Science.gov

Sample records for activity monitoring devices

  1. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics.

  2. A portable multi-channel wireless NIRS device for muscle activity real-time monitoring.

    PubMed

    Yao, Pengfei; Guo, Weichao; Sheng, Xinjun; Zhang, Dingguo; Zhu, Xiangyang

    2014-01-01

    Near-infrared spectroscopy (NIRS) is a relative new technology in monitoring muscle oxygenation and hemo-dynamics. This paper presents a portable multi-channel wireless NIRS device for real-time monitoring of muscle activity. The NIRS sensor is designed miniaturized and modularized, to make multi-site monitoring convenient. Wireless communication is applied to data transmission avoiding of cumbersome wires and the whole system is highly integrated. Special care is taken to eliminate motion artifact when designing the NIRS sensor and attaching it to human skin. Besides, the system is designed with high sampling rate so as to monitor rapid oxygenation changes during muscle activities. Dark noise and long-term drift tests have been carried out, and the result indicates the device has a good performance of accuracy and stability. In vivo experiments including arterial occlusion and isometric voluntary forearm muscle contraction were performed, demonstrating the system has the ability to monitor muscle oxygenation parameters effectively even in exercise.

  3. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review

    PubMed Central

    Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart JH; Esliger, Dale W

    2016-01-01

    Background It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. Objective The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. Methods To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. Results The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time

  4. Nitinol Temperature Monitoring Devices

    DTIC Science & Technology

    1976-01-09

    AD-A021 578 NITINOL TEMPERATURE MONITORING DEVICES William J. Buehler, et al Naval Surface Weapons Center Silver Spring, Maryland 9 January 1976...LABORATORY S NITINOL TEMPERATURE MONITORING DEVICES 9 JANUARY 1976 NAVAL SURFACE WEAPONS CENTER WHITE OAK LABORATORY SILVER SPRING, MARYLAND 20910 * Approved...GOVT ACCESSION NO. 3. RECIPIIENT’S CATALOG NUMBER NSWC/WOL/TR 75-140 ____ ______ 4 TITLE (and Subtitle) 5. TYPE OF REPCRT & PERIOD COVERED Nitinol

  5. Wireless device monitoring systems and monitoring devices, and associated methods

    DOEpatents

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  6. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  7. Validation of a computed radiography device to monitor the HIV-1 RNase H activity

    NASA Astrophysics Data System (ADS)

    Esposito, F.; Fanti, V.; Marzeddu, R.; Randaccio, P.; Tramontano, E.; Zinzula, L.

    2009-08-01

    A commercially available computed radiography (CR) system for dental radiography was used to produce images from radiolabeled polyacrilamide gel electrophoresis (PAGE) assays. Typically, similar investigations require specific and expensive autoradiography devices. The CR unit was characterized in terms of sensitivity and fading by means of a 90Sr source that well simulates the experimental conditions, and then used for quantitative analyses of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) polymerase-independent ribonuclease H (RNase H) activity monitored by PAGE analysis. The results showed that the present methodology allows quantifying effectively the RNase H catalyses and that the obtained data are in good agreement with previous reference works. Finally, in order to further validate the present method in terms of relationship between enzyme activity, the rate of products formation and signal intensity, a PAGE analyses of the HIV-1 RNase H inhibition by the known diketo acid derivative RDS1643 was carried out.

  8. Fiber optic monitoring device

    DOEpatents

    Samborsky, J.K.

    1993-10-05

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

  9. A glasses-type wearable device for monitoring the patterns of food intake and facial activity

    PubMed Central

    Chung, Jungman; Chung, Jungmin; Oh, Wonjun; Yoo, Yongkyu; Lee, Won Gu; Bang, Hyunwoo

    2017-01-01

    Here we present a new method for automatic and objective monitoring of ingestive behaviors in comparison with other facial activities through load cells embedded in a pair of glasses, named GlasSense. Typically, activated by subtle contraction and relaxation of a temporalis muscle, there is a cyclic movement of the temporomandibular joint during mastication. However, such muscular signals are, in general, too weak to sense without amplification or an electromyographic analysis. To detect these oscillatory facial signals without any use of obtrusive device, we incorporated a load cell into each hinge which was used as a lever mechanism on both sides of the glasses. Thus, the signal measured at the load cells can detect the force amplified mechanically by the hinge. We demonstrated a proof-of-concept validation of the amplification by differentiating the force signals between the hinge and the temple. A pattern recognition was applied to extract statistical features and classify featured behavioral patterns, such as natural head movement, chewing, talking, and wink. The overall results showed that the average F1 score of the classification was about 94.0% and the accuracy above 89%. We believe this approach will be helpful for designing a non-intrusive and un-obtrusive eyewear-based ingestive behavior monitoring system. PMID:28134303

  10. A glasses-type wearable device for monitoring the patterns of food intake and facial activity

    NASA Astrophysics Data System (ADS)

    Chung, Jungman; Chung, Jungmin; Oh, Wonjun; Yoo, Yongkyu; Lee, Won Gu; Bang, Hyunwoo

    2017-01-01

    Here we present a new method for automatic and objective monitoring of ingestive behaviors in comparison with other facial activities through load cells embedded in a pair of glasses, named GlasSense. Typically, activated by subtle contraction and relaxation of a temporalis muscle, there is a cyclic movement of the temporomandibular joint during mastication. However, such muscular signals are, in general, too weak to sense without amplification or an electromyographic analysis. To detect these oscillatory facial signals without any use of obtrusive device, we incorporated a load cell into each hinge which was used as a lever mechanism on both sides of the glasses. Thus, the signal measured at the load cells can detect the force amplified mechanically by the hinge. We demonstrated a proof-of-concept validation of the amplification by differentiating the force signals between the hinge and the temple. A pattern recognition was applied to extract statistical features and classify featured behavioral patterns, such as natural head movement, chewing, talking, and wink. The overall results showed that the average F1 score of the classification was about 94.0% and the accuracy above 89%. We believe this approach will be helpful for designing a non-intrusive and un-obtrusive eyewear-based ingestive behavior monitoring system.

  11. Use of a consumer market activity monitoring and feedback device improves exercise capacity and activity levels in COPD.

    PubMed

    Caulfield, Brian; Kaljo, Indira; Donnelly, Seamas

    2014-01-01

    COPD is associated with a gradual decline in physical activity, which itself contributes to a worsening of the underlying condition. Strategies that improve physical activity levels are critical to halt this cycle. Wearable sensor based activity monitoring and persuasive feedback might offer a potential solution. However it is not clear just how much intervention might be needed in this regard - i.e. whether programmes need to be tailored specifically for the target clinical population or whether more simple activity monitoring and feedback solutions, such as that offered in consumer market devices, might be sufficient. This research was carried out to investigate the impact of 4 weeks of using an off the shelf consumer market activity monitoring and feedback application on measures of physical activity, exercise capacity, and health related quality of life in a population of 10 Stage I and II COPD patients. Results demonstrate a significant and positive effect on exercise capacity (measured using a 6-minute walk test) and activity levels (measured in terms of average number of steps per hour) yet no impact on health related quality of life (St Georges Respiratory Disease Questionnaire).

  12. Energy expenditure prediction via a footwear-based physical activity monitor: Accuracy and comparison to other devices

    NASA Astrophysics Data System (ADS)

    Dannecker, Kathryn

    2011-12-01

    Accurately estimating free-living energy expenditure (EE) is important for monitoring or altering energy balance and quantifying levels of physical activity. The use of accelerometers to monitor physical activity and estimate physical activity EE is common in both research and consumer settings. Recent advances in physical activity monitors include the ability to identify specific activities (e.g. stand vs. walk) which has resulted in improved EE estimation accuracy. Recently, a multi-sensor footwear-based physical activity monitor that is capable of achieving 98% activity identification accuracy has been developed. However, no study has compared the EE estimation accuracy for this monitor and compared this accuracy to other similar devices. Purpose . To determine the accuracy of physical activity EE estimation of a footwear-based physical activity monitor that uses an embedded accelerometer and insole pressure sensors and to compare this accuracy against a variety of research and consumer physical activity monitors. Methods. Nineteen adults (10 male, 9 female), mass: 75.14 (17.1) kg, BMI: 25.07(4.6) kg/m2 (mean (SD)), completed a four hour stay in a room calorimeter. Participants wore a footwear-based physical activity monitor, as well as three physical activity monitoring devices used in research: hip-mounted Actical and Actigraph accelerometers and a multi-accelerometer IDEEA device with sensors secured to the limb and chest. In addition, participants wore two consumer devices: Philips DirectLife and Fitbit. Each individual performed a series of randomly assigned and ordered postures/activities including lying, sitting (quietly and using a computer), standing, walking, stepping, cycling, sweeping, as well as a period of self-selected activities. We developed branched (i.e. activity specific) linear regression models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. Results. The shoe

  13. Continuous Monitoring of Electrical Activity of Pancreatic β-Cells Using Semiconductor-Based Biosensing Devices

    NASA Astrophysics Data System (ADS)

    Sakata, Toshiya; Sugimoto, Haruyo

    2011-02-01

    The electrical activity of rat pancreatic β-cells caused by introduction of glucose was directly and noninvasively detected using a cell-based field-effect transistor (FET). Rat pancreatic β-cells were adhered to the gate sensing surface of the cell-based FET. The principle of cell-based FETs is based on the detection of charge density changes such as pH variation at the interface between the cell membrane and the gate surface. The gate surface potential of pancreatic β-cell-based FET increased continuously after introduction of glucose at a high concentration of 10 mg/ml. This result indicates that the electrical activity of β-cells was successfully monitored on the basis of pH changes, i.e., increase in the concentration of hydrogen ions, at the cell/gate interface using the pancreatic β-cell-based FET. We assume that the pH variation based on hydrogen ion accumulation at the cell/gate interface was induced by activation of respiration accompanied by insulin secretion process following glucose addition. The platform based on the field-effect devices is suitable for application in a real-time, noninvasive, and label-free detection system for cell functional analyses.

  14. Evaluation of a bedside device to assess the activated partial thromboplastin time for heparin monitoring in infants.

    PubMed

    Klein, Richard H; van der Vorst, Marja M J; de Wilde, Rob B P; Hogenbirk, Karin; de Kam, Marieke L; Burggraaf, Jacobus

    2013-04-01

    To determine the relationship between the activated partial thromboplastin time (aPTT) measured with a standard laboratory assay and the aPTT measured with a bedside device in infants on heparin therapy after cardiothoracic surgery. Twenty infants aged below 1 year who were on heparin therapy were included. Exclusion criteria were prematurity, dysmaturity and the use of anticoagulants other than heparin. Nineteen samples were obtained from four adults in intensive care who were on heparin. The aPTT values were analyzed with the Coaguchek Pro/DM bedside device (aPTTbed) and compared with the aPTT values obtained from the laboratory Electra 1800C coagulation analyzer (aPTTlab). Correlation analysis was performed by linear regression. The agreement was calculated using Bland-Altman analysis. The correlation coefficient of samples obtained from infants was lower (r = 0.48) compared with samples from adults (r = 0.85). A substantial positive bias (27 s) and scatter [95% confidence interval (CI) -11; +65 s) was found. The bias showed a genuine trend to increase at higher aPTT values (r = 0.90; P < 0.001). The bedside device overestimates the aPTT in infants treated with heparin. The disagreement between the bedside device and laboratory increases at higher aPTTs. Bedside devices should not be used to monitor heparin therapy in infants in intensive care.

  15. Fluid flow monitoring device

    DOEpatents

    McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel

    1993-01-01

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  16. Power consumption monitoring using additional monitoring device

    SciTech Connect

    Truşcă, M. R. C. Albert, Ş. Tudoran, C. Soran, M. L. Fărcaş, F.; Abrudean, M.

    2013-11-13

    Today, emphasis is placed on reducing power consumption. Computers are large consumers; therefore it is important to know the total consumption of computing systems. Since their optimal functioning requires quite strict environmental conditions, without much variation in temperature and humidity, reducing energy consumption cannot be made without monitoring environmental parameters. Thus, the present work uses a multifunctional electric meter UPT 210 for power consumption monitoring. Two applications were developed: software which carries meter readings provided by electronic and programming facilitates remote device and a device for temperature monitoring and control. Following temperature variations that occur both in the cooling system, as well as the ambient, can reduce energy consumption. For this purpose, some air conditioning units or some computers are stopped in different time slots. These intervals were set so that the economy is high, but the work's Datacenter is not disturbed.

  17. Monitored separation device

    NASA Technical Reports Server (NTRS)

    Jackson, George William (Inventor); Willson, Richard Coale (Inventor); Fox, George Edward (Inventor)

    2011-01-01

    A device for separating and purifying useful quantities of particles comprises: a. an anolyte reservoir connected to an anode, the anolyte reservoir containing an electrophoresis buffer; b. a catholyte reservoir connected to a cathode, the catholyte reservoir also containing the electrophoresis buffer; c. a power supply connected to the anode and to the cathode; d. a column having a first end inserted into the anolyte reservoir, a second end inserted into the catholyte reservoir, and containing a separation medium; e. a light source; f. a first optical fiber having a first fiber end inserted into the separation medium, and having a second fiber end connected to the light source; g. a photo detector; h. a second optical fiber having a third fiber end inserted into the separation medium, and having a fourth fiber end connected to the photo detector; and i. an ion-exchange membrane in the anolyte reservoir.

  18. Estimating Accuracy at Exercise Intensities: A Comparative Study of Self-Monitoring Heart Rate and Physical Activity Wearable Devices

    PubMed Central

    Dooley, Erin E; Golaszewski, Natalie M

    2017-01-01

    Background Physical activity tracking wearable devices have emerged as an increasingly popular method for consumers to assess their daily activity and calories expended. However, whether these wearable devices are valid at different levels of exercise intensity is unknown. Objective The objective of this study was to examine heart rate (HR) and energy expenditure (EE) validity of 3 popular wrist-worn activity monitors at different exercise intensities. Methods A total of 62 participants (females: 58%, 36/62; nonwhite: 47% [13/62 Hispanic, 8/62 Asian, 7/62 black/ African American, 1/62 other]) wore the Apple Watch, Fitbit Charge HR, and Garmin Forerunner 225. Validity was assessed using 2 criterion devices: HR chest strap and a metabolic cart. Participants completed a 10-minute seated baseline assessment; separate 4-minute stages of light-, moderate-, and vigorous-intensity treadmill exercises; and a 10-minute seated recovery period. Data from devices were compared with each criterion via two-way repeated-measures analysis of variance and Bland-Altman analysis. Differences are expressed in mean absolute percentage error (MAPE). Results For the Apple Watch, HR MAPE was between 1.14% and 6.70%. HR was not significantly different at the start (P=.78), during baseline (P=.76), or vigorous intensity (P=.84); lower HR readings were measured during light intensity (P=.03), moderate intensity (P=.001), and recovery (P=.004). EE MAPE was between 14.07% and 210.84%. The device measured higher EE at all stages (P<.01). For the Fitbit device, the HR MAPE was between 2.38% and 16.99%. HR was not significantly different at the start (P=.67) or during moderate intensity (P=.34); lower HR readings were measured during baseline, vigorous intensity, and recovery (P<.001) and higher HR during light intensity (P<.001). EE MAPE was between 16.85% and 84.98%. The device measured higher EE at baseline (P=.003), light intensity (P<.001), and moderate intensity (P=.001). EE was not

  19. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

    PubMed Central

    El-Amrawy, Fatema

    2015-01-01

    Objectives The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Methods Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. Results The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. Conclusions The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure. PMID:26618039

  20. Real-time and noninvasive monitoring of respiration activity of fertilized ova using semiconductor-based biosensing devices.

    PubMed

    Sakata, Toshiya; Makino, Izumi; Kita, Sayaka

    2011-05-01

    In this report, we propose a novel evaluation method of embryo activity, describing the real-time and noninvasive electrical monitoring of embryo activity, caused by fertilization of the sea urchin, using a biologically-coupled field-effect transistor (bio-FET) comprised of semiconductor-based biosensing devices. The detection principle of bio-FET is based on the potentiometric detection of charge density change at the gate insulator, which includes changes of hydrogen ion concentration corresponding to pH variation. The surface potential at the gate surface of the bio-FET increased after the introduction of sperms into the ova, resulting in fertilization on the gate sensing area. The positive shift of surface potential indicates the increase of positive charges of hydrogen ions generated by dissolved carbon dioxide in artificial sea water based on respiration activity of the embryo. Moreover, the electrical signal of embryo activity is suppressed due to the inhibition of cytokinesis by introduction of cytochalasin B. The platform based on the bio-FET is expected to be a real-time, label-free and noninvasive detection system, not only in fundamental studies of embryo activity but also in the evaluation of embryo quality for in vitro fertilization.

  1. Device for monitoring cell voltage

    DOEpatents

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  2. Monitoring Animal Activity Rhythms in the Laboratory: Four Easily Assembled Devices.

    ERIC Educational Resources Information Center

    Merritt, Sheridan V.

    1989-01-01

    The use of actographs for studying animal activity is discussed. Described are running recorders for rodents, perching and feeding recorders for birds, and tilting box recorders for studying the movement of reptiles, amphibians, and arthropods. (CW)

  3. Optical Structural Health Monitoring Device

    NASA Technical Reports Server (NTRS)

    Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.

    2010-01-01

    This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with

  4. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function

    PubMed Central

    Jain, Abhishek; Graveline, Amanda; Waterhouse, Anna; Vernet, Andyna; Flaumenhaft, Robert; Ingber, Donald E.

    2016-01-01

    Accurate assessment of blood haemostasis is essential for the management of patients who use extracorporeal devices, receive anticoagulation therapy or experience coagulopathies. However, current monitoring devices do not measure effects of haemodynamic forces that contribute significantly to platelet function and thrombus formation. Here we describe a microfluidic device that mimics a network of stenosed arteriolar vessels, permitting evaluation of blood clotting within small sample volumes under pathophysiological flow. By applying a clotting time analysis based on a phenomenological mathematical model of thrombus formation, coagulation and platelet function can be accurately measured in vitro in patient blood samples. When the device is integrated into an extracorporeal circuit in pig endotoxemia or heparin therapy models, it produces real-time readouts of alterations in coagulation ex vivo that are more reliable than standard clotting assays. Thus, this disposable device may be useful for personalized diagnostics and for real-time surveillance of antithrombotic therapy in clinic. PMID:26733371

  5. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function.

    PubMed

    Jain, Abhishek; Graveline, Amanda; Waterhouse, Anna; Vernet, Andyna; Flaumenhaft, Robert; Ingber, Donald E

    2016-01-06

    Accurate assessment of blood haemostasis is essential for the management of patients who use extracorporeal devices, receive anticoagulation therapy or experience coagulopathies. However, current monitoring devices do not measure effects of haemodynamic forces that contribute significantly to platelet function and thrombus formation. Here we describe a microfluidic device that mimics a network of stenosed arteriolar vessels, permitting evaluation of blood clotting within small sample volumes under pathophysiological flow. By applying a clotting time analysis based on a phenomenological mathematical model of thrombus formation, coagulation and platelet function can be accurately measured in vitro in patient blood samples. When the device is integrated into an extracorporeal circuit in pig endotoxemia or heparin therapy models, it produces real-time readouts of alterations in coagulation ex vivo that are more reliable than standard clotting assays. Thus, this disposable device may be useful for personalized diagnostics and for real-time surveillance of antithrombotic therapy in clinic.

  6. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  7. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    DOEpatents

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  8. Activity monitoring using a mHealth device and correlations with psychopathology in patients with chronic schizophrenia.

    PubMed

    Shin, Seunghwan; Yeom, Chan-Woo; Shin, Cheolmin; Shin, Jae-Hyun; Jeong, Jae Hoon; Shin, Jung Uk; Lee, Young Ryeol

    2016-12-30

    There are few studies of mobile-Health (mHealth) device application with schizophrenic patients. We aimed to quantitatively assess patient's activity and the relationship between their physical activity and the severity of their psychopathologies. Then we attempted to identify the patients who required intervention and evaluated the feasibility of using the mHealth device. A total of 61 of the 76 available hospitalized patients with chronic schizophrenia who participated in the activity programs were enrolled. They wore a mHealth device for a week to assess their activity (steps/day). The Positive and Negative Syndrome Scale (PANSS) was completed by the subjects. As a result, the positive subscale of the PANSS and the positive and negative factors of the PANSS 5-factor structure showed a predictive value for low levels of physical activity. The group of subjects with a high total PANSS score had a significantly lower level of physical activity than the other groups. In conclusion, physical activity showed a significant association with positive symptoms as well as negative symptoms. The mHealth device showed relatively good feasibility for schizophrenic patients. We should pay more attention to the activity of patients with high PANSS scores.

  9. Sensitive monitoring of photocarrier densities in the active layer of a photovoltaic device with time-resolved terahertz reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamashita, Genki; Matsubara, Eiichi; Nagai, Masaya; Kim, Changsu; Akiyama, Hidefumi; Kanemitsu, Yoshihiko; Ashida, Masaaki

    2017-02-01

    We demonstrate the sensitive measurement of photocarriers in an active layer of a GaAs-based photovoltaic device using time-resolved terahertz reflection spectroscopy. We found that the reflection dip caused by Fabry-Pérot interference is strongly affected by the carrier profile in the active layer of the p-i-n structure. The experimental results show that this method is suitable for quantitative evaluation of carrier dynamics in active layers of solar cells under operating conditions.

  10. A multimodal optical and electrochemical device for monitoring surface reactions: redox active surfaces in porous silicon Rugate filters.

    PubMed

    Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin

    2012-12-21

    Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.

  11. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  12. Usage monitoring of electrical devices in a smart home.

    PubMed

    Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A

    2011-01-01

    Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.

  13. Novel Silicon Devices for Radiation Therapy Monitoring

    NASA Astrophysics Data System (ADS)

    Bruzzi, Mara

    2016-02-01

    Modern radiotherapy techniques pose specific constraints in radiation-monitoring and dosimetry due to the occurrence of small radiation fields with high dose gradients, variation in space and time of the dose rate, variation in space and time of the beam energy spectrum. Novel devices coping with these strict conditions are needed. This paper reviews the most advanced technologies developed with silicon-based materials for clinical radiotherapy. Novel Si diodes as Pt-doped Si, epitaxial Si as well as thin devices have optimized performance, their response being independent of the accumulated dose, thus ensuring radiation tolerance and no need of recalibration. Monolithic devices based on segmented Si detectors can be easily tailored to optimize spatial resolution in the large active areas required in clinical radiotherapy. In particular, a monolithic device based on epitaxial p-type silicon, characterized by high spatial resolution and ability to directly measure temporal variations in dose modulation proved to be best viable solution for pre-treatment verifications in IMRT fields.

  14. Microfabricated fuel heating value monitoring device

    DOEpatents

    Robinson, Alex L.; Manginell, Ronald P.; Moorman, Matthew W.

    2010-05-04

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  15. A new device for monitoring individual activity rhythms of honey bees reveals critical effects of the social environment on behavior.

    PubMed

    Beer, Katharina; Steffan-Dewenter, Ingolf; Härtel, Stephan; Helfrich-Förster, Charlotte

    2016-08-01

    Chronobiological studies of individual activity rhythms in social insects can be constrained by the artificial isolation of individuals from their social context. We present a new experimental set-up that simultaneously measures the temperature rhythm in a queen-less but brood raising mini colony and the walking activity rhythms of singly kept honey bees that have indirect social contact with it. Our approach enables monitoring of individual bees in the social context of a mini colony under controlled laboratory conditions. In a pilot experiment, we show that social contact with the mini colony improves the survival of monitored young individuals and affects locomotor activity patterns of young and old bees. When exposed to conflicting Zeitgebers consisting of a light-dark (LD) cycle that is phase-delayed with respect to the mini colony rhythm, rhythms of young and old bees are socially synchronized with the mini colony rhythm, whereas isolated bees synchronize to the LD cycle. We conclude that the social environment is a stronger Zeitgeber than the LD cycle and that our new experimental set-up is well suited for studying the mechanisms of social entrainment in honey bees.

  16. Main Pipelines Corrosion Monitoring Device

    NASA Astrophysics Data System (ADS)

    Anatoliy, Bazhenov; Galina, Bondareva; Natalia, Grivennaya; Sergey, Malygin; Mikhail, Goryainov

    2017-01-01

    The aim of the article is to substantiate the technical solution for the problem of monitoring corrosion changes in oil and gas pipelines with use (using) of an electromagnetic NDT method. Pipeline wall thinning under operating conditions can lead to perforations and leakage of the product to be transported outside the pipeline. In most cases there is danger for human life and environment. Monitoring of corrosion changes in pipeline inner wall under operating conditions is complicated because pipelines are mainly made of structural steels with conductive and magnetic properties that complicate test signal passage through the entire thickness of the object under study. The technical solution of this problem lies in monitoring of the internal corrosion changes in pipes under operating conditions in order to increase safety of pipelines by automated prediction of achieving the threshold pre-crash values due to corrosion.

  17. Adherence with physical activity monitoring wearable devices in a community-based population: observations from the Washington, D.C., Cardiovascular Health and Needs Assessment.

    PubMed

    Yingling, Leah R; Mitchell, Valerie; Ayers, Colby R; Peters-Lawrence, Marlene; Wallen, Gwenyth R; Brooks, Alyssa T; Troendle, James F; Adu-Brimpong, Joel; Thomas, Samantha; Henry, JaWanna; Saygbe, Johnetta N; Sampson, Dana M; Johnson, Allan A; Graham, Avis P; Graham, Lennox A; Wiley, Kenneth L; Powell-Wiley, Tiffany

    2017-01-17

    Wearable mobile health (mHealth) technologies offer approaches for targeting physical activity (PA) in resource-limited, community-based interventions. We sought to explore user characteristics of PA tracking, wearable technology among a community-based population within a health and needs assessment. In 2014-2015, we conducted the Washington, D.C., Cardiovascular Health and Needs Assessment in predominantly African-American churches among communities with higher obesity rates and lower household incomes. Participants received a mHealth PA monitor and wirelessly uploaded PA data weekly to church data collection hubs. Participants (n = 99) were 59 ± 12 years, 79% female, and 99% African-American, with a mean body mass index of 33 ± 7 kg/m(2). Eighty-one percent of participants uploaded PA data to the hub and were termed "PA device users." Though PA device users were more likely to report lower household incomes, no differences existed between device users and non-users for device ownership or technology fluency. Findings suggest that mHealth systems with a wearable device and data collection hub may feasibly target PA in resource-limited communities.

  18. 21 CFR 882.1620 - Intracranial pressure monitoring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intracranial pressure monitoring device. 882.1620... pressure monitoring device. (a) Identification. An intracranial pressure monitoring device is a device used for short-term monitoring and recording of intracranial pressures and pressure trends. The...

  19. 21 CFR 882.1620 - Intracranial pressure monitoring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intracranial pressure monitoring device. 882.1620... pressure monitoring device. (a) Identification. An intracranial pressure monitoring device is a device used for short-term monitoring and recording of intracranial pressures and pressure trends. The...

  20. 21 CFR 882.1620 - Intracranial pressure monitoring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intracranial pressure monitoring device. 882.1620... pressure monitoring device. (a) Identification. An intracranial pressure monitoring device is a device used for short-term monitoring and recording of intracranial pressures and pressure trends. The...

  1. Silicon active photonic devices

    NASA Astrophysics Data System (ADS)

    Dimitropoulos, Dimitrios

    Active photonic devices utilizing the optical nonlinearities of silicon have emerged in the last 5 years and the effort for commercial photonic devices in the material that has been the workhorse of electronics has been building up since. This dissertation presents the theory for some of these devices. We are concerned herein with CW lasers, amplifiers and wavelength converters that are based on the Raman effect. There have already been cursory experimental demonstrations of these devices and some of their limitations are already apparent. Most of the limitations observed are because of the appearance of effects that are competing with stimulated Raman scattering. Under the high optical powers that are necessary for the Raman effect (tens to hundrends of mW's) the process of optical two-photon (TPA) absorption occurs. The absorption of optical power that it causes itself is weak but in the process electrons and holes are generated which can further absorb light through the free-carrier absorption effect (FCA). The effective "lifetime" that these carriers have determines the magnitude of the FCA loss. We present a model for the carrier lifetime in Silicon-On-Insulator (SOI) waveguides and numerical simulations to understand how this critical parameter varies and how it can be controlled. A p-i-n junction built along SOI waveguides can help achieve lifetime of the order of 20--100 ps but the price one has to pay is on-chip electrical power consumption on the order of 100's of mWs. We model CW Raman lasers and we find that the carrier lifetime reduces the output power. If the carrier lifetime exceeds a certain "critical" value optical losses become overwhelming and lasing is impossible. As we show, in amplifiers, the nonlinear loss does not only result in diminished gain, but also in a higher noise figure. Finally the effect of Coherent anti-Stokes Raman scattering (CARS) is examined. The effect is important because with a pump frequency at 1434nm coherent power

  2. Active Sampling Device for Determining Pollutants in Surface and Pore Water – the In Situ Sampler for Biphasic Water Monitoring

    NASA Astrophysics Data System (ADS)

    Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.

    2016-02-01

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040–0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.

  3. Active Sampling Device for Determining Pollutants in Surface and Pore Water – the In Situ Sampler for Biphasic Water Monitoring

    PubMed Central

    Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.

    2016-01-01

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040–0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction. PMID:26905924

  4. Wireless communication devices and movement monitoring methods

    DOEpatents

    Skorpik, James R.

    2006-10-31

    Wireless communication devices and movement monitoring methods are described. In one aspect, a wireless communication device includes a housing, wireless communication circuitry coupled with the housing and configured to communicate wireless signals, movement circuitry coupled with the housing and configured to provide movement data regarding movement sensed by the movement circuitry, and event processing circuitry coupled with the housing and the movement circuitry, wherein the event processing circuitry is configured to process the movement data, and wherein at least a portion of the event processing circuitry is configured to operate in a first operational state having a different power consumption rate compared with a second operational state.

  5. Device Would Monitor Body Parameters Continuously

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr.

    1995-01-01

    Proposed miniature electronic circuit continuously measures temperature of human subject. Once mounted on subject's skin with medical adhesive tape, electronic thermometer remains in thermal equilibrium with subject's body; thereafter, no need to wait until thermometer reaches body temperature before taking reading. Design provides for switches used to set alarm alerting medical attendants if subject's temperature exceeds critical level. For use on very young child, electronic thermometer sewed into shirt or other suitable garment; device held in contact with skin, and child could not swallow it. Replacement of sensor and computing algorithm changes temperature monitor to cardiorespiratory monitor.

