Science.gov

Sample records for activity model fiam

  1. Reevaluating the free-ion activity model of trace metal toxicity toward higher plants: experimental evidence with copper and zinc.

    PubMed

    Parker, D R; Pedler, J F; Ahnstrom, Z A; Resketo, M

    2001-04-01

    Across a diverse spectrum of organisms, the absorption and toxicity of trace elements are usually correlated with the activity of the free metal ion, but reported exceptions to this generalization are increasing. For the first time, we tested the validity of the free-ion activity model (FIAM) in the case of terrestrial plants and organic acids that may be abundant in the soil solution and rhizosphere. Short-term (48-h) root elongation of wheat (Triticum aestitvum L.) in a simple medium (2 mM CaCl2, pH 6.0) was used to probe the toxicity of Cu and Zn in the presence of malonate, malate, and citrate. Precautions were taken to prevent biodegradation of the organic acids, and its absence was confirmed by ion chromatography. Copper speciation was verified using a Cu-selective ion electrode, and published stability constants were modified to improve agreement between measured and calculated Cu2+ activities. With additions of both malonate and malate, Cu toxicity was alleviated but not to the extent predicted by the FIAM; the Cu-ligand complexes seemingly contributed to the toxicity. No such departures were observed with citrate and Cu nor with any of the three ligands in combination with Zn. Thus, exceptions to the FIAM occur with higher plants as well as with aquatic biota but do not seem to occur in a predictable or systematic fashion with respect to metal or organic acid under investigation. Several possible explanations for the observed departures from the FIAM are discussed, including the possibility of accidental cotransport of metal and ligand into the cytoplasm. PMID:11345467

  2. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model.

    PubMed

    Hatano, Ayumi; Shoji, Ryo

    2008-06-01

    The biotic ligand model (BLM) of acute toxicity to aquatic organisms is based on the concept that metals binding onto biotic ligand may cause toxic effect on the organism. The BLM can take into incorporation between metal speciation and the protective effects of competing cations account. The demonstrated BLM can provide a good estimation of the amount of single metal effect under various conditions such as pH, coexistence of other non toxic cations. However, toxic metals are often found as mixture in nature. This study estimated combined toxicity of Cu and Cd examined by growth inhibition of Duckweed (Lemna paucicostata) by using single toxicity data as toxic unit (TU) derived by three types of model, BLM and two conventional models, free ion activity model (FIAM), and total metal concentration model. According to our results, single toxicity data derived by the BLM can estimate combined toxicity described as a function of TU. Particularly under the high level of heavy metals stress, BLM clearly predicted toxicity of heavy metals compared with other two models. According to numeric correlation (R(2), root mean square error), the order is BLM (R=0.83, RMSE=13.5)> total metal concentration model (R=0.41, RMSE=24.9)> FIAM (R=0.36, RMSE=26.1). PMID:18214895

  3. Impacts of major cations (K(+), Na (+), Ca (2+), Mg (2+)) and protons on toxicity predictions of nickel and cadmium to lettuce (Lactuca sativa L.) using exposure models.

    PubMed

    Liu, Yang; Vijver, Martina G; Peijnenburg, Willie J G M

    2014-04-01

    Biotic ligand models (BLM) explicitly accounting for hypothetical interactions with biotic ligands and bioavailability as dictated by water chemistry have been developed for various metals and different organisms. It is only recently that BLMs for plants have received increasing attention. Lettuce is one of the most important vegetable crops in the world. This study investigated the impacts of Ca(2+), Mg(2+), K(+), Na(+) and pH, on acute toxicity of Ni and Cd to butter-head lettuce seedlings (Lactuca sativa L.). 4-day assays with the root elongation inhibition (REI) as the endpoint were performed in hydroponic solutions. Magnesium was found to be the sole cation significantly enhancing the median inhibition concentration (IC50) of Ni(2+) with increasing concentration. By incorporating the competitive effects of Mg(2+), the Ni-toxicity prediction was improved significantly as compared to the total metal model (TMM) and the free ion activity model (FIAM). The conditional stability constants derived from the Ni-BLM were log K MgBL = 2.86, log K NiBL = 5.1, and f NiBL (50%)  = 0.57. A slight downtrend was observed in the 4-d IC50 of Cd(2+) at increasing H(+) concentrations, but this tendency was not consistent and statistically significant (p = 0.07) over the whole range. The overall variations of Cd-toxicity within the tested Na(+), K(+), Ca(2+) and Mg(2+) concentration ranges were relatively small and not statistically significant. 80 % of lettuce REI by Cd could be explained using both TMM and FIAM instead of BLM in the present study. Thus, the mechanistically underpinned models for soil quality guidelines should be developed on a metal-specific basis across different exposure conditions. PMID:24510448

  4. Modeling flexible active nematics

    NASA Astrophysics Data System (ADS)

    Varga, Michael; Selinger, Robin

    We study active nematic phases of self-propelled flexible chains in two dimensions using computer simulation, to investigate effects of chain flexibility. In a ``dry'' phase of self-propelled flexible chains, we find that increasing chain stiffness enhances orientational order and correlation length, narrows the distribution of turning angles, increases persistence length, and increases the magnitude of giant density fluctuations. We further adapt the simulation model to describe behavior of microtubules driven by kinesin molecular motors in two different environments: on a rigid substrate with kinesin immobilized on the surface; and on a lipid membrane where kinesin is bonded to lipid head groups and can diffuse. Results are compared to experiments by L. Hirst and J. Xu. Lastly, we consider active nematics of flexible particles enclosed in soft, deformable encapsulation in two dimensions, and demonstrate novel mechanisms of pattern formation that are fundamentally different from those observed in bulk. Supported by NSF-DMR 1409658.

  5. Oriented active shape models.

    PubMed

    Liu, Jiamin; Udupa, Jayaram K

    2009-04-01

    Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks

  6. Global Modeling Activities and NAME

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Atlas, Robert (Technical Monitor)

    2002-01-01

    In this talk I will review global modeling activities in the United States that could contribute to and benefit from NAME activities. I will present some preliminary results from several global atmospheric general circulation model simulation experiments for the initial NAME model intercomparison project period of May-Oct 1990. These include an ensemble of medium resolution simulations, and a high resolution (one half degree) simulation. I will also discuss possible high resolution global data assimilation experiments that could be used to help validate the model simulations and assimilate planned NAME observations.

  7. Modeling approaches for active systems

    NASA Astrophysics Data System (ADS)

    Herold, Sven; Atzrodt, Heiko; Mayer, Dirk; Thomaier, Martin

    2006-03-01

    To solve a wide range of vibration problems with the active structures technology, different simulation approaches for several models are needed. The selection of an appropriate modeling strategy is depending, amongst others, on the frequency range, the modal density and the control target. An active system consists of several components: the mechanical structure, at least one sensor and actuator, signal conditioning electronics and the controller. For each individual part of the active system the simulation approaches can be different. To integrate the several modeling approaches into an active system simulation and to ensure a highly efficient and accurate calculation, all sub models must harmonize. For this purpose, structural models considered in this article are modal state-space formulations for the lower frequency range and transfer function based models for the higher frequency range. The modal state-space formulations are derived from finite element models and/or experimental modal analyses. Consequently, the structure models which are based on transfer functions are directly derived from measurements. The transfer functions are identified with the Steiglitz-McBride iteration method. To convert them from the z-domain to the s-domain a least squares solution is implemented. An analytical approach is used to derive models of active interfaces. These models are transferred into impedance formulations. To couple mechanical and electrical sub-systems with the active materials, the concept of impedance modeling was successfully tested. The impedance models are enhanced by adapting them to adequate measurements. The controller design strongly depends on the frequency range and the number of modes to be controlled. To control systems with a small number of modes, techniques such as active damping or independent modal space control may be used, whereas in the case of systems with a large number of modes or with modes that are not well separated, other control

  8. A Home Production Activity Model.

    ERIC Educational Resources Information Center

    Beutler, Ivan F.; Owen, Alma J.

    1980-01-01

    The family is examined as a focal unit of production and a home production activity model is developed. An interdisciplinary approach is used which puts the broad range of family activities on a continuum from production to consumption. (Author/SK)

  9. Computational models of epileptiform activity.

    PubMed

    Wendling, Fabrice; Benquet, Pascal; Bartolomei, Fabrice; Jirsa, Viktor

    2016-02-15

    We reviewed computer models that have been developed to reproduce and explain epileptiform activity. Unlike other already-published reviews on computer models of epilepsy, the proposed overview starts from the various types of epileptiform activity encountered during both interictal and ictal periods. Computational models proposed so far in the context of partial and generalized epilepsies are classified according to the following taxonomy: neural mass, neural field, detailed network and formal mathematical models. Insights gained about interictal epileptic spikes and high-frequency oscillations, about fast oscillations at seizure onset, about seizure initiation and propagation, about spike-wave discharges and about status epilepticus are described. This review shows the richness and complementarity of the various modeling approaches as well as the fruitful contribution of the computational neuroscience community in the field of epilepsy research. It shows that models have progressively gained acceptance and are now considered as an efficient way of integrating structural, functional and pathophysiological data about neural systems into "coherent and interpretable views". The advantages, limitations and future of modeling approaches are discussed. Perspectives in epilepsy research and clinical epileptology indicate that very promising directions are foreseen, like model-guided experiments or model-guided therapeutic strategy, among others. PMID:25843066

  10. Modeling Cytoskeletal Active Matter Systems

    NASA Astrophysics Data System (ADS)

    Blackwell, Robert

    Active networks of filamentous proteins and crosslinking motor proteins play a critical role in many important cellular processes. One of the most important microtubule-motor protein assemblies is the mitotic spindle, a self-organized active liquid-crystalline structure that forms during cell division and that ultimately separates chromosomes into two daughter cells. Although the spindle has been intensively studied for decades, the physical principles that govern its self-organization and function remain mysterious. To evolve a better understanding of spindle formation, structure, and dynamics, I investigate course-grained models of active liquid-crystalline networks composed of microtubules, modeled as hard spherocylinders, in diffusive equilibrium with a reservoir of active crosslinks, modeled as hookean springs that can adsorb to microtubules and and translocate at finite velocity along the microtubule axis. This model is investigated using a combination of brownian dynamics and kinetic monte carlo simulation. I have further refined this model to simulate spindle formation and kinetochore capture in the fission yeast S. pombe. I then make predictions for experimentally realizable perturbations in motor protein presence and function in S. pombe.

  11. Modeling Activities in Earth Science

    NASA Astrophysics Data System (ADS)

    Malone, Kathy

    2014-05-01

    Students usually find science to be quite abstract. This is especially true of disciplines like Earth Science where it is difficult for the students to conduct and design hands-on experiments in areas such as Plate Tectonics that would allow them to develop predictive models. In the United States the new Next Generation Science Standards explicitly requires students to experience the science disciplines via modeling based activities. This poster presentation will discuss an activity that demonstrates how modeling, plate tectonics and student discourse converge in the earth science classroom. The activities featured on the poster will include using cardboard and shaving cream to demonstrate convergent plate boundaries, a Milky Way candy bar to demonstrate divergent boundaries and silly putty to demonstrate a strike slip boundary. I will discuss how students report back to the group about the findings from the lab and the techniques that can be used to heighten the student discourse. The activities outlined in this poster were originally designed for a middle school Earth Science class by Suzi Shoemaker for a graduate thesis at Arizona State University.

  12. On Modelling Minimal Disease Activity

    PubMed Central

    Jackson, Christopher H.; Su, Li; Gladman, Dafna D.

    2016-01-01

    Objective To explore methods for statistical modelling of minimal disease activity (MDA) based on data from intermittent clinic visits. Methods The analysis was based on a 2‐state model. Comparisons were made between analyses based on “complete case” data from visits at which MDA status was known, and the use of hidden model methodology that incorporated information from visits at which only some MDA defining criteria could be established. Analyses were based on an observational psoriatic arthritis cohort. Results With data from 856 patients and 7,024 clinic visits, analysis was based on virtually all visits, although only 62.6% provided enough information to determine MDA status. Estimated mean times for an episode of MDA varied from 4.18 years to 3.10 years, with smaller estimates derived from the hidden 2‐state model analysis. Over a 10‐year period, the estimated expected times spent in MDA episodes of longer than 1 year was 3.90 to 4.22, and the probability of having such an MDA episode was estimated to be 0.85 to 0.91, with longer times and greater probabilities seen with the hidden 2‐state model analysis. Conclusion A 2‐state model provides a useful framework for the analysis of MDA. Use of data from visits at which MDA status can not be determined provide more precision, and notable differences are seen in estimated quantities related to MDA episodes based on complete case and hidden 2‐state model analyses. The possibility of bias, as well as loss of precision, should be recognized when complete case analyses are used. PMID:26315478

  13. Using Active Modeling in Counterterrorism

    NASA Astrophysics Data System (ADS)

    Su, Yi-Jen; Jiau, Hewijin C.; Tsai, Shang-Rong

    Terrorist organizations attain their goals by attacking various targets to jeopardize human lives and intimidate governments. As new terrorist attacks almost always aim to break the mold of old plots, tracing the dynamic behaviors of terrorists becomes crucial to national defense. This paper proposes using active modeling in analyzing unconventional attacks in the design of counterterrorism system. The intelligent terrorism detection system not only detects potential threats by monitoring terrorist networks with identified threat patterns, but also continually integrates new threat features in terrorist behaviors and the varying relationships among terrorists.

  14. 24 CFR 1006.225 - Model activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Model activities. 1006.225 Section... NATIVE HAWAIIAN HOUSING BLOCK GRANT PROGRAM Eligible Activities § 1006.225 Model activities. NHHBG funds may be used for housing activities under model programs that are: (a) Designed to carry out...

  15. 24 CFR 1006.225 - Model activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Model activities. 1006.225 Section... NATIVE HAWAIIAN HOUSING BLOCK GRANT PROGRAM Eligible Activities § 1006.225 Model activities. NHHBG funds may be used for housing activities under model programs that are: (a) Designed to carry out...

  16. 24 CFR 1006.225 - Model activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Model activities. 1006.225 Section... NATIVE HAWAIIAN HOUSING BLOCK GRANT PROGRAM Eligible Activities § 1006.225 Model activities. NHHBG funds may be used for housing activities under model programs that are: (a) Designed to carry out...

  17. 24 CFR 1006.225 - Model activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Model activities. 1006.225 Section... NATIVE HAWAIIAN HOUSING BLOCK GRANT PROGRAM Eligible Activities § 1006.225 Model activities. NHHBG funds may be used for housing activities under model programs that are: (a) Designed to carry out...

  18. 24 CFR 1006.225 - Model activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Model activities. 1006.225 Section... NATIVE HAWAIIAN HOUSING BLOCK GRANT PROGRAM Eligible Activities § 1006.225 Model activities. NHHBG funds may be used for housing activities under model programs that are: (a) Designed to carry out...

  19. Wanted: Active Role Models for Today's Kids

    MedlinePlus

    ... this page please turn Javascript on. Feature: Reducing Childhood Obesity Wanted: Active Role Models for Today's Kids Past ... the active role models they can get. "With childhood obesity at an all-time high, we need to ...

  20. Discursive Positionings and Emotions in Modelling Activities

    ERIC Educational Resources Information Center

    Daher, Wajeeh

    2015-01-01

    Mathematical modelling is suggested as an activity through which students engage in meaningful mathematics. In the current research, the modelling activity of a group of four seventh-grade students was analysed using the discursive analysis framework. The research findings show that the positionings and emotions of the group members during their…

  1. Deterministic Modelling of BAK Activation Kinetics

    NASA Astrophysics Data System (ADS)

    Grills, C.; Chacko, A.; Crawford, N.; Johnston, P. G.; Fennell, D. A.; O'Rourke, S. F. C.

    2009-08-01

    The molecular mechanism underlying mitochondrial BAK activation during apoptosis remains highly controversial. Two seemingly conflicting models have been proposed. In the activation model, BAK requires so-called activating BH3 only proteins (aBH3) to initiate its conformation change. In the other, displacement from inhibitory pro-survival BCL-2 proteins (PBPs) and monomerization of BAK by PBP restricted dissociator BH3-only proteins (dBH3) is sufficient. To better understand the kinetic implications of these models and reconcile these conflicting but highly evidence-based models, we have employed dynamical systems analysis to explore the kinetics underlying BAK activation as a non-linear reaction system. Our findings accommodate both pure agonism and dissociation as mutually exclusive mechanisms capable of initiating BAK activation. In addition we find our work supports a modelling based approach for predicting resistance to therapeutically relevant small molecules BH3 mimetics.

  2. Modelling Typical Online Language Learning Activity

    ERIC Educational Resources Information Center

    Montoro, Carlos; Hampel, Regine; Stickler, Ursula

    2014-01-01

    This article presents the methods and results of a four-year-long research project focusing on the language learning activity of individual learners using online tasks conducted at the University of Guanajuato (Mexico) in 2009-2013. An activity-theoretical model (Blin, 2010; Engeström, 1987) of the typical language learning activity was used to…

  3. Evaluating a Model of Youth Physical Activity

    ERIC Educational Resources Information Center

    Heitzler, Carrie D.; Lytle, Leslie A.; Erickson, Darin J.; Barr-Anderson, Daheia; Sirard, John R.; Story, Mary

    2010-01-01

    Objective: To explore the relationship between social influences, self-efficacy, enjoyment, and barriers and physical activity. Methods: Structural equation modeling examined relationships between parent and peer support, parent physical activity, individual perceptions, and objectively measured physical activity using accelerometers among a…

  4. Associative memory model with spontaneous neural activity

    NASA Astrophysics Data System (ADS)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  5. Structural models for nickel electrode active mass

    NASA Technical Reports Server (NTRS)

    Cornilsen, B. C.; Karjala, P. J.; Loyselle, P. L.

    1988-01-01

    Raman spectroscopic data allow one to distinguish nickel electrode active mass, alpha and beta phase materials. Discharges active mass is not isostructural with beta-Ni(OH)2. This is contrary to the generally accepted model for the discharged beta phase of active mass. It is concluded that charged active mass displays a disordered and nonstoichiometric, nonclose packed structure of the R3 bar m, NiOOH structure type. Raman spectral data and X ray diffraction data are analyzed and shown to be consistent with this structural model.

  6. Structural models for nickel electrode active mass

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.; Karjala, P. J.; Loyselle, P. L.

    1987-01-01

    Raman spectroscopic data allow one to distinguish nickel electrode active mass, alpha and beta phase materials. Discharges active mass is not isostructural with beta-Ni(OH)2. This is contrary to the generally accepted model for the discharged beta phase of active mass. It is concluded that charged active mass displays a disordered and nonstoichiometric, nonclose packed structure of the R3 bar m, NiOOH structure type. Raman spectral data and x ray diffraction data are analyzed and shown to be consistent with this structural model.

  7. Discursive positionings and emotions in modelling activities

    NASA Astrophysics Data System (ADS)

    Daher, Wajeeh

    2015-11-01

    Mathematical modelling is suggested as an activity through which students engage in meaningful mathematics. In the current research, the modelling activity of a group of four seventh-grade students was analysed using the discursive analysis framework. The research findings show that the positionings and emotions of the group members during their participation in the modelling activity changed as the activity proceeded. Overall, it can be said that three of the four group members acted as insiders, while the fourth acted as an outsider, and only, towards the end of the group's work on the activity, he acted as an insider. Moreover, the research findings point at four factors that affected the group members' positionings and emotions during the modelling activity: the member's characteristics, the member's history of learning experiences, the activity characteristics and the modelling phases. Furthermore, the different positionings of the group members in the different modelling phases were accompanied by different emotions experienced by them, where being an insider and a collaborator resulted in positive emotions, while being an outsider resulted in negative emotions.

  8. Fluxon Modeling of Active Region Evolution

    NASA Astrophysics Data System (ADS)

    Deforest, C. E.; Kankelborg, C. C.; Davey, A. R.; Rachmeler, L.

    2006-12-01

    We present current results and status on fluxon modeling of free energy buildup and release in active regions. Our publicly available code, FLUX, has the unique ability to track magnetic energy buildup with a truly constrained topology in evolving, nonlinear force-free conditions. Recent work includes validation of the model against Low &Lou force-free field solutions, initial evolution studies of idealized active regions, and inclusion of locally parameterized reconnection into the model. FLUX is uniquely able to simulate complete active regions in 3-D on a single workstation; we estimate that a parallelized fluxon model, together with computer vision code to ingest solar data, could run faster than real time on a cluster of \\textasciitilde 30 CPUs and hence provide a true predictive space weather model in the style of predictive simulations of terrestrial weather.

  9. Investigating Nitrogen Pollution: Activities and Models.

    ERIC Educational Resources Information Center

    Green Teacher, 2000

    2000-01-01

    Introduces activities on nitrogen, nitrogen pollution from school commuters, nitrogen response in native and introduced species, and nutrient loading models. These activities help students determine the nitrogen contribution from their parents' cars, test native plant responses to nitrogen, and experiment with the results of removing water from…

  10. Modeling Sexual Activity among Schoolgirls in Zambia.

    ERIC Educational Resources Information Center

    Pillai, Vijayan K.; Gupta, Rashmi

    2000-01-01

    Proposes a model of sexual activity among secondary school-going Zambian girls. Identifies the role of dating as an intervening variable in explaining the variation in sexual activity among teenagers. Schools are an important setting for the young to meet and initiate sexual relationships. Theoretical and policy implications are discussed.…

  11. Modelling the Active Hearing Process in Mosquitoes

    NASA Astrophysics Data System (ADS)

    Avitabile, Daniele; Homer, Martin; Jackson, Joe; Robert, Daniel; Champneys, Alan

    2011-11-01

    A simple microscopic mechanistic model is described of the active amplification within the Johnston's organ of the mosquito species Toxorhynchites brevipalpis. The model is based on the description of the antenna as a forced-damped oscillator coupled to a set of active threads (ensembles of scolopidia) that provide an impulsive force when they twitch. This twitching is in turn controlled by channels that are opened and closed if the antennal oscillation reaches a critical amplitude. The model matches both qualitatively and quantitatively with recent experiments. New results are presented using mathematical homogenization techniques to derive a mesoscopic model as a simple oscillator with nonlinear force and damping characteristics. It is shown how the results from this new model closely resemble those from the microscopic model as the number of threads approach physiologically correct values.

  12. A Kinetic Model of Active Extensile Bundles

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel; Chakraborty, Bulbul; Baskaran, Aparna

    Recent experiments in active filament networks reveal interesting rheological properties (Dan Chen: APS March Meeting 2015 D49.00001). This system consumes ATP to produce an extensile motion in bundles of microtubules. This extension then leads to self generated stresses and spontaneous flows. We propose a minimal model where the activity is modeled by self-extending bundles that are part of a cross linked network. This network can reorganize itself through buckling of extending filaments and merging events that alter the topology of the network. We numerically simulate this minimal kinetic model and examine the emergent rheological properties and determine how stresses are generated by the extensile activity. We will present results that focus on the effects of confinement and network connectivity of the bundles on stress fluctuations and response of an active gel.

  13. Multiharmonic model of seismic activity in Kamchatka

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.; Valeev, S. G.; Faskhutdinova, V. A.

    2010-12-01

    Based on the uniform catalogue of earthquakes of the minimum energy class 8.5 for 1962-2008, multiharmonic models of seismic activity in Kamchatka are developed. The main harmonic components with periods from a few days to 12 years are identified. Both the entire catalogue and its modified versions obtained by the elimination of aftershocks and clusters, as well as nonoverlapping time series were used to study the stability of the models. The forward-prediction testing showed that in the models with weekly averaged initial data, periods of increased and reduced seismic activity lasting for several weeks are predicted with high confidence on an interval of up to 1.8% of the education period. This testifies for the presence of deterministic components in the seismic activity.

  14. Activity of a social dynamics model

    NASA Astrophysics Data System (ADS)

    Reia, Sandro M.; Neves, Ubiraci P. C.

    2015-10-01

    Axelrod's model was proposed to study interactions between agents and the formation of cultural domains. It presents a transition from a monocultural to a multicultural steady state which has been studied in the literature by evaluation of the relative size of the largest cluster. In this article, we propose new measurements based on the concept of activity per agent to study the Axelrod's model on the square lattice. We show that the variance of system activity can be used to indicate the critical points of the transition. Furthermore the frequency distribution of the system activity is able to show a coexistence of phases typical of a first order phase transition. Finally, we verify a power law dependence between cluster activity and cluster size for multicultural steady state configurations at the critical point.

  15. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  16. The Seasons Explained by Refutational Modeling Activities

    ERIC Educational Resources Information Center

    Frede, Valerie

    2008-01-01

    This article describes the principles and investigation of a small-group laboratory activity based on refutational modeling to teach the concept of seasons to preservice elementary teachers. The results show that these teachers improved significantly when they had to refute their initial misconceptions practically. (Contains 8 figures and 1 table.)

  17. Modeling activity rhythms in fiddler crabs.

    PubMed

    Dugaw, Christopher J; Honeyfield, Rebecca; Taylor, Caz M; Verzi, Diana W

    2009-10-01

    Burrowing crabs of the genus Uca inhabit tidal mudflats and beaches. They feed actively during low tide and remain in their burrows when the tide is high. The timing of this activity has been shown to persist in the absence of external light and tidal cues, indicating the presence of an internal timing mechanism. Researchers report the persistence of several variations in locomotor activity under laboratory conditions that cannot be explained by a single circatidal clock. Previous studies supported two alternative hypotheses: the presence of either two circalunidian clocks, or a circadian and circatidal clock to regulate these activity rhythms. In this paper, we formulate mathematical models to describe and test these hypotheses. The models suggested by the literature contain some important differences beyond the frequency of proposed clocks, and these are reflected in the mathematical formulations and simulation results. One hypothesis suggests independent phase oscillators, while the other hypothesis suggests that they are coupled in anti-phase. Neither model is able to recover all of the variations in locomotor acitivity observed under laboratory conditions. However, we propose a new model that incorporates aspects of both existing hypotheses and is able to reproduce all laboratory observations. PMID:19916836

  18. Using Hybrid Modeling to Develop Innovative Activities

    ERIC Educational Resources Information Center

    Lichtman, Brenda; Avans, Diana

    2005-01-01

    This article describes a hybrid activities model that physical educators can use with students in grades four and above to create virtually a limitless array of novel games. A brief introduction to the basic theory is followed by descriptions of some hybrid games. Hybrid games are typically the result of merging two traditional sports or other…

  19. Phase Transitions in Model Active Systems

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  20. Models of Impulsively Heated Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Klimchuk, J.

    2009-05-01

    A number of attempts to model solar active regions with steady coronal heating have been modestly successful at reproducing the observed soft X-ray emission, but they fail dramatically at explaining EUV observations. Since impulsive heating (nanoflare) models can reproduce individual EUV loops, it seems reasonable to consider that entire active regions are impulsively heated. However, nanoflares are characterized by many parameters, such as magnitude, duration, and time delay between successive events, and these parameters may depend on the strength of the magnetic field or the length of field lines, for example, so a wide range of active region models must be examined. We have recently begun such a study. Each model begins with a magnetic "skeleton” obtained by extrapolating an observed photospheric magnetogram into the corona. Field lines are populated with plasma using our highly efficient hydro code called Enthalpy Based Thermal Evolution of Loops (EBTEL). We then produce synthetic images corresponding to emission line or broad-band observations. By determining which set of nanoflare parameters best reproduces actual observations, we hope to constrain the properties of the heating and ultimately to reveal the physical mechanism. We here report on the initial progress of our study.

  1. Modeling neural activity with cumulative damage distributions.

    PubMed

    Leiva, Víctor; Tejo, Mauricio; Guiraud, Pierre; Schmachtenberg, Oliver; Orio, Patricio; Marmolejo-Ramos, Fernando

    2015-10-01

    Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum-Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum-Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data. PMID:25998210

  2. The activity-based anorexia mouse model.

    PubMed

    Klenotich, Stephanie J; Dulawa, Stephanie C

    2012-01-01

    Animals housed with running wheels and subjected to daily food restriction show paradoxical reductions in food intake and increases in running wheel activity. This phenomenon, known as activity-based anorexia (ABA), leads to marked reductions in body weight that can ultimately lead to death. Recently, ABA has been proposed as a model of anorexia nervosa (AN). AN affects about 8 per 100,000 females and has the highest mortality rate among all psychiatric illnesses. Given the reductions in quality of life, high mortality rate, and the lack of pharmacological treatments for AN, a better understanding of the mechanisms underlying AN-like behavior is greatly needed. This chapter provides basic guidelines for conducting ABA experiments using mice. The ABA mouse model provides an important tool for investigating the neurobiological underpinnings of AN-like behavior and identifying novel treatments. PMID:22231828

  3. Active walker models: tracks and landscapes

    NASA Astrophysics Data System (ADS)

    Kayser, D. R.; Aberle, L. K.; Pochy, R. D.; Lam, L.

    1992-12-01

    The track patterns from the active walker models (AWMs) are compared with experimental retinal neuron and dielectric breakdown of liquid patterns, respectively. Excellent qualitative and quantitative agreements are obtained. The landscapes from the Boltzmann AWM in 1 + 1 dimensions form rough surfaces, with a first-order phase transition as the height of the landscaping function W0 is varied. Landscapes and statistics of the tracks from the probabilistic AWM in 2 + 1 dimensions are presented.

  4. Modeling of an Active Tablet Coating Process.

    PubMed

    Toschkoff, Gregor; Just, Sarah; Knop, Klaus; Kleinebudde, Peter; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes G

    2015-12-01

    Tablet coating is a common unit operation in the pharmaceutical industry, during which a coating layer is applied to tablet cores. The coating uniformity of tablets in a batch is especially critical for active coating, that is, coating that contains an active pharmaceutical ingredient. In recent years, discrete element method (DEM) simulations became increasingly common for investigating tablet coating. In this work, DEM was applied to model an active coating process as closely as possible, using measured model parameters and non-spherical particles. We studied how operational conditions (rotation speed, fill level, number of nozzles, and spray rate) influence the coating uniformity. To this end, simulation runs were planned and interpreted according to a statistical design of (simulation) experiments. Our general goal was to achieve a deeper understanding of the process in terms of residence times and dimensionless scaling laws. With that regard, the results were interpreted in light of analytical models. The results were presented at various detail levels, ranging from an overview of all variations to in-depth considerations. It was determined that the biggest uniformity improvement in a realistic setting was achieved by increasing the number of spray nozzles, followed by increasing the rotation speed and decreasing the fill level. PMID:26344941

  5. On a Quantum Model of Brain Activities

    NASA Astrophysics Data System (ADS)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2010-01-01

    One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.

  6. Activated Dynamics in Dense Model Nanocomposites

    NASA Astrophysics Data System (ADS)

    Xie, Shijie; Schweizer, Kenneth

    The nonlinear Langevin equation approach is applied to investigate the ensemble-averaged activated dynamics of small molecule liquids (or disconnected segments in a polymer melt) in dense nanocomposites under model isobaric conditions where the spherical nanoparticles are dynamically fixed. Fully thermalized and quenched-replica integral equation theory methods are employed to investigate the influence on matrix dynamics of the equilibrium and nonequilibrium nanocomposite structure, respectively. In equilibrium, the miscibility window can be narrow due to depletion and bridging attraction induced phase separation which limits the study of activated dynamics to regimes where the barriers are relatively low. In contrast, by using replica integral equation theory, macroscopic demixing is suppressed, and the addition of nanoparticles can induce much slower activated matrix dynamics which can be studied over a wide range of pure liquid alpha relaxation times, interfacial attraction strengths and ranges, particle sizes and loadings, and mixture microstructures. Numerical results for the mean activated relaxation time, transient localization length, matrix elasticity and kinetic vitrification in the nanocomposite will be presented.

  7. Unsteady aerodynamic modeling and active aeroelastic control

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

  8. CFD Modeling for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.

    2001-01-01

    This presentation describes current work under UEET Active Flow Control CFD Research Tool Development. The goal of this work is to develop computational tools for inlet active flow control design. This year s objectives were to perform CFD simulations of fully gridded vane vortex generators, micro-vortex genera- tors, and synthetic jets, and to compare flowfield results with wind tunnel tests of simple geometries with flow control devices. Comparisons are shown for a single micro-vortex generator on a flat plate, and for flow over an expansion ramp with sidewall effects. Vortex core location, pressure gradient and oil flow patterns are compared between experiment and computation. This work lays the groundwork for evaluating simplified modeling of arrays of devices, and provides the opportunity to test simple flow control device/sensor/ control loop interaction.

  9. Quantitative modeling of multiscale neural activity

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Rennie, Christopher J.

    2007-01-01

    The electrical activity of the brain has been observed for over a century and is widely used to probe brain function and disorders, chiefly through the electroencephalogram (EEG) recorded by electrodes on the scalp. However, the connections between physiology and EEGs have been chiefly qualitative until recently, and most uses of the EEG have been based on phenomenological correlations. A quantitative mean-field model of brain electrical activity is described that spans the range of physiological and anatomical scales from microscopic synapses to the whole brain. Its parameters measure quantities such as synaptic strengths, signal delays, cellular time constants, and neural ranges, and are all constrained by independent physiological measurements. Application of standard techniques from wave physics allows successful predictions to be made of a wide range of EEG phenomena, including time series and spectra, evoked responses to stimuli, dependence on arousal state, seizure dynamics, and relationships to functional magnetic resonance imaging (fMRI). Fitting to experimental data also enables physiological parameters to be infered, giving a new noninvasive window into brain function, especially when referenced to a standardized database of subjects. Modifications of the core model to treat mm-scale patchy interconnections in the visual cortex are also described, and it is shown that resulting waves obey the Schroedinger equation. This opens the possibility of classical cortical analogs of quantum phenomena.

  10. Theory and modeling of active brazing.

    SciTech Connect

    van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B.; Givler, Richard C.

    2013-09-01

    Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, most are difficult to access by experiment. To improve the control over the brazing process, one requires a better understanding of the melting of the active braze, rate of the chemical reaction, reactant and product diffusion rates, nonequilibrium composition-dependent surface tension as well as the viscosity. This report identifies ways in which modeling and theory can assist in improving our understanding.

  11. Active State Model for Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  12. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Active Control Design Applications

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1998-01-01

    This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  13. Modeling active memory: Experiment, theory and simulation

    NASA Astrophysics Data System (ADS)

    Amit, Daniel J.

    2001-06-01

    Neuro-physiological experiments on cognitively performing primates are described to argue that strong evidence exists for localized, non-ergodic (stimulus specific) attractor dynamics in the cortex. The specific phenomena are delay activity distributions-enhanced spike-rate distributions resulting from training, which we associate with working memory. The anatomy of the relevant cortex region and the physiological characteristics of the participating elements (neural cells) are reviewed to provide a substrate for modeling the observed phenomena. Modeling is based on the properties of the integrate-and-fire neural element in presence of an input current of Gaussian distribution. Theory of stochastic processes provides an expression for the spike emission rate as a function of the mean and the variance of the current distribution. Mean-field theory is then based on the assumption that spike emission processes in different neurons in the network are independent, and hence the input current to a neuron is Gaussian. Consequently, the dynamics of the interacting network is reduced to the computation of the mean and the variance of the current received by a cell of a given population in terms of the constitutive parameters of the network and the emission rates of the neurons in the different populations. Within this logic we analyze the stationary states of an unstructured network, corresponding to spontaneous activity, and show that it can be stable only if locally the net input current of a neuron is inhibitory. This is then tested against simulations and it is found that agreement is excellent down to great detail. A confirmation of the independence hypothesis. On top of stable spontaneous activity, keeping all parameters fixed, training is described by (Hebbian) modification of synapses between neurons responsive to a stimulus and other neurons in the module-synapses are potentiated between two excited neurons and depressed between an excited and a quiescent neuron

  14. Modeling Criminal Activity in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Brantingham, Patricia; Glässer, Uwe; Jackson, Piper; Vajihollahi, Mona

    Computational and mathematical methods arguably have an enormous potential for serving practical needs in crime analysis and prevention by offering novel tools for crime investigations and experimental platforms for evidence-based policy making. We present a comprehensive formal framework and tool support for mathematical and computational modeling of criminal behavior to facilitate systematic experimental studies of a wide range of criminal activities in urban environments. The focus is on spatial and temporal aspects of different forms of crime, including opportunistic and serial violent crimes. However, the proposed framework provides a basis to push beyond conventional empirical research and engage the use of computational thinking and social simulations in the analysis of terrorism and counter-terrorism.

  15. A model of dispenser cathode activity

    NASA Astrophysics Data System (ADS)

    Lamartine, B. C.; Eyink, K. G.; Czarnecki, J. V.; Lampert, W. V.; Haas, T. W.

    1985-12-01

    A semiquantitative model of dispenser cathode activity based on recent work on the co-adsorption of Ba and O onto W surfaces is presented. The co-adsorption studies have determined the shape of a three-dimensional surface of work function as a function of θO and θBa, the surface coverages of O and Ba, respectively. Compositions of a variety of pedigreed dispenser cathodes were fitted to this surface and their composition changes during lifetime were modeled. Changes of surface composition with temperature and of workfunction, φ, with temperature were also found to fit these curves. The concept of a patchy surface implied by the co-adsorption measurements was used to explain earlier results on the shape of the X-ray excited Ba MNN Auger feature. Finally, SIMS measurements under UHV conditions was found to provide an extremely sensitive measurement of surface composition in the region of surface coverages of interest in the study of cathode phenomena. Extensions of this work to other types of cathodes such as M-types, and rhenium substrate cathodes is also discussed.

  16. Toward a model of neuropsychological activity.

    PubMed

    Ardila, A; Galeano, L M; Rosselli, M

    1998-12-01

    The main purpose of this research was to establish the intercorrelations existing among different psychological and neuropsychological test scores in a normal and homogeneous population. A second purpose was to attempt further step in the component analysis of cognitive activity measured by means of neuropsychological tests. A comprehensive neuropsychological test battery was assembled and individually administered to a 300-subject sample, aged 17-25 year-old. All of them were right-handed male university students. The battery included some basic neuropsychological tests directed to assess language, calculation abilities, spatial cognition, praxic abilities, memory, perceptual abilities, and executive functions. In addition, the Wechsler Adult Intelligence Scale was administered. Forty-one different scores were calculated. Correlations among the different test scores were analyzed. It was found that some of the tests presented a quite complex intecorrelation system, whereas other tests presented few or no significant correlations. Mathematical ability tests and orthography knowledge represented the best predictors of Full Scale IQ. A factor analysis with varimax rotation disclosed five factors (verbal, visuoperceptual, executive function, fine movements, and memory) accounting for 63.6% of the total variance. Implications of these results for a neuropsychological model about brain organization of cognition were analyzed. PMID:9951709

  17. Aligning Learning Activities with Instructional Models

    ERIC Educational Resources Information Center

    Gurvitch, Rachel; Metzler, Michael

    2013-01-01

    Model-based instruction has been increasingly used in physical education for the past two decades. Metzler (2011) identified eight instructional models that are commonly used in physical education today. Each model is designed to promote certain kinds of learning outcomes for students and to address different combinations of the national…

  18. Supporting Students' Knowledge Transfer in Modeling Activities

    ERIC Educational Resources Information Center

    Piksööt, Jaanika; Sarapuu, Tago

    2014-01-01

    This study investigates ways to enhance secondary school students' knowledge transfer in complex science domains by implementing question prompts. Two samples of students applied two web-based models to study molecular genetics--the model of genetic code (n = 258) and translation (n = 245). For each model, the samples were randomly divided into…

  19. NASA GSFC CCMC Recent Model Validation Activities

    NASA Technical Reports Server (NTRS)

    Rastaetter, L.; Pulkkinen, A.; Taktakishvill, A.; Macneice, P.; Shim, J. S.; Zheng, Yihua; Kuznetsova, M. M.; Hesse, M.

    2012-01-01

    The Community Coordinated Modeling Center (CCMC) holds the largest assembly of state-of-the-art physics-based space weather models developed by the international space physics community. In addition to providing the community easy access to these modern space research models to support science research, its another primary goal is to test and validate models for transition from research to operations. In this presentation, we provide an overview of the space science models available at CCMC. Then we will focus on the community-wide model validation efforts led by CCMC in all domains of the Sun-Earth system and the internal validation efforts at CCMC to support space weather servicesjoperations provided its sibling organization - NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov). We will also discuss our efforts in operational model validation in collaboration with NOAA/SWPC.

  20. Distributed activation energy model parameters of some Turkish coals

    SciTech Connect

    Gunes, M.; Gunes, S.K.

    2008-07-01

    A multi-reaction model based on distributed activation energy has been applied to some Turkish coals. The kinetic parameters of distributed activation energy model were calculated via computer program developed for this purpose. It was observed that the values of mean of activation energy distribution vary between 218 and 248 kJ/mol, and the values of standard deviation of activation energy distribution vary between 32 and 70 kJ/mol. The correlations between kinetic parameters of the distributed activation energy model and certain properties of coal have been investigated.

  1. Modelling an actively-cooled CPV system

    NASA Astrophysics Data System (ADS)

    Buonomano, A.; Mittelman, G.; Faiman, D.; Biryukov, S.; Melnichak, V.; Bukobza, D.; Kabalo, S.

    2012-10-01

    We have constructed a 7-node, 1-dimensional model of the heat flow in a water-cooled CPV receiver. The model is validated against data from a module exposed to solar irradiance at various concentrations up to 1,000X at the PETAL solar dish facility at Sede Boqer.

  2. CFD Modeling Activities at the NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel

    2007-01-01

    A viewgraph presentation on NASA Stennis Space Center's Computational Fluid Dynamics (CFD) Modeling activities is shown. The topics include: 1) Overview of NASA Stennis Space Center; 2) Role of Computational Modeling at NASA-SSC; 3) Computational Modeling Tools and Resources; and 4) CFD Modeling Applications.

  3. Atmospheric transmittance model for photosynthetically active radiation

    SciTech Connect

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana; Pop, Nicolina; Calinoiu, Delia

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  4. The Role of Various Curriculum Models on Physical Activity Levels

    ERIC Educational Resources Information Center

    Culpepper, Dean O.; Tarr, Susan J.; Killion, Lorraine E.

    2011-01-01

    Researchers have suggested that physical education curricula can be highly effective in increasing physical activity levels at school (Sallis & Owen, 1999). The purpose of this study was to investigate the impact of various curriculum models on physical activity. Total steps were measured on 1,111 subjects and three curriculum models were studied…

  5. Gaussian Process for Activity Modeling and Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Liao, W.; Rosenhahn, B.; Yang, M. Ying

    2015-08-01

    Complex activity modeling and identification of anomaly is one of the most interesting and desired capabilities for automated video behavior analysis. A number of different approaches have been proposed in the past to tackle this problem. There are two main challenges for activity modeling and anomaly detection: 1) most existing approaches require sufficient data and supervision for learning; 2) the most interesting abnormal activities arise rarely and are ambiguous among typical activities, i.e. hard to be precisely defined. In this paper, we propose a novel approach to model complex activities and detect anomalies by using non-parametric Gaussian Process (GP) models in a crowded and complicated traffic scene. In comparison with parametric models such as HMM, GP models are nonparametric and have their advantages. Our GP models exploit implicit spatial-temporal dependence among local activity patterns. The learned GP regression models give a probabilistic prediction of regional activities at next time interval based on observations at present. An anomaly will be detected by comparing the actual observations with the prediction at real time. We verify the effectiveness and robustness of the proposed model on the QMUL Junction Dataset. Furthermore, we provide a publicly available manually labeled ground truth of this data set.

  6. Ferromagnetic interaction model of activity level in workplace communication

    NASA Astrophysics Data System (ADS)

    Akitomi, Tomoaki; Ara, Koji; Watanabe, Jun-ichiro; Yano, Kazuo

    2013-03-01

    The nature of human-human interaction, specifically, how people synchronize with each other in multiple-participant conversations, is described by a ferromagnetic interaction model of people’s activity levels. We found two microscopic human interaction characteristics from a real-environment face-to-face conversation. The first characteristic is that people quite regularly synchronize their activity level with that of the other participants in a conversation. The second characteristic is that the degree of synchronization increases as the number of participants increases. Based on these microscopic ferromagnetic characteristics, a “conversation activity level” was modeled according to the Ising model. The results of a simulation of activity level based on this model well reproduce macroscopic experimental measurements of activity level. This model will give a new insight into how people interact with each other in a conversation.

  7. Intentional Development: A Model to Guide Lifelong Physical Activity

    ERIC Educational Resources Information Center

    Cherubini, Jeffrey M.

    2009-01-01

    Framed in the context of researching influences on physical activity and actually working with individuals and groups seeking to initiate, increase or maintain physical activity, the purpose of this review is to present the model of Intentional Development as a multi-theoretical approach to guide research and applied work in physical activity.…

  8. Oppositely directed waves of stellar activity in simple dynamo models

    NASA Astrophysics Data System (ADS)

    Tarbeeva, S. M.; Sokoloff, D. D.

    2016-07-01

    Excitations of two oppositely directed waves of stellar activity generated by two dynamo-active layers located in a single stellar hemisphere are examined using simple dynamo models. The domains of model parameters corresponding to various types and directions of the activity waves are found. It is shown that oppositely directed waves of activity are generated if the dynamo numbers have the same order of magnitude, ~105-106, but opposite signs. How frequently this case can be observed among real stars remains open to question. The report of oppositely directed waves of stellar activity in the literature is especially valuable in this connection.

  9. Bacteriophage: A Model System for Active Learning.

    ERIC Educational Resources Information Center

    Luciano, Carl S.; Young, Matthew W.; Patterson, Robin R.

    2002-01-01

    Describes a student-centered laboratory course in which student teams select phage from sewage samples and characterize the phage in a semester-long project that models real-life scientific research. Results of student evaluations indicate a high level of satisfaction with the course. (Author/MM)

  10. Testing a Theoretical Model of Immigration Transition and Physical Activity.

    PubMed

    Chang, Sun Ju; Im, Eun-Ok

    2015-01-01

    The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity. PMID:26502554

  11. CRAFFT: An Activity Prediction Model based on Bayesian Networks

    PubMed Central

    Nazerfard, Ehsan; Cook, Diane J.

    2014-01-01

    Recent advances in the areas of pervasive computing, data mining, and machine learning offer unique opportunities to provide health monitoring and assistance for individuals facing difficulties to live independently in their homes. Several components have to work together to provide health monitoring for smart home residents including, but not limited to, activity recognition, activity discovery, activity prediction, and prompting system. Compared to the significant research done to discover and recognize activities, less attention has been given to predict the future activities that the resident is likely to perform. Activity prediction components can play a major role in design of a smart home. For instance, by taking advantage of an activity prediction module, a smart home can learn context-aware rules to prompt individuals to initiate important activities. In this paper, we propose an activity prediction model using Bayesian networks together with a novel two-step inference process to predict both the next activity features and the next activity label. We also propose an approach to predict the start time of the next activity which is based on modeling the relative start time of the predicted activity using the continuous normal distribution and outlier detection. To validate our proposed models, we used real data collected from physical smart environments. PMID:25937847

  12. Representation of Dormant and Active Microbial Dynamics for Ecosystem Modeling

    SciTech Connect

    Wang, Gangsheng; Mayes, Melanie; Gu, Lianhong; Schadt, Christopher Warren

    2014-01-01

    Dormancy is an essential strategy for microorganisms to cope with environmental stress. However, global ecosystem models typically ignore microbial dormancy, resulting in notable model uncertainties. To facilitate the consideration of dormancy in these large-scale models, we propose a new microbial physiology component that works for a wide range of substrate availabilities. This new model is based on microbial physiological states and the major parameters are the maximum specific growth and maintenance rates of active microbes and the ratio of dormant to active maintenance rates. A major improvement of our model over extant models is that it can explain the low active microbial fractions commonly observed in undisturbed soils. Our new model shows that the exponentially-increasing respiration from substrate-induced respiration experiments can only be used to determine the maximum specific growth rate and initial active microbial biomass, while the respiration data representing both exponentially-increasing and non-exponentially-increasing phases can robustly determine a range of key parameters including the initial total live biomass, initial active fraction, the maximum specific growth and maintenance rates, and the half-saturation constant. Our new model can be incorporated into existing ecosystem models to account for dormancy in microbially-driven processes and to provide improved estimates of microbial activities.

  13. Model Eliciting Activities: Fostering 21st Century Learners

    ERIC Educational Resources Information Center

    Stohlmann, Micah

    2013-01-01

    Real world mathematical modeling activities can develop needed and valuable 21st century skills. The knowledge and skills to become adept at mathematical modeling need to develop over time and students in the elementary grades should have experiences with mathematical modeling. For this to occur elementary teachers need to have positive…

  14. A Multiscale Survival Process for Modeling Human Activity Patterns

    PubMed Central

    Zhang, Tianyang; Cui, Peng; Song, Chaoming; Zhu, Wenwu; Yang, Shiqiang

    2016-01-01

    Human activity plays a central role in understanding large-scale social dynamics. It is well documented that individual activity pattern follows bursty dynamics characterized by heavy-tailed interevent time distributions. Here we study a large-scale online chatting dataset consisting of 5,549,570 users, finding that individual activity pattern varies with timescales whereas existing models only approximate empirical observations within a limited timescale. We propose a novel approach that models the intensity rate of an individual triggering an activity. We demonstrate that the model precisely captures corresponding human dynamics across multiple timescales over five orders of magnitudes. Our model also allows extracting the population heterogeneity of activity patterns, characterized by a set of individual-specific ingredients. Integrating our approach with social interactions leads to a wide range of implications. PMID:27023682

  15. Stochastic modelling of muscle recruitment during activity.

    PubMed

    Martelli, Saulo; Calvetti, Daniela; Somersalo, Erkki; Viceconti, Marco

    2015-04-01

    Muscle forces can be selected from a space of muscle recruitment strategies that produce stable motion and variable muscle and joint forces. However, current optimization methods provide only a single muscle recruitment strategy. We modelled the spectrum of muscle recruitment strategies while walking. The equilibrium equations at the joints, muscle constraints, static optimization solutions and 15-channel electromyography (EMG) recordings for seven walking cycles were taken from earlier studies. The spectrum of muscle forces was calculated using Bayesian statistics and Markov chain Monte Carlo (MCMC) methods, whereas EMG-driven muscle forces were calculated using EMG-driven modelling. We calculated the differences between the spectrum and EMG-driven muscle force for 1-15 input EMGs, and we identified the muscle strategy that best matched the recorded EMG pattern. The best-fit strategy, static optimization solution and EMG-driven force data were compared using correlation analysis. Possible and plausible muscle forces were defined as within physiological boundaries and within EMG boundaries. Possible muscle and joint forces were calculated by constraining the muscle forces between zero and the peak muscle force. Plausible muscle forces were constrained within six selected EMG boundaries. The spectrum to EMG-driven force difference increased from 40 to 108 N for 1-15 EMG inputs. The best-fit muscle strategy better described the EMG-driven pattern (R (2) = 0.94; RMSE = 19 N) than the static optimization solution (R (2) = 0.38; RMSE = 61 N). Possible forces for 27 of 34 muscles varied between zero and the peak muscle force, inducing a peak hip force of 11.3 body-weights. Plausible muscle forces closely matched the selected EMG patterns; no effect of the EMG constraint was observed on the remaining muscle force ranges. The model can be used to study alternative muscle recruitment strategies in both physiological and pathophysiological neuromotor conditions. PMID

  16. Stochastic modelling of muscle recruitment during activity

    PubMed Central

    Martelli, Saulo; Calvetti, Daniela; Somersalo, Erkki; Viceconti, Marco

    2015-01-01

    Muscle forces can be selected from a space of muscle recruitment strategies that produce stable motion and variable muscle and joint forces. However, current optimization methods provide only a single muscle recruitment strategy. We modelled the spectrum of muscle recruitment strategies while walking. The equilibrium equations at the joints, muscle constraints, static optimization solutions and 15-channel electromyography (EMG) recordings for seven walking cycles were taken from earlier studies. The spectrum of muscle forces was calculated using Bayesian statistics and Markov chain Monte Carlo (MCMC) methods, whereas EMG-driven muscle forces were calculated using EMG-driven modelling. We calculated the differences between the spectrum and EMG-driven muscle force for 1–15 input EMGs, and we identified the muscle strategy that best matched the recorded EMG pattern. The best-fit strategy, static optimization solution and EMG-driven force data were compared using correlation analysis. Possible and plausible muscle forces were defined as within physiological boundaries and within EMG boundaries. Possible muscle and joint forces were calculated by constraining the muscle forces between zero and the peak muscle force. Plausible muscle forces were constrained within six selected EMG boundaries. The spectrum to EMG-driven force difference increased from 40 to 108 N for 1–15 EMG inputs. The best-fit muscle strategy better described the EMG-driven pattern (R2 = 0.94; RMSE = 19 N) than the static optimization solution (R2 = 0.38; RMSE = 61 N). Possible forces for 27 of 34 muscles varied between zero and the peak muscle force, inducing a peak hip force of 11.3 body-weights. Plausible muscle forces closely matched the selected EMG patterns; no effect of the EMG constraint was observed on the remaining muscle force ranges. The model can be used to study alternative muscle recruitment strategies in both physiological and pathophysiological neuromotor conditions. PMID:25844155

  17. Preference as a Function of Active Interresponse Times: A Test of the Active Time Model

    ERIC Educational Resources Information Center

    Misak, Paul; Cleaveland, J. Mark

    2011-01-01

    In this article, we describe a test of the active time model for concurrent variable interval (VI) choice. The active time model (ATM) suggests that the time since the most recent response is one of the variables controlling choice in concurrent VI VI schedules of reinforcement. In our experiment, pigeons were trained in a multiple concurrent…

  18. On a Mathematical Model of Brain Activities

    SciTech Connect

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2007-12-03

    The procedure of recognition can be described as follows: There is a set of complex signals stored in the memory. Choosing one of these signals may be interpreted as generating a hypothesis concerning an 'expexted view of the world'. Then the brain compares a signal arising from our senses with the signal chosen from the memory leading to a change of the state of both signals. Furthermore, measurements of that procedure like EEG or MEG are based on the fact that recognition of signals causes a certain loss of excited neurons, i.e. the neurons change their state from 'excited' to 'nonexcited'. For that reason a statistical model of the recognition process should reflect both--the change of the signals and the loss of excited neurons. A first attempt to explain the process of recognition in terms of quantum statistics was given. In the present note it is not possible to present this approach in detail. In lieu we will sketch roughly a few of the basic ideas and structures of the proposed model of the recognition process (Section). Further, we introduce the basic spaces and justify the choice of spaces used in this approach. A more elaborate presentation including all proofs will be given in a series of some forthcoming papers. In this series also the procedures of creation of signals from the memory, amplification, accumulation and transformation of input signals, and measurements like EEG and MEG will be treated in detail.

  19. Active imaging system performance model for target acquisition

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Teaney, Brian; Nguyen, Quang; Jacobs, Eddie L.; Halford, Carl E.; Tofsted, David H.

    2007-04-01

    The U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate has developed a laser-range-gated imaging system performance model for the detection, recognition, and identification of vehicle targets. The model is based on the established US Army RDECOM CERDEC NVESD sensor performance models of the human system response through an imaging system. The Java-based model, called NVLRG, accounts for the effect of active illumination, atmospheric attenuation, and turbulence effects relevant to LRG imagers, such as speckle and scintillation, and for the critical sensor and display components. This model can be used to assess the performance of recently proposed active SWIR systems through various trade studies. This paper will describe the NVLRG model in detail, discuss the validation of recent model components, present initial trade study results, and outline plans to validate and calibrate the end-to-end model with field data through human perception testing.

