemoreceptors. PMID:18544907

  8. Ion Channels in Native Chloroplast Membranes: Challenges and Potential for Direct Patch-Clamp Studies

    PubMed Central

    Pottosin, Igor; Dobrovinskaya, Oxana

    2015-01-01

    Photosynthesis without any doubt depends on the activity of the chloroplast ion channels. The thylakoid ion channels participate in the fine partitioning of the light-generated proton-motive force (p.m.f.). By regulating, therefore, luminal pH, they affect the linear electron flow and non-photochemical quenching. Stromal ion homeostasis and signaling, on the other hand, depend on the activity of both thylakoid and envelope ion channels. Experimentally, intact chloroplasts and swollen thylakoids were proven to be suitable for direct measurements of the ion channels activity via conventional patch-clamp technique; yet, such studies became infrequent, although their potential is far from being exhausted. In this paper we wish to summarize existing challenges for direct patch-clamping of native chloroplast membranes as well as present available results on the activity of thylakoid Cl− (ClC?) and divalent cation-permeable channels, along with their tentative roles in the p.m.f. partitioning, volume regulation, and stromal Ca2+ and Mg2+ dynamics. Patch-clamping of the intact envelope revealed both large-conductance porin-like channels, likely located in the outer envelope membrane and smaller conductance channels, more compatible with the inner envelope location. Possible equivalent model for the sandwich-like arrangement of the two envelope membranes within the patch electrode will be discussed, along with peculiar properties of the fast-activated cation channel in the context of the stromal pH control. PMID:26733887

  9. Killing of Staphylococci by θ-Defensins Involves Membrane Impairment and Activation of Autolytic Enzymes

    PubMed Central

    Wilmes, Miriam; Stockem, Marina; Bierbaum, Gabriele; Schlag, Martin; Götz, Friedrich; Tran, Dat Q.; Schaal, Justin B.; Ouellette, André J.; Selsted, Michael E.; Sahl, Hans-Georg

    2014-01-01

    θ-Defensins are cyclic antimicrobial peptides expressed in leukocytes of Old world monkeys. To get insight into their antibacterial mode of action, we studied the activity of RTDs (rhesus macaque θ-defensins) against staphylococci. We found that in contrast to other defensins, RTDs do not interfere with peptidoglycan biosynthesis, but rather induce bacterial lysis in staphylococci by interaction with the bacterial membrane and/or release of cell wall lytic enzymes. Potassium efflux experiments and membrane potential measurements revealed that the membrane impairment by RTDs strongly depends on the energization of the membrane. In addition, RTD treatment caused the release of Atl-derived cell wall lytic enzymes probably by interaction with membrane-bound lipoteichoic acid. Thus, the premature and uncontrolled activity of these enzymes contributes strongly to the overall killing by θ-defensins. Interestingly, a similar mode of action has been described for Pep5, an antimicrobial peptide of bacterial origin. PMID:25632351

  10. Unconventional Mechanics of Lipid Membranes: A Potential Role for Mechanotransduction of Hair Cell Stereocilia

    PubMed Central

    Kim, Jichul

    2015-01-01

    A force-conveying role of the lipid membrane across various mechanoreceptors is now an accepted hypothesis. However, such a mechanism is still not fully understood for mechanotransduction in the hair bundle of auditory sensory hair cells. A major goal of this theoretical assessment was to investigate the role of the lipid membrane in auditory mechanotransduction, especially in generating nonlinear bundle force versus displacement measurements, one of the main features of auditory mechanotransduction. To this end, a hair bundle model that generates lipid membrane tented deformation in the stereocilia was developed. A computational analysis of the model not only reproduced nonlinear bundle force measurements but also generated membrane energy that is potentially sufficient to activate the mechanosensitive ion channel of the hair cell. In addition, the model provides biophysical insight into 1) the likelihood that the channel must be linked in some way to the tip link; 2) how the interplay of the bending and stretching of the lipid bilayer may be responsible for the nonlinear force versus displacement response; 3) how measurements of negative stiffness may be a function of the rotational stiffness of the rootlets; and 4) how the standing tension of the tip link is required to interpret migration of the nonlinear force versus displacement and activation curves. These are all features of hair cell mechanotransduction, but the underlying biophysical mechanism has proved elusive for the last three decades. PMID:25650928

  11. A common landscape for membrane-active peptides

    PubMed Central

    Last, Nicholas B; Schlamadinger, Diana E; Miranker, Andrew D

    2013-01-01

    Three families of membrane-active peptides are commonly found in nature and are classified according to their initial apparent activity. Antimicrobial peptides are ancient components of the innate immune system and typically act by disruption of microbial membranes leading to cell death. Amyloid peptides contribute to the pathology of diverse diseases from Alzheimer's to type II diabetes. Preamyloid states of these peptides can act as toxins by binding to and permeabilizing cellular membranes. Cell-penetrating peptides are natural or engineered short sequences that can spontaneously translocate across a membrane. Despite these differences in classification, many similarities in sequence, structure, and activity suggest that peptides from all three classes act through a small, common set of physical principles. Namely, these peptides alter the Brownian properties of phospholipid bilayers, enhancing the sampling of intrinsic fluctuations that include membrane defects. A complete energy landscape for such systems can be described by the innate membrane properties, differential partition, and the associated kinetics of peptides dividing between surface and defect regions of the bilayer. The goal of this review is to argue that the activities of these membrane-active families of peptides simply represent different facets of what is a shared energy landscape. PMID:23649542

  12. Nonlinear Dielectric Spectroscopy as an Indirect Probe of Metabolic Activity in Thylakoid Membrane

    PubMed Central

    Fang, Jie; Palanisami, Akilan; Rajapakshe, Kimal; Widger, William R.; Miller, John H.

    2011-01-01

    Nonlinear dielectric spectroscopy (NDS) is a non-invasive probe of cellular metabolic activity with potential application in the development of whole-cell biosensors. However, the mechanism of NDS interaction with metabolic membrane proteins is poorly understood, partly due to the inherent complexity of single cell organisms. Here we use the light-activated electron transport chain of spinach thylakoid membrane as a model system to study how NDS interacts with metabolic activity. We find protein modification, as opposed to membrane pump activity, to be the dominant source of NDS signal change in this system. Potential mechanisms for such protein modifications include reactive oxygen species generation and light-activated phosphorylation. PMID:25586698

  13. [Computer modeling the hydrostatic pressure characteristics of the membrane potential for polymeric membrane, separated non-homogeneous electrolyte solutions].

    PubMed

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Rogal, Mirosława; Slezak, Andrzej

    2006-01-01

    On the basis of model equation depending the membrane potential deltapsis, on mechanical pressure difference (deltaP), concentration polarization coefficient (zetas), concentration Rayleigh number (RC) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics deltapsis = f(deltaP)zetas,RC,Ch/Cl for steady values of zetas, RC and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, RC and zetas. PMID:17022155

  14. An Extended Membrane System with Active Membranes to Solve Automatic Fuzzy Clustering Problems.

    PubMed

    Peng, Hong; Wang, Jun; Shi, Peng; Pérez-Jiménez, Mario J; Riscos-Núñez, Agustín

    2016-05-01

    This paper focuses on automatic fuzzy clustering problem and proposes a novel automatic fuzzy clustering method that employs an extended membrane system with active membranes that has been designed as its computing framework. The extended membrane system has a dynamic membrane structure; since membranes can evolve, it is particularly suitable for processing the automatic fuzzy clustering problem. A modification of a differential evolution (DE) mechanism was developed as evolution rules for objects according to membrane structure and object communication mechanisms. Under the control of both the object's evolution-communication mechanism and the membrane evolution mechanism, the extended membrane system can effectively determine the most appropriate number of clusters as well as the corresponding optimal cluster centers. The proposed method was evaluated over 13 benchmark problems and was compared with four state-of-the-art automatic clustering methods, two recently developed clustering methods and six classification techniques. The comparison results demonstrate the superiority of the proposed method in terms of effectiveness and robustness. PMID:26790484

  15. Sar1 GTPase Activity Is Regulated by Membrane Curvature*♦

    PubMed Central

    Hanna, Michael G.; Mela, Ioanna; Wang, Lei; Henderson, Robert M.; Chapman, Edwin R.; Edwardson, J. Michael; Audhya, Anjon

    2016-01-01

    The majority of biosynthetic secretory proteins initiate their journey through the endomembrane system from specific subdomains of the endoplasmic reticulum. At these locations, coated transport carriers are generated, with the Sar1 GTPase playing a critical role in membrane bending, recruitment of coat components, and nascent vesicle formation. How these events are appropriately coordinated remains poorly understood. Here, we demonstrate that Sar1 acts as the curvature-sensing component of the COPII coat complex and highlight the ability of Sar1 to bind more avidly to membranes of high curvature. Additionally, using an atomic force microscopy-based approach, we further show that the intrinsic GTPase activity of Sar1 is necessary for remodeling lipid bilayers. Consistent with this idea, Sar1-mediated membrane remodeling is dramatically accelerated in the presence of its guanine nucleotide-activating protein (GAP), Sec23-Sec24, and blocked upon addition of guanosine-5′-[(β,γ)-imido]triphosphate, a poorly hydrolysable analog of GTP. Our results also indicate that Sar1 GTPase activity is stimulated by membranes that exhibit elevated curvature, potentially enabling Sar1 membrane scission activity to be spatially restricted to highly bent membranes that are characteristic of a bud neck. Taken together, our data support a stepwise model in which the amino-terminal amphipathic helix of GTP-bound Sar1 stably penetrates the endoplasmic reticulum membrane, promoting local membrane deformation. As membrane bending increases, Sar1 membrane binding is elevated, ultimately culminating in GTP hydrolysis, which may destabilize the bilayer sufficiently to facilitate membrane fission. PMID:26546679

  16. Structural Model of Active Bax at the Membrane

    PubMed Central

    Bleicken, Stephanie; Jeschke, Gunnar; Stegmueller, Carolin; Salvador-Gallego, Raquel; García-Sáez, Ana J.; Bordignon, Enrica

    2016-01-01

    Bax plays a central role in the mitochondrial pathway of apoptosis. Upon activation, cytosolic Bax monomers oligomerize on the surface of mitochondria and change conformation concertedly to punch holes into the outer membrane. The subsequent release of cytochrome c initiates cell death. However, the structure of membrane-inserted Bax and its mechanism of action remain largely unknown. Here, we propose a 3D model of active Bax at the membrane based on double electron-electron resonance (DEER) spectroscopy in liposomes and isolated mitochondria. We show that active Bax is organized at the membrane as assemblies of dimers. In addition to a stable dimerization domain, each monomer contains a more flexible piercing domain involved in interdimer interactions and pore formation. The most important structural change during Bax activation is the opening of the hairpin formed by helices 5 and 6, which adopts a clamp-like conformation central to the mechanism of mitochondrial permeabilization. PMID:25458844

  17. Experimental Investigation into the Transmembrane Electrical Potential of the Forward Osmosis Membrane Process in Electrolyte Solutions

    PubMed Central

    Bian, Lixia; Fang, Yanyan; Wang, Xiaolin

    2014-01-01

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations. PMID:24957177

  18. Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo.

    PubMed

    Stern, E A; Jaeger, D; Wilson, C J

    1998-07-30

    The basal ganglia are an interconnected set of subcortical regions whose established role in cognition and motor control remains poorly understood. An important nucleus within the basal ganglia, the striatum, receives cortical afferents that convey sensorimotor, limbic and cognitive information. The activity of medium-sized spiny neurons in the striatum seems to depend on convergent input within these information channels. To determine the degree of correlated input, both below and at threshold for the generation of action potentials, we recorded intracellularly from pairs of spiny neurons in vivo. Here we report that the transitions between depolarized and hyperpolarized states were highly correlated among neurons. Within individual depolarized states, some significant synchronous fluctuations in membrane potential occurred, but action potentials were not synchronized. Therefore, although the mean afferent signal across fibres is highly correlated among striatal neurons, the moment-to-moment variations around the mean, which determine the timing of action potentials, are not. We propose that the precisely timed, synchronous component of the membrane potential signals activation of cell assemblies and enables firing to occur. The asynchronous component, with low redundancy, determines the fine temporal pattern of spikes. PMID:9697769

  19. Determination of high mitochondrial membrane potential in spermatozoa loaded with the mitochondrial probe 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) by using fluorescence-activated flow cytometry.

    PubMed

    Guthrie, H David; Welch, Glenn R

    2008-01-01

    A flow cytometric method was developed to identify viable, energized sperm cells with high mitochondrial inner transmembrane potential (Deltapsi(m)), >80-100 mV using the mitochondrial probe 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and the impermeant nuclear stain propidium iodine (PI). This flow cytometric method is described in detail here. When in contact with membranes possessing a high Deltapsi(m), JC-1 forms aggregates (J(agg)) that are fluorescent at 590 nm in response to 488 nm excitation. We found that the reactive oxygen species generator, menadione reduced sperm motility and reduced Deltapsi(m) in a dose responsive fashion that was closely correlated with the loss of motility. PMID:19082941

  20. Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance

    PubMed Central

    Maccarrone, M; Bernardi, G; Agrò, A Finazzi; Centonze, D

    2011-01-01

    Type-1 cannabinoid receptor (CB1) is the most abundant G-protein-coupled receptor (GPCR) in the brain. CB1 and its endogenous agonists, the so-called ‘endocannabinoids (eCBs)’, belong to an ancient neurosignalling system that plays important functions in neurodegenerative and neuroinflammatory disorders like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. For this reason, research on the therapeutic potential of drugs modulating the endogenous tone of eCBs is very intense. Several GPCRs reside within subdomains of the plasma membranes that contain high concentrations of cholesterol: the lipid rafts. Here, the hypothesis that changes in membrane fluidity alter function of the endocannabinoid system, as well as progression of particular neurodegenerative diseases, is described. To this end, the impact of membrane cholesterol on membrane properties and hence on neurodegenerative diseases, as well as on CB1 signalling in vitro and on CB1-dependent neurotransmission within the striatum, is discussed. Overall, present evidence points to the membrane environment as a critical regulator of signal transduction triggered by CB1, and calls for further studies aimed at better clarifying the contribution of membrane lipids to eCBs signalling. The results of these investigations might be exploited also for the development of novel therapeutics able to combat disorders associated with abnormal activity of CB1. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21323908

  1. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    SciTech Connect

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh; Modine, Thomas; Preau, Sebastien; Zannis, Konstantinos; Marchetti, Philippe; Lancel, Steve; Neviere, Remi

    2010-05-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 muM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt{sub max} of 105 +- 8 mN/s in control hearts vs. 49 +- 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 +- 0.2 in control hearts vs. 2.2 +- 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 +- 1 muM cytochrome c/min/mg in control hearts vs. 14 +- 3 muM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.

  2. The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica.

    PubMed

    Cho, Jaeyong; Choi, Hyemin; Lee, Juneyoung; Kim, Mi-Sun; Sohn, Ho-Yong; Lee, Dong Gun

    2013-03-01

    Dioscin is a kind of steroidal saponin isolated from the root bark of wild yam Dioscorea nipponica. We investigated the antifungal effect of dioscin against different fungal strains and its antifungal mechanism(s) in Candida albicans cells. Using the propidium iodide assay and calcein-leakage measurement, we confirmed that dioscin caused fungal membrane damage. Furthermore, we evaluated the ability of dioscin to disrupt the plasma membrane potential, using 3,3'-dipropylthiadicarbocyanine iodide [DiSC(3)(5)] and bis-(1,3-dibarbituric acid)-trimethine oxanol [DiBAC(4)(3)]. Cells stained with the dyes had a significant increase in fluorescent intensity after exposure to dioscin, indicating that dioscin has an effect on the membrane potential. To visualize the effect of dioscin on the cell membrane, we synthesized rhodamine-labeled giant unilamellar vesicles (GUVs) mimicking the outer leaflet of the plasma membrane of C. albicans. As seen in the result, the membrane disruptive action of dioscin caused morphological change and rhodamine leakage of the GUVs. In three-dimensional contour-plot analysis using flow cytometry, we observed a decrease in cell size, which is in agreement with our result from the GUV assay. These results suggest that dioscin exerts a considerable antifungal activity by disrupting the structure in membrane after invading into the fungal membrane, resulting in fungal cell death. PMID:23262192

  3. Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor.

    PubMed

    Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao

    2016-06-01

    Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR. PMID:26816093

  4. Membrane-Protein Crystallography and Potentiality for Drug Design

    NASA Astrophysics Data System (ADS)

    Yamashita, Atsuko

    Structure-based drug design for membrane proteins is far behind that for soluble proteins due to difficulty in crystallographic structure determination, despite the fact that about 60% of FDA-approved drugs target membrane proteins located at the cell surface. Stable homologs for a membrane protein of interest, such as prokaryotic neurotransmitter transporter homolog LeuT, might enable cooperative analyses by crystallography and functional assays, provide useful information for functional mechanisms, and thus serve as important probes for drug design based on mechanisms as well as structures.

  5. Ammonia-Activated Mesoporous Carbon Membranes for Gas Separations

    SciTech Connect

    Mahurin, Shannon Mark; Lee, Jeseung; Wang, Xiqing; Dai, Sheng

    2011-01-01

    Porous carbon membranes, which generally show improved chemical and thermal stability compared to polymer membranes, have been used in gas separations for many years. In this work, we show that the post-synthesis ammonia treatment of porous carbon at elevated temperature can improve the permeance and selectivity of these membranes for the separation of carbon dioxide and hydrocarbons from permanent gases. Hierarchically structured porous carbon membranes were exposed to ammonia gas at temperatures ranging from 850 C to 950 C for up to 10 min and the N{sub 2}, CO{sub 2}, and C{sub 3}H{sub 6} permeances were measured for these different membranes. Higher treatment temperatures and longer exposure times resulted in higher gas permeance values. In addition, CO{sub 2}/N{sub 2} and C{sub 3}H{sub 6}/N{sub 2} selectivities increased by a factor of 2 as the treatment temperature and time increased up to a temperature and time of 900 C, 10 min. Higher temperatures showed increased permeance but decreased selectivity indicating excess pore activation. Nitrogen adsorption measurements show that the ammonia treatment increased the porosity of the membrane while elemental analysis revealed the presence of nitrogen-containing surface functionalities in the treated carbon membranes. Thus, ammonia treatment at high temperature provides a controlled method to introduce both added microporosity and surface functionality to enhance gas separations performance of porous carbon membranes.

  6. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity.

    PubMed

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  7. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity

    PubMed Central

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L.; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B.

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  8. Antibacterial Activity of Shikimic Acid from Pine Needles of Cedrus deodara against Staphylococcus aureus through Damage to Cell Membrane

    PubMed Central

    Bai, Jinrong; Wu, Yanping; Liu, Xiaoyan; Zhong, Kai; Huang, Yina; Gao, Hong

    2015-01-01

    Shikimic acid (SA) has been reported to possess antibacterial activity against Staphylococcus aureus, whereas the mode of action of SA is still elusive. In this study, the antibacterial activity and mechanism of SA toward S. aureus by cell membrane damage was investigated. After SA treatment, massive K+ and nucleotide leakage from S. aureus, and a significant change in the membrane potential was observed, suggesting SA may act on the membrane by destroying the cell membrane permeability. Through transmission electron microscopic observations we further confirmed that SA can disrupt the cell membrane and membrane integrity. Meanwhile, SA was found to be capable of reducing the membrane fluidity of the S. aureus cell. Moreover, the fluorescence experiments indicated that SA could quench fluorescence of Phe residues of the membrane proteins, thus demonstrating that SA can bind to S. aureus membrane proteins. Therefore, these results showed the antibacterial activity of SA against S. aureus could be caused by the interactions of SA with S. aureus membrane proteins and lipids, resulting in causing cell membrane dysfunction and bacterial damage or even death. This study reveals the potential use of SA as an antibacterial agent. PMID:26580596

  9. Rapid novel test for the determination of biofouling potential on reverse osmosis membranes.

    PubMed

    Manalo, Cervinia V; Ohno, Masaki; Okuda, Tetsuji; Nakai, Satoshi; Nishijima, Wataru

    2016-01-01

    A novel method was proposed to determine biofouling potential by direct analysis of a reverse osmosis (RO) membrane through fluorescence intensity analysis of biofilm formed on the membrane surface, thereby incorporating fouling tendencies of both feedwater and membrane. Evaluation of the biofouling potential on the RO membrane was done by accelerated biofilm formation through soaking of membranes in high biofouling potential waters obtained by adding microorganisms and glucose in test waters. The biofilm formed on the soaked membrane was quantified by fluorescence intensity microplate analysis. The soaking method's capability in detecting biofilm formation was confirmed when percentage coverage obtained through fluorescence microscopy and intensity values exhibited a linear correlation (R(2) = 0.96). Continuous cross-flow experiments confirmed the ability and reliability of the soaking method in giving biofouling potential on RO membranes when a good correlation (R(2) = 0.87) between intensity values of biofilms formed on the membrane during soaking and filtration conditions was obtained. Applicability of the test developed was shown when three commercially available polyamide (PA) RO membranes were assessed for biofouling potential. This new method can also be applied for the determination of biofouling potential in water with more than 3.6 mg L(-1) easily degradable organic carbon. PMID:27332844

  10. Modeling and vibration control of an active membrane mirror

    NASA Astrophysics Data System (ADS)

    Ruggiero, Eric J.; Inman, Daniel J.

    2009-09-01

    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  11. Effect of membrane potential on acetylcholine-induced inward current in guinea-pig ileum.

    PubMed Central

    Inoue, R; Isenberg, G

    1990-01-01

    1. The whole-cell patch clamp technique with caesium aspartate internal solution was used with single isolated cells from the longitudinal muscle layer of guinea-pig ileum, to investigate the voltage-dependent gating of ACh-induced inward current. 2. In voltage clamp experiments, at holding potentials ranging from -80 to -30 mV, ACh (300 microM) produced a slow sustained inward current in physiological salt bath solution (PSS). The measurements of the reversal potentials on substituting Na+ by other monovalent and divalent cations showed that this current is through non-selective cation channels (Ins, ACh). 3. During hyperpolarizations, Ins, ACh instantaneously increased in amplitude and then relaxed to a new steady-state level. The I-V relationship of the instantaneous peak was linear with a reversal potential of 0 mV, while that of the steady state was bell-shaped. The time course of relaxation appeared to be monoexponential and its time constants were reduced by stronger hyperpolarizations. 4. These results were not affected by the organic Ca2+ antagonists D600 or nitrendipine (10 microM). Under this condition, maximal chord conductance of Ins, Ach which was observed at 0 mV was about 1.5 nS. The steady-state activation relationship was well fitted by Boltzmann's equation with a half-maximal activation (Vh) of -50 mV and a slope factor (k) of -15 mV at membrane potentials negative to 0 mV, but over 0 mV the degree of activation was again decreased. The time constants for relaxation also appeared to follow a sigmoid curve. 5. In current clamp experiments, superfusion of ACh (300 microM) depolarized the membrane up to -10 to 0 mV. Inward current injection resulting in the moderate hyperpolarization of the membrane (-70 to -80 mV) attenuated ACh-induced depolarization and stronger hyperpolarization (less than -80 mV) abolished it. 6. These results show that ACh-induced depolarization is controlled by the membrane potential, which is explained by the voltage

  12. Membrane Changes Associated with Platelet Activation

    PubMed Central

    George, James N.; Lyons, Roger M.; Morgan, Rebecca K.

    1980-01-01

    The effect of aggregation and secretion on membrane proteins was studied in washed human platelets. Reversible aggregation without secretion was stimulated by ADP and secretion without aggregation was stimulated by thrombin in the presence of EDTA. No loss of platelet surface glycoproteins occurred during reversible ADP-induced platelet aggregation, as measured by quantitative polyacrylamide gel electrophoresis analysis of platelets that were labeled with 125I-diazotized diiodosulfanilic acid (DD125ISA) before ADP stimulation. Also, no new proteins became exposed on the platelet surface after ADP aggregation, as determined by DD125ISA labeling after stimulation. Thrombin-induced platelet secretion also caused no loss of platelet surface glycoproteins. However, after platelet secretion two new proteins were labeled by DD125ISA: (a) actin and (b) the 149,000-mol wt glycoprotein (termed GP-G), which is contained in platelet granules and secreted in response to thrombin. The identity of DD125ISA-labeled actin was confirmed by four criteria: (a) comigration with actin in three different sodium dodecyl sulfate-polyacrylamide gel electrophoresis systems, (b) elution from a particulate fraction in low ionic strength buffer, (c) co-migration with actin in isoelectric focusing, and (d) binding to DNase I. The identity of actin and its appearance on the platelet surface after thrombin-induced secretion was also demonstrated by the greater binding of an anti-actin antibody to thrombin-treated platelets, measured with 125I-staphylococcal protein A. Therefore, major platelet membrane changes occur after secretion but not after reversible aggregation. The platelet surface changes occurring with secretion may be important in the formation of irreversible platelet aggregates and in the final retraction of the blood clot. Images PMID:6772667

  13. Regulation of ciliary motility by membrane potential in Paramecium: a role for cyclic AMP.

    PubMed

    Bonini, N M; Gustin, M C; Nelson, D L

    1986-01-01

    The membrane potential of Paramecium controls the frequency and direction of the ciliary beat, thus determining the cell's swimming behavior. Stimuli that hyperpolarize the membrane potential increase the ciliary beat frequency and therefore increase forward swimming speed. We have observed that 1) drugs that elevate intracellular cyclic AMP increased swimming speed 2-3-fold, 2) hyperpolarizing the membrane potential by manipulation of extracellular cations (e.g., K+) induced both a transient increase in, and a higher sustained level of cyclic AMP compared to the control, and 3) the swimming speed of detergent-permeabilized cells in MgATP was stimulated 2-fold by the addition of cyclic AMP. Our results suggest that the membrane potential can regulate intracellular cAMP in Paramecium and that control of swimming speed by membrane potential may in part be mediated by cAMP. PMID:2427226

  14. [Computer modeling the concentration characteristics of the membrane potential for polymeric membrane, separated non-homogeneous electrolyte solutions].

    PubMed

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Rogal, Mirosława; Slezak, Andrzej

    2006-01-01

    The influence of the concentration boundary layers on membrane potential (deltapsis) in a single-membrane system on basis of the Kedem-Katchalsky equations was described in cases of horizontally mounted neutral polymeric membrane separates non-homogeneous (mechanically unstirred) binary electrolytic solutions at different concentrations. Results of calculations of deltapsis as a function of ratio solution concentrations (Ch/Cl) at constant values of: concentration Rayleigh number (Rc), concentration polarization coefficient (zetas) and hydrostatic pressure (deltaP) were presented. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, Rc and zetas. PMID:17022154

  15. Dynamic potential and surface morphology study of sertraline membrane sensors

    PubMed Central

    Khater, M.M.; Issa, Y.M.; Hassib, H.B.; Mohammed, S.H.

    2014-01-01

    New rapid, sensitive and simple electrometric method was developed to determine sertraline hydrochloride (Ser-Cl) in its pure raw material and pharmaceutical formulations. Membrane sensors based on heteropolyacids as ion associating material were prepared. Silicomolybdic acid (SMA), silicotungstic acid (STA) and phosphomolybdic acid (PMA) were used. The slope and limit of detection are 50.00, 60.00 and 53.24 mV/decade and 2.51, 5.62 and 4.85 μmol L−1 for Ser-ST, Ser-PM and Ser-SM membrane sensors, respectively. Linear range is 0.01–10.00 for the three sensors. These new sensors were used for the potentiometric titration of Ser-Cl using sodium tetraphenylborate as titrant. The surface morphologies of the prepared membranes with and without the modifier (ion-associate) were studied using scanning and atomic force microscopes. PMID:26257944

  16. Dynamic potential and surface morphology study of sertraline membrane sensors.

    PubMed

    Khater, M M; Issa, Y M; Hassib, H B; Mohammed, S H

    2015-05-01

    New rapid, sensitive and simple electrometric method was developed to determine sertraline hydrochloride (Ser-Cl) in its pure raw material and pharmaceutical formulations. Membrane sensors based on heteropolyacids as ion associating material were prepared. Silicomolybdic acid (SMA), silicotungstic acid (STA) and phosphomolybdic acid (PMA) were used. The slope and limit of detection are 50.00, 60.00 and 53.24 mV/decade and 2.51, 5.62 and 4.85 μmol L(-1) for Ser-ST, Ser-PM and Ser-SM membrane sensors, respectively. Linear range is 0.01-10.00 for the three sensors. These new sensors were used for the potentiometric titration of Ser-Cl using sodium tetraphenylborate as titrant. The surface morphologies of the prepared membranes with and without the modifier (ion-associate) were studied using scanning and atomic force microscopes. PMID:26257944

  17. Active membranes studied by X-ray scattering.

    PubMed

    Giahi, A; El Alaoui Faris, M; Bassereau, P; Salditt, T

    2007-08-01

    In view of recent theories of "active" membranes, we have studied multilamellar phospholipid membrane stacks with reconstituted transmembrane protein bacteriorhodopsin (BR) under different illumination conditions by X-ray scattering. The light-active protein is considered as an active constituent which drives the system out of equilibrium and is predicted to change the collective fluctuation properties of the membranes. Using X-ray reflectivity, X-ray non-specular (diffuse) scattering, and grazing incidence scattering, we find no detectable change in the scattering curves when changing the illumination condition. In particular the intermembrane spacing d remains constant, after eliminating hydration-related artifacts by design of a suitable sample environment. The absence of any observable non-equilibrium effects in the experimental window is discussed in view of the relevant parameters and recent theories. PMID:17712523

  18. Grape seed proanthocyanidins promote apoptosis in human epidermoid carcinoma A431 cells through alterations in Cdki-Cdk-cyclin cascade, and caspase-3 activation via loss of mitochondrial membrane potential.

    PubMed

    Meeran, Syed M; Katiyar, Santosh K

    2007-05-01

    Dietary grape seed proanthocyanidins (GSPs) prevent photocarcinogenesis in mice. Here, we report that in vitro treatment of human epidermoid carcinoma A431 cells with GSPs inhibited cellular proliferation (13-89%) and induced cell death (1-48%) in a dose (5-100 mug/ml)- and time (24, 48 and 72 h)-dependent manner. GSP-induced inhibition of cell proliferation was associated with an increase in G1-phase arrest at 24 h, which was mediated through the inhibition of cyclin-dependent kinases (Cdk) Cdk2, Cdk4, Cdk6 and cyclins D1, D2 and E and simultaneous increase in protein expression of cyclin-dependent kinase inhibitors (Cdki), Cip1/p21 and Kip1/p27, and enhanced binding of Cdki-Cdk. The treatment of A431 cells with GSPs (20-80 mug/ml) resulted in a dose-dependent increase in apoptotic cell death (26-58%), which was associated with an increased protein expression of proapoptotic Bax, decreased expression of antiapoptotic Bcl-2 and Bcl-xl, loss of mitochondrial membrane potential, and cleavage of caspase-9, caspase-3 and PARP. Pretreatment with the pan-caspase inhibitor (z-VAD-fmk) blocked the GSP-induced apoptosis in A431 cells suggesting that GSP-induced apoptosis is associated primarily with the caspase-3-dependent pathway. Together, our study suggests that GSPs possess chemotherapeutic potential against human epidermoid carcinoma cells in vitro, further in vivo mechanistic studies are required to verify the chemotherapeutic effect of GSPs in skin cancers. PMID:17437483

  19. G-1-activated membrane estrogen receptors mediate increased contractility of the human myometrium.

    PubMed

    Maiti, K; Paul, J W; Read, M; Chan, E C; Riley, S C; Nahar, P; Smith, R

    2011-06-01

    Estrogens are key mediators of increased uterine contractility at labor. We sought to determine whether membrane-associated estrogen receptors, such as the recently described seven-transmembrane receptor G protein-coupled receptor 30 (GPR30), mediated some of this effect. Using human myometrium obtained at term cesarean section before or after the onset of labor, we demonstrated the presence of GPR30 mRNA and protein using quantitative RT-PCR and Western blotting. GPR30 receptor was localized to the cell membrane and often colocalized with calveolin-1. Using the specific estrogen membrane receptor agonist G-1 and myometrial explants, we showed that membrane receptor activation led to phosphorylation of MAPK and the actin-modifying small heat shock protein 27. Using myometrial strips incubated with G-1 or vehicle we demonstrated that estrogen membrane receptor activation increased the myometrial contractile response to oxytocin. These data suggest that activation of the plasma membrane estrogen receptor GPR30 likely participates in the physiology of the human myometrium during pregnancy and identifies it as a potential target to modify uterine activity. PMID:21427217

  20. The iPLA(2)γ is identified as the membrane potential sensitive phospholipase in liver mitochondria.

    PubMed

    Rauckhorst, Adam J; Pfeiffer, Douglas R; Broekemeier, Kimberly M

    2015-08-19

    Previous reports from our lab identified a mitochondrial calcium-independent phospholipase A2 activity that is activated when the mitochondrial membrane potential is decreased. This activity was demonstrated to influence occurrence of the permeability transition. Originally, this activity was ascribed to the iPLA2β protein. Recently, both iPLA2β and iPLA2γ knock out mice have been generated. It has been shown by others that the iPLA2γ plays a significant role in progression of the permeability transition. In this paper, using the iPLA2β and iPLA2γ knock out mice we show that the membrane potential sensitive activity is the iPLA2γ. PMID:26206229

  1. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters.

    PubMed

    Taheran, Mehrdad; Brar, Satinder K; Verma, M; Surampalli, R Y; Zhang, T C; Valero, J R

    2016-03-15

    Pharmaceutically active compounds (PhACs), which find their way easily into the water sources, are emerging as a major concern for drinking water quality and aquatic species. Therefore, their removal from water sources is a priority from environmental point of view. During the past decade, different methods including membrane separation, adsorption systems and chemical transformation have been evaluated for removal of these compounds. This paper reviews different aspects of PhAC removal by using membrane separation processes, as they have been conventionally known to show high potential in the production of superior quality drinking and industrial water. In brief, osmosis membranes can efficiently remove almost all PhACs though its operational cost is relatively high and nanofiltration (NF) membranes are highly influenced by electrostatic and hydrophobic interaction. Moreover, the efficiency of membrane bioreactors (MBRs) is difficult to predict due to the complex interaction of compounds with microorganisms. To improve the performance and robustness of membrane technology, it is suggested to combine membranes with other systems, such as activated carbon and enzymatic degradation. PMID:26789358

  2. Recent Developments in Graphene-Based Membranes: Structure, Mass-Transport Mechanism and Potential Applications.

    PubMed

    Sun, Pengzhan; Wang, Kunlin; Zhu, Hongwei

    2016-03-01

    Significant achievements have been made on the development of next-generation filtration and separation membranes using graphene materials, as graphene-based membranes can afford numerous novel mass-transport properties that are not possible in state-of-art commercial membranes, making them promising in areas such as membrane separation, water desalination, proton conductors, energy storage and conversion, etc. The latest developments on understanding mass transport through graphene-based membranes, including perfect graphene lattice, nanoporous graphene and graphene oxide membranes are reviewed here in relation to their potential applications. A summary and outlook is further provided on the opportunities and challenges in this arising field. The aspects discussed may enable researchers to better understand the mass-transport mechanism and to optimize the synthesis of graphene-based membranes toward large-scale production for a wide range of applications. PMID:26797529

  3. Cytotoxic bile acids, but not cytoprotective species, inhibit the ordering effect of cholesterol in model membranes at physiologically active concentrations.

    PubMed

    Mello-Vieira, João; Sousa, Tânia; Coutinho, Ana; Fedorov, Aleksander; Lucas, Susana D; Moreira, Rui; Castro, Rui E; Rodrigues, Cecília M P; Prieto, Manuel; Fernandes, Fábio

    2013-09-01

    Submillimolar concentrations of cytotoxic bile acids (BAs) induce cell death via apoptosis. On the other hand, several cytoprotective BAs were shown to prevent apoptosis in the same concentration range. Still, the mechanisms by which BAs trigger these opposite signaling effects remain unclear. This study was aimed to determine if cytotoxic and cytoprotective BAs, at physiologically active concentrations, are able to modulate the biophysical properties of lipid membranes, potentially translating into changes in the apoptotic threshold of cells. Binding of BAs to membranes was assessed through the variation of fluorescence parameters of suitable derivatized BAs. These derivatives partitioned with higher affinity to liquid disordered than to the cholesterol-enriched liquid ordered domains. Unlabeled BAs were also shown to have a superficial location upon interaction with the lipid membrane. Additionally, the interaction of cytotoxic BAs with membranes resulted in membrane expansion, as concluded from FRET data. Moreover, it was shown that cytotoxic BAs were able to significantly disrupt the ordering of the membrane by cholesterol at physiologically active concentrations of the BA, an effect not associated with cholesterol removal. On the other hand, cytoprotective bile acids had no effect on membrane properties. It was concluded that, given the observed effects on membrane rigidity, the apoptotic activity of cytotoxic BAs could be potentially associated with changes in plasma membrane organization (e.g. modulation of lipid domains) or with an increase in mitochondrial membrane affinity for apoptotic proteins. PMID:23747364

  4. Historical Overview and General Methods of Membrane Potential Imaging.

    PubMed

    Braubach, Oliver; Cohen, Lawrence B; Choi, Yunsook

    2015-01-01

    Voltage imaging was first conceived in the late 1960s and efforts to find better organic voltage sensitive dyes began in the 1970s and continue until today. At the beginning it was difficult to measure an action potential signal from a squid giant axon in a single trial. Now it is possible to measure the action potential in an individual spine. Other chapters will discuss advances in voltage imaging technology and applications in a variety of biological preparations. The development of genetically encoded voltage sensors has started. A genetically encoded sensor could provide cell type specific expression and voltage recording (see Chap. 20). Optimizing the signal-to-noise ratio of an optical recording requires attention to several aspects of the recording apparatus. These include the light source, the optics and the recording device. All three have improved substantially in recent years. Arc lamp, LED, and laser sources are now stable, more powerful, and less expensive. Cameras for recording activity have frames rates above 1 kHz and quantum efficiencies near 1.0 although they remain expensive. The sources of noise in optical recordings are well understood. Both the apparatus and the noise sources are discussed in this chapter. PMID:26238047

  5. Fast serial analysis of active cholesterol at the plasma membrane in single cells.

    PubMed

    Tian, Chunxiu; Zhou, Junyu; Wu, Zeng-Qiang; Fang, Danjun; Jiang, Dechen

    2014-01-01

    Previously, our group has utilized the luminol electrochemiluminescence to analyze the active cholesterol at the plasma membrane in single cells by the exposure of one cell to a photomultiplier tube (PMT) through a pinhole. In this paper, fast analysis of active cholesterol at the plasma membrane in single cells was achieved by a multimicroelectrode array without the pinhole. Single cells were directly located on the microelectrodes using cell-sized microwell traps. A cycle of voltage was applied on the microelectrodes sequentially to induce a peak of luminescence from each microelectrode for the serial measurement of active membrane cholesterol. A minimal time of 1.60 s was determined for the analysis of one cell. The simulation and the experimental data exhibited a semisteady-state distribution of hydrogen peroxide on the microelectrode after the reaction of cholesterol oxidase with the membrane cholesterol, which supported the relative accuracy of the serial analysis. An eight-microelectrode array was demonstrated to analyze eight single cells in 22 s serially, including the channel switching time. The results from 64 single cells either activated by low ion strength buffer or the inhibition of intracellular acyl-coA/cholesterol acyltransferase (ACAT) revealed that most of the cells analyzed had the similar active membrane cholesterol, while few cells had more active cholesterol resulting in the cellular heterogeneity. The fast single-cell analysis platform developed will be potentially useful for the analysis of more molecules in single cells using proper oxidases. PMID:24328095

  6. Imaging Membrane Potential with Two Types of Genetically Encoded Fluorescent Voltage Sensors.

    PubMed

    Lee, Sungmoo; Piao, Hong Hua; Sepheri-Rad, Masoud; Jung, Arong; Sung, Uhna; Song, Yoon-Kyu; Baker, Bradley J

    2016-01-01

    Genetically encoded voltage indicators (GEVIs) have improved to the point where they are beginning to be useful for in vivo recordings. While the ultimate goal is to image neuronal activity in vivo, one must be able to image activity of a single cell to ensure successful in vivo preparations. This procedure will describe how to image membrane potential in a single cell to provide a foundation to eventually image in vivo. Here we describe methods for imaging GEVIs consisting of a voltage-sensing domain fused to either a single fluorescent protein (FP) or two fluorescent proteins capable of Förster resonance energy transfer (FRET) in vitro. Using an image splitter enables the projection of images created by two different wavelengths onto the same charge-coupled device (CCD) camera simultaneously. The image splitter positions a second filter cube in the light path. This second filter cube consists of a dichroic and two emission filters to separate the donor and acceptor fluorescent wavelengths depending on the FPs of the GEVI. This setup enables the simultaneous recording of both the acceptor and donor fluorescent partners while the membrane potential is manipulated via whole cell patch clamp configuration. When using a GEVI consisting of a single FP, the second filter cube can be removed allowing the mirrors in the image splitter to project a single image onto the CCD camera. PMID:26890551

  7. Simultaneous Measurement of [Ca2+]i and Membrane Potential under Mechanical or Biochemical Stimulation

    NASA Astrophysics Data System (ADS)

    Sano, Minoru; Imura, Katsuaki; Ushida, Takashi; Tateishi, Tetsuya

    In human umbilical endothelial cells (HUVEC), mechanical stress is known to induce transients of [Ca2+]i that lead to the regulation of vascular functions in vivo. The transmembraneous influx of Ca2+ is thought to be mediated by voltage-dependent ion channels or stretch-activated ion channels. In order to elucidate the correlation of [Ca2+]i and membrane potential under mechanical stress, the influences of mechanical or biochemical stimulation on endothelial cells stained with both fura-2 and DiBAC4(3) were studied in vitro, by constructing an imaging system that could capture four kinds of fluorescence images simultaneously at real-time. In the application of thrombin, [Ca2+]i transients were accompanied with preceding depolarization, while mechanical stress that were loaded on a single cell with a micropipette did not evoke dramatic changes of membrane potential. These results indicate that the signaling pathway initiated by mechanical stress could be independent of electrochemical activation, and different from that by biochemical stimulation in HUVEC.

  8. Cholesterol modulates alkaline phosphatase activity of rat intestinal microvillus membranes.

    PubMed

    Brasitus, T A; Dahiya, R; Dudeja, P K; Bissonnette, B M

    1988-06-25

    Experiments were conducted, using a nonspecific lipid transfer protein, to vary the cholesterol/phospholipid molar ratio of rat proximal small intestinal microvillus membranes in order to assess the possible role of cholesterol in modulating enzymatic activities of this plasma membrane. Cholesterol/phospholipid molar ratios from 0.71 to 1.30 were produced from a normal value of 1.05 by incubation with the transfer protein and an excess of either phosphatidylcholine or cholesterol/phosphatidylcholine liposomes for 60 min at 37 degrees C. Cholesterol loading or depletion of the membranes was accompanied by a decrease or increase, respectively, in their lipid fluidity, as assessed by steady-state fluorescence polarization techniques using the lipid-soluble fluorophore 1,6-diphenyl-1,3,5-hexatriene. Increasing the cholesterol/phospholipid molar ratio also decreased alkaline phosphatase specific activity by approximately 20-30%, whereas decreasing this ratio increased this enzymatic activity by 20-30%. Sucrase, maltase, and lactase specific activities were not affected in these same preparations. Since the changes in alkaline phosphatase activity could be secondary to alterations in fluidity, cholesterol, or both, additional experiments were performed using benzyl alcohol, a known fluidizer. Benzyl alcohol (25 mM) restored the fluidity of cholesterol-enriched preparations to control levels, did not change the cholesterol/phospholipid molar ratio, and failed to alter alkaline phosphatase activity. These findings, therefore, indicate that alterations in the cholesterol content and cholesterol/phospholipid molar ratio of microvillus membranes can modulate alkaline phosphatase but not sucrase, maltase, or lactase activities. Moreover, membrane fluidity does not appear to be an important physiological regulator of these enzymatic activities. PMID:3379034

  9. Membrane Thinning and Thickening Induced by Membrane-Active Amphipathic Peptides.

    PubMed

    Grage, Stephan L; Afonin, Sergii; Kara, Sezgin; Buth, Gernot; Ulrich, Anne S

    2016-01-01

    Membrane thinning has been discussed as a fundamental mechanism by which antimicrobial peptides can perturb cellular membranes. To understand which factors play a role in this process, we compared several amphipathic peptides with different structures, sizes and functions in their influence on the lipid bilayer thickness. PGLa and magainin 2 from X. laevis were studied as typical representatives of antimicrobial cationic amphipathic α-helices. A 1:1 mixture of these peptides, which is known to possess synergistically enhanced activity, allowed us to evaluate whether and how this synergistic interaction correlates with changes in membrane thickness. Other systems investigated here include the α-helical stress-response peptide TisB from E. coli (which forms membrane-spanning dimers), as well as gramicidin S from A. migulanus (a natural antibiotic), and BP100 (designer-made antimicrobial and cell penetrating peptide). The latter two are very short, with a circular β-pleated and a compact α-helical structure, respectively. Solid-state (2)H-NMR and grazing incidence small angle X-ray scattering (GISAXS) on oriented phospholipid bilayers were used as complementary techniques to access the hydrophobic thickness as well as the bilayer-bilayer repeat distance including the water layer in between. This way, we found that magainin 2, gramicidin S, and BP100 induced membrane thinning, as expected for amphiphilic peptides residing in the polar/apolar interface of the bilayer. PGLa, on the other hand, decreased the hydrophobic thickness only at very high peptide:lipid ratios, and did not change the bilayer-bilayer repeat distance. TisB even caused an increase in the hydrophobic thickness and repeat distance. When reconstituted as a mixture, PGLa and magainin 2 showed a moderate thinning effect which was less than that of magainin 2 alone, hence their synergistically enhanced activity does not seem to correlate with a modulation of membrane thickness. Overall, the absence of

  10. Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis.