  6. Paper-based CRP Monitoring Devices

    PubMed Central

    Lin, Shang-Chi; Tseng, Chung-Yuh; Lai, Po-Liang; Hsu, Min-Yen; Chu, Shueh-Yao; Tseng, Fan-Gang; Cheng, Chao-Min

    2016-01-01

    Here, we discuss the development of a paper-based diagnostic device that is inexpensive, portable, easy-to-use, robust, and capable of running simultaneous tests to monitor a relevant inflammatory protein for clinical diagnoses i.e. C-reactive protein (CRP). In this study, we first attempted to make a paper-based diagnostic device via the wax printing method, a process that was used in previous studies. This device has two distinct advantages: 1) reduced manufacturing and assay costs and operation duration via using wax printing method to define hydrophobic boundaries (for fluidic devices or general POC devices); and, 2) the hydrophilicity of filter paper, which is used to purify and chromatographically correct interference caused by whole blood components with a tiny amount of blood sample (only 5 μL). Diagnosis was based on serum stain length retained inside the paper channels of our device. This is a balanced function between surface tension and chromatographic force following immune reactions (CRP assays) with a paper-embedded biomarker. PMID:27910861

  7. Paper-based CRP Monitoring Devices

    NASA Astrophysics Data System (ADS)

    Lin, Shang-Chi; Tseng, Chung-Yuh; Lai, Po-Liang; Hsu, Min-Yen; Chu, Shueh-Yao; Tseng, Fan-Gang; Cheng, Chao-Min

    2016-12-01

    Here, we discuss the development of a paper-based diagnostic device that is inexpensive, portable, easy-to-use, robust, and capable of running simultaneous tests to monitor a relevant inflammatory protein for clinical diagnoses i.e. C-reactive protein (CRP). In this study, we first attempted to make a paper-based diagnostic device via the wax printing method, a process that was used in previous studies. This device has two distinct advantages: 1) reduced manufacturing and assay costs and operation duration via using wax printing method to define hydrophobic boundaries (for fluidic devices or general POC devices); and, 2) the hydrophilicity of filter paper, which is used to purify and chromatographically correct interference caused by whole blood components with a tiny amount of blood sample (only 5 μL). Diagnosis was based on serum stain length retained inside the paper channels of our device. This is a balanced function between surface tension and chromatographic force following immune reactions (CRP assays) with a paper-embedded biomarker.

  8. Bioharness™ Multivariable Monitoring Device: Part. II: Reliability

    PubMed Central

    Johnstone, James A.; Ford, Paul A.; Hughes, Gerwyn; Watson, Tim; Garrett, Andrew T.

    2012-01-01

    The Bioharness™ monitoring system may provide physiological information on human performance but the reliability of this data is fundamental for confidence in the equipment being used. The objective of this study was to assess the reliability of each of the 5 Bioharness™ variables using a treadmill based protocol. 10 healthy males participated. A between and within subject design to assess the reliability of Heart rate (HR), Breathing Frequency (BF), Accelerometry (ACC) and Infra-red skin temperature (ST) was completed via a repeated, discontinuous, incremental treadmill protocol. Posture (P) was assessed by a tilt table, moved through 160°. Between subject data reported low Coefficient of Variation (CV) and strong correlations(r) for ACC and P (CV< 7.6; r = 0.99, p < 0.01). In contrast, HR and BF (CV~19.4; r~0.70, p < 0.01) and ST (CV 3.7; r = 0.61, p < 0.01), present more variable data. Intra and inter device data presented strong relationships (r > 0.89, p < 0.01) and low CV (<10.1) for HR, ACC, P and ST. BF produced weaker relationships (r < 0.72) and higher CV (<17.4). In comparison to the other variables BF variable consistently presents less reliability. Global results suggest that the Bioharness™ is a reliable multivariable monitoring device during laboratory testing within the limits presented. Key pointsHeart rate and breathing frequency data increased in variance at higher velocities (i.e. ≥ 10 km.h-1)In comparison to the between subject testing, the intra and inter reliability presented good reliability in data suggesting placement or position of device relative to performer could be important for data collectionUnderstanding a devices variability in measurement is important before it can be used within an exercise testing or monitoring setting PMID:24149347

  9. MCO Monitoring activity description

    SciTech Connect

    SEXTON, R.A.

    1998-11-09

    Spent Nuclear Fuel remaining from Hanford's N-Reactor operations in the 1970s has been stored under water in the K-Reactor Basins. This fuel will be repackaged, dried and stored in a new facility in the 200E Area. The safety basis for this process of retrieval, drying, and interim storage of the spent fuel has been established. The monitoring of MCOS in dry storage is a currently identified issue in the SNF Project. This plan outlines the key elements of the proposed monitoring activity. Other fuel stored in the K-Reactor Basins, including SPR fuel, will have other monitoring considerations and is not addressed by this activity description.

  10. Toward flexible and wearable human-interactive health-monitoring devices.

    PubMed

    Takei, Kuniharu; Honda, Wataru; Harada, Shingo; Arie, Takayuki; Akita, Seiji

    2015-03-11

    This Progress Report introduces flexible wearable health-monitoring devices that interact with a person by detecting from and stimulating the body. Interactive health-monitoring devices should be highly flexible and attach to the body without awareness like a bandage. This type of wearable health-monitoring device will realize a new class of electronics, which will be applicable not only to health monitoring, but also to other electrical devices. However, to realize wearable health-monitoring devices, many obstacles must be overcome to economically form the active electrical components on a flexible substrate using macroscale fabrication processes. In particular, health-monitoring sensors and curing functions need to be integrated. Here recent developments and advancements toward flexible health-monitoring devices are presented, including conceptual designs of human-interactive devices.

  11. Recent Developments in Home Sleep-Monitoring Devices

    PubMed Central

    Kelly, Jessica M.; Strecker, Robert E.; Bianchi, Matt T.

    2012-01-01

    Improving our understanding of sleep physiology and pathophysiology is an important goal for both medical and general wellness reasons. Although the gold standard for assessing sleep remains the laboratory polysomnogram, there is an increasing interest in portable monitoring devices that provide the opportunity for assessing sleep in real-world environments such as the home. Portable devices allow repeated measurements, evaluation of temporal patterns, and self-experimentation. We review recent developments in devices designed to monitor sleep-wake activity, as well as monitors designed for other purposes that could in principle be applied in the field of sleep (such as cardiac or respiratory sensing). As the body of supporting validation data grows, these devices hold promise for a variety of health and wellness goals. From a clinical and research standpoint, the capacity to obtain longitudinal sleep-wake data may improve disease phenotyping, individualized treatment decisions, and individualized health optimization. From a wellness standpoint, commercially available devices may allow individuals to track their own sleep with the goal of finding patterns and correlations with modifiable behaviors such as exercise, diet, and sleep aids. PMID:23097718

  12. Ambulatory Seizure Monitoring: From Concept to Prototype Device

    PubMed Central

    Myers, Mark H.; Threatt, Madeline; Solies, Karsten M.; McFerrin, Brent M.; Hopf, Lindsey B.; Birdwell, J. Douglas; Sillay, Karl A.

    2016-01-01

    Background The brain, made up of billions of neurons and synapses, is the marvelous core of human thought, action and memory. However, if neuronal activity manifests into abnormal electrical activity across the brain, neural behavior may exhibit synchronous neural firings known as seizures. If unprovoked seizures occur repeatedly, a patient may be diagnosed with epilepsy. Purpose The scope of this project is to develop an ambulatory seizure monitoring system that can be used away from a hospital, making it possible for the user to stay at home, and primary care personnel to monitor a patient's seizure activity in order to provide deeper analysis of the patient's condition and apply personalized intervention techniques. Methods The ambulatory seizure monitoring device is a research device that has been developed with the objective of acquiring a portable, clean electroencephalography (EEG) signal and transmitting it wirelessly to a handheld device for processing and notification. Result This device is comprised of 4 phases: acquisition, transmission, processing and notification. During the acquisition stage, the EEG signal is detected using EEG electrodes; these signals are filtered and amplified before being transmitted in the second stage. The processing stage encompasses the signal processing and seizure prediction. A notification is sent to the patient and designated contacts, given an impending seizure. Each of these phases is comprised of various design components, hardware and software. The experimental findings illustrate that there may be a triggering mechanism through the phase lock value method that enables seizure prediction. Conclusion The device addresses the need for long-term monitoring of the patient's seizure condition in order to provide the clinician a better understanding of the seizure's duration and frequency and ultimately provide the best remedy for the patient. PMID:27647960

  13. Monitoring Device Safety in Interventional Cardiology

    PubMed Central

    Matheny, Michael E.; Ohno-Machado, Lucila; Resnic, Frederic S.

    2006-01-01

    Objective: A variety of postmarketing surveillance strategies to monitor the safety of medical devices have been supported by the U.S. Food and Drug Administration, but there are few systems to automate surveillance. Our objective was to develop a system to perform real-time monitoring of safety data using a variety of process control techniques. Design: The Web-based Data Extraction and Longitudinal Time Analysis (DELTA) system imports clinical data in real-time from an electronic database and generates alerts for potentially unsafe devices or procedures. The statistical techniques used are statistical process control (SPC), logistic regression (LR), and Bayesian updating statistics (BUS). Measurements: We selected in-patient mortality following implantation of the Cypher drug-eluting coronary stent to evaluate our system. Data from the University of Michigan Consortium Bare-Metal Stent Study was used to calculate the event rate alerting boundaries. Data analysis was performed on local catheterization data from Brigham and Women's Hospital from July 1, 2003, shortly after the Cypher release, to December 31, 2004, including 2,270 cases with 27 observed deaths. Results: The single-stratum SPC had alerts in months 4 and 10. The multistrata SPC had alerts in months 5, 10, and 18 in the moderate-risk stratum, and months 1, 4, 7, and 10 in the high-risk stratum. The only cumulative alerts were in the first month for the high-risk stratum of the multistrata SPC. The LR method showed no monthly or cumulative alerts. The BUS method showed an alert in the first month for the high-risk stratum. Conclusion: The system performed adequately within the Brigham and Women's Hospital Intranet environment based on the design goals. All three cumulative methods agreed that the overall observed event rates were not significantly higher for the new medical device than for a closely related medical device and were consistent with the observation that the initial concerns about this

  14. Smartphone-Based Electrocardiographic and Cardiac Implantable Electronic Device Monitoring.

    PubMed

    Mittal, Suneet

    The field of arrhythmia monitoring is changing rapidly. The rapid advent of technology in combination with marked improvements in cellular communication and an increased desire by patients to be actively engaged in their care has ushered in a new era of clinical care. Today, physicians need to think about their patients outside the traditional in-office setting. Two technologies that embody this changing landscape are smartphone-based electrocardiographic (ECG) monitors and remote monitoring of cardiac implantable electronic devices (CIEDs). Smartphone-based ECG monitors allow the patient to assume a greater stake in their own care. They purchase the monitor, couple it to their smartphone, own it forever, and can capture a representative ECG whenever they want to assess symptoms. The physician needs to accept that this approach is vastly different from the use of standard ambulatory external ECG monitors that have been used for years in clinical practice. A similar paradigm shift is underway with respect to the care of the CIED patient. Remote follow-up was once considered an acceptable alternative to in-office calendar-based follow-up of CIEDs. Today, guidelines recommend remote monitoring to be the preferred method for device follow-up. Remote monitoring is tailor-made for the current evolution to a value-based healthcare system, having been demonstrated to reduce scheduled office visits, hospital admissions, and mortality. It is now time to educate patients and physicians on the value of remote monitoring and to ensure that clinical practices develop the infrastructure needed to enroll, monitor, and manage their patients.

  15. Temperature monitoring device and thermocouple assembly therefor

    SciTech Connect

    Grimm, Noel P.; Bauer, Frank I.; Bengel, Thomas G.; Kothmann, Richard E.; Mavretish, Robert S.; Miller, Phillip E.; Nath, Raymond J.; Salton, Robert B.

    1991-01-01

    A temperature monitoring device for measuring the temperature at a surface of a body, composed of: at least one first thermocouple and a second thermocouple; support members supporting the thermocouples for placing the first thermocouple in contact with the body surface and for maintaining the second thermocouple at a defined spacing from the body surface; and a calculating circuit connected to the thermocouples for receiving individual signals each representative of the temperature reading produced by a respective one of the first and second thermocouples and for producing a corrected temperature signal having a value which represents the temperature of the body surface and is a function of the difference between the temperature reading produced by the first thermocouple and a selected fraction of the temperature reading provided by the second thermocouple.

  16. Monitoring elbow isometric contraction by novel wearable fabric sensing device

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Tao, Xiaoming; So, Raymond C. H.; Shu, Lin; Yang, Bao; Li, Ying

    2016-12-01

    Fabric-based wearable technology is highly desirable in sports, as it is light, flexible, soft, and comfortable with little interference to normal sport activities. It can provide accurate information on the in situ deformation of muscles in a continuous and wireless manner. During elbow flexion in isometric contraction, upper arm circumference increases with the contraction of elbow flexors, and it is possible to monitor the muscles’ contraction by limb circumferential strains. This paper presents a new wireless wearable anthropometric monitoring device made from fabric strain sensors for the human upper arm. The materials, structural design and calibration of the device are presented. Using an isokinetic testing system (Biodex3®) and the fabric monitoring device simultaneously, in situ measurements were carried out on elbow flexors in isometric contraction mode with ten subjects for a set of positions. Correlations between the measured values of limb circumferential strain and normalized torque were examined, and a linear relationship was found during isometric contraction. The average correlation coefficient between them is 0.938 ± 0.050. This wearable anthropometric device thus provides a useful index, the limb circumferential strain, for upper arm muscle contraction in isometric mode.

  17. 21 CFR 882.1620 - Intracranial pressure monitoring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intracranial pressure monitoring device. 882.1620 Section 882.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1620...

  18. 21 CFR 882.1620 - Intracranial pressure monitoring device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intracranial pressure monitoring device. 882.1620 Section 882.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1620...

  19. Monitoring international nuclear activity

    SciTech Connect

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  20. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  1. Biofouling detection monitoring devices: status assessment. Final report

    SciTech Connect

    Hillman, R.E.; Anson, D.; Corliss, J.M.; Vigon, B.W.; Gray, R.H.; Bomelburg, H.J.

    1985-03-01

    An inventory of devices to detect and monitor biofouling in power plant condenser systems was prepared. The inventory was developed through a review of manufacturers' product information brochures, a general literature review, and limited personal contact with users and manufacturers. Two macrofouling and seventeen microfouling detection devices were reviewed. A summary analysis of the principal features of each device was prepared. Macrofouling devices are generally simple devices located at or near cooling water intakes. They monitor the growth of larger organisms such as mussels, barnacles, and large seaweeds. Microfouling detectors are usually located in or near the condenser tubes. They detect and monitor the growth of slime films on the tubes. Some of the devices measure changes in heat transfer or pressure drop in the condenser tubes. Other types include condenser simulators, biofilm samplers, or devices that measure the acoustic properties of the fouling films. Most devices are still in the development stage. Of the few available for general use, the type that measures heat transfer and/or pressure drop are developed to a greater degree than the other types. Recommendations for further research into development of a biofouling detection and monitoring devices include a side-by-side field comparison of selected devices, and the continued development of an effective acoustic device.

  2. Activity monitor accuracy in persons using canes.

    PubMed

    Wendland, Deborah Michael; Sprigle, Stephen H

    2012-01-01

    The StepWatch activity monitor has not been validated on multiple indoor and outdoor surfaces in a population using ambulation aids. The aims of this technical report are to report on strategies to configure the StepWatch activity monitor on subjects using a cane and to report the accuracy of both leg-mounted and cane-mounted StepWatch devices on people ambulating over different surfaces while using a cane. Sixteen subjects aged 67 to 85 yr (mean 75.6) who regularly use a cane for ambulation participated. StepWatch calibration was performed by adjusting sensitivity and cadence. Following calibration optimization, accuracy was tested on both the leg-mounted and cane-mounted devices on different surfaces, including linoleum, sidewalk, grass, ramp, and stairs. The leg-mounted device had an accuracy of 93.4% across all surfaces, while the cane-mounted device had an aggregate accuracy of 84.7% across all surfaces. Accuracy of the StepWatch on the stairs was significantly less accurate (p < 0.001) when comparing surfaces using repeated measures analysis of variance. When monitoring community mobility, placement of a StepWatch on a person and his/her ambulation aid can accurately document both activity and device use.

  3. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    DOEpatents

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  4. Development of a small wireless device for perspiration monitoring.

    PubMed

    Ogai, Kazuhiro; Fukuoka, Masakazu; Kitamura, Kei-ichiro; Uchide, Kiyoshi; Nemoto, Tetsu

    2016-04-01

    A small and wireless device that can capture the temporal pattern of perspiration by a novel structure of water vapor collection combined with reusable desiccant has been developed. The novel device consists of a small cylindrical case with a temperature/relative humidity sensor, battery-driven data logger, and silica gel (desiccant). Water vapor of perspiration was detected by the change in relative humidity and then adsorbed by silica gel, allowing continuous recording of perspiration within a closed and wireless chamber, which has not been previously achieved. By comparative experiments using the commercially-available perspiration monitoring device, the developed device could measure perspiration as efficiently as the conventional one, with a normalized cross coefficient of 0.738 with 6 s delay and the interclass correlation coefficient [ICC(2, 1)] of 0.84. These results imply a good agreement between the conventional and developed devices, and thus suggest the applicability of the developed device for perspiration monitoring.

  5. Automatic Ingestion Monitor: A Novel Wearable Device for Monitoring of Ingestive Behavior

    PubMed Central

    Fontana, Juan M.; Farooq, Muhammad

    2014-01-01

    Objective monitoring of food intake and ingestive behavior in a free-living environment remains an open problem that has significant implications in study and treatment of obesity and eating disorders. In this paper, a novel wearable sensor system (automatic ingestion monitor, AIM) is presented for objective monitoring of ingestive behavior in free living. The proposed device integrates three sensor modalities that wirelessly interface to a smartphone: a jaw motion sensor, a hand gesture sensor, and an accelerometer. A novel sensor fusion and pattern recognition method was developed for subject-independent food intake recognition. The device and the methodology were validated with data collected from 12 subjects wearing AIM during the course of 24 h in which both the daily activities and the food intake of the subjects were not restricted in any way. Results showed that the system was able to detect food intake with an average accuracy of 89.8%, which suggests that AIM can potentially be used as an instrument to monitor ingestive behavior in free-living individuals. PMID:24845288

  6. Electrocardiographic patch devices and contemporary wireless cardiac monitoring

    PubMed Central

    Fung, Erik; Järvelin, Marjo-Riitta; Doshi, Rahul N.; Shinbane, Jerold S.; Carlson, Steven K.; Grazette, Luanda P.; Chang, Philip M.; Sangha, Rajbir S.; Huikuri, Heikki V.; Peters, Nicholas S.

    2015-01-01

    Cardiac electrophysiologic derangements often coexist with disorders of the circulatory system. Capturing and diagnosing arrhythmias and conduction system disease may lead to a change in diagnosis, clinical management and patient outcomes. Standard 12-lead electrocardiogram (ECG), Holter monitors and event recorders have served as useful diagnostic tools over the last few decades. However, their shortcomings are only recently being addressed by emerging technologies. With advances in device miniaturization and wireless technologies, and changing consumer expectations, wearable “on-body” ECG patch devices have evolved to meet contemporary needs. These devices are unobtrusive and easy to use, leading to increased device wear time and diagnostic yield. While becoming the standard for detecting arrhythmias and conduction system disorders in the outpatient setting where continuous ECG monitoring in the short to medium term (days to weeks) is indicated, these cardiac devices and related digital mobile health technologies are reshaping the clinician-patient interface with important implications for future healthcare delivery. PMID:26074823

  7. Wearable photoplethysmography device prototype for wireless cardiovascular monitoring

    NASA Astrophysics Data System (ADS)

    Kviesis-Kipge, E.; Grabovskis, A.; Marcinkevics, Z.; Mecnika, V.; Rubenis, O.

    2014-05-01

    The aim of the study was to develop a prototype system of the smart garment for real time telemetric monitoring of human cardiovascular activity. Two types of photoplethysmography (PPG) sensors for low noise and artefact free signal recording from various sites of the human body that were suitable for integration into smart textile were investigated. The reflectance sensors with single and multiple photodiodes based on "pulse-duration-based signal conversion" signal acquisition principle were designed and evaluated. The technical parameters of the system were measured both on bench and in vivo. Overall, both types of PPG sensors showed acceptable signal quality SNR 86.56±3.00 dB, dynamic range 89.84 dB. However, in-vivo condition tests revealed lower noise and higher accuracy achieved by applying the multiple photodiodes sensor. We concluded that the proposed PPG device prototype is simple and reliable, and therefore, can be utilized in low-cost smart garments.

  8. Radiation monitoring container device (16-IML-1)

    NASA Technical Reports Server (NTRS)

    Nagaoka, S.

    1992-01-01

    In this experiment, layers of radiation detectors and biological specimens, bacterial spores (Bacillus subtillis), shrimp eggs (Altemia salina), and maize seeds (Zea mays) are sandwiched together in the Radiation Monitoring Container. The detectors, sheets of plastic materials, record the nuclear track of cosmic radiation. The dosimeter package contains conventional detectors made of materials such as lithium fluoride or magnesium-silica-terbium. The thermoluminescent materials (TLD) will, when moderately heated, emit luminescent photons linearly depending upon the dose of radiation received. The experiment, enclosed in a box-like container, is mounted on the aft end cone of the Spacelab, the area where the shielding is somewhat less than other locations.

  9. Towards a Wearable Non-invasive Blood Glucose Monitoring Device

    NASA Astrophysics Data System (ADS)

    Andrews, Joseph Thomas; Solanki, J.; Choudhary, Om P.; Chouksey, S.; Malvia, N.; Chaturvedi, P.; Sen, P.

    2012-05-01

    Every day, about 150 Million people worldwide face the problem of diabetic metabolic control. Both the hypo- and hyper- glycaemic conditions of patients have fatal consequences and warrant blood glucose monitoring at regular interval. Existing blood glucose monitors can be widely classified into three classes viz., invasive, minimally invasive, and noninvasive. Invasive monitoring requires small volume of blood and are inappropriate for continuous monitoring of blood glucose. Minimally invasive monitors analyze tissue fluid or extract few micro litre of blood only. Also the skin injury is minimal. On the other hand, noninvasive devices are painless and void of any skin injury. We use an indigenously developed polarization sensitive Optical Coherence Tomography to measure the blood glucose levels. Current trends and recent results with the device are discussed.

  10. [A monitor of the biomechanical cardiac activity].

    PubMed

    Masloboev, Iu P; Okhritskiĭ, A A; Prilutskiĭ, D A; Selishchev, S V

    2004-01-01

    A monitor of the biomechanical cardiac activity is described, which was elaborated on the basis of the accelerometer sensor and sigma-delta ADC for the purpose of registering the ballistocardiograms and seismocardiograms. The device ensures a non-stop signal recording for as long as 8 hours with the data being preserved in an inbuilt memory. Data are fed to the computer through the USB port. An algorithm is suggested for recordings processing by using the neuron-net technologies.

  11. Probing a Device's Active Atoms.

    PubMed

    Studniarek, Michał; Halisdemir, Ufuk; Schleicher, Filip; Taudul, Beata; Urbain, Etienne; Boukari, Samy; Hervé, Marie; Lambert, Charles-Henri; Hamadeh, Abbass; Petit-Watelot, Sebastien; Zill, Olivia; Lacour, Daniel; Joly, Loïc; Scheurer, Fabrice; Schmerber, Guy; Da Costa, Victor; Dixit, Anant; Guitard, Pierre André; Acosta, Manuel; Leduc, Florian; Choueikani, Fadi; Otero, Edwige; Wulfhekel, Wulf; Montaigne, François; Monteblanco, Elmer Nahuel; Arabski, Jacek; Ohresser, Philippe; Beaurepaire, Eric; Weber, Wolfgang; Alouani, Mébarek; Hehn, Michel; Bowen, Martin

    2017-03-13

    Materials science and device studies have, when implemented jointly as "operando" studies, better revealed the causal link between the properties of the device's materials and its operation, with applications ranging from gas sensing to information and energy technologies. Here, as a further step that maximizes this causal link, the paper focuses on the electronic properties of those atoms that drive a device's operation by using it to read out the materials property. It is demonstrated how this method can reveal insight into the operation of a macroscale, industrial-grade microelectronic device on the atomic level. A magnetic tunnel junction's (MTJ's) current, which involves charge transport across different atomic species and interfaces, is measured while these atoms absorb soft X-rays with synchrotron-grade brilliance. X-ray absorption is found to affect magnetotransport when the photon energy and linear polarization are tuned to excite FeO bonds parallel to the MTJ's interfaces. This explicit link between the device's spintronic performance and these FeO bonds, although predicted, challenges conventional wisdom on their detrimental spintronic impact. The technique opens interdisciplinary possibilities to directly probe the role of different atomic species on device operation, and shall considerably simplify the materials science iterations within device research.

  12. Monitoring of Detection Probability in QNDE Devices for Storage Tanks

    NASA Astrophysics Data System (ADS)

    Michlin, Y. H.

    2005-04-01

    Tightness-testing devices for underground storage tanks have to be monitored for their probability of detection, and that of a false alarm, during exploitation. The monitoring methods used in Israel is presented, and data on the distributions of the leakage measurement results and of fuel temperatures — and on the rates of change of the latter in the course of the measurements, in terms of their effect on accuracy. Other factors are also discussed.

  13. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring

    PubMed Central

    Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni

    2015-01-01

    This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro. PMID:26295394

  14. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring.

    PubMed

    Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni

    2015-08-19

    This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.

  15. Electro-optical device for monitoring wire size

    NASA Technical Reports Server (NTRS)

    Burcher, E. E.; Kelly, W. L., IV

    1973-01-01

    Device recognizes variations in wire size and is being used during computer memory-plane fabrication. Decrease in wire diameter, due to stretching, permits removal of wire from memory-plant mold. Monitoring provides means of detecting imperfect wire and permits fabrication of computer memory plane to be stopped prior to its insertion into mold.

  16. Rapid deployment of internet-connected environmental monitoring devices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in electronic sensing and monitoring systems and the growth of the communications infrastructure have enabled users to gain immediate access to information and interaction with physical devices. To facilitate the uploading, viewing, and sharing of data via the internet, while avoiding the ...

  17. Portable device for monitoring consistency of carbon monoxide

    NASA Astrophysics Data System (ADS)

    Zheng, Qingyu; Liang, Fuping; Liu, Gang; Wang, Xiaofei

    2002-06-01

    The necessity to nondestructively monitor concentration of carbon monoxide (CO), which is a colorless, tasteless and poisonous gas and is harmful to people, is disclosed. The portable device for monitoring concentration of CO plays an important role in health care and environment supervising for civil and industrial purposes. A basic circuit-based principle for the implementation of the device is presented with a detailed analysis for the key issues in designing. Specifically, the designing for the preamplifier is of great importance to the performance of the device. There is also introduced a method for getting standard voltage value from the micro-ampere current signal outputted from a carbon monoxide sensor and for restraining other gases to exert influence on the CO monitoring. Meanwhile, the paper teaches an anti-jamming technique for eliminating interference between analog and digital circuits within a very small system. In said device, a multi-function alarm circuit, which periodically performing its self-checking function, produces alarm with sound and light if the power of a battery is insufficient or the concentration of CO is detected to be over a set threshold. In addition, the major characteristics and applications for the device are also presented.

  18. Platelet actively cooled thermal management devices

    NASA Astrophysics Data System (ADS)

    Mueggenburg, H. H.; Hidahl, J. W.; Kessler, E. L.; Rousar, D. C.

    1992-07-01

    An overview of 28 years of actively-cooled platelet thermal management devices design and development history is presented. Platelet devices are created by bonding together thin metal sheets (platelets) which contain chemically-etched coolant pasages. The bonding process produces an intricate and precise matrix of coolant passages and structural walls contained within a monolithic structure. Thirteen specific applications for platelet thermal management devices are described. These devices are cooled using convective, film, and transpiration cooling techniques. Platelet thermal management devices have been fabricated from a variety of metals, cooled with a variety of fluids, and operated at heat fluxes up to 200 Btu/sq in.-sec.

  19. A four lumen screwing device for multiparametric brain monitoring.

    PubMed

    Feuerstein, T H; Langemann, H; Gratzl, O; Mendelowitsch, A

    2000-01-01

    We describe multiparametric monitoring in severe head trauma using a new screwing device. Our aim was to create a screw which would make the implantation of the probes and thus multiparametric monitoring easier. The new screw allows us to implant 3 probes (microdialysis, Paratrend and an intracranial pressure device) through one burr hole. The screw has four channels, the fourth being for ventricular drainage. We monitored 13 patients with severe head trauma (GCS = 3-8) for up to 7 days. Brain tissue pO2, pCO2, pH, and temperature were measured on-line with the Paratrend 7 machine. The microdialytic parameters glucose, lactate, pyruvate and glutamate were determined semi on-line with a CMA 600 enzymatic analyser. There were no complications in any of the patients that could be ascribed to the screw.

  20. Monitoring of Vital Signs with Flexible and Wearable Medical Devices.

    PubMed

    Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C

    2016-06-01

    Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements.

  1. Monitoring active volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.

    1987-01-01

    One of the most spectacular, awesomely beautiful, and at times destructive displays of natural energy is an erupting volcano, belching fume and ash thousands of meters into the atmosphere and pouring out red-hot molten lava in fountains and streams. Countless eruptions in the geologic past have produced volcanic rocks that form much of the Earth's present surface. The gradual disintegration and weathering of these rocks have yielded some of the richest farmlands in the world, and these fertile soils play a significant role in sustaining our large and growing population. Were it not for volcanic activity, the Hawaiian Islands with their sugar cane and pineapple fields and magnificent landscapes and seascapes would not exist to support their residents and to charm their visitors. Yet, the actual eruptive processes are catastrophic and can claim life and property.

  2. [Use of a micturition-monitoring device in elderly inpatients].