  20. Active matter model of Myxococcus xanthus aggregation

    NASA Astrophysics Data System (ADS)

    Patch, Adam; Bahar, Fatmagul; Liu, Guannan; Thutupalli, Shashi; Welch, Roy; Yllanes, David; Shaevitz, Joshua; Marchetti, M. Cristina

    Myxococcus xanthus is a soil-dwelling bacterium that exhibits several fascinating collective behaviors including streaming, swarming, and generation of fruiting bodies. A striking feature of M. xanthus is that it periodically reverses its motility direction. The first stage of fruiting body formation is characterized by the aggregation of cells on a surface into round mesoscopic structures. Experiments have shown that this aggregation relies heavily on regulation of the reversal rate and local mechanical interactions, suggesting motility-induced phase separation may play an important role. We have adapted self-propelled particle models to include cell reversal and motility suppression resulting from sporulation observed in aggregates. Using 2D molecular dynamics simulations, we map the phase behavior in the space of Péclet number and local density and examine the kinetics of aggregation for comparison to experiments.

  1. Rethinking food anticipatory activity in the activity-based anorexia rat model.

    PubMed

    Wu, Hemmings; van Kuyck, Kris; Tambuyzer, Tim; Luyten, Laura; Aerts, Jean-Marie; Nuttin, Bart

    2014-01-01

    When a rat is on a limited fixed-time food schedule with full access to a running wheel (activity-based anorexia model, ABA), its activity level will increase hours prior to the feeding period. This activity, called food-anticipatory activity (FAA), is a hypothesized parallel to the hyperactivity symptom in human anorexia nervosa. To investigate in depth the characteristics of FAA, we retrospectively analyzed the level of FAA and activities during other periods in ABA rats. To our surprise, rats with the most body weight loss have the lowest level of FAA, which contradicts the previously established link between FAA and the severity of ABA symptoms. On the contrary, our study shows that postprandial activities are more directly related to weight loss. We conclude that FAA alone may not be sufficient to reflect model severity, and activities during other periods may be of potential value in studies using ABA model. PMID:24473370

  2. Assessment of toxicity using dehydrogenases activity and mathematical modeling.

    PubMed

    Matyja, Konrad; Małachowska-Jutsz, Anna; Mazur, Anna K; Grabas, Kazimierz

    2016-07-01

    Dehydrogenase activity is frequently used to assess the general condition of microorganisms in soil and activated sludge. Many studies have investigated the inhibition of dehydrogenase activity by various compounds, including heavy metal ions. However, the time after which the measurements are carried out is often chosen arbitrarily. Thus, it can be difficult to estimate how the toxic effects of compounds vary during the reaction and when the maximum of the effect would be reached. Hence, the aim of this study was to create simple and useful mathematical model describing changes in dehydrogenase activity during exposure to substances that inactivate enzymes. Our model is based on the Lagergrens pseudo-first-order equation, the rate of chemical reactions, enzyme activity, and inactivation and was created to describe short-term changes in dehydrogenase activity. The main assumption of our model is that toxic substances cause irreversible inactivation of enzyme units. The model is able to predict the maximum direct toxic effect (MDTE) and the time to reach this maximum (TMDTE). In order to validate our model, we present two examples: inactivation of dehydrogenase in microorganisms in soil and activated sludge. The model was applied successfully for cadmium and copper ions. Our results indicate that the predicted MDTE and TMDTE are more appropriate than EC50 and IC50 for toxicity assessments, except for long exposure times. PMID:27021434

  3. Testing Models: A Key Aspect to Promote Teaching Activities Related to Models and Modelling in Biology Lessons?

    ERIC Educational Resources Information Center

    Krell, Moritz; Krüger, Dirk

    2016-01-01

    This study investigated biology teachers' (N = 148) understanding of models and modelling (MoMo), their model-related teaching activities and relations between the two. A framework which distinguishes five aspects of MoMo in science ("nature of models," "multiple models," "purpose of models," "testing…

  4. Modeling the Activity of Single Genes

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric; Gibson, Michael

    1999-01-01

    the key questions in gene regulation are: What genes are expressed in a certain cell at a certain time? How does gene expression differ from cell to cell in a multicellular organism? Which proteins act as transcription factors, i.e., are important in regulating gene expression? From questions like these, we hope to understand which genes are important for various macroscopic processes. Nearly all of the cells of a multicellular organism contain the same DNA. Yet this same genetic information yields a large number of different cell types. The fundamental difference between a neuron and a liver cell, for example, is which genes are expressed. Thus understanding gene regulation is an important step in understanding development. Furthermore, understanding the usual genes that are expressed in cells may give important clues about various diseases. Some diseases, such as sickle cell anemia and cystic fibrosis, are caused by defects in single, non-regulatory genes; others, such as certain cancers, are caused when the cellular control circuitry malfunctions - an understanding of these diseases will involve pathways of multiple interacting gene products. There are numerous challenges in the area of understanding and modeling gene regulation. First and foremost, biologists would like to develop a deeper understanding of the processes involved, including which genes and families of genes are important, how they interact, etc. From a computation point of view, there has been embarrassingly little work done. In this chapter there are many areas in which we can phrase meaningful, non-trivial computational questions, but questions that have not been addressed. Some of these are purely computational (what is a good algorithm for dealing with a model of type X) and others are more mathematical (given a system with certain characteristics, what sort of model can one use? How does one find biochemical parameters from system-level behavior using as few experiments as possible?). In

  5. Modeling direct activation of corticospinal axons using transcranial electrical stimulation.

    PubMed

    Suihko, V

    1998-06-01

    Corticospinal axons can be directly activated using anodal transcranial electrical stimulation. The purpose of this work was to find the location of the direct activation. The response to stimulation was modeled with a spherical head model and an active model of a corticospinal nerve. The nerve model had a deep bend at a location corresponding to a corticospinal fiber entering the midbrain. The threshold activation initiated close to brain surface; the exact location depended on whether the cell body located in the surface layers of the brain or in the bank of the central sulcus. The stimulation time constant was 44 micros. When the stimulus amplitude was increased, the site of activation shifted gradually to deeper level, until the activation initiated directly at the bend causing a half millisecond latency jump at spinal level. These results support the theory that the corticospinal axons can be directly activated at deep locations using anodal transcranial electrical stimulation. However, the high amplitude needed for the direct activation suggests that not only the bends on the fibers, but also the shape of surrounding volume conductor (intracranial cavity) favor activation at this location. PMID:9741790

  6. A viscoplastic model for the active component in cardiac muscle.

    PubMed

    Rubin, M B

    2016-08-01

    The HMK model (Hunter et al. in Prog Biophys Mol Biol 69:289-331, 1998) proposes mechanobiological equations for the influence of intracellular calcium concentration [Formula: see text] on the evolution of bound calcium concentration [Formula: see text] and the tropomyosin kinetics parameter z, which model processes in the active component of the tension in cardiac muscle. The inelastic response due to actin-myosin crossbridge kinetics is modeled in the HMK model with a function Q that depends on the history of the rate of total stretch of the muscle fiber. Here, an alternative model is proposed which models the active component of the muscle fiber as a viscoplastic material. In particular, an evolution equation is proposed for the elastic stretch [Formula: see text] in the active component. Specific forms of the constitutive equations are proposed and used to match experimental data. The proposed viscoplastic formulation allows for separate modeling of three processes: the high rate deactivation of crossbridges causing rapid reduction in active tension; the high but lower rate reactivation of crossbridges causing recovery of active tension; and the low rate relaxation effects characterizing the Hill model of muscles. PMID:26476735

  7. Automatic active model initialization via Poisson inverse gradient.

    PubMed

    Li, Bing; Acton, Scott T

    2008-08-01

    Active models have been widely used in image processing applications. A crucial stage that affects the ultimate active model performance is initialization. This paper proposes a novel automatic initialization approach for parametric active models in both 2-D and 3-D. The PIG initialization method exploits a novel technique that essentially estimates the external energy field from the external force field and determines the most likely initial segmentation. Examples and comparisons with two state-of-the- art automatic initialization methods are presented to illustrate the advantages of this innovation, including the ability to choose the number of active models deployed, rapid convergence, accommodation of broken edges, superior noise robustness, and segmentation accuracy. PMID:18632349

  8. New Model Predicts Fire Activity in South America

    NASA Video Gallery

    UC Irvine scientist Jim Randerson discusses a new model that is able to predict fire activity in South America using sea surface temperature observations of the Pacific and Atlantic Ocean. The find...

  9. Active Inference for Binary Symmetric Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Galstyan, Aram

    2015-10-01

    We consider active maximum a posteriori (MAP) inference problem for hidden Markov models (HMM), where, given an initial MAP estimate of the hidden sequence, we select to label certain states in the sequence to improve the estimation accuracy of the remaining states. We focus on the binary symmetric HMM, and employ its known mapping to 1d Ising model in random fields. From the statistical physics viewpoint, the active MAP inference problem reduces to analyzing the ground state of the 1d Ising model under modified external fields. We develop an analytical approach and obtain a closed form solution that relates the expected error reduction to model parameters under the specified active inference scheme. We then use this solution to determine most optimal active inference scheme in terms of error reduction, and examine the relation of those schemes to heuristic principles of uncertainty reduction and solution unicity.

  10. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  11. OXYGEN UTILIZATION IN ACTIVATED SLUDGE PLANTS: SIMULATION AND MODEL CALIBRATION

    EPA Science Inventory

    The objective of the research described in the report is to apply recent advances in activated sludge process modeling to the simulation of oxygen utilization rates in full scale activated sludge treatment plants. This is accomplished by calibrating the International Association ...

  12. Patterns of Activity Revealed by a Time Lag Analysis of a Model Active Region

    NASA Astrophysics Data System (ADS)

    Bradshaw, Stephen; Viall, Nicholeen

    2016-05-01

    We investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of average frequencies. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine an extrapolated magnetic skeleton with hydrodynamic and forward modeling codes to create a model active region, and apply the time lag method to synthetic observations. Our aim is to recover some typical properties and patterns of activity observed in active regions. Our key findings are: 1. Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. 2. Shorter coronal loops in the core cool more quickly than longer loops at the periphery. 3. All channel pairs show zero time lag when the line-of-sight passes through coronal loop foot-points. 4. There is strong evidence that plasma must be re-energized on a time scale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies operates across active regions. 5. Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  13. Active Player Modeling in the Iterated Prisoner's Dilemma

    PubMed Central

    Park, Hyunsoo; Kim, Kyung-Joong

    2016-01-01

    The iterated prisoner's dilemma (IPD) is well known within the domain of game theory. Although it is relatively simple, it can also elucidate important problems related to cooperation and trust. Generally, players can predict their opponents' actions when they are able to build a precise model of their behavior based on their game playing experience. However, it is difficult to make such predictions based on a limited number of games. The creation of a precise model requires the use of not only an appropriate learning algorithm and framework but also a good dataset. Active learning approaches have recently been introduced to machine learning communities. The approach can usually produce informative datasets with relatively little effort. Therefore, we have proposed an active modeling technique to predict the behavior of IPD players. The proposed method can model the opponent player's behavior while taking advantage of interactive game environments. This experiment used twelve representative types of players as opponents, and an observer used an active modeling algorithm to model these opponents. This observer actively collected data and modeled the opponent's behavior online. Most of our data showed that the observer was able to build, through direct actions, a more accurate model of an opponent's behavior than when the data were collected through random actions. PMID:26989405

  14. A Conceptual Model of Sexually Active Peer Association.

    ERIC Educational Resources Information Center

    DiBlasio, Frederick A.; Benda, Brent B.

    1994-01-01

    This study of 1,478 adolescents who attended 10 private schools tested an integrative theoretical model of sexually active peer association. The model consisted of social control elements, family and peer linkage factors, peer bonding, coercive relationship variables, and acceptance seeking. Results suggest the relevance of social control elements…

  15. Modeling Protein Folding and Applying It to a Relevant Activity

    ERIC Educational Resources Information Center

    Nelson, Allan; Goetze, Jim

    2004-01-01

    The different levels of protein structure that can be easily understood by creating a model that simulates protein folding, which can then be evaluated by applying it to a relevant activity, is presented. The materials required and the procedure for constructing a protein folding model are mentioned.

  16. An Active Learning Exercise for Introducing Agent-Based Modeling

    ERIC Educational Resources Information Center

    Pinder, Jonathan P.

    2013-01-01

    Recent developments in agent-based modeling as a method of systems analysis and optimization indicate that students in business analytics need an introduction to the terminology, concepts, and framework of agent-based modeling. This article presents an active learning exercise for MBA students in business analytics that demonstrates agent-based…

  17. A Vessel Active Contour Model for Vascular Segmentation

    PubMed Central

    Chen, Qingli; Wang, Wei; Peng, Yu; Wang, Qingjun; Wu, Zhongke; Zhou, Mingquan

    2014-01-01

    This paper proposes a vessel active contour model based on local intensity weighting and a vessel vector field. Firstly, the energy function we define is evaluated along the evolving curve instead of all image points, and the function value at each point on the curve is based on the interior and exterior weighted means in a local neighborhood of the point, which is good for dealing with the intensity inhomogeneity. Secondly, a vascular vector field derived from a vesselness measure is employed to guide the contour to evolve along the vessel central skeleton into thin and weak vessels. Thirdly, an automatic initialization method that makes the model converge rapidly is developed, and it avoids repeated trails in conventional local region active contour models. Finally, a speed-up strategy is implemented by labeling the steadily evolved points, and it avoids the repeated computation of these points in the subsequent iterations. Experiments using synthetic and real vessel images validate the proposed model. Comparisons with the localized active contour model, local binary fitting model, and vascular active contour model show that the proposed model is more accurate, efficient, and suitable for extraction of the vessel tree from different medical images. PMID:25101262

  18. A vessel active contour model for vascular segmentation.

    PubMed

    Tian, Yun; Chen, Qingli; Wang, Wei; Peng, Yu; Wang, Qingjun; Duan, Fuqing; Wu, Zhongke; Zhou, Mingquan

    2014-01-01

    This paper proposes a vessel active contour model based on local intensity weighting and a vessel vector field. Firstly, the energy function we define is evaluated along the evolving curve instead of all image points, and the function value at each point on the curve is based on the interior and exterior weighted means in a local neighborhood of the point, which is good for dealing with the intensity inhomogeneity. Secondly, a vascular vector field derived from a vesselness measure is employed to guide the contour to evolve along the vessel central skeleton into thin and weak vessels. Thirdly, an automatic initialization method that makes the model converge rapidly is developed, and it avoids repeated trails in conventional local region active contour models. Finally, a speed-up strategy is implemented by labeling the steadily evolved points, and it avoids the repeated computation of these points in the subsequent iterations. Experiments using synthetic and real vessel images validate the proposed model. Comparisons with the localized active contour model, local binary fitting model, and vascular active contour model show that the proposed model is more accurate, efficient, and suitable for extraction of the vessel tree from different medical images. PMID:25101262

  19. Patterns of Activity in a Global Model of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Bradshaw, S. J.; Viall, N. M.

    2016-04-01

    In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  20. Suppression of antigen-specific lymphocyte activation in modeled microgravity

    NASA Technical Reports Server (NTRS)

    Cooper, D.; Pride, M. W.; Brown, E. L.; Risin, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Various parameters of immune suppression are observed in lymphocytes from astronauts during and after a space flight. It is difficult to ascribe this suppression to microgravity effects on immune cells in crew specimens, due to the complex physiological response to space flight and the resultant effect on in vitro immune performance. Use of isolated immune cells in true and modeled microgravity in immune performance tests, suggests a direct effect of microgravity on in vitro cellular function. Specifically, polyclonal activation of T-cells is severely suppressed in true and modeled microgravity. These recent findings suggest a potential suppression of oligoclonal antigen-specific lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors as an analog of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction, as a model for a primary immune response, a tetanus toxoid response and a Borrelia burgdorferi response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.

  1. Shoulder model validation and joint contact forces during wheelchair activities

    PubMed Central

    Morrow, Melissa M.B.; Kaufman, Kenton R.; An, Kai-Nan

    2010-01-01

    Chronic shoulder impingement is a common problem for manual wheelchair users. The loading associated with performing manual wheelchair activities of daily living is substantial and often at a high frequency. Musculoskeletal modeling and optimization techniques can be used to estimate the joint contact forces occurring at the shoulder to assess the soft tissue loading during an activity and to possibly identify activities and strategies that place manual wheelchair users at risk for shoulder injuries. The purpose of this study was to validate an upper extremity musculoskeletal model and apply the model to wheelchair activities for analysis of the estimated joint contact forces. Upper extremity kinematics and handrim wheelchair kinetics were measured over three conditions: level propulsion, ramp propulsion, and a weight relief lift. The experimental data were used as input to a subject-specific musculoskeletal model utilizing optimization to predict joint contact forces of the shoulder during all conditions. The model was validated using a mean absolute error calculation. Model results confirmed that ramp propulsion and weight relief lifts place the shoulder under significantly higher joint contact loading than level propulsion. In addition, they exhibit large superior contact forces that could contribute to impingement. This study highlights the potential impingement risk associated with both the ramp and weight relief lift activities. Level propulsion was shown to have a low relative risk of causing injury, but with consideration of the frequency with which propulsion is performed, this observation is not conclusive. PMID:20840833

  2. Demand Activated Manufacturing Architecture (DAMA) model for supply chain collaboration

    SciTech Connect

    CHAPMAN,LEON D.; PETERSEN,MARJORIE B.

    2000-03-13

    The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise architecture and collaborative model for supply chains. This model will enable improved collaborative business across any supply chain. The DAMA Model for Supply Chain Collaboration is a high-level model for collaboration to achieve Demand Activated Manufacturing. The five major elements of the architecture to support collaboration are (1) activity or process, (2) information, (3) application, (4) data, and (5) infrastructure. These five elements are tied to the application of the DAMA architecture to three phases of collaboration - prepare, pilot, and scale. There are six collaborative activities that may be employed in this model: (1) Develop Business Planning Agreements, (2) Define Products, (3) Forecast and Plan Capacity Commitments, (4) Schedule Product and Product Delivery, (5) Expedite Production and Delivery Exceptions, and (6) Populate Supply Chain Utility. The Supply Chain Utility is a set of applications implemented to support collaborative product definition, forecast visibility, planning, scheduling, and execution. The DAMA architecture and model will be presented along with the process for implementing this DAMA model.

  3. Topological evolution of virtual social networks by modeling social activities

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Dong, Junyu; Tang, Ruichun; Xu, Mantao; Qi, Lin; Cai, Yang

    2015-09-01

    With the development of Internet and wireless communication, virtual social networks are becoming increasingly important in the formation of nowadays' social communities. Topological evolution model is foundational and critical for social network related researches. Up to present most of the related research experiments are carried out on artificial networks, however, a study of incorporating the actual social activities into the network topology model is ignored. This paper first formalizes two mathematical abstract concepts of hobbies search and friend recommendation to model the social actions people exhibit. Then a social activities based topology evolution simulation model is developed to satisfy some well-known properties that have been discovered in real-world social networks. Empirical results show that the proposed topology evolution model has embraced several key network topological properties of concern, which can be envisioned as signatures of real social networks.

  4. Applying Transtheoretical Model to Promote Physical Activities Among Women

    PubMed Central

    Pirzadeh, Asiyeh; Mostafavi, Firoozeh; Ghofranipour, Fazllolah; Feizi, Awat

    2015-01-01

    Background: Physical activity is one of the most important indicators of health in communities but different studies conducted in the provinces of Iran showed that inactivity is prevalent, especially among women. Objectives: Inadequate regular physical activities among women, the importance of education in promoting the physical activities, and lack of studies on the women using transtheoretical model, persuaded us to conduct this study with the aim of determining the application of transtheoretical model in promoting the physical activities among women of Isfahan. Materials and Methods: This research was a quasi-experimental study which was conducted on 141 women residing in Isfahan, Iran. They were randomly divided into case and control groups. In addition to the demographic information, their physical activities and the constructs of the transtheoretical model (stages of change, processes of change, decisional balance, and self-efficacy) were measured at 3 time points; preintervention, 3 months, and 6 months after intervention. Finally, the obtained data were analyzed through t test and repeated measures ANOVA test using SPSS version 16. Results: The results showed that education based on the transtheoretical model significantly increased physical activities in 2 aspects of intensive physical activities and walking, in the case group over the time. Also, a high percentage of people have shown progress during the stages of change, the mean of the constructs of processes of change, as well as pros and cons. On the whole, a significant difference was observed over the time in the case group (P < 0.01). Conclusions: This study showed that interventions based on the transtheoretical model can promote the physical activity behavior among women. PMID:26834796

  5. a Spatio-Temporal Framework for Modeling Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Touyz, J.; Streletskiy, D. A.; Nelson, F. E.; Apanasovich, T. V.

    2015-07-01

    The Arctic is experiencing an unprecedented rate of environmental and climate change. The active layer (the uppermost layer of soil between the atmosphere and permafrost that freezes in winter and thaws in summer) is sensitive to both climatic and environmental changes, and plays an important role in the functioning, planning, and economic activities of Arctic human and natural ecosystems. This study develops a methodology for modeling and estimating spatial-temporal variations in active layer thickness (ALT) using data from several sites of the Circumpolar Active Layer Monitoring network, and demonstrates its use in spatial-temporal interpolation. The simplest model's stochastic component exhibits no spatial or spatio-temporal dependency and is referred to as the naïve model, against which we evaluate the performance of the other models, which assume that the stochastic component exhibits either spatial or spatio-temporal dependency. The methods used to fit the models are then discussed, along with point forecasting. We compare the predicted fit of the various models at key study sites located in the North Slope of Alaska and demonstrate the advantages of space-time models through a series of error statistics such as mean squared error, mean absolute and percent deviance from observed data. We find the difference in performance between the spatio-temporal and remaining models is significant for all three error statistics. The best stochastic spatio-temporal model increases predictive accuracy, compared to the naïve model, of 33.3%, 36.2% and 32.5% on average across the three error metrics at the key sites for a one-year hold out period.

  6. Active Ageing: An Empirical Approach to the WHO Model

    PubMed Central

    Paúl, Constança; Ribeiro, Oscar; Teixeira, Laetitia

    2012-01-01

    Background. In the beginning of the 21st century, the world summit on population taking place in Madrid approved active ageing, WHO (2002) as the main objective of health and social policies for old people. Few studies have been done on the scientific validity of the construct. This study aims to validate the construct of active ageing and test empirically the WHO (2002) model of Active Ageing in a sample of community-dwelling seniors. Methods. 1322 old people living in the community were interviewed using an extensive assessment protocol to measure WHO's determinants of active ageing and performed an exploratory factor analysis followed by a confirmatory factor analyses. Results. We did not confirm the active ageing model, as most of the groups of determinants are either not independent or not significant. We got to a six-factor model (health, psychological component, cognitive performance, social relationships, biobehavioural component, and personality) explaining 54.6% of total variance. Conclusion. The present paper shows that there are objective as well as subjective variables contributing to active ageing and that psychological variables seem to give a very important contribute to the construct. The profile of active ageing is expected to vary between contexts and cultures and can be used to guide specific community and individually based interventions. PMID:23193396

  7. Activation of PPARδ: from computer modelling to biological effects.

    PubMed

    Kahremany, Shirin; Livne, Ariela; Gruzman, Arie; Senderowitz, Hanoch; Sasson, Shlomo

    2015-02-01

    PPARδ is a ligand-activated receptor that dimerizes with another nuclear receptor of the retinoic acid receptor family. The dimers interact with other co-activator proteins and form active complexes that bind to PPAR response elements and promote transcription of genes involved in lipid metabolism. It appears that various natural fatty acids and their metabolites serve as endogenous activators of PPARδ; however, there is no consensus in the literature on the nature of the prime activators of the receptor. In vitro and cell-based assays of PPARδ activation by fatty acids and their derivatives often produce conflicting results. The search for synthetic and selective PPARδ agonists, which may be pharmacologically useful, is intense. Current rational modelling used to obtain such compounds relies mostly on crystal structures of synthetic PPARδ ligands with the recombinant ligand binding domain (LBD) of the receptor. Here, we introduce an original computational prediction model for ligand binding to PPARδ LBD. The model was built based on EC50 data of 16 ligands with available crystal structures and validated by calculating binding probabilities of 82 different natural and synthetic compounds from the literature. These compounds were independently tested in cell-free and cell-based assays for their capacity to bind or activate PPARδ, leading to prediction accuracy of between 70% and 93% (depending on ligand type). This new computational tool could therefore be used in the search for natural and synthetic agonists of the receptor. PMID:25255770

  8. Active control rotor model testing at Princeton's Rotorcraft Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Mckillip, Robert M., Jr.

    1988-01-01

    A description of the model helicopter rotor tests currently in progress at Princeton's Rotorcraft Dynamics Laboratory is presented. The tests are designed to provide data for rotor dynamic modeling for use with active control system design. The model rotor to be used incoporates the capability for Individual Blade Control (IBC) or Higher Harmonic Control through the use of a standard swashplate on a three bladed hub. Sample results from the first series of tests are presented, along with the methodology used for state and parameter identification. Finally, pending experiments and possible research directions using this model and test facility are outlined.

  9. Active and structural strain model for magnetostrictive transducers

    NASA Astrophysics Data System (ADS)

    Dapino, Marcelo J.; Smith, Ralph C.; Flatau, Alison B.

    1998-07-01

    We consider the modeling of strains generated by magnetostrictive materials in response to applied magnetic fields. The active or external component of the strain is due to the rotation of magnetic moments within the material to align with the applied field. This is characterized through consideration of the Jiles-Atherton mean field theory for ferromagnetic hysteresis in combination with a quadratic moment rotation model for magnetostriction. The second component of the strain reflects the passive or internal dynamics of the rod as it vibrates. This is modeled through force balancing which yields a wave equation with magnetostrictive inputs. The validity of a combined transducer model is illustrated through comparison with experimental data.

  10. NASA's Long-term Debris Environment and Active Debris Removal Modeling Activities

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2009-01-01

    This slide presentation reviews the modeling activities for modeling of the long-term debris environment, the updated assessments of the environment, and the necessity to model the effectiveness of the technologies aimed at the removal of orbital debris. The model being used is named a LEO to GEO environment debris (LEGEND). It is a high fidelity three dimensional numerical simulation model with the capability to treat objects individually. It uses a Monte Carlo approach and a collision probability evaluation algorithm to simulate future satellite breakups and the growth of the debris populations.

  11. Modeling the target acquisition performance of active imaging systems.

    PubMed

    Espinola, Richard L; Jacobs, Eddie L; Halford, Carl E; Vollmerhausen, Richard; Tofsted, David H

    2007-04-01

    Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown. PMID:19532626

  12. Modeling the target acquisition performance of active imaging systems

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Jacobs, Eddie L.; Halford, Carl E.; Vollmerhausen, Richard; Tofsted, David H.

    2007-04-01

    Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown.

  13. Active Exploration of Large 3D Model Repositories.

    PubMed

    Gao, Lin; Cao, Yan-Pei; Lai, Yu-Kun; Huang, Hao-Zhi; Kobbelt, Leif; Hu, Shi-Min

    2015-12-01

    With broader availability of large-scale 3D model repositories, the need for efficient and effective exploration becomes more and more urgent. Existing model retrieval techniques do not scale well with the size of the database since often a large number of very similar objects are returned for a query, and the possibilities to refine the search are quite limited. We propose an interactive approach where the user feeds an active learning procedure by labeling either entire models or parts of them as "like" or "dislike" such that the system can automatically update an active set of recommended models. To provide an intuitive user interface, candidate models are presented based on their estimated relevance for the current query. From the methodological point of view, our main contribution is to exploit not only the similarity between a query and the database models but also the similarities among the database models themselves. We achieve this by an offline pre-processing stage, where global and local shape descriptors are computed for each model and a sparse distance metric is derived that can be evaluated efficiently even for very large databases. We demonstrate the effectiveness of our method by interactively exploring a repository containing over 100 K models. PMID:26529460

  14. A neural network model for olfactory glomerular activity prediction

    NASA Astrophysics Data System (ADS)

    Soh, Zu; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    2012-12-01

    Recently, the importance of odors and methods for their evaluation have seen increased emphasis, especially in the fragrance and food industries. Although odors can be characterized by their odorant components, their chemical information cannot be directly related to the flavors we perceive. Biological research has revealed that neuronal activity related to glomeruli (which form part of the olfactory system) is closely connected to odor qualities. Here we report on a neural network model of the olfactory system that can predict glomerular activity from odorant molecule structures. We also report on the learning and prediction ability of the proposed model.

  15. Three dimensional modelling of chlorine activation in the Arctic stratosphere

    SciTech Connect

    Kettleborough, J.A.; Carver, G.D.; Lary, D.J.; Pyle, J.A. ); Scott, P.A. )

    1994-06-22

    This paper presents the results of using the UK Universities Global Atmospheric Modelling Program (UGAMP) general circulation model to study the atmospheric chemistry of chlorine compounds in the arctic stratosphere during EASOE. Here the authors discuss the results of a model run started in early January 1992, which show that the low temperatures favored the production of polar stratospheric clouds which can process active chlorine compounds to densities in the ppbv range. The model also shows that lack of sunlight means that this reactive chlorine is not able to contribute to chemical destruction of ozone. As the temperatures rise, the active chlorine is seen to cycle back into the compound ClONO[sub 2].

  16. Influence of viscosity on myocardium mechanical activity: a mathematical model.

    PubMed

    Katsnelson, Leonid B; Nikitina, Larissa V; Chemla, Denis; Solovyova, Olga; Coirault, Catherine; Lecarpentier, Yves; Markhasin, Vladimir S

    2004-10-01

    We have previously proposed and validated a mathematical model of myocardium contraction-relaxation cycle based on current knowledge of regulatory role of Ca2+ and cross-bridge kinetics in cardiac cell. That model did not include viscous elements. Here we propose a modification of the model, in which two viscous elements are added, one in parallel to the contractile element, and one more in parallel to the series elastic element. The modified model allowed us to simulate and explain some subtle experimental data on relaxation velocity in isotonic twitches and on a mismatch between the time course of sarcomere shortening/lengthening and the time course of active force generation in isometric twitches. Model results were compared with experimental data obtained from 28 rat LV papillary muscles contracting and relaxing against various loads. Additional model analysis suggested contribution of viscosity to main inotropic and lusitropic characteristics of myocardium performance. PMID:15302547

  17. Intracellular mechanochemical waves in an active poroelastic model.

    PubMed

    Radszuweit, Markus; Alonso, Sergio; Engel, Harald; Bär, Markus

    2013-03-29

    Many processes in living cells are controlled by biochemical substances regulating active stresses. The cytoplasm is an active material with both viscoelastic and liquid properties. We incorporate the active stress into a two-phase model of the cytoplasm which accounts for the spatiotemporal dynamics of the cytoskeleton and the cytosol. The cytoskeleton is described as a solid matrix that together with the cytosol as an interstitial fluid constitutes a poroelastic material. We find different forms of mechanochemical waves including traveling, standing, and rotating waves by employing linear stability analysis and numerical simulations in one and two spatial dimensions. PMID:23581377

  18. Characterizing and modeling the dynamics of activity and popularity.

    PubMed

    Zhang, Peng; Li, Menghui; Gao, Liang; Fan, Ying; Di, Zengru

    2014-01-01

    Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments verified that the model can qualitatively reproduce the distributions of user activity and item popularity observed in empirical networks. These results might shed light on the understandings of micro dynamics of activity and popularity in social media networks. PMID:24586586

  19. Characterizing and Modeling the Dynamics of Activity and Popularity

    PubMed Central

    Zhang, Peng; Li, Menghui; Gao, Liang; Fan, Ying; Di, Zengru

    2014-01-01

    Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments verified that the model can qualitatively reproduce the distributions of user activity and item popularity observed in empirical networks. These results might shed light on the understandings of micro dynamics of activity and popularity in social media networks. PMID:24586586

  20. ELVIS: Multi-Electrolyte Aqueous Activity Model for Geothermal Solutions

    NASA Astrophysics Data System (ADS)

    Hingerl, F. F.; Wagner, T.; Driesner, T.; Kulik, D. A.; Kosakowski, G.

    2011-12-01

    High temperature, pressure, and fluid salinities render geochemical modeling of fluid-rock interactions in Enhanced Geothermal Systems a demanding task. Accurate prediction of fluid-mineral equilibria strongly depends on the availability of thermodynamic data and activity models. Typically, the Pitzer activity model is applied for geothermal fluids. A drawback of this model is the large number of parameters required to account for temperature and pressure dependencies, which significantly reduces computational efficiency of reactive transport simulations. In addition, most available parameterizations are valid only at vapor-saturated conditions. As an alternative we implemented the EUNIQUAC local composition model [2] that needs substantially fewer fitting parameters. However, the current EUNIQUAC model design does not include provision for high temperature (>150°C) applications and lacks a formulation for pressure dependence. Therefore, its application to geothermal conditions requires a re-formulation and re-fitting of the model. We developed a new tool termed GEMSFIT that allows generic fitting of activity models (for aqueous electrolyte and non-electrolyte solutions) and equations of state implemented in our geochemical equilibrium solver GEM-Selektor (http://gems.web.psi.ch). GEMSFIT combines a PostgreSQL database for storing and managing the datasets of experimental measurements and interaction parameters, the parallelized genetic algorithm toolbox of MATLAB° for the parameter fitting, and an interface to the numerical kernel of GEM-Selektor to access activity models and perform chemical equilibrium calculations. Benchmarking of the partly re-parameterized EUNIQUAC model against Pitzer revealed that the former is less accurate, which can result in incorrect predictions of mineral precipitation/dissolution. Consequently, we modified the EUNIQUAC model and concurrently introduced a pressure dependence to be able to fit experimental data over wide ranges of

  1. Inferring brain-computational mechanisms with models of activity measurements.

    PubMed

    Kriegeskorte, Nikolaus; Diedrichsen, Jörn

    2016-10-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574316

  2. Landfill leachate characterization for simulation of biological treatment with Activated Sludge Model No. 1 and Activated Sludge Model No. 3.

    PubMed

    Galleguillos, Marcelo; Vasel, Jean-Luc

    2011-01-01

    Landfill leachates can be characterized correctly in terms of Activated Sludge Model No. 1 (ASM1) and Activated Sludge Model No. 3 (ASM3) variables. The wastewater characterization of leachate from a Luxembourg landfill was based on a physical-chemical method combined with a BOD analysis for the COD fractions and on standard analysis for forms of nitrogen. The results show important differences compared with municipal wastewater. High amounts of organic matter with low biodegradability were found, as well as a high concentration of ammonium nitrogen. Based on average values, a generic ASM characterization is proposed for landfill leachates. It can be directly employed in the early stages of the simulation of landfill leachate treatment with activated sludge models. PMID:21970168

  3. A quantitative structure--activity relationship model for the intrinsic activity of uncouplers of oxidative phosphorylation.

    PubMed

    Spycher, Simon; Escher, Beate I; Gasteiger, Johann

    2005-12-01

    A quantitative structure-activity relationship (QSAR) has been derived for the prediction of the activity of phenols in uncoupling oxidative and photophosphorylation. Twenty-one compounds with experimental data for uncoupling activity as well as for the acid dissociation constant, pKa, and for partitioning constants of the neutral and the charged species into model membranes were analyzed. From these measured data, the effective concentration in the membrane was derived, which allowed the study of the intrinsic activity of uncouplers within the membrane. A linear regression model for the intrinsic activity could be established using the following three descriptors: solvation free energies of the anions, an estimate for heterodimer formation describing transport processes, and pKa values describing the speciation of the phenols. In a next step, the aqueous effect concentrations were modeled by combining the model for the intrinsic uncoupling activity with descriptors accounting for the uptake into membranes. Results obtained with experimental membrane-water partitioning data were compared with the results obtained with experimental octanol-water partition coefficients, log Kow, and with calculated log Kow values. The properties of these different measures of lipophilicity were critically discussed. PMID:16359176

  4. Bifurcation and chaotic in a model for activated sludge reactors

    NASA Astrophysics Data System (ADS)

    El-Marouf, S. A. A.; Bahaa, G. M.

    2015-04-01

    A dynamical model of an activated sludge process system is considered and analyzed. Numerical techniques are used to show when the system exhibits chaos. Three choices of bifurcation parameters produce different pictures of solution behavior in the form of limit cycles, two-torus and chaotic behavior. For some range of the reactor residence time the model exhibits chaotic behavior as well. Practical criteria are also derived for the effects of feed conditions and purge fraction on the dynamic characteristics of the bioreactor model.

  5. Evaluation of an Interdisciplinary, Physically Active Lifestyle Course Model

    ERIC Educational Resources Information Center

    Fede, Marybeth H.

    2009-01-01

    The purpose of this study was to evaluate a fit for life program at a university and to use the findings from an extensive literature review, consultations with formative and summative committees, and data collection to develop an interdisciplinary, physically active lifestyle (IPAL) course model. To address the 5 research questions examined in…

  6. A model of job activity description for workplace accommodation assessment.

    PubMed

    Sevilla, Joaquin; Sanford, Jon A

    2013-01-01

    Workplace accommodations to enable employees with disabilities to perform essential job tasks are an important strategy ways for increasing the presence of people with disabilities in the labor market. However, assessments, which are crucial to identifying necessary accommodations, are typically conducted using a variety of methods that lack consistent procedures and comprehensiveness of information. This can lead to the rediscovery of the same solutions over and over, inability to replicate assessments and a failure to effectively meet all of an individual's accommodation needs. To address standardize assessment tools and processes, a taxonomy of demand-producing activity factors is needed to complement the taxonomies of demand-producing person and environment factors already available in the International Classification of Functioning, Disability and Health (ICF). The purpose of this article is to propose a hierarchical model of accommodation assessment based on level of specificity of job activity. While the proposed model is neither a taxonomy nor an assessment process, the seven-level hierarchical model provides a conceptual framework of job activity that is the first step toward such a taxonomy as well as providing a common language that can bridge the many approaches to assessment. The model was designed and refined through testing against various job examples. Different levels of activity are defined to be easily linked to different accommodation strategies. Finally, the levels can be cross-walked to the ICF, which enhances its acceptability, utility and universality. PMID:23923694

  7. Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.

    ERIC Educational Resources Information Center

    Ellis, Linda K.

    2000-01-01

    Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)

  8. Modeling of Active Transmembrane Transport in a Mixture Theory Framework

    PubMed Central

    Ateshian, Gerard A.; Morrison, Barclay; Hung, Clark T.

    2010-01-01

    This study formulates governing equations for active transport across semi-permeable membranes within the framework of the theory of mixtures. In mixture theory, which models the interactions of any number of fluid and solid constituents, a supply term appears in the conservation of linear momentum to describe momentum exchanges among the constituents. In past applications, this momentum supply was used to model frictional interactions only, thereby describing passive transport processes. In this study, it is shown that active transport processes, which impart momentum to solutes or solvent, may also be incorporated in this term. By projecting the equation of conservation of linear momentum along the normal to the membrane, a jump condition is formulated for the mechano-electrochemical potential of fluid constituents which is generally applicable to nonequilibrium processes involving active transport. The resulting relations are simple and easy to use, and address an important need in the membrane transport literature. PMID:20213212

  9. Modeling a Transient Pressurization with Active Cooling Sizing Tool

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Plachta, David W.; Elchert, Justin P.

    2011-01-01

    As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank

  10. Numerical model of heat conduction in active volcanoes induced by magmatic activity

    NASA Astrophysics Data System (ADS)

    Atmojo, Antono Arif; Rosandi, Yudi

    2015-09-01

    We study the heat transfer mechanism of active volcanoes using the numerical thermal conduction model. A 2D model of volcano with its conduit filled by magma is considered, and acts as a constant thermal source. The temperature of the magma activity diffuses through the rock layers of the mountain to the surface. The conduction equation is solved using finite-difference method, with some adaptations to allow temperature to flow through different materials. Our model allows to simulate volcanoes having dikes, branch-pipes, and sills by constructing the domain appropriately, as well as layers with different thermal properties. Our research will show the possibility to monitor magma activity underneath a volcano by probing its surface temperature. The result of our work will be very useful for further study of volcanoes, eruption prediction, and volcanic disaster mitigation.

  11. Active shape models incorporating isolated landmarks for medical image annotation

    NASA Astrophysics Data System (ADS)

    Norajitra, Tobias; Meinzer, Hans-Peter; Stieltjes, Bram; Maier-Hein, Klaus H.

    2014-03-01

    Apart from their robustness in anatomic surface segmentation, purely surface based 3D Active Shape Models lack the ability to automatically detect and annotate non-surface key points of interest. However, annotation of anatomic landmarks is desirable, as it yields additional anatomic and functional information. Moreover, landmark detection might help to further improve accuracy during ASM segmentation. We present an extension of surface-based 3D Active Shape Models incorporating isolated non-surface landmarks. Positions of isolated and surface landmarks are modeled conjoint within a point distribution model (PDM). Isolated landmark appearance is described by a set of haar-like features, supporting local landmark detection on the PDM estimates using a kNN-Classi er. Landmark detection was evaluated in a leave-one-out cross validation on a reference dataset comprising 45 CT volumes of the human liver after shape space projection. Depending on the anatomical landmark to be detected, our experiments have shown in about 1/4 up to more than 1/2 of all test cases a signi cant improvement in detection accuracy compared to the position estimates delivered by the PDM. Our results encourage further research with regard to the combination of shape priors and machine learning for landmark detection within the Active Shape Model Framework.

  12. The Benchmark Active Controls Technology Model Aerodynamic Data

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Hoadley, Sherwood T.; Wieseman, Carol D.; Durham, Michael H.

    1997-01-01

    The Benchmark Active Controls Technology (BACT) model is a part of the Benchmark Models Program (BMP). The BMP is a NASA Langley Research Center program that includes a series of models which were used to study different aeroelastic phenomena and to validate computational fluid dynamics codes. The primary objective of BACT testing was to obtain steady and unsteady loads, accelerations, and aerodynamic pressures due to control surface activity in order to calibrate unsteady CFD codes and active control design tools. Three wind-tunnel tests in the Transonic Dynamics Tunnel (TDT) have been completed. The first and parts of the second and third tests focused on collecting open-loop data to define the model's aeroservoelastic characteristics, including the flutter boundary across the Mach range. It is this data that is being presented in this paper. An extensive database of over 3000 data sets was obtained. This database includes steady and unsteady control surface effectiveness data, including pressure distributions, control surface hinge moments, and overall model loads due to deflections of a trailing edge control surface and upper and lower surface

  13. Mammalian Rest/Activity Patterns Explained by Physiologically Based Modeling

    PubMed Central

    Phillips, A. J. K.; Fulcher, B. D.; Robinson, P. A.; Klerman, E. B.

    2013-01-01

    Circadian rhythms are fundamental to life. In mammals, these rhythms are generated by pacemaker neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is remarkably consistent in structure and function between species, yet mammalian rest/activity patterns are extremely diverse, including diurnal, nocturnal, and crepuscular behaviors. Two mechanisms have been proposed to account for this diversity: (i) modulation of SCN output by downstream nuclei, and (ii) direct effects of light on activity. These two mechanisms are difficult to disentangle experimentally and their respective roles remain unknown. To address this, we developed a computational model to simulate the two mechanisms and their influence on temporal niche. In our model, SCN output is relayed via the subparaventricular zone (SPZ) to the dorsomedial hypothalamus (DMH), and thence to ventrolateral preoptic nuclei (VLPO) and lateral hypothalamus (LHA). Using this model, we generated rich phenotypes that closely resemble experimental data. Modulation of SCN output at the SPZ was found to generate a full spectrum of diurnal-to-nocturnal phenotypes. Intriguingly, we also uncovered a novel mechanism for crepuscular behavior: if DMH/VLPO and DMH/LHA projections act cooperatively, daily activity is unimodal, but if they act competitively, activity can become bimodal. In addition, we successfully reproduced diurnal/nocturnal switching in the rodent Octodon degu using coordinated inversions in both masking and circadian modulation. Finally, the model correctly predicted the SCN lesion phenotype in squirrel monkeys: loss of circadian rhythmicity and emergence of ∼4-h sleep/wake cycles. In capturing these diverse phenotypes, the model provides a powerful new framework for understanding rest/activity patterns and relating them to underlying physiology. Given the ubiquitous effects of temporal organization on all aspects of animal behavior and physiology, this study sheds light on the physiological

  14. Active shape models with optimised texture features for radiotherapy

    NASA Astrophysics Data System (ADS)

    Cheng, K.; Montgomery, D.; Yang, F.; McLaren, D. B.; McLaughlin, S.; Nailon, W. H.

    2014-03-01

    There is now considerable interest in radiation oncology on the use of shape models of anatomy to improve target delineation and assess anatomical disparity at time of radiotherapy. In this paper a texture based active shape model (ASM) is presented for automatic delineation of the gross tumor volume (GTV), containing the prostate, on computed tomography (CT) images of prostate cancer patients. The model was trained on two-dimensional (2D) contours identified by a radiation oncologist on sequential CT image slices. A three-dimensional (3D) GTV shape was constructed from these and iteratively aligned using Procrustes analysis. To train the model the shape deformation variance was learnt using the Active Shape Model (ASM) approach. In a novel development to this approach a profile feature was selected from pre-computed texture features by minimizing the Mahalanobis distance to obtain the most distinct feature for each landmark. The interior of the GTV was modelled using quantile histograms to initialize the shape model on new cases. From the archive of 42 cases of contoured CT scans, 32 cases were randomly selected for training the model and 10 cases for evaluating performance. The gold standard was defined by the radiation oncologist. The shape model achieved an overall Dice coefficient of 0.81 for all test cases. Performance was found to increase, mean Dice coefficient of 0.87, when the volume size of the new case was similar to the mean shape of the model. With further work the approach has the potential to be used in real-time delineation of target volumes and improve segmentation accuracy.

  15. Structural Model of Active Bax at the Membrane

    PubMed Central

    Bleicken, Stephanie; Jeschke, Gunnar; Stegmueller, Carolin; Salvador-Gallego, Raquel; García-Sáez, Ana J.; Bordignon, Enrica

    2016-01-01

    Bax plays a central role in the mitochondrial pathway of apoptosis. Upon activation, cytosolic Bax monomers oligomerize on the surface of mitochondria and change conformation concertedly to punch holes into the outer membrane. The subsequent release of cytochrome c initiates cell death. However, the structure of membrane-inserted Bax and its mechanism of action remain largely unknown. Here, we propose a 3D model of active Bax at the membrane based on double electron-electron resonance (DEER) spectroscopy in liposomes and isolated mitochondria. We show that active Bax is organized at the membrane as assemblies of dimers. In addition to a stable dimerization domain, each monomer contains a more flexible piercing domain involved in interdimer interactions and pore formation. The most important structural change during Bax activation is the opening of the hairpin formed by helices 5 and 6, which adopts a clamp-like conformation central to the mechanism of mitochondrial permeabilization. PMID:25458844

  16. Dynamic activation model for a glutamatergic neurovascular unit.

    PubMed

    Calvetti, Daniela; Somersalo, Erkki

    2011-04-01

    This article considers a dynamic spatially lumped model for brain energy metabolism and proposes to use the results of a Markov chain Monte Carlo (MCMC) based flux balance analysis to estimate the kinetic model parameters. By treating steady state reaction fluxes and transport rates as random variables we are able to propagate the uncertainty in the steady state configurations to the predictions of the dynamic model, whose responses are no longer individual but ensembles of time courses. The kinetic model consists of five compartments and is governed by kinetic mass balance equations with Michaelis-Menten type expressions for reaction rates and transports between the compartments. The neuronal activation is implemented in terms of the effect of neuronal activity on parameters controlling the blood flow and neurotransmitter transport, and a feedback mechanism coupling the glutamate concentration in the synaptic cleft and the ATP hydrolysis, thus accounting for the energetic cost of the membrane potential restoration in the postsynaptic neurons. The changes in capillary volume follow the balloon model developed for BOLD MRI. The model follows the time course of the saturation levels of the blood hemoglobin, which link metabolism and BOLD FMRI signal. Analysis of the model predictions suggest that stoichiometry alone is not enough to determine glucose partitioning between neuron and astrocyte. Lactate exchange between neuron and astrocyte is supported by the model predictions, but the uncertainty on the direction and rate is rather elevated. By and large, the model suggests that astrocyte produces and effluxes lactate, while neuron may switch from using to producing lactate. The level of ATP hydrolysis in astrocyte is substantially higher than strictly required for neurotransmitter cycling, in agreement with the literature. PMID:21176783

  17. Genesis and Control of bursting activity in a neuronal model

    NASA Astrophysics Data System (ADS)

    Cymbalyuk, Gennady

    2005-11-01

    Neurons are observed in one of four fundamental activity modes: silence, sub-threshold oscillations, tonic spiking, and bursting. Neurons exhibit various activity regimes and regime transitions that reflect their complement of ionic channels and modulatory state. The leech presents unique opportunities for experimental and theoretical studies on the dynamics of neuronal activity. The central pattern generator controlling the leech's heartbeat contains identified pairs of mutually inhibitory neurons. Bursting activity of neurons is an oscillatory activity consisting of intervals of repetitive spiking separated by intervals of quiescence. It has been observed in neurons under normal and pathological conditions. Neurons which are capable of generating bursting activity endogenously play an important role in motor control and other brain functions. Burst duration, interburst interval and spike frequency are crucial temporal characteristics of bursting activity and thus have to be regulated. Application of the bifurcation theory of dynamical systems suggests new mechanism of how bursting activity can be generated by neurons and how burst duration can be regulated. Here we describe two mechanisms for the transition between tonic spiking and bursting. First mechanism describes a smooth, continuous and reversible transition from tonic spiking into bursting in a model neuron. The burst duration increases with no bound as 1/(a-a0)^1/2, where a0 is a parameter determining the transition. The characteristic features of this mechanism are that (a) the burst duration can be made arbitrarily long while (b) inter-burst interval does not depend on the parameter. The second mechanism is concerned with bi-stability where simultaneous tonic spiking and bursting activities co-exist in a neuron. The mechanism is based on a saddle-node periodic orbit bifurcation with non-central homoclinic orbits. This bifurcation describes a transition between three qualitatively different types of

  18. Early microglia activation in a mouse model of chronic glaucoma

    PubMed Central

    Bosco, Alejandra; Steele, Michael R.; Vetter, Monica L.

    2014-01-01

    Changes in microglial cell activation and distribution are associated with neuronal decline in the CNS, particularly under pathological conditions. Activated microglia converge on the initial site of axonal degeneration in human glaucoma, yet, their part in its pathophysiology remains unresolved. To begin with, it is unknown whether microglia activation precedes or is a late consequence of retinal ganglion cell (RGC) neurodegeneration. Here, we address this critical element in DBA/2J (D2) mice, an established model of chronic inherited glaucoma, using as a control the congenic substrain DBA/2J Gpnmb+/SjJ (D2G), which is not affected by glaucoma. We analyzed the spatial distribution and timecourse of microglial changes in the retina, as well as within the proximal optic nerve prior to and throughout ages when neurodegeneration has been reported. Exclusively in D2 mice, we detected early microglia clustering in the inner central retina and unmyelinated optic nerve regions, with microglia activation peaking by 3 months of age. Between 5 and 8 months of age, activated microglia persisted and concentrated in the optic disc, but also localized to the retinal periphery. Collectively, our findings suggest microglia activation is an early alteration in the retina and optic nerve in D2 glaucoma, potentially contributing to disease onset or progression. Ultimately, detection of microglial activation may have value in early disease diagnosis, while modulation of microglial responses may alter disease progression. PMID:21246546

  19. Active control of waves in a cochlear model with subpartitions.

    PubMed Central

    Chadwick, R S; Dimitriadis, E K; Iwasa, K H

    1996-01-01

    Multiscale asymptotic methods developed previously to study macromechanical wave propagation in cochlear models are generalized here to include active control of a cochlear partition having three subpartitions, the basilar membrane, the reticular lamina, and the tectorial membrane. Activation of outer hair cells by stereocilia displacement and/or by lateral wall stretching result in a frequency-dependent force acting between the reticular lamina and basilar membrane. Wavelength-dependent fluid loads are estimated by using the unsteady Stokes' equations, except in the narrow gap between the tectorial membrane and reticular lamina, where lubrication theory is appropriate. The local wavenumber and subpartition amplitude ratios are determined from the zeroth order equations of motion. A solvability relation for the first order equations of motion determines the subpartition amplitudes. The main findings are as follows: The reticular lamina and tectorial membrane move in unison with essentially no squeezing of the gap; an active force level consistent with measurements on isolated outer hair cells can provide a 35-dB amplification and sharpening of subpartition waveforms by delaying dissipation and allowing a greater structural resonance to occur before the wave is cut off; however, previously postulated activity mechanisms for single partition models cannot achieve sharp enough tuning in subpartitioned models. Images Fig. 1 Fig. 2 PMID:8637914

  20. Topside electron temperature models for low and high solar activity

    NASA Astrophysics Data System (ADS)

    Pandey, V.; Sethi, N.; Mahajan, K.

    It is now well known that in the topside ionosphere, thermal conduction from the protonosphere becomes the dominant factor over the "heating" and "loss" terms in shaping the ionospheric electron temperature (Te) profile. By analyzing a limited data base of incoherent scatter (i.s.) Te measurements , Mahajan and Pandey (1980) reported a correlation between the topside electron heat flux and electron density, Ne at 400 km. In the recent years, since attention has been steadily mounting for the empirical modelling of Te, in this paper we exploit the large data base of i.s. measurements of Te and Ne at Arecibo, during 1989 -90 (high solar activity), as well as during 1975-76 ( low solar activity). We again find a functional relationship between heat flux and electron density in the topside ionosphere during both the solar activities. These functional relationships are used to generate topside Te profiles. As the current IRI Te model does not include variations with solar activity, the present work can contribute in improving the topside Te model.

  1. Solubility Prediction of Active Pharmaceutical Compounds with the UNIFAC Model

    NASA Astrophysics Data System (ADS)

    Nouar, Abderrahim; Benmessaoud, Ibtissem; Koutchoukali, Ouahiba; Koutchoukali, Mohamed Salah

    2016-03-01

    The crystallization from solution of an active pharmaceutical ingredient requires the knowledge of the solubility in the entire temperature range investigated during the process. However, during the development of a new active ingredient, these data are missing. Its experimental determination is possible, but tedious. UNIFAC Group contribution method Fredenslund et al. (Vapor-liquid equilibria using UNIFAC: a group contribution method, 1977; AIChE J 21:1086, 1975) can be used to predict this physical property. Several modifications on this model have been proposed since its development in 1977, modified UNIFAC of Dortmund Weidlich et al. (Ind Eng Chem Res 26:1372, 1987), Gmehling et al. (Ind Eng Chem Res 32:178, 1993), Pharma-modified UNIFAC Diedrichs et al. (Evaluation und Erweiterung thermodynamischer Modelle zur Vorhersage von Wirkstofflöslichkeiten, PhD Thesis, 2010), KT-UNIFAC Kang et al. (Ind Eng Chem Res 41:3260, 2002), ldots In this study, we used UNIFAC model by considering the linear temperature dependence of interaction parameters as in Pharma-modified UNIFAC and structural groups as defined by KT-UNIFAC first-order model. More than 100 binary datasets were involved in the estimation of interaction parameters. These new parameters were then used to calculate activity coefficient and solubility of some molecules in various solvents at different temperatures. The model gives better results than those from the original UNIFAC and shows good agreement between the experimental solubility and the calculated one.