    PubMed

    Kozjak-Pavlovic, Vera; Dian-Lothrop, Elke A; Meinecke, Michael; Kepp, Oliver; Ross, Katharina; Rajalingam, Krishnaraj; Harsman, Anke; Hauf, Eva; Brinkmann, Volker; Günther, Dirk; Herrmann, Ines; Hurwitz, Robert; Rassow, Joachim; Wagner, Richard; Rudel, Thomas

    2009-10-01

    The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (DeltaPsi(m)). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of DeltaPsi(m). The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce DeltaPsi(m) loss and apoptosis, demonstrating that dissipation of DeltaPsi(m) is a requirement for cell death caused by neisserial infection. PMID:19851451

  11. Multiphoton Process and Anomalous Potential of Cell Membrane by Laser Radiation

    NASA Technical Reports Server (NTRS)

    Zhang, Kaixi; Zhao, Qingxun; Cui, Zhiyun; Zhar, Ping; Dong, Lifang

    1996-01-01

    In this paper, by the use of quantum biology and quantum optics, the laser induced potential variation of cell membrane has been studied. Theoretically, we have found a method of calculating the monophoton and multiphoton processes in the formation of the anomalous potential of cell membrane. In contrast with the experimental results, our numerical result is in the same order. Therefore, we have found the possibility of cancer caused by the laser induced anomalous cell potential.

  12. Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior.

    PubMed Central

    Zambrowicz, E B; Colombini, M

    1993-01-01

    Flow of ions through large channels is complex because both cations and anions can penetrate and multiple ions can be in the channel at the same time. A modification of the fixed-charge membrane theory of Teorell was reported (Peng, S., E. Blachly-Dyson, M. Forte, and M. Colombini. 1992. Biophys. J. 62:123-135) in which the channel is divided into two compartments: a relatively charged cylindrical shell of solution adjacent to the wall of the pore and a relatively neutral central cylinder of solution. The zero-current (reversal) potential results in current flow in opposite directions in these two compartments. This description accounted rather well for the observed reversal potential changes following site-directed mutations. Here we report the results of systematic tests of this simple theory with the mitochondrial channel, VDAC (isolated from Neurospora crassa), reconstituted into planar phospholipid membranes. The variation of the observed reversal potential with transmembrane activity ratio, ionic strength, ion mobility ratio, and net charge on the wall of the pore are accounted for reasonably well. The Goldman-Hodgkin-Katz theory fails to account for the observations. PMID:7694668

  13. Sampling membrane potential, membrane resistance and electrode resistance with a glass electrode impaled into a single cell.

    PubMed

    Schiebe, M; Jaeger, U

    1980-04-01

    A method is demonstrated to measure membrane resistances and membrane potentials of single cells during impalement by a single glass microelectrode. The intention was to develop a procedure which would provide data almost continuously. Therefore, a frequency-dependent voltage divider network has been chosen to represent the basic electrical properties of the electrode and cell membrane, and used to explore its voltage response to a current stimulus, consisting of two rectangular pulses of different widths. It can be shown that the resolution of the method can be improved by inverting this stimulus so that each polarization becomes a relaxation and vice versa. In order to generate, analyze and display this signal continuously, a device has been designed which has been called 'Electrophysiological Monitor, (E1M2)'. E1M2 provides a current stimulus as input into a standard bridge network and can analyze the summed response of the electrode and cell by a set of sample-hold amplifiers. It then decodes and displays the data continuously, as membrane potential (Em), input resistance of the cell (Rinp) and the electrode resistance (Re) respectively. From Rinp the membrane resistance (Rm) can be deduced. The validity of the method has been examined by measuring these parameters in frog muscle cells. Technical design considerations, the accuracy and possible pitfalls with the suggested procedure are discussed. PMID:7392671

  14. Influence of the membrane dipole potential on peptide binding to lipid bilayers

    PubMed Central

    Zhan, Huan; Lazaridis, Themis

    2011-01-01

    The implicit membrane model IMM1 is extended to include the membrane dipole potential and applied to molecular dynamics simulations of the helical peptides alamethicin, WALP23, influenza hemagglutinin fusion peptide, HIV fusion peptide, magainin, and the pre-sequence of cytochrome c oxidase subunit IV (p25). The results show that the orientation of the peptides in the membrane can be influenced by the dipole potential. The binding affinity of all peptides except for the hemagglutinin fusion peptide decreases upon increase of the dipole potential. The changes in both orientation and binding affinity are explained by the interaction of the dipole potential with the helix backbone dipole and ionic side-chains. In general, peptides that tend to insert the N-terminus in the membrane and/or have positively charged side chains will lose binding affinity upon increase of the dipole potential. PMID:22100997

  15. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  16. Ion Permeability of Artificial Membranes Evaluated by Diffusion Potential and Electrical Resistance Measurements

    ERIC Educational Resources Information Center

    Shlyonsky, Vadim

    2013-01-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and "n"-decane. The electrical resistance and potential…

  17. Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis1

    PubMed Central

    Qiu, Quan-Sheng; Barkla, Bronwyn J.; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S.

    2003-01-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt. PMID:12805632

  18. Polyphenol-rich extract of Salvia chinensis exhibits anticancer activity in different cancer cell lines, and induces cell cycle arrest at the G0/G1-phase, apoptosis and loss of mitochondrial membrane potential in pancreatic cancer cells

    PubMed Central

    ZHAO, QUAN; HUO, XUE-CHEN; SUN, FU-DONG; DONG, RUI-QIAN

    2015-01-01

    Pancreatic cancer (PC) is one of the most aggressive types of human malignancy, which has an overall 5-year survival rate of <2%. PC is the fourth most common cause of cancer-associated mortality in the western world. At present, there is almost no effective treatment available for the treatment of PC. The aim of the present study was to evaluate the anticancer potential of a polyphenol enriched extract obtained from Salvia chinensis, a Chinese medicinal plant. An MTT assay was used to evaluate the cell viability of five cancer cell lines and one normal cell line. In addition, the effects of the extract on apoptotic induction, cell cycle phase distribution, DNA damage and loss of mitochondrial membrane potential (ΛΨm) were evaluated in MiapaCa-2 human PC cells. The effects of the extract on cell cycle phase distribution and ΛΨm were assessed by flow cytometry, using propidium iodide and rhodamine-123 DNA-binding fluorescent dyes, respectively. Fluorescence microscopy, using 4′,6-diamidino-2-phenylindole as a staining agent, was performed in order to detect the morphological changes of the MiapaCa-2 cancer cells and the presence of apoptotic bodies following treatment with the extract. The results of the present study demonstrated that the polyphenol-rich extract from S. chinensis induced potent cytotoxicity in the MCF-7 human breast cancer cells, A549 human lung cancer cells, HCT-116 and COLO 205 human colon cancer cells, and MiapaCa-2 human PC cells. The COLO 205 and MCF-7 cancer cell lines were the most susceptible to treatment with the extract, which exhibited increased rate of growth inhibition. Fluorescence microscopy revealed characteristic morphological features of apoptosis and detected the appearance of apoptotic bodies following treatment with the extract in the PC cells. Flow cytometric analysis demonstrated that the extract induced G0/G1 cell cycle arrest in a dose-dependent manner. In addition, treatment with the extract induced a significant and

  19. Membrane-active macromolecules resensitize NDM-1 gram-negative clinical isolates to tetracycline antibiotics.

    PubMed

    Uppu, Divakara S S M; Manjunath, Goutham B; Yarlagadda, Venkateswarlu; Kaviyil, Jyothi E; Ravikumar, Raju; Paramanandham, Krishnamoorthy; Shome, Bibek R; Haldar, Jayanta

    2015-01-01

    Gram-negative 'superbugs' such as New Delhi metallo-beta-lactamase-1 (blaNDM-1) producing pathogens have become world's major public health threats. Development of molecular strategies that can rehabilitate the 'old antibiotics' and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs. PMID:25789871

  20. Membrane-Active Macromolecules Resensitize NDM-1 Gram-Negative Clinical Isolates to Tetracycline Antibiotics

    PubMed Central

    Uppu, Divakara S. S. M.; Manjunath, Goutham B.; Yarlagadda, Venkateswarlu; Kaviyil, Jyothi E.; Ravikumar, Raju; Paramanandham, Krishnamoorthy; Shome, Bibek R.; Haldar, Jayanta

    2015-01-01

    Gram-negative ‘superbugs’ such as New Delhi metallo-beta-lactamase-1 (blaNDM-1) producing pathogens have become world’s major public health threats. Development of molecular strategies that can rehabilitate the ‘old antibiotics’ and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs. PMID:25789871

  1. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells.

    PubMed

    Lorent, Joseph H; Quetin-Leclercq, Joëlle; Mingeot-Leclercq, Marie-Paule

    2014-11-28

    Saponins, amphiphiles of natural origin with numerous biological activities, are widely used in the cosmetic and pharmaceutical industry. Some saponins exhibit relatively selective cytotoxic effects on cancer cells but the tendency of saponins to induce hemolysis limits their anticancer potential. This review focused on the effects of saponin activity on membranes and consequent implications for red blood and cancer cells. This activity seems to be strongly related to the amphiphilic character of saponins that gives them the ability to self-aggregate and interact with membrane components such as cholesterol and phospholipids. Membrane interactions of saponins with artificial membrane models, red blood and cancer cells are reviewed with respect to their molecular structures. The review considered the mechanisms of these membrane interactions and their consequences including the modulation of membrane dynamics, interaction with membrane rafts, and membrane lysis. We summarized current knowledge concerning the mechanisms involved in the interactions of saponins with membrane lipids and examined the structure activity relationship of saponins regarding hemolysis and cancer cell death. A critical analysis of these findings speculates on their potential to further develop new anticancer compounds. PMID:25295776

  2. Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases.

    PubMed

    Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi

    2016-01-01

    Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases. PMID:27038376

  3. Ionophore-Based Voltammetric Ion Activity Sensing with Thin Layer Membranes.

    PubMed

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-02-01

    As shown in recent work, thin layer ion-selective multi-ionophore membranes can be interrogated by cyclic voltammetry to detect the ion activity of multiple species simultaneously and selectively. Additional fundamental evidence is put forward on ion discrimination with thin multi-ionophore-based membranes with thicknesses of 200 ± 25 nm and backside contacted with poly-3-octylthiophene (POT). An anodic potential scan partially oxidizes the POT film (to POT(+)), thereby initiating the release of hydrophilic cations from the membrane phase to the sample solution at a characteristic potential. Varying concentration of added cation-exchanger demonstrates that it limits the ion transfer charge and not the deposited POT film. Voltammograms with multiple peaks are observed with each associated with the transfer of one type of ion (lithium, potassium, and sodium). Experimental conditions (thickness and composition of the membrane and concentration of the sample) are chosen that allow one to describe the system by a thermodynamic rather than kinetic model. As a consequence, apparent stability constants for sodium, potassium, and lithium (assuming 1:1 stoichiometry) with their respective ionophores are calculated and agree well with the values obtained by the potentiometric sandwich membrane technique. As an analytical application, a membrane containing three ionophores was used to determine lithium, sodium, and potassium in artificial samples at the same location and within a single voltammetric scan. Lithium and potassium were also determined in undiluted human plasma in the therapeutic concentration range. PMID:26712342

  4. Preparation of the superhydrophobic nano-hybrid membrane containing carbon nanotube based on chitosan and its antibacterial activity.

    PubMed

    Song, Kaili; Gao, Aiqin; Cheng, Xi; Xie, Kongliang

    2015-10-01

    The functional nano-hybrid surface containing multi-walled carbon nanotubes (MWCNT) on chitosan incorporated with the cationic chitosan (C-CS), MWCNTs and silicon couple agent (KH-560) was designed and prepared. The nano-hybrid membranes (NHM) containing MWCNTs were modified by perfluorooctanesulfonyl fluoride (PFOSF). The superhydrophobic multi-functional membranes with biological activity and superhydrophobic surface were obtained. The incorporated MWCNTs improved the roughness of the nano-hybrid membranes. The perfluorinated end groups of the nano-hybrid membrane surface provided low energy surface. The antibacterial activity, surface superhydrophobicity and mechanical property of the perfluorinated nano-hybrid membranes (PFNM) were discussed. Their morphological structures and surface ingredients were characterized by energy dispersive X-ray spectrometer (SEM-EDX). The PFNMs had excellent antibacterial property and superhydrophobicity. The novel nano-hybrid membranes with excellent antibacterial, superhydrophbic, and mechanical properties have potential applications in the food engineering, bioengineering fields and medical materials. PMID:26076639

  5. α-Tocopherols modify the membrane dipole potential leading to modulation of ligand binding by P-glycoprotein

    PubMed Central

    Davis, Sterenn; Davis, Benjamin M.; Richens, Joanna L.; Vere, Kelly-Ann; Petrov, Peter G.; Winlove, C. Peter; O’Shea, Paul

    2015-01-01

    α-Tocopherol (vitamin E) has attracted considerable attention as a potential protective or palliative agent. In vitro, its free radical-scavenging antioxidant action has been widely demonstrated. In vivo, however, vitamin E treatment exhibits negligible benefits against oxidative stress. α-Tocopherol influences lipid ordering within biological membranes and its derivatives have been suggested to inhibit the multi-drug efflux pump, P-glycoprotein (P-gp). This study employs the fluorescent membrane probe, 1-(3-sulfonatopropyl)-4-[β[2-(di-n-octylamino)-6-naphthyl]vinyl] pyridinium betaine, to investigate whether these effects are connected via influences on the membrane dipole potential (MDP), an intrinsic property of biological membranes previously demonstrated to modulate P-gp activity. α-Tocopherol and its non-free radical-scavenging succinate analog induced similar decreases in the MDP of phosphatidylcholine vesicles. α-Tocopherol succinate also reduced the MDP of T-lymphocytes, subsequently decreasing the binding affinity of saquinavir for P-gp. Additionally, α-tocopherol succinate demonstrated a preference for cholesterol-treated (membrane microdomain enriched) cells over membrane cholesterol-depleted cells. Microdomain disruption via cholesterol depletion decreased saquinavir’s affinity for P-gp, potentially implicating these structures in the influence of α-tocopherol succinate on P-gp. This study provides evidence of a microdomain dipole potential-dependent mechanism by which α-tocopherol analogs influence P-gp activity. These findings have implications for the use of α-tocopherol derivatives for drug delivery across biological barriers. PMID:26026069

  6. α-Tocopherols modify the membrane dipole potential leading to modulation of ligand binding by P-glycoprotein.

    PubMed

    Davis, Sterenn; Davis, Benjamin M; Richens, Joanna L; Vere, Kelly-Ann; Petrov, Peter G; Winlove, C Peter; O'Shea, Paul

    2015-08-01

    α-Tocopherol (vitamin E) has attracted considerable attention as a potential protective or palliative agent. In vitro, its free radical-scavenging antioxidant action has been widely demonstrated. In vivo, however, vitamin E treatment exhibits negligible benefits against oxidative stress. α-Tocopherol influences lipid ordering within biological membranes and its derivatives have been suggested to inhibit the multi-drug efflux pump, P-glycoprotein (P-gp). This study employs the fluorescent membrane probe, 1-(3-sulfonatopropyl)-4-[β[2-(di-n-octylamino)-6-naphthyl]vinyl] pyridinium betaine, to investigate whether these effects are connected via influences on the membrane dipole potential (MDP), an intrinsic property of biological membranes previously demonstrated to modulate P-gp activity. α-Tocopherol and its non-free radical-scavenging succinate analog induced similar decreases in the MDP of phosphatidylcholine vesicles. α-Tocopherol succinate also reduced the MDP of T-lymphocytes, subsequently decreasing the binding affinity of saquinavir for P-gp. Additionally, α-tocopherol succinate demonstrated a preference for cholesterol-treated (membrane microdomain enriched) cells over membrane cholesterol-depleted cells. Microdomain disruption via cholesterol depletion decreased saquinavir's affinity for P-gp, potentially implicating these structures in the influence of α-tocopherol succinate on P-gp. This study provides evidence of a microdomain dipole potential-dependent mechanism by which α-tocopherol analogs influence P-gp activity. These findings have implications for the use of α-tocopherol derivatives for drug delivery across biological barriers. PMID:26026069

  7. Excess chemical potential of small solutes across water--membrane and water--hexane interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M. A.

    1996-01-01

    The excess chemical potentials of five small, structurally related solutes, CH4, CH3F, CH2F2, CHF3, and CF4, across the water-glycerol 1-monooleate bilayer and water-hexane interfaces were calculated at 300, 310, and 340 K using the particle insertion method. The excess chemical potentials of nonpolar molecules (CH4 and CF4) decrease monotonically or nearly monotonically from water to a nonpolar phase. In contrast, for molecules that possess permanent dipole moments (CH3F, CH2F, and CHF3), the excess chemical potentials exhibit an interfacial minimum that arises from superposition of two monotonically and oppositely changing contributions: electrostatic and nonelectrostatic. The nonelectrostatic term, dominated by the reversible work of creating a cavity that accommodates the solute, decreases, whereas the electrostatic term increases across the interface from water to the membrane interior. In water, the dependence of this term on the dipole moment is accurately described by second order perturbation theory. To achieve the same accuracy at the interface, third order terms must also be included. In the interfacial region, the molecular structure of the solvent influences both the excess chemical potential and solute orientations. The excess chemical potential across the interface increases with temperature, but this effect is rather small. Our analysis indicates that a broad range of small, moderately polar molecules should be surface active at the water-membrane and water-oil interfaces. The biological and medical significance of this result, especially in relation to the mechanism of anesthetic action, is discussed.

  8. Oxygen transport by oxygen potential gradient in dense ceramic oxide membranes

    SciTech Connect

    Maiya, P.S.; Balachandran, U.; Dusek, J.T.; Mieville, R.L.; Kleefisch, M.S.; Udovich, C.A.

    1996-05-01

    Numerous studies have been conducted in recent years on the partial oxidation of methane to synthesis gas (syngas: CO + H{sub 2}) with air as the oxidant. In partial oxidation, a mixed-oxide ceramic membrane selectively transports oxygen from the air; this transport is driven by the oxygen potential gradient. Of the several ceramic materials the authors have tested, a mixed oxide based on the Sr-Fe-Co-O system has been found to be very attractive. Extensive oxygen permeability data have been obtained for this material in methane conversion experiments carried out in a reactor. The data have been analyzed by a transport equation based on the phenomenological theory of diffusion under oxygen potential gradients. Thermodynamic calculations were used to estimate the driving force for the transport of oxygen ions. The results show that the transport equation deduced from the literature describes the permeability data reasonably well and can be used to determine the diffusion coefficients and the associated activation energy of oxygen ions in the ceramic membrane material.

  9. Measuring Cysteine Cathepsin Activity to Detect Lysosomal Membrane Permeabilization.

    PubMed

    Repnik, Urška; Česen, Maruša Hafner; Turk, Boris

    2016-01-01

    During lysosomal membrane permeabilization (LMP), lysosomal lumenal contents can be released into the cytosol. Small molecules are more likely to be released, and cysteine cathepsins, with mature forms possessing a mass of 25-30 kDa, are among the smallest lumenal lysosomal enzymes. In addition, specific substrates for cysteine cathepsins are available to investigators, and therefore the measurement of the cathepsin activity as a hallmark of LMP works well. Here, we present a protocol for measuring the activity of these enzymes after selective plasma membrane permeabilization with a low concentration of digitonin and after total cell membrane lysis with a high concentration of digitonin. A fluorogenic substrate can be added either directly to the well with lysed cells to show LMP or to the cell-free extract to show that the lysosomal membrane has been sufficiently destabilized to allow the translocation of lysosomal enzymes. Although the content of lysosomal cysteine cathepsins differs between cell lines, this method has general applicability, is sensitive, and has high throughput. The presented protocol shows how to measure cysteine cathepsin activity in the presence of lysed cells and also in cell-free extracts. Depending on the aim of the study, one or both types of measurements can be performed. PMID:27140915

  10. Mouse Sperm Membrane Potential Hyperpolarization Is Necessary and Sufficient to Prepare Sperm for the Acrosome Reaction*

    PubMed Central

    De La Vega-Beltran, Jose Luis; Sánchez-Cárdenas, Claudia; Krapf, Darío; Hernandez-González, Enrique O.; Wertheimer, Eva; Treviño, Claudia L.; Visconti, Pablo E.; Darszon, Alberto

    2012-01-01

    Mammalian sperm are unable to fertilize the egg immediately after ejaculation; they acquire this capacity during migration in the female reproductive tract. This maturational process is called capacitation and in mouse sperm it involves a plasma membrane reorganization, extensive changes in the state of protein phosphorylation, increases in intracellular pH (pHi) and Ca2+ ([Ca2+]i), and the appearance of hyperactivated motility. In addition, mouse sperm capacitation is associated with the hyperpolarization of the cell membrane potential. However, the functional role of this process is not known. In this work, to dissect the role of this membrane potential change, hyperpolarization was induced in noncapacitated sperm using either the ENaC inhibitor amiloride, the CFTR agonist genistein or the K+ ionophore valinomycin. In this experimental setting, other capacitation-associated processes such as activation of a cAMP-dependent pathway and the consequent increase in protein tyrosine phosphorylation were not observed. However, hyperpolarization was sufficient to prepare sperm for the acrosome reaction induced either by depolarization with high K+ or by addition of solubilized zona pellucida (sZP). Moreover, K+ and sZP were also able to increase [Ca2+]i in non-capacitated sperm treated with these hyperpolarizing agents but not in untreated cells. On the other hand, in conditions that support capacitation-associated processes blocking hyperpolarization by adding valinomycin and increasing K+ concentrations inhibited the agonist-induced acrosome reaction as well as the increase in [Ca2+]i. Altogether, these results suggest that sperm hyperpolarization by itself is key to enabling mice sperm to undergo the acrosome reaction. PMID:23095755

  11. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission.

    PubMed

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B; Zhang, Hailin; Gamper, Nikita

    2014-11-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na(+), and T-type Ca(2+) channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  12. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission

    PubMed Central

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B.; Zhang, Hailin; Gamper, Nikita

    2014-01-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na+, and T-type Ca2+ channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  13. Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots.

    PubMed

    Pottosin, Igor; Velarde-Buendía, Ana María; Bose, Jayakumar; Fuglsang, Anja T; Shabala, Sergey

    2014-06-01

    Polyamines regulate a variety of cation and K(+) channels, but their potential effects on cation-transporting ATPases are underexplored. In this work, noninvasive microelectrode ion flux estimation and conventional microelectrode techniques were applied to study the effects of polyamines on Ca(2+) and H(+) transport and membrane potential in pea roots. Externally applied spermine or putrescine (1mM) equally activated eosin yellow (EY)-sensitive Ca(2+) pumping across the root epidermis and caused net H(+) influx or efflux. Proton influx induced by spermine was suppressed by EY, supporting the mechanism in which Ca(2+) pump imports 2 H(+) per each exported Ca(2+). Suppression of the Ca(2+) pump by EY diminished putrescine-induced net H(+) efflux instead of increasing it. Thus, activities of Ca(2+) and H(+) pumps were coupled, likely due to the H(+)-pump inhibition by intracellular Ca(2+). Additionally, spermine but not putrescine caused a direct inhibition of H(+) pumping in isolated plasma membrane vesicles. Spermine, spermidine, and putrescine (1mM) induced membrane depolarization by 70, 50, and 35 mV, respectively. Spermine-induced depolarization was abolished by cation transport blocker Gd(3+), was insensitive to anion channels' blocker niflumate, and was dependent on external Ca(2+). Further analysis showed that uptake of polyamines but not polyamine-induced cationic (K(+)+Ca(2+)+H(+)) fluxes were a main cause of membrane depolarization. Polyamine increase is a common component of plant stress responses. Activation of Ca(2+) efflux by polyamines and contrasting effects of polyamines on net H(+) fluxes and membrane potential can contribute to Ca(2+) signalling and modulate a variety of transport processes across the plasma membrane under stress. PMID:24723394

  14. An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine.

    PubMed

    Silva, S S; Popa, E G; Gomes, M E; Cerqueira, M; Marques, A P; Caridade, S G; Teixeira, P; Sousa, C; Mano, J F; Reis, R L

    2013-06-01

    A significant number of therapeutics derived from natural polymers and plants have been developed to replace or to be used in conjunction with existing dressing products. The use of the therapeutic properties of aloe vera could be very useful in the creation of active wound dressing materials. The present work was undertaken to examine issues concerning structural features, topography, enzymatic degradation behavior, antibacterial activity and cellular response of chitosan/aloe vera-based membranes. The chitosan/aloe vera-based membranes that were developed displayed satisfactory degradation, roughness, wettability and mechanical properties. A higher antibacterial potency was displayed by the blended membranes. Moreover, in vitro assays demonstrated that these blended membranes have good cell compatibility with primary human dermal fibroblasts. The chitosan/aloe vera-based membranes might be promising wound dressing materials. PMID:23462554

  15. Investigation of membrane active properties and antiradical activity of gossypol and its derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New asymmetrical derivatives of gossypol were synthesized. The antioxidant activity of gossypol and these derivatives was studied. The interaction of these compounds with modeled lipid membranes was also studied. It was found that the antioxidant effects and ability to interact with membranes was...

  16. Membrane-Active Properties and Antiradical Activity of Gossypol and Its Derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New asymmetrical derivatives of gossypol were synthesized. The antioxidant activity of gossypol and these derivatives was studied. The interaction of these compounds with modeled lipid membranes was also studied. It was found that the antioxidant effects and ability to interact with membranes was...

  17. Evidence of steroid hormone activity in the chorioallantoic membrane of a Turtle (Pseudemys nelsoni).

    PubMed

    Cruze, Lori; Hamlin, Heather J; Kohno, Satomi; McCoy, Michael W; Guillette, Louis J

    2013-06-01

    Endocrine properties of extraembryonic membranes have traditionally been viewed as a characteristic of placental amniotes. However, our laboratory recently demonstrated that this ability extends to the extraembryonic membranes of two oviparous amniotes (chicken and alligator) indicating that endocrine extraembryonic membranes are not an innovation of placental amniotes and suggesting that this could be a shared amniote characteristic. In this study, we test our hypothesis that the chorioallantoic membrane (CAM) obtained from non-archosaurian obligate oviparous amniotes such as turtles, have the potential for steroid hormone activity. To investigate synthesis of a major placental hormone, we performed explant culture and found that the turtle CAM synthesizes progesterone in vitro in the presence of a steroid precursor. In addition, to examine whether the CAM has the ability to respond to steroid signaling, we quantified mRNA expression of the progesterone, androgen, and two estrogen receptors. Finally, to determine if steroid receptor mRNA is translated to protein, we performed immunolocalization of the progesterone receptor. Our data demonstrate that the turtle CAM exhibits steroid synthesis and has steroid hormone signaling capabilities. To that end, steroid hormone activity has now been demonstrated in the CAMs of three oviparous species that represent three independent lineages within oviparous Reptilia that have never exhibited viviparity; thus these data support our hypothesis that endocrine activity of extraembryonic membranes is a conserved trait of Amniota. PMID:23458289

  18. Fluorescence techniques for determination of the membrane potentials in high throughput screening.

    PubMed

    Przybylo, Magda; Borowik, Tomasz; Langner, Marek

    2010-11-01

    The characterization of small molecules requires identification and evaluation of several predictive parameters, when selecting compounds for pharmacological applications and/or determining their toxicity. A number of them are correlated with the compound interaction with biological membranes and/or capacity to cross them. The knowledge of the extent of adsorption, partition coefficient and permeability along with the compound ability to alter membrane properties are critical for such studies. Lipid bilayers are frequently used as the adequate experimental models of a biological membrane despite their simple structure and a limited number of components. A significant number of the biologically relevant lipid bilayer properties are related to its electrostatics. Three electrostatic potentials were defined for the lipid bilayer; the intrinsic or induced surface electrostatic potential, the dipole potential and the membrane potential. Each of them was measured with dedicated methodologies. The complex measurement protocols and technically demanding instrumentation made the development of efficient HTS approaches for complete characterization of membrane electrostatics practically impossible. However, the rapid development of fluorescence techniques accompanied by rapid growth in diversity and number of dedicated fluorescent probes enabled characterization of lipid bilayer electrostatics in a moderately simple manner. Technically advanced, compact and automated workstations, capable of measuring practically all fluorescence parameters, are now available. Therefore, the proper selection of fluorescent probes with measuring procedures can be designed to evaluate drug candidates in context of their ability to alter membrane electrostatics. In the paper we present a critical review of available fluorescence methods, useful for the membrane electrostatics evaluation and discuss the feasibility of their adaptation to HTS procedures. The significance of the presented

  19. Monitoring human neutrophil granule secretion by flow cytometry: secretion and membrane potential changes assessed by light scatter and a fluorescent probe of membrane potential

    SciTech Connect

    Fletcher, M.P.; Seligmann, B.E.

    1985-04-01

    Purified human peripheral blood polymorphonuclear neutrophils (PMN) were incubated at 37 degrees C with the fluorescent membrane potential sensitive cyanine dye di-O-C(5)(3) and exposed to a number of stimulatory agents (N-formylmethionylleucylphenylalanine (FMLP), cytochalasin B (cyto B) + FMLP, phorbol myristate acetate (PMA). Flow cytometry was utilized to measure changes in forward light scatter (FS), orthogonal light scatter (90 degrees-SC), and fluorescence intensity of individual cells over time. A saturating (10(-6) M) dose of FMLP lead to a significant increase in the cells' FS without a change in 90 degrees-SC as well as a heterogeneous loss of di-O-C(5)(3) fluorescence. PMA (100 ng/ml) also caused an increase in FS but a uniform loss of dye fluorescence by all cells (apparent depolarization). Cyto B + FMLP produced an increase in FS, a marked loss of 90 degrees-SC, and a uniform loss of fluorescence. Secretion experiments under identical incubation conditions indicated a significantly positive relationship between loss of enzyme markers or cell granularity and orthogonal light scatter (r . 0.959, 0.998, and 0.989 for loss of 90 degrees-SC vs lysozyme, beta-glucuronidase, and granularity index, respectively). Flow cytometric light scatter measurements may yield important information on the extent of prior cell degranulation or activation.

  20. Membrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging

    NASA Astrophysics Data System (ADS)

    Nuriya, Mutsuo; Yasui, Masato

    2010-03-01

    The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of somatic voltage signal propagation in intact axonal arbors, second-harmonic-generation (SHG) imaging is applied to cultured mouse hippocampal neurons. When FM4-64 is applied extracellularly to dissociated neurons, whole axonal arbors are visualized by SHG imaging. Upon action potential generation by somatic current injection, nonattenuating action potentials are recorded in intact axonal arbors. Interestingly, however, both current- and voltage-clamp recordings suggest that nonregenerative subthreshold somatic voltage changes at the soma are poorly conveyed to these axonal sites. These results reveal the nature of membrane potential dynamics of cultured hippocampal neurons, and further show the possibility of SHG imaging in physiological investigations of axons.

  1. Hyperpolarization of the Membrane Potential Caused by Somatostatin in Dissociated Human Pituitary Adenoma Cells that Secrete Growth Hormone

    NASA Astrophysics Data System (ADS)

    Yamashita, Naohide; Shibuya, Naohiko; Ogata, Etsuro

    1986-08-01

    Membrane electrical properties and the response to somatostatin were examined in dissociated human pituitary adenoma cells that secrete growth hormone (GH). Under current clamp condition with a patch electrode, the resting potential was -52.4 ± 8.0 mV, and spontaneous action potentials were observed in 58% of the cells. Under voltage clamp condition an outward K+ current, a tetrodotoxin-sensitive Na+ current, and a Ca2+ current were observed. Cobalt ions suppressed the Ca2+ current. The threshold of Ca2+ current activation was about -60 mV. Somatostatin elicited a membrane hyperpolarization associated with increased membrane permeability in these cells. The reversal potential of somatostatin-induced hyperpolarization was -78.4 ± 4.3 mV in 6 mM K+ medium and -97.2 ± 6.4 mV in 3 mM K+ medium. These reversal potential values and a shift with the external K+ concentration indicated that membrane hyperpolarization was caused by increased permeability to K+. The hyperpolarized membrane potential induced by somatostatin was -63.6 ± 5.9 mV in the standard medium. This level was subthreshold for Ca2+ and Na+ currents and was sufficient to inhibit spontaneous action potentials. Hormone secretion was significantly suppressed by somatostatin and cobalt ions. Therefore, we suggest that Ca2+ entering the cell through voltage-dependent channels are playing an important role for GH secretion and that somatostatin suppresses GH secretion by blocking Ca2+ currents. Finally, we discuss other possibilities for the inhibitory effect of somatostatin on GH secretion.

  2. Proteasome Impairment Induces Recovery of Mitochondrial Membrane Potential and an Alternative Pathway of Mitochondrial Fusion

    PubMed Central

    Shirozu, Ryohei; Yashiroda, Hideki

    2015-01-01

    Mitochondria are vital and highly dynamic organelles that continuously fuse and divide to maintain mitochondrial quality. Mitochondrial dysfunction impairs cellular integrity and is known to be associated with various human diseases. However, the mechanism by which the quality of mitochondria is maintained remains largely unexplored. Here we show that impaired proteasome function recovers the growth of yeast cells lacking Fzo1, a pivotal protein for mitochondrial fusion. Decreased proteasome activity increased the mitochondrial oxidoreductase protein Mia40 and the ratio of the short isoform of mitochondrial intermembrane protein Mgm1 (s-Mgm1) to the long isoform (l-Mgm1). The increase in Mia40 restored mitochondrial membrane potential, while the increase in the s-Mgm1/l-Mgm1 ratio promoted mitochondrial fusion in an Fzo1-independent manner. Our findings demonstrate a new pathway for mitochondrial quality control that is induced by proteasome impairment. PMID:26552703

  3. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions.

    PubMed

    Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Ijabadeniyi, Oluwatosin A; Aluko, Rotimi E; Amonsou, Eric O

    2016-05-18

    In this study, the bambara protein isolate (BPI) was digested with three proteases (alcalase, trypsin and pepsin), to produce bambara protein hydrolysates (BPHs). These hydrolysates were passed through ultrafiltration membranes to obtain peptide fractions of different sizes (<1, 1-3, 3-5 and 5-10 kDa). The hydrolysates and their peptide fractions were investigated for antioxidant activities. The membrane fractions showed that peptides with sizes <3 kDa had significantly (p < 0.05) reduced surface hydrophobicity when compared with peptides >3 kDa. This is in agreement with the result obtained for the ferric reducing power, metal chelating and hydroxyl radical scavenging activities where higher molecular weight peptides exhibited better activity (p < 0.05) when compared to low molecular weight peptide fractions. However, for all the hydrolysates, the low molecular weight peptides were more effective diphenyl-1-picrylhydrazyl (DPPH) radical scavengers but not superoxide radicals when compared to the bigger peptides. In comparison with glutathione (GSH), BPHs and their membrane fractions had better (p < 0.05) reducing power and ability to chelate metal ions except for the pepsin hydrolysate and its membrane fractions that did not show any metal chelating activity. However, the 5-10 kDa pepsin hydrolysate peptide fractions had greater (88%) hydroxyl scavenging activity than GSH, alcalase and trypsin hydrolysates (82%). These findings show the potential use of BPHs and their peptide fraction as antioxidants in reducing food spoilage or management of oxidative stress-related metabolic disorders. PMID:27156453

  4. Modeling the Electrostatic Potential of Asymmetric Lipopolysaccharide Membranes: The MEMPOT Algorithm Implemented in DelPhi

    PubMed Central

    Soares, Thereza A.; Alexov, Emil

    2014-01-01

    Four chemotypes of the Rough lipopolysaccharides (LPS) membrane from Pseudomonas aeruginosa were investigated by a combined approach of explicit water molecular dynamics (MD) simulations and Poisson-Boltzmann continuum electrostatics with the goal to deliver the distribution of the electrostatic potential across the membrane. For the purpose of this investigation, a new tool for modeling the electrostatic potential profile along the axis normal to the membrane, MEMPOT, was developed and implemented in DelPhi. Applying MEMPOT on the snapshots obtained by MD simulations, two observations were made: (a) the average electrostatic potential has a complex profile, but is mostly positive inside the membrane due to the presence of Ca2+ ions which overcompensate for the negative potential created by lipid phosphate groups; and (b) correct modeling of the electrostatic potential profile across the membrane requires taking into account the water phase, while neglecting it (vacuum calculations) results in dramatic changes including a reversal of the sign of the potential inside the membrane. Furthermore, using DelPhi to assign different dielectric constants for different regions of the LPS membranes, it was investigated whether a single frame structure before MD simulations with appropriate dielectric constants for the lipid tails, inner, and the external leaflet regions, can deliver the same average electrostatic potential distribution as obtained from the MD-generated ensemble of structures. Indeed, this can be attained by using smaller dielectric constant for the tail and inner leaflet regions (mostly hydrophobic) than for the external leaflet region (hydrophilic) and the optimal dielectric constant values are chemotype-specific. PMID:24799021

  5. Suppression of fluid membrane fluctuations by a periodic pinning potential: Applications to red blood cells.

    NASA Astrophysics Data System (ADS)

    Henle, Mark L.; Levine, Alex J.

    2009-03-01

    The membrane of the red blood cell (RBC) is tethered to a two- dimensional triangular network of semi-flexible elastic spectrin filaments. This network allows the cell to maintain its structural integrity during the large shape deformations that occur as it circulates through the microvasculature. The lipid membrane is anchored to the spectrin filaments at the nodes of the network. Consequently, these attachments impose a two-dimensional periodic pinning potential upon the membrane. In this talk, we investigate the effect of this pinning potential on the thermal bending fluctuations of the membrane. We show that there is an exact mapping of this system onto the classic problem of non-interacting electrons subject to a periodic potential; we exploit this mapping to obtain an exact analytic solution for a defect-free triangular array of harmonic pinning sites. The pinning potential affects both the local and global structure of the bending fluctuations. To investigate the local structure we consider the bending correlations between two nearby points in the membrane, while for the global structure we consider the total area stored in the fluctuations. We also investigate the effective area modulus of the membrane/spectrin composite structure.

  6. Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents.

    PubMed

    Arca-Ramos, A; Eibes, G; Feijoo, G; Lema, J M; Moreira, M T

    2015-11-01

    In this study, the removal of bisphenol A (BPA) by laccase in a continuous enzymatic membrane reactor (EMR) was investigated. The effects of key parameters, namely, type of laccase, pH, and enzyme activity, were initially evaluated. Once optimal conditions were determined, the continuous removal of the pollutant in an EMR was assessed in synthetic and real biologically treated wastewaters. The reactor configuration consisted of a stirred tank reactor coupled to a ceramic membrane, which prevented the sorption of the pollutant and allowed the recovery and recycling of laccase. Nearly complete removal of BPA was attained under both operation regimes with removal yields above 94.5 %. In experiments with real wastewater, the removal of BPA remained high while the presence of colloids and certain ions and the formation of precipitates on the membrane potentially affected enzyme stability and made necessary the periodic addition of laccase. Polymerization and degradation were observed as probable mechanisms of BPA transformation by laccase. PMID:26209248

  7. FRET-based voltage probes for confocal imaging: membrane potential oscillations throughout pancreatic islets.

    PubMed

    Kuznetsov, Andrey; Bindokas, Vytautas P; Marks, Jeremy D; Philipson, Louis H

    2005-07-01

    Insulin secretion is dependent on coordinated pancreatic islet physiology. In the present study, we found a way to overcome the limitations of cellular electrophysiology to optically determine cell membrane potential (V(m)) throughout an islet by using a fast voltage optical dye pair. Using laser scanning confocal microscopy (LSCM), we observed fluorescence (Förster) resonance energy transfer (FRET) with the fluorescent donor N-(6-chloro-7-hydroxycoumarin-3-carbonyl)-dimyristoylphosphatidyl-ethanolamine and the acceptor bis-(1,3-diethylthiobarbiturate) trimethine oxonol in the plasma membrane of essentially every cell within an islet. The FRET signal was approximately linear from V(m) -70 to +50 mV with a 2.5-fold change in amplitude. We evaluated the responses of islet cells to glucose and tetraethylammonium. Essentially, every responding cell in a mouse islet displayed similar time-dependent changes in V(m). When V(m) was measured simultaneously with intracellular Ca2+, all active cells showed tight coupling of V(m) to islet cell Ca2+ changes. Our findings indicate that FRET-based, voltage-sensitive dyes used in conjunction with LSCM imaging could be extremely useful in studies of excitation-secretion coupling in intact islets of Langerhans. PMID:15758044

  8. Intracellular calcium store filling by an L-type calcium current in the basolateral amygdala at subthreshold membrane potentials

    PubMed Central

    Power, John M; Sah, Pankaj

    2005-01-01

    The long-term changes that underlie learning and memory are activated by rises in intracellular Ca2+ that activate a number of signalling pathways and trigger changes in gene transcription. Ca2+ rises due to influx via L-type voltage-dependent Ca2+ channels (L-VDCCs) and release from intracellular Ca2+ stores have been consistently implicated in the biochemical cascades that underlie the final changes in memory formation. Here, we show that pyramidal neurones in the basolateral amygdala express an L-VDCC that is active at resting membrane potentials. Subthreshold depolarization of neurones either by current injection or summating synaptic potentials led to a sustained rise in cytosolic Ca2+ that was blocked by the dihydropyridine nicardipine. Activation of metabotropic receptors released Ca2+ from intracellular Ca2+ stores. At hyperpolarized potentials, metabotropic-evoked store release ran down with repeated stimulation. Depolarization of cells to −50 mV, or maintaining them at the resting membrane potential, restored release from intracellular Ca2+ stores, an effect that was blocked by nicardipine. These results show that Ca2+ influx via a low-voltage-activated L-type Ca2+ current refills inositol 1,4,5-trisphosphate (IP3)-sensitive intracellular Ca2+ stores, and maintains Ca2+ release and wave generation by metabotropic receptor activation. PMID:15550460

  9. Plasma Membrane Surface Potential: Dual Effects upon Ion Uptake and Toxicity1

    PubMed Central

    Wang, Peng; Kinraide, Thomas B.; Zhou, Dongmei; Kopittke, Peter M.; Peijnenburg, Willie J.G.M.

    2011-01-01

    Electrical properties of plasma membranes (PMs), partially controlled by the ionic composition of the exposure medium, play significant roles in the distribution of ions at the exterior surface of PMs and in the transport of ions across PMs. The effects of coexisting cations (commonly Al3+, Ca2+, Mg2+, H+, and Na+) on the uptake and toxicity of these and other ions (such as Cu2+, Zn2+, Ni2+, Cd2+, and H2AsO4−) to plants were studied in terms of the electrical properties of PMs. Increased concentrations of cations or decreased pH in rooting media, whether in solution culture or in soils, reduced the negativity of the electrical potential at the PM exterior surface (ψ0o). This reduction decreased the activities of metal cations at the PM surface and increased the activities of anions such as H2AsO4−. Furthermore, the reduced ψ0o negativity increased the surface-to-surface transmembrane potential difference, thus increasing the electrical driving force for cation uptake and decreasing the driving force for anion uptake across PMs. Analysis of measured uptake and toxicity of ions using electrostatic models provides evidence that uptake and toxicity are functions of the dual effects of ψ0o (i.e. altered PM surface ion activity and surface-to-surface transmembrane potential difference gradient). This study provides novel insights into the mechanisms of plant-ion interactions and extends current theory to evaluate ion bioavailability and toxicity, indicating its potential utility in risk assessment of metal(loid)s in natural waters and soils. PMID:21119046

  10. Amnion and Chorion Membranes: Potential Stem Cell Reservoir with Wide Applications in Periodontics

    PubMed Central

    2015-01-01

    The periodontal therapy usually aims at elimination of disease causing bacteria and resolution of inflammation. It involves either resective or regenerative surgery to resolve the inflammation associated defects. Over the years, several methods have been used for achievement of periodontal regeneration. One of the oldest biomaterials used for scaffolds is the fetal membrane. The amniotic membranes of developing embryo, that is, amnion (innermost lining) and chorion (a layer next to it), have the properties with significant potential uses in dentistry. This paper reviews the properties, mechanism of action, and various applications of these placental membranes in general and specifically in Periodontics. PMID:26770199

  11. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse.