    PubMed

    Toba, K; Sudo, N; Nagano, K; Eto, M; Kozaki, K; Akishita, M; Hashimoto, M; Yumita, K; Hara, M; Fukushima, M; Orimo, H; Ouchi, Y

    1996-09-01

    More than 100,000 people suffer from functional urinary incontinence in Japan. To improve the quality of life of these people, we tested a device for monitoring micturition by means of a thin-layer membrane sensor in a diaper. The device was tested in elderly inpatients, and associated changes in the wordload of the nursing staff were also recorded. The device was beneficial because the precise micturition time was easily obtained and thus the daily pattern of micturition became obvious. With the use of this device, the time during which the patients wore wet diapers was shorter than with the conventional system of scheduled changes. However, the increase in the frequency of diaper changed doubled the workload of the nursing staff. In conclusion, improving the quality of life with regard to urinary incontinence entails an increase in the workload of the nursing staff; efficient distribution of that work may require some staff members to devote all their time to changing diapers.

  3. Disease management: remote monitoring in heart failure patients with implantable defibrillators, resynchronization devices, and haemodynamic monitors.

    PubMed

    Abraham, William T

    2013-06-01

    Heart failure represents a major public health concern, associated with high rates of morbidity and mortality. A particular focus of contemporary heart failure management is reduction of hospital admission and readmission rates. While optimal medical therapy favourably impacts the natural history of the disease, devices such as cardiac resynchronization therapy devices and implantable cardioverter defibrillators have added incremental value in improving heart failure outcomes. These devices also enable remote patient monitoring via device-based diagnostics. Device-based measurement of physiological parameters, such as intrathoracic impedance and heart rate variability, provide a means to assess risk of worsening heart failure and the possibility of future hospitalization. Beyond this capability, implantable haemodynamic monitors have the potential to direct day-to-day management of heart failure patients to significantly reduce hospitalization rates. The use of a pulmonary artery pressure measurement system has been shown to significantly reduce the risk of heart failure hospitalization in a large randomized controlled study, the CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients (CHAMPION) trial. Observations from a pilot study also support the potential use of a left atrial pressure monitoring system and physician-directed patient self-management paradigm; these observations are under further investigation in the ongoing LAPTOP-HF trial. All these devices depend upon high-intensity remote monitoring for successful detection of parameter deviations and for directing and following therapy.

  4. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring.

    PubMed

    Yamamoto, Yuki; Harada, Shingo; Yamamoto, Daisuke; Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2016-11-01

    Real-time health care monitoring may enable prediction and prevention of disease or improve treatment by diagnosing illnesses in the early stages. Wearable, comfortable, sensing devices are required to allow continuous monitoring of a person's health; other important considerations for this technology are device flexibility, low-cost components and processing, and multifunctionality. To address these criteria, we present a flexible, multifunctional printed health care sensor equipped with a three-axis acceleration sensor to monitor physical movement and motion. Because the device is designed to be attached directly onto the skin, it has a modular design with two detachable components: One device component is nondisposable, whereas the other one is disposable and designed to be worn in contact with the skin. The design of this disposable sensing sheet takes into account hygiene concerns and low-cost materials and fabrication methods as well as features integrated, printed sensors to monitor for temperature, acceleration, electrocardiograms, and a kirigami structure, which allows for stretching on skin. The reusable component of the device contains more expensive device components, features an ultraviolet light sensor that is controlled by carbon nanotube thin-film transistors, and has a mechanically flexible and stable liquid metal contact for connection to the disposable sensing sheet. After characterizing the electrical properties of the transistors and flexible sensors, we demonstrate a proof-of-concept device that is capable of health care monitoring combined with detection of physical activity, showing that this device provides an excellent platform for the development of commercially viable, wearable health care monitors.

  5. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring

    PubMed Central

    Yamamoto, Yuki; Harada, Shingo; Yamamoto, Daisuke; Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2016-01-01

    Real-time health care monitoring may enable prediction and prevention of disease or improve treatment by diagnosing illnesses in the early stages. Wearable, comfortable, sensing devices are required to allow continuous monitoring of a person’s health; other important considerations for this technology are device flexibility, low-cost components and processing, and multifunctionality. To address these criteria, we present a flexible, multifunctional printed health care sensor equipped with a three-axis acceleration sensor to monitor physical movement and motion. Because the device is designed to be attached directly onto the skin, it has a modular design with two detachable components: One device component is nondisposable, whereas the other one is disposable and designed to be worn in contact with the skin. The design of this disposable sensing sheet takes into account hygiene concerns and low-cost materials and fabrication methods as well as features integrated, printed sensors to monitor for temperature, acceleration, electrocardiograms, and a kirigami structure, which allows for stretching on skin. The reusable component of the device contains more expensive device components, features an ultraviolet light sensor that is controlled by carbon nanotube thin-film transistors, and has a mechanically flexible and stable liquid metal contact for connection to the disposable sensing sheet. After characterizing the electrical properties of the transistors and flexible sensors, we demonstrate a proof-of-concept device that is capable of health care monitoring combined with detection of physical activity, showing that this device provides an excellent platform for the development of commercially viable, wearable health care monitors. PMID:28138532

  6. How consumer physical activity monitors could transform human physiology research.

    PubMed

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing.

  7. Secure Remote Health Monitoring with Unreliable Mobile Devices

    PubMed Central

    Shin, Minho

    2012-01-01

    As the nation's healthcare information infrastructure continues to evolve, new technologies promise to provide readily accessible health information that can help people address personal and community health concerns. In particular, wearable and implantable medical sensors and portable computing devices present many opportunities for providing timely health information to health providers, public health professionals, and consumers. Concerns about privacy and information quality, however, may impede the development and deployment of these technologies for remote health monitoring. Patients may fail to apply sensors correctly, device can be stolen or compromised (exposing the medical data therein to a malicious party), low-cost sensors controlled by a capable attacker might generate falsified data, and sensor data sent to the server can be captured in the air by an eavesdropper; there are many opportunities for sensitive health data to be lost, forged, or exposed. In this paper, we design a framework for secure remote health-monitoring systems; we build a realistic risk model for sensor-data quality and propose a new health-monitoring architecture that is secure despite the weaknesses of common personal devices. For evaluation, we plan to implement a proof of concept for secure health monitoring. PMID:22910449

  8. Portable blood extraction device integrated with biomedical monitoring system

    NASA Astrophysics Data System (ADS)

    Khumpuang, S.; Horade, M.; Fujioka, K.; Sugiyama, S.

    2006-01-01

    Painless and portable blood extraction device has been immersed in the world of miniaturization on bio-medical research particularly in manufacturing point-of-care systems. The fabrication of a blood extraction device integrated with an electrolyte-monitoring system is reported in this paper. The device has advantages in precise controlled dosage of blood extracted including the slightly damaged blood vessels and nervous system. The in-house blood diagnostic will become simple for the patients. Main components of the portable system are; the blood extraction device and electrolyte-monitoring system. The monitoring system consists of ISFET (Ion Selective Field Effect Transistor) for measuring the concentration level of minerals in blood. In this work, we measured the level of 3 ions; Na+, K+ and Cl-. The mentioned ions are frequently required the measurement since their concentration levels in the blood can indicate whether the kidney, pancreas, liver or heart is being malfunction. The fabrication of the whole system and experimentation on each ISM (Ion Sensitive Membrane) will be provided. Taking the advantages of LIGA technology, the 100 hollow microneedles fabricated by Synchrotron Radiation deep X-ray lithography through PCT (Plane-pattern to Cross-section Transfer) technique have been consisted in 5x5 mm2 area. The microneedle is 300 μm in base-diameter, 500 μm-pitch, 800 μm-height and 50 μm hole-diameter. The total size of the blood extraction device is 2x2x2 cm 3. The package is made from a plastic socket including slots for inserting microneedle array and ISFET connecting to an electrical circuit for the monitoring. Through the dimensional design for simply handling and selection of disposable material, the patients can self-evaluate the critical level of the body minerals in anywhere and anytime.

  9. Evaluation of Commercial Self-Monitoring Devices for Clinical Purposes: Results from the Future Patient Trial, Phase I.

    PubMed

    Leth, Soren; Hansen, John; Nielsen, Olav W; Dinesen, Birthe

    2017-01-22

    Commercial self-monitoring devices are becoming increasingly popular, and over the last decade, the use of self-monitoring technology has spread widely in both consumer and medical markets. The purpose of this study was to evaluate five commercially available self-monitoring devices for further testing in clinical applications. Four activity trackers and one sleep tracker were evaluated based on step count validity and heart rate validity.

  10. Accuracy-Energy Configurable Sensor Processor and IoT Device for Long-Term Activity Monitoring in Rare-Event Sensing Applications

    PubMed Central

    2014-01-01

    A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error. PMID:25580458

  11. Accuracy-energy configurable sensor processor and IoT device for long-term activity monitoring in rare-event sensing applications.

    PubMed

    Park, Daejin; Cho, Jeonghun

    2014-01-01

    A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error.

  12. Impedance sensing device for monitoring ulcer healing in human patients.

    PubMed

    Liao, Amy; Lin, Monica C; Ritz, Lauren C; Swisher, Sarah L; Ni, David; Mann, Kaylee; Khan, Yasser; Roy, Shuvo; Harrison, Michael R; Arias, Ana C; Subramanian, Vivek; Young, David; Maharbiz, Michel M

    2015-01-01

    Chronic skin wounds affect millions of people each year and take billions of dollars to treat. Ulcers are a type of chronic skin wound that can be especially painful for patients and are tricky to treat because current monitoring solutions are subjective. We have developed an impedance sensing tool to objectively monitor the progression of healing in ulcers, and have begun a clinical trial to evaluate the safety and feasibility of our device to map damaged regions of skin. Impedance data has been collected on five patients with ulcers, and impedance was found to correlate with tissue health. A damage threshold was applied to effectively identify certain regions of skin as "damaged tissue".

  13. Evaluating clinical accuracy of continuous glucose monitoring devices: other methods.

    PubMed

    Wentholt, Iris M E; Hart, August A; Hoekstra, Joost B L; DeVries, J Hans

    2008-08-01

    With more and more continuous glucose monitoring devices entering the market, the importance of adequate accuracy assessment grows. This review discusses pros and cons of Regression Analysis and Correlation Coefficient, Relative Difference measures, Bland Altman plot, ISO criteria, combined curve fitting, and epidemiological analyses, the latter including sensitivity, specificity and positive predictive value for hypoglycaemia. Finally, recommendations for much needed head-to-head studies are given. This paper is a revised and adapted version of How to assess and compare the accuracy of continuous glucose monitors?, Diabetes Technology and Therapeutics 2007, in press, published with permission of the editor.

  14. Active Job Monitoring in Pilots

    NASA Astrophysics Data System (ADS)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-12-01

    Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.

  15. Wireless device for monitoring the temperature - moisture regime in situ

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Štofanik, Vladimír; Vretenár, Viliam; Kubičár, Ľudovít

    2014-05-01

    This contribution presents the wireless device for monitoring the temperature - moisture regime in situ. For the monitoring so called moisture sensor is used. Principle of moisture sensor is based on measuring the thermal conductivity. Moisture sensor has cylindrical shape with about 20 mm diameter and 20 mm length. It is made of porous material identical to the monitored object. The thermal conductivity is measured by hot-ball method. Hot-ball method is patented invention of the Institute of Physic SAS. It utilizes a small ball, diameter up to 2 mm, in which sensing elements are incorporated. The ball produces heat spreading into surrounding material, in our case into body of the moisture sensor. Temperature of the ball is measured simultaneously. Then change of the temperature, in steady state, is inversely proportional to the thermal conductivity. Such moisture sensor is inserted into monitored wall. Thermophysical properties of porous material are function of moisture. Moisture sensors are calibrated for dry and water saturated state. Whole the system is primarily intended to do long-term monitoring. Design of a new electronic device was needed for this innovative method. It covers all needed operations for measurement. For example energizing hot-ball sensor, measuring its response, storing the measured data and wireless data transmission. The unit is able to set parameters of measurement via wireless access as well. This contribution also includes the description of construction and another features of the wireless measurement system dedicated for this task. Possibilities and functionality of the system is demonstrated by actual monitoring of the tower of St. Martin's Cathedral in Bratislava. Correlations with surrounding meteorological conditions are presented. Some of them can be also measured by our system, right in the monitoring place.

  16. [Patient Monitoring and Associated Devices during Endoscopic Sedation].

    PubMed

    Moon, Sung Hoon; Kim, Hyung Keun; Myung, Dae Seong; Yoon, Soon Man; Moon, Won

    2017-01-25

    Sedation is an essential component for gastrointestinal endoscopy. It allows patients to tolerate unpleasant endoscopic procedures by relieving anxiety, discomfort, or pain. It also reduces patient's risk of physical injury during endoscopic procedures, while providing the endoscopist with an adequate setting for a detailed examination. For the safety during endoscopic sedation, patient monitoring is crucial. Minimal monitoring requirements during endoscopic sedation are periodic assessment of blood pressure and application of continuous pulse oximetry. Continuous electrocardiography is recommended in selected patients with high risk for sedation or have cardiopulmonary diseases. Continuous supplemental oxygen is also recommended for endoscopic sedation. This study describes detailed monitoring and associated devices based on the current guidelines and recommendations from gastrointestinal society of America, Europe, and Korea.

  17. Mahali: Space Weather Monitoring Using Multicore Mobile Devices

    NASA Astrophysics Data System (ADS)

    Pankratius, V.; Lind, F. D.; Coster, A. J.; Erickson, P. J.; Semeter, J. L.

    2013-12-01

    Analysis of Total Electron Content (TEC) measurements derived from Global Positioning System (GPS) signals has led to revolutionary new data products for space weather monitoring and ionospheric research. However, the current sensor network is sparse, especially over the oceans and in regions like Africa and Siberia, and the full potential of dense, global, real-time TEC monitoring remains to be realized. The Mahali project will prototype a revolutionary architecture that uses mobile devices, such as phones and tablets, to form a global space weather monitoring network. Mahali exploits the existing GPS infrastructure - more specifically, delays in multi-frequency GPS signals observed at the ground - to acquire a vast set of global TEC projections, with the goal of imaging multi-scale variability in the global ionosphere at unprecedented spatial and temporal resolution. With connectivity available worldwide, mobile devices are excellent candidates to establish crowd sourced global relays that feed multi-frequency GPS sensor data into a cloud processing environment. Once the data is within the cloud, it is relatively straightforward to reconstruct the structure of the space environment, and its dynamic changes. This vision is made possible owing to advances in multicore technology that have transformed mobile devices into parallel computers with several processors on a chip. For example, local data can be pre-processed, validated with other sensors nearby, and aggregated when transmission is temporarily unavailable. Intelligent devices can also autonomously decide the most practical way of transmitting data with in any given context, e.g., over cell networks or Wifi, depending on availability, bandwidth, cost, energy usage, and other constraints. In the long run, Mahali facilitates data collection from remote locations such as deserts or on oceans. For example, mobile devices on ships could collect time-tagged measurements that are transmitted at a later point in

  18. Device monitoring strategies in acute heart failure syndromes.

    PubMed

    Samara, Michael A; Tang, W H Wilson

    2011-09-01

    Acute heart failure syndromes (AHFS) represent the most common discharge diagnoses in adults over age 65 and translate into dramatically increased heart failure-associated morbidity and mortality. Conventional approaches to the early detection of pulmonary and systemic congestion have been shown to be of limited sensitivity. Despite their proven efficacy, disease management and structured telephone support programs have failed to achieve widespread use in part due to their resource intensiveness and reliance upon motivated patients. While once thought to hold great promise, results from recent prospective studies on telemonitoring strategies have proven disappointing. Implantable devices with their capacity to monitor electrophysiologic and hemodynamic parameters over long periods of time and with minimal reliance on patient participation may provide solutions to some of these problems. Conventional electrophysiologic parameters and intrathoracic impedance data are currently available in the growing population of heart failure patients with equipped devices. A variety of implantable hemodynamic monitors are currently under investigation. How best to integrate these devices into a systematic approach to the management of patients before, during, and after AHFS is yet to be established.

  19. Influence of Activity Monitor Location and Bout Duration on Free-Living Physical Activity

    ERIC Educational Resources Information Center

    Heil, Daniel P.; Bennett, Gary G.; Bond, Kathleen S.; Webster, Michael D.; Wolin, Kathleen Y.

    2009-01-01

    The purpose of this study was to evaluate the influence of the location (ankle, hip, wrist) where an activity monitor (AM) is worn and of the minimum bout duration (BD) on physical activity (PA) variables during free-living monitoring. Study 1 participants wore AMs at three locations for 1 day while wearing the Intelligent Device for Energy…

  20. 75 FR 20860 - Certain Display Devices, Including Digital Televisions and Monitors; Notice of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... COMMISSION Certain Display Devices, Including Digital Televisions and Monitors; Notice of Investigation... devices, including digital televisions and monitors by reason of infringement of certain claims of U.S... after importation of certain display devices, including digital televisions or monitors that...

  1. 30 CFR 77.211-1 - Continuous methane monitoring device; installation and operation; automatic deenergization of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Continuous methane monitoring device... Installations § 77.211-1 Continuous methane monitoring device; installation and operation; automatic deenergization of electric equipment. Continuous methane monitoring devices shall be set to...

  2. 40 CFR 65.162 - Nonflare control and recovery device monitoring records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control and halogen reduction device monitoring records. (1) Each owner or operator using a combustion control or halogen reduction device to comply with this subpart shall keep, as applicable, up-to-date and... process heater monitoring); § 65.154(c) (halogen reduction device monitoring); § 65.155(c) (other...

  3. 40 CFR 65.162 - Nonflare control and recovery device monitoring records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control and halogen reduction device monitoring records. (1) Each owner or operator using a combustion control or halogen reduction device to comply with this subpart shall keep, as applicable, up-to-date and... process heater monitoring); § 65.154(c) (halogen reduction device monitoring); § 65.155(c) (other...

  4. 40 CFR 65.162 - Nonflare control and recovery device monitoring records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control and halogen reduction device monitoring records. (1) Each owner or operator using a combustion control or halogen reduction device to comply with this subpart shall keep, as applicable, up-to-date and... process heater monitoring); § 65.154(c) (halogen reduction device monitoring); § 65.155(c) (other...

  5. 30 CFR 77.211-1 - Continuous methane monitoring device; installation and operation; automatic deenergization of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Continuous methane monitoring device... Installations § 77.211-1 Continuous methane monitoring device; installation and operation; automatic deenergization of electric equipment. Continuous methane monitoring devices shall be set to...

  6. Adaptive Blood Glucose Monitoring and Insulin Measurement Devices for Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Petzinger, R. A.

    1993-01-01

    This article describes devices that people with visual impairments and diabetes can use to monitor blood glucose levels and measure insulin. A table lists devices, their manufacturers (including address and telephone number), and comments about the devices. (DB)

  7. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  8. Monitoring critical facilities by using advanced RF devices

    SciTech Connect

    Tsai, Hanchung; Liu, Yung Y.; Shuler, James

    2013-07-01

    The ability to monitor critical environment parameters of nuclear plants at all times, particularly during and after a disruptive accident, is vital for the safety of plant personnel, rescue and recovery crews, and the surrounding communities. Conventional hard-wired assets that depend on supplied power may be decimated as a result of such events, as witnessed in the Japanese Fukushima nuclear power plant in March 2011. Self-powered monitoring devices operating on a wireless platform, on the other hand, may survive such calamity and remain functional. The devices would be pre-positioned at strategic locations, particularly where the dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance. Equipped with sensors for β-γ radiation, neutrons, hydrogen gas, temperature, humidity, pressure, and water level, as well as with criticality alarms and imaging equipment for heat, video, and other capabilities, these devices can provide vital surveillance information for assessing the extent of plant damage, mandating responses (e.g., evacuation before impending hydrogen explosion), and enabling overall safe and efficient recovery in a disaster. A radio frequency identification (RFID)-based system - called ARG-US - may be modified and adapted for this task. Developed by Argonne for DOE, ARG-US (meaning 'watchful guardian') has been used successfully to monitor and track sensitive nuclear materials packages at DOE sites. It utilizes sensors in the tags to continuously monitor the state of health of the packaging and promptly disseminates alarms to authorized users when any of the preset sensor thresholds is violated. By adding plant-specific monitoring sensors to the already strong sensor suite and adopting modular hardware, firmware, and software subsystems that are tailored for specific subsystems of a plant, a Remote Area Modular Monitoring (RAMM) system, built on a wireless sensor network (WSN) platform, is being developed

  9. Diagnostic device for monitoring the technical condition of mechanical assemblies

    NASA Technical Reports Server (NTRS)

    Osovskiy, V. I.; Shergin, V. V.; Shumilin, V. I.

    1973-01-01

    An automatic diagnostic device for monitoring the condition of tractor transmission gears is described. The structural noise spectrum of the gearshift box and rear axle of the tractor were analyzed in a digital computer, by an algorithm based on the multiple correlation method. The optimum assembly of operating frequencies, by use of which the errors in measurement were minimized, was selected from the entire frequency spectrum. Selected frequencies are necessary for choosing the measurement range of the diagnostic device. It turned out that, to obtain a relative error of no more than 2%, it was sufficient to use two filters, vibrating only at the frequencies carrying the maximum data of the mechanical parameter being investigated. The measurement system consists of frequency-selection filters, amplifiers and quadratic detectors, at the outlets of which constant voltages are created, which are proportional to the signal level at the frequencies selected.

  10. Noninvasive health condition monitoring device for workers at high altitudes conditions.

    PubMed

    Aqueveque, Pablo; Gutierrez, Cristopher; Saavedra, Francisco; Pino, Esteban J

    2016-08-01

    This work presents the design and implementation of a continuous monitoring device to control the health state of workers, for instance miners, at high altitudes. The extreme ambient conditions are harmful for peoples' health; therefore a continuous control of the workers' vital signs is necessary. The developed system includes physiological variables: electrocardiogram (ECG), respiratory activity and body temperature (BT), and ambient variables: ambient temperature (AT) and relative humidity (RH). The noninvasive sensors are incorporated in a t-shirt to deliver a functional device, and maximum comfort to the users. The device is able to continuously calculate heart rate (HR) and respiration rate (RR), and establish a wireless data transmission to a central monitoring station.

  11. Neutronics activities for next generation devices

    SciTech Connect

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized.

  12. Mobile devices for community-based REDD+ monitoring: a case study for Central Vietnam.

    PubMed

    Pratihast, Arun Kumar; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; Bartholomeus, Harm; Souza, Carlos M; Ribbe, Lars

    2012-12-20

    Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task. Recently, the advancement in Information and Communications Technologies (ICT) and mobile devices has enabled local communities to monitor their forest in a basic resource setting such as no or slow internet connection link, limited power supply, etc. Despite the potential, the use of mobile device system for community based monitoring (CBM) is still exceptional and faces implementation challenges. This paper presents an integrated data collection system based on mobile devices that streamlines the community-based forest monitoring data collection, transmission and visualization process. This paper also assesses the accuracy and reliability of CBM data and proposes a way to fit them into national REDD+ Monitoring, Reporting and Verification (MRV) scheme. The system performance is evaluated at Tra Bui commune, Quang Nam province, Central Vietnam, where forest carbon and change activities were tracked. The results show that the local community is able to provide data with accuracy comparable to expert measurements (index of agreement greater than 0.88), but against lower costs. Furthermore, the results confirm that communities are more effective to monitor small scale forest degradation due to subsistence fuel wood collection and selective logging, than high resolution remote sensing SPOT imagery.

  13. Mobile Devices for Community-Based REDD+ Monitoring: A Case Study for Central Vietnam

    PubMed Central

    Pratihast, Arun Kumar; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; Bartholomeus, Harm; Souza, Carlos M.; Ribbe, Lars

    2013-01-01

    Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task. Recently, the advancement in Information and Communications Technologies (ICT) and mobile devices has enabled local communities to monitor their forest in a basic resource setting such as no or slow internet connection link, limited power supply, etc. Despite the potential, the use of mobile device system for community based monitoring (CBM) is still exceptional and faces implementation challenges. This paper presents an integrated data collection system based on mobile devices that streamlines the community-based forest monitoring data collection, transmission and visualization process. This paper also assesses the accuracy and reliability of CBM data and proposes a way to fit them into national REDD+ Monitoring, Reporting and Verification (MRV) scheme. The system performance is evaluated at Tra Bui commune, Quang Nam province, Central Vietnam, where forest carbon and change activities were tracked. The results show that the local community is able to provide data with accuracy comparable to expert measurements (index of agreement greater than 0.88), but against lower costs. Furthermore, the results confirm that communities are more effective to monitor small scale forest degradation due to subsistence fuel wood collection and selective logging, than high resolution remote sensing SPOT imagery. PMID:23344371

  14. [Batteries Used in Active Implantable Medical Devices].

    PubMed

    Ma, Bozhi; Hao, Hongwei; Li, Luming

    2015-03-01

    In recent years active implantable medical devices(AIMD) are being developed rapidly. Many battery systems have been developed for different AIMD applications. These batteries have the same requirements which include high safety, reliability, energy density and long service life, discharge indication. History, present and future of batteries used in AIMD are introduced in the article.

  15. Anatahan Activity and Monitoring, 2005

    NASA Astrophysics Data System (ADS)

    Lockhart, A.; White, R.; Koyanagi, S.; Trusdell, F.; Kauahikaua, J.; Marso, J.; Ewert, J.

    2005-12-01

    Anatahan volcano began erupting in 2003 and continued with a second eruptive phase in 2004. In January 2005 the volcano began a sequence of eruptions and unrest that continues as of September 2005. The activity has been characterized by punctuated episodes of very steamy strombolian activity and vigorous ash emission. Some of the ash emissions have reached 50,000-foot elevations, with VOG and ash occasionally reaching the Philippines and southernmost Japan, over 1000 miles away. Vigorous ash emission has been almost continuous since June 2005. A M4.8 long-period earthquake (LP) occurred in mid-August, one of the largest LPs recorded on the planet in the last quarter-century. Real-time monitoring consisting of a few telemetered short-period seismometers and acoustic sensors has been severely hampered by ashfall on the small island. Monitoring efforts have been focused on the aircraft/ash hazard, with the goal of providing the FAA and airline industry with rapid notice of seismic signatures that may indicate ash columns rising to the altitude of airline traffic, or nominally above 20,000-30,000 ft.

  16. MedMon: securing medical devices through wireless monitoring and anomaly detection.

    PubMed

    Zhang, Meng; Raghunathan, Anand; Jha, Niraj K

    2013-12-01

    Rapid advances in personal healthcare systems based on implantable and wearable medical devices promise to greatly improve the quality of diagnosis and treatment for a range of medical conditions. However, the increasing programmability and wireless connectivity of medical devices also open up opportunities for malicious attackers. Unfortunately, implantable/wearable medical devices come with extreme size and power constraints, and unique usage models, making it infeasible to simply borrow conventional security solutions such as cryptography. We propose a general framework for securing medical devices based on wireless channel monitoring and anomaly detection. Our proposal is based on a medical security monitor (MedMon) that snoops on all the radio-frequency wireless communications to/from medical devices and uses multi-layered anomaly detection to identify potentially malicious transactions. Upon detection of a malicious transaction, MedMon takes appropriate response actions, which could range from passive (notifying the user) to active (jamming the packets so that they do not reach the medical device). A key benefit of MedMon is that it is applicable to existing medical devices that are in use by patients, with no hardware or software modifications to them. Consequently, it also leads to zero power overheads on these devices. We demonstrate the feasibility of our proposal by developing a prototype implementation for an insulin delivery system using off-the-shelf components (USRP software-defined radio). We evaluate its effectiveness under several attack scenarios. Our results show that MedMon can detect virtually all naive attacks and a large fraction of more sophisticated attacks, suggesting that it is an effective approach to enhancing the security of medical devices.

  17. Monitoring System for Farming Operations with Wearable Devices Utilized Sensor Networks

    PubMed Central

    Fukatsu, Tokihiro; Nanseki, Teruaki

    2009-01-01

    In order to automatically monitor farmers’ activities, we propose a farm operation monitoring system using “Field Servers” and a wearable device equipped with an RFID reader and motion sensors. Our proposed system helps in recognizing farming operations by analyzing the data from the sensors and detected RFID tags that are attached to various objects such as farming materials, facilities, and machinery. This method can be applied to various situations without changing the conventional system. Moreover, this system provides useful information in real-time and controls specific machines in a coordinated manner on the basis of recognized operation. PMID:22454578

  18. 75 FR 74080 - In the Matter of Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... COMMISSION Inv. No. 337-TA-749 In the Matter of Certain Liquid Crystal Display Devices, Including Monitors... sale within the United States after importation of certain liquid crystal display devices, including... importation of certain liquid crystal display devices, including monitors, televisions, and modules,...

  19. 40 CFR 60.714 - Installation of monitoring devices and recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in § 60.713(b)(2), (3), (4), (5), or (6) (which include control device efficiency determinations... gas streams would be monitored if the percent control device efficiency is used as the basis for... would be monitored if the percent control device efficiency is used as the basis for reporting,...

  20. 40 CFR 60.714 - Installation of monitoring devices and recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in § 60.713(b)(2), (3), (4), (5), or (6) (which include control device efficiency determinations... gas streams would be monitored if the percent control device efficiency is used as the basis for... would be monitored if the percent control device efficiency is used as the basis for reporting,...

  1. 40 CFR 60.714 - Installation of monitoring devices and recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in § 60.713(b)(2), (3), (4), (5), or (6) (which include control device efficiency determinations... gas streams would be monitored if the percent control device efficiency is used as the basis for... would be monitored if the percent control device efficiency is used as the basis for reporting,...

  2. NASDA technician test real-time radiation monitoring device

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  3. Active superconducting devices formed of thin films

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  4. Monitoring biofilm attachment on medical devices surfaces using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Le, Hanh N. D.; Hitchins, Victoria M.; Ilev, Ilko K.; Kim, Do-Hyun

    2014-02-01

    Microbial biofilm is a colony of single bacteria cells (planktonic) that attached to surfaces, attract other microorganisms to attach and grow, and together they build an extracellular matrix composed of polysaccharides, protein, and DNA. Eventually, some cells will detach and spread to other surface. Biofilm on medical devices can cause severe infection to all age ranges from infant to adult. Therefore, it is important to detect biofilm in a fast and efficient manner. Hyperspectral imaging was utilized for distinguishing wide area of biofilm coverage on various materials and on different textures of stainless steeltest coupons. Not only is the coverage of biofilm important, but also the shear stress of biofilm on the attached surfaces is significant. This study investigates the effects of shear stress on the adhesion of biofilms on common medical device surfaces such as glass, polycarbonate, polytetrafluoroethylene, and stainless steel with different textures. Biofilm was grown using Ps. aeruginosa and growth was monitored after 24 and 48 hours at 37° C. The coupons covered with biofilm were tilted at 45 degrees and 90 degrees for 30 seconds to induce shear stress and Hyperspectral images were taken. We hypothesize that stronger attachment on rough surface would be able to withstand greater shear stress compared to smooth surface.