  2. Internal models for interpreting neural population activity during sensorimotor control

    PubMed Central

    Golub, Matthew D; Yu, Byron M; Chase, Steven M

    2015-01-01

    To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects’ internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output. DOI: http://dx.doi.org/10.7554/eLife.10015.001 PMID:26646183

  3. The activation strain model and molecular orbital theory

    PubMed Central

    Wolters, Lando P; Bickelhaupt, F Matthias

    2015-01-01

    The activation strain model is a powerful tool for understanding reactivity, or inertness, of molecular species. This is done by relating the relative energy of a molecular complex along the reaction energy profile to the structural rigidity of the reactants and the strength of their mutual interactions: ΔE(ζ) = ΔEstrain(ζ) + ΔEint(ζ). We provide a detailed discussion of the model, and elaborate on its strong connection with molecular orbital theory. Using these approaches, a causal relationship is revealed between the properties of the reactants and their reactivity, e.g., reaction barriers and plausible reaction mechanisms. This methodology may reveal intriguing parallels between completely different types of chemical transformations. Thus, the activation strain model constitutes a unifying framework that furthers the development of cross-disciplinary concepts throughout various fields of chemistry. We illustrate the activation strain model in action with selected examples from literature. These examples demonstrate how the methodology is applied to different research questions, how results are interpreted, and how insights into one chemical phenomenon can lead to an improved understanding of another, seemingly completely different chemical process. WIREs Comput Mol Sci 2015, 5:324–343. doi: 10.1002/wcms.1221 PMID:26753009

  4. A nonlinear dynamical analogue model of geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Baker, D. N.; Roberts, D. A.; Fairfield, D. H.; Buechner, J.

    1992-01-01

    Consideration is given to the solar wind-magnetosphere interaction within the framework of deterministic nonlinear dynamics. An earlier dripping faucet analog model of the low-dimensional solar wind-magnetosphere system is reviewed, and a plasma physical counterpart to that model is constructed. A Faraday loop in the magnetotail is considered, and the relationship of electric potentials on the loop to changes in the magnetic flux threading the loop is developed. This approach leads to a model of geomagnetic activity which is similar to the earlier mechanical model but described in terms of the geometry and plasma contents of the magnetotail. The model is characterized as an elementary time-dependent global convection model. The convection evolves within a magnetotail shape that varies in a prescribed manner in response to the dynamical evolution of the convection. The result is a nonlinear model capable of exhibiting a transition from regular to chaotic loading and unloading. The model's behavior under steady loading and also some elementary forms of time-dependent loading is discussed.

  5. Active microrheology of a model of the nuclear micromechanical environment

    NASA Astrophysics Data System (ADS)

    Byrd, Henry; Kilfoil, Maria

    2014-03-01

    In order to successfully complete the final stages of chromosome segregation, eukaryotic cells require the motor enzyme topoisomerase II, which can resolve topological constraints between entangled strands of duplex DNA. We created an in vitro model of a close approximation of the nuclear micromechanical environment in terms of DNA mass and entanglement density, and investigated the influence of this motor enzyme on the DNA mechanics. Topoisomerase II is a non-processive ATPase which we found significantly increases the motions of embedded microspheres in the DNA network. Because of this activity, we study the mechanical properties of our model system by active microrheology by optical trapping. We test the limits of fluctuation dissipation theorem (FDT) under this type of activity by comparing the active microrheology to passive measurements, where thermal motion alone drives the beads. We can relate any departure from FDT to the timescale of topoisomerase II activity in the DNA network. These experiments provide insight into the physical necessity of this motor enzyme in the cell.

  6. An activated sludge model based on activated sludge model number 3 for full-scale wastewater treatment plant simulation.

    PubMed

    Fan, Ji; Lu, Shu-Guang; Qiu, Zhao-fu; Wang, Xiao-Xia; Li, Wen-Zhen

    2009-06-01

    A modified model based on the activated sludge model no. 3 was established to simulate a full-scale municipal wastewater treatment plant in Shanghai, China. The activated sludge model no. 3 was modified to describe the simultaneous storage and growth processes occurring in activated sludge systems under aerobic and anoxic conditions. The mechanism of soluble microbial product formation and degradation by microorganisms was considered in this proposed model. Three months simulation was conducted including soluble chemical oxygen demand, NH4(+)-N, NO(X)(-)-N and T-N parameters, and compared with measured data from the Quyang wastewater treatment plant. Results indicated that the calculated effluent chemical oxygen demand and NH4(+)-N using this proposed model were in good agreement with the measured data. Results also showed that besides inert soluble organic matter contributing to the effluent chemical oxygen demand, soluble microbial products played an important part in the effluent chemical oxygen demand and, therefore, demonstrated that these products composed an important portion of effluent soluble chemical oxygen demand in wastewater treatment plants and should not be neglected. PMID:19705601

  7. Cometary activity and nucleus modelling: a new approach

    NASA Astrophysics Data System (ADS)

    Möhlmann, D.

    1996-06-01

    The phenomena of comet splittings with an average frequency of about one splitting per 100 years and comet (Chen and Jewitt, Icarus108, 265-271, 1994), and the restriction of cometary activity to well-defined small areas at the almost passive and mantle covered surface (Keller et al., ESA SP-250, Vol. II, pp. 363-364, 1986) are at present driving challenges to models of structure and evolution of comet nuclei. Extending the presently discussed models by incorporating lateral subsurface transport of sublimed volatiles, there appears the possibility that the places of sublimation are different from those of activity (the so-called active areas). Then, there is no necessity to distinguish between different surface properties at active and passive areas, assuming, e.g. an uncovered icy surface at active areas. Active areas are simply the very local "source sites" where the accumulated subsurface flows from distant regions reach the surface. The pressure driven subsurface flows of volatiles may not only leave the comet at its surface, they may penetrate via cracks, etc. also deeply into the nucleus. There they can cause a further growth of cracks and also new cracks. This can be a cause for the observed regular splittings. Furthermore, actual models (Kührt and Keller, Icarus109, 121-132, 1994; Skorov and Rickman, Planet. Space Sci.43, 1587-1594, 1995) of the gas transport through porous comet surface crusts can be interpreted as to give first indications for thermodynamical parameters in heat conducting and porous cometary crusts which are appropriate for 1 AU conditions to permit the temporary existence of a layer with fluid subsurface water within these crusts. This exciting result of the possible temporary existence of subsurface warm water in comets which approach the Sun within about 1 AU makes a cometary subsurface chemistry much more efficient than expected hitherto.

  8. Modeling and vibration control of an active membrane mirror

    NASA Astrophysics Data System (ADS)

    Ruggiero, Eric J.; Inman, Daniel J.

    2009-09-01

    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  9. Thermally activated breakdown in a simple polymer model.

    PubMed

    Fugmann, S; Sokolov, I M

    2010-03-01

    We consider the thermally activated fragmentation of a homopolymer chain. In our simple model the dynamics of the intact chain is a Rouse one until a bond breaks and bond breakdown is considered as a first passage problem over a barrier to an absorbing boundary. Using the framework of the Wilemski-Fixman approximation we calculate activation times of individual bonds for free and grafted chains. We show that these times crucially depend on the length of the chain and the location of the bond yielding a minimum at the free chain ends. Theoretical findings are qualitatively confirmed by Brownian dynamics simulations. PMID:20365762

  10. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support

  11. From Activity to Learning: Using Cultural Historical Activity Theory to Model School Library Programmes and Practices

    ERIC Educational Resources Information Center

    Meyers, Eric M.

    2007-01-01

    Introduction: changes in educational policy and practice demand that we examine school library programmes from a new perspective. As a model that takes a developmental view of minds in context, Cultural Historical Activity Theory is particularly well suited to the study of school libraries and the learning that occurs therein. This paper focuses…

  12. a Dynamical Model of Muscle Activation, Fatigue and Recovery

    NASA Astrophysics Data System (ADS)

    Liu, Jing Z.; Yue, Guang H.; Brown, Robert W.

    2001-04-01

    A dynamical model on muscle activation, fatigue, and recovery was developed to provide a theoretical framework for explaining the force produced by muscle(s) during the process of getting activated and fatigued. By simplifying the fatigue effect and the recovery effect as two phenomenological parameters (F, R), we developed a set of dynamical equations to describe the behavior of muscle(s) as a group of motor units under an external drive, e.g., voluntary brain effort. This model provides a macroscopic view for understanding the biophysical mechanisms of voluntary drive, fatigue effect, and recovery in stimulating, limiting and modulating the force output from muscle(s). Agreement between the experimental data and the predicted forces is excellent. This model may also generate new possibilities in clinical and engineering applications. The parameters introduced by this model can serve as good indicators of physical conditions, and may be useful for quantitative diagnosis of certain diseases related to muscles, especially symptoms of fatigue. Inference from the model can clarify a long-debating question regarding the maximal possibility of muscle force production. It can also be used as guideline for simulating real muscle in muscle engineering or design of human-mimic robot.

  13. The Elastic Body Model: A Pedagogical Approach Integrating Real Time Measurements and Modelling Activities

    ERIC Educational Resources Information Center

    Fazio, C.; Guastella, I.; Tarantino, G.

    2007-01-01

    In this paper, we describe a pedagogical approach to elastic body movement based on measurements of the contact times between a metallic rod and small bodies colliding with it and on modelling of the experimental results by using a microcomputer-based laboratory and simulation tools. The experiments and modelling activities have been built in the…

  14. A "Kanes's Dynamics" Model for the Active Rack Isolation System

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Beech, Geoffrey

    1999-01-01

    Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (international Standard Payload Rack, or ISPR) level. Effective model-based vibration isolation requires (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state-space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop an state-space, analytical (algebraic) set of linearized equations of motion for ARIS.

  15. A "Kane's Dynamics" Model for the Active Rack Isolation System

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Beech, G. S.; Rao, N. N. S.; Rupert, J. K.; Kim, Y. K.

    2001-01-01

    Many microgravity space science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (International Standard Payload Rack (ISPR)) level. Effective model-based vibration isolation requires: (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop a state-space, analytical (algebraic) set of linearized equations of motion for ARIS.

  16. Status of optical model activities at Los Alamos National Laboratory

    SciTech Connect

    Young, P.G.

    1995-12-01

    An update will be given of activities at Los Alamos National Laboratory aimed at developing optical model potentials for applied calculations. Recent work on a coupled-channels potential for neutron reactions on {sup 241,243}Am and spherical neutron potential updates for {sup 56}Fe and {sup 59}Co will be presented, together with examples of their application in nuclear reaction calculations with the GNASH code system. New potentials utilized in evaluations at Livermore for {sup 12}C, {sup 14}N and {sup 16}O are described and additional potentials from earlier analyses at Los Alamos of Ti, V, and Ni data are made available for possible inclusion in the Reference Input Parameter Library (RIPL) for nuclear model calculations of nuclear data. Specific activities directed at development of the optical potential segment of the RIPL will be summarized.

  17. Left Ventricle Segmentation Using Model Fitting and Active Surfaces

    PubMed Central

    Tay, Peter C.; Li, Bing; Garson, Chris D.; Acton, Scott T.; Hossack, John A.

    2010-01-01

    A method to perform 4D (3D over time) segmentation of the left ventricle of a mouse heart using a set of B mode cine slices acquired in vivo from a series of short axis scans is described. We incorporate previously suggested methods such as temporal propagation, the gradient vector flow active surface, superquadric models, etc. into our proposed 4D segmentation of the left ventricle. The contributions of this paper are incorporation of a novel despeckling method and the use of locally fitted superellipsoid models to provide a better initialization for the active surface segmentation algorithm. Average distances of the improved surface segmentation to a manually segmented surface throughout the entire cardiac cycle and cross-sectional contours are provided to demonstrate the improvements produced by the proposed 4D segmentation. PMID:20300558

  18. A "Kane's Dynamics" Model for the Active Rack Isolation System

    NASA Astrophysics Data System (ADS)

    Rupert, J. K.; Hampton, R. D.; Beech, G. S.

    2005-02-01

    In the late 1980s, microgravity researchers began to voice their concern that umbilical-transmitted energy could significantly degrade the acceleration environment of microgravity space science experiments onboard manned spacecraft. Since umbilicals are necessary for many experiments, control designers began to seek ways to compensate for these "indirect" disturbances. Hampton, et al., used the Kane s method to develop a model of the active rack isolation system (ARIS) that includes (1) actuator control forces, (2) direct disturbance forces, and (3) indirect, actuator-transmitted disturbances. Their model does not, however, include the indirect, umbilical-transmitted disturbances. Since the umbilical stiffnesses are not negligible, these indirect disturbances must be included in the model. Until the umbilicals have been appropriately included, the model will be incomplete. This Technical Memorandum presents a nonlinear model of ARIS with umbilicals included. Model verification was achieved by utilizing two commercial-off-the-shelf software tools. Various forces and moments were applied to the model to yield simulated responses of the system. Plots of the simulation results show how various critical points on an ARIS-outfitted international standard payload rack behave under the application of direct disturbances, indirect disturbances, and control forces. Simulations also show system response to a variety of initial conditions.

  19. An Active Region Model for Capturing Fractal Flow Patterns inUnsaturated Soils: Model Development

    SciTech Connect

    Liu, Hui-Hai; Zhang, R.; Bodvarsson, Gudmundur S.

    2005-06-11

    Preferential flow commonly observed in unsaturated soils allows rapid movement of solute from the soil surface or vadose zone to the groundwater, bypassing a significant volume of unsaturated soil and increasing the risk of groundwater contamination. A variety of evidence indicates that complex preferential patterns observed from fields are fractals. In this study, we developed a relatively simple active region model to incorporate the fractal flow pattern into the continuum approach. In the model, the flow domain is divided into active and inactive regions. Flow occurs preferentially in the active region (characterized by fractals), and inactive region is simply bypassed. A new constitutive relationship (the portion of the active region as a function of saturation) was derived. The validity of the proposed model is demonstrated by the consistency between field observations and the new constitutive relationship.

  20. Quantitative indices of autophagy activity from minimal models

    PubMed Central

    2014-01-01

    Background A number of cellular- and molecular-level studies of autophagy assessment have been carried out with the help of various biochemical and morphological indices. Still there exists ambiguity for the assessment of the autophagy status and of the causal relationship between autophagy and related cellular changes. To circumvent such difficulties, we probe new quantitative indices of autophagy which are important for defining autophagy activation and further assessing its roles associated with different physiopathological states. Methods Our approach is based on the minimal autophagy model that allows us to understand underlying dynamics of autophagy from biological experiments. Specifically, based on the model, we reconstruct the experimental context-specific autophagy profiles from the target autophagy system, and two quantitative indices are defined from the model-driven profiles. The indices are then applied to the simulation-based analysis, for the specific and quantitative interpretation of the system. Results Two quantitative indices measuring autophagy activities in the induction of sequestration fluxes and in the selective degradation are proposed, based on the model-driven autophagy profiles such as the time evolution of autophagy fluxes, levels of autophagosomes/autolysosomes, and corresponding cellular changes. Further, with the help of the indices, those biological experiments of the target autophagy system have been successfully analyzed, implying that the indices are useful not only for defining autophagy activation but also for assessing its role in a specific and quantitative manner. Conclusions Such quantitative autophagy indices in conjunction with the computer-aided analysis should provide new opportunities to characterize the causal relationship between autophagy activity and the corresponding cellular change, based on the system-level understanding of the autophagic process at good time resolution, complementing the current in vivo and in

  1. Modeling novelty habituation during exploratory activity in Drosophila.

    PubMed

    Soibam, Benjamin; Shah, Shishir; Gunaratne, Gemunu H; Roman, Gregg W

    2013-07-01

    Habituation is a common form of non-associative learning in which the organism gradually decreases its response to repeated stimuli. The decrease in exploratory activity of many animal species during exposure to a novel open field arena is a widely studied habituation paradigm. However, a theoretical framework to quantify how the novelty of the arena is learned during habituation is currently missing. Drosophila melanogaster display a high mean absolute activity and a high probability for directional persistence when first introduced to a novel arena. Both measures decrease during habituation to the arena. Here, we propose a phenomenological model of habituation for Drosophila exploration based on two principles: Drosophila form a spatial representation of the arena edge as a set of connected local patches, and repeated exposure to these patches is essential for the habituation of the novelty. The level of exposure depends on the number of visitations and is quantified by a variable referred to as "coverage". This model was tested by comparing predictions against the experimentally measured behavior of wild type Drosophila. The novelty habituation of wild type Canton-S depends on coverage and is specifically independent of the arena radius. Our model describes the time dependent locomotor activity, ΔD, of Canton-S using an experimentally established stochastic process Pn(ΔD), which depends on the coverage. The quantitative measures of exploration and habituation were further applied to three mutant genotypes. Consistent with a requirement for vision in novelty habituation, blind no receptor potential A(7) mutants display a failure in the decay of probability for directional persistence and mean absolute activity. The rutabaga(2080) habituation mutant also shows defects in these measures. The kurtz(1) non-visual arrestin mutant demonstrates a rapid decay in these measures, implying reduced motivation. The model and the habituation measures offer a powerful

  2. Topside electron temperature models for low and high solar activity

    NASA Astrophysics Data System (ADS)

    Pandey, V. K.; Sethi, N. K.; Mahajan, K. K.

    It is now well known that in the topside ionosphere thermal conduction from the protonosphere becomes the dominant factor over the heating and loss terms in shaping the ionospheric electron temperature (Te) profile. By analyzing a limited database of incoherent scatter (IS) Te measurements, Mahajan and Pandey [J. Geophys. Res. 85 (1980) 213] reported a correlation between the electron heat flux and electron density in the topside ionosphere. Since attention has been steadily mounting for the empirical modeling of Te, we now exploit the large database of IS measurements of Te and Ne at Arecibo during 1989-1990 (high solar activity), as well as during 1975-1976 (low solar activity) for this purpose. We again find a functional relationship between heat flux and electron density in the topside ionosphere during both the solar activities. These functional relationships are used to generate topside Te profiles.

  3. Hepatoprotective activity of Musa paradisiaca on experimental animal models

    PubMed Central

    Nirmala, M; Girija, K; Lakshman, K; Divya, T

    2012-01-01

    Objective To investigate the hepatoprotective activity of stem of Musa paradisiaca (M. paradisiaca) in CCl4 and paracetamol induced hepatotoxicity models in rats. Methods Hepatoprotective activity of alcoholic and aqueous extracts of stem of M. paradisiaca was demonstrated by using two experimentally induced hepatotoxicity models. Results Administration of hepatotoxins (CCl4 and paracetamol) showed significant biochemical and histological deteriorations in the liver of experimental animals. Pretreatment with alcoholic extract (500 mg/kg), more significantly and to a lesser extent the alcoholic extract (250 mg/kg) and aqueous extract (500 mg/kg), reduced the elevated levels of the serum enzymes like serum glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP) and bilirubin levels and alcoholic and aqueous extracts reversed the hepatic damage towards the normal, which further evidenced the hepatoprotective activity of stem of M. paradisiaca. Conclusions The alcoholic extract at doses of 250 and 500 mg/kg, p.o. and aqueous extract at a dose of 500 mg/kg, p.o. of stem of M. paradisiaca have significant effect on the liver of CCl4 and paracetamol induced hepatotoxicity animal models. PMID:23569826

  4. Finite-element model of the active organ of Corti.

    PubMed

    Ni, Guangjian; Elliott, Stephen J; Baumgart, Johannes

    2016-02-01

    The cochlear amplifier that provides our hearing with its extraordinary sensitivity and selectivity is thought to be the result of an active biomechanical process within the sensory auditory organ, the organ of Corti. Although imaging techniques are developing rapidly, it is not currently possible, in a fully active cochlea, to obtain detailed measurements of the motion of individual elements within a cross section of the organ of Corti. This motion is predicted using a two-dimensional finite-element model. The various solid components are modelled using elastic elements, the outer hair cells (OHCs) as piezoelectric elements and the perilymph and endolymph as viscous and nearly incompressible fluid elements. The model is validated by comparison with existing measurements of the motions within the passive organ of Corti, calculated when it is driven either acoustically, by the fluid pressure or electrically, by excitation of the OHCs. The transverse basilar membrane (BM) motion and the shearing motion between the tectorial membrane and the reticular lamina are calculated for these two excitation modes. The fully active response of the BM to acoustic excitation is predicted using a linear superposition of the calculated responses and an assumed frequency response for the OHC feedback. PMID:26888950

  5. Modeling and design aspects of active caloric regenerators

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Kurt

    2015-03-01

    A cooling device based on a solid caloric material using, for example, the elastocaloric, magnetocaloric, barocaloric or electrocaloric effect has the potential to replace vapor-compression based systems for a variety of applications. Any caloric device using a solid refrigerant may benefit from using a regenerative cycle to increase the operating temperature span. This presentation shows how all active caloric regenerators can be modeled using similar techniques and how they are related to passive regenerator performance. The advantages and disadvantages of using a regenerative cycle are also discussed. The issue of hysteresis in caloric materials is investigated from a system/thermodynamic standpoint and the effects on cooling power and efficiency are quantified using a numerical model of an active regenerator using model caloric materials with assumed properties. The implementation in a working device will be discussed for elastocaloric and magnetocaloric cooling devices. It is shown that demagnetization effects for magnetocaloric systems and stress concentration effects in elastocaloric system reduce the overall effect in the regenerator and care must be taken in regenerator design for both technologies. Other loss mechanisms outside the regenerator such as heat leaks are also discussed. Finally, experimental results for active magnetic regenerative cooler are given for a range of operating conditions. The most recently published device uses a regenerator consisting of Gd and three alloys of GdY and has demonstrated a COP over 3.

  6. Global emissions and models of photochemically active compounds

    SciTech Connect

    Penner, J.E.; Atherton, C.S.; Graedel, T.E.

    1993-05-20

    Anthropogenic emissions from industrial activity, fossil fuel combustion, and biomass burning are now known to be large enough (relative to natural sources) to perturb the chemistry of vast regions of the troposphere. A goal of the IGAC Global Emissions Inventory Activity (GEIA) is to provide authoritative and reliable emissions inventories on a 1{degree} {times} 1{degree} grid. When combined with atmospheric photochemical models, these high quality emissions inventories may be used to predict the concentrations of major photochemical products. Comparison of model results with measurements of pertinent species allows us to understand whether there are major shortcomings in our understanding of tropospheric photochemistry, the budgets and transport of trace species, and their effects in the atmosphere. Through this activity, we are building the capability to make confident predictions of the future consequences of anthropogenic emissions. This paper compares IGAC recommended emissions inventories for reactive nitrogen and sulfur dioxide to those that have been in use previously. We also present results from the three-dimensional LLNL atmospheric chemistry model that show how emissions of anthropogenic nitrogen oxides might potentially affect tropospheric ozone and OH concentrations and how emissions of anthropogenic sulfur increase sulfate aerosol loadings.

  7. Adaptive control model of an active automobile suspension system

    NASA Astrophysics Data System (ADS)

    Fritz, Matthew; Wunsch, Donald C., II; Mitra, Sunanda

    1993-12-01

    The suspension system of a passenger car provides isolation between the occupants in the car and the road surface. The three goals of the suspension system are to provide ride isolation from vibration, limit suspension travel, and maintain road holding characteristics. Each of these three goals conflicts with the others. Thus, the controller must be designed to attain each goal to some extent. This paper proposes the use of a linear quadratic regulator and a fuzzy controller to maintain the ride isolation of a loosely sprung, lightly damped passive suspension while improving the handling characteristics of the vehicle. The suspension performance as pertains to ride isolation can be studied using a simple quarter car model of a suspension system. However, the handling characteristics and the coupling between each quarter of the suspension system must be studied using a full car model. Thus, this paper uses both a quarter car and a full car model to study the performance of suspension systems. The performance of the suspension systems is evaluated by running simulations of the systems subjected to both discrete and random road inputs. This paper shows that an active suspension using a linear full state feedback controller performs better than a passively suspended vehicle. The optimally controlled active suspension system is also compared to a fuzzy controlled active suspension system and the results are discussed.

  8. Use of mouse models to study plasminogen activator inhibitor-1.

    PubMed

    Declerck, Paul J; Gils, Ann; De Taeye, Bart

    2011-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) and therefore plays an important role in the plasminogen/plasmin system. PAI-1 is involved in a variety of cardiovascular diseases (mainly through inhibition of t-PA) as well as in cell migration and tumor development (mainly through inhibition of u-PA and interaction with vitronectin). PAI-1 is a unique member of the serpin superfamily, exhibiting particular unique conformational and functional properties. Since its involvement in various biological and pathophysiological processes PAI-1 has been the subject of many in vivo studies in mouse models. We briefly discuss structural and physiological differences between human and mouse PAI-1 that should be taken into account prior to extrapolation of data obtained in mouse models to the human situation. The current review provides an overview of the various models, with a focus on cardiovascular disease and cancer, using wild-type mice or genetically modified mice, either deficient in PAI-1 or overexpressing different variants of PAI-1. PMID:21683250

  9. Modeling of Neutron Spectra Based on Activation Analysis

    NASA Astrophysics Data System (ADS)

    Jovancevic, N.; Fridman, M.; Daraban, L.; Hambsch, F.-J.; Oberstedt, S.; Hult, M.; Lutter, G.; Marissens, G.; Stroh, H.

    Safe and economical use of nuclear energy and particularly the development of GEN-IV reactors impose a better understanding of prompt neutron emission in fission, as well as of the fission process as such. Therefore, accurate measurements of the prompt fission neutron spectra (PFNS) are very important. In this work, we are testing the possibility to determine the PFNS by an activation method called DONA (DOsimetry and Spectroscopy using Neuron Activation) recently developed at IRMM (Wieslander et al., 2010, Lövestam et al., 2009). This type of modeling of the neutron spectra, based on the activation analysis, can provide new information about an old problem which still exists today, i.e. the discrepancy between measured integral and differential data (Capote et al., 2012). The problem is that the calculated average cross section for a certain neutron reaction, by using the differential experimental PFNS, in many cases cannot reproduce satisfactorily the integral measured cross section values. The modeling of the neutron spectra by the DONA technique was tested with the standard neutron spectrum of the spontaneous fission of 252Cf. We analyzed the sensitivity of the unfolding procedure to the initial neutron energy spectrum, the influence of the neutron scattering, the possibility of using different activation reactions and we also made an estimation of the lowest measurable neutron fluence rate.

  10. Heliophysical Modeling at the CCMC - Community Modeling Activities to Compliment the VHGO

    NASA Technical Reports Server (NTRS)

    MacNeice, P.; Taktakishvilli, A.; Rastaetter, L.; Chulaki, A.; Hesse, M.; Kuznetsova, M.

    2007-01-01

    The Community Coordinated Modeling Center (CCMC) hosts an ever growing inventory of models to support the research activities of the Heliophysics community.In this poster we detail this model inventory. We describe the manner in which the CCMC provides access to these models to the community. This support includes model runs driven with archived data and 'realtime' runs which update as the latest data is ingested by the models. It includes runs for individual researchers and in support of observational planning and analysis for a number of flight missions. Our need to integrate the data streams into and out of numerous models and graphics packages has led to the development of a number of infra-structure component that are also highly relevant to the design of the VHGO. We discuss this issue and the natural and vital link that must develop between the VHGO and modeling centers such as the CCMC, if the usefulness of the VHGO is to be maximized.

  11. A systematic approach for model verification: application on seven published activated sludge models.

    PubMed

    Hauduc, H; Rieger, L; Takács, I; Héduit, A; Vanrolleghem, P A; Gillot, S

    2010-01-01

    The quality of simulation results can be significantly affected by errors in the published model (typing, inconsistencies, gaps or conceptual errors) and/or in the underlying numerical model description. Seven of the most commonly used activated sludge models have been investigated to point out the typing errors, inconsistencies and gaps in the model publications: ASM1; ASM2d; ASM3; ASM3 + Bio-P; ASM2d + TUD; New General; UCTPHO+. A systematic approach to verify models by tracking typing errors and inconsistencies in model development and software implementation is proposed. Then, stoichiometry and kinetic rate expressions are checked for each model and the errors found are reported in detail. An attached spreadsheet (see http://www.iwaponline.com/wst/06104/0898.pdf) provides corrected matrices with the calculations of all stoichiometric coefficients for the discussed biokinetic models and gives an example of proper continuity checks. PMID:20182061

  12. A modelling study of feedforward activation in human erythrocyte glycolysis.

    PubMed

    Bali, M; Thomas, S R

    2001-03-01

    Though feedforward activation (FA) is a little known principle of control in metabolic networks, there is one well-known example; namely, the activation of pyruvate kinase (PK) by fructose-1,6-biphosphate (FBP) in glycolysis. The effects of this activation on the enzyme's kinetics are well characterised, but its possible role in glycolytic control has not been determined, and, experimentally, there is as yet no direct way of modifying the enzyme to remove just the FBP activation without affecting other aspects of the enzyme's kinetics. Given this limitation, we used a detailed numerical simulation of human erythrocyte glycolysis to simulate the effects of selective removal of the activation of PK by FBP on steady-state metabolite concentrations and on the dynamic response of glycolytic flux to a sudden increase of the cell's demand for ATP. Our modelling results predict that in the absence of FA steady-state levels of metabolites within the activation loop, i.e. from FBP to phosphoenolpyruvate, would be four- to thirteen-fold higher than normal, whereas levels of ATP and metabolites outside the loop, i.e. glucose-6-phosphate, fructose-6-phosphate and pyruvate, would be lower than normal. Existing clinical evidence in a patient with haemolytic anaemia, correlated with a lack of activation of PK by FBP (Paglia D.E., Valentine W.N., Holbrook C.T., Brockway R., Blood (1983) 62 972-979), is consistent with this prediction. In response to changing demand for ATP, the model predicts that the corresponding change of glycolytic flux would entail changes of metabolite concentrations in the absence of FA, but that in its presence the levels of metabolites within the activation loop remain essentially unperturbed. Thus, our results suggest that by stabilising metabolite pools in the face of variable glycolytic flux, FA may serve to avoid perturbations of the oxygen affinity of haemoglobin (sensitive to the levels of 2,3-phosphoglycerate) and of cell osmolality that would

  13. Activity landscape modeling of PPAR ligands with dual-activity difference maps.

    PubMed

    Méndez-Lucio, Oscar; Pérez-Villanueva, Jaime; Castillo, Rafael; Medina-Franco, José L

    2012-06-01

    Activation of peroxisome proliferator-activated receptor (PPAR) subtypes offers a promising strategy for the treatment of diabetes mellitus and metabolic diseases. Selective and dual PPAR agonists have been developed and the systematic characterization of their structure-activity relationships (SAR) is of major significance. Herein, we report a systematic description of the SAR of 168 compounds screened against the three PPAR subtypes using the principles of activity landscape modeling. As part of our effort to develop and apply chemoinformatic tools to navigate through activity landscapes, we employed consensus dual-activity difference maps recently reported. The analysis is based on pairwise relationships of potency difference and structure-similarity which were calculated from the combination of four different 2D and 3D structure representations. Dual-activity difference maps uncovered regions in the landscape with similar SAR for two or three receptor subtypes as well as regions with inverse SAR, that is, changes in structure that increase activity for one subtype but decrease activity for the other subtype. Analysis of pairs of compounds with high structure similarity revealed the presence of single-, dual-, and 'pan-receptor' activity cliffs, that is, small changes in structure with high changes in potency for one, two, or three receptor subtypes, respectively. Single-, dual-, and pan-receptor scaffold hops are also discussed. The analysis of the chemical structures of selected data points reported in this paper points to specific structural features that are helpful for the design of new PPAR agonists. The approach presented in this work is general and can be extended to analyze larger data sets. PMID:22564380

  14. Numerical Modeling of Flow through Phloem Considering Active Loading

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Sze, Tsun-Kay Jackie; Dutta, Prashanta

    2013-11-01

    Transport through phloem is of significant interest in engineering applications including self-powered microfluidic pumps. We present a phloem model, combining protein level mechanics with cellular level fluid transport. Fluid flow and sucrose transport through a petiole sieve tube are simulated using the Nernst-Planck, Navier-Stokes, and continuity equations. Governing equations are solved using the finite volume method with dynamically calculated boundary conditions. Sieve tube cell structure consisting of sieve plates is included in a two dimensional model by computational cell blocking. Sucrose transport is incorporated as a boundary condition through a six-state model, bringing in active loading mechanisms with consideration of physical plant properties. The effects of reaction rates and leaf sucrose concentration are investigated to understand the transport mechanism in petiole sieve tubes. Numerical results show that increasing forward reactions of the proton sucrose transporter significantly promotes the pumping ability. A lower leaf sieve sucrose concentration results in a lower wall inflow velocity, but yields a higher inflow of water due to the active loading mechanism. The overall effect is higher outflow velocity for lower leaf sieve sucrose concentration because the increase in inflow velocity outweighs wall velocity. This new phloem model provides new insights on mechanisms potentially useful for fluidic pumping in self-powered microfluidic pumps. This work is supported in part by the National Science Fundation grant CBET-1250107.

  15. Modeling and Simulation of Viscous Electro-Active Polymers

    PubMed Central

    Vogel, Franziska; Göktepe, Serdar; Steinmann, Paul; Kuhl, Ellen

    2014-01-01

    Electro-active materials are capable of undergoing large deformation when stimulated by an electric field. They can be divided into electronic and ionic electro-active polymers (EAPs) depending on their actuation mechanism based on their composition. We consider electronic EAPs, for which attractive Coulomb forces or local re-orientation of polar groups cause a bulk deformation. Many of these materials exhibit pronounced visco-elastic behavior. Here we show the development and implementation of a constitutive model, which captures the influence of the electric field on the visco-elastic response within a geometrically non-linear finite element framework. The electric field affects not only the equilibrium part of the strain energy function, but also the viscous part. To adopt the familiar additive split of the strain from the small strain setting, we formulate the governing equations in the logarithmic strain space and additively decompose the logarithmic strain into elastic and viscous parts. We show that the incorporation of the electric field in the viscous response significantly alters the relaxation and hysteresis behavior of the model. Our parametric study demonstrates that the model is sensitive to the choice of the electro-viscous coupling parameters. We simulate several actuator structures to illustrate the performance of the method in typical relaxation and creep scenarios. Our model could serve as a design tool for micro-electro-mechanical systems, microfluidic devices, and stimuli-responsive gels such as artificial skin, tactile displays, or artificial muscle. PMID:25267881

  16. Modeling and Simulation of Viscous Electro-Active Polymers.

    PubMed

    Vogel, Franziska; Göktepe, Serdar; Steinmann, Paul; Kuhl, Ellen

    2014-11-01

    Electro-active materials are capable of undergoing large deformation when stimulated by an electric field. They can be divided into electronic and ionic electro-active polymers (EAPs) depending on their actuation mechanism based on their composition. We consider electronic EAPs, for which attractive Coulomb forces or local re-orientation of polar groups cause a bulk deformation. Many of these materials exhibit pronounced visco-elastic behavior. Here we show the development and implementation of a constitutive model, which captures the influence of the electric field on the visco-elastic response within a geometrically non-linear finite element framework. The electric field affects not only the equilibrium part of the strain energy function, but also the viscous part. To adopt the familiar additive split of the strain from the small strain setting, we formulate the governing equations in the logarithmic strain space and additively decompose the logarithmic strain into elastic and viscous parts. We show that the incorporation of the electric field in the viscous response significantly alters the relaxation and hysteresis behavior of the model. Our parametric study demonstrates that the model is sensitive to the choice of the electro-viscous coupling parameters. We simulate several actuator structures to illustrate the performance of the method in typical relaxation and creep scenarios. Our model could serve as a design tool for micro-electro-mechanical systems, microfluidic devices, and stimuli-responsive gels such as artificial skin, tactile displays, or artificial muscle. PMID:25267881

  17. Emergent smectic order in simple active particle models

    NASA Astrophysics Data System (ADS)

    Romanczuk, Pawel; Chaté, Hugues; Chen, Leiming; Ngo, Sandrine; Toner, John

    2016-06-01

    Novel ‘smectic-P’ behavior, in which self-propelled particles form rows and move on average along them, occurs generically within the orientationally ordered phase of simple models that we simulate. Both apolar (head–tail symmetric) and polar (head–tail asymmetric) models with aligning and repulsive interactions exhibit slow algebraic decay of smectic order with system size up to some finite length scale, after which faster decay occurs. In the apolar case, this scale is that of an undulation instability of the rows. In the polar case, this instability is absent, but traveling fluctuations disrupt the rows in large systems and motion and smectic order may spontaneously globally rotate. These observations agree with a new hydrodynamic theory which we present here. Variants of our models also exhibit active smectic ‘A’ and ‘C’ order, with motion orthogonal and oblique to the layers respectively.

  18. Research of Active Contour Model in Aerial Images

    NASA Astrophysics Data System (ADS)

    Kun, Wang; Li, Guo

    With the development of computer and aviation technology, the aerial image is facing an important issue is how to automate, including aerial images of the automatic extraction of the target. In this paper, the issue of aerial images to study the active contour model is introduced, that is, Snake model, to achieve the target aerial image of the semi-automatic contour extraction method. Snake model used the unique characteristic of the energy minimization, carried out on the image contour extraction, to obtain a clear, consistent and accurate image contour. The model is defined through the energy minimization of the function, given in the initial position of artificial circumstances, through the iterative calculation of Snake model will eventually form the minimum energy function has been described in the outline of the target partition. The results indicate that Snake model for aerial images of the edge contour extraction, verification, concluded that the Snake-based edge detection methods could be more objectively and accurately extract the edge of the outline of aerial images.

  19. Status of the ITER plasma modeling activities in JAEA

    NASA Astrophysics Data System (ADS)

    Shiraishi, Junya; Honda, Mitsuru; Hayashi, Nobuhiko; Aiba, Nobuyuki; Toma, Mitsunori; Matsuyama, Akinobu; Naito, Osamu; Miyata, Yoshiaki; Inoue, Shizuo; Narita, Emi; Shimizu, Katsuhiro; Hamamatsu, Kiyotaka; Ide, Shunsuke; Yagi, Masatoshi

    2015-11-01

    JAEA has been contributing to the ITER plasma modeling in a wide range of research areas. Among them we report recent integrated modeling activities in JAEA. The integrated modeling is indispensable for predictive simulations of autonomous ITER plasmas, which exhibit multi-physics nature. JAEA has been developing an integrated modeling code, the TOPICS suite. The TOPICS suite has been incorporating many physics factors to enhance its prediction capability and has delivered many important findings on ITER plasm. A recent achievement is the success of predictive simulation of toroidal rotation in ITER. The TOPICS suite has been coupled with the 3D equilibrium code VMEC and the 3D drift-kinetic solver FORTEC-3D to compute the NTV, the radial electric field, and the resultant toroidal rotation self-consistently. Another achievement is the quantitative estimate of reduction of ELM energy loss by pellet injection in ITER. The TOPICS suite has been coupled with a new pellet model and with the MHD stability code MARG2D to calculate finite-n modes for modeling the ELM-enhanced diffusivities.

  20. Inference of other's internal neural models from active observation.

    PubMed

    Kim, Kyung-Joong; Cho, Sung-Bae

    2015-02-01

    Recently, there have been several attempts to replicate theory of mind, which explains how humans infer the mental states of other people using multiple sensory input, with artificial systems. One example of this is a robot that observes the behavior of other artificial systems and infers their internal models, mapping sensory inputs to the actuator's control signals. In this paper, we present the internal model as an artificial neural network, similar to biological systems. During inference, an observer can use an active incremental learning algorithm to guess an actor's internal neural model. This could significantly reduce the effort needed to guess other people's internal models. We apply an algorithm to the actor-observer robot scenarios with/without prior knowledge of the internal models. To validate our approach, we use a physics-based simulator with virtual robots. A series of experiments reveal that the observer robot can construct an "other's self-model", validating the possibility that a neural-based approach can be used as a platform for learning cognitive functions. PMID:25617791

  1. A New Simple Dynamo Model for Stellar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Yokoi, N.; Schmitt, D.; Pipin, V.; Hamba, F.

    2016-06-01

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α–Ω-type models in two main ways. First, in addition to the usual helicity (α) and turbulent magnetic diffusivity (β) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solved simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.

  2. Modeling mechanophore activation within a crosslinked glassy matrix

    NASA Astrophysics Data System (ADS)

    Silberstein, Meredith N.; Min, Kyoungmin; Cremar, Lee D.; Degen, Cassandra M.; Martinez, Todd J.; Aluru, Narayana R.; White, Scott R.; Sottos, Nancy R.

    2013-07-01

    Mechanically induced reactivity is a promising means for designing self-reporting materials. Mechanically sensitive chemical groups called mechanophores are covalently linked into polymers in order to trigger specific chemical reactions upon mechanical loading. These mechanophores can be linked either within the backbone or as crosslinks between backbone segments. Mechanophore response is sensitive to both the matrix properties and placement within the matrix, providing two avenues for material design. A model framework is developed to describe reactivity of mechanophores located as crosslinks in a glassy polymer matrix. Simulations are conducted at the molecular and macromolecular scales in order to develop macroscale constitutive relations. The model is developed specifically for the case of spiropyran (SP) in lightly crosslinked polymethylmethacrylate (PMMA). This optically trackable mechanophore (fluorescent when activated) allows the model to be assessed in terms of observed experimental behavior. The force modified potential energy surface (FMPES) framework is used in conjunction with ab initio steered molecular dynamics (MD) simulations of SP to determine the mechanophore kinetics. MD simulations of the crosslinked PMMA structure under shear deformation are used to determine the relationship between macroscale stress and local force on the crosslinks. A continuum model implemented in a finite element framework synthesizes these mechanochemical relations with the mechanical behavior. The continuum model with parameters taken directly from the FMPES and MD analyses under predicts stress-driven activation relative to experimental data. The continuum model, with the physically motivated modification of force fluctuations, provides an accurate prediction for monotonic loading across three decades of strain rate and creep loading, suggesting that the fundamental physics are captured.

  3. The road plan model: Information model for planning road building activities

    NASA Technical Reports Server (NTRS)

    Azinhal, Rafaela K.; Moura-Pires, Fernando

    1994-01-01

    The general building contractor is presented with an information model as an approach for deriving a high-level work plan of construction activities applied to road building. Road construction activities are represented in a Road Plan Model (RPM), which is modeled in the ISO standard STEP/EXPRESS and adopts various concepts from the GARM notation. The integration with the preceding road design stage and the succeeding phase of resource scheduling is discussed within the framework of a Road Construction Model. Construction knowledge is applied to the road design and the terrain model of the surrounding road infrastructure for the instantiation of the RPM. Issues regarding the implementation of a road planner application supporting the RPM are discussed.

  4. Future missions studies: Combining Schatten's solar activity prediction model with a chaotic prediction model

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.

    1991-01-01

    K. Schatten (1991) recently developed a method for combining his prediction model with our chaotic model. The philosophy behind this combined model and his method of combination is explained. Because the Schatten solar prediction model (KS) uses a dynamo to mimic solar dynamics, accurate prediction is limited to long-term solar behavior (10 to 20 years). The Chaotic prediction model (SA) uses the recently developed techniques of nonlinear dynamics to predict solar activity. It can be used to predict activity only up to the horizon. In theory, the chaotic prediction should be several orders of magnitude better than statistical predictions up to that horizon; beyond the horizon, chaotic predictions would theoretically be just as good as statistical predictions. Therefore, chaos theory puts a fundamental limit on predictability.

  5. Comparing droplet activation parameterisations against adiabatic parcel models using a novel inverse modelling framework

    NASA Astrophysics Data System (ADS)

    Partridge, Daniel; Morales, Ricardo; Stier, Philip

    2015-04-01

    Many previous studies have compared droplet activation parameterisations against adiabatic parcel models (e.g. Ghan et al., 2001). However, these have often involved comparisons for a limited number of parameter combinations based upon certain aerosol regimes. Recent studies (Morales et al., 2014) have used wider ranges when evaluating their parameterisations, however, no study has explored the full possible multi-dimensional parameter space that would be experienced by droplet activations within a global climate model (GCM). It is important to be able to efficiently highlight regions of the entire multi-dimensional parameter space in which we can expect the largest discrepancy between parameterisation and cloud parcel models in order to ascertain which regions simulated by a GCM can be expected to be a less accurate representation of the process of cloud droplet activation. This study provides a new, efficient, inverse modelling framework for comparing droplet activation parameterisations to more complex cloud parcel models. To achieve this we couple a Markov Chain Monte Carlo algorithm (Partridge et al., 2012) to two independent adiabatic cloud parcel models and four droplet activation parameterisations. This framework is computationally faster than employing a brute force Monte Carlo simulation, and allows us to transparently highlight which parameterisation provides the closest representation across all aerosol physiochemical and meteorological environments. The parameterisations are demonstrated to perform well for a large proportion of possible parameter combinations, however, for certain key parameters; most notably the vertical velocity and accumulation mode aerosol concentration, large discrepancies are highlighted. These discrepancies correspond for parameter combinations that result in very high/low simulated values of maximum supersaturation. By identifying parameter interactions or regimes within the multi-dimensional parameter space we hope to guide

  6. Modeling Anti-HIV Activity of HEPT Derivatives Revisited. Multiregression Models Are Not Inferior Ones

    SciTech Connect

    Basic, Ivan; Nadramija, Damir; Flajslik, Mario; Amic, Dragan; Lucic, Bono

    2007-12-26

    Several quantitative structure-activity studies for this data set containing 107 HEPT derivatives have been performed since 1997, using the same set of molecules by (more or less) different classes of molecular descriptors. Multivariate Regression (MR) and Artificial Neural Network (ANN) models were developed and in each study the authors concluded that ANN models are superior to MR ones. We re-calculated multivariate regression models for this set of molecules using the same set of descriptors, and compared our results with the previous ones. Two main reasons for overestimation of the quality of the ANN models in previous studies comparing with MR models are: (1) wrong calculation of leave-one-out (LOO) cross-validated (CV) correlation coefficient for MR models in Luco et al., J. Chem. Inf. Comput. Sci. 37 392-401 (1997), and (2) incorrect estimation/interpretation of leave-one-out (LOO) cross-validated and predictive performance and power of ANN models. More precise and fairer comparison of fit and LOO CV statistical parameters shows that MR models are more stable. In addition, MR models are much simpler than ANN ones. For real testing the predictive performance of both classes of models we need more HEPT derivatives, because all ANN models that presented results for external set of molecules used experimental values in optimization of modeling procedure and model parameters.

  7. Modeling Anti-HIV Activity of HEPT Derivatives Revisited. Multiregression Models Are Not Inferior Ones

    NASA Astrophysics Data System (ADS)

    Bašic, Ivan; Nadramija, Damir; Flajšlik, Mario; Amić, Dragan; Lučić, Bono

    2007-12-01

    Several quantitative structure-activity studies for this data set containing 107 HEPT derivatives have been performed since 1997, using the same set of molecules by (more or less) different classes of molecular descriptors. Multivariate Regression (MR) and Artificial Neural Network (ANN) models were developed and in each study the authors concluded that ANN models are superior to MR ones. We re-calculated multivariate regression models for this set of molecules using the same set of descriptors, and compared our results with the previous ones. Two main reasons for overestimation of the quality of the ANN models in previous studies comparing with MR models are: (1) wrong calculation of leave-one-out (LOO) cross-validated (CV) correlation coefficient for MR models in Luco et al., J. Chem. Inf. Comput. Sci. 37 392-401 (1997), and (2) incorrect estimation/interpretation of leave-one-out (LOO) cross-validated and predictive performance and power of ANN models. More precise and fairer comparison of fit and LOO CV statistical parameters shows that MR models are more stable. In addition, MR models are much simpler than ANN ones. For real testing the predictive performance of both classes of models we need more HEPT derivatives, because all ANN models that presented results for external set of molecules used experimental values in optimization of modeling procedure and model parameters.

  8. A new simple dynamo model for solar activity cycle

    NASA Astrophysics Data System (ADS)

    Yokoi, Nobumitsu; Schmitt, Dieter

    2015-04-01

    The solar magnetic activity cycle has been investigated in an elaborated manner with several types of dynamo models [1]. In most of the current mean-field approaches, the inhomogeneity of the large-scale flow is treated as an essential ingredient in the mean magnetic field equation whereas it is completely neglected in the turbulence equation. In this work, a new simple model for the solar activity cycle is proposed. The present model differs from the previous ones mainly in two points. First, in addition to the helicity coefficient α, we consider a term related to the cross helicity, which represents the effect of the inhomogeneous mean flow, in the turbulent electromotive force [2, 3]. Second, this transport coefficient (γ) is not treated as an adjustable parameter, but the evolution equation for γ is simultaneously solved. The basic scenario for the solar activity cycle in this approach is as follows: The toroidal field is induced by the toroidal rotation in mediation by the turbulent cross helicity. Then due to the α or helicity effect, the poloidal field is generated from the toroidal field. The poloidal field induced by the α effect produces a turbulent cross helicity whose sign is opposite to the original one (negative cross-helicity production). The cross helicity with this opposite sign induces a reversed toroidal field. Results of the eigenvalue analysis of the model equations are shown, which confirm the above scenario. References [1] Charbonneau, Living Rev. Solar Phys. 7, 3 (2010). [2] Yoshizawa, A. Phys. Fluids B 2, 1589 (1990). [3] Yokoi, N. Geophys. Astrophys. Fluid Dyn. 107, 114 (2013).

  9. Activity Diagrams for DEVS Models: A Case Study Modeling Health Care Behavior

    SciTech Connect

    Ozmen, Ozgur; Nutaro, James J

    2015-01-01

    Discrete Event Systems Specification (DEVS) is a widely used formalism for modeling and simulation of discrete and continuous systems. While DEVS provides a sound mathematical representation of discrete systems, its practical use can suffer when models become complex. Five main functions, which construct the core of atomic modules in DEVS, can realize the behaviors that modelers want to represent. The integration of these functions is handled by the simulation routine, however modelers can implement each function in various ways. Therefore, there is a need for graphical representations of complex models to simplify their implementation and facilitate their reproduction. In this work, we illustrate the use of activity diagrams for this purpose in the context of a health care behavior model, which is developed with an agent-based modeling paradigm.

  10. Daphnia and fish toxicity of (benzo)triazoles: validated QSAR models, and interspecies quantitative activity-activity modelling.

    PubMed

    Cassani, Stefano; Kovarich, Simona; Papa, Ester; Roy, Partha Pratim; van der Wal, Leon; Gramatica, Paola

    2013-08-15

    Due to their chemical properties synthetic triazoles and benzo-triazoles ((B)TAZs) are mainly distributed to the water compartments in the environment, and because of their wide use the potential effects on aquatic organisms are cause of concern. Non testing approaches like those based on quantitative structure-activity relationships (QSARs) are valuable tools to maximize the information contained in existing experimental data and predict missing information while minimizing animal testing. In the present study, externally validated QSAR models for the prediction of acute (B)TAZs toxicity in Daphnia magna and Oncorhynchus mykiss have been developed according to the principles for the validation of QSARs and their acceptability for regulatory purposes, proposed by the Organization for Economic Co-operation and Development (OECD). These models are based on theoretical molecular descriptors, and are statistically robust, externally predictive and characterized by a verifiable structural applicability domain. They have been applied to predict acute toxicity for over 300 (B)TAZs without experimental data, many of which are in the pre-registration list of the REACH regulation. Additionally, a model based on quantitative activity-activity relationships (QAAR) has been developed, which allows for interspecies extrapolation from daphnids to fish. The importance of QSAR/QAAR, especially when dealing with specific chemical classes like (B)TAZs, for screening and prioritization of pollutants under REACH, has been highlighted. PMID:23702385

  11. Monte Carlo modelling of daylight activated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Campbell, C. L.; Wood, K.; Valentine, R. M.; Brown, C. T. A.; Moseley, H.

    2015-05-01

    The treatment of superficial skin lesions via daylight activated photodynamic therapy (PDT) has been explored theoretically with three dimensional (3D) Monte Carlo radiation transfer simulations. For similar parameters and conditions, daylight activated PDT was compared to conventional PDT using a commercially available light source. Under reasonable assumptions for the optical properties of the tissue, protoporphyrin IX (PpIX) concentration and a treatment dose of 75 J cm-2, it was found that during a clear summer day an effective treatment depth of over 2 mm can be achieved after 30 min of daylight illumination at a latitude of 56 degrees North. The same light dose would require 2.5 h of daylight illumination during an overcast summer day where a treatment depth of about 2 mm can be achieved. For conventional PDT the developed model suggests that 15 min of illumination is required to deliver a light dose of 75 J cm-2, which would result in an effective treatment depth of about 3 mm. The model developed here allows for the determination of photo-toxicity in skin tissue as a function of depth for different weather conditions as well as for conventional light sources. Our theoretical investigation supports clinical studies and shows that daylight activated PDT has the potential for treating superficial skin lesions during different weather conditions.

  12. Solar activity variations of ionosonde measurements and modeling results

    NASA Astrophysics Data System (ADS)

    Altadill, D.; Arrazola, D.; Blanch, E.; Buresova, D.

    2008-08-01

    The time series of hourly electron density profiles N(h) obtained at several mid-latitude stations in Europe have been used to obtain N(h) profiles on a monthly basis and to extract both the expected bottomside parameters and a proxy of the ionospheric variability as functions of time and height. With these data we present advances on a “Local Model” technique for the parameters B0 and B1, its applicability to other ionospheric stations, to other bottomside ionospheric parameters, and to modeling the time/height variability of the profile. The Local Model (LM) is an empirical model based on the experimental results of the solar activity dependence of the daily and seasonal behavior of the above parameters. The LM improves the IRI-2001 prediction of the B0 and B1 by factor of two at mid-latitudes. Moreover, the LM can be used to simulate other ionospheric parameters and to build mean N(h) profiles and the deviations from them. The modeling of both the average N(h) profiles and their deviations is an useful tool for ionospheric model users who want to know both the expected patterns and their deviations.

  13. Static and Impulsive Models of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Klimchuk, James A.

    2008-01-01

    The physical modeling of active regions (ARs) and of the global coronal is receiving increasing interest lately. Recent attempts to model ARs using static equilibrium models were quite successful in reproducing AR images of hot soft X-ray (SXR) loops. They however failed to predict the bright EUV warm loops permeating ARs: the synthetic images were dominated by intense footpoint emission. We demonstrate that this failure is due to the very weak dependence of loop temperature on loop length which cannot simultaneously account for both hot and warm loops in the same AR. We then consider time-dependent AR models based on nanoflare heating. We demonstrate that such models can simultaneously reproduce EUV and SXR loops in ARs. Moreover, they predict radial intensity variations consistent with the localized core and extended emissions in SXR and EUV AR observations respectively. We finally show how the AR morphology can be used as a gauge of the properties (duration, energy, spatial dependence, repetition time) of the impulsive heating.

  14. Static and Impulsive Models of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.; Klimchuk, J. A.

    2008-12-01

    The physical modeling of active regions (ARs) and of the global corona is receiving increasing interest lately. Recent attempts to model ARs using static equilibrium models were quite successful in reproducing AR images of hot soft X-ray (SXR) loops. They however failed to predict the bright extreme-ultraviolet (EUV) warm loops permeating ARs: the synthetic images were dominated by intense footpoint emission. We demonstrate that this failure is due to the very weak dependence of loop temperature on loop length which cannot simultaneously account for both hot and warm loops in the same AR. We then consider time-dependent AR models based on nanoflare heating. We demonstrate that such models can simultaneously reproduce EUV and SXR loops in ARs. Moreover, they predict radial intensity variations consistent with the localized core and extended emissions in SXR and EUV AR observations, respectively. We finally show how the AR morphology can be used as a gauge of the properties (duration, energy, spatial dependence, and repetition time) of the impulsive heating.