    PubMed Central

    Chen, W; Lee, R C

    1994-01-01

    The effects of large magnitude transmembrane potential pulses on voltage-gated Na and K channel behavior in frog skeletal muscle membrane were studied using a modified double vaseline-gap voltage clamp. The effects of electroconformational damage to ionic channels were separated from damage to lipid bilayer (electroporation). A 4 ms transmembrane potential pulse of -600 mV resulted in a reduction of both Na and K channel conductivities. The supraphysiologic pulses also reduced ionic selectivity of the K channels against Na+ ions, resulting in a depolarization of the membrane resting potential. However, TTX and TEA binding effects were unaltered. The kinetics of spontaneous reversal of the electroconformational damage of channel proteins was found to be dependent on the magnitude of imposed membrane potential pulse. These results suggest that muscle and nerve dysfunction after electrical shock may be in part caused by electroconformational damage to voltage-gated ion channels. PMID:7948676

  12. Veratridine-induced oscillations of cytosolic calcium and membrane potential in bovine chromaffin cells.

    PubMed Central

    López, M G; Artalejo, A R; García, A G; Neher, E; García-Sancho, J

    1995-01-01

    1. Veratridine (VTD) induced large oscillations of the cytosolic Ca2+ concentration ([Ca2+]i) and the membrane potential (Vm) in otherwise silent bovine chromaffin cells loaded with fura-2. 2. Depletion of the intracellular Ca2+ stores by thapsigargin or ryanodine did not affect these oscillations. Caffeine had a complex effect, decreasing them in cells with high activity but increasing them in cells with low activity. 3. The [Ca2+]i oscillations required extracellular Ca2+ and Na+ and were blocked by Ni2+ or tetrodotoxin. They were antagonized by high external concentrations of Mg2+ and/or Ca2+. 4. The oscillations of Vm had three phases: (i) slow depolarization (20 mV in 10-40 s); (ii) further fast depolarization (30 mV in 1 s); and (iii) rapid (5 s) repolarization. [Ca2+]i decreased during (i), increased quickly during (ii) with a 1 s delay with regard to the peak depolarization, and decreased during (iii). 5. Slight depolarizations increased the frequency of the oscillations whereas large depolarizations decreased it. 6. The Ca(2+)-dependent K+ channel blocker apamin increased the duration and decreased the frequency of the oscillations. 7. We propose the following mechanism for the oscillations: (i) the membrane depolarizes slowly by a decrease of potassium conductance (gK), perhaps due to a gradual decrease of [Ca2+]i; (ii) the threshold for activation of Na+ channels (decreased by VTD) is reached, producing further depolarization and recruiting Ca2+ channels, and inactivation of both Ca2+ and VTD-poisoned Na+ channels is slow; and (iii) gK increases, aided by activation of Ca(2+)-dependent K+ channels by the increased [Ca2+]i, and the membrane repolarizes. The contribution of the Na+ channels seems essential for the generation of the oscillations. 8. Bovine chromaffin cells have the machinery required for [Ca2+]i oscillations even though the more physiological stimulus tested here (high K+, field electrical stimulation, nicotinic or muscarinic agonists

  13. A hybrid anaerobic membrane bioreactor coupled with online ultrasonic equipment for digestion of waste activated sludge.

    PubMed

    Xu, Meilan; Wen, Xianghua; Yu, Zhiyong; Li, Yushan; Huang, Xia

    2011-05-01

    Anaerobic membrane bioreactor and online ultrasonic equipment used to enhance membrane filtration were coupled to form a hybrid system (US-AnMBR) designed for long-term digestion of waste activated sludge. The US-AnMBR was operated under volatile solids loading rates of 1.1-3.7 gVS/L·d. After comprehensive studies on digestion performance and membrane fouling control in the US-AnMBR, the final loading rate was determined to be 2.7 gVS/L·d with 51.3% volatile solids destruction. In the US-AnMBR, the improved digestion was due to enhanced sludge disintegration, as indicated by soluble matter comparison in the supernatant and particle size distribution in the digested sludge. Maximum specific methanogenic activity revealed that ultrasound application had no negative effect on anaerobic microorganisms. Furthermore, implementing ultrasound effectively controlled membrane fouling and successfully facilitated membrane bioreactor operation. This lab-scale study demonstrates the potential feasibility and effectiveness of setting up a US-AnMBR system for sludge digestion. PMID:21421308

  14. VDAC electronics: 2. A new, anaerobic mechanism of generation of the membrane potentials in mitochondria.

    PubMed

    Lemeshko, Victor V

    2014-07-01

    Mitochondrial hexokinase (HK) and creatine kinase (CK) known to form complexes with a voltage dependent anion channel (VDAC) have been reported to increase cell death resistance under hypoxia/anoxia. In this work we propose a new, non-Mitchell mechanism of generation of the inner and outer membrane potentials at anaerobic conditions. The driving force is provided by the Gibbs free energy of the HK and CK reactions associated with the VDAC-HK and the ANT (adenine nucleotide translocator)-CK-VDAC complexes, respectively, both functioning as voltage generators. In the absence of oxygen, the cytosolic creatine phosphate can be directly used by the ANT-CK-VDAC contact sites to produce ATP from ADP in the mitochondrial matrix. After that, ATP released through the fraction of unbound ANTs in exchange for ADP is used in the mitochondrial intermembrane space by the outer membrane VDAC-HK electrogenic complexes to convert cytosolic glucose into glucose-6-phosphate. A simple computational model based on the application of Ohm's law to an equivalent electrical circuit showed a possibility of generation of the inner membrane potential up to -160mV, under certain conditions, and of relatively high outer membrane potential without wasting of ATP that normally leads to cell death. The calculated membrane potentials depended on the restriction of ATP/ADP diffusion in narrow cristae and through the cristae junctions. We suggest that high inner membrane potential and calcium extrusion from the mitochondrial intermembrane space by generated positive outer membrane potential prevent mitochondrial permeability transition, thus allowing the maintenance of mitochondrial integrity and cell survival in the absence of oxygen. PMID:24565793

  15. Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions

    NASA Technical Reports Server (NTRS)

    Ermakov, Y. A.; Averbakh, A. Z.; Yusipovich, A. I.; Sukharev, S.

    2001-01-01

    The dipole component of the membrane boundary potential, phi(d), is an integral parameter that may report on the conformational state of the lipid headgroups and their hydration. In this work, we describe an experimental approach to measurements of the dipole potential changes, Deltaphi(d), and apply it in studies of Be(2+) and Gd(3+) interactions with membranes composed of phosphatidylserine (PS), phosphatidylcholine (PC), and their mixtures. Deltaphi(d) is determined as the difference between the changes of the total boundary potential, phi(b), measured by the IFC method in planar lipid membranes and the surface potential, phi(s), determined from the electrophoretic mobility of liposomes. The Gouy-Chapman-Stern formalism, combined with the condition of mass balance, well describes the ion equilibria for these high-affinity cations. For the adsorption of Be(2+) and Gd(3+) to PC membranes, and of Mg(2+) to PS membranes, the values of Deltaphi(b) and Deltaphi(s) are the same, indicative of no change of phi(d). Binding of Gd(3+) to PS-containing membranes induces changes of phi(d) of opposite signs depending on the density of ionized PS headgroups in the bilayer. At low density, the induced Deltaphi(d) is negative (-30 mV), consistent with the effect of dehydration of the surface. At maximal density (pure PS, neutral pH), adsorption of Be(2+) or Gd(3+) induces an increase of phi(d) of 35 or 140 mV, respectively. The onset of the strong positive dipole effect on PS membranes with Gd(3+) is observed near the zero charge point and correlates with a six-fold increase of membrane tension. The observed phenomena may reflect concerted reorientation of dipole moments of PS headgroups as a result of ion adsorption and lipid condensation. Their possible implications to in-vivo effects of these high-affinity ions are discussed.

  16. Propagation of the change in the membrane potential using a biocell-model.

    PubMed

    Takano, Yoshinari; Shirai, Osamu; Kitazumi, Yuki; Kano, Kenji

    2016-05-14

    A new model system of nerve conduction, which has two sites (the potential-sending and the potential-receiving sites) was constructed by the use of some liquid-membrane cells which mimic the function of the K(+) and Na(+) channels. The model system setup was such that the membrane potential of the K(+)-channel cell (resting potential) was different from that of the Na(+)-channel cell (action potential). Initially, the K(+)-channel cell at the potential-sending site was connected to that at the potential-receiving site. After switching from the K(+)-channel cell to the Na(+)-channel cell at the potential-sending site, the membrane potential of the K(+)-channel cell at the potential-receiving site began to vary with the generation of the circulating current. By placing several K(+)-channel cells in parallel at the potential-receiving site, the propagation mechanism of the action potential was interpreted and the influence of the resistor and the capacitor on the propagation was evaluated. PMID:27094735

  17. Permeant Ions, Impermeant Ions, Electrogenic Pumps, Cell Volume, and the Resting Membrane Potential.

    ERIC Educational Resources Information Center

    Edwards, Charles

    1982-01-01

    Students often have difficulty in understanding the processes responsible for the ionic basis of the membrane potential. Because descriptions in textbooks are not satisfactory and in some cases in error, a discussion of the processes underlying the potential (combining known results) is provided. (Author/JN)

  18. Light-induced membrane potential and pH gradient in Halobacterium halobium envelope vesicles.

    PubMed

    Renthal, R; Lanyi, J K

    1976-05-18

    Illumination of envelope vesicles prepared from Halobacterium halobium cells causes translocation of protons from inside to outside, due to the light-induced cycling of bacteriorhodopsin. This process results in a pH gradient across the membranes, an electrical potential, and the movements of K+ and Na+. The electrical potential was estimated by following the fluorescence of a cyanine dye, 3,3'-dipentyloxadicarbocyanine. Illumination of H. halobium vesicles resulted in a rapid, reversible decrease of the dye fluorescence, by as much as 35%. This effect was not seen in nonvesicular patches of purple membrane. Observation of maximal fluorescence decreases upon ilumination of vesicles required an optimal dye/membrane protein ratio. The pH optimum for the lightinduced fluorescence decrease was 6.0. The decrease was linear with actinic light intensity up to about 4 X 10(5) ergs cn-2 s-1. Valinomycin, gramicidin, and triphenylmethylphosphonium ion all abolished the fluorescence changes. However, the light-induced pH change was enhanced by these agents. Conversely, buffered vesicles showed no pH change but gave the same or larger fluorescence changes. Thus, we have identified the fluorescence decrease with a light-induced membrane potential, inside negative. By using valinomycin-K+-induced membrane potentials, we calibrated the fluorescence decrease with calculated Nernst diffusion potentials. We found a linear dependence between potential and fluorescence decrease of 3 mV/%, up to 90 mV. When the envelope vesicles were illuminated, the total proton-motive force generated was dependent on the presence of Na+ and K+ and their concentration gradients across the membrane. In general, K+ appeared to be more permeable than Na+ and, thus, permitted development of greater pH gradients and lower electrical potentials. By calculating the total proton-motive force from the sum of the pH and potential terms, we found that the vesicles can produce proton-motive forces near--200 m

  19. Cyclohexane triones, novel membrane-active antibacterial agents.

    PubMed Central

    Lloyd, W J; Broadhurst, A V; Hall, M J; Andrews, K J; Barber, W E; Wong-Kai-In, P

    1988-01-01

    The cyclohexane triones are a novel group of synthetic antibacterial agents that are active against gram-positive bacteria, Haemophilus influenzae, and Mycobacterium smegmatis. In general, these compounds behaved in a manner similar to that of hexachlorophene, inhibiting the transport of low-molecular-weight hydrophilic substances into bacteria. Unlike cationic detergents, such as chlorhexidine, they did not cause disruption of the bacterial cytoplasmic membrane over a short time period. The most potent antibacterial cyclohexane trione studied had a reduced ability to inhibit solute transport in comparison with certain less active analogs. Cyclohexane triones may express more than a single type of antibacterial effect. PMID:3137860

  20. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  1. A novel fragment based strategy for membrane active antimicrobials against MRSA.

    PubMed

    Li, Jianguo; Liu, Shouping; Koh, Jun-Jie; Zou, Hanxun; Lakshminarayanan, Rajamani; Bai, Yang; Pervushin, Konstantin; Zhou, Lei; Verma, Chandra; Beuerman, Roger W

    2015-04-01

    Membrane active antimicrobials are a promising new generation of antibiotics that hold the potential to avert antibiotic resistance. However, poor understanding of the action mechanism and the lack of general design principles have impeded their development. Here we extend the concept of fragment based drug design and propose a pharmacophore model based on first principles for the design of membrane active antimicrobials against Gram positive pathogens. Elaborating on a natural xanthone-based hydrophobic scaffold, two derivatives of the pharmacophore model are proposed, and these demonstrate excellent antimicrobial activity. Rigorous molecular dynamics simulations combined with biophysical experiments suggest a three-step mechanism of action (absorption-translocation-disruption) which allows us to identify key factors for the practical optimization of each fragment of the pharmacophore. Moreover, the model matches the structures of several membrane active antimicrobials which are currently in clinical trials. Our model provides a novel and rational approach for the design of bactericidal molecules that target the bacterial membrane. PMID:25582665

  2. Effect of theophylline on membrane potential and contractile force in hamster diaphragm muscle in vitro.

    PubMed Central

    Esau, S

    1986-01-01

    Theophylline enhances the force of diaphragmatic contraction and delays fatigue. The mechanism is not known, but recent evidence suggests it may act at the cell membrane. To test this hypothesis, we studied the effect of theophylline on resting membrane potential and tension in hamster diaphragm cells. Muscle strips were obtained from five adult hamsters and placed in Krebs solution, aerated with 95% O2, 5% CO2. Resting membrane potential was measured using 3-M KCl-filled glass microelectrodes; 15-22 fibers in each strip were sampled. Force frequency curves (twitch to 100 Hz) were obtained. The muscle bath was then changed to one containing 100 mg/liter (0.55) theophylline. Resting membrane potential was -76 +/- 3 mV (mean +/- S.D.) in Krebs solution and increased to -85 +/- 3 mV (P less than 0.01) with added theophylline. Tension increased from 5% (at 100 Hz) to 20% (at 10 Hz) with theophylline. Hyperpolarization indicates an increase in intracellular to extracellular potassium concentration. Net potassium outflow occurs with each contraction, causing the cell membrane to become depolarized with repeated contractions, ultimately leading to fatigue. The hyperpolarization of the skeletal muscle cell membrane observed with theophylline may play an important role in prolonging time to fatigue. PMID:3944272

  3. tBid Undergoes Multiple Conformational Changes at the Membrane Required for Bax Activation*

    PubMed Central

    Shamas-Din, Aisha; Bindner, Scott; Zhu, Weijia; Zaltsman, Yehudit; Campbell, Clinton; Gross, Atan; Leber, Brian; Andrews, David W.; Fradin, Cécile

    2013-01-01

    Bid is a Bcl-2 family protein that promotes apoptosis by activating Bax and eliciting mitochondrial outer membrane permeabilization (MOMP). Full-length Bid is cleaved in response to apoptotic stimuli into two fragments, p7 and tBid (p15), that are held together by strong hydrophobic interactions until the complex binds to membranes. The detailed mechanism(s) of fragment separation including tBid binding to membranes and release of the p7 fragment to the cytoplasm remain unclear. Using liposomes or isolated mitochondria with fluorescently labeled proteins at physiological concentrations as in vitro models, we report that the two components of the complex quickly separate upon interaction with a membrane. Once tBid binds to the membrane, it undergoes slow structural rearrangements that result in an equilibrium between two major tBid conformations on the membrane. The conformational change of tBid is a prerequisite for interaction with Bax and is, therefore, a novel step that can be modulated to promote or inhibit MOMP. Using automated high-throughput image analysis in cells, we show that down-regulation of Mtch2 causes a significant delay between tBid and Bax relocalization in cells. We propose that by promoting insertion of tBid via a conformational change at the mitochondrial outer membrane, Mtch2 accelerates tBid-mediated Bax activation and MOMP. Thus the interaction of Mtch2 and tBid is a potential target for therapeutic control of Bid initiated cell death. PMID:23744079

  4. Antiviral activity of squalamine: Role of electrostatic membrane binding

    NASA Astrophysics Data System (ADS)

    Beckerman, Bernard; Qu, Wei; Mishra, Abhijit; Zasloff, Michael; Wong, Gerard; Luijten, Erik

    2012-02-01

    Recent workootnotetextM. Zasloff et al., Proc. Nat. Acad. Sci. (USA) 108, 15978 (2011). has demonstrated that squalamine, a molecule found in the liver of sharks, exhibits broad-spectrum antiviral properties. It has been proposed that this activity results from the charge-density matching of squalamine and phospholipid membranes, causing squalamine to bind to membranes and displace proteins such as Rac1 that are crucial for the viral replication cycle. Here we investigate this hypothesis by numerical simulation of a coarse-grained model for the competition between Rac1 and squalamine in binding affinity to a flat lipid bilayer. We perform free-energy calculations to test the ability of squalamine to condense stacked bilayer systems and thereby displace bulkier Rac1 molecules. We directly compare our findings to small-angle x-ray scattering results for the same setup.

  5. Flapping tail membrane in bats produces potentially important thrust during horizontal takeoffs and very slow flight.

    PubMed

    Adams, Rick A; Snode, Emily R; Shaw, Jason B

    2012-01-01

    Historically, studies concerning bat flight have focused primarily on the wings. By analyzing high-speed video taken on 48 individuals of five species of vespertilionid bats, we show that the capacity to flap the tail-membrane (uropatagium) in order to generate thrust and lift during takeoffs and minimal-speed flight (<1 m (s-1)) was largely underestimated. Indeed, bats flapped the tail-membrane by extensive dorso-ventral fanning motions covering as much as 135 degrees of arc consistent with thrust generation by air displacement. The degree of dorsal extension of the tail-membrane, and thus the potential amount of thrust generated during platform launches, was significantly correlated with body mass (P = 0.02). Adduction of the hind limbs during upstrokes collapsed the tail-membrane thereby reducing its surface area and minimizing negative lift forces. Abduction of the hind limbs during the downstroke fully expanded the tail-membrane as it was swept ventrally. The flapping kinematics of the tail-membrane is thus consistent with expectations for an airfoil. Timing offsets between the wings and tail-membrane during downstrokes was as much as 50%, suggesting that the tail-membrane was providing thrust and perhaps lift when the wings were retracting through the upstoke phase of the wing-beat cycle. The extent to which the tail-membrane was used during takeoffs differed significantly among four vespertilionid species (P = 0.01) and aligned with predictions derived from bat ecomorphology. The extensive fanning motion of the tail membrane by vespertilionid bats has not been reported for other flying vertebrates. PMID:22393378

  6. Flapping Tail Membrane in Bats Produces Potentially Important Thrust during Horizontal Takeoffs and Very Slow Flight

    PubMed Central

    Adams, Rick A.; Snode, Emily R.; Shaw, Jason B.

    2012-01-01

    Historically, studies concerning bat flight have focused primarily on the wings. By analyzing high-speed video taken on 48 individuals of five species of vespertilionid bats, we show that the capacity to flap the tail-membrane (uropatagium) in order to generate thrust and lift during takeoffs and minimal-speed flight (<1 m s−1) was largely underestimated. Indeed, bats flapped the tail-membrane by extensive dorso-ventral fanning motions covering as much as 135 degrees of arc consistent with thrust generation by air displacement. The degree of dorsal extension of the tail-membrane, and thus the potential amount of thrust generated during platform launches, was significantly correlated with body mass (P = 0.02). Adduction of the hind limbs during upstrokes collapsed the tail-membrane thereby reducing its surface area and minimizing negative lift forces. Abduction of the hind limbs during the downstroke fully expanded the tail-membrane as it was swept ventrally. The flapping kinematics of the tail-membrane is thus consistent with expectations for an airfoil. Timing offsets between the wings and tail-membrane during downstrokes was as much as 50%, suggesting that the tail-membrane was providing thrust and perhaps lift when the wings were retracting through the upstoke phase of the wing-beat cycle. The extent to which the tail-membrane was used during takeoffs differed significantly among four vespertilionid species (P = 0.01) and aligned with predictions derived from bat ecomorphology. The extensive fanning motion of the tail membrane by vespertilionid bats has not been reported for other flying vertebrates. PMID:22393378

  7. Pharmacological exploration of the resting membrane potential reserve: Impact on atrial fibrillation.

    PubMed

    van der Heyden, Marcel A G; Jespersen, Thomas

    2016-01-15

    The cardiac action potential arises and spreads throughout the myocardium as a consequence of highly organized spatial and temporal expression of ion channels conducting Na(+), Ca(2+) or K(+) currents. The cardiac Na(+) current is responsible for the initiation and progression of the action potential. Altered Na(+) current has been found implicated in a number of different arrhythmias, including atrial fibrillation. In the atrium, the resting membrane potential is more depolarized than in the ventricles, and as cardiac Na(+) channels undergo voltage-dependent inactivation close to this potential, minor changes in the membrane potential have a relatively large impact on the atrial Na(+) current. The atrial resting membrane potential is established following ionic currents through the inwardly rectifying K(+) currents IK1, IK,ACh and IK,Ca and to a lesser extent by other ion channels as well as by exchangers and pumps. This review will focus on the relative and regulated contribution of IK1, IK,ACh and IK,Ca, and on pharmacological modification of the channels underlying these currents in respect to the resting membrane potential, Na(+) channel availability and atrial electrophysiology in health and disease. PMID:26601803

  8. The interplay of seven subthreshold conductances controls the resting membrane potential and the oscillatory behavior of thalamocortical neurons

    PubMed Central

    Zagha, Edward; Mato, German; Rudy, Bernardo; Nadal, Marcela S.

    2014-01-01

    The signaling properties of thalamocortical (TC) neurons depend on the diversity of ion conductance mechanisms that underlie their rich membrane behavior at subthreshold potentials. Using patch-clamp recordings of TC neurons in brain slices from mice and a realistic conductance-based computational model, we characterized seven subthreshold ion currents of TC neurons and quantified their individual contributions to the total steady-state conductance at levels below tonic firing threshold. We then used the TC neuron model to show that the resting membrane potential results from the interplay of several inward and outward currents over a background provided by the potassium and sodium leak currents. The steady-state conductances of depolarizing Ih (hyperpolarization-activated cationic current), IT (low-threshold calcium current), and INaP (persistent sodium current) move the membrane potential away from the reversal potential of the leak conductances. This depolarization is counteracted in turn by the hyperpolarizing steady-state current of IA (fast transient A-type potassium current) and IKir (inwardly rectifying potassium current). Using the computational model, we have shown that single parameter variations compatible with physiological or pathological modulation promote burst firing periodicity. The balance between three amplifying variables (activation of IT, activation of INaP, and activation of IKir) and three recovering variables (inactivation of IT, activation of IA, and activation of Ih) determines the propensity, or lack thereof, of repetitive burst firing of TC neurons. We also have determined the specific roles that each of these variables have during the intrinsic oscillation. PMID:24760784

  9. Measuring the activity of heterotrophic microorganism in membrane bioreactor for drinking water treatment.

    PubMed

    Han, Zheng-Shuang; Tian, Jia-Yu; Liang, Heng; Ma, Jun; Yu, Hua-Rong; Li, Kai; Ding, An; Li, Gui-Bai

    2013-02-01

    In order to quantify the activity of heterotrophic microorganism in membrane bioreactor (MBR) for drinking water treatment, biomass respiration potential (BRP) test and 2,3,5-triphenyl tetrazolium chloride-dehydrogenase activity (TTC-DHA) test were introduced and modified. A sludge concentration ratio of 5:1, incubation time of 2h, an incubation temperature that was close to the real operational temperature, and using a mixture of main AOC components as the substrate were adopted as the optimum parameters for determination of DHA in drinking water MBR. A remarkable consistency among BDOC removal, BRP and DHA for assessing biological performance in different MBRs was achieved. Moreover, a significant correlation between the BRP and DHA results of different MBRs was obtained. However, the TTC-DHA test was expected to be inaccurate for quantifying the biomass activity in membrane adsorption bioreactor (MABR), while the BRP test turned out to be still feasible in that case. PMID:23306121

  10. Effect of hydrogen peroxide and hypochlorite on mitochondrial membrane potential in permeabilized rat heart cells

    SciTech Connect

    Konno, N.; Kako, K.J. )

    1991-03-15

    The chemiosmotic theory states that the proton electrochemical potential gradient across the membrane drives mitochondrial energy transduction. Mitochondria can take up Ca accumulated in the cytosol. Therefore, oxidant-induced ATP depletion and Ca overload in the cell may be the result of mitochondrial dysfunction. Consequently, the authors measured membrane potential of mitochondria in situ in isolated rat heart myocytes with {sup 3}H-triphenylmethylphosphonium. This was followed by permeabilization using digitonin and rapid centrifugation using density gradient of bromododecane. They found that the membrane potentials, 118 mV with isolated and 161 mV with in situ mitochondria, were relatively well maintained under oxidant stress. High concentrations of oxidants reduced also the cellular ATP level, whereas the matrix volume was not significantly changed. The H{sub 2}O{sub 2} effect on the mitochondrial membrane potential was more pronounced when the extra-mitochondrial free Ca concentration was increased in permeabilized myocytes. These results support the view that heart mitochondria are equipped with well developed defense mechanisms against oxidants and thus the electrochemical gradient of inner membrane is affected only by a relatively large concentration of H{sub 2}O{sub 2} and HOCl.

  11. Effect of surface and membrane potentials on IAA (indoleactic acid) uptake and binding by zucchini membrane vesicles

    SciTech Connect

    Clark, K.A.; Goldsmith, M.H.M.

    1986-08-01

    The polar transport of the endogenous hormone controlling extension growth of plant cells, indoleacetic acid (IAA), is thought to depend on transmembrane pH and electrical gradients resulting in part from the action of proton ATPases in the plasma membrane. Elements of this transport process are permeation of the membrane by the undissociated lipophilic indoleacetic acid (IAAH) from the acidic apoplast, followed by dissociation of the weak acid and accumulation of the IAA anion (IAA/sup -/) in the alkaline cytoplasm; a saturable symport of IAA/sup -/ with one or more protons; a carrier-mediated efflux of IAA/sup -/ down a considerable electrochemical gradient. The efflux is greater from the basal than the apical end of cells and is thought to be responsible for the overall polarity of the process. This step is also the site of action of napthylphthalamic acid (NPA) and herbicides that inhibit polar transport but stimulate net accumulation of auxin by tissues and cells. We are using membrane vesicles as a simplified system for studying the mechanisms involved in the transport and accumulation of auxin. In particular, we are interested in determining the involvement of the transmembrane pH (pH/sub o/ < pH/sub i/) and voltage gradients (K/sup +/ diffusion potential, (K/sup +/)/sub in/ > (K/sup +/)/sub out/) in IAA uptake. 19 refs., 6 figs.

  12. Glycine modulates membrane potential, cell volume, and phagocytosis in murine microglia.

    PubMed

    Komm, Barbara; Beyreis, Marlena; Kittl, Michael; Jakab, Martin; Ritter, Markus; Kerschbaum, Hubert H

    2014-08-01

    Phagocytes form engulfment pseudopodia at the contact area with their target particle by a process resembling cell volume (CV) regulatory mechanisms. We evaluated whether the osmoregulatory active neutral amino acid glycine, which contributes to CV regulation via activation of sodium-dependent neutral amino acid transporters (SNATs) improves phagocytosis in isotonic and hypertonic conditions in the murine microglial cell line BV-2 and primary microglial cells (pMG). In BV-2 cells and pMG, RT-PCR analysis revealed expression of SNATs (Slc38a1, Slc38a2), but not of GlyRs (Glra1-4). In BV-2 cells, glycine (5 mM) led to a rapid Na(+)-dependent depolarization of membrane potential (V mem). Furthermore, glycine increased CV by about 9%. Visualizing of phagocytosis of polystyrene microspheres by scanning electron microscopy revealed that glycine (1 mM) increased the number of BV-2 cells containing at least one microsphere by about 13%. Glycine-dependent increase in phagocytosis was suppressed by the SNAT inhibitor α-(methylamino)isobutyric acid (MeAIB), by replacing extracellular Na(+) with choline, and under hypertonic conditions, but not by the GlyR antagonist strychnine or the GlyR agonist taurine. Interestingly, hypertonicity-induced suppression of phagocytosis was rescued by glycine. These findings demonstrate that glycine increases phagocytosis in iso- and hypertonic conditions by activation of SNATs. PMID:24760586

  13. Antibacterial activity and in vitro evaluation of the biocompatibility of chitosan-based polysaccharide/polyester membranes.

    PubMed

    Wu, Chin-San; Hsu, Yi-Chiang; Liao, Hsin-Tzu; Cai, Yu-Xuan

    2015-12-10

    The antibacterial activity and biocompatibility of membranes of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and chitosan (CS) (PHBV)/CS) were evaluated in this study. Maleic anhydride (MA)-grafted polyhydroxyalkanoate (PHBV-g-MA) was evaluated as an alternative to PHBV. Mouse tail skin fibroblasts (FBs) were seeded on two series of these films to assess cytocompatibility. Collagen and cell proliferation analyses indicated that PHBV, PHBV-g-MA and their composite membranes were biocompatible with respect to FB proliferation. However, FB proliferation, collagen production and the percentage of normal cells growing on PHBV/CS membranes were greater than those for PHBV-g-MA/CS membranes. Cell-cycle and apoptosis assays by FBs on the PHBV-series membrane samples were not affected by DNA content related to damage; i.e. rapid apoptosis/necrosis was not observed, demonstrating the potential of PHBV/CS or PHBV-g-MA/CS membranes for biomedical material applications. Moreover, CS-based polysaccharide enhanced the Escherichia coli (BCRC 10239) antibacterial activity of the membranes. Membranes of PHBV-g-MA or PHBV containing CS-based polysaccharide had better antibacterial activity. PMID:26428145

  14. Dependence of Na+ pump current on external monovalent cations and membrane potential in rabbit cardiac Purkinje cells.

    PubMed Central

    Bielen, F V; Glitsch, H G; Verdonck, F

    1991-01-01

    1. The effect of membrane potential and various extracellular monovalent cations on the Na+ pump current (Ip) was studied on isolated, single Purkinje cells of the rabbit heart by means of whole-cell recording. 2. Ip was identified as current activated by external K+ or its congeners NH4+ and Tl+. The current was blocked by dihydroouabain (1-5 x 10(-4) M) over the whole range of membrane potentials tested. 3. In Na(+)-containing solution half-maximum Ip activation (K0.5) occurred at 0.4 mM-Tl+, 1.9 mM-K+ and 5.7 mM-NH4+ (holding potential, -20 mV). 4. The pump current (Ip)-voltage (V) relationship of the cells in Na(+)-containing media with K+ or its congeners at the tested concentrations greater than K0.5 displayed a steep positive slope at negative membrane potentials between -120 and -20 mV. Little voltage dependence of Ip was observed at more positive potentials up to +40 mV. At even more positive potentials Ip measured at 2 and 5.4 mM-K+ decreased. 5. Lowering the concentration of K+ or its congeners below the K0.5 value in Na(+)-containing solution induced a region of negative slope of the Ip-V curve at membrane potentials positive to -20 mV. 6. The shape of the Ip-V relationship remained unchanged when the K+ concentration (5.4 mM) of the Na(+)-containing medium was replaced by NH4+ or Tl+ concentrations of similar potency to activate Ip (20 mM-NH4+ or 2 mM-Tl+). 7. In Na(+)-free, choline-containing solution half-maximum Ip activation occurred at 0.13 mM-K+ (holding potential, -20 mV). 8. At negative membrane potentials the positive slope of the Ip-V curve was flatter in Na(+)-free than in Na(+)-containing media. A reduced voltage dependence of Ip persisted, regardless of whether choline ions or Li+ were used as a Na+ substitute. 9. Lowering the K+ concentration of the Na(+)-free, choline-containing solution to 0.05 mM evoked an extended region of negative slope in the Ip-V relationship at membrane potentials between -40 and +60 mV. 10. It is concluded that

  15. Changes in Membrane Receptors and Ion Channels as Potential Biomarkers for Osteoarthritis

    PubMed Central

    Lewis, Rebecca; Barrett-Jolley, Richard

    2015-01-01

    Osteoarthritis (OA), a degenerative joint condition, is currently difficult to detect early enough for any of the current treatment options to be completely successful. Early diagnosis of this disease could increase the numbers of patients who are able to slow its progression. There are now several diseases where membrane protein biomarkers are used for early diagnosis. The numbers of proteins in the membrane is vast and so it is a rich source of potential biomarkers for OA but we need more knowledge of these before they can be considered practical biomarkers. How are they best measured and are they selective to OA or even certain types of OA? The first step in this process is to identify membrane proteins that change in OA. Here, we summarize several ion channels and receptors that change in OA models and/or OA patients, and may thus be considered candidates as novel membrane biomarkers of OA. PMID:26648874

  16. Detecting Extracellular Carbonic Anhydrase Activity Using Membrane Inlet Mass Spectrometry

    PubMed Central

    Delacruz, Joannalyn; Mikulski, Rose; Tu, Chingkuang; Li, Ying; Wang, Hai; Shiverick, Kathleen T.; Frost, Susan C.; Horenstein, Nicole A.; Silverman, David N.

    2010-01-01

    Current research into the function of carbonic anhydrases in cell physiology emphasizes the role of membrane-bound carbonic anhydrases, such as carbonic anhydrase IX that has been identified in malignant tumors and is associated with extracellular acidification as a response to hypoxia. We present here a mass spectrometric method to determine the extent to which total carbonic anhydrase activity is due to extracellular carbonic anhydrase in whole cell preparations. The method is based on the biphasic rate of depletion of 18O from CO2 measured by membrane inlet mass spectrometry. The slopes of the biphasic depletion are a sensitive measure of the presence of carbonic anhydrase outside and inside of the cells. This property is demonstrated here using suspensions of human red cells in which external carbonic anhydrase was added to the suspending solution. It is also applied to breast and prostate cancer cells which both express exofacial carbonic anhydrase IX. Inhibition of external carbonic anhydrase is achieved by use of a membrane impermeant inhibitor that was synthesized for this purpose, p-aminomethylbenzenesulfonamide attached to a polyethyleneglycol polymer. PMID:20417171

  17. Chemical Potentials and Activities: An Electrochemical Introduction.

    ERIC Educational Resources Information Center

    Wetzel, T. L.; And Others

    1986-01-01

    Describes a laboratory experiment which explores the effects of adding inert salts to electrolytic cells and demonstrates the difference between concentration and chemical activity. Examines chemical potentials as the driving force of reactions. Provides five examples of cell potential and concentration change. (JM)

  18. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer.

    PubMed

    Pintscher, Sebastian; Kuleta, Patryk; Cieluch, Ewelina; Borek, Arkadiusz; Sarewicz, Marcin; Osyczka, Artur

    2016-03-25

    In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemesb The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on hemebligand mutants of cytochromebc1in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functionalin vivo This reveals that cytochromebc1can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemesbin this cytochrome and in other membranous cytochromesbact as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential. PMID:26858251

  19. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer*

    PubMed Central

    Pintscher, Sebastian; Kuleta, Patryk; Cieluch, Ewelina; Borek, Arkadiusz; Sarewicz, Marcin; Osyczka, Artur

    2016-01-01

    In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemes b. The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on heme b ligand mutants of cytochrome bc1 in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functional in vivo. This reveals that cytochrome bc1 can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemes b in this cytochrome and in other membranous cytochromes b act as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential. PMID:26858251

  20. Membrane-Active Peptides and the Clustering of Anionic Lipids

    PubMed Central

    Wadhwani, P.; Epand, R.F.; Heidenreich, N.; Bürck, J.; Ulrich, A.S.; Epand, R.M.

    2012-01-01

    There is some overlap in the biological activities of cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs). We compared nine AMPs, seven CPPs, and a fusion peptide with regard to their ability to cluster anionic lipids in a mixture mimicking the cytoplasmic membrane of Gram-negative bacteria, as measured by differential scanning calorimetry. We also studied their bacteriostatic effect on several bacterial strains, and examined their conformational changes upon membrane binding using circular dichroism. A remarkable correlation was found between the net positive charge of the peptides and their capacity to induce anionic lipid clustering, which was independent of their secondary structure. Among the peptides studied, six AMPs and four CPPs were found to have strong anionic lipid clustering activity. These peptides also had bacteriostatic activity against several strains (particularly Gram-negative Escherichia coli) that are sensitive to lipid clustering agents. AMPs and CPPs that did not cluster anionic lipids were not toxic to E. coli. As shown previously for several types of AMPs, anionic lipid clustering likely contributes to the mechanism of antibacterial action of highly cationic CPPs. The same mechanism could explain the escape of CPPs from intracellular endosomes that are enriched with anionic lipids. PMID:22853904

  1. Hydrodynamic collective effects of active proteins in biological membranes.

    PubMed

    Koyano, Yuki; Kitahata, Hiroyuki; Mikhailov, Alexander S

    2016-08-01

    Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown [A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015)PNASA60027-842410.1073/pnas.1506825112] that such active proteins should induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them. PMID:27627343

  2. Double Potential Pulse Chronocoulometry for Detection of Plasma Membrane Cholesterol Efflux at Disk Platinum Microelectrodes

    PubMed Central

    West, Richard H.; Lu, Hui; Shaw, Kendrick; Chiel, Hillel J.; Kelley, Thomas J.; Burgess, James D.

    2016-01-01

    A double potential pulse scheme is reported for observation of cholesterol efflux from the plasma membrane of a single neuron cell. Capillary Pt disk microelectrodes having a thin glass insulator allow the 10 μm diameter electrode and cell to be viewed under optical magnification. The electrode, covalently functionalized with cholesterol oxidase, is positioned in contact with the cell surface resulting in enzyme catalyzed cholesterol oxidation and efflux of cholesterol from the plasma membrane at the electrode contact site. Enzymatically generated hydrogen peroxide accumulates at the electrode/cell interface during a 5 s hold-time and is oxidized during application of a potential pulse. A second, replicate potential pulse is applied 0.5 s after the first potential pulse to gauge background charge prior to significant accumulation of hydrogen peroxide. The difference in charge passed between the first and second potential pulse provides a measure of hydrogen peroxide generated by the enzyme and is an indication of the cholesterol efflux. Control experiments for bare Pt microelectrodes in contact with the cell plasma membrane show difference charge signals in the range of about 7–10 pC. Enzyme-modified electrodes in contact with the plasma membrane show signals in the range of 16–26 pC. PMID:27330196

  3. Tension moderation and fluctuation spectrum in simulated lipid membranes under an applied electric potential.

    PubMed

    Loubet, Bastien; Lomholt, Michael Andersen; Khandelia, Himanshu

    2013-10-28

    We investigate the effect of an applied electric potential on the mechanics of a coarse grained POPC bilayer under tension. The size and duration of our simulations allow for a detailed and accurate study of the fluctuations. Effects on the fluctuation spectrum, tension, bending rigidity, and bilayer thickness are investigated in detail. In particular, the least square fitting technique is used to calculate the fluctuation spectra. The simulations confirm a recently proposed theory that the effect of an applied electric potential on the membrane will be moderated by the elastic properties of the membrane. In agreement with the theory, we find that the larger the initial tension the larger the effect of the electric potential. Application of the electric potential increases the amplitude of the long wavelength part of the spectrum and the bending rigidity is deduced from the short wavelength fluctuations. The effect of the applied electric potential on the bending rigidity is non-existent within error bars. However, when the membrane is stretched there is a point where the bending rigidity is lowered due to a decrease of the thickness of the membrane. All these effects should prove important for mechanosensitive channels and biomembrane mechanics in general. PMID:24182074

  4. Assessment of mitochondrial membrane potential using an on-chip microelectrode in a microfluidic device

    PubMed Central

    Dávila, Antonio; Wallace, Douglas C.; Burke, Peter

    2010-01-01

    The mitochondrial membrane potential is used to generate and regulate energy in living systems, driving the conversion of ADP to ATP, regulating ion homeostasis, and controlling apoptosis, all central to human health and disease. Therefore, there is a need for tools to study its regulation in a controlled environment for potential clinical and scientific applications. For this aim, an on-chip tetraphenylphosphonium (TPP+) selective microelectrode sensor was constructed in a microfluidic environment. The concentration of isolated mitochondria (Heb7A) used in a membrane potential measurement was 0.3 ng μL−1, four orders of magnitude smaller than the concentration used in conventional assays (3 μg μL−1). In addition, the volume of the chamber (85 μL) is 2 orders of magnitude smaller than traditional experiments. As a demonstration, changes in the membrane potential are clearly measured in response to a barrage of well-known substrates and inhibitors of the electron transport chain. This general approach, which to date has not been demonstrated for study of mitochondrial function and bio-energetics in generally, can be instrumental in advancing the field of mitochondrial research and clinical applications by allowing high throughput studies of the regulation, dynamics, and statistical properties of the mitochondrial membrane potential in response to inhibitors and inducers of apoptosis in a controlled (microfluidic) chemical environment. PMID:20383402

  5. Effect of clofibrate on the enzyme activity of rat liver plasma membranes.

    PubMed

    Renaud, G; Foliot, A; Marais, J; Infante, R

    1980-03-15

    The activity of 3 plasma membranes marker enzymes (5'-nucleotidase, Mg++-ATPase and alkaline phosphodiesterase-I) was determined in plasma membranes isolated from liver of control and of clofibrate-treated rats. A complete indentity of plasma membranes enzyme activity in the 2 groups of experimental animals was observed for the 3 enzymes studied. PMID:6102923

  6. Theoretical foundations of the sound analog membrane potential that underlies coincidence detection in the barn owl

    PubMed Central

    Ashida, Go; Funabiki, Kazuo; Carr, Catherine E.

    2013-01-01

    A wide variety of neurons encode temporal information via phase-locked spikes. In the avian auditory brainstem, neurons in the cochlear nucleus magnocellularis (NM) send phase-locked synaptic inputs to coincidence detector neurons in the nucleus laminaris (NL) that mediate sound localization. Previous modeling studies suggested that converging phase-locked synaptic inputs may give rise to a periodic oscillation in the membrane potential of their target neuron. Recent physiological recordings in vivo revealed that owl NL neurons changed their spike rates almost linearly with the amplitude of this oscillatory potential. The oscillatory potential was termed the sound analog potential, because of its resemblance to the waveform of the stimulus tone. The amplitude of the sound analog potential recorded in NL varied systematically with the interaural time difference (ITD), which is one of the most important cues for sound localization. In order to investigate the mechanisms underlying ITD computation in the NM-NL circuit, we provide detailed theoretical descriptions of how phase-locked inputs form oscillating membrane potentials. We derive analytical expressions that relate presynaptic, synaptic, and postsynaptic factors to the signal and noise components of the oscillation in both the synaptic conductance and the membrane potential. Numerical simulations demonstrate the validity of the theoretical formulations for the entire frequency ranges tested (1–8 kHz) and potential effects of higher harmonics on NL neurons with low best frequencies (<2 kHz). PMID:24265616

  7. Theoretical foundations of the sound analog membrane potential that underlies coincidence detection in the barn owl.

    PubMed

    Ashida, Go; Funabiki, Kazuo; Carr, Catherine E

    2013-01-01

    A wide variety of neurons encode temporal information via phase-locked spikes. In the avian auditory brainstem, neurons in the cochlear nucleus magnocellularis (NM) send phase-locked synaptic inputs to coincidence detector neurons in the nucleus laminaris (NL) that mediate sound localization. Previous modeling studies suggested that converging phase-locked synaptic inputs may give rise to a periodic oscillation in the membrane potential of their target neuron. Recent physiological recordings in vivo revealed that owl NL neurons changed their spike rates almost linearly with the amplitude of this oscillatory potential. The oscillatory potential was termed the sound analog potential, because of its resemblance to the waveform of the stimulus tone. The amplitude of the sound analog potential recorded in NL varied systematically with the interaural time difference (ITD), which is one of the most important cues for sound localization. In order to investigate the mechanisms underlying ITD computation in the NM-NL circuit, we provide detailed theoretical descriptions of how phase-locked inputs form oscillating membrane potentials. We derive analytical expressions that relate presynaptic, synaptic, and postsynaptic factors to the signal and noise components of the oscillation in both the synaptic conductance and the membrane potential. Numerical simulations demonstrate the validity of the theoretical formulations for the entire frequency ranges tested (1-8 kHz) and potential effects of higher harmonics on NL neurons with low best frequencies (<2 kHz). PMID:24265616

  8. Platelet Activation: The Mechanisms and Potential Biomarkers

    PubMed Central

    Yun, Seong-Hoon; Sim, Eun-Hye; Goh, Ri-Young; Park, Joo-In

    2016-01-01

    Beyond hemostasis and thrombosis, an increasing number of studies indicate that platelets play an integral role in intercellular communication, mediating inflammatory and immunomodulatory activities. Our knowledge about how platelets modulate inflammatory and immunity has greatly improved in recent years. In this review, we discuss recent advances in the pathways of platelet activation and potential application of platelet activation biomarkers to diagnosis and prediction of disease states. PMID:27403440

  9. [Study of antioxidant and membrane activity of rosmarinic acid using different model systems].

    PubMed

    Popov, A M; Osipov, A N; Korepanova, E A; Krivoshapko, O N; Artiukov, A A

    2013-01-01

    Rosmarinic acid is found in many species of different families of higher plants and its chemical structure is phenol propanoid with various biological activity. In this paper, we conducted a comparative study of antioxidant (radical-scavenging) properties of rosmarinic acid in systems of 2,2'-azo-bis(2-methylpropionamidin)dihydrochloride-luminol and hemoglobin-hydrogen peroxide-lu- minol, determined its protective potential in preventing peroxidation of linoleic acid, and evaluated the effect on the permeability of planar bilayer lipid membranes. Linoleic acid peroxidation was assessed by iron-thiocyanate method. In these studies, trolox was used as a reference antioxidant, and ascorbic acid, and dihydroquercetin were taken as standards. Rosmarinic acid is significantly superior to trolox, ascorbic acid and dihydroquercetin in the tests for antioxidant activity in the systems studied, as well as in inhibition of linoleic acid peroxidation. According to their activity the investigated substances can be arranged in the following order: rosmarinic acid > dihydroquercetin trolox > ascorbic acid. Rosmarinic acid does not cause significant changes in the permeability of planar bilayer membranes in a dose range of 0.5 to 10 mkg/mL. Antioxidant activity of rosmarinic acid is due to the neutralization of reactive oxygen species and/or luminol radicals generated in model systems. The observed features of the antioxidant and membrane activity of rosmarinic acid, which may underlie the previously mentioned pharmacological effects are discussed. PMID:25481945

  10. [Study of antioxidant and membrane activity of rosmarinic acid using different model systems].