  5. Ambulatory stress monitoring with a wearable bluetooth electrocardiographic device.

    PubMed

    Hong, Sungyoup; Yang, Youngmo; Lee, Jangyoung; Yang, Heebum; Park, Kyungnam; Lee, Suyeul; Lee, Inbum; Jang, Yongwon

    2010-01-01

    We tried to monitor stress by using a wearable one channel ECG device that can send ECG signals through Bluetooth wireless communication. Noxious physical and mental arithmetic stress was given three times repeatedly to healthy adults, and cortisol and catecholamines were measured serially from peripheral blood. At the same time, time domain and frequency domain parameters of heart rate variability (HRV) were calculated by taking precordial electrocardiogram. The intensity of correlation between subjective visual analogue scale (VAS) and catecholamine, cortisol, and HRV parameters according to stress was analyzed by using concordance correlation coefficients. The HRV triangular index and LF/HF ratio had high concordance correlation with the degree of stress in the physical stress model. In mental arithmetic stress model, the HRV triangular index and LF/HF ratio had weak concordance correlation with the degree of stress, and it had lower predictability than epinephrine. In both models, cortisol had some correlation with catecholamine, but it had little correlation with HRV parameters. HRV parameters using wearable one channel ECG device can be useful in predicting acute stress and also in many other areas.

  6. Active Optical Devices and Applications. Volume 228

    DTIC Science & Technology

    1980-04-01

    obscuration, 5-cm-thick solid, segmented (6 petals) Zerodur . Mirror A is near the limit of what can be fabricated with current technology. The honeycomb...DEW Descriptors, Keywords: Active Optical Device Application Large Optics Adaptive Technology Wavefront Sensor Deformable Mirror Performance...Cuneo, Jr., U.S. Air Force, NASA Headquarters 228-01 Wavefront sensors and deformable mirrors for visible wavelengths 4 Noah Bareket, Lockheed

  7. 40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitoring device installed in gas stream immediately before and after catalyst bed Temperature difference across catalyst bed Every 15 minutes. Flare Heat sensing device installed at the pilot light Presence...

  8. Evaluating the Consistency of Current Mainstream Wearable Devices in Health Monitoring: A Comparison Under Free-Living Conditions

    PubMed Central

    Wen, Dong; Zhang, Xingting; Liu, Xingyu

    2017-01-01

    Background Wearable devices are gaining increasing market attention; however, the monitoring accuracy and consistency of the devices remains unknown. Objective The purpose of this study was to assess the consistency of the monitoring measurements of the latest wearable devices in the state of normal activities to provide advice to the industry and support to consumers in making purchasing choices. Methods Ten pieces of representative wearable devices (2 smart watches, 4 smart bracelets of Chinese brands or foreign brands, and 4 mobile phone apps) were selected, and 5 subjects were employed to simultaneously use all the devices and the apps. From these devices, intact health monitoring data were acquired for 5 consecutive days and analyzed on the degree of differences and the relationships of the monitoring measurements ​​by the different devices. Results The daily measurements by the different devices fluctuated greatly, and the coefficient of variation (CV) fluctuated in the range of 2-38% for the number of steps, 5-30% for distance, 19-112% for activity duration, .1-17% for total energy expenditure (EE), 22-100% for activity EE, 2-44% for sleep duration, and 35-117% for deep sleep duration. After integrating the measurement data of 25 days among the devices, the measurements of the number of steps (intraclass correlation coefficient, ICC=.89) and distance (ICC=.84) displayed excellent consistencies, followed by those of activity duration (ICC=.59) and the total EE (ICC=.59) and activity EE (ICC=.57). However, the measurements for sleep duration (ICC=.30) and deep sleep duration (ICC=.27) were poor. For most devices, there was a strong correlation between the number of steps and distance measurements (R2>.95), and for some devices, there was a strong correlation between activity duration measurements and EE measurements (R2>.7). A strong correlation was observed in the measurements of steps, distance and EE from smart watches and mobile phones of the same

  9. Active fiber optic technologies used as tamper-indicating devices

    SciTech Connect

    Horton, P.R.V.; Waddoups, I.G.

    1995-11-01

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.

  10. New study on the correlation between carbon dioxide concentration in the environment and radon monitor devices.

    PubMed

    Shahrokhi, A; Burghele, B D; Fábián, F; Kovács, T

    2015-12-01

    The influence of high geogenic carbon dioxide concentrations on monitoring devices might present a significant challenge to the measurement of radon concentrations in environments with a high level of carbon dioxide concentration such as volcano sites, mofettes, caves, etc. In this study, the influence of carbon dioxide concentration on several different types of radon monitor devices - including Alpha Spectrometry (Sarad RTM 2200, EQF 3220, RAD7), Ionizing Chamber (AlphaGUARD PQ2000 PRO) and Active Cell (Active scintillation cell, Pylon 300A) - was examined to represent new aspects of radon measuring in environments with carbon dioxide. In light of the results, all measuring devices were exposed to variable conditions affected by carbon dioxide concentration, except for the AlphaGUARD, which was kept in a steady state throughout the experiment. It was observed that alpha spectroscopy devices were affected by carbon dioxide, since measured radon concentrations decreased in the presence of 70% and 90% carbon dioxide concentrations by 26.5 ± 2% and 14.5 ± 2.5% for EQF 3220, and 32 ± 2% and 35.5 ± 2% for RTM 2200. However, the ionizing chamber instrument was unaffected by changes in carbon dioxide concentration. It was determined that the RAD7 performed relatively inefficiently in the presence of carbon dioxide concentrations higher than 67% by an overall efficiency factor of approximately 0.52, confirming that it is not an admissible radon monitor instrument in environments with high carbon dioxide concentrations.

  11. Physical Activity Monitoring: Gadgets and Uses. Article #6 in a 6-Part Series

    ERIC Educational Resources Information Center

    Mears, Derrick

    2010-01-01

    An early 15th century drawing by Leonardo da Vinci depicted a device that used gears and a pendulum that moved in synchronization with the wearer as he or she walked. This is believed to be the early origins of today's physical activity monitoring devices. Today's devices have vastly expanded on da Vinci's ancient concept with a myriad of options…

  12. 75 FR 63856 - In the Matter of Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... COMMISSION In the Matter of Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and... sale for importation, and the sale within the United States after importation of certain liquid crystal... importation of certain liquid crystal display devices, including monitors, televisions, and modules,...

  13. Concordance of adherence measurement using self-reported adherence questionnaires and medication monitoring devices.

    PubMed

    Shi, Lizheng; Liu, Jinan; Koleva, Yordanka; Fonseca, Vivian; Kalsekar, Anupama; Pawaskar, Manjiri

    2010-01-01

    The primary objective of this review was to identify and examine the literature on the association between medication adherence self-reported questionnaires (SRQs) and medication monitoring devices. The primary literature search was performed for 1980-2009 using PubMed, PubMed In Process and Non-Indexed, Ovid MEDLINE, Ovid MEDLINE In-Process, PsycINFO (EBSCO), CINAHL (EBSCO), Ovid HealthStar, EMBASE (Elsevier) and Cochrane Databases and using the following search terms: 'patient compliance', 'medication adherence', 'treatment compliance', 'drug monitoring', 'drug therapy', 'electronic', 'digital', 'computer', 'monitor', 'monitoring', 'drug', 'drugs', 'pharmaceutical preparations', 'compliance' and 'medications'. We identified studies that included SRQs and electronic monitoring devices to measure adherence and focused on the SRQs that were found to be moderately to highly correlated with the monitoring devices. Of the 1679 citations found via the primary search, 41 full-text articles were reviewed for correlation between monitoring devices and SRQs. A majority (68%) of articles reported high (27%), moderate (29%) or significant (12%) correlation between monitoring devices (37 using Medication Event Monitoring System [MEMS®] and four using other devices) and SRQs (11 identified and numerous other unnamed SRQs). The most commonly used SRQs were the Adult/Pediatric AIDS Clinical Trial Group (AACTG/PACTG; 24.4%, 10/41) followed by the 4-item Morisky (9.8%, 4/41), Brief Medication Questionnaire (9.8%, 4/41) and visual analogue scale (VAS; 7.3%, 3/41). Although study designs differed across the articles, SRQs appeared to report a higher rate of medication adherence (+14.9%) than monitoring devices. In conclusion, several medication adherence SRQs were validated using electronic monitoring devices. A majority of them showed high or moderate correlation with medication adherence measured using monitoring devices, and could be considered for measuring patient

  14. Devices and monitoring during neonatal ECMO: survey results.

    PubMed

    Allison, P L; Kurusz, M; Graves, D F; Zwischenberger, J B

    1990-01-01

    A survey of active ECMO centres regarding neonatal ECMO equipment and personnel was obtained by telephone interview in late summer 1989. Forty-seven of the centres in the USA listed in the Ann Arbor ELSO (Extracorporeal Life Support Organization) Registry at the time ( greater than 90%) were contacted and all participated. Nearly all use a roller pump, while less than 5% use a centrifugal pump. All programmes use a SciMed membrane oxygenator and 90% a SciMed heat exchanger. Heat exchanger water sources include the Gaymar T-pump (42%), Seabrook (25%) and Cincinnati Sub-Zero (23%) units. Eighty-seven per cent use a bladder box servo-regulated to the roller pump; these are most often custom-made (69%) but 13% of programmes use a commercially available (Seabrook) bladder box. Ten per cent use a pressure-regulated roller pump rather than a conventional (displacement) bladder box to detect decreases in venous return. Nearly 80% monitor circuit line pressures between the pump and patient. Seventeen per cent use an air bubble detector on the arterial side of the circuit. Only 10% use an arterial bubble trap and 6% an arterial line filter. Seventy-five per cent do not monitor gas line pressures into the membrane lung, but one-third do use a gas line pop-off valve to prevent elevated gas phase pressures. Seventy per cent reported use of continuous in-line measurement of mixed venous oxygen saturation; no programme reported any blood chemistries being monitored in line.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. [2011 after-service customer satisfaction survey of monitoring devices in Shanghai area].

    PubMed

    Wang, Lijun; Li, Bin; Qian, Jianguo; Cao, Shaoping; He, Dehua; Zheng, Yunxin

    2013-01-01

    In 2011, Shanghai Medical Equipment Management Quality Control Center launched the fifth after-sale service satisfaction survey for medical devices in Shanghai area. There are 8 classes medical devices involving in the survey. This paper demonstrates the investigation results of monitoring devices which are from different manufacturers.

  16. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  17. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  18. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  19. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  20. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  1. Graphene active plasmonics for terahertz device applications

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Dubinov, Alexander; Ryzhii, Maxim; Boubanga Tombet, Stephane; Satou, Akira; Mitin, Vladimir; Shur, Michael S.; Ryzhii, Victor

    2015-05-01

    This paper reviews recent advances in the double-graphene-layer (DGL) active plasmonic heterostructures for the terahertz (THz) device applications. The DGL consists of a core shell in which a thin tunnel barrier layer is sandwiched by the two GLs being independently connected with the side contacts and outer gate stack layers at both sides. The DGL core shell works as a nano-capacitor, exhibiting inter-GL resonant tunneling (RT) when the band offset between the two GLs is aligned. The RT produces a strong nonlinearity with a negative differential conductance in the DGL current-voltage characteristics. The excitation of the graphene plasmons by the THz radiation resonantly modulates the tunneling currentvoltage characteristics. When the band offset is aligned to the THz photon energy, the DGL structure can mediate photonassisted RT, resulting in resonant emission or detection of the THz radiation. The cooperative double-resonant excitation with structure-sensitive graphene plasmons gives rise to various functionalities such as rectification (detection), photomixing, higher harmonic generation, and self-oscillation, in the THz device implementations.

  2. Device to monitor sock use in people using prosthetic limbs: technical report.

    PubMed

    Sanders, Joan E; Murthy, Revathi; Cagle, John C; Allyn, Katheryn J; Phillips, Reid H; Otis, Brian P

    2012-01-01

    A device using radio frequency identification (RFID) technology was developed to continuously monitor sock use in people who use prosthetic limbs. RFID tags were placed on prosthetic socks worn by subjects with transtibial limb loss, and a high-frequency RFID reader and antenna were placed in a portable unit mounted to the outside of the prosthetic socket. Bench testing showed the device to have a maximum read range between 5.6 cm and 12.7 cm, depending on the RFID tag used. Testing in a laboratory setting on three participants with transtibial amputation showed that the device correctly monitored sock presence during sitting, standing, and walking activity when one or two socks were worn but was less reliable when more socks were used. Accurate detection was sensitive to orientation of the tag relative to the reader, presence of carbon fiber in the prosthetic socket, pistoning of the limb in the socket, and overlap among the tags. Use of ultra-high-frequency RFID may overcome these limitations. With improvements, the technology may prove useful to practitioners prescribing volume accommodation strategies for patients by providing information about sock use between clinical visits, including timing and consistency of daily sock-ply changes.

  3. Evaluating the Validity of an Automated Device for Asthma Monitoring for Adolescents: Correlational Design

    PubMed Central

    Belyea, Michael J; Sterling, Mark; Bocko, Mark F

    2015-01-01

    Background Symptom monitoring is a cornerstone of asthma self-management. Conventional methods of symptom monitoring have fallen short in producing objective data and eliciting patients’ consistent adherence, particularly in teen patients. We have recently developed an Automated Device for Asthma Monitoring (ADAM) using a consumer mobile device as a platform to facilitate continuous and objective symptom monitoring in adolescents in vivo. Objective The objectives of the study were to evaluate the validity of the device using spirometer data, fractional exhaled nitric oxide (FeNO), existing measures of asthma symptoms/control and health care utilization data, and to examine the sensitivity and specificity of the device in discriminating asthma cases from nonasthma cases. Methods A total of 84 teens (42 teens with a current asthma diagnosis; 42 without asthma) aged between 13 and 17 years participated in the study. All participants used ADAM for 7 consecutive days during which participants with asthma completed an asthma diary two times a day. ADAM recorded the frequency of coughing for 24 hours throughout the 7-day trial. Pearson correlation and multiple regression were used to examine the relationships between ADAM data and asthma control, quality of life, and health care utilization at the time of the 7-day trial and 3 months later. A receiver operating characteristic (ROC) curve analysis was conducted to examine sensitivity and specificity based on the area under the curve (AUC) as an indicator of the device’s capacity to discriminate between asthma versus nonasthma cases. Results ADAM data (cough counts) were negatively associated with forced expiratory volume in first second of expiration (FEV1) (r=–.26, P=.05), forced vital capacity (FVC) (r=–.31, P=.02), and overall asthma control (r=–.41, P=.009) and positively associated with daily activity limitation (r=.46, P=.01), nighttime (r=.40, P=.02) and daytime symptoms (r=.38, P=.02), and health care

  4. Prehospital coagulation monitoring of resuscitation with point-of-care devices.

    PubMed

    Schött, Ulf

    2014-05-01

    A variety of point-of-care monitors for the measurement of hematocrit, hemoglobin, blood gas with electrolytes, and lactate can be used also in the prehospital setting for optimizing and individualizing trauma resuscitation. Point-of-care coagulation testing with activated prothrombin test, prothrombin test, and activated coagulation/clotting time tests is available for prehospital use. Although robust, battery driven, and easy to handle, many devices lack documentation for use in prehospital care. Some of the devices correspond poorly to corresponding laboratory analyses in acute trauma coagulopathy and at lower hematocrits. In trauma, viscoelastic tests such as rotational thromboelastometry and thromboelastography can rapidly detect acute trauma coagulopathy and give an overall dynamic picture of the hemostatic system and the interaction between its different components: coagulation activation, fibrin polymerization, fibrin platelet interactions within the clot, and fibrinolysis. Rotational thromboelastometry is shock resistant and has the potential to be used outside the hospital setting to guide individualized coagulation factor and blood component therapies. Sonoclot and Rheorox are two small viscoelastic instruments with one-channel options, but with less documentation. The point-of-care market for coagulation tests is quickly expanding, and new devices are introduced all the time. Still they should be better adopted to prehospital conditions, small, robust, battery charged, and rapid and use small sample volumes and whole blood.

  5. Antifungal activity of antimicrobial-impregnated devices.

    PubMed

    Darouiche, R O; Mansouri, M D; Kojic, E M

    2006-04-01

    The in-vitro and in-vivo efficacy against Candida albicans and Candida krusei of devices impregnated with chlorhexidine and chloroxylenol was examined. The impregnated devices produced large zones of inhibition against both organisms (mean size, 39 mm and 38 mm, respectively). In a rabbit model in which segments of silicone catheters were placed percutaneously, non-impregnated devices were twice as likely as impregnated devices to become colonised with either C. albicans or C. krusei. Impregnated devices also had significantly lower colony counts of C. albicans (58 vs. 1361 CFU; p 0.008) and C. krusei (19 vs. 764 CFU; p 0.008).

  6. Wireless miniature implantable devices and ASICs for monitoring, treatment, and study of glaucoma and cardiac disease

    NASA Astrophysics Data System (ADS)

    Chow, Eric Y.

    Glaucoma affects about 65 million people and is the second leading cause of blindness in the world. Although the condition is irreversible and incurable, early detection is vital to slowing and even stopping the progression of the disease. Our work focuses on the design, fabrication, and assembly of a continuous active glaucoma intraocular pressure (IOP) monitor that provides clinicians with the necessary data to more accurately diagnose and treat patients. Major benefits of an active monitoring device include the potential to develop a closed-loop treatment system and to operate independently for extended periods of time. The fully wireless operation uses gigahertzfrequency electromagnetic wave propagation, which allows for an orientation independent transfer of power and data over reasonable distances. Our system is comprised of a MEMS capacitive sensor, capacitive power storage array, ASIC, and monopole antenna assembled into a biocompatible liquid crystal polymer (LCP) package. We have performed in vivo trials on rabbits, both chronic and acute, to validate system functionality, fully wireless feasibility, and biocompatibility. Heart failure (HF) affects approximately 2% of the adult population in developed countries and 6-10% of people over the age of 65. Continuous monitoring of blood pressure, flow, and chemistry from a minimally invasive device can serve as a diagnostic and early-warning system for cardiac health. We developed a miniaturized system attached to the outer surface of an FDA approved stent, used as both the antenna for wireless telemetry/powering and structural support. The system comprises of a MEMS pressure sensor, ASIC for the sensor interface and wireless capabilities, LCP substrate, and FDA approved stent. In vivo studies on pigs validated functionality and fully wireless operation and demonstrate the feasibility of a stent-based wireless implant for continuous monitoring of blood pressure as well as other parameters including oxygen, flow

  7. A clip-free eyeglasses-based wearable monitoring device for measuring photoplethysmograhic signals.

    PubMed

    Zheng, Yali; Leung, Billy; Sy, Stanley; Zhang, Yuanting; Poon, Carmen C Y

    2012-01-01

    An eyeglasses-based device has been developed in this work to acquire photoplethysmogram (PPG) from the nose bridge. This device is aimed to provide wearable physiological monitoring without uncomfortable clips frequently used in PPG measurement from finger and ear. Switching control is applied on the LED and photo detector for power saving. An experiment involving postural change and treadmill jogging among 10 healthy young subjects was carried out to evaluate the performance of the device. Electrocardiogram (ECG) and PPG from finger, ear and nose were simultaneously recorded, from which heart rate (HR) and pulse transit time (PTT) were calculated. The results show that PPG measured from nose and ear are more resistant to motion than signal from finger during exercise. In addition, the difference between PTT measured from ear and nose indicates that local vasomotor activities may exist on ear and/or nose channel, and suggests that PPG from different sites should be used for cuff-less PTT-based BP estimation. We conclude that this wearable device has great potential to be used in the healthcare management in the future.

  8. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  9. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy

    NASA Astrophysics Data System (ADS)

    Lee, Hyunjae; Choi, Tae Kyu; Lee, Young Bum; Cho, Hye Rim; Ghaffari, Roozbeh; Wang, Liu; Choi, Hyung Jin; Chung, Taek Dong; Lu, Nanshu; Hyeon, Taeghwan; Choi, Seung Hong; Kim, Dae-Hyeong

    2016-06-01

    Owing to its high carrier mobility, conductivity, flexibility and optical transparency, graphene is a versatile material in micro- and macroelectronics. However, the low density of electrochemically active defects in graphene synthesized by chemical vapour deposition limits its application in biosensing. Here, we show that graphene doped with gold and combined with a gold mesh has improved electrochemical activity over bare graphene, sufficient to form a wearable patch for sweat-based diabetes monitoring and feedback therapy. The stretchable device features a serpentine bilayer of gold mesh and gold-doped graphene that forms an efficient electrochemical interface for the stable transfer of electrical signals. The patch consists of a heater, temperature, humidity, glucose and pH sensors and polymeric microneedles that can be thermally activated to deliver drugs transcutaneously. We show that the patch can be thermally actuated to deliver Metformin and reduce blood glucose levels in diabetic mice.

  10. Effects of a Physical Education Supportive Curriculum and Technological Devices on Physical Activity

    ERIC Educational Resources Information Center

    Clapham, Emily Dean; Sullivan, Eileen C.; Ciccomascolo, Lori E.

    2015-01-01

    The purpose of this study was to examine the effects of a physical education supportive curriculum and technological devices, heart rate monitor (HRM) and pedometer (PED), on physical activity. A single-subject ABAB research design was used to examine amount and level of participation in physical activity among 106 suburban fourth and fifth…

  11. A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles.

    PubMed

    Teichmann, Daniel; De Matteis, Dennis; Bartelt, Thorsten; Walter, Marian; Leonhardt, Steffen

    2015-05-01

    A mobile device is presented for monitoring both respiration and pulse. The device is developed as a bendable/flexible inlay that can be placed in a shirt pocket or the inside pocket of a jacket. To achieve optimum monitoring performance, the device combines two sensor principles, which work in a safe noncontact way through several layers of cotton or other textiles. One sensor, based on magnetic induction, is intended for respiratory monitoring, and the other is a reflective photoplethysmography sensor intended for pulse detection. Because each sensor signal has some dependence on both physiological parameters, fusing the sensor signals allows enhanced signal coverage.

  12. On-line Monitoring and Active Control for Transformer Noise

    NASA Astrophysics Data System (ADS)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  13. [Development of a wearable electrocardiogram monitor with recognition of physical activity scene].

    PubMed

    Wang, Zihong; Wu, Baoming; Yin, Jian; Gong, Yushun

    2012-10-01

    To overcome the problems of current electrocardiogram (ECG) tele-monitoring devices used for daily life, according to information fusion thought and by means of wearable technology, we developed a new type of wearable ECG monitor with the capability of physical activity recognition in this paper. The ECG monitor synchronously detected electrocardiogram signal and body acceleration signal, and recognized the scene information of physical activity, and finally determined the health status of the heart. With the advantages of accuracy for measurement, easy to use, comfort to wear, private feelings and long-term continuous in monitoring, this ECG monitor is quite fit for the heart-health monitoring in daily life.

  14. INSERTION DEVICE ACTIVITIES FOR NSLS-II.

    SciTech Connect

    TANABE,T.; HARDER, D.A.; HULBERT, S.; RAKOWSKI, G.; SKARITKA, J.

    2007-06-25

    National Synchrotron Light Source-II (NSLS-II) will be a medium energy storage ring of 3GeV electron beam energy with sub-nm.rad horizontal emittance and top-off capability at 500mA. Damping wigglers will be used not only to reduce the beam emittance but also used as broadband sources for users. Cryo-Permanent Magnet Undulators (CPMUs) are considered for hard X-ray linear device, and permanent magnet based elliptically polarized undulators (EPUs) for variable polarization devices for soft X-ray. 6T superconducting wiggler with minimal fan angle will be installed in the second phase as well as quasi-periodic EPU for VUV and possibly high-temperature superconducting undulator. R&D plans have been established to pursue the performance enhancement of the baseline devices and to design new types of insertion devices. A new insertion device development laboratory will also be established.

  15. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Scrubbers for Gaseous Pollutants Control Devices

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  16. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Carbon Adsorber Control Device

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  17. 77 FR 45375 - Certain Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, and Components Thereof; Commission Determination Not To Review an Initial Determination Terminating the Investigation...

  18. 77 FR 20048 - Certain Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, and Components Thereof; Notice of Commission Determination To Review-In-Part a Final Determination; Schedule for...

  19. Self-Powered energy harvester strain sensing device for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Álvarez, A.; Bafleur, M.; Dilhac, J.-M.; Colomer, J.; Dragomirescu, D.; Lopez, J.; Zhu, M.; Miribel, P.

    2016-11-01

    This paper presents an envisaged autonomous strain sensor device, which is dedicated to structural health monitoring applications. The paper introduces the ASIC approach that replaces the discrete approach of some of the main modules.

  20. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Fabric Filter Control Devices

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  1. A distributed design for monitoring, logging, and replaying device readings at LAMPF

    SciTech Connect

    Burns, M.

    1991-01-01

    As control of the Los Alamos Meson Physics linear accelerator and Proton Storage Ring moves to a more distributed system, it has been necessary to redesign the software which monitors, logs, and replays device readings throughout the facility. The new design allows devices to be monitored and their readings logged locally on a network of computers. Control of the monitoring and logging process is available throughout the network from user interfaces which communicate via remote procedure calls with server processes running on each node which monitors and records device readings. Similarly, the logged data can be replayed from anywhere on the network. Two major requirements influencing the final design were the need to reduce the load on the CPU of the control machines, and the need for much faster replay of the logged device readings. 1 ref., 2 figs.

  2. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Electrified Filter Bed Control Device

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  3. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Wet Electrostatic Precipitator Control Device

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  4. Devices for monitoring content of microparticles and bacterium in injection solutions in pharmaceutical production

    NASA Astrophysics Data System (ADS)

    Bilyi, Olexander I.; Getman, Vasyl B.; Konyev, Fedir A.; Sapunkov, Olexander; Sapunkov, Pavlo G.

    2001-06-01

    The devices for monitoring of parameters of efficiency of water solutions filtration, which are based on the analysis of scattered light by microparticles are considered in this article. The efficiency of using of devices in pharmaceutics in technological processes of manufacturing medical injection solutions is shown. The examples of monitoring of contents of bacterial cultures Pseudomonas aeruginosa, Escherichia coli, and Micrococcus luteus in water solutions of glucose are indicated.

  5. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module

    PubMed Central

    Lee, Hyunjae; Song, Changyeong; Hong, Yong Seok; Kim, Min Sung; Cho, Hye Rim; Kang, Taegyu; Shin, Kwangsoo; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2017-01-01

    Electrochemical analysis of sweat using soft bioelectronics on human skin provides a new route for noninvasive glucose monitoring without painful blood collection. However, sweat-based glucose sensing still faces many challenges, such as difficulty in sweat collection, activity variation of glucose oxidase due to lactic acid secretion and ambient temperature changes, and delamination of the enzyme when exposed to mechanical friction and skin deformation. Precise point-of-care therapy in response to the measured glucose levels is still very challenging. We present a wearable/disposable sweat-based glucose monitoring device integrated with a feedback transdermal drug delivery module. Careful multilayer patch design and miniaturization of sensors increase the efficiency of the sweat collection and sensing process. Multimodal glucose sensing, as well as its real-time correction based on pH, temperature, and humidity measurements, maximizes the accuracy of the sensing. The minimal layout design of the same sensors also enables a strip-type disposable device. Drugs for the feedback transdermal therapy are loaded on two different temperature-responsive phase change nanoparticles. These nanoparticles are embedded in hyaluronic acid hydrogel microneedles, which are additionally coated with phase change materials. This enables multistage, spatially patterned, and precisely controlled drug release in response to the patient’s glucose level. The system provides a novel closed-loop solution for the noninvasive sweat-based management of diabetes mellitus. PMID:28345030

  6. In situ control and monitoring of photonic device intermixing during laser irradiation.

    PubMed

    Chia, C K; Suryana, M; Hopkinson, M

    2011-05-09

    Apparatus and method for the in situ control of photonic device intermixing processes are described. The setup utilises an optical fiber splitter which delivers photons to selectively anneal the photonic device and simultaneously measures the emission spectra from the device to monitor the intermixing process in real time. The in situ monitoring of a laser annealing process for the modification of a semiconductor laser diode facet is demonstrated using the instrumentation. A progressive blueshift in the emission wavelength of the device can clearly be observed in real time while high energy photons are delivered to anneal the device facet, hence enabling the control on the degree of intermixing required. This instrumentation is also ideal for broadening of emission spectra in quantum dot and quantum well based light emitting devices such as superluminescent diodes and broadband laser.

  7. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  8. Cognitive Inference Device for Activity Supervision in the Elderly

    PubMed Central

    2014-01-01

    Human activity, life span, and quality of life are enhanced by innovations in science and technology. Aging individual needs to take advantage of these developments to lead a self-regulated life. However, maintaining a self-regulated life at old age involves a high degree of risk, and the elderly often fail at this goal. Thus, the objective of our study is to investigate the feasibility of implementing a cognitive inference device (CI-device) for effective activity supervision in the elderly. To frame the CI-device, we propose a device design framework along with an inference algorithm and implement the designs through an artificial neural model with different configurations, mapping the CI-device's functions to minimise the device's prediction error. An analysis and discussion are then provided to validate the feasibility of CI-device implementation for activity supervision in the elderly. PMID:25405211

  9. 40 CFR 65.156 - General monitoring requirements for control and recovery devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control and recovery devices. 65.156 Section 65.156 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Closed Vent Systems, Control... control and recovery devices. (a) General monitoring requirement applicability. (1) This section...

  10. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  11. The value to the anaesthetist of monitoring cerebral activity.

    PubMed

    Langford, R M; Thomsen, C E

    1994-03-01

    The administration rate of general anaesthetic drugs is at present guided by clinical experience, and indirect indicators such as haemodynamic parameters. In the presence of muscle relaxants most of the clinical signs of inadequate anaesthesia are lost and accidental awareness may occur. A number of monitoring modalities, primarily based on analysis of the electroencephalogram (EEG), have been proposed for measurement of the anaesthetic depth. Moreover intraoperative cerebral monitoring may also provide the anaesthetist with early warning of cerebral ischaemia, or information on specific neurological pathways. To facilitate this, it is essential to combine analysis of the spontaneous EEG with recording of evoked potentials, to assess both cortical and subcortical activity/events. None of the reviewed methods, however promising, can alone meet all of the requirements for intraoperative monitoring of cerebral function. We suggest that the future direction should be to integrate several modalities in a single device, to provide valuable new information, upon which to base clinical management decisions.