  15. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Application to Flutter Suppression

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1996-01-01

    This paper describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind-tunnel model for application to design and analysis of flutter suppression controllers. The model is formed by combining the equations of motion for the BACT wind-tunnel model with actuator models and a model of wind-tunnel turbulence. The primary focus of this paper is the development of the equations of motion from first principles using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated using values for parameters obtained from both experiment and analysis. A unique aspect of the BACT wind-tunnel model is that it has upper- and lower-surface spoilers for active control. Comparisons with experimental frequency responses and other data show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind-tunnel model. The equations of motion developed herein have been used to assist the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  16. A coupled observation - modeling approach for studying activation kinetics from measurements of CCN activity

    NASA Astrophysics Data System (ADS)

    Raatikainen, T.; Moore, R. H.; Lathem, T. L.; Nenes, A.

    2012-05-01

    This paper presents an approach to study droplet activation kinetics from measurements of CCN activity by the Continuous Flow Streamwise Thermal Gradient CCN Chamber (CFSTGC) and a comprehensive model of the instrument and droplet growth. The model, which can be downloaded from http://nenes.eas.gatech.edu/Experiments/CFSTGC.html , is evaluated against a series of experiments with ammonium sulfate calibration aerosol. Observed and modeled droplet sizes are in excellent agreement for a water vapor uptake coefficient ~0.2, which is consistent with theoretical expectations. The model calculations can be considerably accelerated without significant loss of accuracy by assuming simplified instrument geometry and constant parabolic flow velocity profiles. With these assumptions, the model can be applied to large experimental data sets to infer kinetic growth parameters while fully accounting for water vapor depletion effects and changes in instrument operation parameters such as the column temperature, flow rates, sheath and sample flow relative humidities, and pressure. When the effects of instrument operation parameters, water vapor depletion and equilibrium dry particle properties on droplet size are accounted for, the remaining variations in droplet size are most likely due to non-equilibrium processes such as those caused by organic surface films, slow solute dissociation and glassy or highly viscous particle states. As an example of model application, data collected during a research flight in the ARCTAS 2008 campaign are analyzed. The model shows that water vapor depletion effects can explain changes in the observed average droplet size.

  17. A quantitative structure-activity relationship model for radical scavenging activity of flavonoids.

    PubMed

    Om, A; Kim, J H

    2008-03-01

    A quantitative structure-activity relationship (QSAR) study has been carried out for a training set of 29 flavonoids to correlate and predict the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (RSA) values obtained from published data. Genetic algorithm and multiple linear regression were employed to select the descriptors and to generate the best prediction model that relates the structural features to the RSA activities using (1) three-dimensional (3D) Dragon (TALETE srl, Milan, Italy) descriptors and (2) semi-empirical descriptor calculations. The predictivity of the models was estimated by cross-validation with the leave-one-out method. The result showed that a significant improvement of the statistical indices was obtained by deleting outliers. Based on the data for the compounds used in this study, our results suggest a QSAR model of RSA that is based on the following descriptors: 3D-Morse, WHIM, and GETAWAY. Therefore, satisfactory relationships between RSA and the semi-empirical descriptors were found, demonstrating that the energy of the highest occupied molecular orbital, total energy, and energy of heat of formation contributed more significantly than all other descriptors. PMID:18361735

  18. Modeling Active Mechanosensing in Cell-Matrix Interactions.

    PubMed

    Chen, Bin; Ji, Baohua; Gao, Huajian

    2015-01-01

    Cells actively sense the mechanical properties of the extracellular matrix, such as its rigidity, morphology, and deformation. The cell-matrix interaction influences a range of cellular processes, including cell adhesion, migration, and differentiation, among others. This article aims to review some of the recent progress that has been made in modeling mechanosensing in cell-matrix interactions at different length scales. The issues discussed include specific interactions between proteins, the structure and mechanosensitivity of focal adhesions, the cluster effects of the specific binding, the structure and behavior of stress fibers, cells' sensing of substrate stiffness, and cell reorientation on cyclically stretched substrates. The review concludes by looking toward future opportunities in the field and at the challenges to understanding active cell-matrix interactions. PMID:26098510

  19. Modeling Active Region Evolution - A New LWS TR and T Strategic Capability Model Suite

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter

    2012-01-01

    In 2006 the LWS TR&T Program funded us to develop a strategic capability model of slowly evolving coronal active regions. In this poster we report on the overall design, and status of our new modeling suite. Our design features two coronal field models, a non-linear force free field model and a global 3D MHD code. The suite includes supporting tools and a user friendly GUI which will enable users to query the web for relevant magnetograms, download them, process them to synthesize a sequence of photospheric magnetograms and associated photospheric flow field which can then be applied to drive the coronal model innner boundary, run the coronal models and finally visualize the results.

  20. Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1988-01-01

    Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.

  1. The Sugar Model: Autocatalytic Activity of the Triose Ammonia Reaction

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2007-04-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose ammonia reaction product on the kinetics of a second identical triose ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate of formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  2. Aeroelastic modeling of the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Heeg, Jennifer; Bennett, Robert M.

    1991-01-01

    The primary issues involved in the generation of linear, state-space equations of motion of a flexible wind tunnel model, the Active Flexible Wing (AFW), are discussed. The codes that were used and their inherent assumptions and limitations are also briefly discussed. The application of the CAP-TSD code to the AFW for determination of the model's transonic flutter boundary is included as well.

  3. Modelling of piezoelectric actuator dynamics for active structural control

    NASA Technical Reports Server (NTRS)

    Hagood, Nesbitt W.; Chung, Walter H.; Von Flotow, Andreas

    1990-01-01

    The paper models the effects of dynamic coupling between a structure and an electrical network through the piezoelectric effect. The coupled equations of motion of an arbitrary elastic structure with piezoelectric elements and passive electronics are derived. State space models are developed for three important cases: direct voltage driven electrodes, direct charge driven electrodes, and an indirect drive case where the piezoelectric electrodes are connected to an arbitrary electrical circuit with embedded voltage and current sources. The equations are applied to the case of a cantilevered beam with surface mounted piezoceramics and indirect voltage and current drive. The theoretical derivations are validated experimentally on an actively controlled cantilevered beam test article with indirect voltage drive.

  4. From Spontaneous Motor Activity to Coordinated Behaviour: A Developmental Model

    PubMed Central

    Marques, Hugo Gravato; Bharadwaj, Arjun; Iida, Fumiya

    2014-01-01

    In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions. PMID:25057775

  5. The subthalamic nucleus part II: modelling and simulation of activity.

    PubMed

    Heida, Tjitske; Marani, Enrico; Usunoff, Kamen G

    2008-01-01

    Part I of The Subthalamic Nucleus (volume 198) (STN) accentuates the gap between experimental animal and human information concerning subthalamic development, cytology, topography and connections.The light and electron microscopical cytology focuses on the open nucleus concept and the neuronal types present in the STN. The cytochemistry encompasses enzymes, NO, glial fibrillary acidic protein (GFAP), calcium binding proteins, and receptors (dopamine, cannabinoid, opioid, glutamate, gamma-aminobutyric acid (GABA), serotonin, cholinergic, and calcium channels). The ontogeny of the subthalamic cell cord is also reviewed. The topography concerns the rat, cat, baboon and human STN. The descriptions of the connections are also given from a historical point of view. Recent tracer studies on the rat nigro-subthalamic connection revealed contralateral projections. This monograph (Part II of the two volumes) on the subthalamic nucleus (STN) starts with a systemic model of the basal ganglia to evaluate the position of the STN in the direct, indirect and hyperdirect pathways. A summary of in vitro studies is given, describing STN spontaneous activity as well as responses to depolarizing and hyperpolarizing inputs and high-frequency stimulation. STN bursting activity and the underlying ionic mechanisms are investigated. Deep brain stimulation used for symptomatic treatment of Parkinson's disease is discussed in terms of the elements that are influenced and its hypothesized mechanisms. This part of the monograph explores the pedunculopontine-subthalamic connections and summarizes attempts to mimic neurotransmitter actions of the pedunculopontine nucleus in cell cultures and high-frequency stimulation on cultured dissociated rat subthalamic neurons. STN cell models - single- and multi-compartment models and system-level models are discussed in relation to subthalamic function and dysfunction. Parts I and II are compared. PMID:18727495

  6. Anticancer activities against cholangiocarcinoma, toxicity and pharmacological activities of Thai medicinal plants in animal models

    PubMed Central

    2012-01-01

    Background Chemotherapy of cholangiocarcinoma (CCA), a devastating cancer with increasing worldwide incidence and mortality rates, is largely ineffective. The discovery and development of effective chemotherapeutics is urgently needed. Methods/Design The study aimed at evaluating anticancer activities, toxicity, and pharmacological activities of the curcumin compound (CUR), the crude ethanolic extracts of rhizomes of Zingiber officinale Roscoe (Ginger: ZO) and Atractylodes lancea thung. DC (Khod-Kha-Mao: AL), fruits of Piper chaba Hunt. (De-Plee: PC), and Pra-Sa-Prao-Yhai formulation (a mixture of parts of 18 Thai medicinal plants: PPF) were investigated in animal models. Anti-cholangiocarcinoma (anti-CCA) was assessed using CCA-xenograft nude mouse model. The antihypertensive, analgesic, anti-inflammatory, antipyretic, and anti-ulcer activities and effects on motor coordination were investigated using Rota-rod test, CODA tail-cuff system, writhing and hot plate tests, carrageenan-induced paw edema test, brewer's yeast test, and alcohol-induced gastric ulcer test, respectively. Acute and subacute toxicity tests were performed according to the OECD guideline for testing of chemicals with modification. Results Promising anticancer activity against CCA in nude mouse xenograft model was shown for the ethanolic extract of AL at all oral dose levels (1000, 3000, and 5000 mg/kg body weight) as well as the extracts of ZO, PPF, and CUR compound at the highest dose level (5000, 4000, and 5000 mg/kg body weight, respectively). PC produced no significant anti-CCA activity. Results from acute and subacute toxicity tests both in mice and rats indicate safety profiles of all the test materials in a broad range of dose levels. No significant toxicity except stomach irritation and general CNS depressant signs were observed. Investigation of pharmacological activities of the test materials revealed promising anti-inflammatory (ZO, PPF, and AL), analgesic (CUR and PPF), antipyretic

  7. Modelling large scale human activity in San Francisco

    NASA Astrophysics Data System (ADS)

    Gonzalez, Marta

    2010-03-01

    Diverse group of people with a wide variety of schedules, activities and travel needs compose our cities nowadays. This represents a big challenge for modeling travel behaviors in urban environments; those models are of crucial interest for a wide variety of applications such as traffic forecasting, spreading of viruses, or measuring human exposure to air pollutants. The traditional means to obtain knowledge about travel behavior is limited to surveys on travel journeys. The obtained information is based in questionnaires that are usually costly to implement and with intrinsic limitations to cover large number of individuals and some problems of reliability. Using mobile phone data, we explore the basic characteristics of a model of human travel: The distribution of agents is proportional to the population density of a given region, and each agent has a characteristic trajectory size contain information on frequency of visits to different locations. Additionally we use a complementary data set given by smart subway fare cards offering us information about the exact time of each passenger getting in or getting out of the subway station and the coordinates of it. This allows us to uncover the temporal aspects of the mobility. Since we have the actual time and place of individual's origin and destination we can understand the temporal patterns in each visited location with further details. Integrating two described data set we provide a dynamical model of human travels that incorporates different aspects observed empirically.

  8. Theoretical model for calculation of helicity in solar active regions

    NASA Astrophysics Data System (ADS)

    Chatterjee, P.

    We (Choudhuri, Chatterjee and Nandy, 2005) calculate helicities of solar active regions based on the idea of Choudhuri (2003) that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. Rough estimates based on this idea compare favourably with the observed magnitude of helicity. We use our solar dynamo model based on the Babcock--Leighton α-effect to study how helicity varies with latitude and time. At the time of solar maximum, our theoretical model gives negative helicity in the northern hemisphere and positive helicity in the south, in accordance with observed hemispheric trends. However, we find that, during a short interval at the beginning of a cycle, helicities tend to be opposite of the preferred hemispheric trends. Next we (Chatterjee, Choudhuri and Petrovay 2006) use the above idea along with the sunspot decay model of Petrovay and Moreno-Insertis, (1997) to estimate the distribution of helicity inside a flux tube as it keeps collecting more azimuthal flux during its rise through the convection zone and as turbulent diffusion keeps acting on it. By varying parameters over reasonable ranges in our simple 1-d model, we find that the azimuthal flux penetrates the flux tube to some extent instead of being confined to a narrow sheath outside.

  9. Pre-Service Teachers' Modelling Processes through Engagement with Model Eliciting Activities with a Technological Tool

    ERIC Educational Resources Information Center

    Daher, Wajeeh M.; Shahbari, Juhaina Awawdeh

    2015-01-01

    Engaging mathematics students with modelling activities helps them learn mathematics meaningfully. This engagement, in the case of model eliciting activities, helps the students elicit mathematical models by interpreting real-world situation in mathematical ways. This is especially true when the students utilize technology to build the models.…

  10. Modeling the SHG activities of diverse protein crystals

    SciTech Connect

    Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J.

    2012-11-01

    The origins of the diversity in the SHG signal from protein crystals are investigated and potential protein-crystal coverage by SHG microscopy is assessed. A symmetry-additive ab initio model for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much of the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within the crystal lattice. Two or more orders-of-magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ∼84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices.

  11. Sensitivity of actively damped structures to imperfections and modeling errors

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Kapania, Rakesh K.

    1989-01-01

    The sensitivity of actively damped response of structures with respect to errors in the structural modeling is studied. Two ways of representing errors are considered. The first approach assumes errors in the form of spatial variations (or imperfections) in the assumed mass and stiffness properties of the structures. The second approach assumes errors due to such factors as unknown joint stiffnesses, discretization errors, and nonlinearities. These errors are represented here as discrepancies between experimental and analytical mode shapes and frequencies. The actively damped system considered here is a direct-rate feedback regulator based on a number of colocated velocity sensors and force actuators. The response of the controlled structure is characterized by the eigenvalues of the closed-loop system. The effects of the modeling errors are thus presented as the sensitivity of the eigenvalues of the closed-loop system. Results are presented for two examples: (1) a three-span simply supported beam controlled by three sensors and actuators, and (2) a laboratory structure consisting of a cruciform beam supported by cables.

  12. Modeling trapping mechanism for PCB adsorption on activated carbon

    NASA Astrophysics Data System (ADS)

    Jensen, Bjørnar; Kvamme, Bjørn; Kuznetsova, Tatyana; Oterhals, A.˚ge

    2012-12-01

    The levels of polychlorinated dibenzo-p-dioxin, polychlorinated dibenzofuran (PCDD/F) and dioxin-like polychlorinated biphenyl (DL-PCB) in fishmeal and fish oil produced for use in feed for salmon is above present European legislation levels in some regions of the world and different decontamination approaches have been proposed [1]. One of these is adsorption on activated carbon. This approach appears to be efficient for adsorption of PCDD/F but less efficient for DL-PCB [2]. Activated carbon consists of slit pores with average sizes of 20 - 50 Ångstroms. One hypothesis [2] for the mechanism of trapping DL-PCB is reduced ability for intramolecular movements of the PCB molecules inside the slit pores. In order to investigate this hypothesis we have used quantum mechanics [3] to characterize two DL-PCB congeners, respectively congener 77 (3,3',4,4'-Tetrachlorobiphenyl) and congener 118 (2,3',4,4',5-Pentachlorobiphenyl) and Triolein (18:1) [4] as a major constituent of the solvent fish oil. A model for activated carbon was constructed using a crystal structure of graphite from the American Mineralogist Crystal Structure Database [5]. The crystal structure used was originally from Wyckoff [6]. A small program had to be written to generate the desired graphite structure as it contains no less than 31232 Carbon atoms. Partial atomic charges were estimated using QM with DFT/B3LYP/6-311+g** and SM6 [7].

  13. Low-relief landscape modeling with human activities

    NASA Astrophysics Data System (ADS)

    Yan, Q.; Kumar, P.; Anders, A. M.

    2015-12-01

    Intensively managed landscapes (IMLs) in the Midwestern United States have been shaped by repeated glacial events over geologic time scales followed by rapid human modifications for agriculture and artificial drainage that were overlaid on extremely low gradient stream networks. These landscapes are heavily modified by agriculture, artificial drainage, deforestation, urbanization, and wetland destruction. Channel head extension and periodic dredging for channel straightening not only strongly affected hydrologic and geomorphologic response, but also fundamentally alter the energy consumption in the whole river basin. However, it is unclear how the landscape consumes and responds to the extra energy from human activities. Therefore, we evaluate the present-day dynamics of river network from the perspective of of geomorphic equilibrium, hydrological response, and the rate of energy dissipation. Then, we simulate the landscape evolution to discover the tendency of the system. We find that channel head extension and straightening increases the rate of energy dissipation and pushes the river network further away from equilibrium condition. From our numerical model simulation, extending and maintaining the ditches in the river network can cause large ridge migration, river network redistribution, and enlargement of the drainage basin area. Our research demonstrates how the river basin responds to human activities in glaciated landscape, and how it is likely to behave with artificial modifications on the topography in the future. We attribute the legacy to drainage basin reorganization and theorized that humans can have a lasting impact on the landscape even after active management has ceased.

  14. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  15. Predicting Monoamine Oxidase Inhibitory Activity through Ligand-Based Models

    PubMed Central

    Vilar, Santiago; Ferino, Giulio; Quezada, Elias; Santana, Lourdes; Friedman, Carol

    2013-01-01

    The evolution of bio- and cheminformatics associated with the development of specialized software and increasing computer power has produced a great interest in theoretical in silico methods applied in drug rational design. These techniques apply the concept that “similar molecules have similar biological properties” that has been exploited in Medicinal Chemistry for years to design new molecules with desirable pharmacological profiles. Ligand-based methods are not dependent on receptor structural data and take into account two and three-dimensional molecular properties to assess similarity of new compounds in regards to the set of molecules with the biological property under study. Depending on the complexity of the calculation, there are different types of ligand-based methods, such as QSAR (Quantitative Structure-Activity Relationship) with 2D and 3D descriptors, CoMFA (Comparative Molecular Field Analysis) or pharmacophoric approaches. This work provides a description of a series of ligand-based models applied in the prediction of the inhibitory activity of monoamine oxidase (MAO) enzymes. The controlled regulation of the enzymes’ function through the use of MAO inhibitors is used as a treatment in many psychiatric and neurological disorders, such as depression, anxiety, Alzheimer’s and Parkinson’s disease. For this reason, multiple scaffolds, such as substituted coumarins, indolylmethylamine or pyridazine derivatives were synthesized and assayed toward MAO-A and MAO-B inhibition. Our intention is to focus on the description of ligand-based models to provide new insights in the relationship between the MAO inhibitory activity and the molecular structure of the different inhibitors, and further study enzyme selectivity and possible mechanisms of action. PMID:23231398

  16. Model documentation report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System

    SciTech Connect

    1997-02-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 1997 (AEO 97). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code. This document serves three purposes. First it is a reference document providing a detailed description of the NEMS MAM used for the AEO 1997 production runs for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  17. Model documentation report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System

    SciTech Connect

    Not Available

    1994-02-07

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 1994 (AEO94). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS MAM used for the AEO 1994 production runs for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  18. Active buildings: modelling physical activity and movement in office buildings. An observational study protocol

    PubMed Central

    Smith, Lee; Ucci, Marcella; Marmot, Alexi; Spinney, Richard; Laskowski, Marek; Sawyer, Alexia; Konstantatou, Marina; Hamer, Mark; Ambler, Gareth; Wardle, Jane; Fisher, Abigail

    2013-01-01

    Introduction Health benefits of regular participation in physical activity are well documented but population levels are low. Office layout, and in particular the number and location of office building destinations (eg, print and meeting rooms), may influence both walking time and characteristics of sitting time. No research to date has focused on the role that the layout of the indoor office environment plays in facilitating or inhibiting step counts and characteristics of sitting time. The primary aim of this study was to investigate associations between office layout and physical activity, as well as sitting time using objective measures. Methods and analysis Active buildings is a unique collaboration between public health, built environment and computer science researchers. The study involves objective monitoring complemented by a larger questionnaire arm. UK office buildings will be selected based on a variety of features, including office floor area and number of occupants. Questionnaires will include items on standard demographics, well-being, physical activity behaviour and putative socioecological correlates of workplace physical activity. Based on survey responses, approximately 30 participants will be recruited from each building into the objective monitoring arm. Participants will wear accelerometers (to monitor physical activity and sitting inside and outside the office) and a novel tracking device will be placed in the office (to record participant location) for five consecutive days. Data will be analysed using regression analyses, as well as novel agent-based modelling techniques. Ethics and dissemination The results of this study will be disseminated through peer-reviewed publications and scientific presentations. Ethical approval was obtained through the University College London Research Ethics Committee (Reference number 4400/001). PMID:24227873

  19. Discharge Chamber Primary Electron Modeling Activities in Three-Dimensions

    NASA Technical Reports Server (NTRS)

    Steuber, Thomas J.

    2004-01-01

    Designing discharge chambers for ion thrusters involves many geometric configuration decisions. Various decisions will impact discharge chamber performance with respect to propellant utilization efficiency, ion production costs, and grid lifetime. These hardware design decisions can benefit from the assistance of computational modeling. Computational modeling for discharge chambers has been limited to two-dimensional codes that leveraged symmetry for interpretation into three-dimensional analysis. This paper presents model development activities towards a three-dimensional discharge chamber simulation to aid discharge chamber design decisions. Specifically, of the many geometric configuration decisions toward attainment of a worthy discharge chamber, this paper focuses on addressing magnetic circuit considerations with a three-dimensional discharge chamber simulation as a tool. With this tool, candidate discharge chamber magnetic circuit designs can be analyzed computationally to gain insight into factors that may influence discharge chamber performance such as: primary electron loss width in magnetic cusps, cathode tip position with respect to the low magnetic field volume, definition of a low magnetic field region, and maintenance of a low magnetic field region across the grid span. Corroborating experimental data will be obtained from mockup hardware tests. Initially, simulated candidate magnetic circuit designs will resemble previous successful thruster designs. To provide opportunity to improve beyond previous performance benchmarks, off-design modifications will be simulated and experimentally tested.

  20. Multiplexed model predictive control for active vehicle suspensions

    NASA Astrophysics Data System (ADS)

    Hu, Yinlong; Chen, Michael Z. Q.; Hou, Zhongsheng

    2015-02-01

    Multiplexed model predictive control (MMPC) is a recently proposed efficient model predictive control (MPC) algorithm, which can effectively reduce the computational burden of the online optimisation in MPC implementation by updating the control inputs in an asynchronous manner. This paper investigates the application of MMPC in active vehicle suspension design. An MMPC controller integrated with soft constraints and a Kalman filter is proposed based on a full-car model. Ride comfort, roadholding and suspension deflection are considered in this paper, where ride comfort and roadholding are formulated as a quadratic cost function in terms of sprung mass accelerations and tyre deflections, while suspension deflection performance is formulated as a hard constraint. The saturation of the actuator force is also considered and formulated as a hard constraint as well. Numerical simulation is performed with respect to different choices of weighting factors, vehicle speeds and control horizons. The results show that the overall performance of ride comfort and roadholding can be improved significantly by employing MMPC and the average time taken by MMPC to solve the individual quadratic programming problem is considerably smaller than that of the conventional MPC, which effectively demonstrate the effectiveness of the proposed method.

  1. Midbrain volume segmentation using active shape models and LBPs

    NASA Astrophysics Data System (ADS)

    Olveres, Jimena; Nava, Rodrigo; Escalante-Ramírez, Boris; Cristóbal, Gabriel; García-Moreno, Carla María.

    2013-09-01

    In recent years, the use of Magnetic Resonance Imaging (MRI) to detect different brain structures such as midbrain, white matter, gray matter, corpus callosum, and cerebellum has increased. This fact together with the evidence that midbrain is associated with Parkinson's disease has led researchers to consider midbrain segmentation as an important issue. Nowadays, Active Shape Models (ASM) are widely used in literature for organ segmentation where the shape is an important discriminant feature. Nevertheless, this approach is based on the assumption that objects of interest are usually located on strong edges. Such a limitation may lead to a final shape far from the actual shape model. This paper proposes a novel method based on the combined use of ASM and Local Binary Patterns for segmenting midbrain. Furthermore, we analyzed several LBP methods and evaluated their performance. The joint-model considers both global and local statistics to improve final adjustments. The results showed that our proposal performs substantially better than the ASM algorithm and provides better segmentation measurements.

  2. Edge effect modeling and experiments on active lap processing.

    PubMed

    Liu, Haitao; Wu, Fan; Zeng, Zhige; Fan, Bin; Wan, Yongjian

    2014-05-01

    Edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, especially for large polishing tools. Computer controlled active lap (CCAL) uses a large size pad (e.g., 1/3 to 1/5 workpiece diameters) to grind and polish the primary mirror. Edge effect also exists in the CCAL process in our previous fabrication. In this paper the material removal rules when edge effects happen (i.e. edge tool influence functions (TIFs)) are obtained through experiments, which are carried out on a Φ1090-mm circular flat mirror with a 375-mm-diameter lap. Two methods are proposed to model the edge TIFs for CCAL. One is adopting the pressure distribution which is calculated based on the finite element analysis method. The other is building up a parametric equivalent pressure model to fit the removed material curve directly. Experimental results show that these two methods both effectively model the edge TIF of CCAL. PMID:24921777

  3. Validation of model based active control of combustion instability

    SciTech Connect

    Fleifil, M.; Ghoneim, Z.; Ghoniem, A.F.

    1998-07-01

    The demand for efficient, company and clean combustion systems have spurred research into the fundamental mechanisms governing their performance and means of interactively changing their performance characteristics. Thermoacoustic instability which is frequently observed in combustion systems with high power density, when burning close to the lean flammability limit, or using exhaust gas recirculation to meet more stringent emissions regulations, etc. Its occurrence and/or means to mitigate them passively lead to performance degradation such as reduced combustion efficiency, high local heat transfer rates, increase in the mixture equivalence ratio or system failure due to structural damage. This paper reports on their study of the origin of thermoacoustic instability, its dependence on system parameters and the means of actively controlling it. The authors have developed an analytical model of thermoacoustic instability in premixed combustors. The model combines a heat release dynamics model constructed using the kinematics of a premixed flame stabilized behind a perforated plate with the linearized conservation equations governing the system acoustics. This formulation allows model based controller design. In order to test the performance of the analytical model, a numerical solution of the partial differential equations governing the system has been carried out using the principle of harmonic separation and focusing on the dominant unstable mode. This leads to a system of ODEs governing the thermofluid variables. Analytical predictions of the frequency and growth ate of the unstable mode are shown to be in good agreement with the numerical simulations as well s with those obtained using experimental identification techniques when applied to a laboratory combustor. The authors use these results to confirm the validity of the assumptions used in formulating the analytical model. A controller based on the minimization of a cost function using the LQR technique has

  4. Automated MRI Cerebellar Size Measurements Using Active Appearance Modeling

    PubMed Central

    Price, Mathew; Cardenas, Valerie A.; Fein, George

    2014-01-01

    Although the human cerebellum has been increasingly identified as an important hub that shows potential for helping in the diagnosis of a large spectrum of disorders, such as alcoholism, autism, and fetal alcohol spectrum disorder, the high costs associated with manual segmentation, and low availability of reliable automated cerebellar segmentation tools, has resulted in a limited focus on cerebellar measurement in human neuroimaging studies. We present here the CATK (Cerebellar Analysis Toolkit), which is based on the Bayesian framework implemented in FMRIB’s FIRST. This approach involves training Active Appearance Models (AAM) using hand-delineated examples. CATK can currently delineate the cerebellar hemispheres and three vermal groups (lobules I–V, VI–VII, and VIII–X). Linear registration with the low-resolution MNI152 template is used to provide initial alignment, and Point Distribution Models (PDM) are parameterized using stellar sampling. The Bayesian approach models the relationship between shape and texture through computation of conditionals in the training set. Our method varies from the FIRST framework in that initial fitting is driven by 1D intensity profile matching, and the conditional likelihood function is subsequently used to refine fitting. The method was developed using T1-weighted images from 63 subjects that were imaged and manually labeled: 43 subjects were scanned once and were used for training models, and 20 subjects were imaged twice (with manual labeling applied to both runs) and used to assess reliability and validity. Intraclass correlation analysis shows that CATK is highly reliable (average test-retest ICCs of 0.96), and offers excellent agreement with the gold standard (average validity ICC of 0.87 against manual labels). Comparisons against an alternative atlas-based approach, SUIT (Spatially Unbiased Infratentorial Template), that registers images with a high-resolution template of the cerebellum, show that our AAM

  5. Multistability in Large Scale Models of Brain Activity

    PubMed Central

    Golos, Mathieu; Jirsa, Viktor; Daucé, Emmanuel

    2015-01-01

    Noise driven exploration of a brain network’s dynamic repertoire has been hypothesized to be causally involved in cognitive function, aging and neurodegeneration. The dynamic repertoire crucially depends on the network’s capacity to store patterns, as well as their stability. Here we systematically explore the capacity of networks derived from human connectomes to store attractor states, as well as various network mechanisms to control the brain’s dynamic repertoire. Using a deterministic graded response Hopfield model with connectome-based interactions, we reconstruct the system’s attractor space through a uniform sampling of the initial conditions. Large fixed-point attractor sets are obtained in the low temperature condition, with a bigger number of attractors than ever reported so far. Different variants of the initial model, including (i) a uniform activation threshold or (ii) a global negative feedback, produce a similarly robust multistability in a limited parameter range. A numerical analysis of the distribution of the attractors identifies spatially-segregated components, with a centro-medial core and several well-delineated regional patches. Those different modes share similarity with the fMRI independent components observed in the “resting state” condition. We demonstrate non-stationary behavior in noise-driven generalizations of the models, with different meta-stable attractors visited along the same time course. Only the model with a global dynamic density control is found to display robust and long-lasting non-stationarity with no tendency toward either overactivity or extinction. The best fit with empirical signals is observed at the edge of multistability, a parameter region that also corresponds to the highest entropy of the attractors. PMID:26709852

  6. Dike propagation in active volcanoes: importance, evidence, models and perspectives

    NASA Astrophysics Data System (ADS)

    Acocella, V.

    2011-12-01

    Most eruptions are fed by dikes; therefore, better knowledge of dike propagation is crucial to improve our understanding of how magma is transferred and extruded at volcanoes. Dike pattern data from a few tens of active volcanic edifices show how dike propagation in a volcano is not a random process; rather, it depends from the following factors (listed in order of importance): the presence of relief, the shape of the edifice, the proximity to the surface, and regional tectonic control. Relief enhances the development of radial dikes, which may also cluster following volcano elongation or regional patterns. Dikes approaching the surface of volcanic edifices, regardless of their initial orientation, reorient to become radial (parallel to the maximum gravitational stress); in presence of scarps, dikes reorient subparallel to the scarp (perpendicular to the minimum gravitational stress). These relationships have been also observed or inferred during eruptions at Etna, Stromboli, Vesuvio (Italy), Erta Ale (Afar) and Faial (Azores). While numerical modelling of dike propagation remains challenging, analogue models of dike emplacement have been performed over a few decades, also supporting part of the above-described evidence. Analogue models have been mostly conducted injecting air or water within gelatine and, recently, injecting vegetable oil within sand. More sophisticated analogue modelling is foreseen for the future, using a more appropriate scaling, a larger sensitivity and providing a more quantitative approach in capturing relationships. More in general, future research on dikes should be devoted towards identifying dike propagation paths, dike arrest mechanisms, and likely locations of vent formation at specific volcanoes, to better aid hazards assessment.

  7. Multistability in Large Scale Models of Brain Activity.

    PubMed

    Golos, Mathieu; Jirsa, Viktor; Daucé, Emmanuel

    2015-12-01

    Noise driven exploration of a brain network's dynamic repertoire has been hypothesized to be causally involved in cognitive function, aging and neurodegeneration. The dynamic repertoire crucially depends on the network's capacity to store patterns, as well as their stability. Here we systematically explore the capacity of networks derived from human connectomes to store attractor states, as well as various network mechanisms to control the brain's dynamic repertoire. Using a deterministic graded response Hopfield model with connectome-based interactions, we reconstruct the system's attractor space through a uniform sampling of the initial conditions. Large fixed-point attractor sets are obtained in the low temperature condition, with a bigger number of attractors than ever reported so far. Different variants of the initial model, including (i) a uniform activation threshold or (ii) a global negative feedback, produce a similarly robust multistability in a limited parameter range. A numerical analysis of the distribution of the attractors identifies spatially-segregated components, with a centro-medial core and several well-delineated regional patches. Those different modes share similarity with the fMRI independent components observed in the "resting state" condition. We demonstrate non-stationary behavior in noise-driven generalizations of the models, with different meta-stable attractors visited along the same time course. Only the model with a global dynamic density control is found to display robust and long-lasting non-stationarity with no tendency toward either overactivity or extinction. The best fit with empirical signals is observed at the edge of multistability, a parameter region that also corresponds to the highest entropy of the attractors. PMID:26709852

  8. Quantitative structure-activity relationship models with receptor-dependent descriptors for predicting peroxisome proliferator-activated receptor activities of thiazolidinedione and oxazolidinedione derivatives.

    PubMed

    Lather, Viney; Kairys, Visvaldas; Fernandes, Miguel X

    2009-04-01

    A quantitative structure-activity relationship study has been carried out, in which the relationship between the peroxisome proliferator-activated receptor alpha and the peroxisome proliferator-activated receptor gamma agonistic activities of thiazolidinedione and oxazolidinedione derivatives and quantitative descriptors, V(site) calculated in a receptor-dependent manner is modeled. These descriptors quantify the volume occupied by the optimized ligands in regions that are either common or specific to the superimposed binding sites of the targets under consideration. The quantitative structure-activity relationship models were built by forward stepwise linear regression modeling for a training set of 27 compounds and validated for a test set of seven compounds, resulting in a squared correlation coefficient value of 0.90 for peroxisome proliferator-activated receptor alpha and of 0.89 for peroxisome proliferator-activated receptor gamma. The leave-one-out cross-validation and test set predictability squared correlation coefficient values for these models were 0.85 and 0.62 for peroxisome proliferator-activated receptor alpha and 0.89 and 0.50 for peroxisome proliferator-activated receptor gamma respectively. A dual peroxisome proliferator-activated receptor model has also been developed, and it indicates the structural features required for the design of ligands with dual peroxisome proliferator-activated receptor activity. These quantitative structure-activity relationship models show the importance of the descriptors here introduced in the prediction and interpretation of the compounds affinity and selectivity. PMID:19243388

  9. Prediction Activities at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2010-01-01

    The Global Modeling and Assimilation Office (GMAO) is a core NASA resource for the development and use of satellite observations through the integrating tools of models and assimilation systems. Global ocean, atmosphere and land surface models are developed as components of assimilation and forecast systems that are used for addressing the weather and climate research questions identified in NASA's science mission. In fact, the GMAO is actively engaged in addressing one of NASA's science mission s key questions concerning how well transient climate variations can be understood and predicted. At weather time scales the GMAO is developing ultra-high resolution global climate models capable of resolving high impact weather systems such as hurricanes. The ability to resolve the detailed characteristics of weather systems within a global framework greatly facilitates addressing fundamental questions concerning the link between weather and climate variability. At sub-seasonal time scales, the GMAO is engaged in research and development to improve the use of land information (especially soil moisture), and in the improved representation and initialization of various sub-seasonal atmospheric variability (such as the MJO) that evolves on time scales longer than weather and involves exchanges with both the land and ocean The GMAO has a long history of development for advancing the seasonal-to-interannual (S-I) prediction problem using an older version of the coupled atmosphere-ocean general circulation model (AOGCM). This includes the development of an Ensemble Kalman Filter (EnKF) to facilitate the multivariate assimilation of ocean surface altimetry, and an EnKF developed for the highly inhomogeneous nature of the errors in land surface models, as well as the multivariate assimilation needed to take advantage of surface soil moisture and snow observations. The importance of decadal variability, especially that associated with long-term droughts is well recognized by the

  10. Modeling injection molding of net-shape active ceramic components.

    SciTech Connect

    Baer, Tomas; Cote, Raymond O.; Grillet, Anne Mary; Yang, Pin; Hopkins, Matthew Morgan; Noble, David R.; Notz, Patrick K.; Rao, Rekha Ranjana; Halbleib, Laura L.; Castaneda, Jaime N.; Burns, George Robert; Mondy, Lisa Ann; Brooks, Carlton, F.

    2006-11-01

    To reduce costs and hazardous wastes associated with the production of lead-based active ceramic components, an injection molding process is being investigated to replace the current machining process. Here, lead zirconate titanate (PZT) ceramic particles are suspended in a thermoplastic resin and are injected into a mold and allowed to cool. The part is then bisque fired and sintered to complete the densification process. To help design this new process we use a finite element model to describe the injection molding of the ceramic paste. Flow solutions are obtained using a coupled, finite-element based, Newton-Raphson numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. Thermal, rheological, and wetting properties of the PZT paste are measured for use as input to the model. The viscosity of the PZT is highly dependent both on temperature and shear rate. One challenge in modeling the injection process is coming up with appropriate constitutive equations that capture relevant phenomenology without being too computationally complex. For this reason we model the material as a Carreau fluid and a WLF temperature dependence. Two-dimensional (2D) modeling is performed to explore the effects of the shear in isothermal conditions. Results indicate that very low viscosity regions exist near walls and that these results look similar in terms of meniscus shape and fill times to a simple Newtonian constitutive equation at the shear-thinned viscosity for the paste. These results allow us to pick a representative viscosity to use in fully three-dimensional (3D) simulation, which because of numerical complexities are restricted to using a Newtonian constitutive equation. Further 2D modeling at nonisothermal conditions shows that the choice of

  11. Modelling precipitate distribution in reduced-activation steels

    NASA Astrophysics Data System (ADS)

    Gaude-Fugarolas, D.; de Carlan, Y.

    2008-02-01

    The microstructure and carbide distribution in two commercial creep resistant, low-activation, martensitic alloys (F82H and JLF-1) have been modelled using a thermo-kinetic calculation package. The microstructures after manufacturing and after long unstrained thermal aging treatments (13 500 h) at various temperatures (250, 400 and 550 °C), considered to be representative of service temperatures, have been considered. In all cases, the calculated carbide size distributions match in order of magnitude experimental measurements, although the shape of the distribution differs. The obtained results are more accurate for alloy F82H than for alloy JLF-1. Nevertheless, this work shows that it is possible to obtain realistic estimates of the microstructure evolution of creep resistant alloys in long thermal ageing treatments at service-like temperatures.

  12. Boron-10 ABUNCL Prototype Models And Initial Active Testing

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-04-23

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNPX model simulations and initial testing of the active mode variation of the Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Initial experimental testing of the as-delivered passive ABUNCL was previously reported.

  13. Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.

    2009-01-01

    The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.

  14. Wanted: Active Role Models for Today's Kids | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Childhood Obesity Wanted: Active Role Models for Today's Kids Past Issues / Spring - Summer 2010 Table of Contents ... obesity already a growing problem for their parents, kids today need all the active role models they ...

  15. Generalized internal model robust control for active front steering intervention

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhao, Youqun; Ji, Xuewu; Liu, Yahui; Zhang, Lipeng

    2015-03-01

    Because of the tire nonlinearity and vehicle's parameters' uncertainties, robust control methods based on the worst cases, such as H ∞, µ synthesis, have been widely used in active front steering control, however, in order to guarantee the stability of active front steering system (AFS) controller, the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control. In this paper, a generalized internal model robust control (GIMC) that can overcome the contradiction between performance and stability is used in the AFS control. In GIMC, the Youla parameterization is used in an improved way. And GIMC controller includes two sections: a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters' uncertainties and some external disturbances. Simulations of double lane change (DLC) maneuver and that of braking on split- µ road are conducted to compare the performance and stability of the GIMC control, the nominal performance PID controller and the H ∞ controller. Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations, H ∞ controller is conservative so that the performance is a little low, and only the GIMC controller overcomes the contradiction between performance and robustness, which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller. Therefore, the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system, that is, can solve the instability of PID or LQP control methods and the low performance of the standard H ∞ controller.

  16. Modeling place field activity with hierarchical slow feature analysis

    PubMed Central

    Schönfeld, Fabian; Wiskott, Laurenz

    2015-01-01

    What are the computational laws of hippocampal activity? In this paper we argue for the slowness principle as a fundamental processing paradigm behind hippocampal place cell firing. We present six different studies from the experimental literature, performed with real-life rats, that we replicated in computer simulations. Each of the chosen studies allows rodents to develop stable place fields and then examines a distinct property of the established spatial encoding: adaptation to cue relocation and removal; directional dependent firing in the linear track and open field; and morphing and scaling the environment itself. Simulations are based on a hierarchical Slow Feature Analysis (SFA) network topped by a principal component analysis (ICA) output layer. The slowness principle is shown to account for the main findings of the presented experimental studies. The SFA network generates its responses using raw visual input only, which adds to its biological plausibility but requires experiments performed in light conditions. Future iterations of the model will thus have to incorporate additional information, such as path integration and grid cell activity, in order to be able to also replicate studies that take place during darkness. PMID:26052279

  17. Origin of aromatase inhibitory activity via proteochemometric modeling

    PubMed Central

    Simeon, Saw; Spjuth, Ola; Lapins, Maris; Nabu, Sunanta; Anuwongcharoen, Nuttapat; Prachayasittikul, Virapong; Wikberg, Jarl E.S.

    2016-01-01

    Aromatase, the rate-limiting enzyme that catalyzes the conversion of androgen to estrogen, plays an essential role in the development of estrogen-dependent breast cancer. Side effects due to aromatase inhibitors (AIs) necessitate the pursuit of novel inhibitor candidates with high selectivity, lower toxicity and increased potency. Designing a novel therapeutic agent against aromatase could be achieved computationally by means of ligand-based and structure-based methods. For over a decade, we have utilized both approaches to design potential AIs for which quantitative structure–activity relationships and molecular docking were used to explore inhibitory mechanisms of AIs towards aromatase. However, such approaches do not consider the effects that aromatase variants have on different AIs. In this study, proteochemometrics modeling was applied to analyze the interaction space between AIs and aromatase variants as a function of their substructural and amino acid features. Good predictive performance was achieved, as rigorously verified by 10-fold cross-validation, external validation, leave-one-compound-out cross-validation, leave-one-protein-out cross-validation and Y-scrambling tests. The investigations presented herein provide important insights into the mechanisms of aromatase inhibitory activity that could aid in the design of novel potent AIs as breast cancer therapeutic agents. PMID:27190705

  18. Origin of aromatase inhibitory activity via proteochemometric modeling.

    PubMed

    Simeon, Saw; Spjuth, Ola; Lapins, Maris; Nabu, Sunanta; Anuwongcharoen, Nuttapat; Prachayasittikul, Virapong; Wikberg, Jarl E S; Nantasenamat, Chanin

    2016-01-01

    Aromatase, the rate-limiting enzyme that catalyzes the conversion of androgen to estrogen, plays an essential role in the development of estrogen-dependent breast cancer. Side effects due to aromatase inhibitors (AIs) necessitate the pursuit of novel inhibitor candidates with high selectivity, lower toxicity and increased potency. Designing a novel therapeutic agent against aromatase could be achieved computationally by means of ligand-based and structure-based methods. For over a decade, we have utilized both approaches to design potential AIs for which quantitative structure-activity relationships and molecular docking were used to explore inhibitory mechanisms of AIs towards aromatase. However, such approaches do not consider the effects that aromatase variants have on different AIs. In this study, proteochemometrics modeling was applied to analyze the interaction space between AIs and aromatase variants as a function of their substructural and amino acid features. Good predictive performance was achieved, as rigorously verified by 10-fold cross-validation, external validation, leave-one-compound-out cross-validation, leave-one-protein-out cross-validation and Y-scrambling tests. The investigations presented herein provide important insights into the mechanisms of aromatase inhibitory activity that could aid in the design of novel potent AIs as breast cancer therapeutic agents. PMID:27190705

  19. Anxiety, not anger, induces inflammatory activity: An avoidance/approach model of immune system activation.

    PubMed

    Moons, Wesley G; Shields, Grant S

    2015-08-01

    Psychological stressors reliably trigger systemic inflammatory activity as indexed by levels of proinflammatory cytokines. This experiment demonstrates that one's specific emotional reaction to a stressor may be a significant determinant of whether an inflammatory reaction occurs in response to that stressor. Based on extant correlational evidence and theory, a causal approach was used to determine whether an avoidant emotion (anxiety) triggers more inflammatory activity than an approach emotion (anger). In an experimental design (N = 40), a 3-way Emotion Condition × Time × Analyte interaction revealed that a writing-based anxiety induction, but not a writing-based anger induction, increased mean levels of interferon-γ (IFN- γ) and interleukin-1β (IL-1β), but not interleukin-6 (IL-6) in oral mucous, F(2, 54) = 4.64, p = .01, ηp(²) = .15. Further, self-reported state anxiety predicted elevated levels of proinflammatory cytokines, all ΔR(²) >.06, ps <.04, but self-reported state anger did not. These results constitute the first evidence to our knowledge that specific negative emotions can differentially cause inflammatory activity and support a theoretical model explaining these effects based on the avoidance or approach motivations associated with emotions. PMID:26053247

  20. Aryl-alkyl-lysines: Membrane-Active Small Molecules Active against Murine Model of Burn Infection.

    PubMed

    Ghosh, Chandradhish; Manjunath, Goutham B; Konai, Mohini M; Uppu, Divakara S S M; Paramanandham, Krishnamoorthy; Shome, Bibek R; Ravikumar, Raju; Haldar, Jayanta

    2016-02-12

    Infections caused by drug-resistant Gram-negative pathogens continue to be significant contributors to human morbidity. The recent advent of New Delhi metallo-β-lactamase-1 (blaNDM-1) producing pathogens, against which few drugs remain active, has aggravated the problem even further. This paper shows that aryl-alkyl-lysines, membrane-active small molecules, are effective in treating infections caused by Gram-negative pathogens. One of the compounds of the study was effective in killing planktonic cells as well as dispersing biofilms of Gram-negative pathogens. The compound was extremely effective in disrupting preformed biofilms and did not select resistant bacteria in multiple passages. The compound retained activity in different physiological conditions and did not induce any toxic effect in female Balb/c mice until concentrations of 17.5 mg/kg. In a murine model of Acinetobacter baumannii burn infection, the compound was able to bring the bacterial burden down significantly upon topical application for 7 days. PMID:27624962

  1. Automated optic disk boundary detection by modified active contour model.

    PubMed

    Xu, Juan; Chutatape, Opas; Chew, Paul

    2007-03-01

    This paper presents a novel deformable-model-based algorithm for fully automated detection of optic disk boundary in fundus images. The proposed method improves and extends the original snake (deforming-only technique) in two aspects: clustering and smoothing update. The contour points are first self-separated into edge-point group or uncertain-point group by clustering after each deformation, and these contour points are then updated by different criteria based on different groups. The updating process combines both the local and global information of the contour to achieve the balance of contour stability and accuracy. The modifications make the proposed algorithm more accurate and robust to blood vessel occlusions, noises, ill-defined edges and fuzzy contour shapes. The comparative results show that the proposed method can estimate the disk boundaries of 100 test images closer to the groundtruth, as measured by mean distance to closest point (MDCP) <3 pixels, with the better success rate when compared to those obtained by gradient vector flow snake (GVF-snake) and modified active shape models (ASM). PMID:17355059

  2. Models to support active sensing of biological aerosol clouds

    NASA Astrophysics Data System (ADS)

    Brown, Andrea M.; Kalter, Jeffrey M.; Corson, Elizabeth C.; Chaudhry, Zahra; Boggs, Nathan T.; Brown, David M.; Thomas, Michael E.; Carter, Christopher C.

    2013-05-01

    Elastic backscatter LIght Detection And Ranging (LIDAR) is a promising approach for stand-off detection of biological aerosol clouds. Comprehensive models that explain the scattering behavior from the aerosol cloud are needed to understand and predict the scattering signatures of biological aerosols under varying atmospheric conditions and against different aerosol backgrounds. Elastic signatures are dependent on many parameters of the aerosol cloud, with two major components being the size distribution and refractive index of the aerosols. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been in a unique position to measure the size distributions of released biological simulant clouds using a wide assortment of aerosol characterization systems that are available on the commercial market. In conjunction with the size distribution measurements, JHU/APL has also been making a dedicated effort to properly measure the refractive indices of the released materials using a thin-film absorption technique and laboratory characterization of the released materials. Intimate knowledge of the size distributions and refractive indices of the biological aerosols provides JHU/APL with powerful tools to build elastic scattering models, with the purpose of understanding, and ultimately, predicting the active signatures of biological clouds.

  3. Abdomen and spinal cord segmentation with augmented active shape models.

    PubMed

    Xu, Zhoubing; Conrad, Benjamin N; Baucom, Rebeccah B; Smith, Seth A; Poulose, Benjamin K; Landman, Bennett A

    2016-07-01

    Active shape models (ASMs) have been widely used for extracting human anatomies in medical images given their capability for shape regularization of topology preservation. However, sensitivity to model initialization and local correspondence search often undermines their performances, especially around highly variable contexts in computed-tomography (CT) and magnetic resonance (MR) images. In this study, we propose an augmented ASM (AASM) by integrating the multiatlas label fusion (MALF) and level set (LS) techniques into the traditional ASM framework. Using AASM, landmark updates are optimized globally via a region-based LS evolution applied on the probability map generated from MALF. This augmentation effectively extends the searching range of correspondent landmarks while reducing sensitivity to the image contexts and improves the segmentation robustness. We propose the AASM framework as a two-dimensional segmentation technique targeting structures with one axis of regularity. We apply AASM approach to abdomen CT and spinal cord (SC) MR segmentation challenges. On 20 CT scans, the AASM segmentation of the whole abdominal wall enables the subcutaneous/visceral fat measurement, with high correlation to the measurement derived from manual segmentation. On 28 3T MR scans, AASM yields better performances than other state-of-the-art approaches in segmenting white/gray matter in SC. PMID:27610400

  4. Multiresolution active contour model applied on lung and colon images

    NASA Astrophysics Data System (ADS)

    Dehmeshki, Jamshid; Siddique, Musib; Wong, Wing; Chis Ster, Irina

    2004-05-01

    This paper deploys a wavelet based scale-space approach to extract the boundary of the object of interest in medical CT images. The classical approach of the active contour models consists of starting with an initial contour, to deform it under the action of some forces attracting the contour towards the edges by means of a set of forces. The mathematical model involves in the minimisation of an objective function called energy functional, which depends on the geometry of the contour as well as of the image characteristics. Various strategies could be used for the formulation of the energy functional and its optimisation. In this study, a wavelet based scale-space approach has been adopted. The coarsest scale is able to enlarge the capture region surrounding an object and avoids the trapping of contour into weak edges. The finer scales are used to refine the contour as close as possible to the boundary of the object. An adaptive scale coefficient for the balloon energy has been introduced. Four levels of resolution have been applied in order to get reproducibility of the contour despite poor different initialisations. The scheme has been applied to segment the regions of interest in CT lung and colon images. The result has been shown to be accurate and reproducible for the cases containing fat, holes and other small high intensity objects inside lung nodules as well as colon polyps.

  5. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm

    PubMed Central

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-01-01

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation. PMID:26876026

  6. Optimal inference with suboptimal models: Addiction and active Bayesian inference

    PubMed Central

    Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl

    2015-01-01

    When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321

  7. Active control strategy on a catenary-pantograph validated model

    NASA Astrophysics Data System (ADS)

    Sanchez-Rebollo, C.; Jimenez-Octavio, J. R.; Carnicero, A.

    2013-04-01

    Dynamic simulation methods have become essential in the design process and control of the catenary-pantograph system, overall since high-speed trains and interoperability criteria are getting very trendy. This paper presents an original hardware-in-the-loop (HIL) strategy aimed at integrating a multicriteria active control within the catenary-pantograph dynamic interaction. The relevance of HIL control systems applied in the frame of the pantograph is undoubtedly increasing due to the recent and more demanding requirements for high-speed railway systems. Since the loss of contact between the catenary and the pantograph leads to arcing and electrical wear, and too high contact forces cause mechanical wear of both the catenary wires and the strips of the pantograph, not only prescribed but also economic and performance criteria ratify such a relevance. Different configurations of the proportional-integral-derivative (PID) controller are proposed and applied to two different plant systems. Since this paper is mainly focused on the control strategy, both plant systems are simulation models though the methodology is suitable for a laboratory bench. The strategy of control involves a multicriteria optimisation of the contact force and the consumption of the energy supplied by the control force, a genetic algorithm has been applied for this purpose. Thus, the PID controller is fitted according to these conflicting objectives and tested within a nonlinear lumped model and a nonlinear finite element model, being the last one validated against the European Standard EN 50318. Finally, certain tests have been accomplished in order to analyse the robustness of the control strategy. Particularly, the relevance or the plant simulation, the running speed and the instrumentation time delay are studied in this paper.

  8. Modeling crustal deformation near active faults and volcanic centers: a catalog of deformation models and modeling approaches

    USGS Publications Warehouse

    Battaglia, Maurizio; Cervelli; Peter, F.; Murray, Jessica R.

    2013-01-01

    This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.

  9. APPLICATION OF THE DISK EVAPORATION MODEL TO ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Liu, B. F.

    2009-12-10

    The disk corona evaporation model extensively developed for the interpretation of observational features of black hole X-ray binaries (BHXRBs) is applied to active galactic nuclei (AGNs). Since the evaporation of gas in the disk can lead to its truncation for accretion rates less than a maximal evaporation rate, the model can naturally account for the soft spectrum in high-luminosity AGNs and the hard spectrum in low-luminosity AGNs. The existence of two different luminosity levels describing transitions from the soft to hard state and from the hard to soft state in BHXRBs, when applied to AGNs, suggests that AGNs can be in either spectral state within a range of luminosities. For example, at a viscosity parameter, alpha, equal to 0.3, the Eddington ratio from the hard-to-soft transition and from the soft-to-hard transition occurs at 0.027 and 0.005, respectively. The differing Eddington ratios result from the importance of Compton cooling in the latter transition, in which the cooling associated with soft photons emitted by the optically thick inner disk in the soft spectral state inhibits evaporation. When the Eddington ratio of the AGN lies below the critical value corresponding to its evolutionary state, the disk is truncated. With decreasing Eddington ratios, the inner edge of the disk increases to greater distances from the black hole with a concomitant increase in the inner radius of the broad-line region, R {sub BLR}. The absence of an optically thick inner disk at low luminosities (L) gives rise to region in the R {sub BLR}-L plane for which the relation R {sub BLR} propor to L {sup 1/2} inferred at high luminosities is excluded. As a result, a lower limit to the accretion rate is predicted for the observability of broad emission lines, if the broad-line region is associated with an optically thick accretion disk. Thus, true Seyfert 2 galaxies may exist at very low accretion rates/luminosities. The differences between BHXRBs and AGNs in the framework of

  10. Modeling preferential water flow and solute transport in unsaturated soil using the active region model

    SciTech Connect

    Sheng, F.; Wang, K.; Zhang, R.; Liu, H.H.

    2009-03-15

    Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared with the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.

  11. Active region upflows. II. Data driven magnetohydrodynamic modelling

    NASA Astrophysics Data System (ADS)

    Galsgaard, K.; Madjarska, M. S.; Vanninathan, K.; Huang, Z.; Presmann, M.