    PubMed

    2013-01-01

    Rosmarinic acid is found in many species of different families of higher plants and its chemical structure is phenol propanoid with various biological activity. In this paper, we conducted a comparative study of antioxidant (radical-scavenging) properties of rosmarinic acid in systems of 2,2'-azo-bis(2-methylpropionamidin)dihydrochloride-luminol and hemoglobin-hydrogen peroxide-lu- minol, determined its protective potential in preventing peroxidation of linoleic acid, and evaluated the effect on the permeability of planar bilayer lipid membranes. Linoleic acid peroxidation was assessed by iron-thiocyanate method. In these studies, trolox was used as a reference antioxidant, and ascorbic acid, and dihydroquercetin were taken as standards. Rosmarinic acid is significantly superior to trolox, ascorbic acid and dihydroquercetin in the tests for antioxidant activity in the systems studied, as well as in inhibition of linoleic acid peroxidation. According to their activity the investigated substances can be arranged in the following order: rosmarinic acid > dihydroquercetin trolox > ascorbic acid. Rosmarinic acid does not cause significant changes in the permeability of planar bilayer membranes in a dose range of 0.5 to 10 mkg/mL. Antioxidant activity of rosmarinic acid is due to the neutralization of reactive oxygen species and/or luminol radicals generated in model systems. The observed features of the antioxidant and membrane activity of rosmarinic acid, which may underlie the previously mentioned pharmacological effects are discussed. PMID:25508797

  11. Membrane-Targeting DCAP Analogues with Broad-Spectrum Antibiotic Activity against Pathogenic Bacteria.

    PubMed

    Hurley, Katherine A; Heinrich, Victoria A; Hershfield, Jeremy R; Demons, Samandra T; Weibel, Douglas B

    2015-04-01

    We performed a structure-activity relationship study of 2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2-(hydroxymethyl)propane-1,3-diol (DCAP), which is an antibacterial agent that disrupts the membrane potential and permeability of bacteria. The stereochemistry of DCAP had no effect on the biological activity of DCAP. The aromaticity and electronegativity of the chlorine-substituted carbazole was required for activity, suggesting that its planar and dipolar characteristics orient DCAP in membranes. Increasing the hydrophobicity of the tail region of DCAP enhanced its antibiotic activity. Two DCAP analogues displayed promising antibacterial activity against the BSL-3 pathogens Bacillus anthracis and Francisella tularensis. Codosing DCAP analogues with ampicillin or kanamycin increased their potency. These studies demonstrate that DCAP and its analogues may be a promising scaffold for developing chemotherapeutic agents that bind to bacterial membranes and kill strains of slow-growing or dormant bacteria that cause persistent infections. PMID:25941556

  12. Membrane-Targeting DCAP Analogues with Broad-Spectrum Antibiotic Activity against Pathogenic Bacteria

    PubMed Central

    2015-01-01

    We performed a structure–activity relationship study of 2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2-(hydroxymethyl)propane-1,3-diol (DCAP), which is an antibacterial agent that disrupts the membrane potential and permeability of bacteria. The stereochemistry of DCAP had no effect on the biological activity of DCAP. The aromaticity and electronegativity of the chlorine-substituted carbazole was required for activity, suggesting that its planar and dipolar characteristics orient DCAP in membranes. Increasing the hydrophobicity of the tail region of DCAP enhanced its antibiotic activity. Two DCAP analogues displayed promising antibacterial activity against the BSL-3 pathogens Bacillus anthracis and Francisella tularensis. Codosing DCAP analogues with ampicillin or kanamycin increased their potency. These studies demonstrate that DCAP and its analogues may be a promising scaffold for developing chemotherapeutic agents that bind to bacterial membranes and kill strains of slow-growing or dormant bacteria that cause persistent infections. PMID:25941556

  13. Membrane potential dye imaging of ventromedial hypothalamus neurons from adult mice to study glucose sensing.

    PubMed

    Vazirani, Reema P; Fioramonti, Xavier; Routh, Vanessa H

    2013-01-01

    Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age. PMID:24326343

  14. Membrane Potential Dye Imaging of Ventromedial Hypothalamus Neurons From Adult Mice to Study Glucose Sensing

    PubMed Central

    Vazirani, Reema P.; Fioramonti, Xavier; Routh, Vanessa H.

    2013-01-01

    Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age. PMID:24326343

  15. Lachesana tarabaevi, an expert in membrane-active toxins.

    PubMed

    Kuzmenkov, Alexey I; Sachkova, Maria Y; Kovalchuk, Sergey I; Grishin, Eugene V; Vassilevski, Alexander A

    2016-08-15

    In the present study, we show that venom of the ant spider Lachesana tarabaevi is unique in terms of molecular composition and toxicity. Whereas venom of most spiders studied is rich in disulfide-containing neurotoxic peptides, L. tarabaevi relies on the production of linear (no disulfide bridges) cytolytic polypeptides. We performed full-scale peptidomic examination of L. tarabaevi venom supported by cDNA library analysis. As a result, we identified several dozen components, and a majority (∼80% of total venom protein) exhibited membrane-active properties. In total, 33 membrane-interacting polypeptides (length of 18-79 amino acid residues) comprise five major groups: repetitive polypeptide elements (Rpe), latarcins (Ltc), met-lysines (MLys), cyto-insectotoxins (CIT) and latartoxins (LtTx). Rpe are short (18 residues) amphiphilic molecules that are encoded by the same genes as antimicrobial peptides Ltc 4a and 4b. Isolation of Rpe confirms the validity of the iPQM (inverted processing quadruplet motif) proposed to mark the cleavage sites in spider toxin precursors that are processed into several mature chains. MLys (51 residues) present 'idealized' amphiphilicity when modelled in a helical wheel projection with sharply demarcated sectors of hydrophobic, cationic and anionic residues. Four families of CIT (61-79 residues) are the primary weapon of the spider, accounting for its venom toxicity. Toxins from the CIT 1 and 2 families have a modular structure consisting of two shorter Ltc-like peptides. We demonstrate that in CIT 1a, these two parts act in synergy when they are covalently linked. This finding supports the assumption that CIT have evolved through the joining of two shorter membrane-active peptides into one larger molecule. PMID:27287558

  16. Basement membrane stiffening promotes retinal endothelial activation associated with diabetes.

    PubMed

    Yang, Xiao; Scott, Harry A; Monickaraj, Finny; Xu, Jun; Ardekani, Soroush; Nitta, Carolina F; Cabrera, Andrea; McGuire, Paul G; Mohideen, Umar; Das, Arup; Ghosh, Kaustabh

    2016-02-01

    Endothelial activation is a hallmark of the high-glucose (HG)-induced retinal inflammation associated with diabetic retinopathy (DR). However, precisely how HG induces retinal endothelial activation is not fully understood. We hypothesized that HG-induced up-regulation of lysyl oxidase (LOX), a collagen-cross-linking enzyme, in retinal capillary endothelial cells (ECs) enhances subendothelial basement membrane (BM) stiffness, which, in turn, promotes retinal EC activation. Diabetic C57BL/6 mice exhibiting a 70 and 50% increase in retinal intercellular adhesion molecule (ICAM)-1 expression and leukocyte accumulation, respectively, demonstrated a 2-fold increase in the levels of BM collagen IV and LOX, key determinants of capillary BM stiffness. Using atomic force microscopy, we confirmed that HG significantly enhances LOX-dependent subendothelial matrix stiffness in vitro, which correlated with an ∼2.5-fold increase in endothelial ICAM-1 expression, a 4-fold greater monocyte-EC adhesion, and an ∼2-fold alteration in endothelial NO (decrease) and NF-κB activation (increase). Inhibition of LOX-dependent subendothelial matrix stiffening alone suppressed HG-induced retinal EC activation. Finally, using synthetic matrices of tunable stiffness, we demonstrated that subendothelial matrix stiffening is necessary and sufficient to promote EC activation. These findings implicate BM stiffening as a critical determinant of HG-induced retinal EC activation and provide a rationale for examining BM stiffness and underlying mechanotransduction pathways as therapeutic targets for diabetic retinopathy. PMID:26443820

  17. Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells.

    PubMed

    Rysavy, Noel M; Shimoda, Lori M N; Dixon, Alyssa M; Speck, Mark; Stokes, Alexander J; Turner, Helen; Umemoto, Eric Y

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation. PMID:25759911

  18. Beyond apoptosis: The mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells

    PubMed Central

    Rysavy, Noel M.; Shimoda, Lori M. N.; Dixon, Alyssa M.; Speck, Mark; Stokes, Alexander J.; Turner, Helen; Umemoto, Eric Y.

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation. PMID:25759911

  19. A Rapid and Quantitative Flow Cytometry Method for the Analysis of Membrane Disruptive Antimicrobial Activity

    PubMed Central

    O’Brien-Simpson, Neil M.; Pantarat, Namfon; Attard, Troy J.; Walsh, Katrina A.; Reynolds, Eric C.

    2016-01-01

    We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy. PMID:26986223

  20. pH regulation of amphotericin B channels activity in the bilayer lipid membrane

    PubMed Central

    Shahmoradi, Tahereh; Sepehry, Hamid; Ashrafpour, Manuchehr

    2016-01-01

    Background: Amphotericin B (AmB) is a polyene antibiotic frequently applied in the treatment of systemic fungal infections in spite of its secondary effects. The pH plays a crucial role in modulating biophysical features of ion channels in the bilayer lipid membranes. Aim: In this study, the role of pH in the regulation of AmB channel was assessed by single channel recording of ion channel incorporated in the artificial membrane. Materials and Methods: Bilayer lipid membrane was formed by phosphatidylcholine in a 350 μm diameter aperture between two chambers, cis and trans contained 200/50 mMKCl solutions, respectively; then AmB was incorporated into the bilayer lipid membrane. Single channel recordings were used to indicate the effects of pH changes on AmB channels activity. The records were analyzed by Clamp fit 10 software. Results: A kinetic analysis of single channel currents indicated a cation ion channel with 500 pS conductance and voltage-dependence of the open probability of the AmB channel (Po). A reduction of cis pH to 6 decreased Po and conductance. This effect was also voltage-dependent, being greater at a more positive above −40. The pH changes in the range of 6-8 had no effect on the reversal potential and ion selectivity. Conclusion: Our data indicated that extracellular acidity can reduce AmB activity. PMID:27003977

  1. Two photon fluorescence imaging of lipid membrane domains and potentials using advanced fluorescent probes

    NASA Astrophysics Data System (ADS)

    Kilin, Vasyl; Darwich, Zeinab; Richert, Ludovic; Didier, Pascal; Klymchenko, Andrey; Mély, Yves

    2013-02-01

    Biomembranes are ordered and dynamic nanoscale structures critical for cell functions. The biological functions of the membranes strongly depend on their physicochemical properties, such as electrostatics, phase state, viscosity, polarity and hydration. These properties are essential for the membrane structure and the proper folding and function of membrane proteins. To monitor these properties, fluorescence techniques and notably, two-photon microscopy appear highly suited due to their exquisite sensitivity and their capability to operate in complex biological systems, such as living cells and tissues. In this context, we have developed multiparametric environment-sensitive fluorescent probes tailored for precise location in the membrane bilayer. We notably developed probes of the 3-hydroxychromone family, characterized by an excited state intramolecular proton transfer reaction, which generates two tautomeric emissive species with well-separated emission bands. As a consequence, the response of these probes to changes in their environment could be monitored through changes in the ratios of the two bands, as well as through changes in the fluorescence lifetimes. Using two-photon ratiometric imaging and FLIM, these probes were used to monitor the surface membrane potential, and were applied to detect apoptotic cells and image membrane domains.

  2. Influence of decavanadate on rat synaptic plasma membrane ATPases activity.

    PubMed

    Krstić, Danijela; Colović, Mirjana; Bosnjaković-Pavlović, Nada; Spasojević-De Bire, Anne; Vasić, Vesna

    2009-09-01

    The in vitro influence of decameric vanadate species on Na+/K+-ATPase, plasma membrane Ca2+-ATPase (PMCA)-calcium pump and ecto-ATPase activity, using rat synaptic plasma membrane (SPM) as model system was investigated, whereas the commercial porcine cerebral cortex Na+/K+-ATPase served as a reference. The thermal behaviour of the synthesized decavanadate (V10) has been studied by differential scanning calorimetry and thermogravimetric analysis, while the type of polyvanadate anion was identified using the IR spectroscopy. The concentration-dependent responses to V10 of all enzymes were obtained. The half-maximum inhibitory concentration (IC50) of the enzyme activity was achieved at (4.74 +/- 1.15) x 10(-7) mol/l for SPM Na+/K+-ATPase, (1.30 +/- 0.10) x 10(-6) mol/l for commercial Na+/K+-ATPase and (3.13 +/- 1.70) x 10(-8) mol/l for Ca2+-ATPase, while ecto-ATPase is significantly less sensitive toward V10 (IC50 = (1.05 +/- 0.10) x 10(-4) mol/l) than investigated P-type ATPases. Kinetic analysis showed that V10 inhibited Na+/K+-ATPase by reducing the maximum enzymatic velocity and apparent affinity for ATP (increasing K(m) value), implying a mixed mode of interaction between V10 and P-type ATPases. PMID:20037196

  3. Development of a no-wash assay for mitochondrial membrane potential using the styryl dye DASPEI.

    PubMed

    Jensen, Kristian H R; Rekling, Jens C

    2010-10-01

    Mitochondrial dysfunction is a hallmark of several diseases and may also result from drugs with unwanted side effects on mitochondrial biochemistry. The mitochondrial membrane potential is a good indicator of mitochondrial function. Here, the authors have developed a no-wash mitochondrial membrane potential assay using 2-(4-(dimethylamino)styryl)-N-ethylpyridinium iodide (DASPEI), a rarely used mitochondrial potentiometric probe, in a 96-well format using a fluorescent plate reader. The assay was validated using 2 protonophores (CCCP, DNP), which are known uncouplers, and the neuroleptic thioridazine, which is a suspected mitochondrial toxicant. CCCP and DNP have short-term depolarizing effects, and thioridazine has long-term hyperpolarizing effects on the mitochondrial membrane potential of Chinese hamster ovary (CHO) cells. The assay also detected changes of the mitochondrial membrane potential in CHO cells exposed to cobalt (mimicking hypoxia) and in PC12 cells exposed to amyloid β, demonstrating that the assay can be used in cellular models of hypoxia and Alzheimer's disease. The assay needs no washing steps, has a Z' value >0.5, can be used on standard fluorometers, has good post liquid-handling stability, and thus is suitable for large-scale screening efforts. In summary, the DASPEI assay is simple and rapid and may be of use in toxicological testing, drug target discovery, and mechanistic models of diseases involving mitochondrial dysfunction. PMID:20713988

  4. A biphenyl type two-photon fluorescence probe for monitoring the mitochondrial membrane potential.

    PubMed

    Moritomo, Hiroki; Yamada, Kengo; Kojima, Yuki; Suzuki, Yasutaka; Tani, Seiji; Kinoshita, Hazuki; Sasaki, Akira; Mikuni, Shintaro; Kinjo, Masataka; Kawamata, Jun

    2014-01-01

    Here we describe the design and synthesis of a bifunctional two-photon fluorescence probe, N,N'-‍dimethyl-4,4'-(biphenyl-2,1-ethenediyl)dipyridinium hexafluorophosphate (BP6). HeLa, Hek293, and Paramecium caudatum cells were stained with BP6. BP6 accumulated on the mitochondria of all three cell types when the mitochondrial membrane potential was high. As the mitochondrial membrane potential decreased following the addition of carbonyl cyanide m-chlorophenyl hydrazine, BP6 moved from the mitochondria to the nucleus in a reversible manner, depending on the mitochondrial membrane potential status. The maximum value of the two-photon absorption cross-section of BP6 is 250 GM (1 GM=1×10(-50) cm(4) s molecules(-1) photon(-1)). This value is 3 and 30 times larger, respectively, than that of the conventional mitochondria selective probes, rhodamine 123 and green fluorescence protein. These results suggest that BP6 should be useful for monitoring mitochondrial membrane potential by two-photon excitation. PMID:25319070

  5. Spike-Threshold Adaptation Predicted by Membrane Potential Dynamics In Vivo

    PubMed Central

    Fontaine, Bertrand; Peña, José Luis; Brette, Romain

    2014-01-01

    Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the membrane potential captures spike threshold variability in vivo. PMID:24722397

  6. Capillaries demonstrate changes in membrane potential in response to pharmacological stimuli.

    PubMed

    McGahren, E D; Beach, J M; Duling, B R

    1998-01-01

    It has been proposed that capillaries can detect changes in tissue metabolites and generate signals that are communicated upstream to resistance vessels. The mechanism for this communication may involve changes in capillary endothelial cell membrane potentials which are then conducted to upstream arterioles. We have tested the capacity of capillary endothelial cells in vivo to respond to pharmacological stimuli. In a hamster cheek pouch preparation, capillary endothelial cells were labeled with the voltage-sensitive dye di-8-ANEPPS. Fluorescence from capillary segments (75-150 microns long) was excited at 475 nm and recorded at 560 and 620 nm with a dual-wavelength photomultiplier system. KCl was applied using pressure injection, and acetylcholine (ACh) and phenylephrine (PE) were applied iontophoretically to these capillaries. Changes in the ratio of the fluorescence emission at two emission wavelengths were used to estimate changes in the capillary endothelial membrane potential. Application of KCl resulted in depolarization, whereas application of the vehicle did not. Application of ACh and PE resulted in hyperpolarization and depolarization, respectively. The capillary responses could be blocked by including a receptor antagonist (atropine or prazosin, respectively) in the superfusate. We conclude that the capillary membrane potential is capable of responding to pharmacological stimuli. We hypothesize that capillaries can respond to changes in the milieu of surrounding tissue via changes in endothelial membrane potential. PMID:9458852

  7. Acute temperature sensitivity in optic nerve axons explained by an electrogenic membrane potential.

    PubMed

    Coates, Tom A; Woolnough, Oscar; Masters, Joseph M; Asadova, Gulsum; Chandrakumar, Charmilie; Baker, Mark D

    2015-11-01

    Classical work in squid axon reports resting membrane potential is independent of temperature, but our findings suggest that this is not the case for axons in mammalian optic nerve. Refractory period duration changes over 10 times between 37 °C and room temperature, and afterpotential polarity is also acutely temperature sensitive, inconsistent with changes in temperature impacting nerve function only through altered rates of ion channel gating kinetics. Our evidence suggests that the membrane potential is enhanced by warming, an effect reduced by exposure to ouabain. The temperature dependence can be explained if axonal Na(+)/K(+) ATPase continuously expels Na(+) ions that enter axons largely electroneutrally, thereby adding a substantial electrogenic component to the membrane potential. Block of the Na(+) transporter NKCC1 with bumetanide increases refractoriness, like depolarization, indicating that this is a probable route by which Na(+) enters, raising the expectation that the rate of electroneutral Na(+) influx increases with temperature and suggesting a temperature-dependent transmembrane Na(+) cycle that contributes to membrane potential. PMID:25724933

  8. Infrared Laser Activation of Soluble and Membrane Protein Assemblies in the Gas Phase.

    PubMed

    Mikhailov, Victor A; Liko, Idlir; Mize, Todd H; Bush, Matthew F; Benesch, Justin L P; Robinson, Carol V

    2016-07-19

    Collision-induced dissociation (CID) is the dominant method for probing intact macromolecular complexes in the gas phase by means of mass spectrometry (MS). The energy obtained from collisional activation is dependent on the charge state of the ion and the pressures and potentials within the instrument: these factors limit CID capability. Activation by infrared (IR) laser radiation offers an attractive alternative as the radiation energy absorbed by the ions is charge-state-independent and the intensity and time scale of activation is controlled by a laser source external to the mass spectrometer. Here we implement and apply IR activation, in different irradiation regimes, to study both soluble and membrane protein assemblies. We show that IR activation using high-intensity pulsed lasers is faster than collisional and radiative cooling and requires much lower energy than continuous IR irradiation. We demonstrate that IR activation is an effective means for studying membrane protein assemblies, and liberate an intact V-type ATPase complex from detergent micelles, a result that cannot be achieved by means of CID using standard collision energies. Notably, we find that IR activation can be sufficiently soft to retain specific lipids bound to the complex. We further demonstrate that, by applying a combination of collisional activation, mass selection, and IR activation of the liberated complex, we can elucidate subunit stoichiometry and the masses of specifically bound lipids in a single MS experiment. PMID:27328020

  9. Fibrates inhibit the apoptosis of Batten disease lymphoblast cells via autophagy recovery and regulation of mitochondrial membrane potential.

    PubMed

    Hong, Minho; Song, Ki Duk; Lee, Hak-Kyo; Yi, SunShin; Lee, Yong Seok; Heo, Tae-Hwe; Jun, Hyun Sik; Kim, Sung-Jo

    2016-03-01

    Batten disease (BD; also known as juvenile neuronal ceroid lipofuscinosis) is a genetic disorder inherited as an autosomal recessive trait and is characterized by blindness, seizures, cognitive decline, and early death resulting from the inherited mutation of the CLN3 gene. Mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, disrupted autophagy, and enhanced apoptosis have been suggested to play a role in BD pathogenesis. Fibrates, a class of lipid-lowering drugs that induce peroxisome proliferator-activated receptor-α (PPAR-α) activation, are the most commonly used PPAR agonists. Assuming that fibrates have a neuroprotective effect, we studied the effects of fibrates, fenofibrate, bezafibrate, and gemfibrozil on apoptosis, depolarization of mitochondrial membrane, and defective autophagy in BD lymphoblast cells. The viability of fibrate-treated BD lymphoblast cells increased to levels of normal lymphoblast cells. In addition, treatment with fibrates inhibited depolarization of mitochondrial membrane potential in BD lymphoblast cells. Defective autophagy in BD lymphoblast cells was normalized when treated with fibrates as indicated by increased acridine orange staining. The recovery of autophagy in BD lymphoblast cells is most likely attributed to the upregulation of autophagy proteins, lysosomal-associated membrane protein 1 (LAMP1), and LC3 I/II, after treatment with fibrates. This study therefore suggests that fibrates may have a therapeutic potential against BD. PMID:26659390

  10. Knowledge-based Potential for Positioning Membrane-Associated Structures and Assessing Residue Specific Energetic Contributions

    PubMed Central

    Schramm, Chaim A.; Hannigan, Brett T.; Donald, Jason E.; Keasar, Chen; Saven, Jeffrey G.; DeGrado, William F.; Samish, Ilan

    2012-01-01

    The complex hydrophobic and hydrophilic milieus of membrane-associated proteins pose experimental and theoretical challenges to their understanding. Here we produce a non-redundant database to compute knowledge-based asymmetric cross-membrane potentials from the per-residue distributions of Cβ, Cγ and functional group atoms. We predict transmembrane and peripherally associated regions from genomic sequence and position peptides and protein structures relative to the bilayer (available at http://www.degradolab.org/ez). The pseudo-energy topological landscapes underscore positional stability and functional mechanisms demonstrated here for antimicrobial peptides, transmembrane proteins, and viral fusion proteins. Moreover, experimental effects of point mutations on the relative ratio changes of dual-topology proteins are quantitatively reproduced. The functional group potential and the membrane-exposed residues display the largest energetic changes enabling to detect native-like structures from decoys. Hence, focusing on the uniqueness of membrane-associated proteins and peptides, we quantitatively parameterize their cross-membrane propensity thus facilitating structural refinement, characterization, prediction and design. PMID:22579257

  11. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL.

    PubMed

    Jin, Seok Min; Lazarou, Michael; Wang, Chunxin; Kane, Lesley A; Narendra, Derek P; Youle, Richard J

    2010-11-29

    PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson's disease. It has been found to work in the same pathway as the E3 ligase Parkin in the maintenance of flight muscles and dopaminergic neurons in Drosophila melanogaster and to recruit cytosolic Parkin to mitochondria to mediate mitophagy in mammalian cells. Although PINK1 has a predicted mitochondrial import sequence, its cellular and submitochondrial localization remains unclear in part because it is rapidly degraded. In this study, we report that the mitochondrial inner membrane rhomboid protease presenilin-associated rhomboid-like protein (PARL) mediates cleavage of PINK1 dependent on mitochondrial membrane potential. In the absence of PARL, the constitutive degradation of PINK1 is inhibited, stabilizing a 60-kD form inside mitochondria. When mitochondrial membrane potential is dissipated, PINK1 accumulates as a 63-kD full-length form on the outer mitochondrial membrane, where it can recruit Parkin to impaired mitochondria. Thus, differential localization to the inner and outer mitochondrial membranes appears to regulate PINK1 stability and function. PMID:21115803

  12. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL

    PubMed Central

    Jin, Seok Min; Lazarou, Michael; Wang, Chunxin; Kane, Lesley A.; Narendra, Derek P.

    2010-01-01

    PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson’s disease. It has been found to work in the same pathway as the E3 ligase Parkin in the maintenance of flight muscles and dopaminergic neurons in Drosophila melanogaster and to recruit cytosolic Parkin to mitochondria to mediate mitophagy in mammalian cells. Although PINK1 has a predicted mitochondrial import sequence, its cellular and submitochondrial localization remains unclear in part because it is rapidly degraded. In this study, we report that the mitochondrial inner membrane rhomboid protease presenilin-associated rhomboid-like protein (PARL) mediates cleavage of PINK1 dependent on mitochondrial membrane potential. In the absence of PARL, the constitutive degradation of PINK1 is inhibited, stabilizing a 60-kD form inside mitochondria. When mitochondrial membrane potential is dissipated, PINK1 accumulates as a 63-kD full-length form on the outer mitochondrial membrane, where it can recruit Parkin to impaired mitochondria. Thus, differential localization to the inner and outer mitochondrial membranes appears to regulate PINK1 stability and function. PMID:21115803

  13. Concentration of field and skim latex by microfiltration - membrane fouling and biochemical methane potential of serum.

    PubMed

    Thongmak, Narumol; Sridang, Porntip; Puetpaiboon, Udomphon; Grasmick, Alain

    2015-01-01

    Cross-flow microfiltration was used to concentrate field and skim latex suspensions and recover the smallest compounds (proteins, sugars, etc.) in permeate (serum solutions). The experiments were performed in a lab-scale microfiltration unit equipped with ceramic membranes. In continuous mode, the operations were performed at constant trans-membrane pressure (0.5 bars), constant cross-flow velocity (3 m/s) and constant temperature (28 ± 2°C). In retentate, the volumetric concentration factor was only close to 2 (about 54% of total solid content, TSC) when concentrating the field latex suspensions, and it reached 10 (close to 40% TSC) when concentrating skim latex suspensions. The quality of retentate suspensions let envisage a significant potential of industrial valorization. The membrane fouling rates appeared as an increasing function of dry rubber content suspension, and the main fouling origin (94%) was linked to a reversible accumulation of suspended compounds on the membrane surface. Permeate appeared as a clear yellow solution containing the smallest soluble organic fractions that show a high degree of biodegradability when using biochemical methane potential tests. The chemical oxygen demand (COD) removal was then higher than 92% and the methane production yield was close to 0.29 NLCH4/gCODremoved. The association of a membrane separation step and anaerobic digestion appeared, then, as a relevant solution to recover rubber content from skim latex suspensions and energy from the anaerobic digestion of serum. PMID:25812704

  14. Sensory transduction at the frog semicircular canal: how hair cell membrane potential controls junctional transmission

    PubMed Central

    Martini, Marta; Canella, Rita; Rubbini, Gemma; Fesce, Riccardo; Rossi, Maria Lisa

    2015-01-01

    At the frog semicircular canals, the afferent fibers display high spontaneous activity (mEPSPs), due to transmitter release from hair cells. mEPSP and spike frequencies are modulated by stimulation that activates the hair cell receptor conductance. The relation between receptor current and transmitter release cannot be studied at the intact semicircular canal. To circumvent the problem, we combined patch-clamp recordings at the isolated hair cell and electrophysiological recordings at the cytoneural junction in the intact preparation. At isolated hair cells, the K channel blocker tetraethylammonium (TEA) is shown to block a fraction of total voltage-dependent K-conductance (IKD) that depends on TEA concentration but not on membrane potential (Vm). Considering the bioelectric properties of the hair cell, as previously characterized by this lab, a fixed fractional block of IKD is shown to induce a relatively fixed shift in Vm, provided it lies in the range −30 to −10 mV. The same concentrations of TEA were applied to the intact labyrinth while recording from single afferent fibers of the posterior canal, at rest and during mechanical stimulation. At the peak of stimulation, TEA produced increases in mEPSP rate that were linearly related to the shifts produced by the same TEA concentrations (0.1–3 mM) in hair cell Vm (0.7–5 mV), with a slope of 29.8 Hz/mV. The membrane potential of the hair cell is not linearly related to receptor conductance, so that the slope of quantal release vs. receptor conductance depends on the prevailing Vm (19.8 Hz/nS at −20 mV; 11 Hz/nS at −10 mV). Changes in mEPSP peak size were negligible at rest as well as during stimulation. Since ample spatial summation of mEPSPs occurs at the afferent terminal and threshold-governed spike firing is intrinsically nonlinear, the observed increases in mEPSP frequency, though not very large, may suffice to trigger afferent spike discharge. PMID:26157360

  15. Different metabolic activity in placental and reflected regions of the human amniotic membrane.

    PubMed

    Banerjee, Asmita; Weidinger, Adelheid; Hofer, Martin; Steinborn, Ralf; Lindenmair, Andrea; Hennerbichler-Lugscheider, Simone; Eibl, Johann; Redl, Heinz; Kozlov, Andrey V; Wolbank, Susanne

    2015-11-01

    Cells of the human amniotic membrane (hAM) have stem cell characteristics with low immunogenicity and anti-inflammatory properties. While hAM is an excellent source for tissue engineering, so far, its sub-regions have not been taken into account. We show that placental and reflected hAM differ distinctly in morphology and functional activity, as the placental region has significantly higher mitochondrial activity, however significantly less reactive oxygen species. Since mitochondria may participate in processes such as cell rescue, we speculate that amniotic sub-regions may have different potential for tissue regeneration, which may be crucial for clinical applications. PMID:26386652

  16. Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy.

    PubMed

    Dombeck, Daniel A; Sacconi, Leonardo; Blanchard-Desce, Mireille; Webb, Watt W

    2005-11-01

    Although nonlinear microscopy and fast (approximately 1 ms) membrane potential (Vm) recording have proven valuable for neuroscience applications, their potentially powerful combination has not yet been shown for studies of Vm activity deep in intact tissue. We show that laser illumination of neurons in acute rat brain slices intracellularly filled with FM4-64 dye generates an intense second-harmonic generation (SHG) signal from somatic and dendritic plasma membranes with high contrast >125 microm below the slice surface. The SHG signal provides a linear response to DeltaVm of approximately 7.5%/100 mV. By averaging repeated line scans (approximately 50), we show the ability to record action potentials (APs) optically with a signal-to-noise ratio (S/N) of approximately 7-8. We also show recording of fast Vm steps from the dendritic arbor at depths inaccessible with previous methods. The high membrane contrast and linear response of SHG to DeltaVm provides the advantage that signal changes are not degraded by background and can be directly quantified in terms of DeltaVm. Experimental comparison of SHG and two-photon fluorescence Vm recording with the best known probes for each showed that the SHG technique is superior for Vm recording in brain slice applications, with FM4-64 as the best tested SHG Vm probe. PMID:16093337

  17. Conformational activation of visual rhodopsin in native disc membranes.

    PubMed

    Malmerberg, Erik; M Bovee-Geurts, Petra H; Katona, Gergely; Deupi, Xavier; Arnlund, David; Wickstrand, Cecilia; Johansson, Linda C; Westenhoff, Sebastian; Nazarenko, Elena; Schertler, Gebhard F X; Menzel, Andreas; de Grip, Willem J; Neutze, Richard

    2015-03-10

    Rhodopsin is the G protein-coupled receptor (GPCR) that serves as a dim-light receptor for vision in vertebrates. We probed light-induced conformational changes in rhodopsin in its native membrane environment at room temperature using time-resolved wide-angle x-ray scattering. We observed a rapid conformational transition that is consistent with an outward tilt of the cytoplasmic portion of transmembrane helix 6 concomitant with an inward movement of the cytoplasmic portion of transmembrane helix 5. These movements were considerably larger than those reported from the basis of crystal structures of activated rhodopsin, implying that light activation of rhodopsin involves a more extended conformational change than was previously suggested. PMID:25759477

  18. Essentiality of Succinate Dehydrogenase in Mycobacterium smegmatis and Its Role in the Generation of the Membrane Potential Under Hypoxia

    PubMed Central

    Pecsi, Ildiko; Hards, Kiel; Ekanayaka, Nandula; Berney, Michael; Hartman, Travis; Jacobs, William R.

    2014-01-01

    ABSTRACT Succinate:quinone oxidoreductase (Sdh) is a membrane-bound complex that couples the oxidation of succinate to fumarate in the cytoplasm to the reduction of quinone to quinol in the membrane. Mycobacterial species harbor genes for two putative sdh operons, but the individual roles of these two operons are unknown. In this communication, we show that Mycobacterium smegmatis mc2155 expresses two succinate dehydrogenases designated Sdh1 and Sdh2. Sdh1 is encoded by a five-gene operon (MSMEG_0416-MSMEG_0420), and Sdh2 is encoded by a four-gene operon (MSMEG_1672-MSMEG_1669). These two operons are differentially expressed in response to carbon limitation, hypoxia, and fumarate, as monitored by sdh promoter-lacZ fusions. While deletion of the sdh1 operon did not yield any growth phenotypes on succinate or other nonfermentable carbon sources, the sdh2 operon could be deleted only in a merodiploid background, demonstrating that Sdh2 is essential for growth. Sdh activity and succinate-dependent proton pumping were detected in cells grown aerobically, as well as under hypoxia. Fumarate reductase activity was absent under these conditions, indicating that neither Sdh1 nor Sdh2 could catalyze the reverse reaction. Sdh activity was inhibited by the Sdh inhibitor 3-nitroproprionate (3NP), and treatment with 3NP dissipated the membrane potential of wild-type or Δsdh1 mutant cells under hypoxia but not that of cells grown aerobically. These data imply that Sdh2 is the generator of the membrane potential under hypoxia, an essential role for the cell. PMID:25118234

  19. Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake

    PubMed Central

    Wang, Yi-Min; Kinraide, Thomas B.; Wang, Peng; Hao, Xiu-Zhen; Zhou, Dong-Mei

    2014-01-01

    Many crop plants are exposed to heavy metals and other metals that may intoxicate the crop plants themselves or consumers of the plants. The rhizotoxicity of heavy metals is influenced strongly by the root cell plasma membrane (PM) surface’s electrical potential (ψ0). The usually negative ψ0 is created by negatively charged constituents of the PM. Cations in the rooting medium are attracted to the PM surface and anions are repelled. Addition of ameliorating cations (e.g., Ca2+ and Mg2+) to the rooting medium reduces the effectiveness of cationic toxicants (e.g., Cu2+ and Pb2+) and increases the effectiveness of anionic toxicants (e.g., SeO42− and H2AsO4−). Root growth responses to ions are better correlated with ion activities at PM surfaces ({IZ}0) than with activities in the bulk-phase medium ({IZ}b) (IZ denotes an ion with charge Z). Therefore, electrostatic effects play a role in heavy metal toxicity that may exceed the role of site-specific competition between toxicants and ameliorants. Furthermore, ψ0 controls the transport of ions across the PM by influencing both {IZ}0 and the electrical potential difference across the PM from the outer surface to the inner surface (Em,surf). Em,surf is a component of the driving force for ion fluxes across the PM and controls ion-channel voltage gating. Incorporation of {IZ}0 and Em,surf into quantitative models for root metal toxicity and uptake improves risk assessments of toxic metals in the environment. These risk assessments will improve further with future research on the application of electrostatic theory to heavy metal phytotoxicity in natural soils and aquatic environments. PMID:25493475

  20. Linking oxygen availability with membrane potential maintenance and K+ retention of barley roots: implications for waterlogging stress tolerance.

    PubMed

    Zeng, Fanrong; Konnerup, Dennis; Shabala, Lana; Zhou, Meixue; Colmer, Timothy David; Zhang, Guoping; Shabala, Sergey

    2014-10-01

    Oxygen deprivation is a key determinant of root growth and functioning under waterlogging. In this work, changes in net K(+) flux and membrane potential (MP) of root cells were measured from elongation and mature zones of two barley varieties under hypoxia and anoxia conditions in the medium, and as influenced by ability to transport O2 from the shoot. We show that O2 deprivation results in an immediate K(+) loss from roots, in a tissue- and time-specific manner, affecting root K(+) homeostasis. Both anoxia and hypoxia induced transient membrane depolarization; the extent of this depolarization varied depending on severity of O2 stress and was less pronounced in a waterlogging-tolerant variety. Intact roots of barley were capable of maintaining H(+) -pumping activity under hypoxic conditions while disrupting O2 transport from shoot to root resulted in more pronounced membrane depolarization under O2 -limited conditions and in anoxia a rapid loss of the cell viability. It is concluded that the ability of root cells to maintain MP and cytosolic K(+) homeostasis is central to plant performance under waterlogging, and efficient O2 transport from the shoot may enable operation of the plasma membrane H(+) -ATPase in roots even under conditions of severe O2 limitation in the soil solution. PMID:25132404

  1. Gαi3-Dependent Inhibition of JNK Activity on Intracellular Membranes

    PubMed Central

    Bastin, Guillaume; Yang, Jin Ye; Heximer, Scott P.

    2015-01-01

    Heterotrimeric G-protein signaling has been shown to modulate a wide variety of intracellular signaling pathways, including the mitogen-activated protein kinase (MAPK) family. The activity of one MAPK family class, c-Jun N-terminal kinases (JNKs), has been traditionally linked to the activation of G-protein coupled receptors (GPCRs) at the plasma membrane. Using a unique set of G-protein signaling tools developed in our laboratory, we show that subcellular domain-specific JNK activity is inhibited by the activation of Gαi3, the Gαi isoform found predominantly within intracellular membranes, such as the endoplasmic reticulum (ER)–Golgi interface, and their associated vesicle pools. Regulators of intracellular Gαi3, including activator of G-protein signaling 3 (AGS3) and the regulator of G-protein signaling protein 4 (RGS4), have a marked impact on the regulation of JNK activity. Together, these data support the existence of unique intracellular signaling complexes that control JNK activity deep within the cell. This work highlights some of the cellular pathways that are regulated by these intracellular complexes and identifies potential strategies for their regulation in mammalian cells. PMID:26389115

  2. Role of cardiorespiratory synchronization and sleep physiology: effects on membrane potential in the restorative functions of sleep.

    PubMed

    Jerath, Ravinder; Harden, Kyler; Crawford, Molly; Barnes, Vernon A; Jensen, Mike

    2014-03-01

    Although sleep physiology has been extensively studied, many of the cellular processes that occur during sleep and the functional significance of sleep remain unclear. The degree of cardiorespiratory synchronization during sleep increases during the progression of slow-wave sleep (SWS). Autonomic nervous system (ANS) activity also assumes a pattern that correlates with the progression of sleep. The ANS is an integral part of physiologic processes that occur during sleep with the respective contribution of parasympathetic and sympathetic activity varying between different sleep stages. In our paper, we attempt to unify the activities of various physiologic systems, namely the cardiac, respiratory, ANS and brain, during sleep into a consolidated picture with particular attention to the membrane potential of neurons. In our unified model, we explore the potential of sleep to promote restorative processes in the brain. PMID:24548599

  3. Enzymatic activation of cellulose acetate membrane for reducing of protein fouling.

    PubMed

    Koseoglu-Imer, Derya Y; Dizge, Nadir; Koyuncu, Ismail

    2012-04-01

    In this study, the surface of cellulose acetate (CA) ultrafiltration membrane was activated with serine protease (Savinase) enzyme to reduce protein fouling. Enzyme molecules were covalently immobilized with glutaraldehyde (cross-linking agent) onto the surface of CA membranes. The membrane activation was verified using filtration experiments and morphological analysis. Scanning electron microscopy (SEM) images and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy of the activated membrane when compared with raw membrane were confirmed that the enzyme was immobilized onto the membrane surface. The immobilization efficiencies changed from 13.2 to 41.2% according to the enzyme ratios from 2.5 to 10.0 mg/mL. However, the permeability values decreased from 232±6 to 121±4 L/m(2) h bar with increasing enzyme concentration from 2.5 to 10.0 mg/mL. In fouling experiments, bovine serum albumin (BSA) was used as the protein model solution and activated sludge was used as the model biological sludge. Enzyme-activated membranes exhibited good filtration performances and protein rejection efficiencies were compared with raw CA membrane. Also the relative flux reduction (RFR) ratios of membranes were calculated as 97% and 88% for raw CA and enzyme-activated membranes (5 mg/mL savinase), respectively. The membrane activated with Savinase enzyme could be proposed as a surface treatment method before filtration to mitigate protein fouling. PMID:22218336

  4. Biophysical significance of the inner mitochondrial membrane structure on the electrochemical potential of mitochondria.

    PubMed

    Song, Dong Hoon; Park, Jonghyun; Maurer, Laura L; Lu, Wei; Philbert, Martin A; Sastry, Ann Marie

    2013-12-01

    The available literature supports the hypothesis that the morphology of the inner mitochondrial membrane is regulated by different energy states, that the three-dimensional morphology of cristae is dynamic, and that both are related to biochemical function. Examination of the correlation between the inner mitochondrial membrane (IMM) structure and mitochondrial energetic function is critical to an understanding of the links between mesoscale morphology and function in progressive mitochondrial dysfunction such as aging, neurodegeneration, and disease. To investigate this relationship, we develop a model to examine the effects of three-dimensional IMM morphology on the electrochemical potential of mitochondria. The two-dimensional axisymmetric finite element method is used to simulate mitochondrial electric potential and proton concentration distribution. This simulation model demonstrates that the proton motive force (Δp) produced on the membranes of cristae can be higher than that on the inner boundary membrane. The model also shows that high proton concentration in cristae can be induced by the morphology-dependent electric potential gradient along the outer side of the IMM. Furthermore, simulation results show that a high Δp is induced by the large surface-to-volume ratio of an individual crista, whereas a high capacity for ATP synthesis can primarily be achieved by increasing the surface area of an individual crista. The mathematical model presented here provides compelling support for the idea that morphology at the mesoscale is a significant driver of mitochondrial function. PMID:24483502

  5. Biophysical significance of the inner mitochondrial membrane structure on the electrochemical potential of mitochondria

    PubMed Central

    Song, Dong Hoon; Park, Jonghyun; Maurer, Laura L.; Lu, Wei; Philbert, Martin A.; Sastry, Ann Marie

    2014-01-01

    The available literature supports the hypothesis that the morphology of the inner mitochondrial membrane is regulated by different energy states, that the three-dimensional morphology of cristae is dynamic and that both are related to biochemical function. Examination of the correlation between the inner mitochondrial membrane (IMM) structure and mitochondrial energetic function is critical to an understanding of the links between meso-scale morphology and function in progressive mitochondrial dysfunction such as aging, neurodegeneration, and disease. To investigate this relationship, we develop a model to examine the effects of three-dimensional IMM morphology on the electrochemical potential of mitochondria. The 2D axisymmetric finite element method is used to simulate mitochondrial electric potential and proton concentration distribution. This simulation model demonstrates that the proton motive force (PMF) produced on the membranes of cristae can be higher than that on the inner boundary membrane. The model also shows that high proton concentration in cristae can be induced by the morphology-dependent electric potential gradient along the outer side of the IMM. Furthermore, simulation results show that a high PMF is induced by the large surface-to-volume ratio of an individual crista, whereas a high capacity for ATP synthesis can primarily be achieved by increasing the surface area of an individual crista. The mathematical model presented here provides compelling support for the idea that morphology at the meso-scale is a significant driver of mitochondrial function. PMID:24483502

  6. Biophysical significance of the inner mitochondrial membrane structure on the electrochemical potential of mitochondria

    NASA Astrophysics Data System (ADS)

    Song, Dong Hoon; Park, Jonghyun; Maurer, Laura L.; Lu, Wei; Philbert, Martin A.; Sastry, Ann Marie

    2013-12-01

    The available literature supports the hypothesis that the morphology of the inner mitochondrial membrane is regulated by different energy states, that the three-dimensional morphology of cristae is dynamic, and that both are related to biochemical function. Examination of the correlation between the inner mitochondrial membrane (IMM) structure and mitochondrial energetic function is critical to an understanding of the links between mesoscale morphology and function in progressive mitochondrial dysfunction such as aging, neurodegeneration, and disease. To investigate this relationship, we develop a model to examine the effects of three-dimensional IMM morphology on the electrochemical potential of mitochondria. The two-dimensional axisymmetric finite element method is used to simulate mitochondrial electric potential and proton concentration distribution. This simulation model demonstrates that the proton motive force (Δp) produced on the membranes of cristae can be higher than that on the inner boundary membrane. The model also shows that high proton concentration in cristae can be induced by the morphology-dependent electric potential gradient along the outer side of the IMM. Furthermore, simulation results show that a high Δp is induced by the large surface-to-volume ratio of an individual crista, whereas a high capacity for ATP synthesis can primarily be achieved by increasing the surface area of an individual crista. The mathematical model presented here provides compelling support for the idea that morphology at the mesoscale is a significant driver of mitochondrial function.