  12. Commercial Smartphone-Based Devices and Smart Applications for Personalized Healthcare Monitoring and Management

    PubMed Central

    Vashist, Sandeep Kumar; Schneider, E. Marion; Luong, John H.T.

    2014-01-01

    Smartphone-based devices and applications (SBDAs) with cost effectiveness and remote sensing are the most promising and effective means of delivering mobile healthcare (mHealthcare). Several SBDAs have been commercialized for the personalized monitoring and/or management of basic physiological parameters, such as blood pressure, weight, body analysis, pulse rate, electrocardiograph, blood glucose, blood glucose saturation, sleeping and physical activity. With advances in Bluetooth technology, software, cloud computing and remote sensing, SBDAs provide real-time on-site analysis and telemedicine opportunities in remote areas. This scenario is of utmost importance for developing countries, where the number of smartphone users is about 70% of 6.8 billion cell phone subscribers worldwide with limited access to basic healthcare service. The technology platform facilitates patient-doctor communication and the patients to effectively manage and keep track of their medical conditions. Besides tremendous healthcare cost savings, SBDAs are very critical for the monitoring and effective management of emerging epidemics and food contamination outbreaks. The next decade will witness pioneering advances and increasing applications of SBDAs in this exponentially growing field of mHealthcare. This article provides a critical review of commercial SBDAs that are being widely used for personalized healthcare monitoring and management. PMID:26852680

  13. How and When to Screen for Atrial Fibrillation after Stroke: Insights from Insertable Cardiac Monitoring Devices

    PubMed Central

    Bridge, Francesca; Thijs, Vincent

    2016-01-01

    The introduction of insertable cardiac monitoring devices has dramatically altered our understanding of the role of intermittent atrial fibrillation in cryptogenic stroke. In this narrative review we discuss the incidence, timing and relationship between atrial fibrillation and cryptogenic stroke, how to select patients for monitoring and the value and limitations of different monitoring strategies. We also discuss the role of empirical anticoagulation, and atrial fibrillation burden as a means of tailoring anticoagulation in patients at high risk of bleeding. PMID:27283276

  14. Case studies in advanced monitoring with the Chronicle device.

    PubMed

    Bourge, Robert C

    2006-01-01

    Three case studies illustrate the utility of advanced implantable hemodynamic monitors (IHMs). The cases include a 70-year-old with ischemic cardiomyopathy, chronic kidney disease, and recurrent volume overload; a 53-year-old with ischemic heart disease, mild effort-related angina, and New York Heart Association class III chronic heart failure; and a 21-year-old with severe dilated cardiomyopathy, all 3 patients having an IHM. The outcomes in these cases illustrate the capability of the IHM system for monitoring and detecting early changes in hemodynamic data and the use of these data to adjust medical therapies and reduce morbidity and risk of hospitalization. When pathologic hemodynamic changes are observed, this alerts the cardiologist to search for underlying causes, even when a patient on initial questioning denies any change in compliance or symptoms.

  15. Evaluation of Commercial Self-Monitoring Devices for Clinical Purposes: Results from the Future Patient Trial, Phase I

    PubMed Central

    Leth, Soren; Hansen, John; Nielsen, Olav W.; Dinesen, Birthe

    2017-01-01

    Commercial self-monitoring devices are becoming increasingly popular, and over the last decade, the use of self-monitoring technology has spread widely in both consumer and medical markets. The purpose of this study was to evaluate five commercially available self-monitoring devices for further testing in clinical applications. Four activity trackers and one sleep tracker were evaluated based on step count validity and heart rate validity. Methods: The study enrolled 22 healthy volunteers in a walking test. Volunteers walked a 100 m track at 2 km/h and 3.5 km/h. Steps were measured by four activity trackers and compared to gyroscope readings. Two trackers were also tested on nine subjects by comparing pulse readings to Holter monitoring. Results: The lowest average systematic error in the walking tests was −0.2%, recorded on the Garmin Vivofit 2 at 3.5 km/h; the highest error was the Fitbit Charge HR at 2 km/h with an error margin of 26.8%. Comparisons of pulse measurements from the Fitbit Charge HR revealed a margin error of −3.42% ± 7.99% compared to the electrocardiogram. The Beddit sleep tracker measured a systematic error of −3.27% ± 4.60%. Conclusion: The measured results revealed the current functionality and limitations of the five self-tracking devices, and point towards a need for future research in this area. PMID:28117736

  16. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  17. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, Claude R.; Ernstberger, Harold G.

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  18. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  19. Diagnostic for two-mode variable valve activation device

    SciTech Connect

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  20. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  1. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION OF CHILDREN...

  2. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  3. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  4. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION OF CHILDREN...

  5. New device for monitoring the colors of the night

    NASA Astrophysics Data System (ADS)

    Spoelstra, Henk

    2014-05-01

    The introduction of LED lighting in the outdoor environment may increase the amount of blue light in the night sky color spectrum. This can cause more light pollution due to Rayleigh scattering of the shorter wavelengths. Blue light may also have an impact on circadian rhythm of humans due to the suppression of melatonin. At present no long-term data sets of the color spectrum of the night sky are available. In order to facilitate the monitoring of levels and variations in the night sky spectrum, a low cost multi-filter instrument has been developed. Design considerations are described as well as the choice of suitable filters, which are critical - especially in the green wavelength band from 500 to 600 nm. Filters from the optical industry were chosen for this band because available astronomical filters exclude some or all of the low and high-pressure sodium lines from lamps, which are important in light pollution research. Correction factors are calculated to correct for the detector response and filter transmissions. Results at a suburban monitoring station showed that the light levels between 500 and 600 nm are dominant during clear and cloudy skies. The relative contribution of blue light increases with a clear moonless night sky. The change in color spectrum of the night sky under moonlit skies is more complex and is still under study.

  6. Performance of a coincidence based blood activity monitor

    SciTech Connect

    Moses, W.W.

    1989-12-01

    A new device has been constructed that measures the positron emitting radio-tracer concentration in arterial blood by extracting blood with a peristaltic pump, then measuring the activity concentration by detecting coincident pairs of 511 keV photons with a pair of heavy inorganic scintillators attached to photomultiplier tubes. The sensitivity of this device is experimentally determined to be 610 counts/second per {mu}Ci/ml, and has a paralyzing dead time of 1.2 {mu}s, so is capable of measuring blood activity concentration as high as 1 mCi/ml. Its performance is compared to two other blood monitoring methods: discrete blood samples counted with a well counter and device that uses a plastic scintillator to directly detect positrons. The positron detection efficiency of this device for {sup 18}F is greater than the plastic scintillation counter, and also eliminates the radioisotope dependent correction factors necessary to convert count rate to absolute concentration. Coincident photon detection also has the potential of reducing the background compared to direct positron detection, thereby increasing the minimum detectable isotope concentration. 10 refs., 6 figs.

  7. Antimicrobial activity of antiseptic-coated orthopaedic devices.

    PubMed

    Darouiche, R O; Green, G; Mansouri, M D

    1998-04-01

    Antimicrobial coating of medical devices, including fracture fixation devices, has evolved as a potentially effective method for preventing device-related infections. We examined the in vitro antimicrobial activity of titanium cylinders coated with the antiseptic combination of chlorhexidine and chloroxylenol. The coated devices provided zones of inhibition against Staphylococcus epidermidis, S. aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans, at baseline and up to 8 weeks after incubation of the coated cylinders in human serum at 37 degrees C. This durable antimicrobial activity was attributed to the relatively slow leaching of chlorhexidine and chloroxylenol from the coated cylinders as measured by high-performance liquid chromatography. These results suggest that antiseptic-coated orthopaedic devices may provide broad-spectrum and durable antimicrobial protection against device-related infection.

  8. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOEpatents

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  9. A Novel Wireless Wearable Volatile Organic Compound (VOC) Monitoring Device with Disposable Sensors

    PubMed Central

    Deng, Yue; Chen, Cheng; Xian, Xiaojun; Tsow, Francis; Verma, Gaurav; McConnell, Rob; Fruin, Scott; Tao, Nongjian; Forzani, Erica S.

    2016-01-01

    A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use. PMID:27918484

  10. An Exploration into How Physical Activity Data-Recording Devices Could Be Used in Computer-Supported Data Investigations

    ERIC Educational Resources Information Center

    Lee, Victor R.; DuMont, Maneksha

    2010-01-01

    There is a great potential opportunity to use portable physical activity monitoring devices as data collection tools for educational purposes. Using one such device, we designed and implemented a weeklong workshop with high school students to test the utility of such technology. During that intervention, students performed data investigations of…

  11. Reporters to monitor cellular MMP12 activity

    NASA Astrophysics Data System (ADS)

    Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten

    2010-02-01

    Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.

  12. Advanced Performance Modeling with Combined Passive and Active Monitoring

    SciTech Connect

    Dovrolis, Constantine; Sim, Alex

    2015-04-15

    To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performance information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.

  13. Evaluation of a device for monitoring sterility of injectable fluids.

    PubMed

    Mayhall, C G; Pierpaoli, P G; Hall, G O; Thomas, R B

    1981-08-01

    An evaluation of a sterility-testing device (Addi-Chek) that uses total-sample membrane filtration is presented. Parenteral nutrition solutions were deliberately contaminated at low levels with 16 bacterial and four fungal strains. Some contaminated solutions were stored at 20 degrees C or 4 degrees C for up to 24 hours before testing; the rest were tested immediately. Additionally, one liter of pharmacy-prepared infusion fluid was tested each day for 100 days. Broth (added to the Addi-Chek unit after filtration to permit microbial growth) was cultured when it became turbid or after a 10-day incubation. Fifty-nine deliberate-inoculation tests were done. The organism was recovered from 56 of these; the other three tests may have been negative because no organisms were present in the aliquot used for inoculation or because of experimental error. The number of organisms used for inoculation varied from 1 to 80; 86% of the tests used 25 organisms or less. Storage for up to 24 hours at 20 degrees C and 4 degrees C had no effect on the results of sterility testing. In testing 100 units of pharmacy-prepared fluid (not deliberately contaminated), one unit (1%) was found to be contaminated. Pharmacy personnel correctly identified positive and negative Addi-Chek units based on visual turbidity of the broth. It is concluded that Addi-Chek is easy to use and effective in detecting low-level contamination in intravenous fluids.

  14. NIRS monitoring of muscle contraction to control a prosthetic device

    NASA Astrophysics Data System (ADS)

    Bianchi, Thomas; Zambarbieri, Daniela; Beltrami, Giorgio; Verni, Gennaro

    1999-01-01

    The fitting of upper-extremity amputees requires special efforts, and its significance has been increased by the development of the myoelectrically controlled prosthetic arm. This solution is not free of problems due to the nature of the amputation, to the electromagnetic noise affecting the myelectrical signal and to the perspiration due to the contact between socket and the residual limb. Starting from the fact that NIRS and electromyographic signals are similar during a muscle contraction, we have first studied the NIRS signal during forearm muscle contractions in normal and amputee subjects. Then a new system to interface the NIRS unit and the myoelectrical prosthetic hand has been developed. The NIRS unit has been used as optical sensor and all the operations (I/O and signal processing) are performed via software. This system has been tested on normal and amputee subjects performing hand grasping using a visual biofeedback control scheme. All the subjects have been able to perform these operations demonstrating the NIRS technique. This could represent an alternative solution for controlling a prosthetic device.

  15. MMIC devices for active phased array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1985-01-01

    Considerable progress has been made in the calculation and measurement of the scattering parameters of printed circuit discontinuities. These discontinuities occur in a variety of structures, such as transitions between rectangular waveguide and printed circuits, junctions between circuits of different dielectric constants, and filters and impedance matching circuits. Because of the variety of devices in which these discontinuities occur, it is very useful to understand them in as great a detail as possible. Both theoretical and experimental studies of discontinuities were considered. The theoretical studies have focused on finding ways to predict the scattering from discontinuities. The experimental studies have concentrated on developing measurement techniques for determining the scattering parameters of these discontinuities.

  16. Open active cloaking and illusion devices for the Laplace equation

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Yang, Fan; Jin, Tian Yu; Lei Mei, Zhong; Cui, Tie Jun

    2016-04-01

    We propose open active cloaking and illusion devices for the Laplace equation. Compared with the closed configurations of active cloaking and illusion devices, we focus on improving the distribution schemes for the controlled sources, which do not have to surround the protected object strictly. Instead, the controlled sources can be placed in several small discrete clusters, and produce the desired voltages along the controlled boundary, to actively hide or disguise the protected object. Numerical simulations are performed with satisfactory results, which are further validated by experimental measurements. The open cloaking and illusion devices have many advantages over the closed configurations in various potential applications.

  17. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.

    2016-01-01

    The number of patients with diabetes has reached over 350 million, and still continues to increase. The need for regular blood glucose monitoring sparks the interest in the development of modern detection technologies. One of those methods, which allows for noninvasive measurements, is Raman spectroscopy. The ability of infrared light to penetrate deep into tissues allows for obtaining measurements through the skin without its perforation. This paper presents the limitations and possibilities of non-invasive blood glucose monitoring with Raman spectroscopy. Especially focusing on the possibilities for device miniaturization. Such device incorporates a Raman spectrometer, a fiber-optical probe, and a computing device (microcontroller, smartphone, etc.) which calculates the glucose concentration using specialized algorithms. Simplification of device design, as well as turbidity correction technique and a new proposed method of synchronized detection are described.

  18. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  19. A novel civilian granary temperature and humidity monitoring device based on C8051F020

    NASA Astrophysics Data System (ADS)

    Meng, Li; Li, Yuelong; Meng, Xiangjie

    The control to temperature and humidity of small civilian granary is great important to grain storage. In this paper, we propose a smart surveillance device to monitor temperature and humidity in real-time to ensure high quality food storage. This simple and small size device could achieve good anti-jamming at extremely low power consumption. It could automatically trigger the sound-light alarm when either temperature or humidity is higher than a preset threshold value.

  20. Testing of Monitoring Devices for JP-4 Releases in the Subsurface

    DTIC Science & Technology

    1990-04-01

    apparatus- induced dispersion. The inlet of each column was connected to a reservoir of deionized water through an FMI metering pump , capable of...test bed with a static water table to simulate a leak into the groundwater. Measurement of floating fuel thickness was determined throughout the...Devices monitoring for JP-4 floating product on the water table are not as quick or sensitive as the vapor phase devices at detecting a leak. The

  1. Fabrication and assembly of MEMS accelerometer-based heart monitoring device with simplified, one step placement.

    PubMed

    Tjulkins, Fjodors; Nguyen, Anh-Tuan Thai; Andreassen, Erik; Aasmundtveit, Knut; Hoivik, Nils; Hoff, Lars; Halvorsen, Per Steinar; Grymyr, Ole-Johannes; Imenes, Kristin

    2015-01-01

    An accelerometer-based heart monitoring system has been developed for real-time evaluation of heart wall movement. In this paper, assembly and fabrication of an improved device is presented along with system characterization and test data from an animal experiment. The new device is smaller and has simplified the implantation procedure compared to earlier prototypes. Leakage current recordings were well below those set by the corresponding standards.

  2. A portable ECG monitoring device with Bluetooth and Holter capabilities for telemedicine applications.

    PubMed

    Lucani, Daniel; Cataldo, Giancarlos; Cruz, Julio; Villegas, Guillermo; Wong, Sara

    2006-01-01

    A prototype of a portable ECG-monitoring device has been developed for clinical and non-clinical environments as part of a telemedicine system to provide remote and continuous surveillance of patients. The device can acquire, store and/or transmit ECG signals to computer-based platforms or specially configured access points (AP) with Intranet/Internet capabilities in order to reach remote monitoring stations. Acquired data can be stored in a flash memory card in FAT16 format for later recovery, or transmitted via Bluetooth or USB to a local station or AP. This data acquisition module (DAM) operates in two modes: Holter and on-line transmission.

  3. How to test electronic adherence monitoring devices for use in daily life: a conceptual framework.

    PubMed

    DE Bleser, Leentje; DE Geest, Sabina; Vincke, Birgit; Ruppar, Todd; Vanhaecke, Johan; Dobbels, Fabienne

    2011-09-01

    Electronic monitoring devices are increasingly used in healthcare to monitor health behaviors on a day-to-day basis. As a prerequisite to their application in clinical studies or daily practice, the performance of those electronic monitoring devices should be tested. Such testing includes a demonstration of technically correct function and of correspondence between the recorded data and the actual patient behavior, that is, objective testing of reliability and validity. Furthermore, from the patient's perspective, the operation of these devices should be easy to learn and to perform, and their use should be acceptable. These aspects of usability need to be tested from a user's subjective point of view. We propose a conceptual framework that builds on existing literature, for example, the framework on "obtrusiveness" of Hensel et al [J Am Med Inform Assoc. 2006;13(4):428-431], the assumptions regarding valid electronic monitoring of Denhaerynck et al [BMC Med Res Methodol. 2008;8:5], and empirical evidence. The framework integrates an objective and a subjective dimension. The objective dimension encompasses both reliability (accuracy and precision) and internal and external validity. The subjective dimension describes the user's perspective on usability along subdimensions of user performance, satisfaction, and acceptability. This framework can be used as a road map to test existing and future electronic monitoring devices before their widespread application in clinical studies or daily practice.

  4. Optoelectronic sensor device for monitoring ethanol concentration in winemaking applications

    NASA Astrophysics Data System (ADS)

    Jiménez-Márquez, F.; Vázquez, J.; Úbeda, J.; Rodríguez-Rey, J.; Sánchez-Rojas, J. L.

    2015-05-01

    The supervision of key variables such as sugar, alcohol, released CO2 and microbiological evolution in fermenting grape must is of great importance in the winemaking industry. However, the fermentation kinetics is assessed by monitoring the evolution of the density as it varies during a fermentation, since density is an indicator of the total amount of sugars, ethanol and glycerol. Even so, supervising the fermentation process is an awkward and non-comprehensive task, especially in wine cellars where production rates are massive, and enologists usually measure the density of the extracted samples from each fermentation tank manually twice a day. This work aims at the design of a fast, low-cost, portable and reliable optoelectronic sensor for measuring ethanol concentration in fermenting grape must samples. Different sets of model solutions, which contain ethanol, fructose, glucose, glycerol dissolved in water and emulate the grape must composition at different stages of the fermentation, were prepared both for calibration and validation. The absorption characteristics of these model solutions were analyzed by a commercial spectrophotometer in the NIR region, in order to identify key wavelengths from which valuable information regarding the sample composition can be extracted. Finally, a customized optoelectronic prototype based on absorbance measurements at two wavelengths belonging to the NIR region was designed, fabricated and successfully tested. The system, whose optoelectronics is reduced after a thorough analysis to only two LED lamps and their corresponding paired photodiodes operating at 1.2 and 1.3 μm respectively, calculates the ethanol content by a multiple linear regression.

  5. Catheter-based ultrasound devices and MR thermal monitoring for conformal prostate thermal therapy.

    PubMed

    Diederich, Chris J; Nau, Will H; Kinsey, Adam; Ross, Tony; Wootton, Jeff; Juang, Titania; Butts-Pauly, Kim; Rieke, Viola; Chen, Jing; Bouley, Donna M; Sommer, Graham

    2008-01-01

    Catheter-based ultrasound applicators have been developed for delivering hyperthermia or high-temperature thermal ablation of cancer and benign disease of the prostate. These devices allow for control of heating along the length and angular expanse during therapy delivery. Four types of transurethral applicators were devised for thermal treatment of prostate combined with MR thermal monitoring: sectored tubular transducer devices with directional heating patterns and rotation; planar and curvilinear devices with narrow heating patterns and rotation; and multi-sectored tubular devices capable of dynamic angular control without applicator movement. Interstitial devices (2.4 mm OD) have been developed for percutaneous implantation with directional or dynamic angular control. In vivo experiments in canine prostate under MR temperature imaging were used to evaluate these devices and develop treatment delivery strategies. MR thermal imaging was used to monitor temperature and thermal dose in multiple slices through the target volume. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the gland in short treatment times without applicator manipulation. The sectored tubular, planar, and curvilinear transurethral devices produce directional coagulation zones, extending 15-20 mm radial distance to the outer prostate capsule. Sequential rotation under motor control and modulated dwell time can be used to tightly conform thermal ablation to selected regions. Interstitial implants with directional devices can be used to effectively ablate targeted regions of the gland while protecting the rectum. The MR derived 52 degrees C and lethal thermal dose contours (t43=240 min) effectively defined the extent of thermal damage and provided a means for real-time control of the applicators. Catheter-based ultrasound devices, combined with MR thermal monitoring, can produce relatively fast (5-40 min) and precise thermal

  6. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  7. Regenerable activated bauxite adsorbent alkali monitor probe

    SciTech Connect

    Lee, S.H.D.

    1991-01-22

    This invention relates to a regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor 5 concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC 10 exhaust gases.

  8. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  9. Biofeedback monitoring-devices for astronauts in space environment

    NASA Astrophysics Data System (ADS)

    Rotondo, G.; Pancheri, P.; Monesi, F.; Grantaliano, G.; DePascalis, V.

    After a reconsideration of the state-of-the-art in biofeedback research the implementation of biofeedback systems is envisioned as a countermeasure of stress for the psychoprophylaxis of the astronaut. A one-session experiment performed on two groups of subjects to assess the interference from EMG-feedback on the performance in a simultaneous psychomotor trial with a view to expanding biofeedback application is described. The results show that the experimental group performed in the same way as the control without feedback, but with less CNS activation. Some general conclusions are drawn from the advances in technology.

  10. A continuous glucose monitoring device by graphene modified electrochemical sensor in microfluidic system

    PubMed Central

    Pu, Zhihua; Yu, Haixia; Xu, Kexin; Li, Dachao

    2016-01-01

    This paper presents a continuous glucose monitoring microsystem consisting of a three-electrode electrochemical sensor integrated into a microfluidic chip. The microfluidic chip, which was used to transdermally extract and collect subcutaneous interstitial fluid, was fabricated from five polydimethylsiloxane layers using micromolding techniques. The electrochemical sensor was integrated into the chip for continuous detection of glucose. Specifically, a single-layer graphene and gold nanoparticles (AuNPs) were decorated onto the working electrode (WE) of the sensor to construct a composite nanostructured surface and improve the resolution of the glucose measurements. Graphene was transferred onto the WE surface to improve the electroactive nature of the electrode to enable measurements of low levels of glucose. The AuNPs were directly electrodeposited onto the graphene layer to improve the electron transfer rate from the activity center of the enzyme to the electrode to enhance the sensitivity of the sensor. Glucose oxidase (GOx) was immobilized onto the composite nanostructured surface to specifically detect glucose. The factors required for AuNPs deposition and GOx immobilization were also investigated, and the optimized parameters were obtained. The experimental results displayed that the proposed sensor could precisely measure glucose in the linear range from 0 to 162 mg/dl with a detection limit of 1.44 mg/dl (S/N = 3). The proposed sensor exhibited the potential to detect hypoglycemia which is still a major challenge for continuous glucose monitoring in clinics. Unlike implantable glucose sensors, the wearable device enabled external continuous monitoring of glucose without interference from foreign body reaction and bioelectricity. PMID:26958097

  11. Distributed Smart Device for Monitoring, Control and Management of Electric Loads in Domotic Environments

    PubMed Central

    Morales, Ricardo; Badesa, Francisco J.; García-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose María

    2012-01-01

    This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket) has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron) used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753) to measure the consumption of electrical energy and then to transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600) has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user's program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device. PMID:22778581

  12. Distributed smart device for monitoring, control and management of electric loads in domotic environments.

    PubMed

    Morales, Ricardo; Badesa, Francisco J; García-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose María

    2012-01-01

    This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket) has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron) used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753) to measure the consumption of electrical energy and then to transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600) has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user's program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device.

  13. How accurate are electronic monitoring devices? A laboratory study testing two devices to measure medication adherence.

    PubMed

    De Bleser, Leentje; De Geest, Sabina; Vandenbroeck, Sofie; Vanhaecke, Johan; Dobbels, Fabienne

    2010-01-01

    In a prospective descriptive laboratory study, 25 Helping Hand(™) (HH) (10 without and 15 with reminder system) and 50 Medication Event Monitoring Systems (MEMS) (25 with 18-month and 25 with 2-year battery life) were manipulated twice daily following a predefined protocol during 3 consecutive weeks. Accuracy was determined using the fixed manipulation scheme as the reference. Perfect functioning (i.e., total absence of missing registrations and/or overregistrations) was observed in 70% of the HH without, 87% of the HH with reminder, 20% MEMS with 18 months, and 100% with 2-year battery life respectively.

  14. Development of novel active transport membrande devices

    SciTech Connect

    Laciak, D.V.

    1994-11-01

    Air Products has undertaken a research program to fabricate and evaluate gas separation membranes based upon promising ``active-transport`` (AT) materials recently developed in our laboratories. Active Transport materials are ionic polymers and molten salts which undergo reversible interaction or reaction with ammonia and carbon dioxide. The materials are useful for separating these gases from mixtures with hydrogen. Moreover, AT membranes have the unique property of possessing high permeability towards ammnonia and carbon dioxide but low permeability towards hydrogen and can thus be used to permeate these components from a gas stream while retaining hydrogen at high pressure.

  15. 40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each regeneration cycle, record the...

  16. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regeneration cycle and within 15 minutes of completing any cooling cycle, record the carbon bed temperature.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed...

  17. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regeneration cycle and within 15 minutes of completing any cooling cycle, record the carbon bed temperature.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed...

  18. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regeneration cycle and within 15 minutes of completing any cooling cycle, record the carbon bed temperature.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed...

  19. 77 FR 37067 - Certain Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... [Federal Register Volume 77, Number 119 (Wednesday, June 20, 2012)] [Notices] [Pages 37067-37068] [FR Doc No: 2012-15005] INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-741/749] Certain Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, and Components Thereof;...

  20. A new device to automate the monitoring of critical patients' urine output.

    PubMed

    Otero, Abraham; Apalkov, Andrey; Fernández, Roemi; Armada, Manuel

    2014-01-01

    Urine output (UO) is usually measured manually each hour in acutely ill patients. This task consumes a substantial amount of time. Furthermore, in the literature there is evidence that more frequent (minute-by-minute) UO measurement could impact clinical decision making and improve patient outcomes. However, it is not feasible to manually take minute-by-minute UO measurements. A device capable of automatically monitoring UO could save precious time of the healthcare staff and improve patient outcomes through a more precise and continuous monitoring of this parameter. This paper presents a device capable of automatically monitoring UO. It provides minute by minute measures and it can generate alarms that warn of deviations from therapeutic goals. It uses a capacitive sensor for the measurement of the UO collected within a rigid container. When the container is full, it automatically empties without requiring any internal or external power supply or any intervention by the nursing staff. In vitro tests have been conducted to verify the proper operation and accuracy in the measures of the device. These tests confirm the viability of the device to automate the monitoring of UO.

  1. A New Device to Automate the Monitoring of Critical Patients' Urine Output

    PubMed Central

    Otero, Abraham; Apalkov, Andrey; Fernández, Roemi; Armada, Manuel

    2014-01-01

    Urine output (UO) is usually measured manually each hour in acutely ill patients. This task consumes a substantial amount of time. Furthermore, in the literature there is evidence that more frequent (minute-by-minute) UO measurement could impact clinical decision making and improve patient outcomes. However, it is not feasible to manually take minute-by-minute UO measurements. A device capable of automatically monitoring UO could save precious time of the healthcare staff and improve patient outcomes through a more precise and continuous monitoring of this parameter. This paper presents a device capable of automatically monitoring UO. It provides minute by minute measures and it can generate alarms that warn of deviations from therapeutic goals. It uses a capacitive sensor for the measurement of the UO collected within a rigid container. When the container is full, it automatically empties without requiring any internal or external power supply or any intervention by the nursing staff. In vitro tests have been conducted to verify the proper operation and accuracy in the measures of the device. These tests confirm the viability of the device to automate the monitoring of UO. PMID:24605331

  2. Wearable medical devices using textile and flexible technologies for ambulatory monitoring.

    PubMed

    Dittmar, Andre; Meffre, Richard; De Oliveira, Fabrice; Gehin, Claudine; Delhomme, Georges

    2005-01-01

    Health smart clothes are in contact with almost all the surface of the skin offer large possibilities for the location of sensors for non invasive measurements. Head band, collar, tee-shirt, socks, shoes, belts for chest, arm, wrist, legs ... provide localization with specific purpose taking into account their proximity of an organ or a source of biosignal, and also its ergonomic possibility (user friendly) to fix a sensor, and the associated instrumentations (batteries, amplifiers, signal processing, telecom, alarm, display ...). Progress in science and technology offers, for the first time, intelligence, speed, miniaturization, sophistication and new materials at low cost. In this new landscape, microtechnologies, information technologies and telecommunications are a key factor. Microsensors : Microtechnologies offer the possibility of small size, but also intelligent, active device, working with low energy, wireless and non invasive or mini invasive. These sensors have to be thin, flexible and compatible with textile, or made using textile technologies, new fibers with specific properties: mechanical, electrical, optical ... The field of applications is very large, e.g. continuous monitoring on elderly population, professional and military activities, athlete's performance and condition, and people with disabilities. The research are oriented toward two complementary directions: Improving the relevancy of each sensor and increasing the number of sensors for having a more global synthetic and robust information.

  3. "Periodic-table-style" paper device for monitoring heavy metals in water.

    PubMed

    Li, Miaosi; Cao, Rong; Nilghaz, Azadeh; Guan, Liyun; Zhang, Xiwang; Shen, Wei

    2015-03-03

    If a paper-based analytical device (μ-PAD) could be made by printing indicators for detection of heavy metals in chemical symbols of the metals in a style of the periodic table of elements, it could be possible for such μ-PAD to report the presence and the safety level of heavy metal ions in water simultaneously and by text message. This device would be able to provide easy solutions to field-based monitoring of heavy metals in industrial wastewater discharges and in irrigating and drinking water. Text-reporting could promptly inform even nonprofessional users of the water quality. This work presents a proof of concept study of this idea. Cu(II), Ni(II), and Cr(VI) were chosen to demonstrate the feasibility, specificity, and reliability of paper-based text-reporting devices for monitoring heavy metals in water.