    2015-12-01

    Context. Observations of many active regions show a slow systematic outflow/upflow from their edges lasting from hours to days. At present no physical explanation has been proven, while several suggestions have been put forward. Aims: This paper investigates one possible method for maintaining these upflows assuming, that convective motions drive the magnetic field to initiate them through magnetic reconnection. Methods: We use Helioseismic and Magnetic Imager (HMI) data to provide an initial potential 3D magnetic field of the active region NOAA 11123 on 2010 November 13 where the characteristic upflow velocities are observed. A simple 1D hydrostatic atmospheric model covering the region from the photosphere to the corona is derived. Local correlation tracking of the magnetic features in the HMI data is used to derive a proxy for the time dependent velocity field. The time dependent evolution of the system is solved using a resistive 3D magnetohydrodynamic code. Results: The magnetic field contains several null points located well above the photosphere, with their fan planes dividing the magnetic field into independent open and closed flux domains. The stressing of the interfaces between the different flux domains is expected to provide locations where magnetic reconnection can take place and drive systematic flows. In this case, the region between the closed and open flux is identified as the region where observations find the systematic upflows. Conclusions: In the present experiment, the driving only initiates magneto-acoustic waves without driving any systematic upflows at any of the flux interfaces. Movie is available in electronic form at http://www.aanda.org

  12. Computer modeling of active experiments in space plasmas

    NASA Astrophysics Data System (ADS)

    Bollens, Ross John

    1993-01-01

    Our understanding of space plasmas is expanding rapidly. This is, in large part, due to the ambitious efforts of scientists from around the world who are performing large scale active experiments in the space plasma surrounding the earth. One such effort was designated the Active Magnetospheric Particle Tracer Explorers (AMPTE) and consisted of a series of plasma releases that were completed during 1984 and 1985. What makes the AMPTE experiments particularly interesting was the occurrence of a dramatic anomaly that was completely unpredicted. During the AMPTE experiment, three satellites traced the solar wind flow into the earth's magnetosphere. One satellite, built by West Germany, released a series of barium and lithium canisters that were detonated and subsequently photoionized via solar radiation, thereby creating an artificial comet. Another satellite, built by Great Britain and in the vicinity during detonation, carried, as did the first satellite, a comprehensive set of magnetic field, particle, and wave instruments. Upon detonation, what was observed by the satellites, as well as by aircraft and ground-based observers, was quite unexpected. The initial deflection of the ion clouds was not in the ambient solar wind's flow direction (V) but rather in the direction transverse to the solar wind and the background magnetic field (V x B). This result was not predicted by any existing theories or simulation models; it is the main subject discussed in this dissertation. A large three dimensional computer simulation was produced to demonstrate that this transverse motion can be explained in terms of a rocket effect. Due to the extreme computer resources utilized in producing this work, the computer methods used to complete the calculation and the visualization techniques used to view the results are also discussed.

  13. Photoregulation of Biological Activity by Photochromic Reagents, IV. A Model for Diurnal Variation of Enzymic Activity*

    PubMed Central

    Bieth, Joseph; Wassermann, Norbert; Vratsanos, Spyros M.; Erlanger, Bernard F.

    1970-01-01

    Levels of acetylcholinesterase activity can be made to vary in response to the presence or absence of sunlight in a system that can be considered as a model for photoperiodic processes found in nature. The enzyme is rendered photosensitive by the presence of a photochromic inhibitor, N-p-phenylazophenylcarbamyl choline, which changes from a trans to a cis isomer under the influence of the light of the sun and reverts back to the trans isomer in the dark. The two isomers differ in their ability acetylcholinesterase, thus rendering the enzyme system responsive to sunlight. The relationship of this system to photoresponsive processes in nature is discussed, and a possible role in photoregulation is suggested for naturally occurring carotenoids. PMID:5269248

  14. Physical activity among employee women based on transtheoretical model

    PubMed Central

    Mostafavi, Firoozeh; Pirzadeh, Asiyeh

    2015-01-01

    Introduction: Today, many jobs are associated with the inactivity or sedentary lifestyle. Employees’ health will be affected by their depriving of the benefits of physical activity (PA). Therefore, the present study was undertaken to determine the PA among employee women in Isfahan University of Medical Sciences based on the transtheoretical model. Materials and Methods: This is a cross-sectional study has been performed in Isfahan University of Medical Sciences employee women (2013). A convenience sample of 100 women was selected. Data were collected by validated and reliable questionnaire in three parts (demographics information, PA scale, and TTM constructs). Data were analyzed by SPSS SPSS (version 16.0; SPSS, IBM, Inc, Chicago, IL, USA) and descriptive and analytical statistics such as ANOVA and independent t-test were used. A two-tailed P < 0.05 was considered statistically significant. Results: The mean of PA was 21.17 ± 27.30 min in a day. Weekly heavy, moderate, and light exercise mean was 0.72 ± 1.81, 0.89 ± 1.87 and 0.57 ± 1.57 days, respectively. In this study, 26% of women were in contemplation, 22% in contemplation, 20% in preparation, 13% in action, and 19% in the maintenance stage. Furthermore, there were significant differences between consciousness raising, dramatic relief, counter-conditioning, stimulus control, helping relationships, reinforcement management, and self-liberation with stages of change constructs. Conclusion: Because of a significant relationship between cognitive and behavioral processes and PA in this group, designing and implementing an educational program based on the transtheoretical model may be useful in promoting PA of a female employee. PMID:27462623

  15. Evaluating antithrombotic activity of HY023016 on rat hypercoagulable model.

    PubMed

    Chen, Qiu-Fang; Li, Yun-Zhan; Wang, Xin-Hui; Su, You-Rui; Cui, Shuang; Miao, Ming-Xing; Jiang, Zhen-Zhou; Jiang, Mei-Ling; Jiang, Ai-Dou; Chen, Xiang; Xu, Yun-Gen; Gong, Guo-Qing

    2016-06-15

    The generation of thrombus is not considered as an isolated progression without other pathologic processes, which may also enhance procoagulant state. The purpose of this study was to assess whether HY023016, a novel dabigatran prodrug and an oral direct thrombin inhibitor, or dabigatran etexilate, another thrombin inhibitor can improve the state of whole blood hypercoagulability in vitro/vivo. By using whole blood flow cytometry we explored the effects of HY023016 and dabigatran etexilate on thrombin and ADP-induced human platelet-leukocyte aggregation generated in vitro. With the method of continuous infusion of thrombin intravenous, we successfully established a rat hypercoagulable model and evaluated the effect of HY023016 or dabigatran etexilate in vivo. HY023016 was able to inhibit thrombin- or ADP-induced platelet P-selectin or CD40L expression, leukocyte CD11b expression and formation of platelet-leukocyte aggregates in dose-dependent manner. Dabigatran etexilate was unable to affect ADP-induced platelet P-selectin or CD40L expression, leukocyte CD11b expression and formation of platelet-leukocyte aggregates. Based on rat hypercoagulable model, dabigatran etexilate could reverse thrombin-induced circulatory system hypercoagulable state in a concentration-dependent manner. Dabigatran etexilate also inhibited electrical stimulation induced formation of arterial thrombus in rat under hypercoagulable state, and extracorporal circulation-induced formation of thrombus in dose-dependent manner. Compared with dabigatran etexilate, HY023016 showed nearly equal or even better antithrombotic activity, regardless of reversing the cycle of rat hypercoagulable state or inhibiting platelet-leukocyte aggregation. In surrmary, HY023016 could effectively improve hypercoagulable state of circulatory system. PMID:27085896

  16. How High Is It? An Educator's Guide with Activities Focused on Scale Models of Distances.

    ERIC Educational Resources Information Center

    Rosenberg, Carla B.; Rogers, Melissa J. B.

    This guide focuses on scale models of distances. Activities also incorporate mathematics but can be used in science and technology grades 5-8 classes. The content of the book is divided into three sections: (1) Introductory Activities; (2) Core Activities; and (3) Activity/Assessment. Activities include: (1) KWL Chart; (2) Ball and String…

  17. Labile synthetic cadmium complexes are not bioavailable to Pseudokirchneriella subcapitata in resin buffered solutions.

    PubMed

    Verheyen, L; Merckx, R; Smolders, E

    2012-11-15

    The Free Ion Activity Model (FIAM) predicts that cadmium (Cd) uptake by organisms is identical for solutions with the same free Cd(2+) concentration and inorganic composition. Clear exceptions to the FIAM have been shown for Cd uptake by plant roots, periphyton and human cells where labile Cd complexes increase bioavailability and which has been attributed to their role in enhancing Cd diffusion towards the uptake cells. Here, we assessed the role of labile Cd complexes on Cd uptake by algae, for which diffusion limitations should be less pronounced due to their smaller size. Long-term (3 days) Cd uptake by the green algae Pseudokirchneriella subcapitata was measured in resin buffered solutions with or without synthetic ligands and at three Cd(2+) ion activities (pCd 8.2-5.7). The free Cd(2+) activity was maintained during the test using a metal-selective resin located in the algal bottles. Total dissolved Cd increased up to 35-fold by adding the synthetic ligands at constant Cd(2+) activity. In contrast, Cd uptake by algae increased maximally 2.8 fold with increasing concentration of the synthetic ligands and the availability of the complexes were maximally 5.2% relative to Cd(2+) for NTA and CDTA complexes. It is concluded that labile Cd complexes do not greatly enhance Cd bioavailability to the unicellular algae and calculations suggest that Cd transport from solution to these small cells is not rate limiting. PMID:22903064

  18. Active Vision in Marmosets: A Model System for Visual Neuroscience

    PubMed Central

    Reynolds, John H.; Miller, Cory T.

    2014-01-01

    The common marmoset (Callithrix jacchus), a small-bodied New World primate, offers several advantages to complement vision research in larger primates. Studies in the anesthetized marmoset have detailed the anatomy and physiology of their visual system (Rosa et al., 2009) while studies of auditory and vocal processing have established their utility for awake and behaving neurophysiological investigations (Lu et al., 2001a,b; Eliades and Wang, 2008a,b; Osmanski and Wang, 2011; Remington et al., 2012). However, a critical unknown is whether marmosets can perform visual tasks under head restraint. This has been essential for studies in macaques, enabling both accurate eye tracking and head stabilization for neurophysiology. In one set of experiments we compared the free viewing behavior of head-fixed marmosets to that of macaques, and found that their saccadic behavior is comparable across a number of saccade metrics and that saccades target similar regions of interest including faces. In a second set of experiments we applied behavioral conditioning techniques to determine whether the marmoset could control fixation for liquid reward. Two marmosets could fixate a central point and ignore peripheral flashing stimuli, as needed for receptive field mapping. Both marmosets also performed an orientation discrimination task, exhibiting a saturating psychometric function with reliable performance and shorter reaction times for easier discriminations. These data suggest that the marmoset is a viable model for studies of active vision and its underlying neural mechanisms. PMID:24453311

  19. Hydroxymethylnitrofurazone Is Active in a Murine Model of Chagas' Disease▿

    PubMed Central

    Davies, Carolina; Cardozo, Rubén Marino; Negrette, Olga Sánchez; Mora, María Celia; Chung, Man Chin; Basombrío, Miguel Ángel

    2010-01-01

    The addition of a hydroxymethyl group to the antimicrobial drug nitrofurazone generated hydroxymethylnitrofurazone (NFOH), which had reduced toxicity when its activity against Trypanosoma cruzi was tested in a murine model of Chagas' disease. Four groups of 12 Swiss female mice each received 150 mg of body weight/kg/day of NFOH, 150 mg/kg/day of nitrofurazone (parental compound), 60 mg/kg/day of benznidazole (BZL), or the solvent as a placebo. Treatments were administered orally once a day 6 days a week until the completion of 60 doses. NFOH was as effective as BZL in keeping direct parasitemia at undetectable levels, and PCR results were negative. No histopathological lesions were seen 180 days after completion of the treatments, a time when the levels of anti-T. cruzi antibodies were very low in mice treated with either NFOH or BZL. Nitrofurazone was highly toxic, which led to an overall rate of mortality of 75% and necessitated interruption of the treatment. In contrast, the group treated with its hydroxymethyl derivative, NFOH, displayed the lowest mortality (16%), followed by the BZL (33%) and placebo (66%) groups. The findings of histopathological studies were consistent with these results, with the placebo group showing the most severe parasite infiltrates in skeletal muscle and heart tissue and the NFOH group showing the lowest. The present evidence suggests that NFOH is a promising anti-T. cruzi agent. PMID:20566772

  20. Water flow based geometric active deformable model for road network

    NASA Astrophysics Data System (ADS)

    Leninisha, Shanmugam; Vani, Kaliaperumal

    2015-04-01

    A width and color based geometric active deformable model is proposed for road network extraction from remote sensing images with minimal human interception. Orientation and width of road are computed from a single manual seed point, from which the propagation starts both right and left hand directions of the starting point, which extracts the interconnected road network from the aerial or high spatial resolution satellite image automatically. Here the propagation (like water flow in canal with defined boundary) is restricted with color and width of the road. Road extraction is done for linear, curvilinear (U shape and S shape) roads first, irrespective of width and color. Then, this algorithm is improved to extract road with junctions in a shape of L, T and X along with center line. Roads with small break or disconnected roads are also extracts by a modified version of this same algorithm. This methodology is tested and evaluated with various remote sensing images. The experimental results show that the proposed method is efficient and extracting roads accurately with less computation time. However, in complex urban areas, the identification accuracy declines due to the various sizes of obstacles, over bridges, multilane etc.

  1. Active flow control on a 1:4 car model

    NASA Astrophysics Data System (ADS)

    Heinemann, Till; Springer, Matthias; Lienhart, Hermann; Kniesburges, Stefan; Othmer, Carsten; Becker, Stefan

    2014-05-01

    Lift and drag of a passenger car are strongly influenced by the flow field around its rear end. The bluff body geometry produces a detached, transient flow which induces fluctuating forces on the body, affecting the rear axle, which may distress dynamic stability and comfort significantly. The investigations presented here deal with a 1:4 scale model of a simplified test car geometry that produces fluctuating lift and drag due to its strongly rounded rear geometry. To examine the influence of active flow control on this behavior, steady air jets were realized to exhaust from thin slots across the rear in three different configurations. Investigations were performed at and included the capturing of effective integral lift and drag, velocity measurements in the surrounding flow field with Laser Doppler Anemometry, surface pressure measurements and surface oil flow visualization on the rear. The flow field was found to be dominated by two longitudinal vortices, developing from the detachment of the flow at the upper C-pillar positions, and a recirculating, transverse vortex above the rear window. With an air jet emerging from a slot across the surface right below the rear window section, tangentially directed upstream toward the roof section, total lift could be reduced by more than 7 %, with rear axle lift reduction of about 5 % and negligible drag affection (1 %).

  2. Advanced deposition model for thermal activated chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  3. Multi-day activity scheduling reactions to planned activities and future events in a dynamic model of activity-travel behavior

    NASA Astrophysics Data System (ADS)

    Nijland, Linda; Arentze, Theo; Timmermans, Harry

    2014-01-01

    Modeling multi-day planning has received scarce attention in activity-based transport demand modeling so far. However, new dynamic activity-based approaches are being developed at the current moment. The frequency and inflexibility of planned activities and events in activity schedules of individuals indicate the importance of incorporating those pre-planned activities in the new generation of dynamic travel demand models. Elaborating and combining previous work on event-driven activity generation, the aim of this paper is to develop and illustrate an extension of a need-based model of activity generation that takes into account possible influences of pre-planned activities and events. This paper describes the theory and shows the results of simulations of the extension. The simulation was conducted for six different activities, and the parameter values used were consistent with an earlier estimation study. The results show that the model works well and that the influences of the parameters are consistent, logical, and have clear interpretations. These findings offer further evidence of face and construct validity to the suggested modeling approach.

  4. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, Part I: Semi-empirical model development.

    PubMed

    Sen, Dipankar; Randall, Clifford W

    2008-05-01

    Research was undertaken to develop a model for activated sludge, integrated fixed-film activated sludge (IFAS), and moving-bed biofilm reactor (MBBR) systems. The model can operate with up to 12 cells (reactors) in series, with biofilm media incorporated to one or more cells, except the anaerobic cells. The process configuration can be any combination of anaerobic, anoxic, aerobic, post-anoxic with or without supplemental carbon, and reaeration; it can also include any combination of step feed and recycles, including recycles for mixed liquor, return activated sludge, nitrates, and membrane bioreactors. This paper presents the structure of the model. The model embeds a biofilm model into a multicell activated sludge model. The biofilm flux rates for organics, nutrients, and biomass can be computed by two methods--a semi-empirical model of the biofilm that is relatively simpler, or a diffusional model that is computationally intensive. The values of the kinetic parameters for the model were measured using pilot-scale activated sludge, IFAS, and MBBR systems. For the semiempirical version, a series of Monod equations were developed for chemical oxygen demand, ammonium-nitrogen, and oxidized-nitrogen fluxes to the biofilm. Within the equations, a second Monod expression is used to simulate the effect of changes in biofilm thickness and fraction nitrifiers in the biofilm. The biofilm flux model is then linked to the activated sludge model. The diffusional model and the verification of the models are presented in subsequent papers (Sen and Randall, 2008a, 2008b). The model can be used to quantify the amount of media and surface area required to achieve nitrification, identify the best locations for the media, and optimize the dissolved oxygen levels and nitrate recycle rates. Some of the advanced features include the ability to apply different media types and fill fractions in cells; quantify nitrification, denitrification, and biomass production in the biofilm and

  5. GEM1: First-year modeling and IT activities for the Global Earthquake Model

    NASA Astrophysics Data System (ADS)

    Anderson, G.; Giardini, D.; Wiemer, S.

    2009-04-01

    GEM is a public-private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) to build an independent standard for modeling and communicating earthquake risk worldwide. GEM is aimed at providing authoritative, open information about seismic risk and decision tools to support mitigation. GEM will also raise risk awareness and help post-disaster economic development, with the ultimate goal of reducing the toll of future earthquakes. GEM will provide a unified set of seismic hazard, risk, and loss modeling tools based on a common global IT infrastructure and consensus standards. These tools, systems, and standards will be developed in partnership with organizations around the world, with coordination by the GEM Secretariat and its Secretary General. GEM partners will develop a variety of global components, including a unified earthquake catalog, fault database, and ground motion prediction equations. To ensure broad representation and community acceptance, GEM will include local knowledge in all modeling activities, incorporate existing detailed models where possible, and independently test all resulting tools and models. When completed in five years, GEM will have a versatile, penly accessible modeling environment that can be updated as necessary, and will provide the global standard for seismic hazard, risk, and loss models to government ministers, scientists and engineers, financial institutions, and the public worldwide. GEM is now underway with key support provided by private sponsors (Munich Reinsurance Company, Zurich Financial Services, AIR Worldwide Corporation, and Willis Group Holdings); countries including Belgium, Germany, Italy, Singapore, Switzerland, and Turkey; and groups such as the European Commission. The GEM Secretariat has been selected by the OECD and will be hosted at the Eucentre at the University of Pavia in Italy; the Secretariat is now formalizing the creation of the GEM Foundation. Some of GEM's global

  6. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    .I. Gushchenko, 1979) and seismological (database of USGS/NEIC Significant Worldwide Earthquakes, 2150 B.C.- 1994 A.D.) information which displays dynamics of endogenic relief-forming processes over a period of 1900 to 1994. In the course of the analysis, a substitution of calendar variable by a corresponding astronomical one has been performed and the epoch superposition method was applied. In essence, the method consists in that the massifs of information on volcanic eruptions (over a period of 1900 to 1977) and seismic events (1900-1994) are differentiated with respect to value of astronomical parameters which correspond to the calendar dates of the known eruptions and earthquakes, regardless of the calendar year. The obtained spectra of volcanic eruptions and violent earthquake distribution in the fields of the Earth orbital movement parameters were used as a basis for calculation of frequency spectra and diurnal probability of volcanic and seismic activity. The objective of the proposed investigations is a probabilistic model development of the volcanic and seismic events, as well as GIS designing for monitoring and forecast of volcanic and seismic activities. In accordance with the stated objective, three probability parameters have been found in the course of preliminary studies; they form the basis for GIS-monitoring and forecast development. 1. A multidimensional analysis of volcanic eruption and earthquakes (of magnitude 7) have been performed in terms of the Earth orbital movement. Probability characteristics of volcanism and seismicity have been defined for the Earth as a whole. Time intervals have been identified with a diurnal probability twice as great as the mean value. Diurnal probability of volcanic and seismic events has been calculated up to 2020. 2. A regularity is found in duration of dormant (repose) periods has been established. A relationship has been found between the distribution of the repose period probability density and duration of the period. 3

  7. Numerical modeling of active separation control by synthetic jets

    NASA Astrophysics Data System (ADS)

    Aram, Shawn

    Zero-Net Mass-Flux (ZNMF) actuators or synthetic jet actuators are versatile micro scale devices with numerous applications in the field of fluid mechanics. The primary focus of the current work is to use time-accurate simulations to study the interaction of these jets with cross flows and to optimize their performance for the control of boundary layer separation. This study consists of four parts. In the first part, a class of phenomenology-based models is proposed to reproduce the flow associated with synthetic jets in grazing flows and simplify the task of ZNMF-based flow control simulations. The proposed models have a non-uniform jet velocity profile with only two spatial degrees of freedom and a uniform slip velocity on the slot-flow boundary. A comparison of key integral quantities associated with the momentum, energy and vorticity fluxes shows that the models with a non-uniform jet velocity during the expulsion phase and uniform jet velocity during the ingestion phase can predict these quantities with good accuracy, whereas a simple plug flow model with a zero slip and uniform jet velocity under-predicts these three quantities during the expulsion phase. Based on our initial analysis, three of the simplest models are selected for further study, including an assessment of their performance for a canonical separated flow at different forcing frequencies. A key finding is that a simple plug-flow type model can predict incorrect trends for separation reduction with the jet frequency. A preliminary attempt is also made to provide empirical closure to these models. The effect of synthetic jets orientation on its interaction with a zero pressure gradient laminar boundary layer is explored in the second part. A rectangular slot is chosen in this study and streamwise and spanwise orientations of this slot are examined. The orientation of the slot is found to have a significant impact on its interaction with the boundary layer. The dominant feature in the streamwise

  8. Antifouling Activity of Synthetic Alkylpyridinium Polymers Using the Barnacle Model

    PubMed Central

    Piazza, Veronica; Dragić, Ivanka; Sepčić, Kristina; Faimali, Marco; Garaventa, Francesca; Turk, Tom; Berne, Sabina

    2014-01-01

    Polymeric alkylpyridinium salts (poly-APS) isolated from the Mediterranean marine sponge, Haliclona (Rhizoniera) sarai, effectively inhibit barnacle larva settlement and natural marine biofilm formation through a non-toxic and reversible mechanism. Potential use of poly-APS-like compounds as antifouling agents led to the chemical synthesis of monomeric and oligomeric 3-alkylpyridinium analogues. However, these are less efficient in settlement assays and have greater toxicity than the natural polymers. Recently, a new chemical synthesis method enabled the production of poly-APS analogues with antibacterial, antifungal and anti-acetylcholinesterase activities. The present study examines the antifouling properties and toxicity of six of these synthetic poly-APS using the barnacle (Amphibalanus amphitrite) as a model (cyprids and II stage nauplii larvae) in settlement, acute and sub-acute toxicity assays. Two compounds, APS8 and APS12-3, show antifouling effects very similar to natural poly-APS, with an anti-settlement effective concentration that inhibits 50% of the cyprid population settlement (EC50) after 24 h of 0.32 mg/L and 0.89 mg/L, respectively. The toxicity of APS8 is negligible, while APS12-3 is three-fold more toxic (24-h LC50: nauplii, 11.60 mg/L; cyprids, 61.13 mg/L) than natural poly-APS. This toxicity of APS12-3 towards nauplii is, however, 60-fold and 1200-fold lower than that of the common co-biocides, Zn- and Cu-pyrithione, respectively. Additionally, exposure to APS12-3 for 24 and 48 h inhibits the naupliar swimming ability with respective IC50 of 4.83 and 1.86 mg/L. PMID:24699112

  9. Ultrasound common carotid artery segmentation based on active shape model.

    PubMed

    Yang, Xin; Jin, Jiaoying; Xu, Mengling; Wu, Huihui; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2013-01-01

    Carotid atherosclerosis is a major reason of stroke, a leading cause of death and disability. In this paper, a segmentation method based on Active Shape Model (ASM) is developed and evaluated to outline common carotid artery (CCA) for carotid atherosclerosis computer-aided evaluation and diagnosis. The proposed method is used to segment both media-adventitia-boundary (MAB) and lumen-intima-boundary (LIB) on transverse views slices from three-dimensional ultrasound (3D US) images. The data set consists of sixty-eight, 17 × 2 × 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80 mg atorvastatin and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. Manually outlined boundaries by expert are adopted as the ground truth for evaluation. For the MAB and LIB segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 94.4% ± 3.2% and 92.8% ± 3.3%, mean absolute distances (MAD) of 0.26 ± 0.18 mm and 0.33 ± 0.21 mm, and maximum absolute distances (MAXD) of 0.75 ± 0.46 mm and 0.84 ± 0.39 mm. It took 4.3 ± 0.5 mins to segment single 3D US images, while it took 11.7 ± 1.2 mins for manual segmentation. The method would promote the translation of carotid 3D US to clinical care for the monitoring of the atherosclerotic disease progression and regression. PMID:23533535

  10. Ultrasound Common Carotid Artery Segmentation Based on Active Shape Model

    PubMed Central

    Yang, Xin; Jin, Jiaoying; Xu, Mengling; Wu, Huihui; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2013-01-01

    Carotid atherosclerosis is a major reason of stroke, a leading cause of death and disability. In this paper, a segmentation method based on Active Shape Model (ASM) is developed and evaluated to outline common carotid artery (CCA) for carotid atherosclerosis computer-aided evaluation and diagnosis. The proposed method is used to segment both media-adventitia-boundary (MAB) and lumen-intima-boundary (LIB) on transverse views slices from three-dimensional ultrasound (3D US) images. The data set consists of sixty-eight, 17 × 2 × 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80 mg atorvastatin and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. Manually outlined boundaries by expert are adopted as the ground truth for evaluation. For the MAB and LIB segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 94.4% ± 3.2% and 92.8% ± 3.3%, mean absolute distances (MAD) of 0.26 ± 0.18 mm and 0.33 ± 0.21 mm, and maximum absolute distances (MAXD) of 0.75 ± 0.46 mm and 0.84 ± 0.39 mm. It took 4.3 ± 0.5 mins to segment single 3D US images, while it took 11.7 ± 1.2 mins for manual segmentation. The method would promote the translation of carotid 3D US to clinical care for the monitoring of the atherosclerotic disease progression and regression. PMID:23533535

  11. Surface Expression Models for Aqueous Oceanic Activity on Titan

    NASA Astrophysics Data System (ADS)

    Clark, B.

    Drawing upon analogs from the rocky planets with geological features, subsurface acquifers and magmatism, the range of surface manifestations of a subsurface ocean on Titan comprise a series of models. Cryovolcanism of aqueous eutectics will produce flows which may be detectable as sporadic outcrops from the hydrocarbon-rich regolith, exhumed by aeolian and/or fluid processes. Solidification of extruded cryomagma, especially if containing a significant water component, should exhibit fractional crystallization of solutes in late-freeze ponds and flow fronts. Abundant higher- Z elements such as Si, S and Fe, as influenced by the Eh-pH field of the liquid phase, might be in evidence, demonstrating communication among the principal mantle components of such bodies. Consequent availability of potential nutrients and chemical energy sources would be a key indicator for habitability by chemoautolithotrophs on Titan. With near-surface mobility and sensing, LIBS as well as active and passive IR mapping spectrometry are all possible in the environment of Titan's lower atmosphere. Although some remote measurements are infeasible because of the atmosphere, near- surface naturally radioactive rock-forming elements such as K, U, and Th could be detected with gamma ray spectrometry. Touch-and-go techniques developed for small- body sampling can provide material for onboard GC, MS, XRD, microscopy and other miniaturized analytical techniques. Surface dwell times of minutes would enable contact XRF with detection of critical element ratio's such as S/Cl, K/Ca, and Mg/Si/Fe, and Raman spectroscopy for organic and mineralogical analysis, . Longer contact times would permit electromagnetic depth sounding. Many IR and particle- detection sensors operate ideally at or near the low temperatures intrinsic to the Titan atmosphere, simplifying those aspects of instrument development. Exploration of Titan by in situ and mobility techniques would capitalize on the investments and lessons

  12. Antifouling activity of synthetic alkylpyridinium polymers using the barnacle model.

    PubMed

    Piazza, Veronica; Dragić, Ivanka; Sepčić, Kristina; Faimali, Marco; Garaventa, Francesca; Turk, Tom; Berne, Sabina

    2014-04-01

    Polymeric alkylpyridinium salts (poly-APS) isolated from the Mediterranean marine sponge, Haliclona (Rhizoniera) sarai, effectively inhibit barnacle larva settlement and natural marine biofilm formation through a non-toxic and reversible mechanism. Potential use of poly-APS-like compounds as antifouling agents led to the chemical synthesis of monomeric and oligomeric 3-alkylpyridinium analogues. However, these are less efficient in settlement assays and have greater toxicity than the natural polymers. Recently, a new chemical synthesis method enabled the production of poly-APS analogues with antibacterial, antifungal and anti-acetylcholinesterase activities. The present study examines the antifouling properties and toxicity of six of these synthetic poly-APS using the barnacle (Amphibalanus amphitrite) as a model (cyprids and II stage nauplii larvae) in settlement, acute and sub-acute toxicity assays. Two compounds, APS8 and APS12-3, show antifouling effects very similar to natural poly-APS, with an anti-settlement effective concentration that inhibits 50% of the cyprid population settlement (EC₅₀) after 24 h of 0.32 mg/L and 0.89 mg/L, respectively. The toxicity of APS8 is negligible, while APS12-3 is three-fold more toxic (24-h LC₅₀: nauplii, 11.60 mg/L; cyprids, 61.13 mg/L) than natural poly-APS. This toxicity of APS12-3 towards nauplii is, however, 60-fold and 1200-fold lower than that of the common co-biocides, Zn- and Cu-pyrithione, respectively. Additionally, exposure to APS12-3 for 24 and 48 h inhibits the naupliar swimming ability with respective IC₅₀ of 4.83 and 1.86 mg/L. PMID:24699112

  13. Creating Stimulating Learning and Thinking Using New Models of Activity-Based Learning and Metacognitive-Based Activities

    ERIC Educational Resources Information Center

    Pang, Katherine

    2010-01-01

    The purpose of this paper is to present a novel way to stimulate learning, creativity, and thinking based on a new understanding of activity-based learning (ABL) and two methods for developing metacognitive-based activities for the classroom. ABL, in this model, is based on the premise that teachers are distillers and facilitators of information…

  14. Bioinorganic Chemical Modeling of Dioxygen-Activating Copper Proteins.

    ERIC Educational Resources Information Center

    Karlin, Kenneth D.; Gultneh, Yilma

    1985-01-01

    Discusses studies done in modeling the copper centers in the proteins hemocyanin (a dioxygen carrier), tyrosinase, and dopamine beta-hydroxylase. Copper proteins, model approach in copper bioinorganic chemistry, characterization of reversible oxygen carriers and dioxygen-metal complexes, a copper mono-oxygenase model reaction, and other topics are…

  15. Comparison of activity indexes for recognizing enzyme mutants of higher activity with uricase as model

    PubMed Central

    2013-01-01

    Background For screening a library of enzyme mutants, an efficient and cost-effective method for reliable assay of enzyme activity and a decision method for safe recognition of mutants of higher activity are needed. The comparison of activity concentrations of mutants in lysates of transformed Escherichia coli cells against a threshold is unsafe to recognize mutants of higher activity due to variations of both expression levels of mutant proteins and lysis efficiency of transformed cells. Hence, by a spectrophotometric method after verification to measure uricase activity, specific activity calculated from the level of total proteins in a lysate was tested for recognizing a mutant of higher activity. Results During uricase reaction, the intermediate 5-hydroxyisourate interferes with the assay of uric acid absorbance, but the measurement of absorbance at 293 nm in alkaline borate buffer was reliable for measuring uricase initial rates within a reasonable range. The level of total proteins in a lysate was determined by the Bradford assay. Polyacrylamide gel electrophoresis analysis supported different relative abundance of uricase mutant proteins in their lysates; activity concentrations of uricase in such lysates positively correlated with levels of total proteins. Receiver-operation-curve analysis of activity concentration or specific activity yielded area-under-the-curve close to 1.00 for recognizing a mutant with > 200% improvement of activity. For a mutant with just about 80% improvement of activity, receiver-operation-curve analysis of specific activity gave area-under-the-curve close to 1.00 while the analysis of activity concentration gave smaller area-under-the-curve. With the mean plus 1.4-fold of the standard deviation of specific activity of a starting material as the threshold, uricase mutants whose activities were improved by more than 80% were recognized with higher sensitivity and specificity. Conclusion Specific activity calculated from the level of

  16. Evaluation of anti-diabetic activity of Glucova Active Tablet on Type I and Type II diabetic model in rats

    PubMed Central

    Soni, Hardik; Patel, Sejal; Patel, Ghanshyam; Paranjape, Archana

    2014-01-01

    Background: Glucova Active Tablet is a proprietary Ayurvedic formulation with ingredients reported for anti-hyperglycemic, anti-hyperlipidemic activity and antioxidant properties. Objective: Evaluation of anti-diabetic activity of Glucova Active Tablet on Type I and Type II diabetic model in rats. Materials and Methods: Experimental Type I diabetes was induced in 24 albino rats with intra-peritoneal injection of streptozotocin (50 mg/kg). Type II diabetes was induced in 18 albino rats by intra-peritoneal injection of streptozotocin (35 mg/kg) along with high fat diet. The rats were divided in 5 groups for Type I model and 4 groups for Type II model. Normal control group was kept common for both experimental models. Glucova Active Tablet (108 mg/kg) treatment was provided for 28 days twice daily orally. Fasting blood glucose level, serum lipid profile and liver anti-oxidant parameters like superoxide dismutase and reduced glutathione was carried out in both experimental models. Pancreas histopathology was also done. Statistical analysis were done by ‘analysis of variance’ test followed by post hoc Tukey's test, with significant level of P < 0.05. Results and Discussion: Glucova Active Tablet showed significant effect on fasting blood glucose level. It also showed significant alteration in lipid profile and antioxidant parameters. Histopathology study revealed restoration of beta cells in pancreas in Glucova Active Tablet treated group. Conclusion: Finding of this study concludes that Glucova Active Tablet has shown promising anti-diabetic activity in Type I and Type II diabetic rats. It was also found showing good anti-hyperlipidemic activity and anti-oxidant property. PMID:24948860

  17. Determinants affecting physical activity levels in animal models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C L.; Wade, Charles E.

    2002-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play an underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multifactorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked, making it difficult to determine whether a single, combination, or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to the ventral medial hypothalamus, and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  18. Determinants Affecting Physical Activity Levels In Animal Models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C. L.; Wade, Charles E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play all underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multi-factorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked making it difficult to determine whether a single, combination or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to tile ventral medial hypothalamus and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  19. Sensory processing and world modeling for an active ranging device

    NASA Technical Reports Server (NTRS)

    Hong, Tsai-Hong; Wu, Angela Y.

    1991-01-01

    In this project, we studied world modeling and sensory processing for laser range data. World Model data representation and operation were defined. Sensory processing algorithms for point processing and linear feature detection were designed and implemented. The interface between world modeling and sensory processing in the Servo and Primitive levels was investigated and implemented. In the primitive level, linear features detectors for edges were also implemented, analyzed and compared. The existing world model representations is surveyed. Also presented is the design and implementation of the Y-frame model, a hierarchical world model. The interfaces between the world model module and the sensory processing module are discussed as well as the linear feature detectors that were designed and implemented.

  20. Models Role within Active Learning in Biology. A Case Study

    ERIC Educational Resources Information Center

    Pop-Pacurar, Irina; Tirla, Felicia-Doina

    2009-01-01

    In order to integrate ideas and information creatively, to motivate students and activate their thinking, we have used in Biology classes a series of active methods, among which the methods of critical thinking, which had very good results. Still, in the case of some intuitive, abstract, more difficult topics, such as the cell structure,…

  1. Re"modeling" College Algebra: An Active Learning Approach

    ERIC Educational Resources Information Center

    Pinzon, D.; Pinzon, K.; Stackpole, M.

    2016-01-01

    In this paper, we discuss active learning in College Algebra at Georgia Gwinnett College. This approach has been used in more than 20 sections of College Algebra taught by the authors in the past four semesters. Students work in small, structured groups on guided inquiry activities after watching 15-20 minutes of videos before class. We discuss a…

  2. Building a Theoretical Model of Metacognitive Processes in Complex Modeling Activities: A Window into the Development of Students' Metacognitive Abilities

    ERIC Educational Resources Information Center

    Kim, Young Rae

    2013-01-01

    A theoretical model of metacognition in complex modeling activities has been developed based on existing frameworks, by synthesizing the re-conceptualization of metacognition at multiple levels by looking at the three sources that trigger metacognition. Using the theoretical model as a framework, this study was designed to explore how students'…

  3. Benefits of detailed models of muscle activation and mechanics

    NASA Technical Reports Server (NTRS)

    Lehman, S. L.; Stark, L.

    1981-01-01

    Recent biophysical and physiological studies identified some of the detailed mechanisms involved in excitation-contraction coupling, muscle contraction, and deactivation. Mathematical models incorporating these mechanisms allow independent estimates of key parameters, direct interplay between basic muscle research and the study of motor control, and realistic model behaviors, some of which are not accessible to previous, simpler, models. The existence of previously unmodeled behaviors has important implications for strategies of motor control and identification of neural signals. New developments in the analysis of differential equations make the more detailed models feasible for simulation in realistic experimental situations.

  4. Final Report: Performance Modeling Activities in PERC2

    SciTech Connect

    Allan Snavely

    2007-02-25

    Progress in Performance Modeling for PERC2 resulted in: • Automated modeling tools that are robust, able to characterize large applications running at scale while simultaneously simulating the memory hierarchies of mul-tiple machines in parallel. • Porting of the requisite tracer tools to multiple platforms. • Improved performance models by using higher resolution memory models that ever before. • Adding control-flow and data dependency analysis to the tracers used in perform-ance tools. • Exploring and developing several new modeling methodologies. • Using modeling tools to develop performance models for strategic codes. • Application of modeling methodology to make a large number of “blind” per-formance predictions on certain mission partner applications, targeting most cur-rently available system architectures. • Error analysis to correct some systematic biases encountered as part of the large-scale blind prediction exercises. • Addition of instrumentation capabilities for communication libraries other than MPI. • Dissemination the tools and modeling methods to several mission partners, in-cluding DoD HPCMO and two DARPA HPCS vendors (Cray and IBM), as well as to the wider HPC community via a series of tutorials.

  5. Statistical analysis of brain sulci based on active ribbon modeling

    NASA Astrophysics Data System (ADS)

    Barillot, Christian; Le Goualher, Georges; Hellier, Pierre; Gibaud, Bernard

    1999-05-01

    This paper presents a general statistical framework for modeling deformable object. This model is devoted being used in digital brain atlases. We first present a numerical modeling of brain sulci. We present also a method to characterize the high inter-individual variability of basic cortical structures on which the description of the cerebral cortex is based. The aimed applications use numerical modeling of brain sulci to assist non-linear registration of human brains by inter-individual anatomical matching or to better compare neuro-functional recordings performed on a series of individuals. The utilization of these methods is illustrated using a few examples.

  6. Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...

  7. Exploring Young Students Creativity: The Effect of Model Eliciting Activities

    ERIC Educational Resources Information Center

    Gilat, Talya; Amit, Miriam

    2014-01-01

    The aim of this paper is to show how engaging students in real-life mathematical situations can stimulate their mathematical creative thinking. We analyzed the mathematical modeling of two girls, aged 10 and 13 years, as they worked on an authentic task involving the selection of a track team. The girls displayed several modeling cycles that…

  8. Activities.

    ERIC Educational Resources Information Center

    Kincaid, Charlene; And Others

    1993-01-01

    Presents an activity in which students collect and organize data from a real-world simulation of the scientific concept of half life. Students collect data using a marble sifter, analyze the data using a graphing calculator, and determine an appropriate mathematical model. Includes reproducible worksheets. (MDH)

  9. Essential requirement of cytochrome c release for caspase activation by procaspase-activating compound defined by cellular models

    PubMed Central

    Seervi, M; Joseph, J; Sobhan, P K; Bhavya, B C; Santhoshkumar, T R

    2011-01-01

    Mitochondrial cytochrome c (cyt. c) release and caspase activation are often impaired in tumors with Bcl-2 overexpression or Bax and Bak-defective status. Direct triggering of cell death downstream of Bax and Bak is an attractive strategy to kill such cancers. Small molecule compounds capable of direct caspase activation appear to be the best mode for killing such tumors. However, there is no precise model to screen such compounds. The currently employed cell-free systems possess the inherent drawback of lacking cellular contents and organelles that operate in integrating cell death signaling. We have developed highly refined cell-based approaches to validate direct caspase activation in cancer cells. Using this approach, we show that PAC-1 (first procaspase-activating compound), the first direct activator of procaspases identified in a cell-free system, in fact requires mitochondrial cyt. c release for triggering caspase activation similar to other antitumor agents. It can induce significant caspase activation and cell death in the absence of Bax and Bak, and in cells overexpressing Bcl-2 and Bcl-xL. This study for the first time defines precise criteria for the validation of direct caspase-activating compounds using specialized cellular models that is expected to accelerate the discovery of potential direct caspase activators. PMID:21900958

  10. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, part II: multilayer biofilm diffusional model.

    PubMed

    Sen, Dipankar; Randall, Clifford W

    2008-07-01

    Research was undertaken to develop a diffusional model of the biofilm that can be applied in lieu of a semi-empirical model to upgrade an activated sludge system to an integrated fixed-film activated sludge (IFAS) or moving-bed biofilm reactor (MBBR) system. The model has been developed to operate with up to 12 cells (reactors) in series, with biofilm media incorporated to one or more of the zone cells, except the anaerobic zone cells. The values of the kinetic parameters for the model were measured using pilot-scale activated sludge, IFAS, and MBBR systems. The biofilm is divided into 12 layers and has a stagnant liquid layer. Diffusion and substrate utilization are calculated for each layer. The equations are solved simultaneously using a finite difference technique. The biofilm flux model is then linked to the activated sludge model. Advanced features include the ability to compute the biofilm thickness and the effect of biofilm thickness on performance. The biofilm diffusional model is also used to provide information and create a table of biofilm yields at different substrate concentrations that can be used in the semi-empirical model. PMID:18710146

  11. Prostate contours delineation using interactive directional active contours model and parametric shape prior model.

    PubMed

    Derraz, Foued; Forzy, Gérard; Delebarre, Arnaud; Taleb-Ahmed, Abdelmalik; Oussalah, Mourad; Peyrodie, Laurent; Verclytte, Sebastien

    2015-11-01

    Prostate contours delineation on Magnetic Resonance (MR) images is a challenging and important task in medical imaging with applications of guiding biopsy, surgery and therapy. While a fully automated method is highly desired for this application, it can be a very difficult task due to the structure and surrounding tissues of the prostate gland. Traditional active contours-based delineation algorithms are typically quite successful for piecewise constant images. Nevertheless, when MR images have diffuse edges or multiple similar objects (e.g. bladder close to prostate) within close proximity, such approaches have proven to be unsuccessful. In order to mitigate these problems, we proposed a new framework for bi-stage contours delineation algorithm based on directional active contours (DAC) incorporating prior knowledge of the prostate shape. We first explicitly addressed the prostate contour delineation problem based on fast globally DAC that incorporates both statistical and parametric shape prior model. In doing so, we were able to exploit the global aspects of contour delineation problem by incorporating a user feedback in contours delineation process where it is shown that only a small amount of user input can sometimes resolve ambiguous scenarios raised by DAC. In addition, once the prostate contours have been delineated, a cost functional is designed to incorporate both user feedback interaction and the parametric shape prior model. Using data from publicly available prostate MR datasets, which includes several challenging clinical datasets, we highlighted the effectiveness and the capability of the proposed algorithm. Besides, the algorithm has been compared with several state-of-the-art methods. PMID:26009857

  12. Compartment calcium model of frog skeletal muscle during activation.

    PubMed

    Liu, Weifan; Olson, Sarah D

    2015-01-01

    Skeletal muscle contraction is triggered by a rise in calcium (Ca(2+)) concentration in the myofibrillar space. The objective of this study was to develop a voltage dependent compartment model of Ca(2+) dynamics in frog skeletal muscle fibers. The compartment model corresponds to the myofibrillar space (MS) and a calcium store, the sarcoplasmic reticulum (SR). Ca(2+) is released from the SR to the MS based on the voltage and is able to bind to several proteins in the MS. We use a detailed model to account for voltage dependent Ca(2+) release and inactivation. With this model, we are able to match previous experimental data for Ca(2+) release and binding to proteins for an applied (fixed) voltage. We explore the sensitivity of parameters in the model and illustrate the importance of inactivation of the SR; during a long depolarization, the SR must be inactivated in order to achieve realistic Ca(2+) concentrations in the MS. A Hodgkin Huxley type model was also developed to describe voltage at the surface membrane using electrophysiological data from previous experiments. This voltage model was then used as the time dependent voltage to determine Ca(2+) release from the SR. With this fully coupled model, we were able to match previous experimental results for Ca(2+) concentrations for a given applied current. Additionally, we examined simulated Ca(2+) concentrations in the case of twitch and tetanus, corresponding to different applied currents. The developed model is robust and reproduces many aspects of voltage dependent calcium signaling in frog skeletal muscle fibers. This modeling framework provides a platform for future studies of excitation contraction coupling in skeletal muscle fibers. PMID:25234233

  13. Modeling four occurred debris flow events in the Dolomites area (North-Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino

    2016-04-01

    Four occurred debris flows in the Dolomites area (North-Eastern Italian Alps) are modeled by back-analysis. The four debris flows events are those occurred at Rio Lazer (Trento) on the 4th of November 1966, at Fiames (Belluno) on the 5th of July 2006, at Rovina di Cancia (Belluno) on the 18th of July 2009 and at Rio Val Molinara (Trento) on the 15th of August 2010. In all the events, runoff entrained sediments present on natural channels and formed a solid-liquid wave that routed downstream. The first event concerns the routing of debris flow on an inhabited fan. The second event the deviation of debris flow from the usual path due to an obstruction with the excavation of a channel in the scree and the downstream spreading in a wood. The third event concerns the routing of debris flow in a channel with an ending the reservoir, its overtopping and final spreading in the inhabited area. The fourth event concerns the routing of debris flow along the main channel downstream the initiation area until spreading just upstream a village. All the four occurred debris flows are simulated by modeling runoff that entrained debris flow for determining the solid-liquid hydrograph. The routing of the solid-liquid hydrograph is simulated by a bi-phase cell model based on the kinematic approach. The comparison between simulated and measured erosion and deposition depths is satisfactory. Nearly the same parameters for computing erosion and deposition were used for all the four occurred events. The maps of erosion and deposition depths are obtained by comparing the results of post-event surveys with the pre-event DEM. The post-event surveys were conducted by using different instruments (LiDAR and GPS) or the combination photos-single points depth measurements (in this last case it is possible obtaining the deposition/erosion depths by means of stereoscopy techniques).

  14. Three occurred debris flows in North-Eastern Italian Alps: documentation and modeling

    NASA Astrophysics Data System (ADS)

    Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino

    2015-04-01

    Three occurred events of debris flows are documented and modeled by back-analysis. The three debris flows events are those occurred at Rio Lazer on the 4th of November 1966, at Fiames on the 5th of July 2006 and at Rovina di Cancia on the 18th of July 2009. All the three sites are located in the North-Eastern Italian Alps. In all the events, runoff entrained sediments present on natural channels and formed a solid-liquid wave that routed downstream. The first event concerns the routing of debris flow on an inhabited fan. Map of deposition pattern of sediments are built by using post-events photos through stereoscopy techniques. The second event concerns the routing of debris flow along the main channel descending from Pomagagnon Fork. Due to the obstruction of the cross-section debris flow deviated from the original path on the left side and routed downstream by cutting a new channel on the fan. It dispersed in multiple paths when met the wooden area. Map of erosion and deposition depths are built after using a combination of Lidar and GPS data. The third event concerns the routing of debris flow in the Rovina di Cancia channel that filled the reservoir built at the end of the channel and locally overtopped the retaining wall on the left side. A wave of mud and debris inundated the area downstream the overtopping point. Map of erosion and deposition depths are obtained by subtracting two GPS surveys, pre and post event. All the three occurred debris flows are simulated by modeling runoff that entrained debris flow for determining the solid-liquid hydrograph downstream the triggering areas. The routing of the solid-liquid hydrograph was simulated by a bi-phase cell model based on the kinematic approach. The comparison between simulated and measured erosion and deposition depths is satisfactory. The same parameters for computing erosion and deposition were used for the three occurred events.

  15. Using Virtual Pets to Promote Physical Activity in Children: An Application of the Youth Physical Activity Promotion Model.

    PubMed

    Ahn, Sun Joo Grace; Johnsen, Kyle; Robertson, Tom; Moore, James; Brown, Scott; Marable, Amanda; Basu, Aryabrata

    2015-01-01

    A virtual pet was developed based on the framework of the youth physical activity promotion model and tested as a vehicle for promoting physical activity in children. Children in the treatment group interacted with the virtual pet for three days, setting physical activity goals and teaching tricks to the virtual pet when their goals were met. The virtual pet became more fit and learned more sophisticated tricks as the children achieved activity goals. Children in the control group interacted with a computer system presenting equivalent features but without the virtual pet. Physical activity and goal attainment were evaluated using activity monitors. Results indicated that children in the treatment group engaged in 1.09 more hours of daily physical activity (156% more) than did those in the control group. Physical activity self-efficacy and beliefs served as mediators driving this increase in activity. Children that interacted with the virtual pet also expressed higher intentions than children in the control group to continue physical activity in the future. Theoretical and practical potentials of using a virtual pet to systematically promote physical activity in children are discussed. PMID:26020285

  16. SUMMARY REPORT OF AIR QUALITY MODELING RESEARCH ACTIVITIES FOR 2006

    EPA Science Inventory

    Through a Memorandum of Understanding (MOU) and Memorandum of Agreement (MOA) between the Department of Commerce (DOC) and U.S. Environmental Protection Agency (EPA), the Atmospheric Sciences Modeling Division (ASMD) of National Oceanic and Atmospheric Administration's (NOAA's) ...

  17. Extending the energy range of materials activation modelling

    NASA Astrophysics Data System (ADS)

    Forrest, R. A.

    2004-08-01

    Activation calculations are an essential contribution to understanding the interactions of fusion materials with neutrons. The existing state-of-the-art tools such as EASY-2003 enable calculations to be carried out with neutrons up to 20 MeV. Plans to expose fusion components to high neutron fluxes include the IFMIF materials testing facility. This accelerator-based device will produce neutrons with a high-energy tail up to about 55 MeV. In order to carry out activation calculations on materials exposed to such neutrons it is necessary to extend the energy range of the data libraries. An extension of the European Activation System (EASY) to a new version, EASY-2004, for testing has been completed. The existing reactions have been extended up to 60 MeV and new classes of reactions added using calculated cross sections. Results of preliminary calculations in an IFMIF relevant neutron field are given.

  18. Modeling of Semi-Active Vehicle Suspension with Magnetorhological Damper

    NASA Astrophysics Data System (ADS)

    Hasa, Richard; Danko, Ján; Milesich, Tomáš; Magdolen, Ľuboš

    2014-12-01

    Modeling of suspension is a current topic. Vehicle users require both greater driving comfort and safety. There is a space to invent new technologies like magnetorheological dampers and their control systems to increase these conflicting requirements. Magnetorheological dampers are reliably mathematically described by parametric and nonparametric models. Therefore they are able to reliably simulate the driving mode of the vehicle. These simulations are important for automotive engineers to increase vehicle safety and passenger comfort.

  19. Some experiences using wind-tunnel models in active control studies. [minimization of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Abel, I.; Ruhlin, C. L.

    1976-01-01

    A status report and review of wind tunnel model experimental techniques that have been developed to study and validate the use of active control technology for the minimization of aeroelastic response are presented. Modeling techniques, test procedures, and data analysis methods used in three model studies are described. The studies include flutter mode suppression on a delta-wing model, flutter mode suppression and ride quality control on a 1/30-size model of the B-52 CCV airplane, and an active lift distribution control system on a 1/22 size C-5A model.

  20. Comparing Computer-Supported Dynamic Modeling and "Paper & Pencil" Concept Mapping Technique in Students' Collaborative Activity

    ERIC Educational Resources Information Center

    Komis, Vassilis; Ergazaki, Marida; Zogza, Vassiliki

    2007-01-01

    This study aims at highlighting the collaborative activity of two high school students (age 14) in the cases of modeling the complex biological process of plant growth with two different tools: the "paper & pencil" concept mapping technique and the computer-supported educational environment "ModelsCreator". Students' shared activity in both cases…

  1. Periodic Properties and Inquiry: Student Mental Models Observed during a Periodic Table Puzzle Activity

    ERIC Educational Resources Information Center

    Larson, Kathleen G.; Long, George R.; Briggs, Michael W.

    2012-01-01

    The mental models of both novice and advanced chemistry students were observed while the students performed a periodic table activity. The mental model framework seems to be an effective way of analyzing student behavior during learning activities. The analysis suggests that students do not recognize periodic trends through the examination of…

  2. The Scholarly Activity Predictor Model among Counseling Psychology Doctoral Students: A Modification and Extension

    ERIC Educational Resources Information Center

    Huber, Daniel M.

    2010-01-01

    The purpose of the current study was to help understand scholarly activity better among counseling psychology doctoral students. Two new variables were added to the previously created predictor model of scholarly activity: advisory working alliance and research competence. Three path analytic models were designed in the current study: (1) a…

  3. Mathematical model for the simulation of Dynamic Docking Test System (DDST) active table motion

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Graves, D. L.

    1974-01-01

    The mathematical model developed to describe the three-dimensional motion of the dynamic docking test system active table is described. The active table is modeled as a rigid body supported by six flexible hydraulic actuators which produce the commanded table motions.

  4. Teaching Tip: Using Activity Diagrams to Model Systems Analysis Techniques: Teaching What We Preach

    ERIC Educational Resources Information Center

    Lending, Diane; May, Jeffrey

    2013-01-01

    Activity diagrams are used in Systems Analysis and Design classes as a visual tool to model the business processes of "as-is" and "to-be" systems. This paper presents the idea of using these same activity diagrams in the classroom to model the actual processes (practices and techniques) of Systems Analysis and Design. This tip…

  5. Model Activity Systems: Dialogic Teacher Learning for Social Justice Teaching

    ERIC Educational Resources Information Center

    Hoffman-Kipp, Peter

    2003-01-01

    Interest of teacher educators working in the field of social justice focuses on the ways in which teachers learn to inscribe their professional activity within social movements (for progressive change. The community of practice (COP) approach to understanding learning as a social process has a lot of currency right now in teacher education…

  6. Institutionalizing Retention Activity: Toward a Theory-Based Model.

    ERIC Educational Resources Information Center

    Saunders, Martha Dunagin

    2003-01-01

    Examines Appreciative Inquiry, a relatively new approach to organizational change and growth, as a method for institutionalizing retention activity. Results of a case study in a college of arts and sciences suggest the method to be effective in creating a shared vision for the organization, energized participants, improved morale, and increased…

  7. Active Learning by Play Dough Modeling in the Medical Profession

    ERIC Educational Resources Information Center

    Herur, Anita; Kolagi, Sanjeev; Chinagudi, Surekharani; Manjula, R.; Patil, Shailaja

    2011-01-01

    Active learning produces meaningful learning, improves attitudes toward learning, and increases knowledge and retention, but is still not fully institutionalized in the undergraduate sciences. A few studies have compared the effectiveness of PowerPoint presentations, student seminars, quizzes, and use of CD-ROMs with blackboard teaching and…

  8. A Model Approach to the Electrochemical Cell: An Inquiry Activity

    ERIC Educational Resources Information Center

    Cullen, Deanna M.; Pentecost, Thomas C.