  7. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava. PMID:26547558

  8. ELECTROCHEMICAL POTENTIAL OF THE INNER MITOCHONDRIAL MEMBRANE AND Ca2+ HOMEOSTASIS OF MYOMETRIUM CELLS.

    PubMed

    Danylovych, Yu V; Karakhim, S A; Danylovych, H V; Kolomiets, O V; Kosterin, S O

    2015-01-01

    We demonstrated using Ca(2+)-sensitive fluorescent probe, mitochondria binding dyes, and confocal laser scanning microscopy, that elimination of electrochemical potential of uterus myocytes' inner mitochondrial membrane by aprotonophore carbonyl cyanide m-chlorophenyl hydrazone (10 μM), and by a respiratory chain complex IV inhibitor sodium azide (1 mM) is associated with substantial increase of Ca2+ concentration in myoplasm in the case of the protonophore effect only, but not in the case of the azide effect. In particular, with the use of nonyl acridine orange, a mitochondria-specific dye, and 9-aminoacridine, an agent that binds to membrane compartments in the presence of proton gradient, we showed that both the protonophore and the respiratory chain inhibitor cause the proton gradient on mitochondrial inner membrane to dissipate when introduced into incubation medium. We also proved with the help of 3,3'-dihexyloxacarbocyanine, a potential-sensitive carbocyanine-derived fluorescent probe, that the application of these substances results in dissipation of the membrane's electrical potential. The elimination of mitochondrial electrochemical potential by carbonyl cyanide m-chlorophenyl hydrazone causes substantial increase in fluorescence of Ca(2+)-sensitive Fluo-4 AM dye in myoplasm of smooth muscle cells. The results obtained were qualitatively confirmed with flow cytometry of mitochondria isolated through differential centrifugation and loaded with Fluo-4 AM. Particularly, Ca2+ matrix influx induced by addition of the exogenous cation is totally inhibited by carbonyl cyanide m-chlorophenyl hydrazone. Therefore, using two independent fluorometric methods, namely confocal laser scanning microscopy and flow cytometry, with Ca(2+)-sensitive Fluo-4 AM fluorescent probe, we proved on the models of freshly isolated myocytes and uterus smooth muscle mitochondria isolated by differential centrifugation sedimentation that the electrochemical gradient of inner membrane

  9. Revealing membrane potential by advanced impedance spectroscopy: theoretical and experimental aspects

    NASA Astrophysics Data System (ADS)

    Gheorghiu, M.; Bratu, D.; Olaru, A.; Polonschii, C.; Gheorghiu, E.

    2013-04-01

    In spite of recent advancement of novel optical and electrical techniques, availability of non-invasive, label-free methods to assess membrane potential of living cells is still an open issue. The theory linking membrane potential to the low frequency α dispersion exhibited by suspensions of spherical shelled particles (presenting a net charge distribution on the inner side of the shell) has been pioneered in our previous studies with emphasis on the permittivity spectra. We now report on both theoretical and experimental aspects showing that whereas α dispersion is related to a rather large variation exhibited by the permittivity spectrum the decrement presented by impedance magnitude spectrum is either extremely small, or occurs (for large cells) at very low frequencies (~mHz) explaining the lack of experimental bioimpedance data on the matter. Based on the microscopic model we indicate that an appropriate design of the experiment may enable access to membrane potential as well as to other relevant parameters when investigating living cells and charged lipid vesicles. We discuss the effect on the low frequency of permittivity and impedance spectra of: I. Parameters pertaining to cell membrane i.e. (i) membrane potential, (ii) size of the cells/vesicles, (iii) conductivity; II. Conductivity of the outer medium. A novel measuring set-up has recently been developed within the International Centre of Biodynamics allowing for sensitive low frequency (~10mHz) four point (bio)impedance assays. Its capability to test theoretical predictions is reported as well. The far reaching implications of this study applicability for life sciences (noninvasive access to the dynamics of relevant cell parameters) as well as for biosensing applications, e.g. assess the cytotoxicity of a wide range of stimuli, will be outlined.

  10. Membrane potential of mitochondria in intact lymphocytes during early mitogenic stimulation.

    PubMed Central

    Brand, M D; Felber, S M

    1984-01-01

    The mitochondrial membrane potential (delta psi m) in intact lymphocytes was calculated by measuring the distribution of radiolabelled methyltriphenylphosphonium cation. The value obtained was 120 mV. The pH gradient across the mitochondrial membrane in situ (delta pH m) was estimated to be 73 mV (1.2 pH units). Thus the electrochemical gradient of protons was about 190 mV. Addition of the mitogen concanavalin A did not alter delta psi m, showing that, if movement of Ca2+ across the inner membrane of lymphocyte mitochondria occurs when concanavalin A is added, it is accompanied by charge-compensating ion movements. PMID:6696741

  11. Membrane potential perturbations induced in tissue cells by pulsed electric fields

    SciTech Connect

    Cooper, M.S.

    1995-09-01

    Pulsed electric fields directly influence the electrophysiology of tissue cells by transiently perturbing their transmembrane potential. To determine the magnitude and time course of this interaction, electronic cable theory was used to calculate the membrane potential perturbations induced in tissue cells by a spatially uniform, pulsed electric field. Analytic solutions were obtained that predict shifts in membrane potential along the length of cells as a function of time in response to an electrical pulse. For elongated tissue cells, or groups of tissue cells that are couple electronically by gap junctions, significant hyperpolarizations and depolarizations can result form millisecond applications of electric fields with strengths on the order of 10--100 mV/cm. The results illustrate the importance of considering cellular cable parameters in assessing the effects of transient electric fields on biological systems, as well as in predicting the efficacy of pulsed electric fields in medical treatments.

  12. Salinity-induced noise in membrane potential of Characeae Chara australis: effect of exogenous melatonin.

    PubMed

    Beilby, Mary J; Al Khazaaly, Sabah; Bisson, Mary A

    2015-02-01

    Salt sensitive Characeae Chara australis responds to 50 mM NaCl by a prompt appearance of noise in the trans-membrane potential difference (PD). The noise diminishes with time in saline and PD depolarization, leading to altered current-voltage characteristics that could be modeled with H(+)/OH(-) channels. Beilby and Al Khazaaly (JMB 230:21-34, 2009) suggested that the noise might arise from cooperative transient opening of H(+)/OH(-) channels. Presoaking cells in 10 μM melatonin over 24 h abolished the noise in some cells, postponed its appearance in others or changed its characteristics. As melatonin is a very effective antioxidant, we postulated opening of H(+)/OH(-) channels by reactive oxygen species (ROS). Measurement of ROS using dihydrodichlorofluorescein diacetate confirmed substantial reduction in ROS production in melatonin-treated cells in saline and sorbitol media. However, ROS concentration decreased as a function of time in saline medium. Possible schemes for activation of H(+)/OH(-) channels under salinity stress are considered. PMID:25378124

  13. Thinking in Terms of Structure-Activity-Relationships (T-SAR): A Tool to Better Understand Nanofiltration Membranes

    PubMed Central

    Fernández, José F.; Jastorff, Bernd; Störmann, Reinhold; Stolte, Stefan; Thöming, Jorg

    2011-01-01

    A frontier to be conquered in the field of membrane technology is related to the very limited scientific base for the rational and task-specific design of membranes. This is especially true for nanofiltration membranes with properties that are based on several solute-membrane interaction mechanisms. “Thinking in terms of Structure-Activity-Relationships” (T-SAR) is a methodology which applies a systematic analysis of a chemical entity based on its structural formula. However, the analysis become more complex with increasing size of the molecules considered. In this study, T-SAR was combined with classical membrane characterization methods, resulting in a new methodology which allowed us not only to explain membrane characteristics, but also provides evidence for the importance of the chemical structure for separation performance. We demonstrate an application of the combined approach and its potential to discover stereochemistry, molecular interaction potentials, and reactivity of two FilmTec nanofiltration membranes (NF-90 and NF-270). Based on these results, it was possible to predict both properties and performance in the recovery of hydrophobic ionic liquids from aqueous solution. PMID:24957730

  14. Model Membrane and Cell Studies of Antimicrobial Activity of Melittin Analogues.

    PubMed

    Jamasbi, Elaheh; Mularski, Anna; Separovic, Frances

    2016-01-01

    Melittin is a 26 residue peptide and the major component of bee (Apis mellifera) venom. Although melittin has both anticancer and antimicrobial properties, utilization has been limited due to its high lytic activity against eukaryotic cells. The mechanism of this lytic activity remains unclear but several mechanisms have been proposed, including pore formation or a detergent like mechanism, which result in lysis of cell membranes. Several analogues of melittin have been synthesized to further understand the role of specific residues in its antimicrobial and lytic activity. Melittin analogues that have a proline residue substituted for an alanine, lysine or cysteine have been studied with both model membrane systems and living cells. These studies have revealed that the proline residue plays a critical role in antimicrobial activity and cytotoxicity. Analogues lacking the proline residue and dimers of these analogues displayed decreased cytotoxicity and minimum inhibition concentrations. Several mutant studies have shown that, when key substitutions are made, the resultant peptides have more activity in terms of pore formation than the native melittin. Designing analogues that retain antimicrobial and anticancer activity while minimizing haemolytic activity will be a promising way to utilize melittin as a potential therapeutic agent. PMID:26139117

  15. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, H.K.; Wamser, C.C.

    1990-04-17

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  16. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1990-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  17. Fusicoccin Binding to Its Plasma Membrane Receptor and the Activation of the Plasma Membrane H+-ATPase

    PubMed Central

    De Michelis, Maria Ida; Pugliarello, Maria Chiara; Rasi-Caldogno, Franca

    1989-01-01

    The characteristics of fusicoccin binding were investigated in microsomes from 24-h-old radish (Raphanus sativus L.) seedlings. The time course of fusicoccin binding depended on fusicoccin concentration: equilibrium was reached much faster at 10 nanomolar fusicoccin than at 0.3 nanomolar fusicoccin. Scatchard analysis of equilibrium binding as a function of fusicoccin concentration indicated a single class of receptor sites with a Kd of 1.8 nanomolar and a site density of 6.3 picomoles per milligram protein. Similar values (Kd 1.7 nanomolar and site density 7 picomoles per milligram protein) were obtained from the analysis of the dependence of equilibrium binding on membrane concentration at fixed fusicoccin concentrations. Fusicoccin binding comigrated with the plasma membrane H+-ATPase in an equilibrium sucrose density gradient: both activities formed a sharp peak (1.18 grams per milliliter) clearly distinct from that of markers of other membranes which all peaked at lower densities. The saturation profiles of fusicoccin binding and of fusicoccin-induced activation of the plasma membrane H+-ATPase, measured under identical conditions, were similar, supporting the view that fusicoccin-induced activation of the plasma membrane H+-ATPase is mediated by fusicoccin binding to its plasma membrane receptor. PMID:16666723

  18. Porin activity of the native and recombinant outer membrane protein Oms28 of Borrelia burgdorferi.

    PubMed Central

    Skare, J T; Champion, C I; Mirzabekov, T A; Shang, E S; Blanco, D R; Erdjument-Bromage, H; Tempst, P; Kagan, B L; Miller, J N; Lovett, M A

    1996-01-01

    The outer membrane-spanning (Oms) proteins of Borrelia burgdorferi have been visualized by freeze-fracture analysis but, until recently, not further characterized. We developed a method for the isolation of B. burgdorferi outer membrane vesicles and described porin activities with single-channel conductances of 0.6 and 12.6 nS in 1 M KCI. By using both nondenaturing isoelectric focusing gel electrophoresis and fast-performance liquid chromatography separation after detergent solubilization, we found that the 0.6-nS porin activity resided in a 28-kDa protein, designated Oms28. The oms28 gene was cloned, and its nucleotide sequence was determined. The deduced amino acid sequence of Oms28 predicted a 257-amino-acid precursor protein with a putative 24-amino-acid leader peptidase I signal sequence. Processed Oms28 yielded a mature protein with a predicted molecular mass of 25,363 Da. When overproduced in Escherichia coli, the Oms28 porin fractionated in part to the outer membrane. Sodium dodecyl sulfate-polyacrylamide gel-purified recombinant Oms28 from E. coli retained functional activity as demonstrated by an average single-channel conductance of 1.1 nS in the planar lipid bilayer assay. These findings confirmed that Oms28 is a B. burgdorferi porin, the first to be described. As such, it is potential relevance to the pathogenesis of Lyme borreliosis and to the physiology of the spirochete. PMID:8759855

  19. Ling’s Adsorption Theory as a Mechanism of Membrane Potential Generation Observed in Both Living and Nonliving Systems

    PubMed Central

    Tamagawa, Hirohisa; Funatani, Makoto; Ikeda, Kota

    2016-01-01

    The potential between two electrolytic solutions separated by a membrane impermeable to ions was measured and the generation mechanism of potential measured was investigated. From the physiological point of view, a nonzero membrane potential or action potential cannot be observed across the impermeable membrane. However, a nonzero membrane potential including action potential-like potential was clearly observed. Those observations gave rise to a doubt concerning the validity of currently accepted generation mechanism of membrane potential and action potential of cell. As an alternative theory, we found that the long-forgotten Ling’s adsorption theory was the most plausible theory. Ling’s adsorption theory suggests that the membrane potential and action potential of a living cell is due to the adsorption of mobile ions onto the adsorption site of cell, and this theory is applicable even to nonliving (or non-biological) system as well as living system. Through this paper, the authors emphasize that it is necessary to reconsider the validity of current membrane theory and also would like to urge the readers to pay keen attention to the Ling’s adsorption theory which has for long years been forgotten in the history of physiology. PMID:26821050

  20. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  1. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation.

    PubMed Central

    Johansson, I; Karlsson, M; Shukla, V K; Chrispeels, M J; Larsson, C; Kjellbom, P

    1998-01-01

    PM28A is a major intrinsic protein of the spinach leaf plasma membrane and the major phosphoprotein. Phosphorylation of PM28A is dependent in vivo on the apoplastic water potential and in vitro on submicromolar concentrations of Ca2+. Here, we demonstrate that PM28A is an aquaporin and that its water channel activity is regulated by phosphorylation. Wild-type and mutant forms of PM28A, in which putative phosphorylation sites had been knocked out, were expressed in Xenopus oocytes, and the resulting increase in osmotic water permeability was measured in the presence or absence of an inhibitor of protein kinases (K252a) or of an inhibitor of protein phosphatases (okadaic acid). The results indicate that the water channel activity of PM28A is regulated by phosphorylation of two serine residues, Ser-115 in the first cytoplasmic loop and Ser-274 in the C-terminal region. Labeling of spinach leaves with 32P-orthophosphate and subsequent sequencing of PM28A-derived peptides demonstrated that Ser-274 is phosphorylated in vivo, whereas phosphorylation of Ser-115, a residue conserved among all plant plasma membrane aquaporins, could not be demonstrated. This identifies Ser-274 of PM28A as the amino acid residue being phosphorylated in vivo in response to increasing apoplastic water potential and dephosphorylated in response to decreasing water potential. Taken together, our results suggest an active role for PM28A in maintaining cellular water balance. PMID:9501117

  2. Red wine activates plasma membrane redox system in human erythrocytes.

    PubMed

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-05-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity. PMID:26866566

  3. Relationship between potential platelet activation and LCS

    NASA Astrophysics Data System (ADS)

    Shadden, Shawn

    2010-11-01

    In the study of blood flow, emphasis is often directed at understanding shear stress at the vessel wall due to its potentially disruptive influence on the endothelium. However, it is also known that shear stress has a potent effect on platelet activation. Platelet activation is a precursor for blood clotting, which in turn is the cause of most forms of death. Since most platelets are contained in the flow domain, it is important to consider stresses acting on the platelet as they are convected. Locations of high stress can correspond to boundaries between different dynamic regions and locations of hyperbolic points in the Eulerian sense. In the computation of LCS, strain in typically considered in the Lagrangian sense. In this talk we discuss the relationship between locations of potential platelet activation due to increased stress and locations of LCS marking increase Lagrangian deformation.

  4. Antibacterial activities of surface modified electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fibrous membranes

    NASA Astrophysics Data System (ADS)

    Yao, Chen; Li, Xinsong; Neoh, K. G.; Shi, Zhilong; Kang, E. T.

    2009-01-01

    Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membrane, with its excellent chemical and mechanical properties, has good potential for broad applications. However, due to its hydrophobic nature, microbial colonization is commonly encountered. In this work, electrospun PVDF-HFP fibrous membranes were surface modified by poly(4-vinyl- N-alkylpyridinium bromide) to achieve antibacterial activities. The membranes were first subjected to plasma pretreatment followed by UV-induced surface graft copolymerization of 4-vinylpyridine (4VP) and quaternization of the grafted pyridine groups with hexylbromide. The chemical composition of the surface modified PVDF-HFP electrospun membranes was studied by X-ray photoelectron spectroscopy (XPS). The morphology and mechanical properties of pristine and surface modified PVDF-HFP fibrous membranes were characterized by scanning electron microscopy (SEM) and tensile test, respectively. The antibacterial activities of the modified electrospun PVDF-HFP fibrous membranes were assessed against Gram-positive Staphylococcus aureus ( S. aureus) and Gram-negative Escherichia coli ( E. coli). The results showed that the PVDF-HFP fibrous membranes modified with quaternized pyridinium groups are highly effective against both bacteria with killing efficiency as high as 99.9999%.

  5. Tau accumulation impairs mitophagy via increasing mitochondrial membrane potential and reducing mitochondrial Parkin

    PubMed Central

    Wang, Zhi-hao; Luo, Yu; Zhang, Xiangnan; Liu, Xiu-Ping; Feng, Qiong; Wang, Qun; Yue, Zhenyu; Chen, Zhong; Ye, Keqiang; Wang, Jian-Zhi; Liu, Gong-Ping

    2016-01-01

    Intracellular accumulation of wild type tau is a hallmark of sporadic Alzheimer's disease (AD). However, the molecular mechanisms underlying tau toxicity is not fully understood. Here, we detected mitophagy deficits evidenced by the increased levels of mitophagy markers, including COX IV, TOMM20, and the ratio of mtDNA to genomic DNA indexed as mt-Atp6/Rpl13, in the AD brains and in the human wild type full-length tau (htau) transgenic mice. More interestingly, the mitophagy deficit was only shown in the AD patients who had an increased total tau level. Further studies demonstrated that overexpression of htau induced mitophagy deficits in HEK293 cells, the primary hippocampal neurons and in the brains of C57 mice. Upon overexpression of htau, the mitochondrial membrane potential was increased and the levels of PTEN-induced kinase 1 (PINK1) and Parkin decreased in the mitochondrial fraction, while upregulation of Parkin attenuated the htau-induced mitophagy deficits. Finally, we detected a dose-dependent allocation of tau proteins into the mitochondrial outer membrane fraction along with its cytoplasmic accumulation. These data suggest that intracellular accumulation of htau induces mitophagy deficits by direct inserting into the mitochondrial membrane and thus increasing the membrane potential, which impairs the mitochondrial residence of PINK1/Parkin. Our findings reveal a novel mechanism underlying the htau-induced neuronal toxicities in AD and other tauopathies. PMID:26943044

  6. Analysis of the effect of medium and membrane conductance on the amplitude and kinetics of membrane potentials induced by externally applied electric fields.

    PubMed Central

    Lojewska, Z; Farkas, D L; Ehrenberg, B; Loew, L M

    1989-01-01

    The kinetics and amplitudes of membrane potential induced by externally applied electric field pulses are determined for a spherical lipid bilayer using a voltage-sensitive dye. Several experimental parameters were systematically varied. These included the incorporation of gramicidin into the membrane to alter its conductivity and the variation of the external electrolyte conductivity via changes in salt concentration. The ability of the solution to Laplace's equation for a spherical dielectric shell to quantitatively describe the membrane potential induced on a lipid bilayer could thus be critically evaluated. Both the amplitude and the kinetics of the induced potential were consistent with the predictions of this simple model, even at the extremes of membrane conductance or electrolyte concentration. The success of the experimental approach for this system encourages its application to more complex problems such as electroporation and the influences of external electric fields in growth and development. PMID:2752081

  7. Macrophage Membrane Potential Changes Associated with γ 2b/γ 1 Fc Receptor-Ligand Binding

    NASA Astrophysics Data System (ADS)

    Young, John Ding-E; Unkeless, Jay C.; Kaback, H. Ronald; Cohn, Zanvil A.

    1983-03-01

    We have studied the effects of specific ligands of the receptor for the IgG Fc fragment (FcR) on the membrane potential (Δ Psi ) of the macrophage cell line J774 by the [3H]tetraphenylphosphonium ion equilibration technique. We observe a membrane depolarization with binding of FcR ligands that is dependent on the degree of receptor crosslinking. Binding of the FcR by monovalent ligands is not sufficient to induce a significant drop in Δ Psi , but a sustained depolarization lasting ≈ 20 min occurs with insoluble multivalent ligands. This FcR-mediated depolarization can be inhibited by substitution of Na+ from the cell incubation medium with monovalent choline cation, indicating that depolarization is due to Na+ influx into the cell. The extracellular Ca2+ does not play a significant role in membrane depolarization. The depolarization response is not triggered by monoclonal antibodies directed against three other major macrophage surface antigens. The cell depolarization mediated by FcR ligands is followed by a prolonged hyperpolarization that can be partially blocked by ouabain and quinine, indicating that the hyperpolarization response is a result of a combination of a Na+, K+-ATPase activity and a Ca2+-activated K+ conductance. These data support our hypothesis that the mouse macrophage IgG FcR is a ligand-dependent ion channel.

  8. NPA binding activity is peripheral to the plasma membrane and is associated with the cytoskeleton.

    PubMed Central

    Cox, D N; Muday, G K

    1994-01-01

    N-1-Naphthylphthalamic acid (NPA) binding activity is released into the supernatant when plasma membranes are subjected to high-salt treatment, indicating that this activity is peripherally associated with the membrane. Extraction of plasma membrane vesicles with Triton X-100 resulted in retention of NPA binding activity in the detergent-insoluble cytoskeletal pellet. Treatment of this pellet with KI released NPA binding activity, actin, and alpha-tubulin. Dialysis to remove KI led to the repolymerization of cytoskeletal elements and movement of NPA binding activity into an insoluble cytoskeletal pellet. NPA binding activity partitioned into the detergent-insoluble cytoskeletal pellet obtained from both zucchini and maize membranes and was released from these pellets by KI treatment. Treatment of a cytoskeletal pellet with cytochalasin B doubled NPA binding activity in the resulting supernatant. Together, these experiments indicate that NPA binding activity is peripherally associated with the plasma membrane and interacts with the cytoskeleton in vitro. PMID:11536654

  9. Expression of a mitochondrial progesterone receptor in human spermatozoa correlates with a progestin-dependent increase in mitochondrial membrane potential.

    PubMed

    Tantibhedhyangkul, J; Hawkins, K C; Dai, Q; Mu, K; Dunn, C N; Miller, S E; Price, T M

    2014-11-01

    The hyperactivation of human spermatozoa necessary for fertilization requires a substantial increase in cellular energy production. The factors responsible for increasing cellular energy remain poorly defined. This article proposes a role for a novel mitochondrial progesterone receptor (PR-M) in modulation of mitochondrial activity. Basic science studies demonstrate a 38 kDa protein with western blot analysis, consistent with PR-M; whereas imaging studies with confocal and immunoelectron microscopy demonstrate a PR on the mitochondria. Treatment with a PR-specific progestin shows increased mitochondrial membrane potential, not related to induction of an acrosome reaction. The increase in mitochondrial membrane potential was inhibited by a specific PR antagonist, but not affected by an inhibitor to the progesterone-dependent Catsper voltage-activated channel. In conclusion, these studies suggest expression of a novel mitochondrial PR in human spermatozoa with a progestin-dependent increase in mitochondrial activity. This mechanism may serve to enhance cellular energy production as the spermatozoa traverse the female genital tract being exposed to increasing concentrations of progesterone. PMID:25187426

  10. Left ventricular noncompaction (LVNC) and low mitochondrial membrane potential are specific for Barth syndrome.

    PubMed

    Karkucinska-Wieckowska, Agnieszka; Trubicka, Joanna; Werner, Bozena; Kokoszynska, Katarzyna; Pajdowska, Magdalena; Pronicki, Maciej; Czarnowska, Elzbieta; Lebiedzinska, Magdalena; Sykut-Cegielska, Jolanta; Ziolkowska, Lidia; Jaron, Weronika; Dobrzanska, Anna; Ciara, Elzbieta; Wieckowski, Mariusz R; Pronicka, Ewa

    2013-11-01

    Barth syndrome (BTHS) is an X-linked mitochondrial defect characterised by dilated cardiomyopathy, neutropaenia and 3-methylglutaconic aciduria (3-MGCA). We report on two affected brothers with c.646G > A (p.G216R) TAZ gene mutations. The pathogenicity of the mutation, as indicated by the structure-based functional analyses, was further confirmed by abnormal monolysocardiolipin/cardiolipin ratio in dry blood spots of the patients as well as the occurrence of this mutation in another reported BTHS proband. In both brothers, 2D-echocardiography revealed some features of left ventricular noncompaction (LVNC) despite marked differences in the course of the disease; the eldest child presented with isolated cardiomyopathy from late infancy, whereas the youngest showed severe lactic acidosis without 3-MGCA during the neonatal period. An examination of the patients' fibroblast cultures revealed that extremely low mitochondrial membrane potentials (mtΔΨ about 50 % of the control value) dominated other unspecific mitochondrial changes detected (respiratory chain dysfunction, abnormal ROS production and depressed antioxidant defense). 1) Our studies confirm generalised mitochondrial dysfunction in the skeletal muscle and the fibroblasts of BTHS patients, especially a severe impairment in the mtΔΨ and the inhibition of complex V activity. It can be hypothesised that impaired mtΔΨ and mitochondrial ATP synthase activity may contribute to episodes of cardiac arrhythmia that occurred unexpectedly in BTHS patients. 2) Severe lactic acidosis without 3-methylglutaconic aciduria in male neonates as well as an asymptomatic mild left ventricular noncompaction may characterise the ranges of natural history of Barth syndrome. PMID:23361305

  11. Parameter estimation of the FitzHugh-Nagumo model using noisy measurements for membrane potential.

    PubMed

    Che, Yanqiu; Geng, Li-Hui; Han, Chunxiao; Cui, Shigang; Wang, Jiang

    2012-06-01

    This paper proposes an identification method to estimate the parameters of the FitzHugh-Nagumo (FHN) model for a neuron using noisy measurements available from a voltage-clamp experiment. By eliminating an unmeasurable recovery variable from the FHN model, a parametric second order ordinary differential equation for the only measurable membrane potential variable can be obtained. In the presence of the measurement noise, a simple least squares method is employed to estimate the associated parameters involved in the FHN model. Although the available measurements for the membrane potential are contaminated with noises, the proposed identification method aided by wavelet denoising can also give the FHN model parameters with satisfactory accuracy. Finally, two simulation examples demonstrate the effectiveness of the proposed method. PMID:22757546

  12. Exploring the Membrane Potential of Simple Dual-Membrane Systems as Models for Gap-Junction Channels.

    PubMed

    Escalona, Yerko; Garate, Jose A; Araya-Secchi, Raul; Huynh, Tien; Zhou, Ruhong; Perez-Acle, Tomas

    2016-06-21

    The conductance of ion channels can be modulated by a transmembrane potential difference, due to alterations on ion-mobility and also by changes in the pore structure. Despite the vast knowledge regarding the influence of voltage on transport properties of ion channels, little attention has been paid to describe, with atomic detail, the modulation of ionic transport in gap-junction channels (GJCs). Hence, molecular dynamics simulations were performed to explore the conductance of simple dual-membrane systems that account for the very basic features of GJCs. In doing so, we studied the influence of different charge distributions in the channel surface on these idealized systems under external electric fields, paying attention to the behavior of the electrostatic potential, ion density, ion currents, and equilibrium properties. Our results demonstrate that the incorporation of a charge distribution akin GJCs decreased anionic currents, favoring the transport of cationic species. Moreover, a thermodynamic characterization of ionic transport in these systems demonstrate the existence of a kinetic barrier that hinders anionic currents, reinforcing the role played by the internal arrangement of charges in GJCs. Overall, our results provide insights at the atomic scale on the effects of charge distributions over ionic transport, constituting a step forward into a better understanding of GJCs. PMID:27332126

  13. Cation Interactions and Membrane Potential Induce Conformational Changes in NaPi-IIb.

    PubMed

    Patti, Monica; Fenollar-Ferrer, Cristina; Werner, Andreas; Forrest, Lucy R; Forster, Ian C

    2016-09-01

    Voltage-dependence of Na(+)-coupled phosphate cotransporters of the SLC34 family arises from displacement of charges intrinsic to the protein and the binding/release of one Na(+) ion in response to changes in the transmembrane electric field. Candidate coordination residues for the cation at the Na1 site were previously predicted by structural modeling using the x-ray structure of dicarboxylate transporter VcINDY as template and confirmed by functional studies. Mutations at Na1 resulted in altered steady-state and presteady-state characteristics that should be mirrored in the conformational changes induced by membrane potential changes. To test this hypothesis by functional analysis, double mutants of the flounder SLC34A2 protein were constructed that contain one of the Na1-site perturbing mutations together with a substituted cysteine for fluorophore labeling, as expressed in Xenopus oocytes. The locations of the mutations were mapped onto a homology model of the flounder protein. The effects of the mutagenesis were characterized by steady-state, presteady-state, and fluorometric assays. Changes in fluorescence intensity (ΔF) in response to membrane potential steps were resolved at three previously identified positions. These fluorescence data corroborated the altered presteady-state kinetics upon perturbation of Na1, and furthermore indicated concomitant changes in the microenvironment of the respective fluorophores, as evidenced by changes in the voltage dependence and time course of ΔF. Moreover, iodide quenching experiments indicated that the aqueous nature of the fluorophore microenvironment depended on the membrane potential. These findings provide compelling evidence that membrane potential and cation interactions induce significant large-scale structural rearrangements of the protein. PMID:27602725

  14. Leveraging electrokinetics for the active control of dendritic fullerene-1 release across a nanochannel membrane

    NASA Astrophysics Data System (ADS)

    Bruno, Giacomo; Geninatti, Thomas; Hood, R. Lyle; Fine, Daniel; Scorrano, Giovanni; Schmulen, Jeffrey; Hosali, Sharath; Ferrari, Mauro; Grattoni, Alessandro

    2015-03-01

    General adoption of advanced treatment protocols such as chronotherapy will hinge on progress in drug delivery technologies that provide precise temporal control of therapeutic release. Such innovation is also crucial to future medicine approaches such as telemedicine. Here we present a nanofluidic membrane technology capable of achieving active and tunable control of molecular transport through nanofluidic channels. Control was achieved through application of an electric field between two platinum electrodes positioned on either surface of a 5.7 nm nanochannel membrane designed for zero-order drug delivery. Two electrode configurations were tested: laser-cut foils and electron beam deposited thin-films, configurations capable of operating at low voltage (<=1.5 V), and power (100 nW). Temporal, reproducible tuning and interruption of dendritic fullerene 1 (DF-1) transport was demonstrated over multi-day release experiments. Conductance tests showed limiting currents in the low applied potential range, implying ionic concentration polarization (ICP) at the interface between the membrane's micro- and nanochannels, even in concentrated solutions (<=1 M NaCl). The ability of this nanotechnology platform to facilitate controlled delivery of molecules and particles has broad applicability to next-generation therapeutics for numerous pathologies, including autoimmune diseases, circadian dysfunction, pain, and stress, among others.General adoption of advanced treatment protocols such as chronotherapy will hinge on progress in drug delivery technologies that provide precise temporal control of therapeutic release. Such innovation is also crucial to future medicine approaches such as telemedicine. Here we present a nanofluidic membrane technology capable of achieving active and tunable control of molecular transport through nanofluidic channels. Control was achieved through application of an electric field between two platinum electrodes positioned on either surface of a 5

  15. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation1[OPEN

    PubMed Central

    Okumura, Masaki; Inoue, Shin-ichiro; Kuwata, Keiko

    2016-01-01

    Plant plasma membrane H+-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H+-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha. However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H+-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H+-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H+-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H+-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H+-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H+-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H+-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  16. Active control of electric potential of spacecraft

    NASA Technical Reports Server (NTRS)

    Goldstein, R.

    1977-01-01

    Techniques are discussed for controlling the potential of a spacecraft by means of devices which release appropriate charged particles from the spacecraft to the environment. Attention is given to electron emitters, ion emitters, a basic electron emitter arrangement, techniques for sensing electric field or potential, and flight experiments on active potential control. It is recommended to avoid differential charging on spacecraft surfaces because it can severely affect the efficacy of emitters. Discharging the frame of a spacecraft with dielectric surfaces involves the risk of stressing the dielectric material excessively. The spacecraft should, therefore, be provided with grounded conductive surfaces. It is pointed out that particles released by control systems can return to the spacecraft.

  17. Voltage-induced membrane displacement in patch pipettes activates mechanosensitive channels

    PubMed Central

    Gil, Ziv; Silberberg, Shai D.; Magleby, Karl L.

    1999-01-01

    The patch-clamp technique allows currents to be recorded through single ion channels in patches of cell membrane in the tips of glass pipettes. When recording, voltage is typically applied across the membrane patch to drive ions through open channels and to probe the voltage-sensitivity of channel activity. In this study, we used video microscopy and single-channel recording to show that prolonged depolarization of a membrane patch in borosilicate pipettes results in delayed slow displacement of the membrane into the pipette and that this displacement is associated with the activation of mechanosensitive (MS) channels in the same patch. The membrane displacement, ≈1 μm with each prolonged depolarization, occurs after variable delays ranging from tens of milliseconds to many seconds and is correlated in time with activation of MS channels. Increasing the voltage step shortens both the delay to membrane displacement and the delay to activation. Preventing depolarization-induced membrane displacement by applying positive pressure to the shank of the pipette or by coating the tips of the borosilicate pipettes with soft glass prevents the depolarization-induced activation of MS channels. The correlation between depolarization-induced membrane displacement and activation of MS channels indicates that the membrane displacement is associated with sufficient membrane tension to activate MS channels. Because membrane tension can modulate the activity of various ligand and voltage-activated ion channels as well as some transporters, an apparent voltage dependence of a channel or transporter in a membrane patch in a borosilicate pipette may result from voltage-induced tension rather than from direct modulation by voltage. PMID:10588750

  18. Synthesis of polymers with the potential to release H 2S: Polydicyclopentadiene nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Long, Tyler Richard

    This thesis discusses two very different projects. In the first project, synthesizing a polymer with the potential to release H2S. This was accomplished through the copolymerization of L-lactide and lactide monomers that has been functionalized with 4-hydroxythiobenzamide which is known to release H2S in vivo. The synthesis of the functionalized monomer required the development of a new method to attach functional groups to a derivative of L-lactide, which involved the addition of a thiol to an alpha- beta-unsaturated lactide using catalytic I2. After polymerization, the molecular weight of the copolymers ranged from 8 to 88 kg mol-1 with PDIs below 1.50. These polymers have the ability to be loaded with different amounts of thiobenzamide by controlling the ratio of the functionalized monomer with L-lactide during polymerization. The copolymers were fabricated into two sizes of microparticles with average diameters of 0.52 and 12 mum. The degradation of the smaller microparticles was studied in a PBS buffered solution at pH 7.4 which showed the slow release of the thiobenzamide over a 4 week period. These microparticles are the first to show potential to deliver H2S over a period of weeks. This research addresses a critical need in the field of H2S in medicine where no method exists to release H2S in vivo at times over a few hours. In the second project dicyclopentadiene was polymerized with Grubbs first generation catalyst and fabricated into highly cross-linked membranes with a thickness of 100 mum. The flux of twenty-one molecules with varying polarities and molecular weights ranging from 101 to 583 g mol-1 were studied. Molecules that permeated these membranes had flux rates of 10 -5 to 10-6 mol cm-2 h-1 but molecules that did not permeate these membranes had flux rates 10 4 to 105 times slower. The large difference in flux did not have a strong correlation to molecular weight or solubility in the membrane. However, there was a strong correlation to the cross

  19. Enzymatically active high-flux selectively gas-permeable membranes

    DOEpatents

    Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey

    2016-01-26

    An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.

  20. How Lipid Membranes Affect Pore Forming Toxin Activity.

    PubMed

    Rojko, Nejc; Anderluh, Gregor

    2015-12-15

    Pore forming toxins (PFTs) evolved to permeate the plasma membrane of target cells. This is achieved in a multistep mechanism that usually involves binding of soluble protein monomer to the lipid membrane, oligomerization at the plane of the membrane, and insertion of part of the polypeptide chain across the lipid membrane to form a conductive channel. Introduced pores allow uncontrolled transport of solutes across the membrane, inflicting damage to the target cell. PFTs are usually studied from the perspective of structure-function relationships, often neglecting the important role of the bulk membrane properties on the PFT mechanism of action. In this Account, we discuss how membrane lateral heterogeneity, thickness, and fluidity influence the pore forming process of PFTs. In general, lipid molecules are more accessible for binding in fluid membranes due to steric reasons. When PFT specifically binds ordered domains, it usually recognizes a specific lipid distribution pattern, like sphingomyelin (SM) clusters or SM/cholesterol complexes, and not individual lipid species. Lipid domains were also suggested to act as an additional concentration platform facilitating PFT oligomerization, but this is yet to be shown. The last stage in PFT action is the insertion of the transmembrane segment across the membranes to build the transmembrane pore walls. Conformational changes are a spontaneous process, and sufficient free energy has to be available for efficient membrane penetration. Therefore, fluid bilayers are permeabilized more readily in comparison to highly ordered and thicker liquid ordered lipid phase (Lo). Energetically more costly insertion into the Lo phase can be driven by the hydrophobic mismatch between the thinner liquid disordered phase (Ld) and large protein complexes, which are unable to tilt like single transmembrane segments. In the case of proteolipid pores, membrane properties can directly modulate pore size, stability, and even selectivity. Finally

  1. Activation of a heat-stable cytolytic protein associated with the surface membrane of Naegleria fowleri.

    PubMed Central

    Lowrey, D M; McLaughlin, J

    1985-01-01

    Surface membrane-enriched fractions of Naegleria fowleri obtained after isopycnic centrifugation experiments contain a potent cytolytic activity as determined by hemolysis and 51Cr release assays. This surface membrane cytolysin was unaffected by a treatment at 75 degrees C for 30 min and accounted for 70 to 90% of cytolysis by whole-cell lysates of amoebae. This heat resistance as well as intimate membrane association distinguished the surface membrane cytolytic activity from a second heat-labile cytolytic activity which appears to be latent within lysosomes. The surface membrane cytolysin was found to be specifically activated by diluted samples of lysosomal fractions. The possible role of this surface membrane cytotoxin in the pathogenicity of N. fowleri is discussed. PMID:4055029

  2. The passive membrane properties and excitatory junction potentials of the guinea pig deferens.

    PubMed Central

    Bywater, R A; Taylor, G S

    1980-01-01

    1. Electrotonic potentials were recorded from the superficial smooth muscle cells of the guinea-pig vas deferens using the method of Abe & Tomita (1968), in response to low-amplitude, long-duration (greater than or equal to 2 sec) pulses. 2. Averaging techniques were used to increase the signal/noise ratio, and the intracellularly recorded electrotonic potentials were corrected for extracellular voltage drop across the bath series resistance. 3. Since the length of tissue in the stimulating and recording compartments affects the time course of electrotonic potentials (see Appendix and Bywater & Redman, 1978) the passive membrane properties were measured with known amounts of tissue in these two compartments. 4. The length constant (lambda) was 0.86 mm and the membrane time constant (tau m) 270 msec. 5. Excitatory junction potentials (e.j.p.s) were recorded and averaged in response to field stimulation of intact branches of the hypogastric nerve. The mean time constant of the exponential decay phase of the e.j.p. (288 msec) was similar to the membrane time constant (tau m = 270 msec). 6. As the e.j.p.s showed little change in amplitude or time constant of decay when recorded up to several millimetres from the stimulating electrode it was assumed that the tissue was isopotential during the e.j.p., and an estimate was made of the time course of the underlying junctional current. 7. The estimated time course of the junctional current during an e.j.p. was similar to the observed time course of a spontaneous junction potential (s.e.j.p.). 8. As the time course of the junctional current during an s.e.j.p.is similar to the time course of the potential change it is likely that the factors which determine the time current underlying the s.e.j.p. also determine the time course of the e.j.p. current. PMID:7381788

  3. Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises

    PubMed Central

    2011-01-01

    The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals. PMID:21304459

  4. Transient receptor potential protein subunit assembly and membrane distribution in human platelets.

    PubMed

    Brownlow, Sharon L; Sage, Stewart O

    2005-10-01

    We have previously suggested that the human homologue of the Drosophila transient receptor potential protein, TRPC1, is involved in conducting store-operated Ca2+ entry (SOCE) in human platelets since an antibody raised against the pore-forming region of TRPC1 inhibited SOCE. Here we have investigated plasma membrane expression of TRPC1 in human platelets and have probed for the presence of other TRPC proteins in these cells. Biotinylation revealed the presence of TRPC1 in the plasma membrane of resting platelets. Surface expression was not detectibly changed following Ca2+ store depletion or stimulation with thrombin. Western blotting demonstrated the presence of TRPC1, TRPC3, TRPC4, TRPC5 and TRPC6 in platelet lysates. TRPC1, TRPC4 and TRPC5 coimmunoprecipitated, as did TRPC3 and TRPC6. TRPC1, TRPC4 and TRPC5 were associated with detergent-resistant platelet membranes, from which they were partially released when the cells were cholesterol-depleted using methyl-beta-cyclodextrin. The distributions of TRPC3 and TRPC6 between soluble and membrane fractions were not affected by methyl-beta-cyclodextrin treatment. These results suggest that TRPC1, TRPC4 and TRPC5 form a heteromultimer associated with platelet lipid raft domains, whereas TRPC3 and TRPC6 associate independently of lipid rafts. PMID:16270640

  5. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins

    PubMed Central

    Tomson, Farol L.; Conley, Patrick G.; Norgard, Michael V.; Hagman, Kayla E.

    2007-01-01

    Syphilis, a sexually transmitted infection caused by the spirochetal bacterium Treponema pallidum, remains a global public health problem. T. pallidum is believed to be an extracellular pathogen and, as such, the identification of T. pallidum outer membrane proteins that could serve as targets for opsonic or bactericidal antibodies has remained a high research priority for vaccine development. However, the identification of T. pallidum outer membrane proteins has remained highly elusive. Recent studies and bioinformatics have implicated four treponemal proteins as potential outer membrane proteins (TP0155, TP0326, TP0483 and TP0956). Indirect immunofluorescence assays performed on treponemes encapsulated within agarose gel microdroplets failed to provide evidence that any of these four molecules were surface-exposed in T. pallidum. Second, recombinant fusion proteins corresponding to all four candidate outer membrane proteins were used separately, or in combination, to vaccinate New Zealand White rabbits. Despite achieving high titers (>1:50,000) of serum antibodies, none of the rabbits displayed chancre immunity after intradermal challenge with viable T. pallidum. PMID:17890130

  6. Biomineralization of Natural Collagenous Nanofibrous Membranes and Their Potential Use in Bone Tissue Engineering

    PubMed Central

    Yang, Mingying; Zhou, Guanshan; Castano-Izquierdo, Harold; Zhu, Ye; Mao, Chuanbin

    2015-01-01

    Small intestinal submucosa (SIS) membranes as a decellularized tissue are known to be a natural nanofibrous biomaterial mainly made of type I collagen fibers and containing some growth factors (fibroblast growth factor 2 and transforming growth factor β) desired in tissue engineering. Here we show that the SIS membranes can promote the formation of bone mineral hydroxylapatite (HAP) crystals along the collagen fibers constituting the membranes from a HAP-supersaturated solution. The resultant biomineralized HAP-SIS scaffolds were found to promote the attachment, growth and osteogenic differentiation of mesenchymal stem cells (MSCs) in both basal and osteogenic media by the evaluation of osteogenic marker formation. More importantly, the HAP-SIS scaffolds could induce the osteogenic differentiation in the basal media without osteogenic supplements due to the presence of HAP crystals in the scaffolds. Histological characterization of the MSC-seeded scaffolds showed that HAP-SIS scaffolds are biocompatible and promote the formation of new tissue in vitro. The biomineralized SIS membranes mimic some aspects of natural bone in terms of the composition and nanostructures and can find potential use in bone tissue engineering. PMID:25883539

  7. Biomineralization of Natural Collagenous Nanofibrous Membranes and Their Potential Use in Bone Tissue Engineering.

    PubMed

    Yang, Mingying; Zhou, Guanshan; Castano-Izquierdo, Harold; Zhu, Ye; Mao, Chuanbin

    2015-03-01

    Small intestinal submucosa (SIS) membranes as a decellularized tissue are known to be a natural nanofibrous biomaterial mainly made of type I collagen fibers and containing some growth factors (fibroblast growth factor 2 and transforming growth factor β) desired in tissue engineering. Here we show that the SIS membranes can promote the formation of bone mineral hydroxylapatite (HAP) crystals along the collagen fibers constituting the membranes from a HAP-supersaturated solution. The resultant biomineralized HAP-SIS scaffolds were found to promote the attachment, growth and osteogenic differentiation of mesenchymal stem cells (MSCs) in both basal and osteogenic media by the evaluation of osteogenic marker formation. More importantly, the HAP-SIS scaffolds could induce the osteogenic differentiation in the basal media without osteogenic supplements due to the presence of HAP crystals in the scaffolds. Histological characterization of the MSC-seeded scaffolds showed that HAP-SIS scaffolds are biocompatible and promote the formation of new tissue in vitro. The biomineralized SIS membranes mimic some aspects of natural bone in terms of the composition and nanostructures and can find potential use in bone tissue engineering. PMID:25883539

  8. Effect of stimulation of the nucleus reticularis gigantocellularis on the membrane potential of cat lumbar motoneurons during sleep and wakefulness.