  4. A wearable device for continuous monitoring of heart mechanical function based on impedance cardiography.

    PubMed

    Panfili, G; Piccini, L; Maggi, L; Parini, S; Andreoni, G

    2006-01-01

    In this study we explored the possibility to realize a low power device for Cardiac Output continuous monitoring based on impedance cardiography technique. We assessed the possibility to develop a system able to record data allow an intra-subjective analysis based on the daily variations of this measure. The device was able to acquire and to send signals using a wireless Bluetooth transmission. The electronic circuit was designed in order to minimize power consumption, dimension and weight. The reported results were interesting for what concerns the power consumption and then noise level. In this way was obtained a wearable device that will permit to define specific clinical protocols based on continuous monitoring of the Cardiac Output signal.

  5. Monitoring Cardiac Output and Transesophageal Echocardiography during Removal of a Ventricular Assist Device.

    PubMed

    Demir, Aslı; Karadeniz, Ümit; Aydınlı, Bahar; Taş, Murat; Erdemli, Özcan

    2013-12-01

    A ventricular assist device (VAD) is a mechanical pump used to support heart function and blood flow in patients with poor heart functions. For selected patients who are too ill to wait for a heart transplant or are not eligible for a heart transplant because of age or other medical problems, ventricular assist devices offer life-saving therapy. This device has also become a life-saving approach for patients with acute viral myocarditis. Following the acute illness phase, when heart function has improved, the VAD is carefully removed. It is very important to continuously monitor myocardial functions during this period. In this paper, we present a patient who underwent cardiac output and transesophageal echocardiography monitoring during VAD removal.

  6. Monitoring Cardiac Output and Transesophageal Echocardiography during Removal of a Ventricular Assist Device

    PubMed Central

    Demir, Aslı; Karadeniz, Ümit; Aydınlı, Bahar; Taş, Murat; Erdemli, Özcan

    2013-01-01

    A ventricular assist device (VAD) is a mechanical pump used to support heart function and blood flow in patients with poor heart functions. For selected patients who are too ill to wait for a heart transplant or are not eligible for a heart transplant because of age or other medical problems, ventricular assist devices offer life-saving therapy. This device has also become a life-saving approach for patients with acute viral myocarditis. Following the acute illness phase, when heart function has improved, the VAD is carefully removed. It is very important to continuously monitor myocardial functions during this period. In this paper, we present a patient who underwent cardiac output and transesophageal echocardiography monitoring during VAD removal. PMID:27366376

  7. A Device for Fetal Monitoring by Means of Control Over Cardiovascular Parameters Based on Acoustic Data

    NASA Astrophysics Data System (ADS)

    Khokhlova, L. A.; Seleznev, A. I.; Zhdanov, D. S.; Zemlyakov, I. Yu; Kiseleva, E. Yu

    2016-01-01

    The problem of monitoring fetal health is topical at the moment taking into account a reduction in the level of fertile-age women's health and changes in the concept of perinatal medicine with reconsideration of live birth criteria. Fetal heart rate monitoring is a valuable means of assessing fetal health during pregnancy. The routine clinical measurements are usually carried out by the means of ultrasound cardiotocography. Although the cardiotocography monitoring provides valuable information on the fetal health status, the high quality ultrasound devices are expensive, they are not available for home care use. The recommended number of measurement is also limited. The passive and fully non-invasive acoustic recording provides an alternative low-cost measurement method. The article describes a device for fetal and maternal health monitoring by analyzing the frequency and periodicity of heart beats by means of acoustic signal received on the maternal abdomen. Based on the usage of this device a phonocardiographic fetal telemedicine system, which will allow to reduce the antenatal fetal mortality rate significantly due to continuous monitoring over the state of fetus regardless of mother's location, can be built.

  8. Geometric investigation of a gaming active device

    NASA Astrophysics Data System (ADS)

    Menna, Fabio; Remondino, Fabio; Battisti, Roberto; Nocerino, Erica

    2011-07-01

    3D imaging systems are widely available and used for surveying, modeling and entertainment applications, but clear statements regarding their characteristics, performances and limitations are still missing. The VDI/VDE and the ASTME57 committees are trying to set some standards but the commercial market is not reacting properly. Since many new users are approaching these 3D recording methodologies, clear statements and information clarifying if a package or system satisfies certain requirements before investing are fundamental for those users who are not really familiar with these technologies. Recently small and portable consumer-grade active sensors came on the market, like TOF rangeimaging cameras or low-cost triangulation-based range sensor. A quite interesting active system was produced by PrimeSense and launched on the market thanks to the Microsoft Xbox project with the name of Kinect. The article reports the geometric investigation of the Kinect active sensors, considering its measurement performances, the accuracy of the retrieved range data and the possibility to use it for 3D modeling application.

  9. Calibration of oscillometric non-invasive devices for monitoring blood pressure

    NASA Astrophysics Data System (ADS)

    Doh, Il; Lim, Hyun Kyoon; Ahn, Bongyoung

    2015-04-01

    Blood pressure is one of the most important vital signs used to monitor a patient’s medical condition and is widely measured in hospitals and at home. Automatic, non-invasive blood pressure (NIBP) monitoring devices measure systolic and diastolic blood pressures from the analysis of cuff pressure oscillations caused by periodic variations of blood pressure in an artery. Currently, clinical validation by comparing them to the auscultatory reference has been used to verify the performance of NIBP devices. However, there are presently no calibration methods for NIBP devices. Here, we propose an SI-traceable calibration method for oscillometric NIBP devices. The calibration system generates pressure-pulses at pre-determined cuff pressures, and with pre-determined amplitude, to the device-under-test. The uncertainty of each pulse is analyzed and used for the calculation of blood pressure (BP) uncertainty. The maximum uncertainty for systolic and diastolic BP using the newly developed calibration system is (0.74 and 0.60) mmHg (k = 2) depending on the pressure and amplitude of each pulse, as well as the number of pulses applied. The present method can be used for calibration of oscillometric NIBP devices.

  10. Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring

    DOEpatents

    Ericson, Milton N.; McKnight, Timothy E.; Smith, Stephen F.; Hylton, James O.

    2003-01-01

    The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.

  11. Rail expansion devices monitored by FBG sensors on an urban railway viaduct

    NASA Astrophysics Data System (ADS)

    Li, Weilai; Pang, Jin; Lu, Xiaoshan; Liu, Jie

    2014-06-01

    The fiber Bragg grating (FBG) sensing technology was used to monitor the situation of a crevice of the continuous beam joint and rails near rail expansion devices on a viaduct of the urban railway. The monitoring items consisted of the rail temperature, rail displacement, viaduct beam displacement, and strain of sliding rail in the rail expansion device section. The strain sensor was a prefabricate FBG strain gauge, the displacement sensor with different scales used an FBG stress ring, and the FBG of the temperature sensor was pre-drawn and fixed in a metal tube. Compensation sensors were used to balance environmental temperature changes. All FBGs were suspended adhered, therefore the chirped phenomenon of the FBG reflection peak was avoided, and the measurement accuracy was improved. The monitoring results matched to the manual test and theoretical estimation.

  12. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2004-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  13. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2002-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  14. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR OMNIDIRECTIONAL... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008...

  15. 76 FR 58840 - In the Matter of Certain Display Devices, Including Digital Televisions and Monitors II; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... COMMISSION In the Matter of Certain Display Devices, Including Digital Televisions and Monitors II; Notice of... display devices, including digital televisions and monitors by reason of infringement of various claims of... Electronics, Inc. of Seoul, Korea, and LG Electronics U.S.A., Inc. of Englewood Cliffs, New...

  16. In-situ photopolymerization and monitoring device for controlled shaping of tissue fillers, replacements, or implants

    NASA Astrophysics Data System (ADS)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2015-03-01

    Photopolymerization is a common tool to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler simply by illumination. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. However, at the device level, surgical endoscopic probes are required. We present a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 1 mm in diameter. Beside basic injection mechanics, the tool consists of an optical fiber guiding the light required for photopolymerization and for chemical analysis. Combining photorheology and fluorescence spectroscopy, the current state of the photopolymerization is inferred and monitored in real time. Biocompatible and highly tuneable Poly-Ethylene-Glycol (PEG) hydrogels were used as the injection material. The device was tested on a model for intervertebral disc replacement. Gels were successfully implanted into a bovine caudal model and mechanically tested in-vitro during two weeks. The photopolymerized gel was evaluated at the tissue level (adherence and mechanical properties of the implant), at the cellular level (biocompatibility and cytotoxicity) and ergonomic level (sterilization procedure and feasibility study). This paper covers the monitoring aspect of the device.

  17. Using electronic monitoring devices to measure inhaler adherence: a practical guide for clinicians.

    PubMed

    Chan, Amy Hai Yan; Harrison, Jeff; Black, Peter N; Mitchell, Edwin A; Foster, Juliet M

    2015-01-01

    Use of electronic monitoring devices (EMDs) for inhalers is growing rapidly because of their ability to provide objective and detailed adherence data to support clinical decision making. There is increasing potential for the use of EMDs in clinical settings, especially as cost-effectiveness is realized and device costs reduce. However, it is important for clinicians to know about the attributes of different EMDs so that they can select the right device for their patients and understand the factors that affect the reliability and accuracy of the data EMDs record. This article gives information on where to obtain EMDs, describes device specifications, and highlights useful features for the clinician and the patient, including user feedback data. We discuss the benefits and potential drawbacks of data collected by EMDs and provide device users with a set of tools to optimize the use of EMDs in clinical settings, such as advice on how to carry out brief EMD checks to ensure data quality and device reliability. New EMDs on the market require pretesting before use by patients. We provide information on how to carry out EMD pretesting in the clinic and patients' homes, which can be carried out by health professionals or in collaboration with researchers or manufacturers. Strategies for interpreting and managing common device malfunctions are also discussed.

  18. Dietary assessment and self-monitoring with nutrition applications for mobile devices.

    PubMed

    Lieffers, Jessica R L; Hanning, Rhona M

    2012-01-01

    Nutrition applications for mobile devices (e.g., personal digital assistants, smartphones) are becoming increasingly accessible and can assist with the difficult task of intake recording for dietary assessment and self-monitoring. This review is a compilation and discussion of research on this tool for dietary intake documentation in healthy populations and those trying to lose weight. The purpose is to compare this tool with conventional methods (e.g., 24-hour recall interviews, paper-based food records). Research databases were searched from January 2000 to April 2011, with the following criteria: healthy or weight loss populations, use of a mobile device nutrition application, and inclusion of at least one of three measures, which were the ability to capture dietary intake in comparison with conventional methods, dietary self-monitoring adherence, and changes in anthropometrics and/or dietary intake. Eighteen studies are discussed. Two application categories were identified: those with which users select food and portion size from databases and those with which users photograph their food. Overall, positive feedback was reported with applications. Both application types had moderate to good correlations for assessing energy and nutrient intakes in comparison with conventional methods. For self-monitoring, applications versus conventional techniques (often paper records) frequently resulted in better self-monitoring adherence, and changes in dietary intake and/or anthropometrics. Nutrition applications for mobile devices have an exciting potential for use in dietetic practice.

  19. A Device for Local or Remote Monitoring of Hand Rehabilitation Sessions for Rheumatic Patients

    PubMed Central

    Barabino, Gianluca; Dessì, Alessia; Tradori, Iosto; Piga, Matteo; Mathieu, Alessandro; Raffo, Luigi

    2014-01-01

    Current clinical practice suggests that recovering the hand functionality lost or reduced by injuries, interventions and chronic diseases requires, beyond pharmacological treatments, a kinesiotherapic intervention. This form of rehabilitation consists of physical exercises adapted to the specific pathology. Its effectiveness is strongly dependent on the patient's adhesion to such a program. In this paper we present a novel device with remote monitoring capabilities expressly conceived for the needs of rheumatic patients. It comprises several sensorized tools and can be used either in an outpatient clinic for hand functional evaluation, connected to a PC, or afforded to the patient for home kinesiotherapic sessions. In the latter case, the device guides the patient in the rehabilitation session, transmitting the relevant statistics about his performance to a TCP/IP server exploiting a GSM/GPRS connection for deferred analysis. An approved clinical trial has been set up in Italy, involving 10 patients with Rheumatoid Arthritis and 10 with Systemic Sclerosis, enrolled for 12 weeks in a home rehabilitation program with the proposed device. Their evaluation has been performed with traditional methods but also with the proposed device. Subjective (hand algofunctional Dreiser's index) and objective (ROM, strength, dexterity) parameters showed a sustained improvement throughout the follow-up. The obtained results proved that the device is an effective and safe tool for assessing hand disability and monitoring kinesiotherapy exercise, portending the potential exploitability of such a methodology in clinical practice. PMID:27170875

  20. Use of diagnostic imaging procedures and fetal monitoring devices in the care of pregnant women.

    PubMed Central

    Moore, R M; Jeng, L L; Kaczmarek, R G; Placek, P J

    1990-01-01

    Medical devices and diagnostic imaging procedures such as ultrasound, X-rays, and electronic fetal monitoring devices are used in the medical care of many pregnant women today. The responsibility for the safety and effectiveness of these diagnostic technologies is shared by a number of Public Health Service agencies, one of which is the Center for Devices and Radiological Health (CDRH), a unit within the Food and Drug Administration. The CDRH collaborated with the National Center for Health Statistics (NCHS) in conducting a study of recent trends in the uses of diagnostic ultrasound, medical X-rays, and electronic fetal monitoring devices in the medical care of pregnant women. This study used data from the 1980 National Natality and Fetal Mortality Surveys and the 1987 pretest to the National Maternal and Infant Health Survey. Hospitals and prenatal care providers of the pregnant women contributed information regarding the use of these medical devices. Between 1980 and 1987, ultrasound use more than doubled, increasing from 33.5 percent of pregnancies in 1980 to 78.8 percent in 1987 (P less than 0.001). More ultrasound examinations were performed earlier in gestation in 1987 than in 1980, with 10.1 percent being performed during the first trimester in 1987, compared with 6.9 percent in 1980 (P less than 0.001). Use of external electronic fetal monitoring devices during delivery also increased significantly between 1980 and 1987, from 33.5 percent to 74.6 percent (P less than 0.001). Use of medical X-rays among women with live births remained relatively unchanged, 15.0 percent in 1980 and 15.3 percent in 1987 (P = .282). The implications of these trends are discussed. PMID:2120723

  1. Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) Groups in

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured are activities of the Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) groups in the SL POCC during the IML-1 mission.

  2. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors

    PubMed Central

    Chowdhury, Enhad A.; Western, Max J.; Nightingale, Thomas E.; Peacock, Oliver J.; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  3. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    PubMed

    Chowdhury, Enhad A; Western, Max J; Nightingale, Thomas E; Peacock, Oliver J; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  4. Active MMI devices: concept, proof, and recent progress

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kiichi; Jiang, Haisong

    2015-09-01

    Multi-mode interference (MMI) couplers (waveguides) are widely studied and developed as key components of photonic integrated circuits, including power coupler/dividers, and others. Furthermore, another possibility utilizing MMI has been investigated on active devices so far. Owing to the wider area of the multi-mode waveguide section compared with that of the regular single-mode waveguide, MMI may result in higher performance (high power, low power consumption, and others) rather than conventional active devices while maintaining regular single-mode output. Thus, active multi-mode interferometer (active-MMI) devices, including laser diodes (LDs), super-luminescent light emitting diodes (SLEDs), and semiconductor optical amplifiers (SOAs) have been studied. Moreover, they have been also exploited to bi-stable LDs and single wavelength emitters, and others using the interference inside the MMI section. In this paper, we review and summarize the recent progress in active MMI devices. We provide proof of MMI phenomena in active waveguides and discuss the results.

  5. Accuracy and response time comparisons of four skin temperature-monitoring devices.

    PubMed

    Krause, B F

    1993-06-01

    Although technological improvements in skin surface temperature-measurement devices have progressed since they were first used clinically, the question of their accuracy and reliability for skin temperature monitoring still remains. The purpose of this study was to compare the accuracy and response time to temperature change for four temperature-monitoring devices: liquid crystal (Crystaline ST, Sharn, Inc, Tampa, Fla), two different thermistor sensors (RSP, Respiratory Support Products, Inc, Irvine, Calif, and SHER-I-TEMP, Sheridan Catheter Corp, Argyle, NY), and one thermocouple-based temperature sensor (Mon-a-therm, Mallinckrodt, Inc, St. Louis, Mo). A temperature-controlled steel surface plate was used as the reference temperature source for test comparisons. The results showed that Crystaline ST (liquid crystal device) performed better in the accuracy and response time tests than the electronic thermistor and thermocouple temperature-sensor devices tested. Regression analysis of the reference temperature comparisons showed that although all four devices had high correlation coefficients Crystaline ST had the highest correlation (R = 0.99685). Also, the regression equation for Crystaline ST was closest to a perfect fit with reference temperatures, ie, slope = 1.00267 and intercept = 0.20333 (P = .0000). Crystaline ST responded consistently faster than the other devices for each change in temperature setting (5, 10, 15, and 20 degrees F). Crystaline ST responded within 3.5 to 4.4 seconds for every temperature gradient change tested. All three of the other sensor devices had increasingly longer response times as the temperature gradient increased.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Frazier, T.P.

    1994-10-20

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

  7. Detection of physical activities using a physical activity monitor system for wheelchair users.

    PubMed

    Hiremath, Shivayogi V; Intille, Stephen S; Kelleher, Annmarie; Cooper, Rory A; Ding, Dan

    2015-01-01

    Availability of physical activity monitors for wheelchair users can potentially assist these individuals to track regular physical activity (PA), which in turn could lead to a healthier and more active lifestyle. Therefore, the aim of this study was to develop and validate algorithms for a physical activity monitoring system (PAMS) to detect wheelchair based activities. The PAMS consists of a gyroscope based wheel rotation monitor (G-WRM) and an accelerometer device (wocket) worn on the upper arm or on the wrist. A total of 45 persons with spinal cord injury took part in the study, which was performed in a structured university-based laboratory environment, a semi-structured environment at the National Veterans Wheelchair Games, and in the participants' home environments. Participants performed at least ten PAs, other than resting, taken from a list of PAs. The classification performance for the best classifiers on the testing dataset for PAMS-Arm (G-WRM and wocket on upper arm) and PAMS-Wrist (G-WRM and wocket on wrist) was 89.26% and 88.47%, respectively. The outcomes of this study indicate that multi-modal information from the PAMS can help detect various types of wheelchair-based activities in structured laboratory, semi-structured organizational, and unstructured home environments.

  8. Multiwavelength monitoring of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Urry, C. M.

    1993-01-01

    Recent multiwavelength monitoring of active galactic nuclei (AGN), particularly with the IUE satellite, has produced extraordinay advances in our understanding of the energy-generation mechanism(s) in the central engine and of the structure of the surrounding material. Examples discussed here include both ordinary AGN and blazars (the collective name for highly variable, radio-loud AGN like BL Lac objects and Optically Violently Variable quasars). In the last decade, efforts to obtain single-epoch multiwavelength spectra led to fundamentally new models for the structure of AGN, involving accretion disks for AGN and relativistic jets for blazars. Recent extensions of multiwavelength spectroscopy into the temporal domain have shown that while these general pictures may be correct, the details were probably wrong. Campaigns to monitor Seyfert 1 galaxies like NGC 4151, NGC 5548 and Fairall 9 at infrared, optical, ultraviolet and X-ray wavelengths indicate that broad-emission line regions are stratified by ionization, density, and velocity; argue against a standard thin accretion disk model; and suggest that X-rays represent primary rather than reprocessed radiation. For blazars, years of radio monitoring indicated emission from an inhomogeneous synchrotron-emitting plasma, which could also produce at least some of the shorter-wavelength emission. The recent month-long campaign to observe the BL Lac object PKS 2155-304 has revealed remarkably rapid variability that extends from the infrared through the X-ray with similar amplitude and little or no discernible lag. This lends strong support to relativistic jet models and rules out the proposed accretion disk model for the ultraviolet-X-ray continuum.

  9. A device for continuous monitoring of true central fixation based on foveal birefringence.

    PubMed

    Gramatikov, Boris; Irsch, Kristina; Müllenbroich, Marie; Frindt, Nicole; Qu, Yinhong; Gutmark, Ron; Wu, Yi-Kai; Guyton, David

    2013-09-01

    A device for continuous monitoring of central fixation utilizes birefringence, the property of the Henle fibers surrounding the human fovea, to change the polarization state of light. A circular scan of retinal birefringence, where the scanning circle encompasses the fovea, allows identification of true central fixation-an assessment much needed in various applications in ophthalmology, psychology, and psychiatry. The device allows continuous monitoring for central fixation over an extended period of time in the presence of fixation targets and distracting stimuli, which may be helpful in detecting attention deficit hyperactivity disorder, autism spectrum disorders, and other disorders characterized by changes in the subject's ability to maintain fixation. A proof-of-concept has been obtained in a small study of ADHD patients and normal control subjects.

  10. Monitoring of Crew Activity with FAMOS

    NASA Astrophysics Data System (ADS)

    Wolf, L.; Cajochen, C.; Bromundt, V.

    2007-10-01

    The success of long duration space missions, such as manned missions to Mars, depends on high and sustained levels of vigilance and performance of astronauts and operators working in the technology rich environment of a spacecraft. Experiment 'Monitoring of Crew Activity with FAMOS' was set up to obtain operational experience with complimentary methods / technologies to assess the alertness / sleepiness status of selected AustroMars crewmembers on a daily basis. We applied a neurobehavioral test battery consisting of 1) Karolinska Sleepiness Scale KSS, 2) Karolinska Drowsiness Test KDT, 3) Psychomotor Vigilance Task PVT, combined with 4) left eye video recordings with an early prototype of the FAMOS Fatigue Monitoring System headset currently being developed by Sowoon Technologies (CH), and 5) Actiwatches that were worn continuously. A test battery required approximately 15 minutes and was repeated up to 4 times daily by 2 to 4 subjects. Here we present the data analysis of methods 1, 2, 3, and 5, while data analysis of method 4 is still in progress.

  11. Active chaotic excitation for bolted joint monitoring

    NASA Astrophysics Data System (ADS)

    Fasel, Timothy R.; Todd, Michael D.; Park, Gyuhae

    2006-03-01

    Recent research has shown that high frequency chaotic excitation and state space reconstruction may be used to identify incipient damage (loss of preload) in a bolted joint. In this study, a new experiment is undertaken with updated test equipment, including a piezostack actuator that allows for precise control of bolt preload. The excitation waveform is applied to a macro-fiber composite (MFC) patch that is bonded to the test structure and is sensed in an active manner using a second MFC patch. A novel prediction error algorithm, based on comparing filtered properties of the guided chaotic waves, is used to determine the damage state of a frame structure and is shown to be highly sensitive to small levels of bolt preload loss. The performance of the prediction error method is compared with standard structural health monitoring damage features that are based on time series analysis using auto-regressive (AR) models.

  12. The Digital Asthma Patient: The History and Future of Inhaler Based Health Monitoring Devices.

    PubMed

    Kikidis, Dimitrios; Konstantinos, Votis; Tzovaras, Dimitrios; Usmani, Omar S

    2016-06-01

    The wave of digital health is continuously growing and promises to transform healthcare and optimize the patients' experience. Asthma is in the center of these digital developments, as it is a chronic disease that requires the continuous attention of both health care professionals and patients themselves. The accurate and timely assessment of the state of asthma is the fundamental basis of digital health approaches and is also the most significant factor toward the preventive and efficient management of the disease. Furthermore, the necessity of inhaled medication offers a basic platform upon which modern technologies can be integrated, namely the inhaler device itself. Inhaler-based monitoring devices were introduced in the beginning of the 1980s and have been evolving but mainly for the assessment of medication adherence. As technology progresses and novel sensing components are becoming available, the enhancement of inhalers with a wider range of monitoring capabilities holds the promise to further support and optimize asthma self-management. The current article aims to take a step for the mapping of this territory and start the discussion among healthcare professionals and engineers for the identification and the development of technologies that can offer personalized asthma self-management with clinical significance. In this direction, a technical review of inhaler based monitoring devices is presented, together with an overview of their use in clinical research. The aggregated results are then summarized and discussed for the identification of key drivers that can lead the future of inhalers.

  13. A Low-Power and Portable Biomedical Device for Respiratory Monitoring with a Stable Power Source.

    PubMed

    Yang, Jiachen; Chen, Bobo; Zhou, Jianxiong; Lv, Zhihan

    2015-08-11

    Continuous respiratory monitoring is an important tool for clinical monitoring. Associated with the development of biomedical technology, it has become more and more important, especially in the measuring of gas flow and CO2 concentration, which can reflect the status of the patient. In this paper, a new type of biomedical device is presented, which uses low-power sensors with a piezoresistive silicon differential pressure sensor to measure gas flow and with a pyroelectric sensor to measure CO2 concentration simultaneously. For the portability of the biomedical device, the sensors and low-power measurement circuits are integrated together, and the airway tube also needs to be miniaturized. Circuits are designed to ensure the stability of the power source and to filter out the existing noise. Modulation technology is used to eliminate the fluctuations at the trough of the waveform of the CO2 concentration signal. Statistical analysis with the coefficient of variation was performed to find out the optimal driving voltage of the pressure transducer. Through targeted experiments, the biomedical device showed a high accuracy, with a measuring precision of 0.23 mmHg, and it worked continuously and stably, thus realizing the real-time monitoring of the status of patients.

  14. A Low-Power and Portable Biomedical Device for Respiratory Monitoring with a Stable Power Source

    PubMed Central

    Yang, Jiachen; Chen, Bobo; Zhou, Jianxiong; Lv, Zhihan

    2015-01-01

    Continuous respiratory monitoring is an important tool for clinical monitoring. Associated with the development of biomedical technology, it has become more and more important, especially in the measuring of gas flow and CO2 concentration, which can reflect the status of the patient. In this paper, a new type of biomedical device is presented, which uses low-power sensors with a piezoresistive silicon differential pressure sensor to measure gas flow and with a pyroelectric sensor to measure CO2 concentration simultaneously. For the portability of the biomedical device, the sensors and low-power measurement circuits are integrated together, and the airway tube also needs to be miniaturized. Circuits are designed to ensure the stability of the power source and to filter out the existing noise. Modulation technology is used to eliminate the fluctuations at the trough of the waveform of the CO2 concentration signal. Statistical analysis with the coefficient of variation was performed to find out the optimal driving voltage of the pressure transducer. Through targeted experiments, the biomedical device showed a high accuracy, with a measuring precision of 0.23 mmHg, and it worked continuously and stably, thus realizing the real-time monitoring of the status of patients. PMID:26270665

  15. A miniaturized device for wireless FSCV monitoring of dopamine in an ambulatory subject.

    PubMed

    Roham, Masoud; Covey, Daniel P; Daberkow, David P; Ramsson, Eric S; Howard, Christopher D; Garris, Paul A; Mohseni, Pedram

    2010-01-01

    This paper reports on a miniaturized device for wireless monitoring of extracellular dopamine levels in the brain of an ambulatory rat using fast-scan cyclic voltammetry at a carbon-fiber microelectrode. The device comprises integrated circuitry for neurochemical recording fabricated in 0.5-microm double-poly triple-metal CMOS technology, which is assembled and packaged on a miniature rigid-flex substrate together with a few external components for supply generation, biasing, and chip programming. The device operates from a single 3-V battery, weighs 2.3 g (including the battery), and upon implantation successfully captures the effects of the psychostimulant amphetamine on electrically and non-electrically evoked dopamine neurotransmission in the caudateputamen region of an ambulatory rat's forebrain.

  16. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis

    PubMed Central

    Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-01-01

    Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which

  17. CONTINUOUS MONITORING OF INFLAMMATION BIOMARKERS DURING SIMULATED CARDIOPULMONARY BYPASS USING A MICROFLUIDIC IMMUNOASSAY DEVICE – A PILOT STUDY

    PubMed Central

    Sasso, Lawrence A.; Aran, Kiana; Guan, Yulong; Ündar, Akif; Zahn, Jeffrey D.

    2012-01-01

    This work demonstrates the use of a continuous online monitoring system for tracking systemic inflammation biomarkers during cardiopulmonary bypass (CPB) procedures. The ability to monitor inflammation biomarkers during CPB will allow surgical teams to actively treat inflammation and reduce harmful effects on postoperative morbidity and mortality, enabling improved patient outcomes. A microfluidic device has been designed which allows automation of the individual processing steps of a microbead immunoassay to allow continuous tracking of antigen concentrations. Preliminary experiments have demonstrated that the results produced by the micro-immunoassay are comparable to results produced from a standard ELISA (r=0.98). Additionally, integration of the assay with a simulated CPB circuit has been demonstrated with temporal tracking of C3a concentrations within blood continuously sampled from the circuit. The presented work describes the motivation, design challenges, and preliminary experimental results of this project. PMID:23305589

  18. The application of selected radionuclides for monitoring of the D-D reactions produced by dense plasma-focus device.

    PubMed

    Jednorog, S; Szydlowski, A; Bienkowska, B; Prokopowicz, R

    The dense plasma focus (DPF) device-DPF-1000U which is operated at the Institute of Plasma Physics and Laser Microfusion is the largest that type plasma experiment in the world. The plasma that is formed in large plasma experiments is characterized by vast numbers of parameters. All of them need to be monitored. A neutron activation method occupies a high position among others plasma diagnostic methods. The above method is off-line, remote, and an integrated one. The plasma which has enough temperature to bring about nuclear fusion reactions is always a strong source of neutrons that leave the reactions area and take along energy and important information on plasma parameters and properties as well. Silver as activated material is used as an effective way of neutrons measurement, especially when they are emitted in the form of short pulses like as it happens from the plasma produced in Dense Plasma-Focus devices. Other elements such as beryllium and yttrium are newly introduced and currently tested at the Institute of Plasma Physics and Laser Microfusion to use them in suitable activation neutron detectors. Some specially designed massive indium samples have been recently adopted for angular neutrons distribution measurements (vertical and horizontal) and have been used in the recent plasma experiment conducted on the DPF-1000U device. This choice was substantiated by relatively long half-lives of the neutron induced isotopes and the threshold character of the (115)In(n,n')(115m)In nuclear reaction.