    2011-01-01

    In an attempt to address some student misconceptions in electrochemistry, this guided-inquiry laboratory was devised to give students an opportunity to use a manipulative that simulates the particulate-level activity within an electrochemical cell, in addition to using an actual electrochemical cell. Students are led through a review of expected…

  9. Performance Benchmarking Tsunami Models for NTHMP's Inundation Mapping Activities

    NASA Astrophysics Data System (ADS)

    Horrillo, Juan; Grilli, Stéphan T.; Nicolsky, Dmitry; Roeber, Volker; Zhang, Joseph

    2015-03-01

    The coastal states and territories of the United States (US) are vulnerable to devastating tsunamis from near-field or far-field coseismic and underwater/subaerial landslide sources. Following the catastrophic 2004 Indian Ocean tsunami, the National Tsunami Hazard Mitigation Program (NTHMP) accelerated the development of public safety products for the mitigation of these hazards. In response to this initiative, US coastal states and territories speeded up the process of developing/enhancing/adopting tsunami models that can be used for developing inundation maps and evacuation plans. One of NTHMP's requirements is that all operational and inundation-based numerical (O&I) models used for such purposes be properly validated against established standards to ensure the reliability of tsunami inundation maps as well as to achieve a basic level of consistency between parallel efforts. The validation of several O&I models was considered during a workshop held in 2011 at Texas A&M University (Galveston). This validation was performed based on the existing standard (OAR-PMEL-135), which provides a list of benchmark problems (BPs) covering various tsunami processes that models must meet to be deemed acceptable. Here, we summarize key approaches followed, results, and conclusions of the workshop. Eight distinct tsunami models were validated and cross-compared by using a subset of the BPs listed in the OAR-PMEL-135 standard. Of the several BPs available, only two based on laboratory experiments are detailed here for sake of brevity; since they are considered as sufficiently comprehensive. Average relative errors associated with expected parameters values such as maximum surface amplitude/runup are estimated. The level of agreement with the reference data, reasons for discrepancies between model results, and some of the limitations are discussed. In general, dispersive models were found to perform better than nondispersive models, but differences were relatively small, in part

  10. Modelling the vascular response to sympathetic postganglionic nerve activity

    PubMed Central

    Briant, Linford J.B.; Paton, Julian F.R.; Pickering, Anthony E.; Champneys, Alan R.

    2015-01-01

    This paper explores the influence of burst properties of the sympathetic nervous system on arterial contractility. Specifically, a mathematical model is constructed of the pathway from action potential generation in a sympathetic postganglionic neurone to contraction of an arterial smooth muscle cell. The differential equation model is a synthesis of models of the individual physiological processes, and is shown to be consistent with physiological data. The model is found to be unresponsive to tonic (regular) stimulation at typical frequencies recorded in sympathetic efferents. However, when stimulated at the same average frequency, but with repetitive respiratory-modulated burst patterns, it produces marked contractions. Moreover, the contractile force produced is found to be highly dependent on the number of spikes in each burst. In particular, when the model is driven by preganglionic spike trains recorded from wild-type and spontaneously hypertensive rats (which have increased spiking during each burst) the contractile force was found to be 10-fold greater in the hypertensive case. An explanation is provided in terms of the summative increased release of noradrenaline. Furthermore, the results suggest the marked effect that hypertensive spike trains had on smooth muscle cell tone can provide a significant contribution to the pathology of hypertension. PMID:25698230

  11. [Classification models of structure - P-glycoprotein activity of drugs].

    PubMed

    Grigorev, V Yu; Solodova, S L; Polianczyk, D E; Raevsky, O A

    2016-01-01

    Thirty three classification models of substrate specificity of 177 drugs to P-glycoprotein have been created using of the linear discriminant analysis, random forest and support vector machine methods. QSAR modeling was carried out using 2 strategies. The first strategy consisted in search of all possible combinations from 1÷5 descriptors on the basis of 7 most significant molecular descriptors with clear physico-chemical interpretation. In the second case forward selection procedure up to 5 descriptors, starting from the best single descriptor was used. This strategy was applied to a set of 387 DRAGON descriptors. It was found that only one of 33 models has necessary statistical parameters. This model was designed by means of the linear discriminant analysis on the basis of a single descriptor of H-bond (ΣC(ad)). The model has good statistical characteristics as evidenced by results to both internal cross-validation, and external validation with application of 44 new chemicals. This confirms an important role of hydrogen bond in the processes connected with penetration of chemical compounds through a blood-brain barrier. PMID:27143376

  12. Summary of FY15 results of benchmark modeling activities

    SciTech Connect

    Arguello, J. Guadalupe

    2015-08-01

    Sandia is participating in the third phase of an is a contributing partner to a U.S.-German "Joint Project" entitled "Comparison of current constitutive models and simulation procedures on the basis of model calculations of the thermo-mechanical behavior and healing of rock salt." The first goal of the project is to check the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure storage of radioactive wastes in rock salt, thereby enhancing the acceptance of the results. These results may ultimately be used to make various assertions regarding both the stability analysis of an underground repository in salt, during the operating phase, and the long-term integrity of the geological barrier against the release of harmful substances into the biosphere, in the post-operating phase.

  13. Active deformation in Western Turkey: new GPS observations and models

    NASA Astrophysics Data System (ADS)

    Nocquet, J.; Aktug, B.; Parsons, B.; Cingoz, A.; England, P.; Erkan, Y.; Soyer, N.; Akdeniz, H.; Kilicoglu, A.

    2007-12-01

    How the continents deform remains a matter of debate. One view postulates that continental deforming zones are comprised of a limited numbers of rigid (elastic) microplates. If true, the surface motion can then be described by the relative rotation of blocks, and strain should be localized along the major faults separating the blocks. An alternative view is that the deformation at depth is distributed over wide areas, can be modelled by a viscous flow responding to boundary conditions applied on it and gravitational potential energy gradients related to variations in topography, and the surface strain simply reflects this deformation. Western Turkey is a region of crustal extension, part of the Nubia/Eurasia plate boundary. Its kinematics is often modelled by the relative motion of a small number of rigid blocks (Nyst & Thatcher, 2005, Reilinger et al., 2006). However, until now, the limited number of GPS velocity vectors available has prevented a detailed examination of which is the more appropriate description. We present a new geodetic velocity field including ~100 sites from the longitude the Central Anatolian plateau to the Aegean coast, derived from a combination of campaigns carried out between 1997 and 2006, and continuous GPS operating since 2003, which we use to test the different models. While the kinematics of the area can be correctly modelled by a block model, a good fit to the velocity field requires blocks with sizes smaller than 100 km and still fails to adequately predict the strain rate observed within blocks . Alternatively, we test an approach where the lithosphere is modelled as a thin viscous sheet, responding to the gravitational potentiel energy contrast between the high plateau of eastern Turkey to the east and the subduction along the Hellenic trench in the southwest. The simplistic model has only one free parameter (the force applied by the subducting oceanic lithosphere on the Aegean ), but provides a good agreement with the observed

  14. Medical Image Segmentation Based on a Hybrid Region-Based Active Contour Model

    PubMed Central

    Liu, Tingting; Xu, Haiyong; Liu, Zhen; Zhao, Yiming; Tian, Wenzhe

    2014-01-01

    A novel hybrid region-based active contour model is presented to segment medical images with intensity inhomogeneity. The energy functional for the proposed model consists of three weighted terms: global term, local term, and regularization term. The total energy is incorporated into a level set formulation with a level set regularization term, from which a curve evolution equation is derived for energy minimization. Experiments on some synthetic and real images demonstrate that our model is more efficient compared with the localizing region-based active contours (LRBAC) method, proposed by Lankton, and more robust compared with the Chan-Vese (C-V) active contour model. PMID:25028593

  15. ANALYSIS OF HUMAN ACTIVITY DATA FOR USE IN MODELING ENVIRONMENTAL EXPOSURES

    EPA Science Inventory

    Human activity data are a critical part of exposure models being developed by the US EPA's National Exposure Research Laboratory (NERL). An analysis of human activity data within NERL's Consolidated Human Activity Database (CHAD) was performed in two areas relevant to exposure ...

  16. School Counseling Intern Roles: Exploration of Activities and Comparison to the ASCA National Model

    ERIC Educational Resources Information Center

    Leuwerke, Wade C.; Bruinekool, R. Matthew; Lane, Amy

    2008-01-01

    Examination of 6,556 hours of school counselor interns' activity logs provided a detailed description of roles and activities. Comparison of counselor intern activities to the ASCA (2005) National Model found consistency between responsive services at the elementary level and both responsive services and guidance curriculum at the middle school…

  17. Surrogate screening models for the low physical activity criterion of frailty

    PubMed Central

    Eckel, Sandrah P.; Bandeen-Roche, Karen; Chaves, Paulo H.M.; Fried, Linda P.; Louis, Thomas A.

    2012-01-01

    Background and Aims Low physical activity, one of five criteria in a validated clinical phenotype of frailty, is assessed by a standardized, semi-quantitative questionnaire on up to 20 leisure time activities. Because of the time demanded to collect the interview data, it has been challenging to translate to studies other than the Cardiovascular Health Study (CHS), for which it was developed. Considering subsets of activities, we identified and evaluated streamlined surrogate assessment methods and compared them to one implemented in the Women’s Health and Aging Study (WHAS). Methods Using data on men and women ages 65 and older from the CHS, we applied logistic regression models to rank activities by “relative influence” in predicting low physical activity. We considered subsets of the most influential activities as inputs to potential surrogate models (logistic regressions). We evaluated predictive accuracy and predictive validity using the area under receiver operating characteristic curves and assessed criterion validity using proportional hazards models relating frailty status (defined using the surrogate) to mortality. Results Walking for exercise and moderately strenuous household chores were highly influential for both genders. Women required fewer activities than men for accurate classification. The WHAS model (8 CHS activities) was an effective surrogate, but a surrogate using 6 activities (walking, chores, gardening, general exercise, mowing and golfing) was also highly predictive. Conclusions We recommend a 6 activity questionnaire to assess physical activity for men and women. If efficiency is essential and the study involves only women, fewer activities can be included. PMID:21993168

  18. Antithrombotic Activity of a New Hypoglycemic Compound Limiglidole in Mouse Model of Cell Thrombosis.

    PubMed

    Kucheryavenko, A F; Spasov, A A; Smirnov, A V

    2015-05-01

    Antithrombotic activity of hypoglycemic compound limiglidole that exhibits antiplatelet activity 2-fold exceeded activity of antiplatelet agent acetylsalicylic acid in the mouse model of systemic collagen-epinephrine thrombosis. Limiglidole signifi cantly reduced the relative and mean area of blood clots in the sections of mouse lungs. PMID:26033587

  19. Learning Activity Models for Multiple Agents in a Smart Space

    NASA Astrophysics Data System (ADS)

    Crandall, Aaron; Cook, Diane J.

    With the introduction of more complex intelligent environment systems, the possibilities for customizing system behavior have increased dramatically. Significant headway has been made in tracking individuals through spaces using wireless devices [1, 18, 26] and in recognizing activities within the space based on video data (see chapter by Brubaker et al. and [6, 8, 23]), motion sensor data [9, 25], wearable sensors [13] or other sources of information [14, 15, 22]. However, much of the theory and most of the algorithms are designed to handle one individual in the space at a time. Resident tracking, activity recognition, event prediction, and behavior automation becomes significantly more difficult for multi-agent situations, when there are multiple residents in the environment.

  20. Computational Identification of Active Enhancers in Model Organisms

    PubMed Central

    Wang, Chengqi; Zhang, Michael Q.; Zhang, Zhihua

    2013-01-01

    As a class of cis-regulatory elements, enhancers were first identified as the genomic regions that are able to markedly increase the transcription of genes nearly 30 years ago. Enhancers can regulate gene expression in a cell-type specific and developmental stage specific manner. Although experimental technologies have been developed to identify enhancers genome-wide, the design principle of the regulatory elements and the way they rewire the transcriptional regulatory network tempo-spatially are far from clear. At present, developing predictive methods for enhancers, particularly for the cell-type specific activity of enhancers, is central to computational biology. In this review, we survey the current computational approaches for active enhancer prediction and discuss future directions. PMID:23685394

  1. A Model for Speech Processing in Second Language Listening Activities

    ERIC Educational Resources Information Center

    Zoghbor, Wafa Shahada

    2016-01-01

    Teachers' understanding of the process of speech perception could inform practice in listening classrooms. Catford (1950) developed a model for speech perception taking into account the influence of the acoustic features of the linguistic forms used by the speaker, whereby the listener "identifies" and "interprets" these…

  2. Speech Perception as a Cognitive Process: The Interactive Activation Model.

    ERIC Educational Resources Information Center

    Elman, Jeffrey L.; McClelland, James L.

    Research efforts to model speech perception in terms of a processing system in which knowledge and processing are distributed over large numbers of highly interactive--but computationally primative--elements are described in this report. After discussing the properties of speech that demand a parallel interactive processing system, the report…

  3. Interpreting Unfamiliar Graphs: A Generative, Activity Theoretic Model

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael; Lee, Yew Jin

    2004-01-01

    Research on graphing presents its results as if knowing and understanding were something stored in peoples' minds independent of the situation that they find themselves in. Thus, there are no models that situate interview responses to graphing tasks. How, then, we question, are the interview texts produced? How do respondents begin and end…

  4. Summary Report of Air Quality Modeling Research Activities for 2007

    EPA Science Inventory

    Through a Memorandum of Understanding (MOU) and Memorandum of Agreement (MOA) between the U.S. Department of Commerce (DOC) and the U.S. Environmental Protection Agency (EPA), the Atmospheric Sciences Modeling Division (ASMD) of the National Oceanic and Atmospheric Administration...

  5. Fourth Generation Instructional Design Model: An Elaboration on Authoring Activities.

    ERIC Educational Resources Information Center

    Christensen, Dean L.

    This paper presents the updated (fourth generation) version of the instructional design (ID) model, noting its emphasis on a scientific, iterative approach based upon research and theory in learning and instruction and upon applied development experience. Another important trend toward a scientific approach to instructional design is the increased…

  6. Contrasting effects of Na+, K+-ATPase activation on seizure activity in acute versus chronic models.

    PubMed

    Funck, V R; Ribeiro, L R; Pereira, L M; de Oliveira, C V; Grigoletto, J; Della-Pace, I D; Fighera, M R; Royes, L F F; Furian, A F; Larrick, J W; Oliveira, M S

    2015-07-01

    Epilepsy is a life-shortening brain disorder affecting approximately 1% of the worldwide population. Most epilepsy patients are refractory to currently available antiepileptic drugs (AEDs). Knowledge about the mechanisms underlying seizure activity and probing for new AEDs is fundamental to the discovery of new therapeutic strategies. Brain Na(+), K(+)-ATPase activity contributes to the maintenance of the electrochemical gradients underlying neuronal resting and action potentials as well as the uptake and release of neurotransmitters. Accordingly, a decrease of Na(+), K(+)-ATPase increases neuronal excitability and may predispose to appearing of seizure activity. In the present study, we tested the hypothesis that activation of Na(+), K(+)-ATPase activity with a specific antibody (DRRSAb) raised against a regulatory site in the α subunit would decrease seizure susceptibility. We found that incubation of hippocampal homogenates with DRRSAb (1 μM) increased total and α1 Na(+), K(+)-ATPase activities. A higher concentration (3 μM) increased total, α1 and α2/α3 Na(+), K(+)-ATPase activities. Intrahippocampal injection of DRRSAb decreased the susceptibility of post status epilepticus animals to pentylenetetrazol (PTZ)-induced myoclonic seizures. In contrast, administration of DRRSAb into the hippocampus of naïve animals facilitated the appearance of PTZ-induced seizures. Quantitative analysis of hippocampal electroencephalography (EEG) recordings revealed that DRRSAb increased the percentage of total power contributed by the delta frequency band (0-3 Hz) to a large irregular amplitude pattern of hippocampal EEG. On the other hand, we found no DRRSAb-induced changes regarding the theta functional state. Further studies are necessary to define the potential of Na(+), K(+)-ATPase activation as a new therapeutic approach for seizure disorders. PMID:25907445

  7. Development of modified cable models to simulate accurate neuronal active behaviors

    PubMed Central

    2014-01-01

    In large network and single three-dimensional (3-D) neuron simulations, high computing speed dictates using reduced cable models to simulate neuronal firing behaviors. However, these models are unwarranted under active conditions and lack accurate representation of dendritic active conductances that greatly shape neuronal firing. Here, realistic 3-D (R3D) models (which contain full anatomical details of dendrites) of spinal motoneurons were systematically compared with their reduced single unbranched cable (SUC, which reduces the dendrites to a single electrically equivalent cable) counterpart under passive and active conditions. The SUC models matched the R3D model's passive properties but failed to match key active properties, especially active behaviors originating from dendrites. For instance, persistent inward currents (PIC) hysteresis, frequency-current (FI) relationship secondary range slope, firing hysteresis, plateau potential partial deactivation, staircase currents, synaptic current transfer ratio, and regional FI relationships were not accurately reproduced by the SUC models. The dendritic morphology oversimplification and lack of dendritic active conductances spatial segregation in the SUC models caused significant underestimation of those behaviors. Next, SUC models were modified by adding key branching features in an attempt to restore their active behaviors. The addition of primary dendritic branching only partially restored some active behaviors, whereas the addition of secondary dendritic branching restored most behaviors. Importantly, the proposed modified models successfully replicated the active properties without sacrificing model simplicity, making them attractive candidates for running R3D single neuron and network simulations with accurate firing behaviors. The present results indicate that using reduced models to examine PIC behaviors in spinal motoneurons is unwarranted. PMID:25277743

  8. Sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios

    NASA Astrophysics Data System (ADS)

    Başağaoğlu, Hakan; Succi, Sauro; Manepally, Chandrika; Fedors, Randall; Wyrick, Danielle Y.

    2009-09-01

    Active fractures refer to the portions of unsaturated, connected fractures that actively conduct water. The active fracture model parameter accounts for the reduction in the number of fractures carrying water and in the fracture-matrix interface area in field-scale simulations of flow and transport in unsaturated fractured rocks. One example includes the numerical analyses of the fault test results at the Yucca Mountain site, Nevada (USA). In such applications, the active fracture model parameter is commonly used as a calibration parameter without relating it to fracture network orientations and infiltration rates. A two-dimensional, multiphase lattice-Boltzmann model was used in this study to investigate the sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios for an unsaturated, variable dipping, and geometrically simple fracture network. The active fracture model parameter differed by as much as 0.11-0.44 when the effects of fracture network orientation, injection rate, and injection mode were included in the simulations. Hence, the numerical results suggest that the sensitivity of the active fracture model parameter to fracture network orientation, injection rates, and injection modes should be explored at the field-scale to strengthen the technical basis and range of applicability of the active fracture model.

  9. Predicting Antitumor Activity of Peptides by Consensus of Regression Models Trained on a Small Data Sample

    PubMed Central

    Radman, Andreja; Gredičak, Matija; Kopriva, Ivica; Jerić, Ivanka

    2011-01-01

    Predicting antitumor activity of compounds using regression models trained on a small number of compounds with measured biological activity is an ill-posed inverse problem. Yet, it occurs very often within the academic community. To counteract, up to some extent, overfitting problems caused by a small training data, we propose to use consensus of six regression models for prediction of biological activity of virtual library of compounds. The QSAR descriptors of 22 compounds related to the opioid growth factor (OGF, Tyr-Gly-Gly-Phe-Met) with known antitumor activity were used to train regression models: the feed-forward artificial neural network, the k-nearest neighbor, sparseness constrained linear regression, the linear and nonlinear (with polynomial and Gaussian kernel) support vector machine. Regression models were applied on a virtual library of 429 compounds that resulted in six lists with candidate compounds ranked by predicted antitumor activity. The highly ranked candidate compounds were synthesized, characterized and tested for an antiproliferative activity. Some of prepared peptides showed more pronounced activity compared with the native OGF; however, they were less active than highly ranked compounds selected previously by the radial basis function support vector machine (RBF SVM) regression model. The ill-posedness of the related inverse problem causes unstable behavior of trained regression models on test data. These results point to high complexity of prediction based on the regression models trained on a small data sample. PMID:22272081

  10. A mathematical model of Aurora B activity in prophase and metaphase.

    PubMed

    Doherty, Kevin; Meere, Martin; Piiroinen, Petri T

    2016-07-01

    Aurora B kinase is a protein that controls several processes in mitosis when it is found associated with INCENP, Survivin and Borealin in a complex known as the Chromosomal Passenger Complex. Aurora B in complex with INCENP is phosphorylated on three sites, resulting in the full activation of Aurora B. In prophase and metaphase, Aurora B is activated at centromeres, the region of chromatin linking sister chromatids, due to an autophosphorylation mechanism, and it has been hypothesised that Aurora B is activated throughout the cytoplasm due to its concentration at centromeres. In this article, we first develop a time-dependent model of Aurora B activation that does not incorporate spatial variation. This model is used to demonstrate the various qualitative behaviours that the activation of Aurora B is capable of displaying for different model parameters. Next, we develop a spatio-temporal model of Aurora B activation that includes diffusion of soluble Aurora B and binding of Aurora B to immobile centromeric binding sites. This model describes the activation of Aurora B throughout the cytoplasm due to its concentration-dependent activation at centromeres. The models demonstrate the effects that a soluble phosphatase concentration, multisite phosphorylation and diffusion have on the activation of Aurora B. PMID:27155569

  11. Predicting antitumor activity of peptides by consensus of regression models trained on a small data sample.

    PubMed

    Radman, Andreja; Gredičak, Matija; Kopriva, Ivica; Jerić, Ivanka

    2011-01-01

    Predicting antitumor activity of compounds using regression models trained on a small number of compounds with measured biological activity is an ill-posed inverse problem. Yet, it occurs very often within the academic community. To counteract, up to some extent, overfitting problems caused by a small training data, we propose to use consensus of six regression models for prediction of biological activity of virtual library of compounds. The QSAR descriptors of 22 compounds related to the opioid growth factor (OGF, Tyr-Gly-Gly-Phe-Met) with known antitumor activity were used to train regression models: the feed-forward artificial neural network, the k-nearest neighbor, sparseness constrained linear regression, the linear and nonlinear (with polynomial and Gaussian kernel) support vector machine. Regression models were applied on a virtual library of 429 compounds that resulted in six lists with candidate compounds ranked by predicted antitumor activity. The highly ranked candidate compounds were synthesized, characterized and tested for an antiproliferative activity. Some of prepared peptides showed more pronounced activity compared with the native OGF; however, they were less active than highly ranked compounds selected previously by the radial basis function support vector machine (RBF SVM) regression model. The ill-posedness of the related inverse problem causes unstable behavior of trained regression models on test data. These results point to high complexity of prediction based on the regression models trained on a small data sample. PMID:22272081

  12. Dynamic workflow model for complex activity in intensive care unit.

    PubMed

    Bricon-Souf, N; Renard, J M; Beuscart, R

    1998-01-01

    Cooperation is very important in Medical care, especially in the Intensive Care Unit (ICU) where the difficulties increase which is due to the urgency of the work. Workflow systems are considered as well adapted to modelize productive work in business process. We aim at introducing this approach in the Health Care domain. We have proposed a conversation-based Workflow in order to modelize the therapeutics plan in the ICU [1]. But in such a complex field, the flexibility of the workflow system is essential for the system to be usable. In this paper, we focus on the main points used to increase the dynamicity. We report on affecting roles, highlighting information, and controlling the system We propose some solutions and describe our prototype in the ICU. PMID:10384452

  13. Activity Dependent Global Model of Electron Loss inside the Plasmasphere

    NASA Astrophysics Data System (ADS)

    Orlova, K.; Spasojevic, M.; Shprits, Y.

    2014-12-01

    Using data from the CRRES plasma wave experiment, we develop quadratic fits to the mean of the wave amplitude squared for plasmaspheric hiss as a function of Kp, L, and magnetic latitude (λ) for the dayside (6model of hiss waves is used to compute quasi-linear pitch-angle diffusion coefficients for energetic, relativistic, and ultra-relativistic electrons in the energy range of 1 keV to 10 MeV. In our calculations, we account for changes in hiss wave normal angle and plasma density with increasing λ. Electron lifetimes are then calculated from the diffusion coefficients and parameterized as a function of energy, Kp, and L. Coefficients for both the hiss model and the electrons lifetimes are provided and can be easily incorporated into existing diffusion, convection and particle tracing codes.

  14. Model of Transcriptional Activation By MarA in Escherichia Coli

    NASA Astrophysics Data System (ADS)

    Wall, Michael E.; Markowitz, David A.; Rosner, Judah L.; Martin, Robert G.

    2010-01-01

    We have developed a mathematical model of transcriptional activation by MarA in Escherichia coli, and used the model to analyze measurements of MarA-dependent activity of the marRAB, sodA, and micF promoters in mar-rob- cells. The model rationalizes an unexpected poor correlation between the mid-point of in vivo promoter activity profiles and in vitro equilibrium constants for MarA binding to promoter sequences. Analysis of the promoter activity data using the model yielded the following predictions regarding activation mechanisms: (1) MarA activation of the marRAB, sodA, and micF promoters involves a net acceleration of the kinetics of transitions after RNA polymerase binding, up to and including promoter escape and message elongation; (2) RNA polymerase binds to these promoters with nearly unit occupancy in the absence of MarA, making recruitment of polymerase an insignificant factor in activation of these promoters; and (3) instead of recruitment, activation of the micF promoter might involve a repulsion of polymerase combined with a large acceleration of the kinetics of polymerase activity. These predictions are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. A lack of recruitment in transcriptional activation represents an exception to the textbook description of activation of bacterial sigma-70 promoters. However, use of accelerated polymerase kinetics instead of recruitment might confer a competitive advantage to E. coli by decreasing latency in gene regulation.

  15. Mathematical analysis techniques for modeling the space network activities

    NASA Technical Reports Server (NTRS)

    Foster, Lisa M.

    1992-01-01

    The objective of the present work was to explore and identify mathematical analysis techniques, and in particular, the use of linear programming. This topic was then applied to the Tracking and Data Relay Satellite System (TDRSS) in order to understand the space network better. Finally, a small scale version of the system was modeled, variables were identified, data was gathered, and comparisons were made between actual and theoretical data.

  16. Dynamic workflow model for complex activity in intensive care unit.

    PubMed

    Bricon-Souf, N; Renard, J M; Beuscart, R

    1999-01-01

    Co-operation is very important in Medical care, especially in the Intensive Care Unit (ICU) where the difficulties increase which is due to the urgency of the work. Workflow systems are considered as well adapted to modelize productive work in business process. We aim at introducing this approach in the Health Care domain. We have proposed a conversation-based workflow in order to modelize the therapeutics plan in the ICU [1]. But in such a complex field, the flexibility of the workflow system is essential for the system to be usable. We have concentrated on three main points usually proposed in the workflow models, suffering from a lack of dynamicity: static links between roles and actors, global notification of information changes, lack of human control on the system. In this paper, we focus on the main points used to increase the dynamicity. We report on affecting roles, highlighting information, and controlling the system. We propose some solutions and describe our prototype in the ICU. PMID:10193884

  17. Data Mining Approaches for Modeling Complex Electronic Circuit Design Activities

    SciTech Connect

    Kwon, Yongjin; Omitaomu, Olufemi A; Wang, Gi-Nam

    2008-01-01

    A printed circuit board (PCB) is an essential part of modern electronic circuits. It is made of a flat panel of insulating materials with patterned copper foils that act as electric pathways for various components such as ICs, diodes, capacitors, resistors, and coils. The size of PCBs has been shrinking over the years, while the number of components mounted on these boards has increased considerably. This trend makes the design and fabrication of PCBs ever more difficult. At the beginning of design cycles, it is important to estimate the time to complete the steps required accurately, based on many factors such as the required parts, approximate board size and shape, and a rough sketch of schematics. Current approach uses multiple linear regression (MLR) technique for time and cost estimations. However, the need for accurate predictive models continues to grow as the technology becomes more advanced. In this paper, we analyze a large volume of historical PCB design data, extract some important variables, and develop predictive models based on the extracted variables using a data mining approach. The data mining approach uses an adaptive support vector regression (ASVR) technique; the benchmark model used is the MLR technique currently being used in the industry. The strengths of SVR for this data include its ability to represent data in high-dimensional space through kernel functions. The computational results show that a data mining approach is a better prediction technique for this data. Our approach reduces computation time and enhances the practical applications of the SVR technique.

  18. Mathematical models of electrical activity of the pancreatic β-cell: A physiological review

    PubMed Central

    Félix-Martínez, Gerardo J; Godínez-Fernández, J Rafael

    2014-01-01

    Mathematical modeling of the electrical activity of the pancreatic β-cell has been extremely important for understanding the cellular mechanisms involved in glucose-stimulated insulin secretion. Several models have been proposed over the last 30 y, growing in complexity as experimental evidence of the cellular mechanisms involved has become available. Almost all the models have been developed based on experimental data from rodents. However, given the many important differences between species, models of human β-cells have recently been developed. This review summarizes how modeling of β-cells has evolved, highlighting the proposed physiological mechanisms underlying β-cell electrical activity. PMID:25322829

  19. Modeling the winds and magnetospheres of active OB stars

    NASA Astrophysics Data System (ADS)

    Townsend, Richard H. D.

    2011-07-01

    After briefly reviewing the theory behind the radiative line-driven winds of OB stars, I examine the processes that can generate structure in them; these include both intrinsic instabilities, and surface perturbations such as pulsation and rotation. I then delve into wind channeling and confinement by magnetic fields as a mechanism for forming longer-lived circumstellar structures. With a narrative that largely follows the historical progression of the field, I introduce the key insights and results that link the first detection of a magnetosphere, over three decades ago, to the recent direct measurement of magnetic braking in a number of active OB stars.

  20. Evaluation of the Health Promotion Model to Predict Physical Activity in Iranian Adolescent Boys

    ERIC Educational Resources Information Center

    Taymoori, Parvaneh; Lubans, David; Berry, Tanya R.

    2010-01-01

    Promoting sustainable physical activity (PA) behavior change is challenging, and a number of theoretical models have been developed and applied to this problem. Pender's health promotion model (HPM) is a relatively new model that is based on Bandura's social cognitive theory but includes the additional construct of competing demands, which are…

  1. Prospective Elementary Mathematics Teachers' Thought Processes on a Model Eliciting Activity

    ERIC Educational Resources Information Center

    Eraslan, Ali

    2012-01-01

    Mathematical model and modeling are one of the topics that have been intensively discussed in recent years. The purpose of this study is to examine prospective elementary mathematics teachers' thought processes on a model eliciting activity and reveal difficulties or blockages in the processes. The study includes forty-five seniors taking the…

  2. Active Model H: Scalar Active Matter in a Momentum-Conserving Fluid

    NASA Astrophysics Data System (ADS)

    Tiribocchi, Adriano; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E.

    2015-10-01

    We present a continuum theory of self-propelled particles, without alignment interactions, in a momentum-conserving solvent. To address phase separation, we introduce a dimensionless scalar concentration field ϕ with advective-diffusive dynamics. Activity creates a contribution Σi j=-κ ^ [(∂iϕ )(∂jϕ )-(∇ϕ )2δi j/d ] to the deviatoric stress, where κ ^ is odd under time reversal and d is the number of spatial dimensions; this causes an effective interfacial tension contribution that is negative for contractile swimmers. We predict that domain growth then ceases at a length scale where diffusive coarsening is balanced by active stretching of interfaces, and confirm this numerically. Thus, there is a subtle interplay of activity and hydrodynamics, even without alignment interactions.

  3. Microglial Activation in Rat Experimental Spinal Cord Injury Model

    PubMed Central

    Abdanipour, Alireza; Tiraihi, Taki; Taheri, Taher; Kazemi, Hadi

    2013-01-01

    Background: The present study was designed to evaluate the secondary microglial activation processes after spinal cord injury (SCI). Methods: A quantitative histological study was performed to determine ED-1 positive cells, glial cell density, and cavitation size in untreated SCI rats at days 1, 2, and 4, and weeks 1, 2, 3, and 4. Results: The results of glial cell quantification along the 4900-µm long injured spinal cord showed a significant increase in glial cell density percentage at day 2 as compared to other days. Whereas the highest increase in ED-1 immunoreactive cells (monocyte/phagocyte marker in rats) was observed at day 2 (23.15%) post-injury. Evaluation of cavity percentage showed a significant difference between weeks 3 and 4 post-injury groups. Conclusions: This study provides a new insight into the multiphase immune response to SCI, including cellular inflammation, macrophages/microglia activation, glial cell density, and cavitation. Better understanding of the inflammatory processes associated with acute SCI would permit the development of better therapeutic strategies. PMID:23999718

  4. AST: Activity-Security-Trust driven modeling of time varying networks

    PubMed Central

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-01-01

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes. PMID:26888717

  5. AST: Activity-Security-Trust driven modeling of time varying networks

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-02-01

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes.

  6. AST: Activity-Security-Trust driven modeling of time varying networks.

    PubMed

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-01-01

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents' interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes. PMID:26888717

  7. The Generalized Hill Model: A Kinematic Approach Towards Active Muscle Contraction.

    PubMed

    Göktepe, Serdar; Menzel, Andreas; Kuhl, Ellen

    2014-12-01

    Excitation-contraction coupling is the physiological process of converting an electrical stimulus into a mechanical response. In muscle, the electrical stimulus is an action potential and the mechanical response is active contraction. The classical Hill model characterizes muscle contraction though one contractile element, activated by electrical excitation, and two non-linear springs, one in series and one in parallel. This rheology translates into an additive decomposition of the total stress into a passive and an active part. Here we supplement this additive decomposition of the stress by a multiplicative decomposition of the deformation gradient into a passive and an active part. We generalize the one-dimensional Hill model to the three-dimensional setting and constitutively define the passive stress as a function of the total deformation gradient and the active stress as a function of both the total deformation gradient and its active part. We show that this novel approach combines the features of both the classical stress-based Hill model and the recent active-strain models. While the notion of active stress is rather phenomenological in nature, active strain is micro-structurally motivated, physically measurable, and straightforward to calibrate. We demonstrate that our model is capable of simulating excitation-contraction coupling in cardiac muscle with its characteristic features of wall thickening, apical lift, and ventricular torsion. PMID:25221354

  8. The Generalized Hill Model: A Kinematic Approach Towards Active Muscle Contraction

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2014-01-01

    Excitation-contraction coupling is the physiological process of converting an electrical stimulus into a mechanical response. In muscle, the electrical stimulus is an action potential and the mechanical response is active contraction. The classical Hill model characterizes muscle contraction though one contractile element, activated by electrical excitation, and two non-linear springs, one in series and one in parallel. This rheology translates into an additive decomposition of the total stress into a passive and an active part. Here we supplement this additive decomposition of the stress by a multiplicative decomposition of the deformation gradient into a passive and an active part. We generalize the one-dimensional Hill model to the three-dimensional setting and constitutively define the passive stress as a function of the total deformation gradient and the active stress as a function of both the total deformation gradient and its active part. We show that this novel approach combines the features of both the classical stress-based Hill model and the recent active-strain models. While the notion of active stress is rather phenomenological in nature, active strain is micro-structurally motivated, physically measurable, and straightforward to calibrate. We demonstrate that our model is capable of simulating excitation-contraction coupling in cardiac muscle with its characteristic features of wall thickening, apical lift, and ventricular torsion. PMID:25221354

  9. The generalized Hill model: A kinematic approach towards active muscle contraction

    NASA Astrophysics Data System (ADS)

    Göktepe, Serdar; Menzel, Andreas; Kuhl, Ellen

    2014-12-01

    Excitation-contraction coupling is the physiological process of converting an electrical stimulus into a mechanical response. In muscle, the electrical stimulus is an action potential and the mechanical response is active contraction. The classical Hill model characterizes muscle contraction though one contractile element, activated by electrical excitation, and two non-linear springs, one in series and one in parallel. This rheology translates into an additive decomposition of the total stress into a passive and an active part. Here we supplement this additive decomposition of the stress by a multiplicative decomposition of the deformation gradient into a passive and an active part. We generalize the one-dimensional Hill model to the three-dimensional setting and constitutively define the passive stress as a function of the total deformation gradient and the active stress as a function of both the total deformation gradient and its active part. We show that this novel approach combines the features of both the classical stress-based Hill model and the recent active-strain models. While the notion of active stress is rather phenomenological in nature, active strain is micro-structurally motivated, physically measurable, and straightforward to calibrate. We demonstrate that our model is capable of simulating excitation-contraction coupling in cardiac muscle with its characteristic features of wall thickening, apical lift, and ventricular torsion.

  10. Modeling vocalization with ECoG cortical activity recorded during vocal production in the macaque monkey.

    PubMed

    Fukushima, Makoto; Saunders, Richard C; Fujii, Naotaka; Averbeck, Bruno B; Mishkin, Mortimer

    2014-01-01

    Vocal production is an example of controlled motor behavior with high temporal precision. Previous studies have decoded auditory evoked cortical activity while monkeys listened to vocalization sounds. On the other hand, there have been few attempts at decoding motor cortical activity during vocal production. Here we recorded cortical activity during vocal production in the macaque with a chronically implanted electrocorticographic (ECoG) electrode array. The array detected robust activity in motor cortex during vocal production. We used a nonlinear dynamical model of the vocal organ to reduce the dimensionality of `Coo' calls produced by the monkey. We then used linear regression to evaluate the information in motor cortical activity for this reduced representation of calls. This simple linear model accounted for circa 65% of the variance in the reduced sound representations, supporting the feasibility of using the dynamical model of the vocal organ for decoding motor cortical activity during vocal production. PMID:25571556

  11. Esterase Activity and Intracellular Localization in Reconstructed Human Epidermal Cultured Skin Models

    PubMed Central

    Katayanagi, Mishina; Hashimoto, Fumie

    2015-01-01

    Background Reconstructed human epidermal culture skin models have been developed for cosmetic and pharmaceutical research. Objective This study evaluated the total and carboxyl esterase activities (i.e., Km and Vmax, respectively) and localization in two reconstructed human epidermal culture skin models (LabCyte EPI-MODEL [Japan Tissue Engineering] and EpiDerm [MatTek/Kurabo]). The usefulness of the reconstruction cultured epidermis was also verified by comparison with human and rat epidermis. Methods Homogenized epidermal samples were fractioned by centrifugation. p-nitrophenyl acetate and 4-methylumbelliferyl acetate were used as substrates of total esterase and carboxyl esterase, respectively. Results Total and carboxyl esterase activities were present in the reconstructed human epidermal culture skin models and were localized in the cytosol. Moreover, the activities and localization were the same as those in human and rat epidermis. Conclusion LabCyte EPI-MODEL and EpiDerm are potentially useful for esterase activity prediction in human epidermis. PMID:26082583

  12. Using Activity Theory to Model the Taiwan Atayal Students' Classroom Mathematical Activity

    ERIC Educational Resources Information Center

    Huang, Chih-Hsien; Lin, Fou-Lai

    2013-01-01

    From the sociocultural perspective, this research utilized activity theory as the theoretical framework to analyze the influences of cultural factors for Taiwanese Atayal junior high school students' study in mathematics. The research methodology adopted grounded theory, theoretical and methodological approaches which are illustrated through…

  13. Information Flow Model of Human Extravehicular Activity Operations

    NASA Technical Reports Server (NTRS)

    Miller, Matthew J.; McGuire, Kerry M.; Feigh, Karen M.

    2014-01-01

    Future human spaceflight missions will face the complex challenge of performing human extravehicular activity (EVA) beyond the low Earth orbit (LEO) environment. Astronauts will become increasingly isolated from Earth-based mission support and thus will rely heavily on their own decision-making capabilities and onboard tools to accomplish proposed EVA mission objectives. To better address time delay communication issues, EVA characters, e.g. flight controllers, astronauts, etc., and their respective work practices and roles need to be better characterized and understood. This paper presents the results of a study examining the EVA work domain and the personnel that operate within it. The goal is to characterize current and historical roles of ground support, intravehicular (IV) crew and EV crew, their communication patterns and information needs. This work provides a description of EVA operations and identifies issues to be used as a basis for future investigation.

  14. Modeling Activity: Ions to Hydrophobics in Crowded Biological Solutions

    NASA Astrophysics Data System (ADS)

    Pettitt, Montgomery

    2006-03-01

    Nonideal solutions play a role in many aspects of chemistry. As concentrations increase, concentration itself becomes a less useful quantity to understand equilibria. Industrial and medicinal chemistry often fail due to the difference between concentration and activity. An understanding of the impact of the crowded conditions in the cytoplasm on its biomolecules is of clear importance to biochemical, medical and pharmaceutical science. Work on the use of small biochemical compounds to crowd protein solutions indicates that a quantitative description of their non-ideal behavior is possible and straightforward. Here, we will show what the structural origin of this non-ideal solution behavior is from expression derived from a semi grand ensemble approach. We discuss the consequences of these findings regarding protein folding stability and solvation in crowded solutions through a structural analysis of the m-value or the change in free energy difference of a macromolecule in solution with respect to the concentration of a third component.

  15. Dynamic model for selective metabolic activation in chemical carcinogenesis

    SciTech Connect

    Selkirk, J.K.; MacLeod, M.C.

    1980-01-01

    Theoretical calculations predict the relative ease of formation of carbonium ions from 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene-9,10-oxide or from either of the 2 symmetrical bay regions of B(e)P, and suggest their attraction to cellular nucleophiles. When both isomers were metabolized by hamster embryo fibroblasts (HEF) and the products analyzed, the results showed that the probable reason for benzo(e)pyrene's lack of carcinogenicity was its metabolic preference to attack the molecule away from the bay-region area. Particularly striking was the absence of any evidence for the formation of a significant amount of B(e)P-9,10-dihydrodiol. This suggests a metabolic basis for the relative lack of carcinogenic and mutagenic activity of B(e)P. The reason for this is not clear but may be due to physical or chemical factors such as membrane solubility or stereochemical requirements of the active site of the enzyme. The bay-region theory of PAH carcinogenesis predicts that carbonium ion formation from 9,10-dihydro-9,10-dihydroxybenzo(e)pyrene-11, 12-oxide, if formed, would be energetically favorable. Thus, the inability of HEF and microcomes to form B(e)P-9,10-dihydrodiol, the precursor of its potentially highly reactive diol-epoxide, would explain the relative inertness of B(e)P in several biological systems. As the subtle biochemical interactions of the various carcinogen intermediates become clarified, it becomes apparent that susceptibility and resistance to malignant transformation are based on a complex set of both chemical and physical parameters. It is becoming clear that metabolism kinetics, membrane interaction, and the role of nuclear metabolism help dictate the passage of the carcinogen and its reactive intermediates into and through the metabolic machinery of the cell. (ERB)

  16. Prostate segmentation with local binary patterns guided active appearance models

    NASA Astrophysics Data System (ADS)

    Ghose, Soumya; Oliver, Arnau; Martí, Robert; Lladó, Xavier; Freixenet, Jordi; Vilanova, Joan C.; Meriaudeau, Fabrice

    2011-03-01

    Real-time fusion of Magnetic Resonance (MR) and Trans Rectal Ultra Sound (TRUS) images aid in the localization of malignant tissues in TRUS guided prostate biopsy. Registration performed on segmented contours of the prostate reduces computational complexity and improves the multimodal registration accuracy. However, accurate and computationally efficient segmentation of the prostate in TRUS images could be challenging in the presence of heterogeneous intensity distribution inside the prostate gland, and other imaging artifacts like speckle noise, shadow regions and low Signal to Noise Ratio (SNR). In this work, we propose to enhance the texture features of the prostate region using Local Binary Patterns (LBP) for the propagation of a shape and appearance based statistical model to segment the prostate in a multi-resolution framework. A parametric model of the propagating contour is derived from Principal Component Analysis (PCA) of the prior shape and texture information of the prostate from the training data. The estimated parameters are then modified with the prior knowledge of the optimization space to achieve an optimal segmentation. The proposed method achieves a mean Dice Similarity Coefficient (DSC) value of 0.94+/-0.01 and a mean segmentation time of 0.68+/-0.02 seconds when validated with 70 TRUS images of 7 datasets in a leave-one-patient-out validation framework. Our method performs computationally efficient and accurate prostate segmentation in the presence of intensity heterogeneities and imaging artifacts.

  17. Model of transcriptional activation by MarA in escherichia coli

    SciTech Connect

    Wall, Michael E; Rosner, Judah L; Martin, Robert G

    2009-01-01

    The AraC family transcription factor MarA activates approximately 40 genes (the marA/soxS/rob regulon) of the Escherichia coli chromosome resulting in different levels of resistance to a wide array of antibiotics and to superoxides. Activation of marA/soxS/rob regulon promoters occurs in a well-defined order with respect to the level of MarA; however, the order of activation does not parallel the strength of MarA binding to promoter sequences. To understand this lack of correspondence, we developed a computational model of transcriptional activation in which a transcription factor either increases or decreases RNA polymerase binding, and either accelerates or retards post-binding events associated with transcription initiation. We used the model to analyze data characterizing MarA regulation of promoter activity. The model clearly explains the lack of correspondence between the order of activation and the MarA-DNA affinity and indicates that the order of activation can only be predicted using information about the strength of the full MarA-polymerase-DNA interaction. The analysis further suggests that MarA can activate without increasing polymerase binding and that activation can even involve a decrease in polymerase binding, which is opposite to the textbook model of activation by recruitment. These findings are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. We find that activation involving decreased polymerase binding yields lower latency in gene regulation and therefore might confer a competitive advantage to cells. Our model yields insights into requirements for predicting the order of activation of a regulon and enables us to suggest that activation might involve a decrease in polymerase binding which we expect to be an important theme of gene regulation in E. coli and beyond.

  18. Theoretical Model of Drag Force Impact on a Model International Space Station (ISS) Satellite due to Solar Activity

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar

    The International Space Station (ISS) is the single largest and most complex scientific and engineering space structure in human history. Its orbital parameters make it extremely vulnerable to severe atmospheric drag force. Complex interactions between solar energetic particles, ultraviolet (UV) radiation with atmosphere and geomagnetic field cause heating and subsequent expansion of the upper atmosphere. This condition increases drag on low Earth orbit satellites (LEOSs) and varies with current space weather conditions. In this work, we apply the NRLMSISE-00 empirical atmospheric density model, as a function of space environmental parameters, to model drag force impact on a model LEOS during variation of solar activity. Applying the resulting drag model on a model ISS satellite we observe that depending on the severity and/or stage of solar activity or cycle, a massive artificial satellite could experience orbit decay rate of up to 2.95km/month during solar maximum and up to 1km/month during solar minimum.

  19. Towards Modeling a Collaborative Environment for Extension of Professional Active Life

    NASA Astrophysics Data System (ADS)

    Afsarmanesh, Hamideh; Camarinha-Matos, Luis

    Progress on computer networks is offering new conditions for individuals to remain active after their retirement. Furthermore, the scarcity of human resources and the increasing percentage of elder professionals in Europe have catalyzed the formation of a new type of collaborative community referred to as community of active senior professionals (CASP). These new networks aim to support retired professionals with their participation in socio-economic activities and thus remaining professionally active. As such, identification of their specificities as well as developing a descriptive model of CASPs is challenging. This paper characterizes the CASP environments and performs a first attempt towards identifying and modeling their constituent elements.

  20. Highly dispersed buckybowls as model carbocatalysts for C–H bond activation

    DOE PAGESBeta

    Soykal, I. Ilgaz; Wang, Hui; Park, Jewook; Li, An-Ping; Liang, Chengdu; Schwartz, Viviane

    2015-03-19

    Buckybowl fractions dispersed on mesoporous silica constitute an ideal model for studying the catalysis of graphitic forms of carbon since the dispersed carbon nanostructures contain a high ratio of edge defects and curvature induced by non-six-membered rings. Dispersion of the active centers on an easily accessible high surface area material allowed for high density of surface active sites associated with oxygenated structures. This report illustrates a facile method of creating model polycyclic aromatic nano-structures that are not only active for alkane C-H bond activation and oxidative dehydrogenation but also can be practical catalysts to be eventually used in industry.

  1. Development of statistical models for predicting muscle and mental activities during repetitive precision tasks.

    PubMed

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md; Taha, Zahari

    2016-09-01

    This study was conducted to develop muscle and mental activities on repetitive precision tasks. A laboratory experiment was used to address the objectives. Surface electromyography was used to measure muscle activities from eight upper limb muscles, while electroencephalography recorded mental activities from six channels. Fourteen university students participated in the study. The results show that muscle and mental activities increase for all tasks, indicating the occurrence of muscle and mental fatigue. A linear relationship between muscle activity, mental activity and time was found while subjects were performing the task. Thus, models were developed using those variables. The models were found valid after validation using other students' and workers' data. Findings from this study can contribute as a reference for future studies investigating muscle and mental activity and can be applied in industry as guidelines to manage muscle and mental fatigue, especially to manage job schedules and rotation. PMID:27053140

  2. Energy flow in passive and active 3D cochlear model

    SciTech Connect

    Wang, Yanli; Steele, Charles; Puria, Sunil

    2015-12-31

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  3. Energy flow in passive and active 3D cochlear model

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Puria, Sunil; Steele, Charles

    2015-12-01

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  4. Model simulations of possible electromagnetic induction effects at Magsat activities

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1982-01-01

    Model simulations are used in a consideration of whether terrestrial induced-current magnetic field effects are significant for near-earth satellite observation, and the nature of the effect at satellite altitudes of lateral differences in the gross conductivity structure of the earth. It is shown that induction in a spherical earth by distant magnetospheric sources can contribute magnetic field fluctuations at Magsat orbit altitudes which are 30-40% of external field amplitudes. It is found that, when phenomenon dimensions are small by comparison with the earth's radius, the earth may be approximated by a plane, horizontal half-space by which electromagnetic energy is reflected with nearly 100% efficiency from the surface. This implies that while the total horizontal field is twice the source field when the source is above the satellite, it is reduced to values smaller than the source field when the source is below the satellite and tends to enhance gross electrical discontinuity signatures in the lithosphere.

  5. Mapping Metabolic Brain Activity in Three Models of Hepatic Encephalopathy

    PubMed Central

    Méndez, Marta; Fidalgo, Camino; Aller, María Ángeles; Arias, Jaime; Arias, Jorge L.

    2013-01-01

    Cirrhosis is a common disease in Western countries. Liver failure, hyperammonemia, and portal hypertension are the main factors that contribute to human cirrhosis that frequently leads to a neuropsychiatric disorder known as hepatic encephalopathy (HE). In this study, we examined the differential contribution of these leading factors to the oxidative metabolism of diverse brain limbic system regions frequently involved in memory process by histochemical labelling of cytochrome oxidase (COx). We have analyzed cortical structures such as the infralimbic and prelimbic cotices, subcortical structures such as hippocampus and ventral striatum, at thalamic level like the anterodorsal, anteroventral, and mediodorsal thalamus, and, finally, the hypothalamus, where the mammillary nuclei (medial and lateral) were measured. The severest alteration is found in the model that mimics intoxication by ammonia, followed by the thioacetamide-treated group and the portal hypertension group. No changes were found at the mammillary bodies for any of the experimental groups. PMID:23573412

  6. Active Shape Model-Based Gait Recognition Using Infrared Images

    NASA Astrophysics Data System (ADS)

    Kim, Daehee; Lee, Seungwon; Paik, Joonki

    We present a gait recognition system using infra-red (IR) images. Since an IR camera is not affected by the intensity of illumination, it is able to provide constant recognition performance regardless of the amount of illumination. Model-based object tracking algorithms enable robust tracking with partial occlusions or dynamic illumination. However, this algorithm often fails in tracking objects if strong edge exists near the object. Replacement of the input image by an IR image guarantees robust object region extraction because background edges do not affect the IR image. In conclusion, the proposed gait recognition algorithm improves accuracy in object extraction by using IR images and the improvements finally increase the recognition rate of gaits.

  7. Modeling users' activity on Twitter networks: validation of Dunbar's number

    NASA Astrophysics Data System (ADS)

    Goncalves, Bruno; Perra, Nicola; Vespignani, Alessandro

    2012-02-01

    Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that the data are in agreement with Dunbar's result; users can entertain a maximum of 100-200 stable relationships. Thus, the ``economy of attention'' is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. We propose a simple model for users' behavior that includes finite priority queuing and time resources that reproduces the observed social behavior.

  8. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-02-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics.

  9. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    PubMed Central

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-01-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics. PMID:26877263

  10. Modelling temporal networks of human face-to-face contacts with public activity and individual reachability

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Qing; Cui, Jing; Zhang, Shu-Min; Zhang, Qi; Li, Xiang

    2016-02-01

    Modelling temporal networks of human face-to-face contacts is vital both for understanding the spread of airborne pathogens and word-of-mouth spreading of information. Although many efforts have been devoted to model these temporal networks, there are still two important social features, public activity and individual reachability, have been ignored in these models. Here we present a simple model that captures these two features and other typical properties of empirical face-to-face contact networks. The model describes agents which are characterized by an attractiveness to slow down the motion of nearby people, have event-triggered active probability and perform an activity-dependent biased random walk in a square box with periodic boundary. The model quantitatively reproduces two empirical temporal networks of human face-to-face contacts which are testified by their network properties and the epidemic spread dynamics on them.

  11. Virus elimination in activated sludge systems: from batch tests to mathematical modeling.

    PubMed

    Haun, Emma; Ulbricht, Katharina; Nogueira, Regina; Rosenwinkel, Karl-Heinz

    2014-01-01

    A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents. PMID:25259502

  12. Toward Modelling Topsoil Magnetic Susceptibility for Demining Activities

    NASA Astrophysics Data System (ADS)

    Hannam, J. A.; Dearing, J. A.