    PubMed

    Chase, M H; Morales, F R; Boxer, P A; Fung, S J; Soja, P J

    1986-10-29

    The present study was performed in order to determine the effect of electrical stimulation of the medullary nucleus reticularis gigantocellularis (NRGc) on the membrane potential of spinal cord motoneurons during sleep and wakefulness. Accordingly, intracellular recordings were obtained from lumbar motoneurons in unanesthetized normally respiring cats during naturally occurring states of wakefulness, quiet sleep and active sleep. Electrical stimuli applied to the NRGc evoked synaptic potentials which occurred at short latency (less than 10 ms) and did not exhibit consistent changes in their waveforms during any states of sleep or wakefulness. During wakefulness and quiet sleep, longer latency (greater than 20 ms) low-amplitude hyperpolarizing potentials occasionally followed NRGc stimulation. However, during active sleep, NRGc stimulation produced, in all motoneurons, relatively large hyperpolarizing potentials that were characterized by a mean amplitude of 3.5 +/- 0.4 mV (mean +/- S.E.M.), a mean latency-to-peak of 43.0 +/- 0.8 ms, and an average duration of 34.4 +/- 1.7 ms. These potentials were capable of blocking the generation of orthodromic spikes elicited by sciatic nerve stimulation. When anodal current or chloride was passed through the recording electrode, the hyperpolarizing potentials decreased in amplitude, and in some cases their polarity was reversed. These results indicate that the active sleep-specific hyperpolarizing potentials were inhibitory postsynaptic potentials. Thus, the NRGc possesses the capability of providing a postsynaptic inhibitory drive that is directed toward lumbar motoneurons which is dependent on the occurrence of the behavioral state of active sleep.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3779411

  9. Alterations in the activities of hepatic plasma-membrane and microsomal enzymes during liver regeneration.

    PubMed Central

    Deliconstantinos, G; Ramantanis, G

    1983-01-01

    A marked increase in the activities of rat liver plasma-membrane (Na+ + K+)-stimulated ATPase and microsomal Ca2+-stimulated ATPase was observed 18h after partial hepatectomy. Lipid analyses for both membrane preparations reveal that in partially hepatectomized rats the cholesterol and sphingomyelin content are decreased with a subsequent decrease in the cholesterol/phospholipid molar ratio compared with those of sham-operated animals. Changes in the allosteric properties of plasma-membrane (Na+ + K+)-stimulated ATPase by F- (as reflected by changes in the Hill coefficient) indicated a fluidization of the lipid bilayer of both membrane preparations in 18 h-regenerating liver. The amphipathic dodecyl glucoside incorporated into the hepatic plasma membranes evoked a marked increase in the (Na+ + K+)-stimulated ATPase and 5'-nucleotidase activities. The lack of effect of the glucoside on the Lubrol-PX-solubilized 5'-nucleotidase indicates that changes in the activities of the membrane-bound enzymes caused by the glucoside are due to modulation of the membrane fluidity. Dodecyl glucoside appears to increase the membrane fluidity, evaluated through changes in the Hill coefficient for plasma-membrane (Na+ + K+)-stimulated ATPase. The biological significance of these data is discussed in terms of the differences and changes in the interaction of membrane-bound enzymes with membrane lipids during liver regeneration. PMID:6309144

  10. Experimentally induced postinhibitory rebound in rat nucleus ambiguus is dependent on hyperpolarization parameters and membrane potential.

    PubMed

    Dean, J B; Czyzyk-Krzeska, M; Millhorn, D E

    1989-06-01

    Postinhibitory rebound (PIR), a transient depolarization subsequent to release from experimental hyperpolarization, was identified and characterized in 81% of the cells studied in the nucleus ambiguus in slices from medulla of rat. Hyperpolarizing current pulses were administered via the recording microelectrode in the bridge-balanced mode to test for PIR. The voltage trajectory was characterized by a depolarizing sag during the pulse, rebound depolarization (PIR) after the pulse and increased input resistance during rebound. The amplitude and time course of PIR were dependent on prepulse membrane potential, pulse amplitude and pulse duration. These results suggest a potential role of PIR in respiratory rhythmogenesis. PMID:2771207

  11. ULTRASTRUCTURE OF VEILLONELLA AND MORPHOLOGICAL CORRELATION OF AN OUTER MEMBRANE WITH PARTICLES ASSOCIATED WITH ENDOTOXIC ACTIVITY

    PubMed Central

    Bladen, Howard A.; Mergenhagen, Stephan E.

    1964-01-01

    Bladen, Howard A. (National Institute of Dental Research, Bethesda, Md.), and Stephan E. Mergenhagen. Ultrastructure of Veillonella and morphological correlation of an outer membrane with particles associated with endotoxic activity. J. Bacteriol. 88:1482–1492. 1964.—Normal, phenol-water extracted, and lysozyme-treated Veillonella cells were embedded in Vestopal W, sectioned, and examined by electron microscopy. Normal cells as well as the phenol-water extract (endotoxin) were examined by negative and positive contrast techniques. In thin sections of normal cells, three separate structural entities were observed surrounding the protoplasm, and were referred to as the outer membrane, the solid membrane, and the plasma membrane. The outer membrane was a membrane composed of two dense layers (30 A) separated by a less-dense layer (20 A), and followed a convoluted and continuous path around the cell. The solid membrane appeared as a taut, dense structure 100 to 500 A wide, and was separated from the outer membrane by up to several hundred Ångstroms. The plasma membrane was a unit-type membrane. After cells were treated with phenol-water, the outer membrane was absent, but the cells remained intact owing to the solid membrane. Observation of the phenol-water extract (endotoxin) revealed predominantly circular particles or discs which had approximately the same dimensions in height as the outer membrane had in width. Negatively stained whole cells showed similar structures on their surface. Lysozyme treatment of the cells did not affect the outer membrane; however, the solid membrane became diffuse and often disappeared, suggesting that the outer membrane and the solid membrane were separate structures. Images PMID:14234809

  12. Nonbonded interactions in membrane active cyclic biopolymers. IV - Cation dependence

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, R.; Srinivasan, S.; Prasad, C. V.; Brinda, S. R.; Macelroy, R. D.; Sundaram, K.

    1980-01-01

    Interactions of valinomycin and form of its analogs in several conformations with the central ions Li(+), Na(+), K(+), Rb(+) and Cs(+) are investigated as part of a study of the specific preference of valinomycin for potassium and the mechanisms of carrier-mediated ion transport across membranes. Ion binding energies and conformational potential energies are calculated taking into account polarization energy formulas and repulsive energy between the central ion and the ligand atoms for conformations representing various stages in ion capture and release for each of the two ring chiralities of valinomycin and its analogs. Results allow the prediction of the chirality and conformation most likely to be observed for a given analog, and may be used to synthesize analogs with a desired rigidity or flexibility. The binding energies with the alkali metal cations are found to decrease with increasing ion size, and to be smaller than the corresponding ion hydration energies. It is pointed out that the observed potassium preference may be explainable in terms of differences between binding and hydration energies. Binding energies are also noted to depend on ligand conformation.

  13. A protein chip membrane-capture assay for botulinum neurotoxin activity

    SciTech Connect

    Marconi, Severine; Ferracci, Geraldine; Berthomieu, Maelys; Kozaki, Shunji; Miquelis, Raymond; Boucraut, Jose; Seagar, Michael

    2008-12-15

    Botulinum neurotoxins A and B (BoNT/A and B) are neuromuscular blocking agents which inhibit neurotransmission by cleaving the intra-cellular presynaptic SNARE proteins SNAP-25 and VAMP2, localized respectively in plasma membrane and synaptic vesicles. These neurotoxins are both dangerous pathogens and powerful therapeutic agents with numerous clinical and cosmetic applications. Consequently there is a need for in vitro assays of their biological activity to screen for potential inhibitors and to replace the widely used in vivo mouse assay. Surface plasmon resonance (SPR) was used to measure membrane vesicle capture by antibodies against SNAP-25 and VAMP2. Substrate cleavage by BoNTs modified capture providing a method to assay toxin activity. Firstly using synaptic vesicles as a substrate, a comparison of the EC{sub 50}s for BoNT/B obtained by SPR, ELISA or flow cytometry indicated similar sensitivity although SPR assays were more rapid. Sonication of brain or neuronal cultures generated plasma membrane fragments with accessible intra-cellular epitopes adapted to measurement of BoNT/A activity. SPR responses were proportional to antigen concentration permitting detection of as little as 4 pM SNAP-25 in crude lysates. BoNT/A activity was assayed using monoclonal antibodies that specifically recognize a SNAP-25 epitope generated by the proteolytic action of the toxin. Incubation of intact primary cultured neurons with BoNT/A yielded an EC{sub 50} of 0.5 pM. The SPR biosensor method was sensitive enough to monitor BoNT/A and B activity in cells cultured in a 96-well format providing an alternative to experimental animals for toxicological assays.

  14. Detergent disruption of bacterial inner membranes and recovery of protein translocation activity

    SciTech Connect

    Cunningham, K.; Wickner, W.T. )

    1989-11-01

    Isolation of the integral membrane components of protein translocation requires methods for fractionation and functional reconstitution. The authors treated inner-membrane vesicles of Escherichia coli with mixtures of octyl {beta}-D-glucoside, phospholipids, and an integral membrane carrier protein under conditions that extract most of the membrane proteins into micellar solution. Upon dialysis, proteoliposomes were reconstituted that supported translocation of radiochemically pure ({sup 35}S)pro-OmpA (the precursor of outer membrane protein A). Translocation into these proteoliposomes required ATP hydrolysis and membrane proteins, indicating that the reaction is that of the inner membrane. The suspension of membranes in detergent was separated into supernatant and pellet fractions by ultracentrifugation. After reconstitution, translocation activity was observed in both fractions, but processing by leader peptidase of translocated pro-OmpA to OmpA was not detectable in the reconstituted pellet fraction. Processing activity was restored by addition of pure leader peptidase as long as this enzyme was added before detergent removal, indicating that the translocation activity is not associated with detergent-resistant membrane vesicles. These results show that protein translocation activity can be recovered from detergent-disrupted membrane vesicles, providing a first step towards the goal of isolating the solubilized components.

  15. The Membrane-Associated Transient Receptor Potential Vanilloid Channel Is the Central Heat Shock Receptor Controlling the Cellular Heat Shock Response in Epithelial Cells

    PubMed Central

    Bromberg, Zohar; Goloubinoff, Pierre; Saidi, Younousse; Weiss, Yoram George

    2013-01-01

    The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV). We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX), upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging. PMID:23468922

  16. Cholinesterase activity per unit surface area of conducting membranes.

    PubMed

    Brzin, M; Dettbarn, W D; Rosenberg, P; Nachmansohn, D

    1965-08-01

    According to theory, the action of acetylcholine (ACh) and ACh-esterase is essential for the permeability changes of excitable membranes during activity. It is, therefore, pertinent to know the activity of ACh-esterase per unit axonal surface area instead of per gram nerve, as it has been measured in the past. Such information has now been obtained with the newly developed microgasometric technique using a magnetic diver. (1) The cholinesterase (Ch-esterase) activity per mm(2) surface of sensory axons of the walking leg of lobster is 1.2 x 10(-3) microM/hr. (sigma = +/- 0.3 x 10(-3); SE = 0.17 x 10(-3)); the corresponding value for the motor axons isslightly higher: 1.93 x 10(-3) microM/hr. (sigma = +/- 0.41 x 10(-3); SE = +/- 0.14 x 10(-3)). Referred to gram nerve, the Ch-esterase activity of the sensory axons is much higher than that of the motor axons: 741 microM/hr. (sigma = +/- 73.5; SE = +/- 32.6) versus 111.6 microM/hr. (sigma = +/- 28.3; SE = +/- 10). (2) The enzyme activity in the small fibers of the stellar nerve of squid is 3.2 x 10(-4) microM/mm(2)/hr. (sigma = +/- 0.96 x 10(-4); SE = +/- 0.4 x 10(-4)). (3) The Ch-esterase activity per mm(2) surface of squid giant axon is 9.5 x 10(-5) microM/hr. (sigma = +/- 1.55 x 10(-5); SE = +/- 0.38 x 10(-5)). The value was obtained with small pieces of carefully cleaned axons after removal of the axoplasm and exposure to sonic disintegration. Without the latter treatment the figurewas 3.85 x 10(-5) microM/mm(2)/hr. (sigma = +/- 3.24 x 10(-5); SE = +/- 0.93 x 10(-5)). The experiments indicate the existence of permeability barriers in the cell wall surrounding part of the enzyme, since the substrate cannot reach all the enzyme even when small fragments of the cell wall are used without disintegration. (4) On the basis of the data obtained, some tentative approximations are made of the ratio of ACh released to Na ions entering the squid giant axon per cm(2) per impulse. PMID:5865929

  17. EADB: An Estrogenic Activity Database for Assessing Potential Endocrine Activity

    EPA Science Inventory

    Endocrine-active chemicals can potentially have adverse effects on both humans and wildlife. They can interfere with the body’s endocrine system through direct or indirect interactions with many protein targets. Estrogen receptors (ERs) are one of the major targets, and many ...

  18. Potential biological activity of acacia honey.

    PubMed

    Muhammad, Aliyu; Odunola, Oyeronke A; Ibrahim, Mohammed A; Sallau, Abdullahi B; Erukainure, Ochuko L; Aimola, Idown A; Malami, Ibrahim

    2016-01-01

    Recent advances in functional foods-based research have increasingly become an area of major interest because it affects human health and activities. Functional foods are classes of foods with health promoting and disease preventing properties in addition to multiple nutritional values and of such type is honey. Acacia honey is a type of honey produced by bees (Apis mellifera) fed on Acacia flowers, hence the name. This review focuses on the potential biological activities of Acacia honey which includes quality, antioxidant, immuno-modulatory, antiproliferative and neurological properties at in vitro and in vivo levels. Based on our review, Acacia honey used from various researches is of high purity, contains some bioactive compounds ranging from vitamins, phenolics, flavonoids and fatty acids. It's highly nutritional with strong antioxidant and immuno-modulatory potentials which may therefore be considered a potential candidate for both cancer prevention and treatment. Neurologically, it may be considered as a viable therapeutic agent in the management of Alzheimer's disease. PMID:26709666

  19. Pneumolysin Activates Macrophage Lysosomal Membrane Permeabilization and Executes Apoptosis by Distinct Mechanisms without Membrane Pore Formation

    PubMed Central

    Bewley, Martin A.; Naughton, Michael; Preston, Julie; Mitchell, Andrea; Holmes, Ashleigh; Marriott, Helen M.; Read, Robert C.; Mitchell, Timothy J.; Whyte, Moira K. B.

    2014-01-01

    ABSTRACT Intracellular killing of Streptococcus pneumoniae is complemented by induction of macrophage apoptosis. Here, we show that the toxin pneumolysin (PLY) contributes both to lysosomal/phagolysosomal membrane permeabilization (LMP), an upstream event programing susceptibility to apoptosis, and to apoptosis execution via a mitochondrial pathway, through distinct mechanisms. PLY is necessary but not sufficient for the maximal induction of LMP and apoptosis. PLY’s ability to induce both LMP and apoptosis is independent of its ability to form cytolytic pores and requires only the first three domains of PLY. LMP involves TLR (Toll-like receptor) but not NLRP3/ASC (nucleotide-binding oligomerization domain [Nod]-like receptor family, pyrin domain-containing protein 3/apoptosis-associated speck-like protein containing a caspase recruitment domain) signaling and is part of a PLY-dependent but phagocytosis-independent host response that includes the production of cytokines, including interleukin-1 beta (IL-1β). LMP involves progressive and selective permeability to 40-kDa but not to 250-kDa fluorescein isothiocyanate (FITC)-labeled dextran, as PLY accumulates in the cytoplasm. In contrast, the PLY-dependent execution of apoptosis requires phagocytosis and is part of a host response to intracellular bacteria that also includes NO generation. In cells challenged with PLY-deficient bacteria, reconstitution of LMP using the lysomotrophic detergent LeuLeuOMe favored cell necrosis whereas PLY reconstituted apoptosis. The results suggest that PLY contributes to macrophage activation and cytokine production but also engages LMP. Following bacterial phagocytosis, PLY triggers apoptosis and prevents macrophage necrosis as a component of a broad-based antimicrobial strategy. This illustrates how a key virulence factor can become the focus of a multilayered and coordinated innate response by macrophages, optimizing pathogen clearance and limiting inflammation. PMID:25293758

  20. Preparation, characterization, biological activity, and transport study of polystyrene based calcium-barium phosphate composite membrane.

    PubMed

    Khan, Mohammad Mujahid Ali; Rafiuddin

    2013-10-01

    Calcium-barium phosphate (CBP) composite membrane with 25% polystyrene was prepared by co-precipitation method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), and Thermogravimetric analysis (TGA) were used to characterize the membrane. The membrane was found to be crystalline in nature with consistent arrangement of particles and no indication of visible cracks. The electrical potentials measured across the composite membrane in contact with univalent electrolytes (KCl, NaCl and LiCl), have been found to increase with decrease in concentrations. Thus the membrane was found to be cation-selective. Transport properties of developed membranes may be utilized for the efficient desalination of saline water and more importantly demineralization process. The antibacterial study of this composite membrane shows good results for killing the disease causing bacteria along with waste water treatment. PMID:23910337

  1. Membrane Active Small Molecules Show Selective Broad Spectrum Antibacterial Activity with No Detectable Resistance and Eradicate Biofilms.

    PubMed

    Hoque, Jiaul; Konai, Mohini M; Gonuguntla, Spandhana; Manjunath, Goutham B; Samaddar, Sandip; Yarlagadda, Venkateswarlu; Haldar, Jayanta

    2015-07-23

    Treating bacterial biofilms with conventional antibiotics is limited due to ineffectiveness of the drugs and higher propensity to develop bacterial resistance. Development of new classes of antibacterial therapeutics with alternative mechanisms of action has become imperative. Herein, we report the design, synthesis, and biological evaluations of novel membrane-active small molecules featuring two positive charges, four nonpeptidic amide groups, and variable hydrophobic/hydrophilic (amphiphilic) character. The biocides synthesized via a facile methodology not only displayed good antibacterial activity against wild-type bacteria but also showed high activity against various drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and β-lactam-resistant Klebsiella pneumoniae. Further, these biocides not only inhibited the formation of biofilms but also disrupted the established S. aureus and E. coli biofilms. The membrane-active biocides hindered the propensity to develop bacterial resistance. Moreover, the biocides showed negligible toxicity against mammalian cells and thus bear potential to be used as therapeutic agents. PMID:26102297

  2. Effect of the triaminopyridine flupirtine on calcium uptake, membrane potential and ATP synthesis in rat heart mitochondria

    PubMed Central

    Zimmer, Guido; Balakirev, Maxim; Zwicker, Klaus; Hofmann, Michael; Woodcock, Barry G; Pergande, Gabriela

    1998-01-01

    Flupirtine is an analgesic agent which exhibits neuronal cytoprotective activity and may have value in the treatment of conditions involving cell injury and apoptosis. Since flupirtine has no action on known receptor sites we have investigated the effect of this drug on mitochondrial membrane potential, and the changes in intramitochondrial calcium concentration in particular.The findings show that flupirtine increases Ca2+ uptake in mitochondria in vitro. At clinically relevant flupirtine concentrations, corresponding to flupirtine levels in vitro of 0.2 to 10 nmol mg−1 mitochondrial protein, there was a 2 to 3 fold increase in mitochondrial calcium levels (P<0.01). At supra-physiological flupirtine concentrations of 20 nmol mg−1 mitochondrial protein and above, the mitochondrial calcium concentrations were indistinguishable from those in untreated mitochondria.Mitochondrial membrane potential closely paralleled the changes in mitochondrial calcium levels showing a 20% (P<0.01) increase when the flupirtine concentration was raised from 0.2 nmol to 10 nmol mg−1 mitochondrial protein and a return to control values at 20 nmol mg−1 protein.The increase in mitochondrial calcium uptake and membrane potential were accompanied by an increase in mitochondrial ATP synthesis (30%; P<0.05) and a similar percentage reduction in mitochondrial volume.Calcium at 80 and 160 nmol mg−1 mitochondrial protein decreased ATP synthesis by 20–25% (P<0.001). This decrease was prevented or diminished if flupirtine at 10 nmol mg−1 protein was added before the addition of calcium.Since intracellular levels of flupirtine in intact cells never exceeded 10 nmol mg−1 mitochondrial protein, these findings are supportive evidence for an in vivo cytoprotective action of flupirtine at the mitochondrial level. PMID:9559899

  3. Enhanced high-frequency membrane potential fluctuations control spike output in striatal fast-spiking interneurones in vivo.

    PubMed

    Schulz, Jan M; Pitcher, Toni L; Savanthrapadian, Shakuntala; Wickens, Jeffery R; Oswald, Manfred J; Reynolds, John N J

    2011-09-01

    Fast-spiking interneurones (FSIs) constitute a prominent part of the inhibitory microcircuitry of the striatum; however, little is known about their recruitment by synaptic inputs in vivo. Here, we report that, in contrast to cholinergic interneurones (CINs), FSIs (n = 9) recorded in urethane-anaesthetized rats exhibit Down-to-Up state transitions very similar to spiny projection neurones (SPNs). Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). The membrane potential exhibited short and steep trajectories preceding spontaneous spike discharge, suggesting that fast input components controlled spike output in FSIs. Spontaneous spike data contained a high proportion (43.6 ± 32.8%) of small inter-spike intervals (ISIs) of <30 ms, setting FSIs clearly apart from SPNs and CINs. Cortical-evoked inputs had slower dynamics in SPNs than FSIs, and repetitive stimulation entrained SPN spike output only if the stimulation was delivered at an intermediate frequency (20 Hz), but not at a high frequency (100 Hz). Pharmacological induction of an activated ECoG state, known to promote rapid FSI spiking, mildly increased the power (by 43 ± 55%, n = 13) at gamma frequencies in the membrane potential of SPNs, but resulted in few small ISIs (<30 ms; 4.3 ± 6.4%, n = 8). The gamma frequency content did not change in CINs (n = 8). These results indicate that FSIs are uniquely responsive to high-frequency input sequences. By controlling the spike output of SPNs, FSIs could serve gating of top-down signals and long-range synchronisation of gamma-oscillations during behaviour. PMID:21746788

  4. Circulating polymerase chain reaction chips utilizing multiple-membrane activation

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Hao; Chen, Yi-Yu; Liao, Chia-Sheng; Hsieh, Tsung-Min; Luo, Ching-Hsing; Wu, Jiunn-Jong; Lee, Huei-Huang; Lee, Gwo-Bin

    2007-02-01

    This paper reports a new micromachined, circulating, polymerase chain reaction (PCR) chip for nucleic acid amplification. The PCR chip is comprised of a microthermal control module and a polydimethylsiloxane (PDMS)-based microfluidic control module. The microthermal control modules are formed with three individual heating and temperature-sensing sections, each modulating a specific set temperature for denaturation, annealing and extension processes, respectively. Micro-pneumatic valves and multiple-membrane activations are used to form the microfluidic control module to transport sample fluids through three reaction regions. Compared with other PCR chips, the new chip is more compact in size, requires less time for heating and cooling processes, and has the capability to randomly adjust time ratios and cycle numbers depending on the PCR process. Experimental results showed that detection genes for two pathogens, Streptococcus pyogenes (S. pyogenes, 777 bps) and Streptococcus pneumoniae (S. pneumoniae, 273 bps), can be successfully amplified using the new circulating PCR chip. The minimum number of thermal cycles to amplify the DNA-based S. pyogenes for slab gel electrophoresis is 20 cycles with an initial concentration of 42.5 pg µl-1. Experimental data also revealed that a high reproducibility up to 98% could be achieved if the initial template concentration of the S. pyogenes was higher than 4 pg µl-1. The preliminary results of the current paper were presented at the 19th IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2006), Istanbul, Turkey, 22-26 January, 2006.

  5. Alginate/chitosan based bi-layer composite membrane as potential sustained-release wound dressing containing ciprofloxacin hydrochloride

    NASA Astrophysics Data System (ADS)

    Han, Fei; Dong, Yang; Song, Aihua; Yin, Ran; Li, Sanming

    2014-08-01

    The aims of this research were to develop and evaluate a novel ciprofloxacin hydrochloride loaded bi-layer composite membrane based on alginate and chitosan. In vitro antimicrobial activity, drug permeation study, morphology, cytotoxicity, primary skin irritation and in vivo pharmacodynamics were investigated. Results showed that the membranes could inhibit the growth of microorganisms for longer than 7 days. And there was no significant decrease in the metabolic activity of the Hacat fibroblasts cells were treated with the membranes. No edema and erythema were observed after administration of membranes on the rabbit skin after 14 days. Moreover, the results of pharmacodynamics showed that the membranes were more effective in improving the wound healing process. In conclusion, a novel bi-layer composite membrane was developed and results suggested that it could be exploited as sustained-release wound dressings.

  6. Effects of coffees before and after special treatment procedure on cell membrane potentials in stomach cells.

    PubMed

    Fiebich, B L; Valente, P; Ferrer-Montiel, A; Candelario-Jalil, E; Menthe, J; Luecker, P

    2006-01-01

    Coffee, one of the most excessively used beverages worldwide, commences the risk of gastroesophageal reflux (GER), which may lead to gastric ulcers and increase the risk of gastric cancer. Many attempts have been made by the coffee industry to diminish the irritating effect on mucosa by means of altering the extraction methods concerning gerbic acids and the roasting processes. This paper describes the effect of differently produced coffees involving two brands of Darboven and two brands of other coffee roasters. The aim of this study was to prove the results of gastric potential measurements we found in literature by using human AGS gastric epithelial cells (human adenocarcinoma). All four coffee extracts tested differentially affected the membrane resting potential of AGS cells. Coffees no. 1 and no. 2 depolarized the cells, presumably by increasing the cation entry into the cytosol. In marked contrast, coffee no. 4 hyperpolarizes the cells, possibly by H(+) extrusion and/or Cl(-) influx, suggesting that this coffee might increase acidity in the stomach, which might negatively affect the stomach, especially in people with gastroesophageal reflux symptoms. Overall, our data suggest that different roasting methods of coffees affect the membrane potentials of AGS stomach cells, resulting in increased influx of H+ possibly resulting in decreased stomach acidity and thus reducing GER. These results are in good accordance with clinical pharmacological results from potential difference measurements in healthy volunteers we found in the literature. PMID:16894406

  7. Simultaneous monitoring of ionophore- and inhibitor-mediated plasma and mitochondrial membrane potential changes in cultured neurons.

    PubMed

    Nicholls, David G

    2006-05-26

    Although natural and synthetic ionophores are widely exploited in cell studies, for example, to influence cytoplasmic free calcium concentrations and to depolarize in situ mitochondria, their inherent lack of membrane selectivity means that they affect the ion permeability of both plasma and mitochondrial membranes. A similar ambiguity affects the interpretation of signals from fluorescent membrane-permeant cations (usually termed "mitochondrial membrane potential indicators"), because the accumulation of these probes is influenced by both plasma and mitochondrial membrane potentials. To resolve some of these problems a technique is developed to allow simultaneous monitoring of plasma and mitochondrial membrane potentials at single-cell resolution using a cationic and anionic fluorescent probe. A computer program is described that transforms the fluorescence changes into dynamic estimates of changes in plasma and mitochondrial potentials. Exploiting this technique, primary cultures of rat cerebellar granule neurons display a concentration-dependent response to ionomycin: low concentrations mimic nigericin by hyperpolarizing the mitochondria while slowly depolarizing the plasma membrane and maintaining a stable elevated cytoplasmic calcium. Higher ionomycin concentrations induce a stochastic failure of calcium homeostasis that precedes both mitochondrial depolarization and an enhanced rate of plasma membrane depolarization. In addition, the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone only selectively depolarizes mitochondria at submicromolar concentrations. ATP synthase reversal following respiratory chain inhibition depolarizes the mitochondria by 26 mV. PMID:16551630

  8. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells.

    PubMed

    Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C

    2012-08-01

    As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy. PMID:22653384

  9. Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites.

    PubMed

    Acker, Corey D; Antic, Srdjan D

    2009-03-01

    Basal dendrites of prefrontal cortical neurons receive strong synaptic drive from recurrent excitatory synaptic inputs. Synaptic integration within basal dendrites is therefore likely to play an important role in cortical information processing. Both synaptic integration and synaptic plasticity depend crucially on dendritic membrane excitability and the backpropagation of action potentials. We carried out multisite voltage-sensitive dye imaging of membrane potential transients from thin basal branches of prefrontal cortical pyramidal neurons before and after application of channel blockers. We found that backpropagating action potentials (bAPs) are predominantly controlled by voltage-gated sodium and A-type potassium channels. In contrast, pharmacologically blocking the delayed rectifier potassium, voltage-gated calcium, or I(h) conductance had little effect on dendritic AP propagation. Optically recorded bAP waveforms were quantified and multicompartmental modeling was used to link the observed behavior with the underlying biophysical properties. The best-fit model included a nonuniform sodium channel distribution with decreasing conductance with distance from the soma, together with a nonuniform (increasing) A-type potassium conductance. AP amplitudes decline with distance in this model, but to a lesser extent than previously thought. We used this model to explore the mechanisms underlying two sets of published data involving high-frequency trains of APs and the local generation of sodium spikelets. We also explored the conditions under which I(A) down-regulation would produce branch strength potentiation in the proposed model. Finally, we discuss the hypothesis that a fraction of basal branches may have different membrane properties compared with sister branches in the same dendritic tree. PMID:19118105

  10. Membrane potential difference and intracellular cation concentrations in human placental trophoblast cells in culture.

    PubMed Central

    Greenwood, S L; Clarson, L H; Sides, M K; Sibley, C P

    1996-01-01

    1. The electrochemical gradients for Na+ and K+ were assessed in a cell culture model of trophoblast differentiation. 2. Membrane potential difference (Em), intracellular water and Na+ and K+ contents were measured in choriocarcinoma cells (JAr cell line; 96% of which are undifferentiated trophoblast cells) and in mononucleate and multinucleate (differentiated) cytotrophoblast cells isolated from the human placenta at term. 3. There was a significant fall in Em from -57 mV in JAr cells, to -48 and -40 mV in mono-and multinucleate cytotrophoblast cells, respectively. Treatment with ouabain (1 mM for 15 min) depolarized the JAr cell membrane by 15 mV but did not affect cytotrophoblast cell membrane potential. 4. Intracellular K+ concentration was similar in JAr, mono- and multinucleate cytotrophoblast cells but Na+ concentration was higher in mononucleate cytotrophoblast cells compared with JAr cells. 5. Ouabain treatment (3 mM for 15 min) caused a small increase (4.5%) in cell water in mononucleate cytotrophoblast cells but lowered K+ (approximately 30%) and increased Na+ concentration (approximately 125%) in all the trophoblast cells studied. 6. The K+ equilibrium potential (EK) was more negative than Em in all cells and the difference between EK and Em was smaller in JAr cells (-25 mV) than in mono- and multinucleate cytotrophoblast cells (-33 and -43 mV, respectively). 7. The Na+ equilibrium potential (ENa) was positive in the trophoblast cells and the difference between ENa and Em was 122, 100 and 100 mV in JAr, mono- and multinucleate cytotrophoblast cells, respectively. 8. These results suggest that the electrochemical gradient for K+ is affected by the stage of trophoblast cell differentiation. In contrast, the electrochemical gradient for Na+ is similar in mono- and multinucleate cytotrophoblast cells. Images Figure 1 PMID:8734977

  11. Red blood cell membrane viscoelasticity, agglutination and zeta potential measurements with double optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Fernandes, Heloise P.; Barjas-Castro, Maria L.; de Thomaz, André A.; de Ysasa Pozzo, Liliana; Barbosa, Luiz C.; Cesar, Carlos L.

    2006-02-01

    The red blood cell (RBC) viscoelastic membrane contains proteins and glycolproteins embedded in, or attached, to a fluid lipid bilayer and are negatively charged, which creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. There are techniques, however, to decrease the zeta potential to allow cell agglutination which are the basis of most of the tests of antigen-antibody interactions in blood banks. This report shows the use of a double optical tweezers to measure RBC membrane viscosity, agglutination and zeta potential. In our technique one of the optical tweezers trap a silica bead that binds strongly to a RBC at the end of a RBCs rouleaux and, at the same time, acts as a pico-Newton force transducer, after calibration through its displacement from the equilibrium position. The other optical tweezers trap the RBC at the other end. To measure the membrane viscosity the optical force is measured as a function of the velocity between the RBCs. To measure the adhesion the tweezers are slowly displaced apart until the RBCs disagglutination happens. The RBC zeta potential is measured in two complimentary ways, by the force on the silica bead attached to a single RBC in response to an applied electric field, and the conventional way, by the measurement of terminal velocity of the RBC after released from the optical trap. These two measurements provide information about the RBC charges and, also, electrolytic solution properties. We believe this can improve the methods of diagnosis in blood banks.

  12. Membrane potential responses to ATP applied by pressure ejection in the longitudinal muscle of chicken rectum.

    PubMed Central

    Komori, S.; Ohashi, H.

    1988-01-01

    1. Changes in membrane potential in response to local application of ATP by pressure ejection from a micropipette were recorded intracellularly from smooth muscle cells of the longitudinal muscle strip of chicken rectum. 2. The local application of ATP produced a membrane depolarization. The depolarizing response increased to a plateau of 33 mV with prolongation of the duration of pressure pulses which determines the amount of ATP ejected. The latency and the time required to reach a peak depolarization were not related to the pulse duration, and the shortest latency was 50 ms. 3. When the application of ATP was repeated at a short interval, the second and subsequent depolarizing responses were suppressed, and their latency and time to reach a peak were also increased; the muscle cells became desensitized to ATP. Recovery from the desensitization occurred slowly over a period of 60 s. 4. Electrotonic potentials decreased in amplitude and time course during an ATP-induced depolarization, indicating a decrease in membrane resistance. 5. The ATP-induced depolarization was longer in the latency than an excitatory junction potential (e.j.p.) elicited by electrical field stimulation of the intramural nerves. The other variables such as amplitude, time to reach the peak and duration could not be matched with those of the e.j.p. at the same time. 6. The e.j.p. decreased in amplitude and duration during the ATP-induced depolarization, and its initial amplitude and duration were restored immediately after termination of the ATP-induced depolarization, as in the case of electrotonic potentials.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3219484

  13. Active, capable, and potentially active faults - a paleoseismic perspective

    USGS Publications Warehouse

    Machette, M.N.

    2000-01-01

    Maps of faults (geologically defined source zones) may portray seismic hazards in a wide range of completeness depending on which types of faults are shown. Three fault terms - active, capable, and potential - are used in a variety of ways for different reasons or applications. Nevertheless, to be useful for seismic-hazards analysis, fault maps should encompass a time interval that includes several earthquake cycles. For example, if the common recurrence in an area is 20,000-50,000 years, then maps should include faults that are 50,000-100,000 years old (two to five typical earthquake cycles), thus allowing for temporal variability in slip rate and recurrence intervals. Conversely, in more active areas such as plate boundaries, maps showing faults that are <10,000 years old should include those with at least 2 to as many as 20 paleoearthquakes. For the International Lithosphere Programs' Task Group II-2 Project on Major Active Faults of the World our maps and database will show five age categories and four slip rate categories that allow one to select differing time spans and activity rates for seismic-hazard analysis depending on tectonic regime. The maps are accompanied by a database that describes evidence for Quaternary faulting, geomorphic expression, and paleoseismic parameters (slip rate, recurrence interval and time of most recent surface faulting). These maps and databases provide an inventory of faults that would be defined as active, capable, and potentially active for seismic-hazard assessments.

  14. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    SciTech Connect

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; Bond, Daniel R.

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.

  15. Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling.

    PubMed

    Liébana, Raquel; Arregui, Lucía; Belda, Ignacio; Gamella, Luis; Santos, Antonio; Marquina, Domingo; Serrano, Susana

    2015-01-01

    The yeast community was studied in a municipal full-scale membrane bioreactor wastewater treatment plant (MBR-WWTP). The unexpectedly high diversity of yeasts indicated that the activated sludge formed a suitable environment for them to proliferate, with cellular concentrations of 2.2 ± 0.8 × 10(3) CFU ml(-1). Sixteen species of seven genera were present in the biological reactor, with Ascomycetes being the most prevalent group (93%). Most isolates were able to grow in a synthetic wastewater medium, adhere to polyethylene surfaces, and develop biofilms of variable complexity. The relationship between yeast populations and the protists in the MBR-WWTP was also studied, revealing that some protist species preyed on and ingested yeasts. These results suggest that yeast populations may play a role in the food web of a WWTP and, to some extent, contribute to membrane biofouling in MBR systems. PMID:25588128

  16. Probing the potential of apigenin liposomes in enhancing bacterial membrane perturbation and integrity loss.

    PubMed

    Banerjee, Kacoli; Banerjee, Shubhadeep; Das, Subhayan; Mandal, Mahitosh

    2015-09-01

    Along with discovery of new antibacterial agents, it is important to develop novel drug delivery systems to effectively deliver drugs within bacterial cells for enhanced therapeutic activity. Liposomes have been extensively investigated as pharmaceutical carriers for improvement of therapeutic index of antimicrobial agents. The aim of this present study was to evaluate the antibacterial activity of free and liposomal formulation of apigenin, a plant based isoflavone and elucidate the mode of action. Distearoylphosphatidylcholine liposomes were prepared having nano-range particle size (104.3±1.8 nm), narrow particle distribution (0.204) and high encapsulation efficiency of apigenin (89.9±2.31%). Antibacterial activity of apigenin and efficacy of liposome-mediated apigenin delivery were determined from minimum inhibitory concentration values. Interaction studies using electron microscopy revealed adherence and fusion of liposomal apigenin with the bacteria causing membrane perturbation through reactive oxygen species generation which was evaluated by epi-fluorescence microscopy and fluorescence activated cell sorting. The interaction of apigenin liposomes with bacterial membrane increased intracellular drug concentration and thus, can be employed to deliver apigenin within cells to augment its antibacterial activity. Increased efficacy and hemocompatibility of this formulation paves way for future evaluation of underlying molecular mechanisms and in vivo testing for enhanced therapeutic effects. PMID:25965432

  17. Short-term effects of plant hormones on membrane potential and membrane permeability of dwarf maize coleoptile cells (Zea mays L. d 1) in comparison with growth responses.

    PubMed

    Nelles, A

    1977-01-01

    The membrane potential difference of dwarf maize coleoptile cells is increased by both 10(-5)moll(-1) gibberellic acid (GA3) and indoleacetic acid (IAA) a few minutes after application. A final level is reached after 10-20 min. The membrane permeability ratio P Na:P K is altered by both hormones during the first 15 min after application, indicating a rapid effect on the membrane. Elongation growth of coleoptile segments, however, is only stimulated by IAA. The auxin-induced growth as well as the auxin effect on membrane permeability depends on the calcium ion concentration of the medium. It is concluded that IAA acts via a proton extrusion pump that is electrically balanced by a potassium ion uptake, driven by the electromotive force of the pump. The mode of action of GA3 on elongation growth is assumed to involve a process that depends on the physiologic state of the tissue and/or metabolic energy. PMID:24420668

  18. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary.

    PubMed

    Malkov, D Y; Sokolov, V S

    1996-01-31

    The effects of the adsorption of the fluorescent potential-sensitive dyes RH-421, RH-237 and RH-160 on the bilayer lipid membrane were studied. It was shown that a dipole potential drop, positive in the hydrophobic part of the membrane, arose due to the dye adsorption. The dye adsorption led to a considerable increase of the rate constant of hydrophobic anion translocation through the membrane, but did not affect their partition coefficient between membrane and water. It implies that the region of the membrane where the potential drops is located deeper than the adsorption plane of hydrophobic ions. The values of boundary potential differences were estimated by two independent methods with unilateral and bilateral application of the dyes to lipid bilayer membranes. The results suggest that RH dye molecules penetrate through the lipid bilayers. The values of zeta-potential in liposomes did not change on dye adsorption. Hence, dye molecules are adsorbed in a form that does not change the surface charge. We estimated the effects of electric field of dye dipole layer on an individual dipole located in the same layer and on ion transport through a membrane protein Na+/K+-ATPase. It turned out that the local electric field of each dye dipole decayed so rapidly that a neighbouring dye molecule did not feel it. It also appeared that RH dyes could have but a minor effect on the electrogenic transport performed by the sodium pump in the examined range of dye concentrations. PMID:8593277

  19. Thylakoid Membrane Maturation and PSII Activation Are Linked in Greening Synechocystis sp. PCC 6803 Cells1

    PubMed Central

    Barthel, Sandra; Bernát, Gábor; Seidel, Tobias; Rupprecht, Eva; Kahmann, Uwe; Schneider, Dirk

    2013-01-01

    Thylakoid membranes are typical and essential features of both chloroplasts and cyanobacteria. While they are crucial for phototrophic growth of cyanobacterial cells, biogenesis of thylakoid membranes is not well understood yet. Dark-grown Synechocystis sp. PCC 6803 cells contain only rudimentary thylakoid membranes but still a relatively high amount of phycobilisomes, inactive photosystem II and active photosystem I centers. After shifting dark-grown Synechocystis sp. PCC 6803 cells into the light, “greening” of Synechocystis sp. PCC 6803 cells, i.e. thylakoid membrane formation and recovery of photosynthetic electron transport reactions, was monitored. Complete restoration of a typical thylakoid membrane system was observed within 24 hours after an initial lag phase of 6 to 8 hours. Furthermore, activation of photosystem II complexes and restoration of a functional photosynthetic electron transport chain appears to be linked to the biogenesis of organized thylakoid membrane pairs. PMID:23922268

  20. Membrane potential-dependent integration of synaptic inputs in entorhinal stellate neurons.

    PubMed

    Economo, Michael N; Martínez, Joan José; White, John A

    2014-12-01

    Stellate cells (SCs) of the medial entorhinal cortex exhibit robust spontaneous membrane-potential oscillations (MPOs) in the theta (4-12 Hz) frequency band as well as theta-frequency resonance in their membrane impedance spectra. Past experimental and modeling work suggests that these features may contribute to the phase-locking of SCs to the entorhinal theta rhythm and may be important for forming the hexagonally tiled grid cell place fields exhibited by these neurons in vivo. Among the major biophysical mechanisms contributing to MPOs is a population of persistent (non-inactivating or slowly inactivating) sodium channels. The resulting persistent sodium conductance (GNaP ) gives rise to an apparent increase in input resistance as the cell approaches threshold. In this study, we used dynamic clamp to test the hypothesis that this increased input resistance gives rise to voltage-dependent, and thus MPO phase-dependent, changes in the amplitude of excitatory and inhibitory post-synaptic potential (PSP) amplitudes. We find that PSP amplitude depends on membrane potential, exhibiting a 5-10% increase in amplitude per mV depolarization. The effect is larger than-and sums quasi-linearly with-the effect of the synaptic driving force, V - Esyn . Given that input-driven MPOs 10 mV in amplitude are commonly observed in MEC stellate cells in vivo, this voltage- and phase-dependent synaptic gain is large enough to modulate PSP amplitude by over 50% during theta-frequency MPOs. Phase-dependent synaptic gain may therefore impact the phase locking and phase precession of grid cells in vivo to ongoing network oscillations. © 2014 Wiley Periodicals, Inc. PMID:25044927

  1. Origin of membrane dipole potential: contribution of the phospholipid fatty acid chains.

    PubMed

    Peterson, Uwe; Mannock, David A; Lewis, Ruthven N A H; Pohl, Peter; McElhaney, Ronald N; Pohl, Elena E

    2002-08-01

    The large intrinsic membrane dipole potential, phi(d), is important for protein insertion and functioning as well as for ion transport across natural and model membranes. However, the origin of phi(d) is controversial. From experiments carried out with lipid monolayers, a significant dependence on the fatty acid chain length is suggested, whereas in experiments with lipid bilayers, the contribution of additional -CH(2)-groups seems negligibly small compared with that of the phospholipid carbonyl groups and lipid-bound water molecules. To compare the impact of the -CH(2)-groups of dipalmitoylphosphatidylcholine (DPPC) near and far from the glycerol backbone, we have varied the structure of DPPC by incorporation of sulfur atoms in place of methylene groups in different positions of the fatty acid chain. The phi(d) of symmetric lipid bilayers containing one heteroatom was obtained from the charge relaxation of oppositely charged hydrophobic ions. We have found that the substitution for a S-atom of a -CH(2)-group decreases phi(d). The effect (deltaphi(d) = -22.6 mV) is most pronounced for S-atoms near the lipid head group while a S-atom substitution in the C(13)- or C(14)-position of the hydrocarbon chain does not effect the bilayer dipole potential. Most probably deltaphi(d) does not originate from an altered dipole potential of the acyl chain containing an heteroatom but is mediated by the disruption of chain packing, leading to a decreased density of lipid dipoles in the membrane. PMID:12191841

  2. Peroxynitrite-mediated nitrosative stress decreases motility and mitochondrial membrane potential in human spermatozoa.