  19. Microfabricated BTU monitoring device for system-wide natural gas monitoring.

    SciTech Connect

    Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

    2005-11-01

    The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

  20. A review of devices used in the monitoring of microvascular free tissue transfers.

    PubMed

    Chao, Albert H; Meyerson, Joseph; Povoski, Stephen P; Kocak, Ergun

    2013-09-01

    The use of microvascular anastomoses to allow transfer of viable tissue is a fundamental technique of reconstructive surgery, and is used to treat a broad spectrum of clinical problems. The primary threat to this type of reconstructive surgery is anastomotic vascular thrombosis, which can lead to complete loss of tissue with potentially devastating consequences. Monitoring of tissue perfusion postoperatively is critical, since early recognition of vascular compromise and prompt surgical intervention is correlated with the ability for tissue salvage. Traditionally, physical examination was the primary means of monitoring, but possesses several limitations. Medical devices introduced for the purposes of flap monitoring address many of these deficiencies, and have greatly enhanced this critical aspect of the reconstructive surgery process.

  1. Device for filamentous fungi growth monitoring using the multimodal frequency response of cantilevers

    NASA Astrophysics Data System (ADS)

    Maloney, N.; Lukacs, G.; Ball, S. L.; Hegner, M.

    2014-01-01

    Filamentous fungi cause opportunistic infections in hospital patients. A fast assay to detect viable spores is of great interest. We present a device that is capable of monitoring fungi growth in real time via the dynamic operation of cantilevers in an array. The ability to detect minute frequency shifts for higher order flexural resonance modes is demonstrated using hydrogel functionalised cantilevers. The use of higher order resonance modes sees the sensor dependent mass responsivity enhanced by a factor of 13 in comparison to measurements utilizing the fundamental resonance mode only. As a proof of principle measurement, Aspergillus niger growth is monitored using the first two flexural resonance modes. The detection of single spore growth within 10 h is reported for the first time. The ability to detect and monitor the growth of single spores, within a small time frame, is advantageous in both clinical and industrial settings.

  2. Using an ambulatory stress monitoring device to identify relaxation due to untrained deep breathing.

    PubMed

    Khan, Hira Mujeeb; Ahmed, Beena; Choi, Jongyoon; Gutierrez-Osuna, Ricardo

    2013-01-01

    The objective of this paper is to assess the efficacy of deep breathing as a relaxation activity using a wearable stress monitor. For this purpose, we developed a protocol with different mentally stressful activities interleaved with regular sessions of deep breathing. We used three physiological sensors: a heart rate monitor, a respiration sensor, and an electrodermal activity sensor, to extract parameters that are consistent with the dominance of the sympathetic nervous system. Our results indicate that a large number of subjects were not able to perform the paced deep breathing exercise properly, which caused their stress levels to increase rather than to decrease. The study also showed that our wearable stress monitor can be used to monitor breathing technique and assess its effectiveness in relaxing individuals.

  3. Laser-activated shape memory polymer intravascular thrombectomy device

    NASA Astrophysics Data System (ADS)

    Small, Ward, IV; Wilson, Thomas S.; Benett, William J.; Loge, Jeffrey M.; Maitland, Duncan J.

    2005-10-01

    A blood clot (thrombus) that becomes lodged in the arterial network supplying the brain can cause an ischemic stroke, depriving the brain of oxygen and often resulting in permanent disability. As an alternative to conventional clot-dissolving drug treatment, we are developing an intravascular laser-activated therapeutic device using shape memory polymer (SMP) to mechanically retrieve the thrombus and restore blood flow to the brain. Thermal imaging and computer simulation were used to characterize the optical and photothermal behavior of the SMP microactuator. Deployment of the SMP device in an in vitro thrombotic vascular occlusion model demonstrated the clinical treatment concept.

  4. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device

    NASA Astrophysics Data System (ADS)

    Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun

    2017-03-01

    Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor’s dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.

  5. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device.

    PubMed

    Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun

    2017-03-03

    Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor's dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.

  6. Health Care Utilization and Expenditures Associated With Remote Monitoring in Patients With Implantable Cardiac Devices.

    PubMed

    Ladapo, Joseph A; Turakhia, Mintu P; Ryan, Michael P; Mollenkopf, Sarah A; Reynolds, Matthew R

    2016-05-01

    Several randomized trials and decision analysis models have found that remote monitoring may reduce health care utilization and expenditures in patients with cardiac implantable electronic devices (CIEDs), compared with in-office monitoring. However, little is known about the generalizability of these findings to unselected populations in clinical practice. To compare health care utilization and expenditures associated with remote monitoring and in-office monitoring in patients with CIEDs, we used Truven Health MarketScan Commercial Claims and Medicare Supplemental Databases. We selected patients newly implanted with an implantable cardioverter defibrillators (ICD), cardiac resynchronization therapy defibrillator (CRT-D), or permanent pacemaker (PPM), in 2009, who had continuous health plan enrollment 2 years after implantation. Generalized linear models and propensity score matching were used to adjust for confounders and estimate differences in health care utilization and expenditures in patients with remote or in-office monitoring. We identified 1,127; 427; and 1,295 pairs of patients with a similar propensity for receiving an ICD, CRT-D, or PPM, respectively. Remotely monitored patients with ICDs experienced fewer emergency department visits resulting in discharge (p = 0.050). Remote monitoring was associated with lower health care expenditures in office visits among patients with PPMs (p = 0.025) and CRT-Ds (p = 0.006) and lower total inpatient and outpatient expenditures in patients with ICDs (p <0.0001). In conclusion, remote monitoring of patients with CIEDs may be associated with reductions in health care utilization and expenditures compared with exclusive in-office care.

  7. Chemcatcher and DGT passive sampling devices for regulatory monitoring of trace metals in surface water.

    PubMed

    Allan, Ian J; Knutsson, Jesper; Guigues, Nathalie; Mills, Graham A; Fouillac, Anne-Marie; Greenwood, Richard

    2008-07-01

    This work aimed to evaluate whether the performance of passive sampling devices in measuring time-weighted average (TWA) concentrations supports their application in regulatory monitoring of trace metals in surface waters, such as for the European Union's Water Framework Directive (WFD). The ability of the Chemcatcher and the diffusive gradient in thin film (DGT) device sampler to provide comparable TWA concentrations of Cd, Cu, Ni, Pb and Zn was tested through consecutive and overlapping deployments (7-28 days) in the River Meuse (The Netherlands). In order to evaluate the consistency of these TWA labile metal concentrations, these were assessed against total and filtered concentrations measured at relatively high frequencies by two teams using standard monitoring procedures, and metal species predicted by equilibrium speciation modeling using Visual MINTEQ. For Cd and Zn, the concentrations obtained with filtered water samples and the passive sampling devices were generally similar. The samplers consistently underestimated filtered concentrations of Cu and Ni, in agreement with their respective predicted speciation. For Pb, a small labile fraction was mainly responsible for low sampler accumulation and hence high measurement uncertainty. While only the high frequency of spot sampling procedures enabled the observation of higher Cd concentrations during the first 14 days, consecutive DGT deployments were able to detect it and provide a reasonable estimate of ambient concentrations. The range of concentrations measured by spot and passive sampling, for exposures up to 28 days, demonstrated that both modes of monitoring were equally reliable. Passive sampling provides information that cannot be obtained by a realistic spot sampling frequency and this may impact on the ability to detect trends and assess monitoring data against environmental quality standards when concentrations fluctuate.

  8. Validity of activity monitors in health and chronic disease: a systematic review

    PubMed Central

    2012-01-01

    The assessment of physical activity in healthy populations and in those with chronic diseases is challenging. The aim of this systematic review was to identify whether available activity monitors (AM) have been appropriately validated for use in assessing physical activity in these groups. Following a systematic literature search we found 134 papers meeting the inclusion criteria; 40 conducted in a field setting (validation against doubly labelled water), 86 in a laboratory setting (validation against a metabolic cart, metabolic chamber) and 8 in a field and laboratory setting. Correlation coefficients between AM outcomes and energy expenditure (EE) by the criterion method (doubly labelled water and metabolic cart/chamber) and percentage mean differences between EE estimation from the monitor and EE measurement by the criterion method were extracted. Random-effects meta-analyses were performed to pool the results across studies where possible. Types of devices were compared using meta-regression analyses. Most validation studies had been performed in healthy adults (n = 118), with few carried out in patients with chronic diseases (n = 16). For total EE, correlation coefficients were statistically significantly lower in uniaxial compared to multisensor devices. For active EE, correlations were slightly but not significantly lower in uniaxial compared to triaxial and multisensor devices. Uniaxial devices tended to underestimate TEE (−12.07 (95%CI; -18.28 to −5.85) %) compared to triaxial (−6.85 (95%CI; -18.20 to 4.49) %, p = 0.37) and were statistically significantly less accurate than multisensor devices (−3.64 (95%CI; -8.97 to 1.70) %, p<0.001). TEE was underestimated during slow walking speeds in 69% of the lab validation studies compared to 37%, 30% and 37% of the studies during intermediate, fast walking speed and running, respectively. The high level of heterogeneity in the validation studies is only partly explained by the type of activity

  9. An Automatic Tremor Activity Monitoring System (TAMS)

    NASA Astrophysics Data System (ADS)

    Kao, H.; Thompson, P. J.; Rogers, G.; Dragert, H.; Spence, G.

    2006-12-01

    We have developed an algorithm that quantitatively characterizes the level of seismic tremors from recorded seismic waveforms. For each hour of waveform at a given station, the process begins with the calculation of scintillation index and moving average with various time lengths. The scintillation index (essentially the `normalized variance of intensity of the signal') is adapted from the studies of pulses in radio waves and is an efficient tool to identify the energy bursts of tremor signals. Both scintillation index and moving average values are fed into a series of logic gates to determine if tremor activity exists. This algorithm is implemented in the Tremor Activity Monitoring System (TAMS) to provide automatic early alerts for episodic tremor and slip (ETS) events in the northern Cascadia margin. Currently, TAMS retrieves the digital waveforms recorded during the previous day from the Canadian National Seismographic Network (CNSN) archive server at 1 AM every morning. The detecting process is repeated for all stations and hours to determine the level of tremor activity of the previous day. If a sufficient number of stations within a radius of 100 km are determined to have tremor patterns and coherent tremor arrivals can be found at more than 3 stations, TAMS automatically sends out alert emails to a list of subscribers with a figure summarizing the hours and locations of coherent tremors. TAMS outputs are very consistent with the work done by visual inspection, especially for major ETS events. It is straightforward to configure TAMS into a near-real-time system that can send out hourly (or shorter) reports if necessary.

  10. Application of a newly developed portable NIR imaging device to monitor the dissolution process of tablets.

    PubMed

    Ishikawa, Daitaro; Murayama, Kodai; Awa, Kimie; Genkawa, Takuma; Komiyama, Makoto; Kazarian, Sergei G; Ozaki, Yukihiro

    2013-11-01

    We have recently developed a novel portable NIR imaging device (D-NIRs), which has a high speed and high wavelength resolution. This NIR imaging approach has been developed by utilizing D-NIRs for studying the dissolution of a model tablet containing 20 % ascorbic acid (AsA) as an active pharmaceutical ingredient and 80 % hydroxypropyl methylcellulose, where the tablet is sealed by a special cell. Diffuse reflectance NIR spectra in the 1,000 to 1,600 nm region were measured during the dissolution of the tablet. A unique band at around 1,361 nm of AsA was identified by the second derivative spectra of tablet and used for AsA distribution NIR imaging. Two-dimensional change of AsA concentration of the tablet due to water penetration is clearly shown by using the band-based image at 1,361 nm in NIR spectra obtained with high speed. Moreover, it is significantly enhanced by using the intensity ratio of two bands at 1,361 and 1,354 nm corresponding to AsA and water absorption, respectively, showing the dissolution process. The imaging results suggest that the amount of AsA in the imaged area decreases with increasing water penetration. The proposed NIR imaging approach using the intensity of a specific band or the ratio of two bands combined with the developed portable NIR imaging instrument, is a potentially useful practical way to evaluate the tablet at every moment during dissolution and to monitor the concentration distribution of each drug component in the tablet.

  11. Symmetric miniaturized heating system for active microelectronic devices

    NASA Astrophysics Data System (ADS)

    McCracken, Michael; Mayer, Michael; Jourard, Isaac; Moon, Jeong-Tak; Persic, John

    2010-07-01

    To qualify interconnect technologies such as microelectronic fine wire bonds for mass production of integrated circuit (IC) packages, it is necessary to perform accelerated aging tests, e.g., to age a device at an elevated temperature or to subject the device to thermal cycling and measure the decrease of interconnect quality. There are downsides to using conventional ovens for this as they are relatively large and have relatively slow temperature change rates, and if electrical connections are required between monitoring equipment and the device being heated, they must be located inside the oven and may be aged by the high temperatures. Addressing these downsides, a miniaturized heating system (minioven) is presented, which can heat individual IC packages containing the interconnects to be tested. The core of this system is a piece of copper cut from a square shaped tube with high resistance heating wire looped around it. Ceramic dual in-line packages are clamped against either open end of the core. One package contains a Pt100 temperature sensor and the other package contains the device to be aged placed in symmetry to the temperature sensor. According to the temperature detected by the Pt100, a proportional-integral-derivative controller adjusts the power supplied to the heating wire. The system maintains a dynamic temperature balance with the core hot and the two symmetric sides with electrical connections to the device under test at a cooler temperature. Only the face of the package containing the device is heated, while the socket holding it remains below 75 °C when the oven operates at 200 °C. The minioven can heat packages from room temperature up to 200 °C in less than 5 min and maintain this temperature at 28 W power. During long term aging, a temperature of 200 °C was maintained for 1120 h with negligible resistance change of the heating wires after 900 h (heating wire resistance increased 0.2% over the final 220 h). The device is also subjected to

  12. Symmetric miniaturized heating system for active microelectronic devices.

    PubMed

    McCracken, Michael; Mayer, Michael; Jourard, Isaac; Moon, Jeong-Tak; Persic, John

    2010-07-01

    To qualify interconnect technologies such as microelectronic fine wire bonds for mass production of integrated circuit (IC) packages, it is necessary to perform accelerated aging tests, e.g., to age a device at an elevated temperature or to subject the device to thermal cycling and measure the decrease of interconnect quality. There are downsides to using conventional ovens for this as they are relatively large and have relatively slow temperature change rates, and if electrical connections are required between monitoring equipment and the device being heated, they must be located inside the oven and may be aged by the high temperatures. Addressing these downsides, a miniaturized heating system (minioven) is presented, which can heat individual IC packages containing the interconnects to be tested. The core of this system is a piece of copper cut from a square shaped tube with high resistance heating wire looped around it. Ceramic dual in-line packages are clamped against either open end of the core. One package contains a Pt100 temperature sensor and the other package contains the device to be aged placed in symmetry to the temperature sensor. According to the temperature detected by the Pt100, a proportional-integral-derivative controller adjusts the power supplied to the heating wire. The system maintains a dynamic temperature balance with the core hot and the two symmetric sides with electrical connections to the device under test at a cooler temperature. Only the face of the package containing the device is heated, while the socket holding it remains below 75 degrees C when the oven operates at 200 degrees C. The minioven can heat packages from room temperature up to 200 degrees C in less than 5 min and maintain this temperature at 28 W power. During long term aging, a temperature of 200 degrees C was maintained for 1120 h with negligible resistance change of the heating wires after 900 h (heating wire resistance increased 0.2% over the final 220 h). The

  13. Registry-Based Prospective, Active Surveillance of Medical-Device Safety.

    PubMed

    Resnic, Frederic S; Majithia, Arjun; Marinac-Dabic, Danica; Robbins, Susan; Ssemaganda, Henry; Hewitt, Kathleen; Ponirakis, Angelo; Loyo-Berrios, Nilsa; Moussa, Issam; Drozda, Joseph; Normand, Sharon-Lise; Matheny, Michael E

    2017-02-09

    Background The process of assuring the safety of medical devices is constrained by reliance on voluntary reporting of adverse events. We evaluated a strategy of prospective, active surveillance of a national clinical registry to monitor the safety of an implantable vascular-closure device that had a suspected association with increased adverse events after percutaneous coronary intervention (PCI). Methods We used an integrated clinical-data surveillance system to conduct a prospective, propensity-matched analysis of the safety of the Mynx vascular-closure device, as compared with alternative approved vascular-closure devices, with data from the CathPCI Registry of the National Cardiovascular Data Registry. The primary outcome was any vascular complication, which was a composite of access-site bleeding, access-site hematoma, retroperitoneal bleeding, or any vascular complication requiring intervention. Secondary safety end points were access-site bleeding requiring treatment and postprocedural blood transfusion. Results We analyzed data from 73,124 patients who had received Mynx devices after PCI procedures with femoral access from January 1, 2011, to September 30, 2013. The Mynx device was associated with a significantly greater risk of any vascular complication than were alternative vascular-closure devices (absolute risk, 1.2% vs. 0.8%; relative risk, 1.59; 95% confidence interval [CI], 1.42 to 1.78; P<0.001); there was also a significantly greater risk of access-site bleeding (absolute risk, 0.4% vs. 0.3%; relative risk, 1.34; 95% CI, 1.10 to 1.62; P=0.001) and transfusion (absolute risk, 1.8% vs. 1.5%; relative risk, 1.23; 95% CI, 1.13 to 1.34; P<0.001). The initial alerts occurred within the first 12 months of monitoring. Relative risks were greater in three prespecified high-risk subgroups: patients with diabetes, those 70 years of age or older, and women. All safety alerts were confirmed in an independent sample of 48,992 patients from April 1, 2014, to

  14. Recent Advances in Free-Living Physical Activity Monitoring: A Review

    PubMed Central

    Andre, David; Wolf, Donna L.

    2007-01-01

    It has become clear recently that the epidemic of type 2 diabetes sweeping the globe is associated with decreased levels of physical activity and an increase in obesity. Incorporating appropriate and sufficient physical activity into one's life is an essential component of achieving and maintaining a healthy weight and overall health, especially for those with type II diabetes mellitus. Regular physical activity can have a positive impact by lowering blood glucose, helping the body to be more efficient at using insulin. There are other substantial benefits for patients with diabetes, including prevention of cardiovascular disease, hyperlipidemia, hypertension, and obesity. Several complications of utilizing a self-care treatment methodology involving exercise include (1) patients may not know how much activity that they engage in and (2) health-care providers do not have objective measurements of how much activity their patients perform. However, several technological advances have brought a variety of activity monitoring devices to the market that can address these concerns. Ranging from simple pedometers to multisensor devices, the different technologies offer varying levels of accuracy, comfort, and reliability. The key notion is that by providing feedback to the patient, motivation can be increased and targets can be set and aimed toward. Although these devices are not specific to the treatment of diabetes, the importance of physical activity in treating the disease makes an understanding of these devices important. This article reviews these physical activity monitors and describes the advantages and disadvantages of each. PMID:19885145

  15. An Oil/Water disperser device for use in an oil content Monitor/Control system

    NASA Astrophysics Data System (ADS)

    Kempel, F. D.

    1985-07-01

    This patent application discloses an oil content monitor/control unit system, including an oil/water disperser device, which is configured to automatically monitor and control processed effluent from an associated oil/water separator so that if the processed effluent exceeds predetermine in-port or at-sea oil concentration lmits, it is either recirculated to an associated oil/water separator via a ship's bilge for additional processing, or diverted to a holding tank for storage. On the other hand, if the oil concentration of the processed effluent is less than predetermine in-port or at-sea limits, it is discharged overboard. The oil/water disperser device is configured to break up any oil present in the processed effluent into uniform droplets for more accurate sensing of the oil present in the processed effluent into uniform droplets for more accurate sensing of the oil-in-water concentration level thereof. The oil/water disperser device has a flow-actuated variable orifice configured into a spring-loaded polyethylene plunger which provides the uniform distribution of oil droplets.

  16. Simulation and control system of a power harvesting device for railroad track health monitoring

    NASA Astrophysics Data System (ADS)

    Phillips, Kyle J.; Nelson, Carl A.; Fateh, Mahmood

    2011-04-01

    With the vastness of existing railroad infrastructure, there exist numerous road crossings which are lacking warning light systems and/or crossing gates due to their remoteness from existing electrical infrastructure. Along with lacking warning light systems, these areas also tend to lack distributed sensor networks used for railroad track health monitoring applications. With the power consumption required by these systems being minimal, extending electrical infrastructure into these areas would not be an economical use of resources. This motivated the development of an energy harvesting solution for remote railroad deployment. This paper describes a computer simulation created to validate experimental on-track results for different mechanical prototypes designed for harvesting mechanical power from passing railcar traffic. Using the Winkler model for beam deflection as its basis, the simulation determines the maximum power potential for each type of prototype for various railcar loads and speeds. Along with calculating the maximum power potential of a single device, the simulation also calculates the optimal number and position of the devices needed to power a standard railroad crossing light signal. A control system was also designed to regulate power to a battery, monitor and record power production, and make adjustments to the duty cycle of the crossing lights accordingly. On-track test results are compared and contrasted with results from the simulation, discrepancies between the two are examined and explained, and conclusions are drawn regarding suitability of the device for powering high-efficiency LED lights at railroad crossings and powering track-health sensor networks.

  17. Holter monitor (24h)

    MedlinePlus

    ... the machine gets an accurate recording of the heart's activity. While wearing the device, avoid: Electric blankets High- ... Holter monitoring is used to determine how the heart responds to normal activity. The monitor may also be used: After a ...

  18. A System for Monitoring Posture and Physical Activity Using Accelerometers

    DTIC Science & Technology

    2007-11-02

    Abstract- Accelerometers can be used to monitor physical activity in the home over prolonged periods. We describe a novel system for...processing schema in which these parameters are extracted is described. Keywords - physical activity , accelerometers, congestive heart failure, chronic...When monitoring the condition of patients with neurodegenerative or chronic diseases, a knowledge of their body movement and physical activity

  19. Process monitor of 3D-device features by using FIB and CD-SEM

    NASA Astrophysics Data System (ADS)

    Kawada, Hiroki; Ikota, Masami; Sakai, Hideo; Torikawa, Shota; Tomimatsu, Satoshi; Onishi, Tsuyoshi

    2016-03-01

    For yield improvement of 3D-device manufacturing, metrology for the variability of individual device-features is on hot issue. Transmission Electron Microscope (TEM) can be used for monitoring the individual cross-section. However, efficiency of process monitoring is limited by the speed of measurement including preparation of lamella sample. In this work we demonstrate speedy 3D-profile measurement of individual line-features without the lamella sampling. For instance, we make a-few-micrometer-wide and 45-degree-descending slope in dense line-features by using Focused Ion Beam (FIB) tool capable of 300mm-wafer. On the descending slope, obliquely cut cross-section of the line features appears. Then, we transfer the wafer to Critical-Dimension Secondary Electron Microscope (CDSEM) to measure the oblique cross-section in normal top-down view. As the descending angle is 45 degrees, the oblique cross-section looks like a cross-section normal to the wafer surface. For every single line-features the 3D dimensions are measured. To the reference metrology of the Scanning TEM (STEM), nanometric linearity and precision are confirmed for the height and the width under the hard mask of the line features. Without cleaving wafer the 60 cells on the wafer can be measured in 3 hours, which allows us of near-line process monitor of in-wafer uniformity.

  20. Design of a tracking device for on-line dose monitoring in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Battistoni, G.; Collamati, F.; De Lucia, E.; Faccini, R.; Marafini, M.; Mattei, I.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.

    2017-02-01

    Hadrontherapy is a technique for cancer treatment that exploits ion beams (mostly protons and carbons). A critical issue is the accuracy that is achievable when monitoring the dose released by the beam to the tumor and to the surrounding tissues. We present the design of a tracking device, developed in the framework of the INSIDE project [1], capable of monitoring in real time the longitudinal profile of the dose delivered in the patient. This is possible by detecting the secondary particles produced by the interaction of the beam in the tissues. The position of the Bragg peak can be correlated to the charged particles emission point distribution measurement. The tracking device will be able to provide a fast response on the dose pattern by tracking the secondary charged fragments. The tracks are detected using 6 planes of scintillating fibers, providing the 3D coordinates of the track intersection with each plane. The fibers planes are followed by a plastic scintillator and by a small calorimeter built with a pixelated Lutetium Fine Silicate (LFS) crystal. A complete detector simulation, followed by the event reconstruction, has been performed to determine the achievable monitoring spatial resolution.

  1. Energy monitoring device for 1.5-2.4 MeV electron beams

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  2. Multi-band terahertz active device with complementary metamaterial

    SciTech Connect

    Qiao, Shen; Zhang, Yaxin Sun, Linlin; Sun, Han; Xu, Gaiqi; Zhao, Yuncheng; Yang, Ziqiang; Liang, Shixiong

    2015-09-28

    We describe a multi-band terahertz-active device using a composite structure made of complementary metamaterial and doped silicon that can be dynamically controlled. This special complementary metamaterial exhibits three resonances that produce three pass-bands. The pass-bands can be uniformly manipulated by exploiting the photoinduced characteristics of the doped silicon. Simulations were performed to analyze the magnetic field and surface current distributions. The simulation results agree well with experimental results obtained from terahertz time-domain spectroscopy. Using an 808-nm-wavelength laser beam, a modulation depth of up to 80% was obtained. In numerical simulations, we used a conductivity mode to characterize photoinduction. The development of multi-band terahertz-active devices has many potential applications, for example, in filters, modulators, switches, and sensors.

  3. A wireless intraocular pressure monitoring device with a solder-filled microchannel antenna

    NASA Astrophysics Data System (ADS)

    Varel, Çağdaş; Shih, Yi-Chun; Otis, Brian P.; Shen, Tueng S.; Böhringer, Karl F.

    2014-04-01

    This paper presents the prototype of an intraocular pressure sensor as a major step toward building a device that can be permanently implanted during cataract surgery. The implantation will proceed through an incision of 2-3 mm using an injector, during which the complete device must be folded into a cross-section of 2 mm × 1 mm. The device uses radio frequency (RF) for wireless power and data transfer. The prototype includes an antenna, an RF chip and a pressure sensor assembled on a printed circuit board with several circuit components used for testing and calibration. The antenna is fabricated and integrated with the circuit using a fabrication method employing solder-filled microchannels embedded in an elastomer. The monitoring device is powered at 2.716 GHz from a distance of 1-2 cm. The prototype has undergone electrical and mechanical tests for antenna and sensor performance. The flexible antenna can withstand a stress of 33.4 kPa without any electrical disconnection. It did not show a significant increase in electrical resistance after 50 bending cycles with a maximum applied stress of 116 kPa. Transmitted pressure data shows an averaged sensitivity of 16.66 Hz (mm-Hg)-1.

  4. Advanced laser-based tracking device for motor vehicle lane position monitoring and steering assistance

    NASA Astrophysics Data System (ADS)

    Bachalo, William D.; Inenaga, Andrew; Schuler, Carlos A.

    1995-12-01

    Aerometrics is developing an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. No additional markings are required. A warning is used to alert the driver of excessive weaving or unanticipated departure from the center of the lane. The laser beams are at invisible wavelengths to that operation of the device does not pose a distraction to the driver or other motorists: When appropriate markers are not present on the road, the device is capable of detecting this condition and warn the driver. The sensor system is expected to work well irrespective of ambient light levels, fog and rain. This sensor has enormous commercial potential. It could be marketed as an instrument to warn drivers that they are weaving, used as a research tool to monitor driving patterns, be required equipment for those previously convicted of driving under the influence, or used as a backup sensor for vehicle lateral position control. It can also be used in storage plants to guide robotic delivery vehicles. In this paper, the principles of operation of the sensor, and the results of Aerometrics ongoing testing will be presented.

  5. Integrated hybrid polystyrene-polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection

    PubMed Central

    Johnson, Alicia S.; Mehl, Benjamin T.; Martin, R. Scott

    2015-01-01

    In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells. PMID:25663849

  6. Rare Adverse Event Monitoring of Medical Devices with the Use of an Automated Surveillance Tool

    PubMed Central

    Matheny, Michael E.; Arora, Nipun; Ohno-Machado, Lucila; Resnic, Frederic S.

    2007-01-01

    Prospective outcomes surveillance using population level data allows for statistical methodologies and confounder adjustment not supported by the FDA’s current monitoring system. We explored propensity score matching integrated into an automated surveillance tool as a method for confounder adjustment in an observational cohort. The application analyzed all patients undergoing PCI via femoral access route from 2002–2006. The rare outcome of interest was retroperitoneal hemorrhage (RPH) and the device was a vascular closure device (VCD). A propensity score model was developed to match VCD and non-VCD match patients. Our tool was able to detect sustained elevations in RPH among those patients who received a VCD. A root cause analysis revealed an association between high femoral access and RPH which prompted an educational program to modify clinical practice. Our results suggest use of propensity score matching can play a useful role in computer-based surveillance of rare events in a prospective cohort. PMID:18693890

  7. Rare adverse event monitoring of medical devices with the use of an automated surveillance tool.

    PubMed

    Matheny, Michael E; Arora, Nipun; Ohno-Machado, Lucila; Resnic, Frederic S

    2007-10-11

    Prospective outcomes surveillance using population level data allows for statistical methodologies and confounder adjustment not supported by the FDA's current monitoring system. We explored propensity score matching integrated into an automated surveillance tool as a method for confounder adjustment in an observational cohort. The application analyzed all patients undergoing PCI via femoral access route from 2002-2006. The rare outcome of interest was retroperitoneal hemorrhage (RPH) and the device was a vascular closure device (VCD). A propensity score model was developed to match VCD and non-VCD match patients. Our tool was able to detect sustained elevations in RPH among those patients who received a VCD. A root cause analysis revealed an association between high femoral access and RPH which prompted an educational program to modify clinical practice. Our results suggest use of propensity score matching can play a useful role in computer-based surveillance of rare events in a prospective cohort.

  8. Electromagnetic interference of cardiac rhythmic monitoring devices to radio frequency identification: analytical analysis and mitigation methodology.

    PubMed

    Ogirala, Ajay; Stachel, Joshua R; Mickle, Marlin H

    2011-11-01

    Increasing density of wireless communication and development of radio frequency identification (RFID) technology in particular have increased the susceptibility of patients equipped with cardiac rhythmic monitoring devices (CRMD) to environmental electro magnetic interference (EMI). Several organizations reported observing CRMD EMI from different sources. This paper focuses on mathematically analyzing the energy as perceived by the implanted device, i.e., voltage. Radio frequency (RF) energy transmitted by RFID interrogators is considered as an example. A simplified front-end equivalent circuit of a CRMD sensing circuitry is proposed for the analysis following extensive black-box testing of several commercial pacemakers and implantable defibrillators. After careful understanding of the mechanics of the CRMD signal processing in identifying the QRS complex of the heart-beat, a mitigation technique is proposed. The mitigation methodology introduced in this paper is logical in approach, simple to implement and is therefore applicable to all wireless communication protocols.