    2003-12-01

    The Landmine Monitor estimates that landmines cause up to 20,000 fatalities and casualties worldwide every year, in over 100 countries affected by landmine contamination. Although detection technologies have become more sophisticated, the metal detector still remains the most widely employed detection system in landmine affected regions. With increased use of minimum metal mines, the performance and sensitivity of metal detectors are increasingly challenged. In addition to mine constituents, depth of burial and orientation, soil properties significantly affect metal detection capabilities. Soils with high magnetic susceptibility, in particular those dominated by viscous components, interfere with the response signal in both frequency and time domain metal detection systems. Using Bosnia and Herzegovina (BiH) as a pilot region, we created an expert system to predict topsoil susceptibility from environmental information within a SOTER data base. Initially, the knowledge base is constructed from published relationships of environmental parameters and magnetic susceptibility and knowledge of experts in the field of soil magnetism. The knowledge base is underpinned by environmental conditions that are known to enhance or reduce magnetic susceptibility in topsoils. Where semi-quantitative data exists, transfer-functions are used to provide first approximations of susceptibility classes and offer a basis for a probability score for the susceptibility class. As a first approximation, susceptibility values are categorized into five continuous classes delimited by published magnetic susceptibility ranges in topsoils. The predicted susceptibility maps result in regional contrasts, delineated by the spatial scale of the environmental information. Further development of the model using a Baysean rule-based system with fuzzy boundaries is anticipated. Validation of the model is proposed using archived soil survey samples from BiH. In addition to providing essential data for

  13. Solubilities of biologically active phenolic compounds: measurements and modeling.

    PubMed

    Queimada, António J; Mota, Fátima L; Pinho, Simão P; Macedo, Eugénia A

    2009-03-19

    Aqueous solubilities of natural phenolic compounds from different families (hydroxyphenyl, polyphenol, hydroxybenzoic, and phenylpropenoic) were experimentally obtained. Measurements were performed on tyrosol and ellagic, protocatechuic, syringic, and o-coumaric acids, at five different temperatures (from 288.2 to 323.2 K), using the standard shake-flask method, followed by compositional analysis using UV spectrophotometry. To verify the accuracy of the spectrophotometric method, some data points were measured by gravimetry, and in general, the values obtained with the two methods are in good agreement (deviations lower than 11%). To adequately understand the solubilization process, melting properties of the pure phenolics were obtained by differential scanning calorimetry (DSC), and apparent acid dissociation constants were measured by potentiometry titration. The aqueous solubilities followed the expected general exponential trend. The melting temperatures did not follow the same solubility tendency, and for tyrosol and ellagic acid, not only the size and extent of hydrogen bonding, but also the energy associated with their crystal structures, determine the solubility. For these binary systems, acid dissociation is not important. Approaches for modeling the measured data were evaluated. These included an excess Gibbs energy equation, the modified UNIQUAC model, and the cubic-plus-association (CPA) equation of state. Particularly for the CPA approach, a new methodology that explicitly takes into account the number and nature of the associating sites and the prediction of the pure-component parameters from molecular structure is proposed. The results indicate that these are appropriate tools for representing the water solubilities of these molecules. PMID:19243119

  14. Activity-Dependent Changes in MAPK Activation in the Angelman Syndrome Mouse Model

    ERIC Educational Resources Information Center

    Filonova, Irina; Trotter, Justin H.; Banko, Jessica L.; Weeber, Edwin J.

    2014-01-01

    Angelman Syndrome (AS) is a devastating neurological disorder caused by disruption of the maternal "UBE3A" gene. Ube3a protein is identified as an E3 ubiquitin ligase that shows neuron-specific imprinting. Despite extensive research evaluating the localization and basal expression profiles of Ube3a in mouse models, the molecular…

  15. CFD Model of Water Droplet Transport for ISS Hygiene Activity

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2011-01-01

    The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.

  16. Lipoteichoic Acid in Streptomyces hygroscopicus: Structural Model and Immunomodulatory Activities

    PubMed Central

    Cot, Marlène; Ray, Aurélie; Gilleron, Martine; Vercellone, Alain; Larrouy-Maumus, Gérald; Armau, Elise; Gauthier, Sophie; Tiraby, Gérard; Puzo, Germain; Nigou, Jérôme

    2011-01-01

    Gram positive bacteria produce cell envelope macroamphiphile glycopolymers, i.e. lipoteichoic acids or lipoglycans, whose functions and biosynthesis are not yet fully understood. We report for the first time a detailed structure of lipoteichoic acid isolated from a Streptomyces species, i.e. Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T. Chemical, MS and NMR analyses revealed a polyglycerolphosphate backbone substituted with α-glucosaminyl and α-N-acetyl-glucosaminyl residues but devoid of any amino-acid substituent. This structure is very close, if not identical, to that of the wall teichoic acid of this organism. These data not only contribute to the growing recognition that lipoteichoic acid is a cell envelope component of Gram positive Actinobacteria but also strongly support the recently proposed hypothesis of an overlap between the pathways of lipoteichoic acid and wall teichoic acid synthesis in these bacteria. S. hygroscopicus lipoteichoic acid induced signalling by human innate immune receptor TLR2, confirming its role as a microbe-associated molecular pattern. Its activity was partially dependant on TLR1, TLR6 and CD14. Moreover, it stimulated TNF-α and IL-6 production by a human macrophage cell line to an extent similar to that of Staphylococcus aureus lipoteichoic acid. These results provide new clues on lipoteichoic acid structure/function relationships, most particularly on the role of the polyglycerolphosphate backbone substituents. PMID:22028855

  17. Reconstitution of Membrane Proteins into Model Membranes: Seeking Better Ways to Retain Protein Activities

    PubMed Central

    Shen, Hsin-Hui; Lithgow, Trevor; Martin, Lisandra L.

    2013-01-01

    The function of any given biological membrane is determined largely by the specific set of integral membrane proteins embedded in it, and the peripheral membrane proteins attached to the membrane surface. The activity of these proteins, in turn, can be modulated by the phospholipid composition of the membrane. The reconstitution of membrane proteins into a model membrane allows investigation of individual features and activities of a given cell membrane component. However, the activity of membrane proteins is often difficult to sustain following reconstitution, since the composition of the model phospholipid bilayer differs from that of the native cell membrane. This review will discuss the reconstitution of membrane protein activities in four different types of model membrane—monolayers, supported lipid bilayers, liposomes and nanodiscs, comparing their advantages in membrane protein reconstitution. Variation in the surrounding model environments for these four different types of membrane layer can affect the three-dimensional structure of reconstituted proteins and may possibly lead to loss of the proteins activity. We also discuss examples where the same membrane proteins have been successfully reconstituted into two or more model membrane systems with comparison of the observed activity in each system. Understanding of the behavioral changes for proteins in model membrane systems after membrane reconstitution is often a prerequisite to protein research. It is essential to find better solutions for retaining membrane protein activities for measurement and characterization in vitro. PMID:23344058

  18. Modelling and study of active vibration control for off-road vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Junwei; Chen, Sizhong

    2014-05-01

    In view of special working characteristics and structure, engineering machineries do not have conventional suspension system typically. Consequently, operators have to endure severe vibrations which are detrimental both to their health and to the productivity of the loader. Based on displacement control, a kind of active damping method is developed for a skid-steer loader. In this paper, the whole hydraulic system for active damping method is modelled which include swash plate dynamics model, proportional valve model, piston accumulator model, pilot-operated check valve model, relief valve model, pump loss model, and cylinder model. A new road excitation model is developed for the skid-steer loader specially. The response of chassis vibration acceleration to road excitation is verified through simulation. The simulation result of passive accumulator damping is compared with measurements and the comparison shows that they are close. Based on this, parallel PID controller and track PID controller with acceleration feedback are brought into the simulation model, and the simulation results are compared with passive accumulator damping. It shows that the active damping methods with PID controllers are better in reducing chassis vibration acceleration and pitch movement. In the end, the test work for active damping method is proposed for the future work.

  19. Recognition of human activity characteristics based on state transitions modeling technique

    NASA Astrophysics Data System (ADS)

    Elangovan, Vinayak; Shirkhodaie, Amir

    2012-06-01

    Human Activity Discovery & Recognition (HADR) is a complex, diverse and challenging task but yet an active area of ongoing research in the Department of Defense. By detecting, tracking, and characterizing cohesive Human interactional activity patterns, potential threats can be identified which can significantly improve situation awareness, particularly, in Persistent Surveillance Systems (PSS). Understanding the nature of such dynamic activities, inevitably involves interpretation of a collection of spatiotemporally correlated activities with respect to a known context. In this paper, we present a State Transition model for recognizing the characteristics of human activities with a link to a prior contextbased ontology. Modeling the state transitions between successive evidential events determines the activities' temperament. The proposed state transition model poses six categories of state transitions including: Human state transitions of Object handling, Visibility, Entity-entity relation, Human Postures, Human Kinematics and Distance to Target. The proposed state transition model generates semantic annotations describing the human interactional activities via a technique called Casual Event State Inference (CESI). The proposed approach uses a low cost kinect depth camera for indoor and normal optical camera for outdoor monitoring activities. Experimental results are presented here to demonstrate the effectiveness and efficiency of the proposed technique.

  20. Material and physical model for evaluation of deep brain activity contribution to EEG recordings

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen

    2015-12-01

    Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.

  1. Observation and Modelling of Micropore Formation in Active Network Regions

    NASA Astrophysics Data System (ADS)

    Berger, T. E.; Löfdahl, M. G.; Bercik, D. J.

    2002-06-01

    We present phase-diversity corrected G-band 4305 Å and 4364 Å continuum image time series showing the formation of a micropore in a small active region near disk center. The data were acquired at the Swedish Vacuum Solar Telescope on La Palma in June of 1997 and post-processed using the Phase Diverse Speckle (PDS) algorithm to produce diffraction limited images throughout the majority of both time series. The micropore dataset comprises a 29x29 Mm field of view and spans 5.1 hours with a 38 second cadence. The micropore forms in a strong sink area that can be seen to ``collect" many G-band bright points over the first 2 hours of the observation. During this time there is an occasional darkening at the sink point that may be the first unstable phase of the micropore formation. Once a stable dark pore forms in the flowfield, it grows to a maximum diameter of 1.2 Mm in approximately 1.9 hours. The pore persists for another 35 minutes before apparently being broken up by the intergranular flowfield. The total ``lifetime" of the stable pore phase is 2.5 hours. A separate nearby micropore of 1.5 Mm maximum diameter exists for the entire 5.2 hour data span. We show G-band and continuum movies of the micropore formation, correlation tracking flowfield analyses, G-band bright point tracking results, and area versus time plots for the micropore formation lifetime. The observational data are compared with fully compressible 3D MHD numerical simulations which show the development of a similar micropore structure within the computational domain. This research was supported by NASA SR&T grant NASW-98008, The Royal Swedish Academy of Sciences, NSF and NASA funding at Michigan State University, and Lockheed Martin IRAD funding.

  2. Active patterning and asymmetric transport in a model actomyosin network

    SciTech Connect

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-21

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  3. Active patterning and asymmetric transport in a model actomyosin network

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-01

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  4. Wall conditioning for ITER: Current experimental and modeling activities

    NASA Astrophysics Data System (ADS)

    Douai, D.; Kogut, D.; Wauters, T.; Brezinsek, S.; Hagelaar, G. J. M.; Hong, S. H.; Lomas, P. J.; Lyssoivan, A.; Nunes, I.; Pitts, R. A.; Rohde, V.; de Vries, P. C.

    2015-08-01

    Wall conditioning will be required in ITER to control fuel and impurity recycling, as well as tritium (T) inventory. Analysis of conditioning cycle on the JET, with its ITER-Like Wall is presented, evidencing reduced need for wall cleaning in ITER compared to JET-CFC. Using a novel 2D multi-fluid model, current density during Glow Discharge Conditioning (GDC) on the in-vessel plasma-facing components (PFC) of ITER is predicted to approach the simple expectation of total anode current divided by wall surface area. Baking of the divertor to 350 °C should desorb the majority of the co-deposited T. ITER foresees the use of low temperature plasma based techniques compatible with the permanent toroidal magnetic field, such as Ion (ICWC) or Electron Cyclotron Wall Conditioning (ECWC), for tritium removal between ITER plasma pulses. Extrapolation of JET ICWC results to ITER indicates removal comparable to estimated T-retention in nominal ITER D:T shots, whereas GDC may be unattractive for that purpose.

  5. Disk-Corona Model of Active Galactic Nuclei with Nonthermal Pairs

    NASA Technical Reports Server (NTRS)

    Tsuruta, Sachiko; Kellen, Michael

    1995-01-01

    As a promising model for the X-ray emission from radio-quiet quasars and Seyfert 1 nuclei, we present a nonthermal disk-corona model, where soft photons from a disk are Comptonized by the nonthermal electron-positron pairs in a coronal region above the disk. Various characteristics of our model are qualitatively similar to the homogeneous, spherical, nonthermal pair models previously studied, but the important difference is that in our disk-corona model gamma-ray depletion is far more efficient, and, moreover, the gamma-ray annihilation line is much less prominent. Consequently, this model naturally satisfies the observed constraints on active galactic nuclei.

  6. Operations Assessment of Launch Vehicle Architectures using Activity Based Cost Models

    NASA Technical Reports Server (NTRS)

    Ruiz-Torres, Alex J.; McCleskey, Carey

    2000-01-01

    The growing emphasis on affordability for space transportation systems requires the assessment of new space vehicles for all life cycle activities, from design and development, through manufacturing and operations. This paper addresses the operational assessment of launch vehicles, focusing on modeling the ground support requirements of a vehicle architecture, and estimating the resulting costs and flight rate. This paper proposes the use of Activity Based Costing (ABC) modeling for this assessment. The model uses expert knowledge to determine the activities, the activity times and the activity costs based on vehicle design characteristics. The approach provides several advantages to current approaches to vehicle architecture assessment including easier validation and allowing vehicle designers to understand the cost and cycle time drivers.

  7. Activity plan for activity E-20-81: development and experimental validation of crevice corrosion models

    SciTech Connect

    Farmer, J C

    1999-12-28

    Alloy 22 [UNS N06022] is now being considered for construction of high level waste containers to be emplaced at the potential repository at Yucca Mountain or elsewhere. In essence, this alloy is 21% Cr, 13% Mo, 4% Fe, 3% W, 2% Co, with the balance being Ni. Variants without tungsten are also being considered. Detailed mechanistic models are being developed to account for the corrosion of Alloy 22 surfaces in crevices that will inevitably form. Such occluded areas experience substantial decreases in pH, with corresponding elevations in chloride concentration. Other relevant materials will also be investigated: nickel-based alloys such as Alloys 825, 625, C-4, C-276 and 59; titanium-based alloys such as Grades 12, 7 and 16, carbon steels such as A516 Grade 55; stainless steels such as 304, 304L, 316, 316L and 316NG; various copper-based alloys; and any materials that would serve as crevice formers (rock, thermally-sprayed ceramics, etc.). Experimental work has been undertaken to validate the crevice corrosion model, including parallel studies with 304 stainless steel. The crevice corrosion model is described in detail in scientific notebooks of the Principal Investigator, as well as other publications. Codes will be prepared in accordance with the YMP QP entitled ''Software Quality Assurance'' (033-YMP-QP 12.0).

  8. UTILITY OF MECHANISTIC MODELS FOR DIRECTING ADVANCED SEPARATIONS RESEARCH & DEVELOPMENT ACTIVITIES: Electrochemically Modulated Separation Example

    SciTech Connect

    Schwantes, Jon M.

    2009-06-01

    The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.

  9. Modeling self-sustained activity cascades in socio-technical networks

    NASA Astrophysics Data System (ADS)

    Piedrahita, P.; Borge-Holthoefer, J.; Moreno, Y.; Arenas, A.

    2013-11-01

    The ability to understand and eventually predict the emergence of information and activation cascades in social networks is core to complex socio-technical systems research. However, the complexity of social interactions makes this a challenging enterprise. Previous works on cascade models assume that the emergence of this collective phenomenon is related to the activity observed in the local neighborhood of individuals, but do not consider what determines the willingness to spread information in a time-varying process. Here we present a mechanistic model that accounts for the temporal evolution of the individual state in a simplified setup. We model the activity of the individuals as a complex network of interacting integrate-and-fire oscillators. The model reproduces the statistical characteristics of the cascades in real systems, and provides a framework to study the time evolution of cascades in a state-dependent activity scenario.

  10. Activation energy for a model ferrous-ferric half reaction from transition path sampling

    NASA Astrophysics Data System (ADS)

    Drechsel-Grau, Christof; Sprik, Michiel

    2012-01-01

    Activation parameters for the model oxidation half reaction of the classical aqueous ferrous ion are compared for different molecular simulation techniques. In particular, activation free energies are obtained from umbrella integration and Marcus theory based thermodynamic integration, which rely on the diabatic gap as the reaction coordinate. The latter method also assumes linear response, and both methods obtain the activation entropy and the activation energy from the temperature dependence of the activation free energy. In contrast, transition path sampling does not require knowledge of the reaction coordinate and directly yields the activation energy [C. Dellago and P. G. Bolhuis, Mol. Simul. 30, 795 (2004), 10.1080/08927020412331294869]. Benchmark activation energies from transition path sampling agree within statistical uncertainty with activation energies obtained from standard techniques requiring knowledge of the reaction coordinate. In addition, it is found that the activation energy for this model system is significantly smaller than the activation free energy for the Marcus model, approximately half the value, implying an equally large entropy contribution.

  11. Active adjoint modeling method in microwave induced thermoacoustic tomography for breast tumor.

    PubMed

    Zhu, Xiaozhang; Zhao, Zhiqin; Wang, Jinguo; Chen, Guoping; Liu, Qing Huo

    2014-07-01

    To improve the model-based inversion performance of microwave induced thermoacoustic tomography for breast tumor imaging, an active adjoint modeling (AAM) method is proposed. It aims to provide a more realistic breast acoustic model used for tumor inversion as the background by actively measuring and reconstructing the structural heterogeneity of human breast environment. It utilizes the reciprocity of acoustic sensors, and adapts the adjoint tomography method from seismic exploration. With the reconstructed acoustic model of breast environment, the performance of model-based inversion method such as time reversal mirror is improved significantly both in contrast and accuracy. To prove the advantage of AAM, a checkerboard pattern model and anatomical realistic breast models have been used in full wave numerical simulations. PMID:24956614

  12. Remote sensing reflectance model of optically active components of turbid waters

    NASA Astrophysics Data System (ADS)

    Kutser, Tiit; Arst, Helgi

    1994-12-01

    A mathematical model that simulates the spectral curves of remote sensing reflectance is developed. The model is compared to measurements obtained from research vessel or boat in the Baltic Sea and Estonian lakes. The model simulates the effects of light backscattering from water and suspended matter, and the effects of its absorption due to water, phytoplankton, suspended matter and yellow substance. Measured by remote sensing spectral curves are compared by multiple of spectra obtained from model calculations to find the theoretical spectrum which is closest to experimental. It is assumed that in case of coincidence of the spectral curves concentrations of optically active substances in the model correspond to real ones. Preliminary testing of the model demonstrates that this model is useful for estimation of concentration of optically active substances in the waters of the Baltic Sea and Estonian lakes.

  13. Machine learning models identify molecules active against the Ebola virus in vitro.

    PubMed

    Ekins, Sean; Freundlich, Joel S; Clark, Alex M; Anantpadma, Manu; Davey, Robert A; Madrid, Peter

    2015-01-01

    The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC 50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro. PMID:26834994

  14. Machine learning models identify molecules active against the Ebola virus in vitro

    PubMed Central

    Ekins, Sean; Freundlich, Joel S.; Clark, Alex M.; Anantpadma, Manu; Davey, Robert A.; Madrid, Peter

    2016-01-01

    The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC 50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro. PMID:26834994

  15. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  16. Analytical Model of Water Flow in Coal with Active Matrix

    NASA Astrophysics Data System (ADS)

    Siemek, Jakub; Stopa, Jerzy

    2014-12-01

    This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z

  17. Computational Steroidogenesis Model To Predict Biochemical Responses to Endocrine Active Chemicals: Model Development and Cross Validation

    EPA Science Inventory

    Steroids, which have an important role in a wide range of physiological processes, are synthesized primarily in the gonads and adrenal glands through a series of enzyme-mediated reactions. The activity of steroidogenic enzymes can be altered by a variety of endocrine active chem...

  18. Simple spontaneously active Hebbian learning model: homeostasis of activity and connectivity, and consequences for learning and epileptogenesis.

    PubMed

    Hsu, David; Tang, Aonan; Hsu, Murielle; Beggs, John M

    2007-10-01

    A spontaneously active neural system that is capable of continual learning should also be capable of homeostasis of both firing rate and connectivity. Experimental evidence suggests that both types of homeostasis exist, and that connectivity is maintained at a state that is optimal for information transmission and storage. This state is referred to as the critical state. We present a simple stochastic computational Hebbian learning model that incorporates both firing rate and critical homeostasis, and we explore its stability and connectivity properties. We also examine the behavior of our model with a simulated seizure and with simulated acute deafferentation. We argue that a neural system that is more highly connected than the critical state (i.e., one that is "supercritical") is epileptogenic. Based on our simulations, we predict that the postseizural and postdeafferentation states should be supercritical and epileptogenic. Furthermore, interventions that boost spontaneous activity should be protective against epileptogenesis. PMID:17995028

  19. Grain sorting in the morphological active layer of a braided river physical model

    NASA Astrophysics Data System (ADS)

    Leduc, P.; Ashmore, P.; Gardner, J. T.

    2015-12-01

    A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting in the morphological active layer aggregated over the width of the river. This vertical sorting is important for analyzing braided river sedimentology, for numerical modeling of braided river morphodynamics, and for measuring and predicting bedload transport rate. We define the morphological active layer as the bed material between the maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to rework the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs (digital elevation models) of the model river bed. An image texture algorithm was used to map bed material grain size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morphological active layer and variation in grain size in three dimensions. By normalizing active layer thickness and dividing into 10 sublayers, we show that all grain sizes occur with almost equal frequency in all sublayers. Occurrence of patches and strings of coarser (or finer) material relates to preservation of particular morpho-textural features within the active layer. For numerical modeling and bedload prediction, a morphological active layer that is fully mixed with respect to grain size is a reliable approximation.

  20. Temporal self-regulation theory: a neurobiologically informed model for physical activity behavior

    PubMed Central

    Hall, Peter A.; Fong, Geoffrey T.

    2015-01-01

    Dominant explanatory models for physical activity behavior are limited by the exclusion of several important components, including temporal dynamics, ecological forces, and neurobiological factors. The latter may be a critical omission, given the relevance of several aspects of cognitive function for the self-regulatory processes that are likely required for consistent implementation of physical activity behavior in everyday life. This narrative review introduces temporal self-regulation theory (TST; Hall and Fong, 2007, 2013) as a new explanatory model for physical activity behavior. Important features of the model include consideration of the default status of the physical activity behavior, as well as the disproportionate influence of temporally proximal behavioral contingencies. Most importantly, the TST model proposes positive feedback loops linking executive function (EF) and the performance of physical activity behavior. Specifically, those with relatively stronger executive control (and optimized brain structures supporting it, such as the dorsolateral prefrontal cortex (PFC)) are able to implement physical activity with more consistency than others, which in turn serves to strengthen the executive control network itself. The TST model has the potential to explain everyday variants of incidental physical activity, sport-related excellence via capacity for deliberate practice, and variability in the propensity to schedule and implement exercise routines. PMID:25859196

  1. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi

    2011-02-01

    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles. PMID:21172719

  2. Physiologically motivated multiplex Kuramoto model describes phase diagram of cortical activity

    PubMed Central

    Sadilek, Maximilian; Thurner, Stefan

    2015-01-01

    We derive a two-layer multiplex Kuramoto model from Wilson-Cowan type physiological equations that describe neural activity on a network of interconnected cortical regions. This is mathematically possible due to the existence of a unique, stable limit cycle, weak coupling, and inhibitory synaptic time delays. We study the phase diagram of this model numerically as a function of the inter-regional connection strength that is related to cerebral blood flow, and a phase shift parameter that is associated with synaptic GABA concentrations. We find three macroscopic phases of cortical activity: background activity (unsynchronized oscillations), epileptiform activity (highly synchronized oscillations) and resting-state activity (synchronized clusters/chaotic behaviour). Previous network models could hitherto not explain the existence of all three phases. We further observe a shift of the average oscillation frequency towards lower values together with the appearance of coherent slow oscillations at the transition from resting-state to epileptiform activity. This observation is fully in line with experimental data and could explain the influence of GABAergic drugs both on gamma oscillations and epileptic states. Compared to previous models for gamma oscillations and resting-state activity, the multiplex Kuramoto model not only provides a unifying framework, but also has a direct connection to measurable physiological parameters. PMID:25996547

  3. Physiologically motivated multiplex Kuramoto model describes phase diagram of cortical activity

    NASA Astrophysics Data System (ADS)

    Sadilek, Maximilian; Thurner, Stefan

    2015-05-01

    We derive a two-layer multiplex Kuramoto model from Wilson-Cowan type physiological equations that describe neural activity on a network of interconnected cortical regions. This is mathematically possible due to the existence of a unique, stable limit cycle, weak coupling, and inhibitory synaptic time delays. We study the phase diagram of this model numerically as a function of the inter-regional connection strength that is related to cerebral blood flow, and a phase shift parameter that is associated with synaptic GABA concentrations. We find three macroscopic phases of cortical activity: background activity (unsynchronized oscillations), epileptiform activity (highly synchronized oscillations) and resting-state activity (synchronized clusters/chaotic behaviour). Previous network models could hitherto not explain the existence of all three phases. We further observe a shift of the average oscillation frequency towards lower values together with the appearance of coherent slow oscillations at the transition from resting-state to epileptiform activity. This observation is fully in line with experimental data and could explain the influence of GABAergic drugs both on gamma oscillations and epileptic states. Compared to previous models for gamma oscillations and resting-state activity, the multiplex Kuramoto model not only provides a unifying framework, but also has a direct connection to measurable physiological parameters.

  4. Measuring Disability: Application of the Rasch Model to Activities of Daily Living (ADL/IADL).

    ERIC Educational Resources Information Center

    Sheehan, T. Joseph; DeChello, Laurie M.; Garcia, Ramon; Fifield, Judith; Rothfield, Naomi; Reisine, Susan

    2001-01-01

    Performed a comparative analysis of Activities of Daily Living (ADL) items administered to 4,430 older adults and Instrumental Activities of Daily Living administered to 605 people with rheumatoid arthritis scoring both with Likert and Rasch measurement models. Findings show the superiority of the Rasch approach over the Likert method. (SLD)

  5. Self-Observation Model Employing an Instinctive Interface for Classroom Active Learning

    ERIC Educational Resources Information Center

    Chen, Gwo-Dong; Nurkhamid; Wang, Chin-Yeh; Yang, Shu-Han; Chao, Po-Yao

    2014-01-01

    In a classroom, obtaining active, whole-focused, and engaging learning results from a design is often difficult. In this study, we propose a self-observation model that employs an instinctive interface for classroom active learning. Students can communicate with virtual avatars in the vertical screen and can react naturally according to the…

  6. A Guide to Staff Development Activities, Using a Florida Conference as a Model.

    ERIC Educational Resources Information Center

    Tuttle, Lester E., Jr., Ed.; Ciccone, Russell A., Ed.

    Staff development activities are the subject of a resource guide directed at educators of migrant children. One county participating in the Florida Migratory Child Compensatory Program was selected to serve as a model. Planning for activities should be individually-based, problem-oriented, goal-directed, time-factored, and participant-controlled.…

  7. Activity Theory in Information Systems Research and Practice: Theoretical Underpinnings for an Information Systems Development Model

    ERIC Educational Resources Information Center

    Mursu, Anja; Luukkonen, Irmeli; Toivanen, Marika; Korpela, Mikko

    2007-01-01

    Introduction: The purpose of information systems is to facilitate work activities: here we consider how Activity Theory can be applied in information systems development. Method. The requirements for an analytical model for emancipatory, work-oriented information systems research and practice are specified. Previous research work in Activity…

  8. Vehicle active steering control research based on two-DOF robust internal model control

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

    2016-03-01

    Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  9. A Computational Model of Dynein Activation Patterns that Can Explain Nodal Cilia Rotation

    PubMed Central

    Chen, Duanduan; Zhong, Yi

    2015-01-01

    Normal left-right patterning in vertebrates depends on the rotational movement of nodal cilia. In order to produce this ciliary motion, the activity of axonemal dyneins must be tightly regulated in a temporal and spatial manner; the specific activation pattern of the dynein motors in the nodal cilia has not been reported. Contemporary imaging techniques cannot directly assess dynein activity in a living cilium. In this study, we establish a three-dimensional model to mimic the ciliary ultrastructure and assume that the activation of dynein proteins is related to the interdoublet distance. By employing finite-element analysis and grid deformation techniques, we simulate the mechanical function of dyneins by pairs of point loads, investigate the time-variant interdoublet distance, and simulate the dynein-triggered ciliary motion. The computational results indicate that, to produce the rotational movement of nodal cilia, the dynein activity is transferred clockwise (looking from the tip) between the nine doublet microtubules, and along each microtubule, the dynein activation should occur faster at the basal region and slower when it is close to the ciliary tip. Moreover, the time cost by all the dyneins along one microtubule to be activated can be used to deduce the dynein activation pattern; it implies that, as an alternative method, measuring this time can indirectly reveal the dynein activity. The proposed protein-structure model can simulate the ciliary motion triggered by various dynein activation patterns explicitly and may contribute to furthering the studies on axonemal dynein activity. PMID:26153700

  10. A cluster expansion model for predicting activation barrier of atomic processes

    SciTech Connect

    Rehman, Tafizur; Jaipal, M.; Chatterjee, Abhijit

    2013-06-15

    We introduce a procedure based on cluster expansion models for predicting the activation barrier of atomic processes encountered while studying the dynamics of a material system using the kinetic Monte Carlo (KMC) method. Starting with an interatomic potential description, a mathematical derivation is presented to show that the local environment dependence of the activation barrier can be captured using cluster interaction models. Next, we develop a systematic procedure for training the cluster interaction model on-the-fly, which involves: (i) obtaining activation barriers for handful local environments using nudged elastic band (NEB) calculations, (ii) identifying the local environment by analyzing the NEB results, and (iii) estimating the cluster interaction model parameters from the activation barrier data. Once a cluster expansion model has been trained, it is used to predict activation barriers without requiring any additional NEB calculations. Numerical studies are performed to validate the cluster expansion model by studying hop processes in Ag/Ag(100). We show that the use of cluster expansion model with KMC enables efficient generation of an accurate process rate catalog.

  11. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.

    2012-01-01

    We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.

  12. Activation and modulation of cardiac poly-adenosine diphosphate ribose polymerase activity in a rat model of brain death.

    PubMed

    Brain, John G; Rostron, Anthony J; Dark, John H; Kirby, John A

    2008-05-15

    DNA damage during transplantation can activate poly-adenosine diphosphate ribose polymerase (PARP) resulting in the generation of polymers of adenosine diphosphate-ribose (PAR). Excessive linkage of PAR to nuclear proteins can induce cell death, thereby limiting the function of transplanted organs. This study uses a rat model of brain death to determine the profile of PARP activation and whether mechanisms that lead to cell death can be ameliorated by appropriate donor resuscitation. The expression of PAR-linked nuclear proteins within cardiac myocytes was greatly increased after the induction of donor brain death. Importantly, infusion of noradrenaline or vasopressin to normalize the chronic hypotension produced by brain death reduced the expression of PAR to a level below baseline. These data suggest that chronic hypotension after donor brain death has the potential to limit cardiac function through the activation of PARP; however, this early cause of graft damage can be mitigated by appropriate donor resuscitation. PMID:18475194

  13. Effect of lower-limb joint models on subject-specific musculoskeletal models and simulations of daily motor activities.

    PubMed

    Valente, Giordano; Pitto, Lorenzo; Stagni, Rita; Taddei, Fulvia

    2015-12-16

    Understanding the validity of using musculoskeletal models is critical, making important to assess how model parameters affect predictions. In particular, assumptions on joint models can affect predictions from simulations of movement, and the identification of image-based joints is unavoidably affected by uncertainty that can decrease the benefits of increasing model complexity. We evaluated the effect of different lower-limb joint models on muscle and joint contact forces during four motor tasks, and assessed the sensitivity to the uncertainties in the identification of anatomical four-bar-linkage joints. Three MRI-based musculoskeletal models having different knee and ankle joint models were created and used for the purpose. Model predictions were compared against a baseline model including simpler and widely-adopted joints. In addition, a probabilistic analysis was performed by perturbing four-bar-linkage joint parameters according to their uncertainty. The differences between models depended on the motor task analyzed, and there could be marked differences at peak loading (up to 2.40 BW at the knee and 1.54 BW at the ankle), although they were rather small over the motor task cycles (up to 0.59 BW at the knee and 0.31 BW at the ankle). The model including more degrees of freedom showed more discrepancies in predicted muscle activations compared to measured muscle activity. Further, including image-based four-bar-linkages was robust to simulate walking, chair rise and stair ascent, but not stair descent (peak standard deviation of 2.66 BW), suggesting that joint model complexity should be set according to the imaging dataset available and the intended application, performing sensitivity analyses. PMID:26506255

  14. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.

    PubMed

    Daniellou, Richard; Zheng, Hongyan; Langill, David M; Sanders, David A R; Palmer, David R J

    2007-06-26

    The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant. PMID:17539607

  15. Object relations theory and activity theory: a proposed link by way of the procedural sequence model.

    PubMed

    Ryle, A

    1991-12-01

    An account of object relations theory (ORT), represented in terms of the procedural sequence model (PSM), is compared to the ideas of Vygotsky and activity theory (AT). The two models are seen to be compatible and complementary and their combination offers a satisfactory account of human psychology, appropriate for the understanding and integration of psychotherapy. PMID:1786224

  16. Using the PAIR-up Model to Evaluate Active Learning Spaces

    ERIC Educational Resources Information Center

    Whiteside, Aimee L.; Jorn, Linda; Duin, Ann Hill; Fitzgerald, Steve

    2009-01-01

    This article presents a study on using the PAIR-up model to evaluate active learning spaces. The PAIR-up model takes advantage of interdisciplinary partnerships, assessment, innovation, and reevaluation of current views to support learning space design. Using PAIR-up, the University of Minnesota designed, constructed, and assessed two pilot Active…

  17. Development of a Conceptual Model to Predict Physical Activity Participation in Adults with Brain Injuries

    ERIC Educational Resources Information Center

    Driver, Simon

    2008-01-01

    The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with…

  18. A Systematic Ecological Model for Adapting Physical Activities: Theoretical Foundations and Practical Examples

    ERIC Educational Resources Information Center

    Hutzler, Yeshayahu

    2007-01-01

    This article proposes a theory- and practice-based model for adapting physical activities. The ecological frame of reference includes Dynamic and Action System Theory, World Health Organization International Classification of Function and Disability, and Adaptation Theory. A systematic model is presented addressing (a) the task objective, (b) task…

  19. Modeling of Word Translation: Activation Flow from Concepts to Lexical Items

    ERIC Educational Resources Information Center

    Roelofs, Ardi; Dijkstra, Ton; Gerakaki, Svetlana

    2013-01-01

    Whereas most theoretical and computational models assume a continuous flow of activation from concepts to lexical items in spoken word production, one prominent model assumes that the mapping of concepts onto words happens in a discrete fashion (Bloem & La Heij, 2003). Semantic facilitation of context pictures on word translation has been taken to…

  20. Modeling Production of Antifungal Compounds and their Role in Biocontrol Inhibitory Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partial Least Squares (PLS) regression modeling was used to relate the antifungal activity of B. subtilis solid-state fermentation extracts to the individual HPLC peaks from those extracts. A model was developed that predicted bioassay inhibition based on extract HPLC profile (R2 = 0.99). Concentr...

  1. Wrestling model of the repertoire of activity propagation modes in quadruple neural networks.

    PubMed

    Shteingart, Hanan; Raichman, Nadav; Baruchi, Itay; Ben-Jacob, Eshel

    2010-01-01

    The spontaneous activity of engineered quadruple cultured neural networks (of four-coupled sub-networks) exhibits a repertoire of different types of mutual synchronization events. Each event corresponds to a specific activity propagation mode (APM) defined by the order of activity propagation between the sub-networks. We statistically characterized the frequency of spontaneous appearance of the different types of APMs. The relative frequencies of the APMs were then examined for their power-law properties. We found that the frequencies of appearance of the leading (most frequent) APMs have close to constant algebraic ratio reminiscent of Zipf's scaling of words. We show that the observations are consistent with a simplified "wrestling" model. This model represents an extension of the "boxing arena" model which was previously proposed to describe the ratio between the two activity modes in two coupled sub-networks. The additional new element in the "wrestling" model presented here is that the firing within each network is modeled by a time interval generator with similar intra-network Lévy distribution. We modeled the different burst-initiation zones' interaction by competition between the stochastic generators with Gaussian inter-network variability. Estimation of the model parameters revealed similarity across different cultures while the inter-burst-interval of the cultures was similar across different APMs as numerical simulation of the model predicts. PMID:20890451

  2. Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

    SciTech Connect

    Fast, Jerome D.; Ghan, Steven J.; Schwartz, Stephen E.

    2009-03-01

    The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.

  3. The Play Curricular Activity Reflection Discussion Model for Game-Based Learning

    ERIC Educational Resources Information Center

    Foster, Aroutis; Shah, Mamta

    2015-01-01

    This article elucidates the process of game-based learning in classrooms through the use of the Play Curricular activity Reflection Discussion (PCaRD) model. A mixed-methods study was conducted at a high school to implement three games with the PCaRD model in a year-long elective course. Data sources included interviews and observations for…

  4. Physical Activity Behavior Change Interventions Based on the Transtheoretical Model: A Systematic Review

    ERIC Educational Resources Information Center

    Hutchison, Andrew J.; Breckon, Jeff D.; Johnston, Lynne H.

    2009-01-01

    This review critically examines Transtheoretical Model (TTM)-based interventions for physical activity (PA) behavior change. It has been suggested that the TTM may not be the most appropriate theoretical model for applications to PA behavior change. However, previous reviews have paid little or no attention to how accurately each intervention…

  5. Poor Vision, Functioning, and Depressive Symptoms: A Test of the Activity Restriction Model

    ERIC Educational Resources Information Center

    Bookwala, Jamila; Lawson, Brendan

    2011-01-01

    Purpose: This study tested the applicability of the activity restriction model of depressed affect to the context of poor vision in late life. This model hypothesizes that late-life stressors contribute to poorer mental health not only directly but also indirectly by restricting routine everyday functioning. Method: We used data from a national…

  6. Fish biomarkers for environmental monitoring: An integrated model supporting enzyme activity and histopathological lesions

    NASA Astrophysics Data System (ADS)

    Neta, Raimunda Nonata Fortes Carvalho; Torres Junior, Audalio Rebelo

    2014-10-01

    We present a mathematical model describing the association between glutathione-S-transferase activity and brachial lesions in the catfish, Sciades herzbergii (Ariidae) from a polluted port. The catfish were sampled from a port known to be contaminated with heavy metals and organic compounds and from a natural reserve in São Marcos Bay, Brazil. Two biomarkers, hepatic glutathione S-transferase (GST) activity and histopathological lesions, in gills tissue were measured. The values for GST activity were modeled with the occurrence of branchial lesions by fitting a third order polynomial. Results from the mathematical model indicate that GST activity has a strong polynomial relationship with the occurrence of branchial lesions in both the wet and the dry seasons, but only at the polluted port site. The model developed in this study indicates that branchial and hepatic lesions are initiated when GST activity reaches 2.15 μmol min-1 mg protein-1. Beyond this limit, GST activity decreased to very low levels and irreversible histopathological lesions occurred. This mathematical model provides a realistic approach to analyze predictive biomarkers of environmental health status.

  7. DFT-based QSAR models to predict the antimycobacterial activity of chalcones.

    PubMed

    Barua, Nilakshi; Sarmah, Pubalee; Hussain, Iftikar; Deka, Ramesh C; Buragohain, Alak K

    2012-04-01

    In this study, antimycobacterial activity of a set of synthesized chalcone derivatives against Mycobacterium tuberculosis H37Rv was investigated by quantitative structure-activity relationship (QSAR) analysis using density functional theory (DFT) and molecular mechanics (MM+)-based descriptors in both gas and solvent phases. The best molecular descriptors identified were hardness, E(HOMO) , MR(A-4) and MR(B-4') that contributed to the antimycobacterial activity of the chalcones as independent factors. The correlation of these four descriptors with their antimycobacterial activity increases with the inclusion of solvent medium, indicating their importance in studying biological activity. QSAR models revealed that in gas phase, lower values of E(HOMO) , MR(A-4) and MR(B-4') increase the antimycobacterial activity of the chalcone molecules. However, in solvent phase, lower values of E(HOMO) and MR(B-4') and higher values of MR(A-4) increase their activity. PMID:22151277

  8. Comprehensive model for the nucleus of Periodic Comet Tempel 2 and its activity

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    A comprehensive synergistic physical model for the nucleus of Periodic Comet Tempel 2 was developed on the basis of observations carried out in 1988. The model includes the best possible estimates of the comet's bulk properties (including the dimensions and the approximate shape), information on its state of rotation, and the characterization of its activity. The model is shown to be consistent with all lines of evidence that are currently available, including relevant information from earlier apparitions.

  9. Modelling of evaporation of a dispersed liquid component in a chemically active gas flow

    NASA Astrophysics Data System (ADS)

    Kryukov, V. G.; Naumov, V. I.; Kotov, V. Yu.

    1994-01-01

    A model has been developed to investigate evaporation of dispersed liquids in chemically active gas flow. Major efforts have been directed at the development of algorithms for implementing this model. The numerical experiments demonstrate that, in the boundary layer, significant changes in the composition and temperature of combustion products take place. This gives the opportunity to more correctly model energy release processes in combustion chambers of liquid-propellant rocket engines, gas-turbine engines, and other power devices.

  10. Grain sorting in the morphological active layer of a braided river physical model

    NASA Astrophysics Data System (ADS)

    Leduc, P.; Ashmore, P.; Gardner, J. T.

    2015-07-01

    A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting in the morphological active layer aggregated over the width of the river. This vertical sorting is important for analyzing braided river sedimentology, for numerical modeling of braided river morpho-dynamics and for measuring and predicting bed load transport rate. We define the morphological active layer as the bed material between the maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to re-work the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs of the model river bed. An image texture algorithm was used to map bed material grain size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morphological active layer and variation in grain size in three-dimensions. Normalizing active layer thickness and dividing into 10 sub-layers we show that all grain sizes occur with almost equal frequency in all sub-layers. Occurrence of patches and strings of coarser (or finer) material relates to preservation of particular morpho-textural features within the active layer. For numerical modeling and bed load prediction a morphological active layer that is fully mixed with respect to grain size is a reliable approximation.

  11. Hippocampal morphology in a rat model of depression: the effects of physical activity.

    PubMed

    Sierakowiak, Adam; Mattsson, Anna; Gómez-Galán, Marta; Feminía, Teresa; Graae, Lisette; Aski, Sahar Nikkhou; Damberg, Peter; Lindskog, Mia; Brené, Stefan; Åberg, Elin

    2014-01-01

    Accumulating in vivo and ex vivo evidences show that humans suffering from depression have decreased hippocampal volume and altered spine density. Moreover, physical activity has an antidepressant effect in humans and in animal models, but to what extent physical activity can affect hippocampal volume and spine numbers in a model for depression is not known. In this study we analyzed whether physical activity affects hippocampal volume and spine density by analyzing a rodent genetic model of depression, Flinders Sensitive Line Rats (FSL), with Magnetic Resonance Imaging (MRI) and ex vivo Golgi staining. We found that physical activity in the form of voluntary wheel running during 5 weeks increased hippocampal volume. Moreover, runners also had larger numbers of thin spines in the dentate gyrus. Our findings support that voluntary wheel running, which is antidepressive in FSL rats, is associated with increased hippocampal volume and spine numbers. PMID:25674191

  12. The importance of behavior theory in control system modeling of physical activity sensor data.

    PubMed

    Riley, William T; Martin, Cesar A; Rivera, Daniel E

    2014-01-01

    Among health behaviors, physical activity has the most extensive record of research using passive sensors. Control systems and other system dynamic approaches have long been considered applicable for understanding human behavior, but only recently has the technology provided the precise and intensive longitudinal data required for these analytic approaches. Although sensors provide intensive data on the patterns and variations of physical activity over time, the influences of these variations are often unmeasured. Health behavior theories provide an explanatory framework of the putative mediators of physical activity changes. Incorporating the intensive longitudinal measurement of these theoretical constructs is critical to improving the fit of control system model of physical activity and for advancing behavioral theory. Theory-based control models also provide guidance on the nature of the controllers which serve as the basis for just-in-time adaptive interventions based on these control system models. PMID:25571577

  13. Forecasting of electronic devices lifetime on the basis of activation models of functional parameters drift

    NASA Astrophysics Data System (ADS)

    Kozlova, I. N.

    2016-04-01

    We propose a model of functional parameters drift for electronic devices, allowing predicting their lifetime. The method of model parameters estimation is developed. The developed model allows optimizing the accelerated tests modes, taking into account the complex impact of stress factors. The results are applicable for modern electronic devices with a failure rate less than 1 FIT. The results are applicable if the physical and chemical processes leading to electronic devices degradation have an activation mechanism; the activation process is due to the temperature.

  14. Computational modeling of epileptiform activities in medial temporal lobe epilepsy combined with in vitro experiments.

    PubMed

    Ahn, Sora; Jun, Sang Beom; Lee, Hyang Woon; Lee, Seungjun

    2016-10-01

    In this paper, we propose a comprehensive computational model that is able to reproduce three epileptiform activities. The model targets a hippocampal formation that is known to be an important lesion in medial temporal lobe epilepsy. It consists of four sub-networks consisting of excitatory and inhibitory neurons and well-known signal pathways, with consideration of propagation delay. The three epileptiform activities involve fast and slow interictal discharge and ictal discharge, and those activities can be induced in vitro by application of 4-Aminopyridine in entorhinal cortex combined hippocampal slices. We model the three epileptiform activities upon previously reported biological mechanisms and verify the simulation results by comparing them with in vitro experimental data obtained using a microelectrode array. We use the results of Granger causality analysis of recorded data to set input gains of signal pathways in the model, so that the compatibility between the computational and experimental models can be improved. The proposed model can be expanded to evaluate the suppression effect of epileptiform activities due to new treatment methods. PMID:27416961

  15. A model to predict deflection of bevel-tipped active needle advancing in soft tissue.

    PubMed

    Datla, Naresh V; Konh, Bardia; Honarvar, Mohammad; Podder, Tarun K; Dicker, Adam P; Yu, Yan; Hutapea, Parsaoran

    2014-03-01

    Active needles are recently being developed to improve steerability and placement accuracy for various medical applications. These active needles can bend during insertion by actuators attached to their bodies. The bending of active needles enables them to be steered away from the critical organs on the way to target and accurately reach target locations previously unachievable with conventional rigid needles. These active needles combined with an asymmetric bevel-tip can further improve their steerability. To optimize the design and to develop accurate path planning and control algorithms, there is a need to develop a tissue-needle interaction model. This work presents an energy-based model that predicts needle deflection of active bevel-tipped needles when inserted into the tissue. This current model was based on an existing energy-based model for bevel-tipped needles, to which work of actuation was included in calculating the system energy. The developed model was validated with needle insertion experiments with a phantom material. The model predicts needle deflection reasonably for higher diameter needles (11.6% error), whereas largest error was observed for the smallest needle diameter (24.7% error). PMID:24296105

  16. Spatial Modeling of Indian Agriculture, Economic Activity and Population under Climate Change

    NASA Astrophysics Data System (ADS)

    McCord, G. C.

    2010-12-01

    We present a spatial model of economic activity and human population built on physical geography that takes particular account of its effects through agricultural productivity and transport costs for trade. A major component of this work is an agricultural model, driven in part by high-resolution climate data and model output. We put forward India as the initial region for this modeling work; India is a relatively data-rich country, it exhibits significant within-country spatial and temporal variation in agricultural productivity, urbanization rates, and population growth rates, and the climate dynamics of the monsoon are well-studied and expected to change on decadal time scales. Agricultural productivity is modeled as a function of soil, climate, and technology variables. Farmers locate optimally given varying geography and transport costs; in turn, food availability defines urbanization rates and economic activity in non-agricultural sectors. This “social system” integrated assessment model is a step towards a valuable policy tool, but requires a significant mobilization of data and a grid-cell-level system of equations to describe the underlying dynamics of the model. We test against past trends of social-natural system progression in demography, human location, income, food production, etc., and argue that the model could be used to assess future trends under varying climate change scenarios, and eventually serve to model feedbacks through effects on migration, population growth rates, or economic activity.

  17. Spontaneous otoacoustic emissions in an active nonlinear cochlear model in the time domain

    NASA Astrophysics Data System (ADS)

    Fruth, Florian; Jülicher, Frank; Lindner, Benjamin

    2015-12-01

    A large fraction of human cochleas emits sounds even in the absence of external stimulation. These so-called spontaneous otoacoustic emissions (SOAEs) are a hallmark of the active nonlinear amplification process taking place in the cochlea. Here, we extend a previously proposed frequency domain model and put forward an active nonlinear one-dimensional model of the cochlea in the time domain describing human SOAEs [5]. In our model, oscillatory elements are close to an instability (Hopf bifurcation), they are subject to dynamical noise and coupled by hydrodynamic, elastic and dissipative interactions. Furthermore, oscillators are subject to a weak spatial irregularity in their activity (normally distributed and exponentially correlated in space) that gives rise to the individuality of each simulated cochlea. Our model captures main statistical features of the distribution of emission frequencies, the distribution of the numbers of emissions per cochlea, and the distribution of the distances between neighboring emissions as were previously measured in experiment [14].

  18. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations.

    PubMed

    Mao, Ling-Feng; Ning, H; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-01-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter. PMID:27103586

  19. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations

    PubMed Central

    Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-01-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter. PMID:27103586

  20. Simulation of Preterm Neonatal Brain Metabolism During Functional Neuronal Activation Using a Computational Model.

    PubMed

    Hapuarachchi, T; Scholkmann, F; Caldwell, M; Hagmann, C; Kleiser, S; Metz, A J; Pastewski, M; Wolf, M; Tachtsidis, I

    2016-01-01

    We present a computational model of metabolism in the preterm neonatal brain. The model has the capacity to mimic haemodynamic and metabolic changes during functional activation and simulate functional near-infrared spectroscopy (fNIRS) data. As an initial test of the model's efficacy, we simulate data obtained from published studies investigating functional activity in preterm neonates. In addition we simulated recently collected data from preterm neonates during visual activation. The model is well able to predict the haemodynamic and metabolic changes from these observations. In particular, we found that changes in cerebral blood flow and blood pressure may account for the observed variability of the magnitude and sign of stimulus-evoked haemodynamic changes reported in preterm infants. PMID:26782202

  1. On Application Of Langevin Dynamics In Logarithmic Potential To Model Ion Channel Gate Activity.

    PubMed

    Wawrzkiewicz-Jałowiecka, Agata; Borys, Przemysław; Grzywna, Zbigniew J

    2015-12-01

    We model the activity of an ion channel gate by Langevin dynamics in a logarithmic potential. This approach enables one to describe the power-law dwell-time distributions of the considered system, and the long-term correlations between the durations of the subsequent channel states, or fractal scaling of statistical characteristics of the gate's movement with time. Activity of an ion channel gate is described as an overdamped motion of the reaction coordinate in a confining logarithmic potential, which ensures great flexibility of the model. Depending on the chosen parameters, it allows one to reproduce many types of gate dynamics within the family of non-Markovian, anomalous conformational diffusion processes. In this study we apply the constructed model to largeconductance voltage and Ca2+-activated potassium channels (BKCa). The interpretation of model assumptions and parameters is provided in terms of this biological system. Our results show good agreement with the experimental data. PMID:26317442

  2. Wound Healing Activity of Rubus sanctus Schreber (Rosaceae): Preclinical Study in Animal Models

    PubMed Central

    Süntar, Ipek; Koca, Ufuk; Keleş, Hikmet; Akkol, Esra Küpeli

    2011-01-01

    Young shoots of Rubus species have been used for healing of wounds, infected insect bites and pimples in folk medicine for ages. In order to evaluate the wound healing activity of Rubus sanctus, four different extracts were prepared from the whole aerial parts of the plant by using n-hexane, chloroform, ethyl acetate and methanol, respectively. Incision wound healing model by using tensiometer on rats and excision model on mice were employed to assess the activity. Remarkable wound healing activity was observed with the ointment formulation of the methanol extract at 1% concentration on the mentioned models. The results of histopathological examination also supported the outcome of both incision and excision wound models. The wound healing effect was comparatively evaluated with a reference ointment Madecassol. The experimental data confirmed the ethnobotanical usage of R. sanctus. PMID:19755505

  3. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations

    NASA Astrophysics Data System (ADS)

    Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-04-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter.

  4. Preservice Secondary Teachers' Conceptions from a Mathematical Modeling Activity and Connections to the Common Core State Standards

    ERIC Educational Resources Information Center

    Stohlmann, Micah; Maiorca, Cathrine; Olson, Travis A.

    2015-01-01

    Mathematical modeling is an essential integrated piece of the Common Core State Standards. However, researchers have shown that mathematical modeling activities can be difficult for teachers to implement. Teachers are more likely to implement mathematical modeling activities if they have their own successful experiences with such activities. This…

  5. Integrated model of G189A and Aspen-plus for the transient modeling of extravehicular activity atmospheric control systems

    NASA Technical Reports Server (NTRS)

    Kolodney, Matthew; Conger, Bruce C.

    1990-01-01

    A computerized modeling tool, under development for the transient modeling of an extravehicular activity atmospheric control subsystem is described. This subsystem includes the astronaut, temperature control, moisture control, CO2 removal, and oxygen make-up components. Trade studies evaluating competing components and subsystems to guide the selection and development of hardware for lunar and Martian missions will use this modeling tool. The integrated modeling tool uses the Advanced System for Process Engineering (ASPEN) to accomplish pseudosteady-state simulations, and the general environmental thermal control and life support program (G189A) to manage overall control of the run and transient input output, as well as transient modeling computations and database functions. Flow charts and flow diagrams are included.

  6. Design of Optimized Hypoxia-Activated Prodrugs Using Pharmacokinetic/Pharmacodynamic Modeling

    PubMed Central

    Foehrenbacher, Annika; Secomb, Timothy W.; Wilson, William R.; Hicks, Kevin O.

    2013-01-01

    Hypoxia contributes to resistance of tumors to some cytotoxic drugs and to radiotherapy, but can in principle be exploited with hypoxia-activated prodrugs (HAP). HAP in clinical development fall into two broad groups. Class I HAP (like the benzotriazine N-oxides tirapazamine and SN30000), are activated under relatively mild hypoxia. In contrast, Class II HAP (such as the nitro compounds PR-104A or TH-302) are maximally activated only under extreme hypoxia, but their active metabolites (effectors) diffuse to cells at intermediate O2 and thus also eliminate moderately hypoxic cells. Here, we use a spatially resolved pharmacokinetic/pharmacodynamic (SR-PK/PD) model to compare these two strategies and to identify the features required in an optimal Class II HAP. The model uses a Green’s function approach to calculate spatial and longitudinal gradients of O2, prodrug, and effector concentrations, and resulting killing in a digitized 3D tumor microregion to estimate activity as monotherapy and in combination with radiotherapy. An analogous model for a normal tissue with mild hypoxia and short intervessel distances (based on a cremaster muscle microvessel network) was used to estimate tumor selectivity of cell killing. This showed that Class II HAP offer advantages over Class I including higher tumor selectivity and greater freedom to vary prodrug diffusibility and rate of metabolic activation. The model suggests that the largest gains in class II HAP antitumor activity could be realized by optimizing effector stability and prodrug activation rates. We also use the model to show that diffusion of effector into blood vessels is unlikely to materially increase systemic exposure for realistic tumor burdens and effector clearances. However, we show that the tumor selectivity achievable by hypoxia-dependent prodrug activation alone is limited if dose-limiting normal tissues are even mildly hypoxic. PMID:24409417

  7. Modeling violations of the race model inequality in bimodal paradigms: co-activation from decision and non-decision components

    PubMed Central

    Zehetleitner, Michael; Ratko-Dehnert, Emil; Müller, Hermann J.