    PubMed

    Uribe, P; Boguen, R; Treulen, F; Sánchez, R; Villegas, J V

    2015-03-01

    Nitrosative stress is produced by high levels of reactive nitrogen species (RNS). The RNS include peroxynitrite, a highly reactive free radical produced from a diffusion-controlled reaction between nitric oxide and superoxide anion. Peroxynitrite causes nitration and oxidation of lipids, proteins and DNA, and is thus considered an important pathogenic mechanism in various diseases. Although high levels of peroxynitrite are associated with astenozoospermia, few reports exist regarding the in vitro effect of high levels of this RNS on human sperm. The aim of this study was to evaluate the in vitro effect of nitrosative stress caused by peroxynitrite on the viability, motility and mitochondrial membrane potential of human spermatozoa. To do this, human spermatozoa from healthy donors were exposed in vitro to 3-morpholinosydnonimine (SIN-1), a molecule that generates peroxynitrite. Incubations were done at 37°C for up to 4 h with SIN-1 concentrations between 0.2 and 1.0 mmol/l. Generation of peroxynitrite was confirmed using dihydrorhodamine 123 (DHR) by spectrophotometry and flow cytometry. Sperm viability was assessed by propidium iodide staining; sperm motility was analyzed by CASA, and the state of mitochondrial membrane potential (ΔΨm) by JC-1 staining. Viability and ΔΨm were measured by flow cytometry. The results showed an increase in DHR oxidation, demonstrating the generation of peroxynitrite through SIN-1. Peroxynitrite decreased progressive and total motility, as well as some sperm kinetic parameters. Mitochondrial membrane potential also decreased. These alterations occurred with no decrease in sperm viability. In conclusion, peroxynitrite-induced nitrosative stress impairs vital functions in the male gamete, possibly contributing to male infertility. PMID:25425609

  3. Development of catalytically active and highly stable catalyst supports for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Taekeun; Xie, Tianyuan; Jung, Wonsuk; Gadala-Maria, Francis; Ganesan, Prabhu; Popov, Branko N.

    2015-01-01

    Novel procedures are developed for the synthesis of highly stable carbon composite catalyst supports (CCCS-800 °C and CCCS-1100 °C) and an activated carbon composite catalyst support (A-CCCS). These supports are synthesized through: (i) surface modification with acids and inclusion of oxygen groups, (ii) metal-catalyzed pyrolysis, and (iii) chemical leaching to remove excess metal used to dope the support. The procedure results in increasing carbon graphitization and inclusion of non-metallic active sites on the support surface. Catalytic activity of CCCS indicates an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass-transfer regions and ∼2.5% H2O2 production in rotating ring disk electrode (RRDE) studies. Support stability studies at 1.2 V constant potential holding for 400 h indicate high stability for the 30% Pt/A-CCCS catalyst with a cell potential loss of 27 mV at 800 mA cm-2 under H2-air, 32% mass activity loss, and 30% ECSA loss. Performance evaluation in polymer electrolyte membrane (PEM) fuel cell shows power densities (rated) of 0.18 and 0.23 gPt kW-1 for the 30% Pt/A-CCCS and 30% Pt/CCCS-800 °C catalysts, respectively. The stabilities of various supports developed in this study are compared with those of a commercial Pt/C catalyst.

  4. The force exerted by the membrane potential during protein import into the mitochondrial matrix

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Ghosal, Sandip; Matouschek, Andreas

    2004-01-01

    The force exerted on a targeting sequence by the electrical potential across the inner mitochondrial membrane is calculated on the basis of continuum electrostatics. The force is found to vary from 3.0 pN to 2.2 pN (per unit elementary charge) as the radius of the inner membrane pore (assumed aqueous) is varied from 6.5 to 12 A, its measured range. In the present model, the decrease in force with increasing pore width arises from the shielding effect of water. Since the pore is not very much wider than the distance between water molecules, the full shielding effect of water may not be present; the extreme case of a purely membranous pore without water gives a force of 3.2 pN per unit charge, which should represent an upper limit. When applied to mitochondrial import experiments on the protein barnase, these results imply that forces between 11 +/- 2 pN and 13.5 +/- 2.5 pN catalyze the unfolding of barnase in those experiments. A comparison of these results with unfolding forces measured using atomic force microscopy is made.

  5. Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty

    PubMed Central

    Chen, Junzhao; Yan, Chenxi; Zhu, Mengyu; Yao, Qinke; Shao, Chunyi; Lu, Wenjuan; Wang, Jing; Mo, Xiumei; Gu, Ping; Fu, Yao; Fan, Xianqun

    2015-01-01

    Background Cornea transplant technology has progressed markedly in recent decades, allowing surgeons to replace diseased corneal endothelium by a thin lamellar structure. A thin, transparent, biocompatible, tissue-engineered substratum with corneal endothelial cells for endothelial keratoplasty is currently of interest. Electrospinning a nanofibrous structure can simulate the extracellular matrix and have beneficial effects for cell culture. Silk fibroin (SF) has good biocompatibility but poor mechanical properties, while poly(l-lactic acid-co-ε-caprolactone) (P(LLA-CL)) has good mechanical properties but poor biocompatibility. Blending SF with P(LLA-CL) can maintain the advantages of both these materials and overcome their disadvantages. Blended electrospun nanofibrous membranes may be suitable for regeneration of the corneal endothelium. The aim of this study was to produce a tissue-engineered construct suitable for endothelial keratoplasty. Methods Five scaffolds containing different SF:P(LLA-CL) blended ratios (100:0, 75:25, 50:50, 25:75, 0:100) were manufactured. A human corneal endothelial (B4G12) cell line was cultured on the membranes. Light transmission, speed of cell adherence, cell viability (live-dead test), cell proliferation (Ki-67, BrdU staining), and cell monolayer formation were detected on membranes with the different blended ratios, and expression of some functional genes was also detected by real-time polymerase chain reaction. Results Different blended ratios of scaffolds had different light transmittance properties. The 25:75 blended ratio membrane had the best transmittance among these scaffolds. All electrospun nanofibrous membranes showed improved speed of cell adherence when compared with the control group, especially when the P(LLA-CL) ratio increased. The 25:75 blended ratio membranes also had the highest cell proliferation. B4G12 cells could form a monolayer on all scaffolds, and most functional genes were also stably expressed on all

  6. Analysis of Light-Induced Transmembrane Ion Gradients and Membrane Potential in Photosystem I Proteoliposomes

    SciTech Connect

    Pennisi, Cristian P.; Greenbaum, Elias; Yoshida, Ken

    2010-01-01

    Photosystem I (PSI) complexes can support a light-driven electrochemical gradient for protons, which is the driving force for energy-conserving reactions across biological membranes. In this work, a computational model that enables a quantitative description of the light-induced proton gradients across the membrane of PSI proteoliposomes is presented. Using a set of electrodiffusion equations, a compartmental model of a vesicle suspended in aqueous medium was studied. The light-mediated proton movement was modeled as a single proton pumping step with backpressure of the electric potential. The model fits determinations of pH obtained from PSI proteoliposomes illuminated in the presence of mediators of cyclic electron transport. The model also allows analysis of the proton gradients in relation to the transmembrane ion fluxes and electric potential. Sensitivity analysis enabled a determination of the parameters that have greater influence on steady-state levels and onset/decay rates of transmembrane pH and electric potential. This model could be used as a tool for optimizing PSI proteoliposomes for photo-electrochemical applications.

  7. Signal-to-noise ratio in the membrane potential of the owl's auditory coincidence detectors

    PubMed Central

    Funabiki, Kazuo; Kuokkanen, Paula T.; Kempter, Richard; Carr, Catherine E.

    2012-01-01

    Owls use interaural time differences (ITDs) to locate a sound source. They compute ITD in a specialized neural circuit that consists of axonal delay lines from the cochlear nucleus magnocellularis (NM) and coincidence detectors in the nucleus laminaris (NL). Recent physiological recordings have shown that tonal stimuli induce oscillatory membrane potentials in NL neurons (Funabiki K, Ashida G, Konishi M. J Neurosci 31: 15245–15256, 2011). The amplitude of these oscillations varies with ITD and is strongly correlated to the firing rate. The oscillation, termed the sound analog potential, has the same frequency as the stimulus tone and is presumed to originate from phase-locked synaptic inputs from NM fibers. To investigate how these oscillatory membrane potentials are generated, we applied recently developed signal-to-noise ratio (SNR) analysis techniques (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274–2290, 2010) to the intracellular waveforms obtained in vivo. Our theoretical prediction of the band-limited SNRs agreed with experimental data for mid- to high-frequency (>2 kHz) NL neurons. For low-frequency (≤2 kHz) NL neurons, however, measured SNRs were lower than theoretical predictions. These results suggest that the number of independent NM fibers converging onto each NL neuron and/or the population-averaged degree of phase-locking of the NM fibers could be significantly smaller in the low-frequency NL region than estimated for higher best-frequency NL. PMID:22933726

  8. Metabolically derived potential on the outer membrane of mitochondria: a computational model.

    PubMed Central

    Lemeshko, S V; Lemeshko, V V

    2000-01-01

    The outer mitochondrial membrane (OMM) is permeable to various small substances because of the presence of a voltage-dependent anion channel (VDAC). The voltage dependence of VDAC's permeability is puzzling, because the existence of membrane potential on the OMM has never been shown. We propose that steady-state metabolically derived potential (MDP) may be generated on the OMM as the result of the difference in its permeability restriction for various charged metabolites. To demonstrate the possibility of MDP generation, two models were considered: a liposomal model and a simplified cell model with a creatine kinase energy channeling system. Quantitative computational analysis of the simplified cell model shows that a MDP of up to -5 mV, in addition to the Donnan potential, may be generated at high workloads, even if the OMM is highly permeable to small inorganic ions, including potassium. Calculations show that MDP and DeltapH, generated on the OMM, depend on the cytoplasmic pH and energy demand rate. Computational modeling suggests that MDP may be important for cell energy metabolism regulation in multiple ways, including VDAC's permeability modulation and the effect of electrodynamic compartmentation. The osmotic pressure difference between the mitochondrial intermembrane space and the cytoplasm, as related to the electrodynamic compartmentation effects, might explain the morphological changes in mitochondria under intense workloads. PMID:11106589

  9. Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines.

    PubMed

    Popovic, Marko; Vogt, Kaspar; Holthoff, Knut; Konnerth, Arthur; Salzberg, Brian M; Grinvald, Amiram; Antic, Srdjan D; Canepari, Marco; Zecevic, Dejan

    2015-01-01

    A central question in neuronal network analysis is how the interaction between individual neurons produces behavior and behavioral modifications. This task depends critically on how exactly signals are integrated by individual nerve cells functioning as complex operational units. Regional electrical properties of branching neuronal processes which determine the input-output function of any neuron are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin (synaptic contacts on distal dendrites) and summate at particular locations to influence action potential initiation. It became possible recently to carry out this type of measurement using high-resolution multisite recording of membrane potential changes with intracellular voltage-sensitive dyes. This chapter reviews the development and foundation of the method of voltage-sensitive dye recording from individual neurons. Presently, this approach allows monitoring membrane potential transients from all parts of the dendritic tree as well as from axon collaterals and individual dendritic spines. PMID:26238049

  10. Biophysical basis of the sound analog membrane potential that underlies coincidence detection in the barn owl.

    PubMed

    Ashida, Go; Funabiki, Kazuo; Carr, Catherine E

    2013-01-01

    Interaural time difference (ITD), or the difference in timing of a sound wave arriving at the two ears, is a fundamental cue for sound localization. A wide variety of animals have specialized neural circuits dedicated to the computation of ITDs. In the avian auditory brainstem, ITDs are encoded as the spike rates in the coincidence detector neurons of the nucleus laminaris (NL). NL neurons compare the binaural phase-locked inputs from the axons of ipsi- and contralateral nucleus magnocellularis (NM) neurons. Intracellular recordings from the barn owl's NL in vivo showed that tonal stimuli induce oscillations in the membrane potential. Since this oscillatory potential resembled the stimulus sound waveform, it was named the sound analog potential (Funabiki et al., 2011). Previous modeling studies suggested that a convergence of phase-locked spikes from NM leads to an oscillatory membrane potential in NL, but how presynaptic, synaptic, and postsynaptic factors affect the formation of the sound analog potential remains to be investigated. In the accompanying paper, we derive analytical relations between these parameters and the signal and noise components of the oscillation. In this paper, we focus on the effects of the number of presynaptic NM fibers, the mean firing rate of these fibers, their average degree of phase-locking, and the synaptic time scale. Theoretical analyses and numerical simulations show that, provided the total synaptic input is kept constant, changes in the number and spike rate of NM fibers alter the ITD-independent noise whereas the degree of phase-locking is linearly converted to the ITD-dependent signal component of the sound analog potential. The synaptic time constant affects the signal more prominently than the noise, making faster synaptic input more suitable for effective ITD computation. PMID:24265615

  11. Biophysical basis of the sound analog membrane potential that underlies coincidence detection in the barn owl

    PubMed Central

    Ashida, Go; Funabiki, Kazuo; Carr, Catherine E.

    2013-01-01

    Interaural time difference (ITD), or the difference in timing of a sound wave arriving at the two ears, is a fundamental cue for sound localization. A wide variety of animals have specialized neural circuits dedicated to the computation of ITDs. In the avian auditory brainstem, ITDs are encoded as the spike rates in the coincidence detector neurons of the nucleus laminaris (NL). NL neurons compare the binaural phase-locked inputs from the axons of ipsi- and contralateral nucleus magnocellularis (NM) neurons. Intracellular recordings from the barn owl's NL in vivo showed that tonal stimuli induce oscillations in the membrane potential. Since this oscillatory potential resembled the stimulus sound waveform, it was named the sound analog potential (Funabiki et al., 2011). Previous modeling studies suggested that a convergence of phase-locked spikes from NM leads to an oscillatory membrane potential in NL, but how presynaptic, synaptic, and postsynaptic factors affect the formation of the sound analog potential remains to be investigated. In the accompanying paper, we derive analytical relations between these parameters and the signal and noise components of the oscillation. In this paper, we focus on the effects of the number of presynaptic NM fibers, the mean firing rate of these fibers, their average degree of phase-locking, and the synaptic time scale. Theoretical analyses and numerical simulations show that, provided the total synaptic input is kept constant, changes in the number and spike rate of NM fibers alter the ITD-independent noise whereas the degree of phase-locking is linearly converted to the ITD-dependent signal component of the sound analog potential. The synaptic time constant affects the signal more prominently than the noise, making faster synaptic input more suitable for effective ITD computation. PMID:24265615

  12. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE PAGESBeta

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; Bond, Daniel R.

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore » greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  13. Differential effects of superoxide and hydrogen peroxide on myogenic signaling, membrane potential, and contractions of mouse renal afferent arterioles.

    PubMed

    Li, Lingli; Lai, En Yin; Wellstein, Anton; Welch, William J; Wilcox, Christopher S

    2016-06-01

    Myogenic contraction is the principal component of renal autoregulation that protects the kidney from hypertensive barotrauma. Contractions are initiated by a rise in perfusion pressure that signals a reduction in membrane potential (Em) of vascular smooth muscle cells to activate voltage-operated Ca(2+) channels. Since ROS have variable effects on myogenic tone, we investigated the hypothesis that superoxide (O2 (·-)) and H2O2 differentially impact myogenic contractions. The myogenic contractions of mouse isolated and perfused single afferent arterioles were assessed from changes in luminal diameter with increasing perfusion pressure (40-80 mmHg). O2 (·-), H2O2, and Em were assessed by fluorescence microscopy during incubation with paraquat to increase O2 (·-) or with H2O2 Paraquat enhanced O2 (·-) generation and myogenic contractions (-42 ± 4% vs. -19 ± 4%, P < 0.005) that were blocked by SOD but not by catalase and signaled via PKC. In contrast, H2O2 inhibited the effects of paraquat and reduced myogenic contractions (-10 ± 1% vs. -19 ± 2%, P < 0.005) and signaled via PKG. O2 (·-) activated Ca(2+)-activated Cl(-) channels that reduced Em, whereas H2O2 activated Ca(2+)-activated and voltage-gated K(+) channels that increased Em Blockade of voltage-operated Ca(2+) channels prevented the enhanced myogenic contractions with paraquat without preventing the reduction in Em Myogenic contractions were independent of the endothelium and largely independent of nitric oxide. We conclude that O2 (·-) and H2O2 activate different signaling pathways in vascular smooth muscle cells linked to discreet membrane channels with opposite effects on Em and voltage-operated Ca(2+) channels and therefore have opposite effects on myogenic contractions. PMID:27053691

  14. Mapping symplasmic fields at the shoot apical meristem using iontophoresis and membrane potential measurements.

    PubMed

    van der Schoot, Christiaan; Rinne, Päivi L H

    2015-01-01

    Microinjections of fluorescent dyes have revealed that the shoot apical meristem (SAM) is dynamically partitioned into symplasmic fields (SFs), implying that plasmodesmata (Pd) are held shut at specific locations in the proliferating cellular matrix. The SFs are integrated into a coherent morphogenetic unit by exchange of morphogens and transcription factors via gating Pd between adjacent SFs, and by ligand-receptor interactions that operate across the extracellular space. We describe a method for the real-time mapping of SF in the SAM by iontophoresis and membrane potential measurements. PMID:25287203

  15. Poly(imide)/Organically-Modified Montmorillonite Nanocomposite as a Potential Membrane for Alkaline Fuel Cells

    PubMed Central

    Battirola, Liliane C.; Gasparotto, Luiz H. S.; Rodrigues-Filho, Ubirajara P.; Tremiliosi-Filho, Germano

    2012-01-01

    In this work we evaluated the potentiality of a poly(imide) (PI)/organically-modified montmorillonite (O-MMT) nanocomposite membrane for the use in alkaline fuel cells. Both X-ray diffraction and scanning electron microscopy revealed a good dispersion of O-MMT into the PI matrix and preservation of the O-MMT layered structure. When compared to the pure PI, the addition of O-MMT improved thermal stability and markedly increased the capability of absorbing electrolyte and ionic conductivity of the composite. The results show that the PI/O-MMT nanocomposite is a promising candidate for alkaline fuel cell applications. PMID:24958290

  16. Relation between cell death progression, reactive oxygen species production and mitochondrial membrane potential in fermenting Saccharomyces cerevisiae cells under heat-shock conditions.

    PubMed

    Pyatrikas, Darya V; Fedoseeva, Irina V; Varakina, Nina N; Rusaleva, Tatyana M; Stepanov, Alexei V; Fedyaeva, Anna V; Borovskii, Gennadii B; Rikhvanov, Eugene G

    2015-06-01

    Moderate heat shock increased reactive oxygen species (ROS) production that led to cell death in glucose-grown Saccharomyces cerevisiae cells. Conditions that disturb mitochondrial functions such as treatment by uncouplers and petite mutation were shown to inhibit ROS production and protects cell from thermal death. Hence, mitochondria are responsible for ROS production and play an active role in cell death. An increase in ROS production was accompanied by hyperpolarization of inner mitochondrial membrane. All agents suppressing hyperpolarization also suppressed heat-induced ROS production. It was supposed that generation of ROS under moderate heat shock in glucose-grown S. cerevisiae cells is driven by the mitochondrial membrane potential. PMID:25991811

  17. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer.

    PubMed

    Köster, Darius Vasco; Husain, Kabir; Iljazi, Elda; Bhat, Abrar; Bieling, Peter; Mullins, R Dyche; Rao, Madan; Mayor, Satyajit

    2016-03-22

    The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization. PMID:26929326

  18. Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters.

    PubMed

    Dereli, Recep Kaan; Ersahin, Mustafa Evren; Ozgun, Hale; Ozturk, Izzet; Jeison, David; van der Zee, Frank; van Lier, Jules B

    2012-10-01

    This review presents a comprehensive summary on applications of anaerobic membrane bioreactor (AnMBR) technology for industrial wastewaters in view of different aspects including treatability and filterability. AnMBRs present an attractive option for the treatment of industrial wastewaters at extreme conditions, such as high salinity, high temperature, high suspended solids concentrations, and toxicity that hamper granulation and retention of biomass or reduce the biological activity. So far, most of the research has been conducted at laboratory scale; however, also a number of full-scale AnMBR systems is currently being operated worldwide. Membrane fouling, a multivariable process, is still a research quest that requires further investigation. In fact, membrane fouling and flux decline present the most important reasons that hamper the wide-spread application of full-scale reactors. This paper addresses a detailed assessment and discussion on treatability and filterability of industrial wastewaters in both lab- and full-scale AnMBR applications, the encountered problems and future opportunities. PMID:22749827

  19. In skeletal muscle the relaxation of the resting membrane potential induced by K(+) permeability changes depends on Cl(-) transport.

    PubMed

    Geukes Foppen, R J

    2004-01-01

    In resting skeletal muscle the potassium permeability is determined by the permeability of the inwardly potassium rectifier. Continuous resting membrane potential measurements are done to follow the relaxation of the membrane potential upon changes in potassium permeability. Inhibition of the inwardly potassium rectifier, by extracellular application of 80 microM Ba(2+), causes the cell to depolarize with mean time constants as follows: in control 127+/-7 s ( n=23), in the presence of bumetanide, as an inhibitor of the Na(+)/K(+)/2Cl(-) cotransporter, 182+/-23 s ( n=7), in hypertonic media (340 mosmol/kg) 90.4+/-5 s ( n=7) and in reduced chloride medium 64+/-8 s ( n=5). The depolarizing relaxation of the membrane potential induced by reduction of extracellular potassium produces similar results. These time constants are at least three orders of magnitude slower than the time constants reported in the literature for the inhibition of the inwardly potassium rectifier. Chloride transport affects the relaxation of the membrane potential. A further characterization of chloride transport is done by following the relaxation of the membrane potential upon application of chloride transport modulators. It is argued that the electroneutral cotransporter, for which a flux was preliminarily estimated of 13.4 pmol cm(-2) s(-1), has a considerable role in the processes related to the resting membrane potential. PMID:14648122

  20. Power laws from linear neuronal cable theory: power spectral densities of the soma potential, soma membrane current and single-neuron contribution to the EEG.

    PubMed

    Pettersen, Klas H; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T

    2014-11-01

    Power laws, that is, power spectral densities (PSDs) exhibiting 1/f(α) behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency 1/f(α) power laws with power-law exponents analytically identified as α∞(I) = 1/2 for the soma membrane current, α∞(p) = 3/2 for the current-dipole moment, and α∞(V) = 2 for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink (1/f) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how 1/f(α) power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation

  1. Power Laws from Linear Neuronal Cable Theory: Power Spectral Densities of the Soma Potential, Soma Membrane Current and Single-Neuron Contribution to the EEG

    PubMed Central

    Pettersen, Klas H.; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T.

    2014-01-01

    Power laws, that is, power spectral densities (PSDs) exhibiting behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency power laws with power-law exponents analytically identified as for the soma membrane current, for the current-dipole moment, and for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink () noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation. PMID:25393030

  2. Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria

    PubMed Central

    Gerencser, Akos A; Chinopoulos, Christos; Birket, Matthew J; Jastroch, Martin; Vitelli, Cathy; Nicholls, David G; Brand, Martin D

    2012-01-01

    Mitochondrial membrane potential (ΔΨM) is a central intermediate in oxidative energy metabolism. Although ΔΨM is routinely measured qualitatively or semi-quantitatively using fluorescent probes, its quantitative assay in intact cells has been limited mostly to slow, bulk-scale radioisotope distribution methods. Here we derive and verify a biophysical model of fluorescent potentiometric probe compartmentation and dynamics using a bis-oxonol-type indicator of plasma membrane potential (ΔΨP) and the ΔΨM probe tetramethylrhodamine methyl ester (TMRM) using fluorescence imaging and voltage clamp. Using this model we introduce a purely fluorescence-based quantitative assay to measure absolute values of ΔΨM in millivolts as they vary in time in individual cells in monolayer culture. The ΔΨP-dependent distribution of the probes is modelled by Eyring rate theory. Solutions of the model are used to deconvolute ΔΨP and ΔΨM in time from the probe fluorescence intensities, taking into account their slow, ΔΨP-dependent redistribution and Nernstian behaviour. The calibration accounts for matrix:cell volume ratio, high- and low-affinity binding, activity coefficients, background fluorescence and optical dilution, allowing comparisons of potentials in cells or cell types differing in these properties. In cultured rat cortical neurons, ΔΨM is −139 mV at rest, and is regulated between −108 mV and −158 mV by concerted increases in ATP demand and Ca2+-dependent metabolic activation. Sensitivity analysis showed that the standard error of the mean in the absolute calibrated values of resting ΔΨM including all biological and systematic measurement errors introduced by the calibration parameters is less than 11 mV. Between samples treated in different ways, the typical equivalent error is ∼5 mV. PMID:22495585

  3. Comparison of microbial communities of activated sludge and membrane biofilm in 10 full-scale membrane bioreactors.

    PubMed

    Jo, Sung Jun; Kwon, Hyeokpil; Jeong, So-Yeon; Lee, Chung-Hak; Kim, Tae Gwan

    2016-09-15

    Operation of membrane bioreactors (MBRs) for wastewater treatment is hampered by the membrane biofouling resulting from microbial activities. However, the knowledge of the microbial ecology of both biofilm and activated sludge in MBRs has not been sufficient. In this study, we scrutinized microbial communities of biofilm and activated sludge from 10 full-scale MBR plants. Overall, Flavobacterium, Dechloromonas and Nitrospira were abundant in order of abundance in biofilm, whereas Dechloromonas, Flavobacterium and Haliscomenobacter in activated sludge. Community structure was analyzed in either biofilm or activated sludge. Among MBRs, as expected, not only diversity of microbial community but also its composition was different from one another (p < 0.05). Between the biofilm and activated sludge, community composition made significant difference, but its diversity measures (i.e., alpha diversity, e.g., richness, diversity and evenness) did not (p > 0.05). Effects of ten environmental factors on community change were investigated using Spearman correlation. MLSS, HRT, F/M ratio and SADm explained the variation of microbial composition in the biofilm, whereas only MLSS did in the activated sludge. Microbial networks were constructed with the 10 environmental factors. The network results revealed that there were different topological characteristics between the biofilm and activated sludge networks, in which each of the 4 factors had different associations with microbial nodes. These results indicated that the different microbial associations were responsible for the variation of community composition between the biofilm and activated sludge. PMID:27262549

  4. Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells.

    PubMed Central

    Buckler, K J; Vaughan-Jones, R D

    1994-01-01

    1. An acid-induced rise in the intracellular calcium concentration ([Ca2+]i) of type I cells is thought to play a vital role in pH/PCO2 chemoreception by the carotid body. In this present study we have investigated the cause of this rise in [Ca2+]i in enzymatically isolated, neonatal rat type I cells. 2. The rise in [Ca2+]i induced by a hypercapnic acidosis was inhibited in Ca(2+)-free media, and by 2 mM Ni2+. Acidosis also increased Mn2+ permeability. The rise in [Ca2+]i is dependent, therefore, upon a Ca2+ influx from the external medium. 3. The acid-induced rise in [Ca2+]i was attenuated by both nicardipine and methoxyverapamil (D600), suggesting a role for L-type Ca2+ channels. 4. Acidosis depolarized type I cells and often (approximately 50% of cells) induced action potentials. These effects coincided with a rise in [Ca2+]i. When membrane depolarization was prevented by a voltage clamp, acidosis failed to evoke a rise in [Ca2+]i. The acid-induced rise in [Ca2+]i is a consequence, therefore, of membrane depolarization. 5. Acidosis decreased the resting membrane conductance of type I cells. The reversal potential of the acid-sensitive current was about -75 mV. 6. A depolarization (30 mM [K+]o)-induced rise in [Ca2+]i was blocked by either the removal of extracellular Ca2+ or the presence of 2 mM Ni2+, and was also substantially inhibited by nicardipine. Under voltage-clamp conditions, [Ca2+]i displayed a bell-shaped dependence on membrane potential. Depolarization raises [Ca2+]i, therefore, through voltage-operated Ca2+ channels. 7. Caffeine (10 mM) induced only a small rise in [Ca2+]i (< 10% of that induced by 30 mM extracellular K+). Ca(2+)-induced Ca2+ release is unlikely, therefore, to contribute greatly to the rise in [Ca2+]i induced by depolarization. 8. Although the replacement of extracellular Na+ with N-methyl-D-glucamine (NMG), but not Li+, inhibited the acid-induced rise in [Ca2+]i, this was due to membrane hyperpolarization and not to the inhibition

  5. Monitoring of the membrane potential in proteoliposomes with incorporated cytochrome-c oxidase using the fluorescent dye indocyanine.

    PubMed

    Ivashchuk-Kienbaum, Y A

    1996-06-01

    A method has been developed to monitor changes of the membrane potential across vesicle membranes in real time. Using the potential-sensitive fluorescent dye indocyanine and on the basis of a water/lipid redistribution model, a calculation procedure has been introduced to estimate the membrane potential in vesicles with incorporated cytochrome-c oxidase. Physical parameters, such as vesicle size distribution and density of the lipid bilayer were estimated and used as calculation parameters. By extrapolation of the transient potential change to zero time, the initial rate of the potential change (dU/dt) could be calculated. It is also shown, that the initial potential change (dU/dt) may be used to study the proton/electron stoichiometry of cytochrome-c oxidase incorporated in the vesicles. PMID:8661512

  6. Potentiating the Activity of Nisin against Escherichia coli

    PubMed Central

    Zhou, Liang; van Heel, Auke J.; Montalban-Lopez, Manuel; Kuipers, Oscar P.

    2016-01-01

    Lantibiotics are antimicrobial (methyl)lanthionine-containing peptides produced by various Gram-positive bacteria. The model lantibiotic, nisin, binds lipid II in the cell membrane. Additionally, after binding it can insert into the membrane creating a pore. Nisin can efficiently inhibit the growth of Gram-positive bacteria and resistance is rarely observed. However, the activity of lantibiotics is at least 100-fold lower against certain Gram-negative bacteria. This is caused by the fact that Gram-negative bacteria have an outer membrane that hinders the peptides to reach lipid II, which is located in the inner membrane. Improving the activity of lantibiotics against Gram-negative bacteria could be achieved if the outer membrane traversing efficiency is increased. Here, several anti-Gram-negative peptides (e.g., apidaecin 1b, oncocin), or parts thereof, were fused to the C-terminus of either a truncated version of nisin containing the first three/five rings or full length nisin. The activities of these fusion peptides were tested against Gram-negative pathogens. Our results showed that when an eight amino acids (PRPPHPRL) tail from apidaecin 1b was attached to nisin, the activity of nisin against Escherichia coli CECT101 was increased more than two times. This research presents a new and promising method to increase the anti-Gram-negative activity of lantibiotics. PMID:26904542

  7. Spatial distribution and activity of Na(+)/K(+)-ATPase in lipid bilayer membranes with phase boundaries.

    PubMed

    Bhatia, Tripta; Cornelius, Flemming; Brewer, Jonathan; Bagatolli, Luis A; Simonsen, Adam C; Ipsen, John H; Mouritsen, Ole G

    2016-06-01

    We have reconstituted functional Na(+)/K(+)-ATPase (NKA) into giant unilamellar vesicles (GUVs) of well-defined binary and ternary lipid composition including cholesterol. The activity of the membrane system can be turned on and off by ATP. The hydrolytic activity of NKA is found to depend on membrane phase, and the water relaxation in the membrane on the presence of NKA. By collapsing and fixating the GUVs onto a solid support and using high-resolution atomic-force microscopy (AFM) imaging we determine the protein orientation and spatial distribution at the single-molecule level and find that NKA is preferentially located at lo/ld interfaces in two-phase GUVs and homogeneously distributed in single-phase GUVs. When turned active, the membrane is found to unbind from the support suggesting that the protein function leads to softening of the membrane. PMID:26994932

  8. VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential.

    PubMed

    Lemeshko, Victor V

    2014-05-01

    The simplest mechanism of the generation of the mitochondrial outer membrane potential (OMP) by the VDAC (voltage-dependent anion channel)-hexokinase complex (VHC), suggested earlier, and by the VDAC-glucokinase complex (VGC), was computationally analyzed. Even at less than 4% of VDACs bound to hexokinase, the calculated OMP is high enough to trigger the electrical closure of VDACs beyond the complexes at threshold concentrations of glucose. These results confirmed our previous hypothesis that the Warburg effect is caused by the electrical closure of VDACs, leading to global restriction of the outer membrane permeability coupled to aerobic glycolysis. The model showed that the inhibition of the conductance and/or an increase in the voltage sensitivity of a relatively small fraction of VDACs by factors like tubulin potentiate the electrical closure of the remaining free VDACs. The extrusion of calcium ions from the mitochondrial intermembrane space by the generated OMP, positive inside, might increase cancer cell resistance to death. Within the VGC model, the known effect of induction of ATP release from mitochondria by accumulated glucose-6-phosphate in pancreatic beta cells might result not only of the known effect of GK dissociation from the VDAC-GK complex, but also of a decrease in the free energy of glucokinase reaction, leading to the OMP decrease and VDAC opening. We suggest that the VDAC-mediated electrical control of the mitochondrial outer membrane permeability, dependent on metabolic conditions, is a fundamental physiological mechanism of global regulation of mitochondrial functions and of cell death. PMID:24412217

  9. Myc Potentiates Apoptosis by Stimulating Bax Activity at the Mitochondria†

    PubMed Central

    Soucie, Erinn L.; Annis, Matthew G.; Sedivy, John; Filmus, Jorge; Leber, Brian; Andrews, David W.; Penn, Linda Z.

    2001-01-01

    The ability of the c-Myc oncoprotein to potentiate apoptosis has been well documented; however, the mechanism of action remains ill defined. We have previously identified spatially distinct apoptotic pathways within the same cell that are differentially inhibited by Bcl-2 targeted to either the mitochondria (Bcl-acta) or the endoplasmic reticulum (Bcl-cb5). We show here that in Rat1 cells expressing an exogenous c-myc allele, distinct apoptotic pathways can be inhibited by Bcl-2 or Bcl-acta yet be distinguished by their sensitivity to Bcl-cb5 as either susceptible (serum withdrawal, taxol, and ceramide) or refractory (etoposide and doxorubicin). Myc expression and apoptosis were universally associated with Bcl-acta and not Bcl-cb5, suggesting that Myc acts downstream at a point common to these distinct apoptotic signaling cascades. Analysis of Rat1 c-myc null cells shows these same death stimuli induce apoptosis with characteristic features of nuclear condensation, membrane blebbing, poly (ADP-ribose) polymerase cleavage, and DNA fragmentation; however, this Myc-independent apoptosis is not inhibited by Bcl-2. During apoptosis, Bax translocation to the mitochondria occurs in the presence or absence of Myc expression. Moreover, Bax mRNA and protein expression remain unchanged in the presence or absence of Myc. However, in the absence of Myc, Bax is not activated and cytochrome c is not released into the cytoplasm. Reintroduction of Myc into the c-myc null cells restores Bax activation, cytochrome c release, and inhibition of apoptosis by Bcl-2. These results demonstrate a role for Myc in the regulation of Bax activation during apoptosis. Moreover, apoptosis that can be triggered in the absence of Myc provides evidence that signaling pathways exist which circumvent Bax activation and cytochrome c release to trigger caspase activation. Thus, Myc increases the cellular competence to die by enhancing disparate apoptotic signals at a common mitochondrial amplification

  10. New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L.

    PubMed

    Zhang, Bao; Dong, Chunjuan; Shang, Qingmao; Han, Yuzhu; Li, Pinglan

    2013-09-01

    Bacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activities against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. Prior to this study, the role of membrane permeabilization in the antimicrobial activity of bacillomycin L against plant pathogenic fungi had not been investigated. To shed light on the mechanism of this antifungal activity, the permeabilization of R. solani hyphae by bacillomycin L was investigated and compared with that by amphotericin B, a polyene antibiotic which is thought to act primarily through membrane disruption. Our results derived from electron microscopy, various fluorescent techniques and gel retardation experiments revealed that the antifungal activity of bacillomycin L may be not solely a consequence of fungal membrane permeabilization, but related to the interaction of it with intracellular targets. Our findings provide more insights into the mode of action of bacillomycin L and other iturins, which could in turn help to develop new or improved antifungal formulations or result in novel strategies to prevent fungal spoilage. PMID:23756779

  11. Influence of activating hormones on human platelet membrane Ca/sup 2 +/-ATPase activity

    SciTech Connect

    Resink, T.J.; Dimitrov, D.; Stucki, S.; Buehler, F.R.

    1986-07-16

    Intact platelets were pretreated with hormones and thereafter membranes were prepared and Ca/sup 2 +/-ATPase activity determined. Thrombin decreased the V/sub max/ of Ca/sup 2 +/-ATPase after pretreatment of intact platelets. Platelet activating factor, vasopressin and ADP also decreased Ca/sup 2 +/-ATPase activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) or A23187 or ionomycin alone had no effect, while the simultaneous pretreatment with TPA and Ca/sup 2 +/-ionophore decreased Ca/sup 2 +/-ATPase activity. cAMP elevating agents prostaglandin E/sub 1/ (PGE/sub 1/) and forskolin had no influence per se on Ca/sup 2 +/-ATPase, but antagonized the inhibitory effect of thrombin. The data suggest a close connection between phosphoinositide metabolism and the Ca/sup 2 +/-ATPase system.

  12. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1988-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membanes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanime derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  13. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    PubMed

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis. PMID:27501536

  14. Active membrane transport and receptor proteins from bacteria.

    PubMed

    Saidijam, M; Bettaney, K E; Szakonyi, G; Psakis, G; Shibayama, K; Suzuki, S; Clough, J L; Blessie, V; Abu-Bakr, A; Baumberg, S; Meuller, J; Hoyle, C K; Palmer, S L; Butaye, P; Walravens, K; Patching, S G; O'reilly, J; Rutherford, N G; Bill, R M; Roper, D I; Phillips-Jones, M K; Henderson, P J F

    2005-08-01

    A general strategy for the expression of bacterial membrane transport and receptor genes in Escherichia coli is described. Expression is amplified so that the encoded proteins comprise 5-35% of E. coli inner membrane protein. Depending upon their topology, proteins are produced with RGSH6 or a Strep tag at the C-terminus. These enable purification in mg quantities for crystallization and NMR studies. Examples of one nutrient uptake and one multidrug extrusion protein from Helicobacter pylori are described. This strategy is successful for membrane proteins from H. pylori, E. coli, Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, Microbacterium liquefaciens, Brucella abortus, Brucella melitensis, Campylobacter jejuni, Neisseria meningitides, Streptomyces coelicolor and Rhodobacter sphaeroides. PMID:16042616

  15. Selective modulation by membrane potential of desmethoxyverapamil binding to calcium channels in rat portal vein.

    PubMed

    Rakotoarisoa, L; Sayet, I; Mironneau, C; Mironneau, J

    1990-12-01

    (-)-[3H]Desmethoxyverapamil (D888) binds saturably to intact strips from rat portal vein bathed in physiological solution with a Kd value of 363 pM and a maximal binding capacity value of 15.6 fmol.mg-1 wet weight. Unlabeled dihydropyridines, phenylalkylamines and benzothiazepines inhibited (-)-[3H]D888 specific binding in a concentration-dependent manner. Scatchard analyses and dissociation kinetics of (-)-[3H]D888 binding revealed the existence of mutual allosteric interactions between (+)-isradipine, (+)-cis diltiazem and (-)-D888 binding sites in portal vein strips. When voltage-dependent Ca++ channels transported Ca++, Ba++, Sr++ or Na+ the binding capacity of (-)-[3H]D888 remained unchanged. In contrast, both depolarization (induced by elevation of external K+) and hyperpolarization (in the presence of cromakalim) induced a gradual decrease in (-)-D888 binding capacity. These observations suggest that membrane potential variation would change the conformational state of Ca++ channels, in such a way that it would be less favorable for access of (-)-[3H]D888 to the binding site. This would provide an experimental argument in favor of the "guarded receptor hypothesis" according to which membrane potential modulates ligand affinity by alteration of the amount of time during which the receptor binding site is available to (-)-[3H]D888. PMID:2175807

  16. Hypotonic stress influence the membrane potential and alter the proliferation of keratinocytes in vitro.

    PubMed

    Gönczi, Mónika; Szentandrássy, Norbert; Fülöp, László; Telek, Andrea; Szigeti, Gyula P; Magyar, János; Bíró, Tamás; Nánási, Péter P; Csernoch, László

    2007-04-01

    Keratinocyte proliferation and differentiation is strongly influenced by mechanical forces. We investigated the effect of osmotic changes in the development of HaCaT cells in culture using intracellular calcium measurements, electrophysiological recordings and molecular biology techniques. The application of hypotonic stress (174 mOsmol/l) caused a sustained hyperpolarization of HaCaT cells from a resting potential of -27 +/- 4 to -51 +/- 9 mV. This change was partially reversible. The surface membrane channels involved in the hyperpolarization were identified as chloride channels due to the lack of response in the absence of the anion. Cells responded with an elevation of intracellular calcium concentration to hypotonic stress, which critically depended on external calcium. The presence of phorbol-12-myristate-13-acetate in the culture medium for 12 h augmented the subsequent response to hypotonic stress. A sudden switch from iso- to hypotonic solution increased cell proliferation and suppressed the production of involucrin, filaggrin and transglutaminase, markers of keratinocyte differentiation. It is concluded that sudden mechanical forces increase the proliferation of keratinocytes through alterations in their membrane potential and intracellular calcium concentration. These changes together with additional modifications in channel expression and intracellular signalling mechanisms could underlie the increased proliferation of keratinocytes in hyperproliferative skin diseases. PMID:17359336

  17. Hypophosphite ion as a 31P nuclear magnetic resonance probe of membrane potential in erythrocyte suspensions.

    PubMed Central

    Kirk, K; Kuchel, P W; Labotka, R J

    1988-01-01

    Hypophosphorus acid has a single pKa of 1.1 and at physiological pH values it is therefore present almost entirely as the univalent hypophosphite ion. When added to a red cell suspension the ion crosses the cell membrane rapidly, via the anion exchange protein, and the intra- and extracellular populations of the ion give rise to separate 31P NMR resonances. From a single 31P NMR spectrum it was possible to determine the relative amounts of hypophosphite in the intra- and extracellular compartments and thereby estimate the corresponding concentrations. The ratio of intracellular to extracellular hypophosphite concentration was independent of the total hypophosphite concentration for cells suspended in NaCl solutions and was independent of hematocrit. The hypophosphite distribution ratio increased as extracellular NaCl was replaced iso-osmotically with citrate or sucrose, through it remained very similar to the corresponding hydrogen ion distribution ratio. Incorporation of the hypophosphite distribution ratio into the Nernst equation yielded an estimate of the membrane potential. For cells suspended in NaCl solutions the estimated potential was consistently around -10 mV. PMID:3207824

  18. Lipid composition and sensitivity of Prototheca wickerhamii to membrane-active antimicrobial agents.

    PubMed Central

    Sud, I J; Feingold, D S

    1979-01-01

    The lipid composition of Prototheca wickerhamii ATCC 16529 is presented and discussed in relation to the unique susceptibility of the organism to drugs of three membrane-active antimicrobial classes: the polyenes, the polymyxins, and the imidazoles. The presence of ergosterol in the neutral lipid fraction of the membrane is likely responsible for the exquisite susceptibility to amphotericin B. The presence of a large quantity of free fatty acids in the membrane appears responsible for imidazole susceptibility. The membrane determinants of polymyxin B susceptibility are less well defined. PMID:518077

  19. Acid gradient across plasma membrane can drive phosphate bond synthesis in cancer cells: acidic tumor milieu as a potential energy source.