    2015-01-01

    The redundant-signals paradigm (RSP) is designed to investigate response behavior in perceptual tasks in which response-relevant targets are defined by either one or two features, or modalities. The common finding is that responses are speeded for redundantly compared to singly defined targets. This redundant-signals effect (RSE) can be accounted for by race models if the response times do not violate the race model inequality (RMI). When there are violations of the RMI, race models are effectively excluded as a viable account of the RSE. The common alternative is provided by co-activation accounts, which assume that redundant target signals are integrated at some processing stage. However, “co-activation” has mostly been only indirectly inferred and the accounts have only rarely been explicitly modeled; if they were modeled, the RSE has typically been assumed to have a decisional locus. Yet, there are also indications in the literature that the RSE might originate, at least in part, at a non-decisional or motor stage. In the present study, using a distribution analysis of sequential-sampling models (ex-Wald and Ratcliff Diffusion model), the locus of the RSE was investigated for two bimodal (audio-visual) detection tasks that strongly violated the RMI, indicative of substantial co-activation. Three model variants assuming different loci of the RSE were fitted to the quantile reaction time proportions: a decision, a non-decision, and a combined variant both to vincentized group as well as individual data. The results suggest that for the two bimodal detection tasks, co-activation has a shared decisional and non-decisional locus. These findings point to the possibility that the mechanisms underlying the RSE depend on the specifics (task, stimulus, conditions, etc.) of the experimental paradigm. PMID:25805987

  8. Antibacterial Activity of Imidazolium-Based Ionic Liquids Investigated by QSAR Modeling and Experimental Studies.

    PubMed

    Hodyna, Diana; Kovalishyn, Vasyl; Rogalsky, Sergiy; Blagodatnyi, Volodymyr; Petko, Kirill; Metelytsia, Larisa

    2016-09-01

    Predictive QSAR models for the inhibitors of B. subtilis and Ps. aeruginosa among imidazolium-based ionic liquids were developed using literary data. The regression QSAR models were created through Artificial Neural Network and k-nearest neighbor procedures. The classification QSAR models were constructed using WEKA-RF (random forest) method. The predictive ability of the models was tested by fivefold cross-validation; giving q(2) = 0.77-0.92 for regression models and accuracy 83-88% for classification models. Twenty synthesized samples of 1,3-dialkylimidazolium ionic liquids with predictive value of activity level of antimicrobial potential were evaluated. For all asymmetric 1,3-dialkylimidazolium ionic liquids, only compounds containing at least one radical with alkyl chain length of 12 carbon atoms showed high antibacterial activity. However, the activity of symmetric 1,3-dialkylimidazolium salts was found to have opposite relationship with the length of aliphatic radical being maximum for compounds based on 1,3-dioctylimidazolium cation. The obtained experimental results suggested that the application of classification QSAR models is more accurate for the prediction of activity of new imidazolium-based ILs as potential antibacterials. PMID:27086199

  9. Exogenously induced brain activation regulates neuronal activity by top-down modulation: conceptualized model for electrical brain stimulation.

    PubMed

    Spezia Adachi, Lauren Naomi; Quevedo, Alexandre Silva; de Souza, Andressa; Scarabelot, Vanessa Leal; Rozisky, Joanna Ripoll; de Oliveira, Carla; Marques Filho, Paulo Ricardo; Medeiros, Liciane Fernandes; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S

    2015-05-01

    Physiological and exogenous factors are able to adjust sensory processing by modulating activity at different levels of the nervous system hierarchy. Accordingly, transcranial direct current stimulation (tDCS) may use top-down mechanisms to control the access for incoming information along the neuroaxis. To test the hypothesis that brain activation induced by tCDS is able to initiate top-down modulation and that chronic stress disrupts this effect, 60-day-old male Wistar rats (n = 78) were divided into control; control + tDCS; control + sham-tDCS; stress; stress + tDCS; and stress + sham-tDCS. Chronic stress was induced using a restraint stress model for 11 weeks, and then, the treatment was applied over 8 days. BDNF levels were used to assess neuronal activity at spinal cord, brainstem, and hippocampus. Mechanical pain threshold was assessed by von Frey test immediately and 24 h after the last tDCS-intervention. tDCS was able to decrease BDNF levels in the structures involved in the descending systems (spinal cord and brainstem) only in unstressed animals. The treatment was able to reverse the stress-induced allodynia and to increase the pain threshold in unstressed animals. Furthermore, there was an inverse relation between pain sensitivity and spinal cord BDNF levels. Accordingly, we propose the addition of descending systems in the current brain electrical modulation model. PMID:25665871

  10. [Purity Detection Model Update of Maize Seeds Based on Active Learning].

    PubMed

    Tang, Jin-ya; Huang, Min; Zhu, Qi-bing

    2015-08-01

    Seed purity reflects the degree of seed varieties in typical consistent characteristics, so it is great important to improve the reliability and accuracy of seed purity detection to guarantee the quality of seeds. Hyperspectral imaging can reflect the internal and external characteristics of seeds at the same time, which has been widely used in nondestructive detection of agricultural products. The essence of nondestructive detection of agricultural products using hyperspectral imaging technique is to establish the mathematical model between the spectral information and the quality of agricultural products. Since the spectral information is easily affected by the sample growth environment, the stability and generalization of model would weaken when the test samples harvested from different origin and year. Active learning algorithm was investigated to add representative samples to expand the sample space for the original model, so as to implement the rapid update of the model's ability. Random selection (RS) and Kennard-Stone algorithm (KS) were performed to compare the model update effect with active learning algorithm. The experimental results indicated that in the division of different proportion of sample set (1:1, 3:1, 4:1), the updated purity detection model for maize seeds from 2010 year which was added 40 samples selected by active learning algorithm from 2011 year increased the prediction accuracy for 2011 new samples from 47%, 33.75%, 49% to 98.89%, 98.33%, 98.33%. For the updated purity detection model of 2011 year, its prediction accuracy for 2010 new samples increased by 50.83%, 54.58%, 53.75% to 94.57%, 94.02%, 94.57% after adding 56 new samples from 2010 year. Meanwhile the effect of model updated by active learning algorithm was better than that of RS and KS. Therefore, the update for purity detection model of maize seeds is feasible by active learning algorithm. PMID:26672281

  11. A Modified Active Appearance Model Based on an Adaptive Artificial Bee Colony

    PubMed Central

    Othman, Zulaiha Ali

    2014-01-01

    Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition. PMID:25165748

  12. Validation of a "Kane's Dynamics" Model for the Active Rack Isolation System

    NASA Technical Reports Server (NTRS)

    Beech, Geoffrey S.; Hampton, R. David

    2000-01-01

    Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (international Standard Payload Rack, or ISPR) level. Effective model-based vibration isolation requires (1) an isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller, ARIS provides the ISS response to the first requirement. In November 1999, the authors presented a response to the second ("A 'Kane's Dynamics' model for the Active Rack Isolation System", Hampton and Beech) intended to facilitate an optimal-controls approach to the third. This paper documents the validation of that high-fidelity dynamic model of ARIS. As before, this model contains the full actuator dynamics, however, the umbilical models are not included in this presentation. The validation of this dynamics model was achieved by utilizing two Commercial Off the Shelf (COTS) software tools: Deneb's ENVISION, and Online Dynamics' AUTOLEV. ENVISION is a robotics software package developed for the automotive industry that employs 3-dimensional (3-D) Computer Aided Design (CAD) models to facilitate both forward and inverse kinematics analyses. AUTOLEV is a DOS based interpreter that is designed in general to solve vector based mathematical problems and specifically to solve Dynamics problems using Kane's method.

  13. Validation of a common data model for active safety surveillance research

    PubMed Central

    Ryan, Patrick B; Reich, Christian G; Hartzema, Abraham G; Stang, Paul E

    2011-01-01

    Objective Systematic analysis of observational medical databases for active safety surveillance is hindered by the variation in data models and coding systems. Data analysts often find robust clinical data models difficult to understand and ill suited to support their analytic approaches. Further, some models do not facilitate the computations required for systematic analysis across many interventions and outcomes for large datasets. Translating the data from these idiosyncratic data models to a common data model (CDM) could facilitate both the analysts' understanding and the suitability for large-scale systematic analysis. In addition to facilitating analysis, a suitable CDM has to faithfully represent the source observational database. Before beginning to use the Observational Medical Outcomes Partnership (OMOP) CDM and a related dictionary of standardized terminologies for a study of large-scale systematic active safety surveillance, the authors validated the model's suitability for this use by example. Validation by example To validate the OMOP CDM, the model was instantiated into a relational database, data from 10 different observational healthcare databases were loaded into separate instances, a comprehensive array of analytic methods that operate on the data model was created, and these methods were executed against the databases to measure performance. Conclusion There was acceptable representation of the data from 10 observational databases in the OMOP CDM using the standardized terminologies selected, and a range of analytic methods was developed and executed with sufficient performance to be useful for active safety surveillance. PMID:22037893

  14. Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism.

    PubMed

    Sotero, Roberto C; Trujillo-Barreto, Nelson J

    2008-01-01

    Our goal is to model the coupling between neuronal activity, cerebral metabolic rates of glucose and oxygen consumption, cerebral blood flow (CBF), electroencephalography (EEG) and blood oxygenation level-dependent (BOLD) responses. In order to accomplish this, two previous models are coupled: a metabolic/hemodynamic model (MHM) for a voxel, linking BOLD signals and neuronal activity, and a neural mass model describing the neuronal dynamics within a voxel and its interactions with voxels of the same area (short-range interactions) and other areas (long-range interactions). For coupling both models, we take as the input to the BOLD model, the number of active synapses within the voxel, that is, the average number of synapses that will receive an action potential within the time unit. This is obtained by considering the action potentials transmitted between neuronal populations within the voxel, as well as those arriving from other voxels. Simulations are carried out for testing the integrated model. Results show that realistic evoked potentials (EP) at electrodes on the scalp surface and the corresponding BOLD signals for each voxel are produced by the model. In another simulation, the alpha rhythm was reproduced and reasonable similarities with experimental data were obtained when calculating correlations between BOLD signals and the alpha power curve. The origin of negative BOLD responses and the characteristics of EEG, PET and BOLD signals in Alzheimer's disease were also studied. PMID:17919931

  15. A "Kane's Dynamics" Model for the Active Rack Isolation System Part Two: Nonlinear Model Development, Verification, and Simplification

    NASA Technical Reports Server (NTRS)

    Beech, G. S.; Hampton, R. D.; Rupert, J. K.

    2004-01-01

    Many microgravity space-science experiments require vibratory acceleration levels that are unachievable without active isolation. The Boeing Corporation's active rack isolation system (ARIS) employs a novel combination of magnetic actuation and mechanical linkages to address these isolation requirements on the International Space Station. Effective model-based vibration isolation requires: (1) An isolation device, (2) an adequate dynamic; i.e., mathematical, model of that isolator, and (3) a suitable, corresponding controller. This Technical Memorandum documents the validation of that high-fidelity dynamic model of ARIS. The verification of this dynamics model was achieved by utilizing two commercial off-the-shelf (COTS) software tools: Deneb's ENVISION(registered trademark), and Online Dynamics Autolev(trademark). ENVISION is a robotics software package developed for the automotive industry that employs three-dimensional computer-aided design models to facilitate both forward and inverse kinematics analyses. Autolev is a DOS-based interpreter designed, in general, to solve vector-based mathematical problems and specifically to solve dynamics problems using Kane's method. The simplification of this model was achieved using the small-angle theorem for the joint angle of the ARIS actuators. This simplification has a profound effect on the overall complexity of the closed-form solution while yielding a closed-form solution easily employed using COTS control hardware.

  16. Applying Socioecological Model to Improve Women’s Physical Activity: A Randomized Control Trial

    PubMed Central

    Tehrani, Hadi; Majlessi, Fershteh; Shojaeizadeh, Davoud; Sadeghi, Roya; Hasani Kabootarkhani, Marzieh

    2016-01-01

    Background: A sedentary life without sufficient physical activity is recognized as a risk factor for various diseases, and a major modifiable risk factor for noncommunicable diseases. This study was conducted to investigate the effect of intervention using socioecological model in promoting women’s physical activity in the city of Kerman, Iran. Materials and Methods: In this randomized, double-blinded, controlled study, 360 women were studied at health and medical centers of Kerman. This educational intervention was based on socioecological model and conducted on 4 levels of personal, social, organizational, and political. Data collection tool included a researcher-made questionnaire based on constructs of socioecological model and the international physical activity inventory. Results: The results indicated insignificant differences between the two groups in terms of perceived social, physical, and political support and also with regard to level of physical activity before intervention. However after the intervention and according to independent t test, significant differences were observed between two groups in perceived social, physical, and political support and also level of physical activity (P < 0.001). Furthermore, mean values of the above terms increased in the intervention group. Conclusions: According to the results, interventions based on socioecological model can positively affect women’s physical activity. PMID:27247781

  17. Evaluation of animal models of obsessive-compulsive disorder: correlation with phasic dopamine neuron activity.

    PubMed

    Sesia, Thibaut; Bizup, Brandon; Grace, Anthony A

    2013-07-01

    Obsessive compulsive disorder (OCD) is a psychiatric condition defined by intrusive thoughts (obsessions) associated with compensatory and repetitive behaviour (compulsions). However, advancement in our understanding of this disorder has been hampered by the absence of effective animal models and correspondingly analysis of the physiological changes that may be present in these models. To address this, we have evaluated two current rodent models of OCD; repeated injection of dopamine D2 agonist quinpirole and repeated adolescent injection of the tricyclic agent clomipramine in combination with a behavioural paradigm designed to produce compulsive lever pressing. These results were then compared with their relative impact on the state of activity of the mesolimbic dopaminergic system using extracellular recoding of spontaneously active dopamine neurons in the ventral tegmental area (VTA). The clomipramine model failed to exacerbate compulsive lever pressing and VTA dopamine neurons in clomipramine-treated rats had mildly diminished bursting activity. In contrast, quinpirole-treated animals showed significant increases in compulsive lever pressing, which was concurrent with a substantial diminution of bursting activity of VTA dopamine neurons. Therefore, VTA dopamine activity correlated with the behavioural response in these models. Taken together, these data support the view that compulsive behaviours likely reflect, at least in part, a disruption of the dopaminergic system, more specifically by a decrease in baseline phasic dopamine signalling mediated by burst firing of dopamine neurons. PMID:23360787

  18. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California

    PubMed Central

    Batllori, Enric; Moritz, Max A.; Waller, Eric K.; Berck, Peter; Flint, Alan L.; Flint, Lorraine E.; Dolfi, Emmalee

    2016-01-01

    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state’s fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change. PMID:27124597

  19. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California.

    PubMed

    Mann, Michael L; Batllori, Enric; Moritz, Max A; Waller, Eric K; Berck, Peter; Flint, Alan L; Flint, Lorraine E; Dolfi, Emmalee

    2016-01-01

    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change. PMID:27124597

  20. Active learning to understand infectious disease models and improve policy making.

    PubMed

    Willem, Lander; Stijven, Sean; Vladislavleva, Ekaterina; Broeckhove, Jan; Beutels, Philippe; Hens, Niel

    2014-04-01

    Modeling plays a major role in policy making, especially for infectious disease interventions but such models can be complex and computationally intensive. A more systematic exploration is needed to gain a thorough systems understanding. We present an active learning approach based on machine learning techniques as iterative surrogate modeling and model-guided experimentation to systematically analyze both common and edge manifestations of complex model runs. Symbolic regression is used for nonlinear response surface modeling with automatic feature selection. First, we illustrate our approach using an individual-based model for influenza vaccination. After optimizing the parameter space, we observe an inverse relationship between vaccination coverage and cumulative attack rate reinforced by herd immunity. Second, we demonstrate the use of surrogate modeling techniques on input-response data from a deterministic dynamic model, which was designed to explore the cost-effectiveness of varicella-zoster virus vaccination. We use symbolic regression to handle high dimensionality and correlated inputs and to identify the most influential variables. Provided insight is used to focus research, reduce dimensionality and decrease decision uncertainty. We conclude that active learning is needed to fully understand complex systems behavior. Surrogate models can be readily explored at no computational expense, and can also be used as emulator to improve rapid policy making in various settings. PMID:24743387

  1. Phoneme restoration and empirical coverage of Interactive Activation and Adaptive Resonance models of human speech processing.

    PubMed

    Grossberg, Stephen; Kazerounian, Sohrob

    2016-08-01

    Magnuson [J. Acoust. Soc. Am. 137, 1481-1492 (2015)] makes claims for Interactive Activation (IA) models and against Adaptive Resonance Theory (ART) models of speech perception. Magnuson also presents simulations that claim to show that the TRACE model can simulate phonemic restoration, which was an explanatory target of the cARTWORD ART model. The theoretical analysis and review herein show that these claims are incorrect. More generally, the TRACE and cARTWORD models illustrate two diametrically opposed types of neural models of speech and language. The TRACE model embodies core assumptions with no analog in known brain processes. The cARTWORD model defines a hierarchy of cortical processing regions whose networks embody cells in laminar cortical circuits as part of the paradigm of laminar computing. cARTWORD further develops ART speech and language models that were introduced in the 1970s. It builds upon Item-Order-Rank working memories, which activate learned list chunks that unitize sequences to represent phonemes, syllables, and words. Psychophysical and neurophysiological data support Item-Order-Rank mechanisms and contradict TRACE representations of time, temporal order, silence, and top-down processing that exhibit many anomalous properties, including hallucinations of non-occurring future phonemes. Computer simulations of the TRACE model are presented that demonstrate these failures. PMID:27586743

  2. Packaged Fault Model for Geometric Segmentation of Active Faults Into Earthquake Source Faults

    NASA Astrophysics Data System (ADS)

    Nakata, T.; Kumamoto, T.

    2004-12-01

    In Japan, the empirical formula proposed by Matsuda (1975) mainly based on the length of the historical surface fault ruptures and magnitude, is generally applied to estimate the size of future earthquakes from the extent of existing active faults for seismic hazard assessment. Therefore validity of the active fault length and defining individual segment boundaries where propagating ruptures terminate are essential and crucial to the reliability for the accurate assessments. It is, however, not likely for us to clearly identify the behavioral earthquake segments from observation of surface faulting during the historical period, because most of the active faults have longer recurrence intervals than 1000 years in Japan. Besides uncertainties of the datasets obtained mainly from fault trenching studies are quite large for fault grouping/segmentation. This is why new methods or criteria should be applied for active fault grouping/segmentation, and one of the candidates may be geometric criterion of active faults. Matsuda (1990) used _gfive kilometer_h as a critical distance for grouping and separation of neighboring active faults. On the other hand, Nakata and Goto (1998) proposed the geometric criteria such as (1) branching features of active fault traces and (2) characteristic pattern of vertical-slip distribution along the fault traces as tools to predict rupture length of future earthquakes. The branching during the fault rupture propagation is regarded as an effective energy dissipation process and could result in final rupture termination. With respect to the characteristic pattern of vertical-slip distribution, especially with strike-slip components, the up-thrown sides along the faults are, in general, located on the fault blocks in the direction of relative strike-slip. Applying these new geometric criteria to the high-resolution active fault distribution maps, the fault grouping/segmentation could be more practically conducted. We tested this model

  3. A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories

    PubMed Central

    Soares, João S.; Sheriff, Jawaad

    2013-01-01

    Blood recirculating devices, such as ventricular assist devices and prosthetic heart valves, are burdened by thromboembolic complications requiring complex and lifelong anticoagulant therapy with its inherent hemorrhagic risks. Pathologic flow patterns occurring in such devices chronically activate platelets, and the optimization of their thrombogenic performance requires the development of flow-induced platelet activation models. However, existing models are based on empirical correlations using the well-established power law paradigm of constant levels of shear stress during certain exposure times as factors for mechanical platelet activation. These models are limited by their range of application and do not account for other relevant phenomena, such as loading rate dependence and platelet sensitization to high stress conditions, which characterize the dynamic flow conditions in devices. These limitations were addressed by developing a new class of phenomenological stress-induced platelet activation models that specifies the rate of platelet activation as a function of the entire stress history and results in a differential equation that can be directly integrated to calculate the cumulative levels of activation. The proposed model reverts to the power law under constant shear stress conditions and is able to describe experimental results in response to a diverse range of highly dynamic stress conditions found in blood recirculating devices. The model was tested in vitro under emulated device flow conditions and correlates well with experimental results. This new model provides a reliable and robust mathematical tool that can be incorporated into computational fluid dynamic studies in order to optimize design, with the goal of improving the thrombogenic performance of blood recirculating devices. PMID:23359062

  4. Reconstructing liver shape and position from MR image slices using an active shape model

    NASA Astrophysics Data System (ADS)

    Fenchel, Matthias; Thesen, Stefan; Schilling, Andreas

    2008-03-01

    We present an algorithm for fully automatic reconstruction of 3D position, orientation and shape of the human liver from a sparsely covering set of n 2D MR slice images. Reconstructing the shape of an organ from slice images can be used for scan planning, for surgical planning or other purposes where 3D anatomical knowledge has to be inferred from sparse slices. The algorithm is based on adapting an active shape model of the liver surface to a given set of slice images. The active shape model is created from a training set of liver segmentations from a group of volunteers. The training set is set up with semi-manual segmentations of T1-weighted volumetric MR images. Searching for the optimal shape model that best fits to the image data is done by maximizing a similarity measure based on local appearance at the surface. Two different algorithms for the active shape model search are proposed and compared: both algorithms seek to maximize the a-posteriori probability of the grey level appearance around the surface while constraining the surface to the space of valid shapes. The first algorithm works by using grey value profile statistics in normal direction. The second algorithm uses average and variance images to calculate the local surface appearance on the fly. Both algorithms are validated by fitting the active shape model to abdominal 2D slice images and comparing the shapes, which have been reconstructed, to the manual segmentations and to the results of active shape model searches from 3D image data. The results turn out to be promising and competitive to active shape model segmentations from 3D data.

  5. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.

    PubMed

    De Schutter, E; Bower, J M

    1994-01-01

    1. Both excitatory and inhibitory postsynaptic channels were added to a previously described complex compartmental model of a cerebellar Purkinje cell to examine model responses to synaptic inputs. All model parameters remained as described previously, leaving maximum synaptic conductance as the only parameter that was tuned in the studies described in this paper. Under these conditions the model was capable of reproducing physiological recorded responses to each of the major types of synaptic input. 2. When excitatory synapses were activated on the smooth dendrites of the model, the model generated a complex dendritic Ca2+ spike similar to that generated by climbing fiber inputs. Examination of the model showed that activation of P-type Ca2+ channels in both the smooth and spiny dendrites augmented the depolarization during the complex spike and that Ca(2+)-activated K+ channels in the same dendritic regions determined the duration of the spike. When these synapses were activated under simulated current-clamp conditions the model also generated the characteristic dual reversal potential of the complex spike. The shape of the dendritic complex spike could be altered by changing the maximum conductance of the climbing fiber synapse and thus the amount of Ca2+ entering the cell. 3. To explore the background simple spike firing properties of Purkinje cells in vivo we added excitatory "parallel fiber" synapses to the spiny dendritic branches of the model. Continuous asynchronous activation of these granule cell synapses resulted in the generation of spontaneous sodium spikes. However, very low asynchronous input frequencies produced a highly regular, very fast rhythm (80-120 Hz), whereas slightly higher input frequencies resulted in Purkinje cell bursting. Both types of activity are uncharacteristic of in vivo Purkinje cell recordings. 4. Inhibitory synapses of the sort presumably generated by stellate cells were also added to the dendritic tree. When asynchronous

  6. Pharmacophore modeling of substituted 1,2,4-Trioxanes for quantitative prediction of their antimalarial activity.

    PubMed

    Gupta, Amit K; Chakroborty, S; Srivastava, Kumkum; Puri, Sunil K; Saxena, Anil K

    2010-08-23

    A pharmacophore model has been developed for determining the essential structural requirements for antimalarial activity from the eight series of substituted 1,2,4-trioxanes. The best pharmacophore model possessing two aliphatic hydrophobic, one aromatic hydrophobic, one hydrogen-bond (H-bond) acceptor, and one H-bond acceptor (lipid) feature for antimalarial activity showed an excellent correlation coefficient for the training (r(2)(training) = 0.85) and a fair correlation coefficient for the test set (r(2)(test) = 0.51) molecules. The model predicts well to other known substituted 1,2,4-trioxanes including those which either are drugs or are undergoing clinical trials. In order to further validate this model, five substituted 1,2,4-trioxanes were synthesized from the generated focused library and screened for antimalarial activity. The observed activity of these molecules was consistent with the pharmacophore model, suggesting that the model may be useful in the design of potent antimalarial agents. PMID:20726605

  7. Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon.

    PubMed

    Ocampo-Pérez, Raúl; Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Méndez-Díaz, José D; Sánchez-Polo, Manuel

    2012-11-01

    The overall adsorption rate of single micropollutants present in landfill leachates such as phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two commercial activated carbons was studied. The experimental data obtained were interpreted by using a diffusional model (PVSDM) that considers external mass transport, intraparticle diffusion, and adsorption on an active site. Furthermore, the concentration decay data were interpreted by using kinetics models. Results revealed that PVSDM model satisfactorily fitted the experimental data of adsorption rate on activated carbon. The tortuosity factor of the activated carbons used ranged from 2 to 4. The contribution of pore volume diffusion represented more than 92% of intraparticle diffusion confirming that pore volume diffusion is the controlling mechanism of the overall rate of adsorption and surface diffusion can be neglected. The experimental data were satisfactorily fitted the kinetic models. The second-order kinetic model was better fitted the experimental adsorption data than the first-order model. PMID:22858399

  8. Linearization of the full activated sludge model No 1 for interaction analysis.

    PubMed

    Benhalla, Abdelhay; Houssou, Mohamed; Charif, Moussa

    2010-08-01

    This paper deals with the linearization of the full activated sludge model No 1 (ASM1) in the scope of interaction analysis. For consistency, the linearization procedure is developed and validated within the BSM1 simulation benchmark framework. It is based on reaction rate approximation by linear combinations of states. The linear rate models are identified and incorporated in the mass balance equations, yielding a linear locally equivalent to the ASM1 model. Linear models for anoxic and aerated compartments are proposed. It is observed that the presented models track very closely the nonlinear ASM1 responses to various influent data. The key feature of this linearization strategy is that the gotten linear version of the ASM1 model is linear time invariant (LTI) and that it conserves the states biological interpretation and the original ASM1 dimension. It allows, therefore, application of interaction analysis methods and makes it possible to determine motivated control configurations for the ASM1 model. PMID:20131068

  9. E/M impedance modeling and experimentation for the piezoelectric wafer active sensor

    NASA Astrophysics Data System (ADS)

    Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin

    2015-11-01

    This study aimed to develop theoretical models to accurately predict the in-plane (longitudinal) and out-of-plane (thickness-wise) modes of the electromechanical impedance spectroscopy (EMIS) of a piezoelectric wafer active sensor (PWAS). Two main electrical assumptions are applied for both in-plane and thickness mode PWAS-EMIS in one-dimensional simplified analytical models. These assumptions are 1) constant electrical field assumption and 2) constant electrical displacement assumption. The analytical models with two assumptions are compared with one another to understand the prediction accuracy of the models in different vibration modes. Coupled field finite element analysis (CF-FEA) is also conducted with 2D PWAS model under stress-free boundary conditions. The simulations of the simplified analytical models for free PWAS-EMIS under these two assumptions are carried out. The analytical models are validated by corresponding finite element simulations as well as experimental measurements.

  10. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    PubMed

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle. PMID:27087101

  11. Activity-based funding model provides foundation for province-wide best practices in renal care.

    PubMed

    Levin, Adeera; Lo, Clifford; Noel, Kevin; Djurdjev, Ogjnenka; Amano, Erlyn C

    2013-01-01

    British Columbia has a unique funding model for renal care in Canada. Patient care is delivered through six health authorities, while funding is administered by the Provincial Renal Agency using an activity-based funding model. The model allocates funding based on a schedule of costs for every element of renal care, excluding physician fees. Accountability, transparency of allocation and tracking of outcomes are key features that ensure successful implementation. The model supports province-wide best practices and equitable care and fosters innovation. Since its introduction, the outpatient renal services budget has grown less than the population, while maintaining or improving clinical outcomes. PMID:24485244

  12. An international land-biosphere model benchmarking activity for the IPCC Fifth Assessment Report (AR5)

    SciTech Connect

    Hoffman, Forrest M; Randerson, James T; Thornton, Peter E; Bonan, Gordon; Erickson III, David J; Fung, Inez

    2009-12-01

    The need to capture important climate feedbacks in general circulation models (GCMs) has resulted in efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, called Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results (Friedlingstein et al., 2006). This work suggests that a more rigorous set of global offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are needed. The Carbon-Land Model Intercomparison Project (C-LAMP) was designed to meet this need by providing a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). Recently, a similar effort in Europe, called the International Land Model Benchmark (ILAMB) Project, was begun to assess the performance of European land surface models. These two projects will now serve as prototypes for a proposed international land-biosphere model benchmarking activity for those models participating in the IPCC Fifth Assessment Report (AR5). Initially used for model validation for terrestrial biogeochemistry models in the NCAR Community Land Model (CLM), C-LAMP incorporates a simulation protocol for both offline and partially coupled simulations using a prescribed historical trajectory of atmospheric CO2 concentrations. Models are confronted with data through comparisons against AmeriFlux site measurements, MODIS satellite observations, NOAA Globalview flask records, TRANSCOM inversions, and Free Air CO2 Enrichment (FACE) site measurements. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the CLM version 3 in the Community Climate System Model version 3 (CCSM3): the CASA model of Fung, et al., and the carbon

  13. An International Land-Biosphere Model Benchmarking Activity for the IPCC Fifth Assessment Report (AR5)

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Randerson, J. T.; Thornton, P. E.; Bonan, G. B.; Brooks, B. J.; Erickson, D. J.; Fung, I.

    2009-12-01

    The need to capture important climate feedbacks in general circulation models (GCMs) has resulted in efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, called Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results (Friedlingstein et al., 2006). This work suggests that a more rigorous set of global offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are needed. The Carbon-Land Model Intercomparison Project (C-LAMP) was designed to meet this need by providing a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). Recently, a similar effort in Europe, called the International Land Model Benchmark (ILAMB) Project, was begun to assess the performance of European land surface models. These two projects will now serve as prototypes for a proposed international land-biosphere model benchmarking activity for those models participating in the IPCC Fifth Assessment Report (AR5). Initially used for model validation for terrestrial biogeochemistry models in the NCAR Community Land Model (CLM), C-LAMP incorporates a simulation protocol for both offline and partially coupled simulations using a prescribed historical trajectory of atmospheric CO2 concentrations. Models are confronted with data through comparisons against AmeriFlux site measurements, MODIS satellite observations, NOAA Globalview flask records, TRANSCOM inversions, and Free Air CO2 Enrichment (FACE) site measurements. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the CLM version 3 in the Community Climate System Model version 3 (CCSM3): the CASA model of Fung, et al., and the carbon

  14. A Novel Telomerase Activator Suppresses Lung Damage in a Murine Model of Idiopathic Pulmonary Fibrosis

    PubMed Central

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S.; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B.; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2–4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis. PMID:23516479

  15. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    PubMed

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis. PMID:23516479

  16. Active muscle response using feedback control of a finite element human arm model.

    PubMed

    Östh, Jonas; Brolin, Karin; Happee, Riender

    2012-01-01

    Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM. PMID:21294008

  17. Modeling and production of 240Am by deuteron-induced activation of a 240Pu target

    NASA Astrophysics Data System (ADS)

    Finn, Erin C.; McNamara, Bruce; Greenwood, Larry; Wittman, Richard; Soderquist, Charles; Woods, Vincent; VanDevender, Brent; Metz, Lori; Friese, Judah

    2015-04-01

    A novel reaction pathway for production of 240Am is reported. Models of reaction cross-sections in EMPIRE II suggest that deuteron-induced activation of a 240Pu target produces maximum yields of 240Am from 11.5 MeV incident deuterons. This activation had not been previously reported in the literature. A 240Pu target was activated under the modeled optimum conditions to produce 240Am. The modeled cross-section for the 240Pu(d, 2n)240Am reaction is on the order of 20-30 mbarn, but the experimentally estimated value is 5.6 ± 0.2 mbarn. We discuss reasons for the discrepancy as well as production of other Am isotopes that contaminate the final product.

  18. Development of a conceptual model to predict physical activity participation in adults with brain injuries.

    PubMed

    Driver, Simon

    2008-10-01

    The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with brain injuries completed a series of questionnaires measuring each psychosocial variable. The structural analysis indicated a nonsignificant chi squared value and good fit indices for model two which included affect as the mediating variable. Findings indicate that affect is critical in shaping the physical activity cognitions and behaviors of adults with brain injuries. Suggestions are made on practical ways to enhance affect and subsequently physical activity participation. PMID:18955746

  19. Modeling and production of 240Am by deuteron-induced activation of a 240Pu target

    SciTech Connect

    Finn, Erin C.; McNamara, Bruce K.; Greenwood, Lawrence R.; Wittman, Richard S.; Soderquist, Chuck Z.; Woods, Vincent T.; VanDevender, Brent A.; Metz, Lori A.; Friese, Judah I.

    2015-02-01

    A novel reaction pathway for production of 240Am is reported. Models of reaction cross-sections in EMPIRE II suggests that deuteron-induced activation of a 240Pu target produces maximum yields of 240Am from 11.5 MeV incident deuterons. This activation had not been previously reported in the literature. A 240Pu target was activated under the modeled optimum conditions to produce 240Am. The modeled cross-section for the 240Pu(d, 2n)240Am reaction is on the order of 20-30 mbarn, but the experimentally estimated value is 5.3 ± 0.2 mbarn. We discuss reasons for the discrepancy as well as production of other Am isotopes that contaminate the final product.

  20. Modeling of the atmospheric response to a strong decrease of the solar activity

    NASA Astrophysics Data System (ADS)

    Rozanov, Eugene V.; Egorova, Tatiana A.; Shapiro, Alexander I.; Schmutz, Werner K.

    2012-07-01

    We estimate the consequences of a potential strong decrease of the solar activity using the model simulations of the future driven by pure anthropogenic forcing as well as its combination with different solar activity related factors: total solar irradiance, spectral solar irradiance, energetic electron precipitation, solar protons and galactic cosmic rays. The comparison of the model simulations shows that introduced strong decrease of solar activity can lead to some delay of the ozone recovery and partially compensate greenhouse warming acting in the direction opposite to anthropogenic effects. The model results also show that all considered solar forcings are important in different atmospheric layers and geographical regions. However, in the global scale the solar irradiance variability can be considered as the most important solar forcing. The obtained results constitute probably the upper limit of the possible solar influence. Development of the better constrained set of future solar forcings is necessary to address the problem of future climate and ozone layer with more confidence.

  1. Arctic chlorine activation and ozone depletion: Comparison of chemistry transport models with satellite observations.

    NASA Astrophysics Data System (ADS)

    Grooß, J.-U.; Wegner, T.; Müller, R.; Chipperfield, M. P.; Feng, W.; Santee, M. L.

    2009-04-01

    The accurate simulation of Arctic stratospheric ozone depletion has been an issue for two decades. However, there are still notable quantitative discrepancies between the models and observations. We show results from the SLIMCAT and CLaMS 3D chemistry-transport models that differ in some aspects of simulated chlorine activation and descent in the polar vortex. Consequently, the estimates of accumulated ozone depletion in the polar vortex for these two models in cold Arctic winters still largely disagree. As shown recently by Santee et al. (JGR, 2008) using MLS and ACE data, the extent of chlorine activation for the cold Arctic winter of 2004/2005 within the basic SLIMCAT model is overestimated with the likely consequence of too much simulated ozone depletion. In contrast, the CLaMS simulation for the same winter shows too little chlorine activation compared to observations, and therefore likely too little loss. For SLIMCAT the version used by Santee et al. has been updated to replace the equilibrium treatment of NAT PSCs with a Lagrangian microphysical scheme. This leads to smaller regions of NAT particles and less denitrification, in better agreement with observations. The impact of this on the modeled extent of chlorine activation will be discussed. For CLaMS we have changed the parameterization of heterogeneous reactions on liquid aerosols from Carslaw et al. to that of Shi et al. (2001), with which chlorine activation on liquid aerosol becomes more efficient. In turn, the simulated chlorine activation agrees better with the observations. The impact of these model changes on chlorine activation and ozone loss will be assessed and remaining model-observation discrepancies will be discussed in terms of different model formulations. We will also show the impact of recent lab measurements of Cl2O2 absorption cross sections by von Hobe et al. (2009) on the simulated ozone depletion. References: von Hobe, M., F. Stroh, H. Beckers, T. Benter, and H. Willner, The UV

  2. Representing Microbial Dormancy in Soil Decomposition Models Improves Model Performance and Reveals Key Ecosystem Controls on Microbial Activity

    NASA Astrophysics Data System (ADS)

    He, Y.; Yang, J.; Zhuang, Q.; Wang, G.; Liu, Y.

    2014-12-01

    Climate feedbacks from soils can result from environmental change and subsequent responses of plant and microbial communities and nutrient cycling. Explicit consideration of microbial life history traits and strategy may be necessary to predict climate feedbacks due to microbial physiology and community changes and their associated effect on carbon cycling. In this study, we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of dormancy at six temperate forest sites with observed soil efflux ranged from 4 to 10 years across different forest types. We then extrapolated the model to all temperate forests in the Northern Hemisphere (25-50°N) to investigate spatial controls on microbial and soil C dynamics. Both models captured the observed soil heterotrophic respiration (RH), yet no-dormancy model consistently exhibited large seasonal amplitude and overestimation in microbial biomass. Spatially, the total RH from temperate forests based on dormancy model amounts to 6.88PgC/yr, and 7.99PgC/yr based on no-dormancy model. However, no-dormancy model notably overestimated the ratio of microbial biomass to SOC. Spatial correlation analysis revealed key controls of soil C:N ratio on the active proportion of microbial biomass, whereas local dormancy is primarily controlled by soil moisture and temperature, indicating scale-dependent environmental and biotic controls on microbial and SOC dynamics. These developments should provide essential support to modeling future soil carbon dynamics and enhance the avenue for collaboration between empirical soil experiment and modeling in the sense that more microbial physiological measurements are needed to better constrain and evaluate the models.

  3. Modeling the dynamics of a tracer particle in an elastic active gel

    NASA Astrophysics Data System (ADS)

    Ben-Isaac, E.; Fodor, É.; Visco, P.; van Wijland, F.; Gov, Nir S.

    2015-07-01

    The internal dynamics of active gels both in artificial (in vitro) model systems and inside the cytoskeleton of living cells has been extensively studied with experiments of recent years. These dynamics are probed using tracer particles embedded in the network of biopolymers together with molecular motors, and distinct nonthermal behavior is observed. We present a theoretical model of the dynamics of a trapped active particle, which allows us to quantify the deviations from equilibrium behavior, using both analytic and numerical calculations. We map the different regimes of dynamics in this system and highlight the different manifestations of activity: breakdown of the virial theorem and equipartition, different elasticity-dependent "effective temperatures," and distinct non-Gaussian distributions. Our results shed light on puzzling observations in active gel experiments and provide physical interpretation of existing observations, as well as predictions for future studies.

  4. Modeling Chemical Detection Sensitivities of Active and Passive Remote Sensing Systems

    SciTech Connect

    Scharlemann, E T

    2003-07-28

    During nearly a decade of remote sensing programs under the auspices of the U. S. Department of Energy (DOE), LLNL has developed a set of performance modeling codes--called APRS--for both Active and Passive Remote Sensing systems. These codes emphasize chemical detection sensitivity in the form of minimum detectable quantities with and without background spectral clutter and in the possible presence of other interfering chemicals. The codes have been benchmarked against data acquired in both active and passive remote sensing programs at LLNL and Los Alamos National Laboratory (LANL). The codes include, as an integral part of the performance modeling, many of the data analysis techniques developed in the DOE's active and passive remote sensing programs (e.g., ''band normalization'' for an active system, principal component analysis for a passive system).

  5. Modeling the dynamics of a tracer particle in an elastic active gel.

    PubMed

    Ben-Isaac, E; Fodor, É; Visco, P; van Wijland, F; Gov, Nir S

    2015-07-01

    The internal dynamics of active gels both in artificial (in vitro) model systems and inside the cytoskeleton of living cells has been extensively studied with experiments of recent years. These dynamics are probed using tracer particles embedded in the network of biopolymers together with molecular motors, and distinct nonthermal behavior is observed. We present a theoretical model of the dynamics of a trapped active particle, which allows us to quantify the deviations from equilibrium behavior, using both analytic and numerical calculations. We map the different regimes of dynamics in this system and highlight the different manifestations of activity: breakdown of the virial theorem and equipartition, different elasticity-dependent "effective temperatures," and distinct non-Gaussian distributions. Our results shed light on puzzling observations in active gel experiments and provide physical interpretation of existing observations, as well as predictions for future studies. PMID:26274211

  6. Simplified 2D Bidomain Model of Whole Heart Electrical Activity and ECG Generation

    NASA Astrophysics Data System (ADS)

    Sovilj, Siniša; Magjarević, Ratko; Abed, Amr Al; Lovell, Nigel H.; Dokos, Socrates

    2014-06-01

    The aim of this study was the development of a geometrically simple and highly computationally-efficient two dimensional (2D) biophysical model of whole heart electrical activity, incorporating spontaneous activation of the sinoatrial node (SAN), the specialized conduction system, and realistic surface ECG morphology computed on the torso. The FitzHugh-Nagumo (FHN) equations were incorporated into a bidomain finite element model of cardiac electrical activity, which was comprised of a simplified geometry of the whole heart with the blood cavities, the lungs and the torso as an extracellular volume conductor. To model the ECG, we placed four electrodes on the surface of the torso to simulate three Einthoven leads VI, VII and VIII from the standard 12-lead system. The 2D model was able to reconstruct ECG morphology on the torso from action potentials generated at various regions of the heart, including the sinoatrial node, atria, atrioventricular node, His bundle, bundle branches, Purkinje fibers, and ventricles. Our 2D cardiac model offers a good compromise between computational load and model complexity, and can be used as a first step towards three dimensional (3D) ECG models with more complex, precise and accurate geometry of anatomical structures, to investigate the effect of various cardiac electrophysiological parameters on ECG morphology.

  7. Trainable structure-activity relationship model for virtual screening of CYP3A4 inhibition.

    PubMed

    Didziapetris, Remigijus; Dapkunas, Justas; Sazonovas, Andrius; Japertas, Pranas

    2010-11-01

    A new structure-activity relationship model predicting the probability for a compound to inhibit human cytochrome P450 3A4 has been developed using data for >800 compounds from various literature sources and tested on PubChem screening data. Novel GALAS (Global, Adjusted Locally According to Similarity) modeling methodology has been used, which is a combination of baseline global QSAR model and local similarity based corrections. GALAS modeling method allows forecasting the reliability of prediction thus defining the model applicability domain. For compounds within this domain the statistical results of the final model approach the data consistency between experimental data from literature and PubChem datasets with the overall accuracy of 89%. However, the original model is applicable only for less than a half of PubChem database. Since the similarity correction procedure of GALAS modeling method allows straightforward model training, the possibility to expand the applicability domain has been investigated. Experimental data from PubChem dataset served as an example of in-house high-throughput screening data. The model successfully adapted itself to both data classified using the same and different IC₅₀ threshold compared with the training set. In addition, adjustment of the CYP3A4 inhibition model to compounds with a novel chemical scaffold has been demonstrated. The reported GALAS model is proposed as a useful tool for virtual screening of compounds for possible drug-drug interactions even prior to the actual synthesis. PMID:20814717

  8. A fully resolved active musculo-mechanical model for esophageal transport

    NASA Astrophysics Data System (ADS)

    Kou, Wenjun; Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2015-10-01

    Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multi-layered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, and the esophagus is modeled as an actively contracting, fiber-reinforced tube. Before considering the full model of the esophagus, however, we first consider a standard benchmark problem of flow past a cylinder. Next a simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Finally, three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation into an integrated model. Consistent with experimental observations, our simulations capture the pressure peak generated by the muscle activation pulse that travels along the bolus tail. These fully resolved simulations provide new insights into roles of the mucosal layers during bolus transport. In addition, the information on pressure and the kinematics of the esophageal wall resulting from the coordination of muscle activation is provided, which may help relate clinical data from manometry and ultrasound images to the underlying esophageal motor function.

  9. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.

    2008-08-01

    Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) that is able to calculate activity coefficients covering inorganic, organic, and organic-inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999) that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H+, Li+, Na+, K+, NH+4, Mg2+, Ca2+, Cl-, Br-, NO-3, HSO-4, and SO2-4 as cations and anions and a wide range of alcohols/polyols composed of the functional groups CHn and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic-inorganic interactions in alcohol+water+salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid-liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore also applicable for other research topics.

  10. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, Th.

    2008-03-01

    Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) that is able to calculate activity coefficients covering inorganic, organic, and organic-inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999) that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42- as cations and anions and a wide range of alcohols/polyols composed of the functional groups CHn and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic-inorganic interactions in alcohol + water + salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid-liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore also applicable for other research topics.

  11. Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer

    SciTech Connect

    Purcell, James W; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S; Gray, Joe W; Wood, Kenneth W; Cases, Sylvaine

    2009-06-10

    Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein (KSP), a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have demonstrated a 9% response rate in patients with locally advanced or metastatic breast cancer, and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer we explored the activity of ispinesib alone and in combination several therapies approved for the treatment of breast cancer. We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo, and tested the ability of ispinesib to enhance the anti-tumor activity of approved therapies. In vitro, ispinesib displayed broad anti-proliferative activity against a panel of 53 breast cell-lines. In vivo, ispinesib produced regressions in each of five breast cancer models, and tumor free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the anti-tumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine, and exhibited activity comparable to paclitaxel and ixabepilone. These findings support further clinical exploration of KSP inhibitors for the treatment of breast cancer.

  12. Technosocial Modeling for Determining the Status and Nature of a State’s Nuclear Activities

    SciTech Connect

    Gastelum, Zoe N.; Harvey, Julia B.

    2009-09-25

    The International Atomic Energy Agency State Evaluation Process: The Role of Information Analysis in Reaching Safeguards Conclusions (Mathews et al. 2008), several examples of nonproliferation models using analytical software were developed that may assist the IAEA with collecting, visualizing, analyzing, and reporting information in support of the State Evaluation Process. This paper focuses on one of the examples a set of models developed in the Proactive Scenario Production, Evidence Collection, and Testing (ProSPECT) software that evaluates the status and nature of a state’s nuclear activities. The models use three distinct subject areas to perform this assessment: the presence of nuclear activities, the consistency of those nuclear activities with national nuclear energy goals, and the geopolitical context in which those nuclear activities are taking place. As a proof-of-concept for the models, a crude case study was performed. The study, which attempted to evaluate the nuclear activities taking place in Syria prior to September 2007, yielded illustrative, yet inconclusive, results. Due to the inconclusive nature of the case study results, changes that may improve the model’s efficiency and accuracy are proposed.

  13. A vascular injury model using focal heat-induced activation of endothelial cells

    PubMed Central

    Sylman, J.L.; Artzer, D.T.; Rana, K.; Neeves, K.B.

    2015-01-01

    Endothelial cells (EC) both inhibit and promote platelet function depending on their activation state. Quiescent EC inhibit platelet activation by constitutive secretion of platelet inhibitors. Activated EC promote platelet adhesion by secretion of von Willebrand factor (vWF). EC also secrete an extracellular matrix that support platelet adhesion when exposed following vascular injury. Previous studies of EC-platelet interactions under flow activate entire monolayers of cells by chemical activation. In this study, EC cultured in microfluidic channels were focally activated by heat from an underlying microelectrode. Based on finite element modeling, microelectrodes induced peak temperature increases of 10–40 °C above 37 °C after applying 5–9 V for 30 s resulting in three zones: (1) A quiescent zone corresponded to peak temperatures of less than 15 °C characterized by no EC activation or platelet accumulation. (2) An activation zone corresponding to an increase of 16–22 °C yielded EC that were viable, secreted elevated levels of vWF, and were P-selectin positive. Platelets accumulated in the retracted spaces between EC in the activation zone at a wall shear rate of 150 s−1. Experiments with blocking antibodies show that platelets adhere via GPIbα-vWF and α6β1-laminin interactions. (3) A kill zone corresponded to peak temperatures of greater than 23 °C where EC were not viable and did not support platelet adhesion. These data define heating conditions for the activation of EC, causing the secretion of vWF and the exposure of a subendothelial matrix that support platelet adhesion and aggregation. This model provides for spatially defined zones of EC activation that could be a useful tool for measuring the relative roles of anti- and prothrombotic roles of EC at the site of vascular injury. PMID:26087748

  14. Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science (Invited)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Jones, J.; Hatfield, J.; Antle, J. M.; Mutter, C.; Ruane, A. C.

    2013-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. Currently, AgMIP has over 575 participants from more than 45 countries contributing their expertise to over 30 projects and activities. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models with a strong grounding in observations of current agricultural systems around the world. The performance of agricultural models in current climate forms a key basis for our understanding of how crops will respond to future climate changes, and thus AgMIP has a particular focus on extreme heat and drought. Climate, crop model, economics, and information technology protocols are used to guide coordinated AgMIP research activities around the world, along with cross-cutting themes that address aggregation, uncertainty, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other global trends. Research activities include ongoing crop-specific assessments (e.g., maize, wheat, sugarcane, rice) and improvement activities, global gridded crop and economic model intercomparisons, and many other initiatives that allow for the better evaluation of the impacts of climate change on agricultural production and food security around the world. AgMIP activities are improving the representation of crop response to changing carbon dioxide, temperature extremes, and water

  15. Role models and social supports related to adolescent physical activity and overweight/obesity.

    PubMed

    Babey, Susan H; Wolstein, Joelle; Diamant, Allison L

    2015-07-01

    Positive role models, social and community activities, and school support are protective social factors that promote youth health and well-being. Latino, African-American, Asian, multi-racial, and low-income adolescents are less likely to experience these protective social factors compared to other groups, which may contribute to health disparities. Adolescents who identify a role model, volunteer, participate in organizations outside of school, or experience high levels of teacher or other adult support at school engage in greater physical activity and are more likely to have a healthy weight. Strategies to increase these protective social factors among adolescents could help promote healthy weight and healthy behaviors. PMID:26248387

  16. RESEARCH PAPER: A logistic model for magnetic energy storage in solar active regions

    NASA Astrophysics Data System (ADS)

    Wang, Hua-Ning; Cui, Yan-Mei; He, Han

    2009-06-01

    Previous statistical analyses of a large number of SOHO/MDI full disk longitudinal magnetograms provided a result that demonstrated how responses of solar flares to photospheric magnetic properties can be fitted with sigmoid functions. A logistic model reveals that these fitted sigmoid functions might be related to the free energy storage process in solar active regions. Although this suggested model is rather simple, the free energy level of active regions can be estimated and the probability of a solar flare with importance over a threshold can be forecast within a given time window.

  17. Cyclic, nonequilibrium models of glucocorticoid antagonism: role of activation, nuclear binding and receptor recycling.

    PubMed

    Munck, A; Holbrook, N J

    1988-10-01

    Quantitative models that have been proposed to date to explain mechanisms of glucocorticoid antagonism have generally been of the equilibrium type, involving hypothetical allosteric equilibria between active and inactive states of the receptor or the steroid-receptor complex. We describe here the agonist-antagonist relationships predicted by a nonequilibrium cyclic model that we have recently devised to account for the kinetic behavior of glucocorticoid-receptor complexes in intact rat thymus cells. This model simulates quantitatively most kinetic and steady state results that have been obtained so far. It postulates the existence of only well-established receptor species, and its kinetic parameters can in principle be determined by receptor measurements with intact cells. To calculate the steady state agonist-antagonist properties it is assumed that biological activity is proportional to the total amount of nuclear-bound complex, whether formed by agonist or antagonist. The agonist activity of a steroid is determined by the steady state ratio of nuclear-bound to total complexes it forms. This ratio varies from 0 for a pure antagonist to 1 for a pure agonist. It turns out to be independent of agonist and antagonist concentrations, and a function only of the rate constants for the reactions of the complexes formed by a steroid. Analysis of the dependence of the ratio on each rate constant shows quantitatively how each reaction in the cyclic model--activation of the nonactivated complex, nuclear binding of the activated complexes, and dissociation and recycling of activated and nuclear-bound complexes--affects antagonist properties. Steady state interactions of agonists with antagonists are found to be determined by equations that are identical to those for competition in simple equilibrium systems. Predicted dose-response relations agree qualitatively with experimentally observed relations. They are similar to those predicted by two-state allosteric models, although

  18. Segmentation of the Left Ventricle in Myocardial Perfusion SPECT Using Active Shape Model

    NASA Astrophysics Data System (ADS)

    Tan, Wooi-Haw; Besar, Rosli

    In the quantification of myocardial perfusion SPECT (MPS), numerous processes are involved. Automation is desired as it will considerably reduce the laboriousness of the underlying tasks. In this paper, we propose a segmentation scheme for the delineation of left ventricle (LV) using the Active Shape Models. Our scheme will reduce the labour-intensiveness in MPS quantification, while still allowing interactive guidance from the medical experts. The proposed scheme has been applied on clinical MPS tomograms in which it has successfully delineated the LV in 94% of the test data. In addition, it has also shown to be more suitable for LV segmentation than the rivaling Active Contour Model.

  19. Infrared sensor modeling for discrimination of ground-based human activity

    NASA Astrophysics Data System (ADS)

    Flug, Eric; Deaver, Dawne

    2008-04-01

    In an initial effort to better understand how motion in human activities influences sensor performance, Night Vision and Electronic Sensors Directorate (NVESD) developed a perception experiment that tests an observer's ability to identify an activity in static and dynamic scenes. Current sensor models such as NVTherm were calibrated using static imagery of military vehicles but, given the current battlefield environment, the focus has shifted more towards discriminating human activities. In these activities, motion plays an important role but this role is not well quantified by the model. This study looks at twelve hostile and non-hostile activities that may be performed on an urban roadside such as digging a hole, raking, surveillance with binoculars, and holding several weapons. The forced choice experiment presents the activities in both static and dynamic scenes so that the effect of adding motion can be evaluated. The results are analyzed and attempts are made at relating observer performance to various static and dynamic metrics and ultimately developing a calibration for the sensor model.

  20. Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages

    PubMed Central

    Ehlting, Christian; Thomas, Maria; Zanger, Ulrich M.; Sawodny, Oliver; Häussinger, Dieter; Bode, Johannes G.

    2016-01-01

    Macrophages are cells with remarkable plasticity. They integrate signals from their microenvironment leading to context-dependent polarization into classically (M1) or alternatively (M2) activated macrophages, representing two extremes of a broad spectrum of divergent phenotypes. Thereby, macrophages deliver protective and pro-regenerative signals towards injured tissue but, depending on the eliciting damage, may also be responsible for the generation and aggravation of tissue injury. Although incompletely understood, there is emerging evidence that macrophage polarization is critical for these antagonistic roles. To identify activation-specific expression patterns of chemokines and cytokines that may confer these distinct effects a systems biology approach was applied. A comprehensive literature-based Boolean model was developed to describe the M1 (LPS-activated) and M2 (IL-4/13-activated) polarization types. The model was validated using high-throughput transcript expression data from murine bone marrow derived macrophages. By dynamic modeling of gene expression, the chronology of pathway activation and autocrine signaling was estimated. Our results provide a deepened understanding of the physiological balance leading to M1/M2 activation, indicating the relevance of co-regulatory signals at the level of Akt1 or Akt2 that may be important for directing macrophage polarization. PMID:27464342