    PubMed

    Dhar, Gautam; Sen, Suvajit; Chaudhuri, Gautam

    2015-01-01

    Aggressive cancers exhibit an efficient conversion of high amounts of glucose to lactate accompanied by acid secretion, a phenomenon popularly known as the Warburg effect. The acidic microenvironment and the alkaline cytosol create a proton-gradient (acid gradient) across the plasma membrane that represents proton-motive energy. Increasing experimental data from physiological relevant models suggest that acid gradient stimulates tumor proliferation, and can also support its energy needs. However, direct biochemical evidence linking extracellular acid gradient to generation of intracellular ATP are missing. In this work, we demonstrate that cancer cells can synthesize significant amounts of phosphate-bonds from phosphate in response to acid gradient across plasma membrane. The noted phenomenon exists in absence of glycolysis and mitochondrial ATP synthesis, and is unique to cancer. Biochemical assays using viable cancer cells, and purified plasma membrane vesicles utilizing radioactive phosphate, confirmed phosphate-bond synthesis from free phosphate (Pi), and also localization of this activity to the plasma membrane. In addition to ATP, predominant formation of pyrophosphate (PPi) from Pi was also observed when plasma membrane vesicles from cancer cells were subjected to trans-membrane acid gradient. Cancer cytosols were found capable of converting PPi to ATP, and also stimulate ATP synthesis from Pi from the vesicles. Acid gradient created through glucose metabolism by cancer cells, as observed in tumors, also proved critical for phosphate-bond synthesis. In brief, these observations reveal a role of acidic tumor milieu as a potential energy source and may offer a novel therapeutic target. PMID:25874623

  20. Second-harmonic generation of biological interfaces: probing the membrane protein bacteriorhodopsin and imaging membrane potential around GFP molecules at specific sites in neuronal cells of C. elegans

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Khatchatouriants, Artium; Treinin, Millet; Chen, Zhongping; Peleg, Gadi; Friedman, Noga; Bouevitch, Oleg; Rothman, Zvi; Loew, Leslie; Sheres, Mordechai

    1999-07-01

    Second-harmonic generation (SHG) is applied to problems of probing membrane proteins and functionally imaging around selective sites and at single molecules in biological membranes. The membrane protein bacteriorhodopsin (bR) has been shown to have large second-harmonic (SH) intensities that are modulated by protein/retinylidene chromophore interactions. The nonlinear optical properties of model compounds, which simulate these protein chromophore interactions in retinal proteins, are studied in this work by surface SHG and by hyper-Rayleigh scattering. Our results indicate that non-conjugated charges and hydrogen bonding effects have a large effect on the molecular hyperpolarizability of the retinal chromophore. However, mbR, the model system studies suggest that polarizable amino acids strongly affect the vertically excited state of the retinylidene chromophore and appear to play the major role in the observed protein enhancement (>50%) of the retinylidene chromophore molecular hyperpolarizability and associated induced dipole. Furthermore, the data provide insights on emulating these interactions for the design of organic nonlinear optical materials. Our studies have also led to the development of dyes with large SH intensities that can be embedded in cell membranes and can functionally image membrane potential. Single molecules of such dyes in selected single molecular regions of a cell membrane have been detected. SHG from green fluorescent protein (GFP) selectively expressed in concert with a specific protein in neuronal cells in a transgenic form of the worm C. elegans is also reported. The membrane potential around the GFP molecules expressed in these cells has been imaged with SHG in live animals.

  1. Simultaneous conduction mapping and intracellular membrane potential recording in isolated atria.

    PubMed

    Neo, Melissa; Morris, David G; Kuklik, Pawel; Lau, Dennis H; Dimitri, Hany; Lim, Wei-Wen; Sanders, Prashanthan; Saint, David A

    2016-05-01

    We describe a novel approach for simultaneously determining regional differences in action potential (AP) morphology and tissue electrophysiological properties in isolated atria. The epicardial surface of rat atrial preparations was placed in contact with a multi-electrode array (9 × 10 silver chloride electrodes, 0.1 mm diameter and 0.1 mm pitch). A glass microelectrode (100 MΩ) was simultaneously inserted into the endocardial surface to record intracellular AP from either of 2 regions (A, B) during pacing from 2 opposite corners of the tissue. AP duration at 80% of repolarisation and its restitution curve was significantly different only in region A (p < 0.01) when AP was initiated at different stimulation sites. Alternans in AP duration and AP amplitude, and in conduction velocity were observed during 2 separate arrhythmic episodes. This approach of combining microelectrode array and intracellular membrane potential recording may provide new insights into arrhythmogenic mechanisms in animal models of cardiovascular disease. PMID:26771118

  2. Plant plasma membrane aquaporins in natural vesicles as potential stabilizers and carriers of glucosinolates.

    PubMed

    Martínez-Ballesta, Maria Del Carmen; Pérez-Sánchez, Horacio; Moreno, Diego A; Carvajal, Micaela

    2016-07-01

    Their biodegradable nature and ability to target cells make biological vesicles potential nanocarriers for bioactives delivery. In this work, the interaction between proteoliposomes enriched in aquaporins derived from broccoli plants and the glucosinolates was evaluated. The vesicles were stored at different temperatures and their integrity was studied. Determination of glucosinolates, showed that indolic glucosinolates were more sensitive to degradation in aqueous solution than aliphatic glucosinolates. Glucoraphanin was stabilized by leaf and root proteoliposomes at 25°C through their interaction with aquaporins. An extensive hydrogen bond network, including different aquaporin residues, and hydrophobic interactions, as a consequence of the interaction between the linear alkane chain of glucoraphanin and Glu31 and Leu34 protein residues, were established as the main stabilizing elements. Combined our results showed that plasma membrane vesicles from leaf and root tissues of broccoli plants may be considered as suitable carriers for glucosinolate which stabilization can be potentially attributed to aquaporins. PMID:27022872

  3. GST activity and membrane lipid saturation prevents mesotrione-induced cellular damage in Pantoea ananatis.

    PubMed

    Prione, Lilian P; Olchanheski, Luiz R; Tullio, Leandro D; Santo, Bruno C E; Reche, Péricles M; Martins, Paula F; Carvalho, Giselle; Demiate, Ivo M; Pileggi, Sônia A V; Dourado, Manuella N; Prestes, Rosilene A; Sadowsky, Michael J; Azevedo, Ricardo A; Pileggi, Marcos

    2016-12-01

    Callisto(®), containing the active ingredient mesotrione (2-[4-methylsulfonyl-2-nitrobenzoyl]1,3-cyclohenanedione), is a selective herbicide that controls weeds in corn crops and is a potential environmental contaminant. The objective of this work was to evaluate enzymatic and structural changes in Pantoea ananatis, a strain isolated from water, in response to exposure to this herbicide. Despite degradation of mesotrione, probably due a glutathione-S-transferase (GST) pathway in Pantoea ananatis, this herbicide induced oxidative stress by increasing hydrogen peroxide production. Thiol fragments, eventually produced after mesotrione degradation, could be involved in increased GST activity. Nevertheless, there was no peroxidation damage related to this production, as malondialdehyde (MDA) synthesis, which is due to lipid peroxidation, was highest in the controls, followed by the mesotrione- and Callisto(®)-treated cultures at log growth phase. Therefore, P. ananatis can tolerate and grow in the presence of the herbicide, probably due an efficient control of oxidative stress by a polymorphic catalase system. MDA rates depend on lipid saturation due to a pattern change to a higher level of saturation. These changes are likely related to the formation of GST-mesotrione conjugates and mesotrione degradation-specific metabolites and to the presence of cytotoxic adjuvants. These features may shift lipid membrane saturation, possibly providing a protective effect to bacteria through an increase in membrane impermeability. This response system in P. ananatis provides a novel model for bacterial herbicide tolerance and adaptation in the environment. PMID:27620734

  4. Potentialities of a Membrane Reactor with Laccase Grafted Membranes for the Enzymatic Degradation of Phenolic Compounds in Water

    PubMed Central

    Chea, Vorleak; Paolucci-Jeanjean, Delphine; Sanchez, José; Belleville, Marie-Pierre

    2014-01-01

    This paper describes the degradation of phenolic compounds by laccases from Trametes versicolor in an enzymatic membrane reactor (EMR). The enzymatic membranes were prepared by grafting laccase on a gelatine layer previously deposited onto α-alumina tubular membranes. The 2,6-dimethoxyphenol (DMP) was selected  from among the three different phenolic compounds tested (guaiacol, 4-chlorophenol and DMP) to study the performance of the EMR in dead end configuration. At the lowest feed substrate concentration tested (100 mg·L−1), consumption increased with flux (up to 7.9 × 103 mg·h−1·m−2 at 128 L·h−1·m−2), whereas at the highest substrate concentration (500 mg·L−1), it was shown that the reaction was limited by the oxygen content. PMID:25295628

  5. Active endocannabinoids are secreted on extracellular membrane vesicles.

    PubMed

    Gabrielli, Martina; Battista, Natalia; Riganti, Loredana; Prada, Ilaria; Antonucci, Flavia; Cantone, Laura; Matteoli, Michela; Maccarrone, Mauro; Verderio, Claudia

    2015-02-01

    Endocannabinoids primarily influence neuronal synaptic communication within the nervous system. To exert their function, endocannabinoids need to travel across the intercellular space. However, how hydrophobic endocannabinoids cross cell membranes and move extracellularly remains an unresolved problem. Here, we show that endocannabinoids are secreted through extracellular membrane vesicles produced by microglial cells. We demonstrate that microglial extracellular vesicles carry on their surface N-arachidonoylethanolamine (AEA), which is able to stimulate type-1 cannabinoid receptors (CB1), and inhibit presynaptic transmission, in target GABAergic neurons. This is the first demonstration of a functional role of extracellular vesicular transport of endocannabinoids. PMID:25568329

  6. Molecular Details of Membrane Fluidity Changes during Apoptosis and Relationship to Phospholipase A2 Activity

    PubMed Central

    Gibbons, Elizabeth; Pickett, Katalyn R.; Streeter, Michael C.; Warcup, Ashley O.; Nelson, Jennifer; Judd, Allan M.; Bell, John D.

    2012-01-01

    Summary Secretory phospholipase A2 exhibits much greater activity toward apoptotic versus healthy cells. Various plasma membrane changes responsible for this phenomenon have been proposed, including biophysical alterations described as “membrane fluidity” and “order.” Understanding of these membrane perturbations was refined by applying studies with model membranes to fluorescence measurements during thapsigargin-induced apoptosis of S49 cells using probes specific for the plasma membrane: Patman and trimethylammonium-diphenylhexatriene. Alterations in emission properties of these probes corresponded with enhanced susceptibility of the cells to hydrolysis by secretory phospholipase A2. By applying a quantitative model, additional information was extracted from the kinetics of Patman equilibration with the membrane. Taken together, these data suggested that the phospholipids of apoptotic membranes display greater spacing between adjacent headgroups, reduced interactions between neighboring lipid tails, and increased penetration of water among the heads. The phase transition of artificial bilayers was used to calibrate quantitatively the relationship between probe fluorescence and the energy of interlipid interactions. This analysis was applied to results from apoptotic cells to estimate the frequency with which phospholipids protrude sufficiently at the membrane surface to enter the enzyme’s active site. The data suggested that this frequency increases 50–100-fold as membranes become susceptible to hydrolysis during apoptosis. PMID:22967861

  7. Uncoupling the Structure-Activity Relationships of β2 Adrenergic Receptor Ligands from Membrane Binding.

    PubMed

    Dickson, Callum J; Hornak, Viktor; Velez-Vega, Camilo; McKay, Daniel J J; Reilly, John; Sandham, David A; Shaw, Duncan; Fairhurst, Robin A; Charlton, Steven J; Sykes, David A; Pearlstein, Robert A; Duca, Jose S

    2016-06-23

    Ligand binding to membrane proteins may be significantly influenced by the interaction of ligands with the membrane. In particular, the microscopic ligand concentration within the membrane surface solvation layer may exceed that in bulk solvent, resulting in overestimation of the intrinsic protein-ligand binding contribution to the apparent/measured affinity. Using published binding data for a set of small molecules with the β2 adrenergic receptor, we demonstrate that deconvolution of membrane and protein binding contributions allows for improved structure-activity relationship analysis and structure-based drug design. Molecular dynamics simulations of ligand bound membrane protein complexes were used to validate binding poses, allowing analysis of key interactions and binding site solvation to develop structure-activity relationships of β2 ligand binding. The resulting relationships are consistent with intrinsic binding affinity (corrected for membrane interaction). The successful structure-based design of ligands targeting membrane proteins may require an assessment of membrane affinity to uncouple protein binding from membrane interactions. PMID:27239696

  8. Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential 'up' states in pyramidal neurons via D(1) dopamine receptors.

    PubMed

    Lewis, B L; O'Donnell, P

    2000-12-01

    The electrophysiological nature of dopamine actions has been controversial for years, with data supporting both inhibitory and excitatory actions. In this study, we tested whether stimulation of the ventral tegmental area (VTA), the source of the dopamine innervation of the prefrontal cortex, would exert different responses depending on the membrane potential states that pyramidal neurons exhibit when recorded in vivo, and whether VTA stimulation would have a role in controlling transitions between these states. Prefrontal cortical neurons have a very negative resting membrane potential (down state) interrupted by plateau depolarizations (up state). Although the up state had been shown to be dependent on hippocampal afferents in nucleus accumbens neurons, our results indicate that neither hippocampal nor thalamic inputs are sufficient to drive up events in prefrontal cortical neurons. Electrical VTA stimulation resulted in a variety of actions, in many cases depending on the neuron membrane potential state. Trains of stimuli resembling burst firing evoked a long-lasting transition to the up state, an effect blocked by a D(1) antagonist and mimicked by chemical VTA stimulation. These results indicate that projections from the VTA to the prefrontal cortex may be involved in controlling membrane potential states that define assemblies of activable pyramidal neurons in this region. PMID:11073866

  9. Neomycin inhibits the phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate stimulation of plasma membrane ATPase activity

    SciTech Connect

    Chen, Qiuyun; Boss, W.F. )

    1991-05-01

    The inositol phospholipids, phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP{sub 2}), have been shown to increase the vanadate-sensitive ATPase activity of plant plasma membranes. In this paper, the authors show the effect of various concentrations of phosphatidyinositol, PIP, and PIP{sub 2} on the plasma membrane vanadate-sensitive ATPase activity. PIP and PIP{sub 2} at concentrations at 10 nanomoles per 30 microgram membrane protein per milliliter of reaction mixture caused a twofold and 1.8-fold increase in the ATPase activity, respectively. The effect of these negatively charged phospholipids on the ATPase activity was inhibited by adding the positively charged aminoglycoside, neomycin. Neomycin did not affect the endogenous plasma membrane ATPase activity in the absence of exogenous lipids.

  10. High-protein-PUFA supplementation, red blood cell membranes, and plasma antioxidant activity in volleyball athletes.

    PubMed

    Malaguti, Marco; Baldini, Marta; Angeloni, Cristina; Biagi, Pierluigi; Hrelia, Silvana

    2008-06-01

    The authors evaluated the role of a high-protein, low-calorie, polyunsaturated fatty-acid (PUFA) -supplemented diet on anthropometric parameters, erythrocyte-membrane fatty-acid composition, and plasma antioxidant defenses of nonprofessional volleyball athletes. The athletes were divided in two groups: One (n = 5) followed the Mediterranean diet, and the other (n = 6) followed a high-protein, low-calorie diet with a 3-g/day fish-oil supplementation. All the athletes had anthropometric measurements taken, both at the beginning and at the end of the study, which lasted for 2 months. Body-mass index and total body fat were significantly diminished in the second group, while they remained unchanged in the first. Plasma total antioxidant activity (TAA) was significantly increased in the plasma of both groups, with no differences between the groups, suggesting that physical activity, not the different diets, is the main contributor to the increase of plasma TAA. The second group showed a significant increase in erythrocyte-membrane PUFA content and in the unsaturation index value (UI) because of the fish-oil supplementation.A high-protein, low-carbohydrate, fish-oil-supplemented diet seems to be useful only when the aim of the diet is to obtain weight loss in a short-term period. The significant increase in the UI of erythrocyte membranes indicates the potential for harm, because a high intake of PUFA might increase susceptibility to lipid peroxidation not counterbalanced by a higher increase in TAA. Adherence to the Mediterranean diet seems to be the better choice. PMID:18562771

  11. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    PubMed

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  12. Effects of high ambient temperature on fish sperm plasma membrane integrity and mitochondrial activity - A flow cytometric study.

    PubMed

    Nagy, Szabolcs Tamás; Kakasi, Balázs; Pál, László; Havasi, Máté; Bercsényi, Miklós; Husvéth, Ferenc

    2016-06-01

    Local extreme climatic conditions occurring as a result of global climate change may interfere with the reproduction of animals. In the present study fish spermatozoa were incubated at different temperatures (20, 25, 30 and 40 °C) for 10 and 30 minutes, respectively and plasma membrane integrity and mitochondrial membrane potential changes were evaluated with flow cytometry using SYBR-14/PI and Mitotracker Deep Red FM fluorescent dyes. No significant differences were found in plasma membrane integrity at either incubation temperatures or time points. Mitotracker Deep Red FM histogram profiles indicating mitochondrial activity showed significant (p < 0.001) alterations in all cases of higher (25, 30 and 40 °C) temperature treatments as compared to the samples incubated at 20 °C. Our results indicate that fish spermatozoa exposed to high temperatures suffer sublethal damage that cannot be detected with conventional, vital staining techniques. PMID:27165524

  13. A circumscribing active contour model for delineation of nuclei and membranes of megakaryocytes in bone marrow trephine biopsy images

    NASA Astrophysics Data System (ADS)

    Song, Tzu-Hsi; Sanchez, Victor; EIDaly, Hesham; Rajpoot, Nasir M.

    2015-03-01

    The assessment of megakaryocytes (MKs) in bone marrow trephine images is an important step in the classification of different subtypes of myeloproliferative neoplasms (MPNs). In general, bone marrow trephine images include several types of cells mixed together, which make it quite difficult to visually identify MKs. In order to aid hematopathologists in the identification and study of MKs, we develop an image processing framework with supervised machine learning approaches and a novel circumscribing active contour model to identify potential MKs and then to accurately delineate the corresponding nucleus and membrane. Specifically, a number of color and texture features are used in a nave Bayesian classifier and an Adaboost classifier to locate the regions with a high probability of depicting MKs. A region-based active contour is used on the candidate MKs to accurately delineate the boundaries of nucleus and membrane. The proposed circumscribing active contour model employs external forces not only based on pixel intensities, but also on the probabilities of depicting MKs as computed by the classifiers. Experimental results suggest that the machine learning approach can detect potential MKs with an accuracy of more than 75%. When our circumscribing active contour model is employed on the candidate MKs, the nucleus and membrane boundaries are segmented with an accuracy of more than 80% as measured by the Dice similarity coefficient. Compared to traditional region-based active contours, the use of additional external forces based on the probability of depicting MKs improves segmentation performance and computational time by an average 5%.

  14. Role of liquid membrane phenomenon in the anti-bacterial activity of Cefuroxime Sodium

    PubMed Central

    Nagesh, C.; Shankaraiah, M. M.; Venkatesh, J. S.; Setty, S. Ramachandra

    2010-01-01

    The role of liquid membrane phenomenon has been studied in the anti bacterial activity of cephalosporins i.e. Cefuroxime sodium. In our earlier publication [1] it was reported that hydraulic permeability data obtained to demonstrate the existence of liquid membrane in series with supporting membrane generated by Cefuroxime sodium. Transport of selected permeants (glucose, PABA, glycine, and ions like Mg++, NH4+, PO4-, Ca++, Na+, K+ and Cl-) through liquid membrane generated by Cefuroxime sodium in series with supporting membrane has been studied. The results indicated that the liquid membrane generated by Cefuroxime sodium inhibit the transport of various essential bio-molecules and permeants in to the cell. This modification in permeability of different permeants in the presence of the liquid membranes is likely to play significant role in the biological actions of Cefuroxime sodium. The anti-bacterial activity of Cefuroxime sodium further confirmed that the generation of liquid membrane by Cefuroxime sodium is also contributing for the antibacterial activity of them. PMID:24825969

  15. Plasma Membrane ATPase Activity following Reversible and Irreversible Freezing Injury 1

    PubMed Central

    Iswari, S.; Palta, Jiwan P.

    1989-01-01

    Plasma membrane ATPase has been proposed as a site of functional alteration during early stages of freezing injury. To test this, plasma membrane was purified from Solanum leaflets by a single step partitioning of microsomes in a dextran-polyethylene glycol two phase system. Addition of lysolecithin in the ATPase assay produced up to 10-fold increase in ATPase activity. ATPase activity was specific for ATP with a Km around 0.4 millimolar. Presence of the ATPase enzyme was identified by immunoblotting with oat ATPase antibodies. Using the phase partitioning method, plasma membrane was isolated from Solanum commersonii leaflets which had four different degrees of freezing damage, namely, slight (reversible), partial (partially reversible), substantial and total (irreversible). With slight (reversible) damage the plasma membrane ATPase specific activity increased 1.5- to 2-fold and its Km was decreased by about 3-fold, whereas the specific activity of cytochrome c reductase and cytochrome c oxidase in the microsomes were not different from the control. However, with substantial (lethal, irreversible) damage, there was a loss of membrane protein, decrease in plasma membrane ATPase specific activity and decrease in Km, while cytochrome c oxidase and cytochrome c reductase were unaffected. These results support the hypothesis that plasma membrane ATPase is altered by slight freeze-thaw stress. Images Figure 1 Figure 2 PMID:16666856

  16. Tetraspanins regulate the protrusive activities of cell membrane

    SciTech Connect

    Bari, Rafijul; Guo, Qiusha; Zhongnan Hospital, Wuhan University, Wuhan ; Xia, Bing; Zhang, Yanhui H.; Giesert, Eldon E.; Levy, Shoshana; Zheng, Jie J.; Zhang, Xin A.

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Tetraspanins regulate microvillus formation. Black-Right-Pointing-Pointer Tetraspanin CD81 promotes microvillus formation. Black-Right-Pointing-Pointer Tetraspanin CD82 inhibits microvillus formation. Black-Right-Pointing-Pointer Based on this study, we extrapolated a general cellular mechanism for tetraspanins. Black-Right-Pointing-Pointer Tetraspanins engage various functions by regulating membrane protrusion morphogenesis. -- Abstract: Tetraspanins have gained increased attention due to their functional versatility. But the universal cellular mechanism that governs such versatility remains unknown. Herein we present the evidence that tetraspanins CD81 and CD82 regulate the formation and/or development of cell membrane protrusions. We analyzed the ultrastructure of the cells in which a tetraspanin is either overexpressed or ablated using transmission electron microscopy. The numbers of microvilli on the cell surface were counted, and the radii of microvillar tips and the lengths of microvilli were measured. We found that tetraspanin CD81 promotes the microvillus formation and/or extension while tetraspanin CD82 inhibits these events. In addition, CD81 enhances the outward bending of the plasma membrane while CD82 inhibits it. We also found that CD81 and CD82 proteins are localized at microvilli using immunofluorescence. CD82 regulates microvillus morphogenesis likely by altering the plasma membrane curvature and/or the cortical actin cytoskeletal organization. We predict that membrane protrusions embody a common morphological phenotype and cellular mechanism for, at least some if not all, tetraspanins. The differential effects of tetraspanins on microvilli likely lead to the functional diversification of tetraspanins and appear to correlate with their functional propensity.

  17. A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings.

    PubMed

    Luo, Xiaogang; Zhang, Hao; Cao, Zhenni; Cai, Ning; Xue, Yanan; Yu, Faquan

    2016-06-01

    The objective of this study is to develop transparent porous nanodiamonds/cellulose nanocomposite membranes with controlled release of doxorubicin for potential applications as wound dressings, which were fabricated by tape casting method from dispersing carboxylated nanodiamonds and dissolving cellulose homogeneously in 7wt% NaOH/12wt% urea aqueous solution. By adjusting the carboxylated nanodiamonds content, various nanocomposite membranes were obtained. The structure and properties of these membranes have been investigated by light transmittance measurements, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), tensile tests, water loss analyses, etc. The drug loading and release was investigated using doxorubicin hydrochloride as a model drug. In vitro cytotoxicity assay of the membranes was also studied. This work presented a proof-of-concept utility of these membranes for loading and release of bioactive compounds to be employed as a candidate for wound dressing. PMID:27083364

  18. Preparation, performance and adsorption activity of TiO2 nanoparticles entrapped PVDF hybrid membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Wang, Yang; You, Yuting; Meng, Hao; Zhang, Jianghua; Xu, Xinxin

    2012-12-01

    The TiO2 nanoparticles entrapped poly(vinylidenefluoride) (PVDF) hybrid membranes were prepared through impregnating the pre-treated PVDF film in the TiO2 suspension. SEM, XRD, TG and ATR-IR analyses were used to character the hybrid membranes. The results showed that the TiO2 nanoparticles with average size about 44 nm were deposited on the surface and inner pores of PVDF films. The pre-treatment of PVDF with cetyltrimethyl ammonium bromide (CTAB) is benefit for TiO2loading. The ATR-IR spectra revealed that physical interaction played important role in the construction of hybrid membranes. The adsorption behavior of Cu2+ on the hybrid membranes was studied, and a promoted adsorption and elution efficiency of PVDF/TiO2 hybrid membranes were observed compared with that of the pristine PVDF film. Meanwhile, the surface contact angle, pure water flux and static adsorption of bovine serum albumin (BSA) on the hybrid membranes were also measured to study the effects of TiO2 nanoparticles. It was found that the TiO2 nanoparticles improved the surface hydrophilicity and permeability of PVDF membranes, and the decreasing adsorption capacity of BSA indicated the promoted antifouling ability of PVDF membranes. Such the PVDF/TiO2 hybrid membranes exhibit potential applications in the separation and pre-concentration of metal ions.

  19. Immobilization and activity assay of cytochrome P450 on patterned lipid membranes

    SciTech Connect

    Ueda, Yoshihiro; Morigaki, Kenichi . E-mail: morigaki-kenichi@aist.go.jp; Tatsu, Yoshiro; Yumoto, Noboru; Imaishi, Hiromasa . E-mail: himaish@kobe-u.ac.jp

    2007-04-20

    We report on a methodology for immobilizing cytochrome P450 on the surface of micropatterned lipid bilayer membranes and measuring the enzymatic activity. The patterned bilayer comprised a matrix of polymeric lipid bilayers and embedded fluid lipid bilayers. The polymeric lipid bilayer domains act as a barrier to confine fluid lipid bilayers in defined areas and as a framework to stabilize embedded membranes. The fluid bilayer domains, on the other hand, can contain lipid compositions that facilitate the fusion between lipid membranes, and are intended to be used as the binding agent of microsomes containing rat CYP1A1. By optimizing the membrane compositions of the fluid bilayers, we could selectively immobilize microsomal membranes on these domains. The enzymatic activity was significantly higher on lipid bilayer substrates compared with direct adsorption on glass. Furthermore, competitive assay experiment between two fluorogenic substrates demonstrated the feasibility of bioassays based on immobilized P450s.

  20. Immobilization and activity assay of cytochrome P450 on patterned lipid membranes.

    PubMed

    Ueda, Yoshihiro; Morigaki, Kenichi; Tatsu, Yoshiro; Yumoto, Noboru; Imaishi, Hiromasa

    2007-04-20

    We report on a methodology for immobilizing cytochrome P450 on the surface of micropatterned lipid bilayer membranes and measuring the enzymatic activity. The patterned bilayer comprised a matrix of polymeric lipid bilayers and embedded fluid lipid bilayers. The polymeric lipid bilayer domains act as a barrier to confine fluid lipid bilayers in defined areas and as a framework to stabilize embedded membranes. The fluid bilayer domains, on the other hand, can contain lipid compositions that facilitate the fusion between lipid membranes, and are intended to be used as the binding agent of microsomes containing rat CYP1A1. By optimizing the membrane compositions of the fluid bilayers, we could selectively immobilize microsomal membranes on these domains. The enzymatic activity was significantly higher on lipid bilayer substrates compared with direct adsorption on glass. Furthermore, competitive assay experiment between two fluorogenic substrates demonstrated the feasibility of bioassays based on immobilized P450s. PMID:17335776

  1. Activated pathways for the directed insertion of patterned nanoparticles into polymer membranes.

    PubMed

    Ting, Christina L; Frischknecht, Amalie L

    2013-10-28

    We combine the string method with self-consistent field theory to compute the most probable transition pathway, i.e. the minimum free energy path, for the insertion of Janus and protein-like nanoparticles into a polymer membrane bilayer. The method makes no assumptions in the reaction coordinate and overcomes the long timescales challenge associated with simulating rare events. Our study suggests that one approach to building functional polymer–nanoparticle composite membranes with oriented nanoparticles is through electrostatic interactions. In particular, hydrophobic Janus nanoparticles with an asymmetric charge distribution can be made to directionally insert into charged membranes. This process is kinetically driven, and involves overcoming a thermally surmountable activation barrier, which requires favorable interactions between the nanoparticle and the hydrophilic block of the membrane. In contrast, the insertion of protein-like nanoparticles with alternating hydrophilic–hydrophobic–hydrophilic domains into polymer membranes does not occur as a thermally activated event. PMID:26029770

  2. Death-associated protein kinase as a sensor of mitochondrial membrane potential: role of lysosome in mitochondrial toxin-induced cell death.

    PubMed

    Shang, Tiesong; Joseph, Joy; Hillard, Cecilia J; Kalyanaraman, B

    2005-10-14

    We have investigated here the mechanism of dephosphorylation and activation of death-associated protein kinase (DAPK) and the role of lysosome in neuroblastoma cells (SH-SY5Y) treated with mitochondrial toxins, such as MPP(+) and rotenone. Mitochondrial respiratory chain inhibitors and uncouplers decreased mitochondrial membrane potential leading to DAPK dephosphorylation and activation. The class III phosphoinositide 3-kinase inhibitors attenuated DAPK dephosphorylation induced by mitochondrial toxins. Complex I inhibition by mitochondrial toxins (e.g. MPP(+)) resulted in mitochondrial swelling and lysosome reduction. Inhibition of class III phosphoinositide 3-kinase attenuated MPP(+)-induced lysosome reduction and cell death. The role of DAPK as a sensor of mitochondrial membrane potential in mitochondrial diseases was addressed. PMID:16085644

  3. Ferric nitrilotriacetate (Fe-NTA)-induced reactive oxidative species protects human hepatic stellate cells from apoptosis by regulating Bcl-2 family proteins and mitochondrial membrane potential

    PubMed Central

    Liu, Mei; Li, Shu-Jie; Xin, Yong-Ning; Ji, Shu-Sheng; Xie, Rui-Jin; Xuan, Shi-Ying

    2015-01-01

    Reactive oxidative species (ROS)-induced apoptosis of human hepatic stellate (HSC) is one of the treatments for liver fibrosis. However, how ROS (reactive oxygen species) affect HSC apoptosis and liver fibrosis is still unknown. In our study, ROS in human HSC cell line LX-2 was induced by ferric nitrilotriacetate (Fe-NTA) and assessed by superoxide dismutase (SOD) activity and methane dicarboxylic aldehyde (MDA) level. We found that in LX2 cells Fe-NTA induced notable ROS, which played a protective role in HSCs cells apoptosis by inhibiting Caspase-3 activation. Fe-NTA-induced ROS increased mRNA and protein level of anti-apoptosis Bcl-2 and decreased mRNA protein level of pro-apoptosis gene Bax, As a result, maintaining mitochondrial membrane potential of HSCs. Fe-NTA-induced ROS play a protective role in human HSCs by regulating Bcl-2 family proteins and mitochondrial membrane potential. PMID:26770403

  4. Membrane Potential and Calcium Dynamics in Beta Cells from Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis.

    PubMed

    Dolenšek, Jurij; Špelič, Denis; Klemen, Maša Skelin; Žalik, Borut; Gosak, Marko; Rupnik, Marjan Slak; Stožer, Andraž

    2015-01-01

    Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential and calcium changes spread from one beta cell to the other in a wave-like manner. In order to assess the properties of the abovementioned responses to physiological and pathological stimuli, the main challenge remains how to effectively measure membrane potential and calcium changes at the same time with high spatial and temporal resolution, and also in as many cells as possible. To date, the most wide-spread approach has employed the electrophysiological patch-clamp method to monitor membrane potential changes. Inherently, this technique has many advantages, such as a direct contact with the cell and a high temporal resolution. However, it allows one to assess information from a single cell only. In some instances, this technique has been used in conjunction with CCD camera-based imaging, offering the opportunity to simultaneously monitor membrane potential and calcium changes, but not in the same cells and not with a reliable cellular or subcellular spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter dyes in combination with high temporal and spatial confocal calcium imaging allows for simultaneously detecting membrane potential and calcium changes in many cells at a time. Since the signals yielded from both types of reporter dyes are inherently noisy, we have developed complex methods of data denoising that permit for visualization and pixel-wise analysis of signals. Combining the experimental approach of high-resolution imaging with the advanced analysis of noisy data enables novel

  5. Membrane Potential and Calcium Dynamics in Beta Cells from Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis

    PubMed Central

    Dolenšek, Jurij; Špelič, Denis; Skelin Klemen, Maša; Žalik, Borut; Gosak, Marko; Slak Rupnik, Marjan; Stožer, Andraž

    2015-01-01

    Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential and calcium changes spread from one beta cell to the other in a wave-like manner. In order to assess the properties of the abovementioned responses to physiological and pathological stimuli, the main challenge remains how to effectively measure membrane potential and calcium changes at the same time with high spatial and temporal resolution, and also in as many cells as possible. To date, the most wide-spread approach has employed the electrophysiological patch-clamp method to monitor membrane potential changes. Inherently, this technique has many advantages, such as a direct contact with the cell and a high temporal resolution. However, it allows one to assess information from a single cell only. In some instances, this technique has been used in conjunction with CCD camera-based imaging, offering the opportunity to simultaneously monitor membrane potential and calcium changes, but not in the same cells and not with a reliable cellular or subcellular spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter dyes in combination with high temporal and spatial confocal calcium imaging allows for simultaneously detecting membrane potential and calcium changes in many cells at a time. Since the signals yielded from both types of reporter dyes are inherently noisy, we have developed complex methods of data denoising that permit for visualization and pixel-wise analysis of signals. Combining the experimental approach of high-resolution imaging with the advanced analysis of noisy data enables novel

  6. Triphenylmethylphosphonium cation distribution as a measure of hormone-induced alterations in white adipocyte membrane potential

    SciTech Connect

    Vallano, M.L.; Sonenberg, M.

    1982-01-01

    Triphenylmethylphosphonium (TPMP+) partitions into the mitochondrial and cytosolic compartments in the rat white adipocyte in a potential-dependent fashion. The relationship between (/sup 3/H)TPMP+ distribution, intracellular cAMP generation and lipolysis in response to hormones and cAMP-mimetic compounds was examined. Half-maximal (/sup 3/H)TPMP+ efflux and glycerol release were produced by 15 and 9 nM adrenocorticotropin, 170 and 110 nM 1-epinephrine, 70 and 27 microM isobutylmethylxanthine and 800 and 750 microM dibutyryl cAMP, respectively. Hormone-stimulated cAMP generation was also correlated with (/sup 3/H)TPMP+ efflux and lipolysis in terms of concentration dependency. In kinetic experiments, glycerol release and (/sup 3/H)TPMP+ efflux in response to adrenocorticotropin or cholera toxin proceeded over a similar time course, whereas an earlier rise in cAMP generation was detected. The depolarizing effect of lipolytic compounds was localized to the mitochondrial compartment. When cells were incubated in elevated-(K+)0 buffer, the stimulatory effect of dibutyryl cAMP on (/sup 3/H)TPMP+ efflux and lipolysis persisted, suggesting that maintenance of the plasma membrane potential is not critical for demonstration of these responses. When the extracellular concentration of serum albumin, which provides binding sites for free fatty acids, was increased from 1 to 3%, an increase in glycerol release and a decrease in (/sup 3/H)TPMP+ efflux was observed. We suggest that intracellular free fatty acid accumulation in response to lipolytic agents causes dissipation of the mitochondrial membrane potential and efflux of (/sup 3/H)TPMP+ from the organelle and cell.

  7. Preparation of polysaccharide loaded collagen membrane with anti-oxidative activity.

    PubMed

    Shu, Zibin; Ding, Shengli; He, Xiaohong; Dai, Xuemei; Xiao, Qian; Yang, Min; Leng, Xue; Ma, Yanshun; Yang, Hua

    2015-01-01

    The scavenging activity of polysaccharides from Lycium barbarum, Lentinus edodes and Ganoderma Lucidum Karst to DPPH free radicals was investigated. It was found that among the three polysaccharides, Lycium barbarum polysaccharides (LBP) exhibits the best scavenging activity. Polysaccharide loaded collagen membranes were prepared by mixing LBP with collagen, starch, glycerol, sodium carboxymethyl cellulose and glutaraldehyde. In vitro drug release from membranes was evaluated. With increasing the immersion time, the release rate first increases and then slows down. Meanwhile, the scavenging activity to DPPH radicals exhibits similar variation, in agreement with a good release effect of the membrane. The optimal formulation of collagen membrane and preparation parameters were obtained considering the overall properties and the scavenging activity to radicals. PMID:26406078

  8. Framework of Consciousness from Semblance of Activity at Functionally LINKed Postsynaptic Membranes

    PubMed Central

    Vadakkan, Kunjumon I.

    2010-01-01

    Consciousness is seen as a difficult “binding” problem. Binding, a process where different sensations evoked by an item are associated in the nervous system, can be viewed as a process similar to associative learning. Several reports that consciousness is associated with some form of memory imply that different forms of memories have a common feature contributing to consciousness. Based on a proposed synaptic mechanism capable of explaining different forms of memory, we developed a framework for consciousness. It is based on the formation of semblance of sensory stimulus from (1) synaptic semblances when excitatory postsynaptic potentials arrive at functionally LINKed postsynaptic membranes, and (2) network semblances when these potentials summate to elicit action potential initiating activity in a network of neurons. It is then possible to derive a framework for consciousness as a multi-dimensional semblance. According to this framework, a continuum of semblances formed from background sensory stimuli and oscillating neuronal activities serve to maintain consciousness. Feasibility of this framework to explain various physiological and pathological states of consciousness, its subjective nature and qualia is examined. PMID:21833231

  9. The Force Exerted by the Membrane Potential During Protein Import into the Mitochondrial Matrix

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Ghosal, Sandip; Matouschek, Andreas

    2002-01-01

    The electrostatic force exerted on a targeting sequence by the electrical potential across the inner mitochondrial membrane is calculated and found to vary from 1.4 pN to 2.2 pN (per unit elementary charge) as the radius of the inner membrane pore (assumed aqueous) is varied from 12 to 6.5 Angstroms, its measured range. Since the pore is not very much wider than the distance between water molecules, the full shielding effect of water may not be present; the extreme case of a nonaqueous pore gives a force of 3.1 pN per unit charge, which represents an upper limit. When applied to mitochondrial import experiments on the protein harness, these results imply that a force of 11 plus or minus 4 pN is sufficient to catalyze the unfolding of harness during import. Comparison of these results with unfolding forces measured using atomic force microscopy suggests that the two are not inconsistent.

  10. Gβ1γ2 activates phospholipase A2-dependent Golgi membrane tubule formation

    PubMed Central

    Bechler, Marie E.; Brown, William J.

    2014-01-01

    Heterotrimeric G proteins transduce the ligand binding of transmembrane G protein coupled receptors into a variety of intracellular signaling pathways. Recently, heterotrimeric Gβγ subunit signaling at the Golgi complex has been shown to regulate the formation of vesicular transport carriers that deliver cargo from the Golgi to the plasma membrane. In addition to vesicles, membrane tubules have also been shown to mediate export from the Golgi complex, which requires the activity of cytoplasmic phospholipase A2 (PLA2) enzyme activity. Through the use of an in vitro reconstitution assay with isolated Golgi complexes, we provide evidence that Gβ1γ2 signaling also stimulates Golgi membrane tubule formation. In addition, we show that an inhibitor of Gβγ activation of PLA2 enzymes inhibits in vitro Golgi membrane tubule formation. Additionally, purified Gβγ protein stimulates membrane tubules in the presence of low (sub-threshold) cytosol concentrations. Importantly, this Gβγ stimulation of Golgi membrane tubule formation was inhibited by treatment with the PLA2 antagonist ONO-RS-082. These studies indicate that Gβ1γ2 signaling activates PLA2 enzymes required for Golgi membrane tubule formation, thus establishing a new layer of regulation for this process. PMID:25019068

  11. Chemisorption of estrone in nylon microfiltration membranes: Adsorption mechanism and potential use for estrone removal from water.

    PubMed

    Han, Jie; Qiu, Wei; Hu, Jiangyong; Gao, Wei

    2012-03-01

    Estrone is a representative steroid estrogen contaminant that has been detected in effluents from sewage treatment facilities, as well as in surface and ground waters. Our study shows that estrone can be readily removed from water via a unique chemisorption mechanism using nylon microfiltration membranes. Experiments on a laboratory in-line filtration system showed instant removal of estrone from 200 μg/l aqueous solutions by 0.45-μm nylon membranes (ca. 35 L per m(2) membrane). Comparisons with 0.45-μm PVDF, PTFE and glass microfiber membranes suggested that the significant estrone adsorption in nylon membrane should be predominately driven by a different mechanism rather than common physical adsorption. Fourier transform infrared spectroscopy study on nylon membranes and a model compound, N-methylacetamide, showed that the significant adsorption originated from the hydrogen bonding between terminal -OH groups on estrone molecules and nucleophile -C=O groups in amide groups of nylon 6,6. The saturated nylon membrane showed very low leachability in ambient water, while it could be effectively regenerated in alkaline or ethanol solutions. Preliminary reusability study showed that the membrane maintained a consistent adsorption capacity for estrone during ten cycles of reuse. The chemisorption-based polymeric adsorption may provide a new alternative approach for removing estrone and potentially other trace organic contaminants from water. PMID:22189293

  12. cBid, Bax and Bcl-xL exhibit opposite membrane remodeling activities

    PubMed Central

    Bleicken, S; Hofhaus, G; Ugarte-Uribe, B; Schröder, R; García-Sáez, A J

    2016-01-01

    The proteins of the Bcl-2 family have a crucial role in mitochondrial outer membrane permeabilization during apoptosis and in the regulation of mitochondrial dynamics. Current models consider that Bax forms toroidal pores at mitochondria that are responsible for the release of cytochrome c, whereas Bcl-xL inhibits pore formation. However, how Bcl-2 proteins regulate mitochondrial fission and fusion remains poorly understood. By using a systematic analysis at the single vesicle level, we found that cBid, Bax and Bcl-xL are able to remodel membranes in different ways. cBid and Bax induced a reduction in vesicle size likely related to membrane tethering, budding and fission, besides membrane permeabilization. Moreover, they are preferentially located at highly curved membranes. In contrast, Bcl-xL not only counterbalanced pore formation but also membrane budding and fission. Our findings support a mechanism of action by which cBid and Bax induce or stabilize highly curved membranes including non-lamellar structures. This molecular activity reduces the energy for membrane remodeling, which is a necessary step in toroidal pore formation, as well as membrane fission and fusion, and provides a common mechanism that links the two main functions of Bcl-2 proteins. PMID:26913610

  13. cBid, Bax and Bcl-xL exhibit opposite membrane remodeling activities.

    PubMed

    Bleicken, S; Hofhaus, G; Ugarte-Uribe, B; Schröder, R; García-Sáez, A J

    2016-01-01

    The proteins of the Bcl-2 family have a crucial role in mitochondrial outer membrane permeabilization during apoptosis and in the regulation of mitochondrial dynamics. Current models consider that Bax forms toroidal pores at mitochondria that are responsible for the release of cytochrome c, whereas Bcl-xL inhibits pore formation. However, how Bcl-2 proteins regulate mitochondrial fission and fusion remains poorly understood. By using a systematic analysis at the single vesicle level, we found that cBid, Bax and Bcl-xL are able to remodel membranes in different ways. cBid and Bax induced a reduction in vesicle size likely related to membrane tethering, budding and fission, besides membrane permeabilization. Moreover, they are preferentially located at highly curved membranes. In contrast, Bcl-xL not only counterbalanced pore formation but also membrane budding and fission. Our findings support a mechanism of action by which cBid and Bax induce or stabilize highly curved membranes including non-lamellar structures. This molecular activity reduces the energy for membrane remodeling, which is a necessary step in toroidal pore formation, as well as membrane fission and fusion, and provides a common mechanism that links the two main functions of Bcl-2 proteins. PMID:26913610

  14. Surface-Enhanced Infrared Spectroscopy and Neutron Reflectivity Studies of Ubiquinone in Hybrid Bilayer Membranes under Potential Control.

    PubMed

    Quirk, Amanda; Lardner, Michael J; Tun, Zin; Burgess, Ian J

    2016-03-01

    Surface-enhanced infrared adsorption spectroscopy (SEIRAS) and neutron reflectometry (NR) were employed to characterize ubiquinone (UQ) containing hybrid bilayer membranes. The biomimetic membrane was prepared by fusing phospholipid vesicles on a hydrophobic octadecanethiol monolayer self-assembled on a thin gold film. Using SEIRAS, the assembly of the membrane is monitored in situ. The presence of ubiquinone is verified by the characteristic carbonyl peaks from the quinone ester. A well-ordered distal lipid leaflet results from fusion of vesicles with and without the addition of ubiquinone. With applied potential, the hybrid bilayer membrane in the absence of UQ behaves in the same way as previously reported solid supported phospholipid membranes. When ubiquinone is incorporated in the membrane, electric field induced changes in the distal leaflet are suppressed. Changes in the infrared vibrations of the ubiquinone due to applied potential indicate the head groups are located in both polar and nonpolar environments. The spectroscopic data reveal that the isoprenoid unit of the ubiquinone is likely lying in the midplane of the lipid bilayer while the head has some freedom to move within the hydrophobic core. The SEIRAS experiments show redox behavior of UQ incorporated in a model lipid membrane that are otherwise inaccessible with traditional electrochemistry techniques. PMID:26867110

  15. Dissociation of membrane binding and lytic