  9. Early monitoring results of two voltage sag ride-through devices at a plastics extrusion plant

    SciTech Connect

    Ray, L.A.; Lamoree, J.; Peele, G.S.; Samotyj, M.

    1995-06-01

    Voltage sag mitigation techniques command attention in the power quality arena today due to the increasing numbers of sensitive process loads connected to the utility distribution system. This paper presents monitoring results related to the performance of two such devices applied in different levels of voltage sag coverage. The superconducting storage device is designed to protect sensitive loads without the normal segregation of large-power loads (drives, motors) from low-power/high sensitivity machines (computers, programmable logic controllers). The magnetic synthesizer in this case study protects control circuits and requires separation of these circuits from other loads within the sensitive machine. Both methods are effective in reducing process shutdowns due to voltage sags. Their relative economy depends on the type of disturbances affecting the process and the amount of the customer`s economic losses.

  10. A device for daily monitoring of the fetus and the mother in the antenatal period

    NASA Astrophysics Data System (ADS)

    Bureev, A. Sh.; Zemlyakov, I. Yu.; Syryamkin, V. I.; Zhdanov, D. S.; Kiseleva, E. Yu.; Khohlova, L. A.

    2015-11-01

    The paper describes the principles of operation and design of a specialized device for daily monitoring of the fetus and the mother in the antenatal period of growing. The device consists of a hardware and software system that provides registration and analysis of acoustic data on the condition of the cardiovascular system of the mother and fetus in the mother's abdominal body part. The software is a set of components for analysis, transmission and storage of acoustic data. The results of the analysis can help make a decision about the condition of the cardiovascular system of the fetus and, if necessary, to notify the mother and her physician about the emergency, aiming at preserving the life of the fetus.

  11. Hematological clozapine monitoring with a point-of-care device: a randomized cross-over trial.

    PubMed

    Nielsen, Jimmi; Thode, Dorrit; Stenager, Elsebeth; Andersen, Kristian Øllegaard; Sondrup, Ulla; Hansen, Tine N; Munk, Anne Marie; Lykkegaard, Signe; Gosvig, Annette; Petrov, Igor; le Quach, Phuong

    2012-06-01

    Clozapine remains the drug of choice for patients with treatment-resistant schizophrenia, who show a response rate of about 50% despite their unresponsiveness to other antipsychotics. Although treatment with clozapine can lead to considerable savings on bed days, the drug is underutilized for several reasons, perhaps most importantly because of the mandatory hematological monitoring. The Chempaq Express Blood Counter (Chempaq XBC) is a point-of-care device providing counts of white blood cells (WBC) and granulocytes based on a capillary blood sampling. A randomized cross-over trial design was used comparing capillary blood sampling using a point-of-care device with traditional venous blood sampling. Patients were randomized to two sequences starting with either capillary or venous blood sampling followed by a repeated sequence. Primary outcome was measured on a 10-cm visual analog scale. Eighty-five patients were included in the test. Eight (9.4%) dropped out before completion. Patients indicated that they found capillary blood monitoring less painful than venous sampling (VAS ratings: 0.55 cm 25-75 percentiles: 0.1-1.4 cm vs. 1.75 cm 25-75 percentiles: 0.7-2.6, p<0.001). They also felt less inconvenienced by the point-of-care method than the traditional blood sampling, which involved traveling to the laboratory clinical (0.3 cm 25-75 percentiles: 0.05-0.7 vs. 2.3 cm 25-75 percentiles: 0.75-4.5, p<0.001). For hematological monitoring of clozapine patients a point-of-care device based on capillary blood sampling is better tolerated than traditional venous blood sampling.

  12. Wireless device for activation of an underground shock wave absorber

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  13. Simulation of motor current waveforms in monitoring aortic valve state during ventricular assist device support.

    PubMed

    Alonazi, Khalid A; Lovell, Nigel H; Dokos, Socrates

    2016-08-01

    Monitoring of aortic valve (AV) opening and closure during left ventricular assist device (LVAD) heart pump support is crucial in preventing AV abnormalities and remodeling caused by anomalous resirculation. In this study, simulations of LVAD motor current waveforms were undertaken to investigate AV response to rotary blood pump assistance, as well as to detect AV open and close status under heart failure conditions. A two-dimensional fluid-structure interaction finite-element model is presented to predict AV state during LVAD outflow. The data will be useful in the development of a pump speed controller for optimal management of pump outflow.

  14. Intelligent low-level RF system by non-destructive beam monitoring device for cyclotrons

    NASA Astrophysics Data System (ADS)

    Sharifi Asadi Malafeh, M. S.; Ghergherehchi, M.; Afarideh, H.; Chai, J. S.; Yoon, Sang Kim

    2016-04-01

    The project of a 10 MeV PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.

  15. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  16. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P [Pasco, WA; Donnelly, Matthew K [Kennewick, WA; Dagle, Jeffery E [Richland, WA

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  17. Application of empirical mode decomposition in removing fidgeting interference in doppler radar life signs monitoring devices.

    PubMed

    Mostafanezhad, Isar; Boric-Lubecke, Olga; Lubecke, Victor; Mandic, Danilo P

    2009-01-01

    Empirical Mode Decomposition has been shown effective in the analysis of non-stationary and non-linear signals. As an application in wireless life signs monitoring in this paper we use this method in conditioning the signals obtained from the Doppler device. Random physical movements, fidgeting, of the human subject during a measurement can fall on the same frequency of the heart or respiration rate and interfere with the measurement. It will be shown how Empirical Mode Decomposition can break the radar signal down into its components and help separate and remove the fidgeting interference.

  18. Progress in development of the neutron profile monitor for the large helical device

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Isobe, M.; Takada, E.; Uchida, Y.; Ochiai, K.; Tomita, H.; Uritani, A.; Kobuchi, T.; Takeiri, Y.

    2014-11-01

    The neutron profile monitor stably operated at a high-count-rate for deuterium operations in the Large Helical Device has been developed to enhance the research on the fast-ion confinement. It is composed of a multichannel collimator, scintillation-detectors, and a field programmable gate array circuit. The entire neutron detector system was tested using an accelerator-based neutron generator. This system stably acquires the pulse data without any data loss at high-count-rate conditions up to 8 × 105 counts per second.

  19. Progress in development of the neutron profile monitor for the large helical device

    SciTech Connect

    Ogawa, K. Kobuchi, T.; Isobe, M.; Takeiri, Y.; Takada, E.; Uchida, Y.; Ochiai, K.; Tomita, H.; Uritani, A.

    2014-11-15

    The neutron profile monitor stably operated at a high-count-rate for deuterium operations in the Large Helical Device has been developed to enhance the research on the fast-ion confinement. It is composed of a multichannel collimator, scintillation-detectors, and a field programmable gate array circuit. The entire neutron detector system was tested using an accelerator-based neutron generator. This system stably acquires the pulse data without any data loss at high-count-rate conditions up to 8 × 10{sup 5} counts per second.

  20. Progress in development of the neutron profile monitor for the large helical device.

    PubMed

    Ogawa, K; Isobe, M; Takada, E; Uchida, Y; Ochiai, K; Tomita, H; Uritani, A; Kobuchi, T; Takeiri, Y

    2014-11-01

    The neutron profile monitor stably operated at a high-count-rate for deuterium operations in the Large Helical Device has been developed to enhance the research on the fast-ion confinement. It is composed of a multichannel collimator, scintillation-detectors, and a field programmable gate array circuit. The entire neutron detector system was tested using an accelerator-based neutron generator. This system stably acquires the pulse data without any data loss at high-count-rate conditions up to 8 × 10(5) counts per second.

  1. Continuous flow left ventricular assist devices: shared care goals of monitoring and treating patients.

    PubMed

    Estep, Jerry D; Trachtenberg, Barry H; Loza, Laurie P; Bruckner, Brian A

    2015-01-01

    Continuous-flow left ventricular assist devices (CF-LVADs) have been clinically adopted as a long-term standard of care therapy option for patients with end-stage heart failure. For many patients, shared care between the care providers at the implanting center and care providers in the community in which the patient resides is a clinical necessity. The aims of this review are to (1) provide a rationale for the outpatient follow-up exam and surveillance testing used at our center to monitor patients supported by the HeartMate II(®) CF-LVAD (Thoratec Corporation, Pleasanton, CA) and (2) provide the protocol/algorithms we use for blood pressure, driveline exit site, LVAD alarm history, surveillance blood work, and echocardiography monitoring in this patient population. In addition, we define our partnership outpatient follow-up protocol and the "shared care" specific responsibilities we use with referring health care providers to best manage many of our patients.

  2. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  3. Investigating Non-Invasive Hemodynamic Monitoring Devices Using Severe Dengue as a Surrogate for Trauma-Induced Shock

    DTIC Science & Technology

    2014-12-01

    Devices Using Severe Dengue as a Surrogate for Trauma-Induced Shock” PRINCIPAL INVESTIGATOR: Dr. Stephen Thomas CONTRACTING...Hemodynamic Monitoring Devices Using Severe Dengue as a Surrogate for Trauma-Induced Shock” 5b. GRANT NUMBER W81XWH-12-2-0079 5c. PROGRAM

  4. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity

    PubMed Central

    Ardic, Fusun; Göcer, Esra

    2016-01-01

    Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P < 0.001, r = 0.96). Correlations across all three BMI categories and both sex remained consistently high ranging from 0.92 to 0.95. There was a high level of agreement between the ECE PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a

  5. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  6. Hemodynamic monitoring of large animal chronic studies after median sternotomy: experiences with different telemetric physiological devices.

    PubMed

    Fujii, Yasuhiro; Pitsillides, Koullis; Ferro, Giuseppe; Kagawa, Hiroshi; Centola, Luca; Kinouchi, Katsushi; Zhu, Liqun; Ferrier, William T; Talken, Linda; Nasirov, Teimour; Riemer, R Kirk; Reinhartz, Olaf

    2015-01-01

    Telemetric physiological monitoring systems (TPMS) have enabled accurate continuous measurement of animal blood pressures and flows. However, few studies describe approaches for use of TPMS in the great vessels or inside the heart. We describe our initial experiences using two types of TPMSs. Twelve lambs (20-37 kg) underwent sternotomy. Two lambs were not instrumented and were killed at 14 days to confirm normal sternal wound healing (sham group, n = 2). Ten lambs underwent placement of either standard indwelling pressure-monitoring catheter and perivascular-flow-probe (CFP group, n = 3) or TPMS implantation (TPMS group, n = 7). The TPMS used were EG1-V3S2T-M2 (EG1, n = 5; Transonic Endogear Inc.) and Physio Tel Digital L21 (PTD, n = 2; Data Sciences Inc.). Two deaths because of respiratory problems occurred in TPMS group, attributed to lung compression by the implanted device. In TPMS group, more consistent trends of blood pressures and flows were recorded, and management of animals was easier and less labor-intensive. Comparing the two TPMSs, the initiation and renewal costs for each case was $28 K vs. $20 K and $1,700 vs. $0, (PTD versus EG1, respectively). In conclusion, TPMS implantation was feasible via median sternotomy in lambs. Telemetric physiological monitoring systems significantly improve reliability of hemodynamic monitoring in chronic survival animal study. EG1 was less costly than PTD.

  7. Evaluation of internal contamination levels after a radiological dispersal device incident using portal monitors

    SciTech Connect

    Palmer, R.C.; Hertel, Nolan; Ansari, A.; Manger, Ryan P; Freibert, E.J.

    2012-01-01

    Following a radioactive dispersal device (RDD) incident, it may be necessary to evaluate the internal contamination levels of a large number of potentially affected individuals to determine if immediate medical follow-up is necessary. Since the current laboratory capacity to screen for internal contamination is limited, rapid field screening methods can be useful in prioritizing individuals. This study evaluated the suitability of a radiation portal monitor for such screening. A model of the portal monitor was created for use with models of six anthropomorphic phantoms in Monte Carlo N-Particle Transport Code Version 5 (MCNP) X-5 Monte Carlo Team (MCNP A General Monte Carlo N-Particle Transport Code Version 5. LA-CP-03-0245. Vol. 2. Los Alamos National Laboratory, 2004.). The count rates of the portal monitor were simulated for inhalation and ingestion of likely radionuclides from an RDD for each of the phantoms. The time-dependant organ concentrations of the radionuclides were determined using Dose and Risk Calculation Software Eckerman, Leggett, Cristy, Nelson, Ryman, Sjoreen and Ward (Dose and Risk Calculation Software Ver. 8.4. ORNL/TM-2001/190. Oak Ridge National Laboratory, 2006.). Portal monitor count rates corresponding to a committed effective dose E(50) of 10 mSv are reported.

  8. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors

    PubMed Central

    O’Connell, Sandra; ÓLaighin, Gearóid

    2017-01-01

    Introduction Physical activity is an essential aspect of a healthy lifestyle for both physical and mental health states. As step count is one of the most utilized measures for quantifying physical activity it is important that activity-monitoring devices be both sensitive and specific in recording actual steps taken and disregard non-stepping body movements. The objective of this study was to assess the specificity of five activity monitors during a variety of prescribed non-stepping activities. Methods Participants wore five activity monitors simultaneously for a variety of prescribed activities including deskwork, taking an elevator, taking a bus journey, automobile driving, washing and drying dishes; functional reaching task; indoor cycling; outdoor cycling; and indoor rowing. Each task was carried out for either a specific duration of time or over a specific distance. Activity monitors tested were the ActivPAL micro™, NL-2000™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2)™, Fitbit One™ and Jawbone UP™. Participants were video-recorded while carrying out the prescribed activities and the false positive step count registered on each activity monitor was obtained and compared to the video. Results All activity monitors registered a significant number of false positive steps per minute during one or more of the prescribed activities. The Withings™ activity performed best, registering a significant number of false positive steps per minute during the outdoor cycling activity only (P = 0.025). The Jawbone™ registered a significant number of false positive steps during the functional reaching task and while washing and drying dishes, which involved arm and hand movement (P < 0.01 for both). The ActivPAL™ registered a significant number of false positive steps during the cycling exercises (P < 0.001 for both). Conclusion As a number of false positive steps were registered on the activity monitors during the non-stepping activities, the

  9. A new device for continuous monitoring the CO2 dissolved in water

    NASA Astrophysics Data System (ADS)

    de Gregorio, S.; Camarda, M.; Cappuzzo, S.; Giudice, G.; Gurrieri, S.; Longo, M.

    2009-04-01

    The measurements of dissolved CO2 in water are common elements of industrial processes and scientific research. In order to perform gas dissolved measurements is required to separate the dissolved gaseous phase from water. We developed a new device able to separate the gases phase directly in situ and well suitable for continuous measuring the CO2 dissolved in water. The device is made by a probe of a polytetrafluorethylene (PTFE) tube connected to an I.R. spectrophotometer (I.R.) and a pump. The PTFE is a polymeric semi-permeable membrane and allows the permeation of gas in the system. Hence, this part of the device is dipped in water in order to equilibrate the probe headspace with the dissolved gases. The partial pressure of the gas i in the headspace at equilibrium (Pi) follows the Henry's law: Pi=Hi•Ci, where Hi is the Henry's constant and Ci is the dissolved concentration of gas i. After the equilibrium is achieved, the partial pressure of CO2 inside the tube is equal to the partial pressure of dissolved CO2. The concentration of CO2 is measured by the I.R. connected to the tube. The gas is moved from the tube headspace to the I.R. by using the pump. In order to test the device and assess the best operating condition, several experimental were performed in laboratory. All the test were executed in a special apparatus where was feasible to create controlled atmospheres. Afterward the device has been placed in a draining tunnel sited in the Mt. Etna Volcano edifice (Italy). The monitored groundwater intercepts the Pernicana Fault, along which degassing phenomena are often observed. The values recorded by the station result in agreement with monthly directly measurements of dissolved CO2 partial pressure.

  10. Light-induced self-assembly of active rectification devices.

    PubMed

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E

    2016-04-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics-a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or "rectified") by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured "primordial soup" of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath.

  11. A microfluidic paper-based device to assess acetylcholinesterase activity.

    PubMed

    Liu, Chunye; Gomez, Frank A

    2017-04-01

    Neurotransmitters play key roles in cell-to-cell communication. These chemical messengers are involved in many functional processes, including growth, reproduction, memory, and behavior. In this communication, we describe a novel microfluidic paper-based analytical device (μPAD) to detect acetylcholinesterase (AChE) activity and inhibitor screening through a colorimetric analysis. The μPAD is easily fabricated via a wax printing process whereby wax is deposited onto the surface of chromatographic paper, and heated to create a hydrophobic barrier. Separate solutions of 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and samples containing AChE and acetylthiocholine iodide (ATC) (or cysteine, Cys), respectively, are directly spotted onto the μPAD. DTNB and AChE/ATC (or Cys) flow towards each other where a reaction occurs to form the yellow colored 2-nitro-5-thiobenzoic acid anion (TNB(2-) ). The device is dried, scanned, and analyzed yielding a linear range of average inverse yellow intensities versus substrate concentration. An IC50 value (0.045 nM) with a known inhibitor, neostigmine bromide (NB), is obtained on the device. μPADs are low cost and easy to fabricate and have great potential to quantify neurotransmitter activity.

  12. Light-induced self-assembly of active rectification devices

    PubMed Central

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E.

    2016-01-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics—a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or “rectified”) by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured “primordial soup” of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath. PMID:27051883

  13. Geophysical Mapping and Monitoring of Active Planets (GMAP)

    NASA Astrophysics Data System (ADS)

    McGovern, P. J.; Goossens, S. J.; Lemoine, F. G.

    2017-02-01

    Recent findings require a strongly upward revision of volcano-tectonic activity rate estimates for Venus and Mars. We propose a program of Geophysical Mapping and Monitoring of Active Planets (GMAP) including seismology, gravimetry, InSAR, and GPS.

  14. Instructional physical activity monitor video in english and spanish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ActiGraph activity monitor is a widely used method for assessing physical activity. Compliance with study procedures in critical. A common procedure is for the research team to meet with participants and demonstrate how and when to attach and remove the monitor and convey how many wear-days are ...

  15. Toxin activity assays, devices, methods and systems therefor

    DOEpatents

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    2016-04-05

    Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  16. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements

    PubMed Central

    Shyr, Tien-Wei; Shie, Jing-Wen; Jiang, Chang-Han; Li, Jung-Jen

    2014-01-01

    In this work a wearable gesture sensing device consisting of a textile strain sensor, using elastic conductive webbing, was designed for monitoring the flexion angle of elbow and knee movements. The elastic conductive webbing shows a linear response of resistance to the flexion angle. The wearable gesture sensing device was calibrated and then the flexion angle-resistance equation was established using an assembled gesture sensing apparatus with a variable resistor and a protractor. The proposed device successfully monitored the flexion angle during elbow and knee movements. PMID:24577526

  17. Integration of active devices on smart polymers for neural interfaces

    NASA Astrophysics Data System (ADS)

    Avendano-Bolivar, Adrian Emmanuel

    The increasing ability to ever more precisely identify and measure neural interactions and other phenomena in the central and peripheral nervous systems is revolutionizing our understanding of the human body and brain. To facilitate further understanding, more sophisticated neural devices, perhaps using microelectronics processing, must be fabricated. Materials often used in these neural interfaces, while compatible with these fabrication processes, are not optimized for long-term use in the body and are often orders of magnitude stiffer than the tissue with which they interact. Using the smart polymer substrates described in this work, suitability for processing as well as chronic implantation is demonstrated. We explore how to integrate reliable circuitry onto these flexible, biocompatible substrates that can withstand the aggressive environment of the body. To increase the capabilities of these devices beyond individual channel sensing and stimulation, active electronics must also be included onto our systems. In order to add this functionality to these substrates and explore the limits of these devices, we developed a process to fabricate single organic thin film transistors with mobilities up to 0.4 cm2/Vs and threshold voltages close to 0V. A process for fabricating organic light emitting diodes on flexible substrates is also addressed. We have set a foundation and demonstrated initial feasibility for integrating multiple transistors onto thin-film flexible devices to create new applications, such as matrix addressable functionalized electrodes and organic light emitting diodes. A brief description on how to integrate waveguides for their use in optogenetics is addressed. We have built understanding about device constraints on mechanical, electrical and in vivo reliability and how various conditions affect the electronics' lifetime. We use a bi-layer gate dielectric using an inorganic material such as HfO 2 combined with organic Parylene-c. A study of

  18. Semipermeable membrane devices (SPMDs) as universal environmental monitors for trace contaminants

    SciTech Connect

    Prest, H.F.; Hodgins, M.M.; Jacobson, L.A.; Huckins, J.N.; Petty, J.D.; Brown, J.; Wilson, M.

    1995-12-31

    The vast majority of data complied on trace contaminants in water has been acquired through biomonitoring; using organisms as bioconcentrators of trace substances. A particularly successful and widely applied approach utilizes bivalves in local, national, and international mussel watch programs. Attractive features of this approach are the widespread occurrence of bivalves, their high tolerance and viability, ease of analysis, and high bioconcentration factors for a wide range of compounds. However, uncertainties about uptake, deputation and biotransformation of contaminants convolute the data and make quantitative statements about water concentrations difficult. Recent developments demonstrate semipermeable membrane devices (SPMDs) are a promising new tool for biomonitoring. SPMDs are inexpensive, tolerant of extreme conditions, and concentrations of analytes sequestered by SPMDs can be used to infer bioconcentration potential and average ambient concentrations. The authors present data from freshwater systems such as the San Juan River comparing spatial trends in PAH metabolites in fish bile and PAHs sequestered by SPMDs, and marine environments such as PAHs in SPMDs deployed in Cook Inlet, Alaska. These data support the case for SPMDs as universal monitoring devices or pseudo-organisms that will provide a standardized approach to measuring and monitoring trace contaminants on both local and global scales.

  19. Remote monitoring of implantable devices: Should we continue to ignore it?

    PubMed

    Bertini, Matteo; Marcantoni, Lina; Toselli, Tiziano; Ferrari, Roberto

    2016-01-01

    The number of patients with implantable cardioverter defibrillators (ICDs) is increasing. In addition to improve survival, ICD can collect data related to device function and physiological parameters. Remote monitoring (RM) of these data allows early detection of technical or clinical problems and a prompt intervention (reprogramming device or therapy adjustment) before the patient require hospitalization. RM is not a substitute for emergency service and its consultation is now limited during working hours. Thus, a consent form is required to inform patients about benefits and limitations. The available studies indicate that remote monitoring is more effective than traditional calendar face to face based encounters. RM is safe, highly reliable, cost efficient, allows quick reply to failures, and reduces the number of scheduled visits and the incidence of inappropriate shocks with a positive impact on survival. It follows that RM has the credentials to be the standard of care for ICD management; however, unfortunately, there is a delay in physician acceptance and implementation. The recent observations from randomized IN-TIME study that showed a clear survival benefit with RM in heart failure patients have encouraged us to review both the negative and positive aspects of RM collected in a little more than a decade.

  20. Novel method for online monitoring of dissolved N2O concentrations through a gas stripping device.

    PubMed

    Mampaey, Kris E; van Dongen, Udo G J M; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2015-01-01

    Nitrous oxide emissions from wastewater treatment plants are currently measured by online gas phase analysis or grab sampling from the liquid phase. In this study, a novel method is presented to monitor the liquid phase N2O concentration for aerated as well as non-aerated conditions/reactors, following variations both in time and in space. The monitoring method consists of a gas stripping device, of which the measurement principle is based on a continuous flow of reactor liquid through a stripping flask and subsequent analysis of the N2O concentration in the stripped gas phase. The method was theoretically and experimentally evaluated for its fit for use in the wastewater treatment context. Besides, the influence of design and operating variables on the performance of the gas stripping device was addressed. This method can easily be integrated with online off-gas measurements and allows to better investigate the origin of the gas emissions from the treatment plant. Liquid phase measurements of N2O are of use in mitigation of these emissions. The method can also be applied to measure other dissolved gasses, such as methane, being another important greenhouse gas.

  1. Mass and stiffness estimation using mobile devices for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Le, Viet; Yu, Tzuyang

    2015-04-01

    In the structural health monitoring (SHM) of civil infrastructure, dynamic methods using mass, damping, and stiffness for characterizing structural health have been a traditional and widely used approach. Changes in these system parameters over time indicate the progress of structural degradation or deterioration. In these methods, capability of predicting system parameters is essential to their success. In this paper, research work on the development of a dynamic SHM method based on perturbation analysis is reported. The concept is to use externally applied mass to perturb an unknown system and measure the natural frequency of the system. Derived theoretical expressions for mass and stiffness prediction are experimentally verified by a building model. Dynamic responses of the building model perturbed by various masses in free vibration were experimentally measured by a mobile device (cell phone) to extract the natural frequency of the building model. Single-degreeof- freedom (SDOF) modeling approach was adopted for the sake of using a cell phone. From the experimental result, it is shown that the percentage error of predicted mass increases when the mass ratio increases, while the percentage error of predicted stiffness decreases when the mass ratio increases. This work also demonstrated the potential use of mobile devices in the health monitoring of civil infrastructure.

  2. Pulsed Phase Lock Loop Device for Monitoring Intracranial Pressure During Space Flight

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    We have developed an ultrasonic device to monitor ICP waveforms non-invasively from cranial diameter oscillations using a NASA-developed pulsed phase lock loop (PPLL) technique. The purpose of this study was to attempt to validate the PPLL device for reliable recordings of ICP waveforms and analysis of ICP dynamics in vivo. METHODS: PPLL outputs were recorded in patients during invasive ICP monitoring at UCSD Medical Center (n=10). RESULTS: An averaged linear regression coefficient between ICP and PPLL waveform data during one cardiac cycle in all patients is 0.88 +/- 0.02 (mean +/- SE). Coherence function analysis indicated that ICP and PPLL waveforms have high correlation in the lst, 2nd, and 3rd harmonic waves associated with a cardiac cycle. CONCLUSIONS: PPLL outputs represent ICP waveforms in both frequency and time domains. PPLL technology enables in vivo evaluation of ICP dynamics non-invasively, and can acquire continuous ICP waveforms during spaceflight because of compactness and non-invasive nature.

  3. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs.

  4. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells.

    PubMed

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-02-08

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10-100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations.

  5. A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices.

    PubMed

    Sun, Alexander; Venkatesh, A G; Hall, Drew A

    2016-09-26

    This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A [Formula: see text] PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to [Formula: see text] measurement range. When used to detect pH, the potentiometric mode achieves a resolution of < 0.08 pH units. In impedance measurement mode, the device can measure 50 Ω-10 [Formula: see text] and has been shown to have of phase error. This prototype was used to perform several point-of-care health tracking assays suitable for use with mobile devices: 1) Blood glucose tests were conducted and shown to cover the diagnostic range for Diabetic patients (  ∼ 200 mg/dL). 2) Lactoferrin, a biomarker for urinary tract infections, was detected with a limit of detection of approximately 1 ng/mL. 3) pH tests of sweat were conducted to track dehydration during exercise. 4) EIS was used to determine the concentration of NeutrAvidin via a label-free assay.

  6. A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices.

    PubMed

    Sun, Alexander; Venkatesh, A G; Hall, Drew A

    2016-10-01

    This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A [Formula: see text] PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to [Formula: see text] measurement range. When used to detect pH, the potentiometric mode achieves a resolution of < 0.08 pH units. In impedance measurement mode, the device can measure 50 Ω-10 [Formula: see text] and has been shown to have of phase error. This prototype was used to perform several point-of-care health tracking assays suitable for use with mobile devices: 1) Blood glucose tests were conducted and shown to cover the diagnostic range for Diabetic patients (  ∼  200 mg/dL). 2) Lactoferrin, a biomarker for urinary tract infections, was detected with a limit of detection of approximately 1 ng/mL. 3) pH tests of sweat were conducted to track dehydration during exercise. 4) EIS was used to determine the concentration of NeutrAvidin via a label-free assay.

  7. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-02-01

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10–100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations.

  8. Interventional Device Visualization with Toroidal Transceiver and Optically-Coupled Current Sensor for RF Safety Monitoring

    PubMed Central

    Etezadi-Amoli, Maryam; Stang, Pascal; Kerr, Adam; Pauly, John; Scott, Greig

    2014-01-01

    Purpose The development of catheters and guidewires that are safe from radiofrequency (RF)-induced heating and clearly visible against background tissue is a major challenge in interventional MRI. An interventional imaging approach using a toroidal transmit-receive (transceive) coil is presented. This toroidal transceiver allows controlled, low levels of RF current to flow in the catheter/guidewire for visualization, and can be used with conductive interventional devices that have a localized low-impedance tip contact. Methods Toroidal transceivers were built, and phantom experiments were performed to quantify transmit power levels required for device visibility and to detect heating hazards. Imaging experiments in a pig cadaver tested the extendibility to higher field strength and non-phantom settings. A photonically-powered optically-coupled toroidal current sensor for monitoring induced RF currents was built, calibrated, and tested using an independent image-based current estimation method. Results Results indicate that high-SNR visualization is achievable using milliwatts of transmit power—power levels orders of magnitude lower than levels that induce measurable heating in phantom tests. Agreement between image-based current estimates and RF current sensor measurements validates sensor accuracy. Conclusion The toroidal transceiver, integrated with power and current sensing, could offer a promising platform for safe and effective interventional device visualization. PMID:24691876

  9. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells

    PubMed Central

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-01-01

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10–100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations. PMID:28176800

  10. Migration of contaminants in groundwater at a landfill: A case study. 2. Groundwater monitoring devices

    NASA Astrophysics Data System (ADS)

    Cherry, J. A.; Gillham, R. W.; Anderson, E. G.; Johnson, P. E.

    1983-05-01

    Six types of devices for groundwater monitoring were used on an experimental basis in the investigation of the plume of contamination in the unconfined sandy aquifer at the Borden landfill. These include: standpipe piezometers, water-table standpipes, an auger-head sampler, suction-type and positive-displacement-type multilevel point-samplers, and bundle-piezometers. With the exception of the first two, each of these devices provides a means of obtaining vertical sample profiles of groundwater from a single borehole. The auger-head sampler, which is a device that is attached to the cutting head of conventional continuous-flight hollow-stem augers, yields samples from relatively undisturbed aquifer zones as the augers are advanced downward in the borehole from one depth of sampling to another. This method is a rapid means of aquiring water-quality profiles for mapping the distribution of a contaminant plume. The other three profiling devices can be used to establish permanent networks for groundwater-quality monitoring. A suction-type multilevel sampler consists of twenty or more narrow polyethylene or polypropylene tubes contained in a PVC casing that is capped at the bottom. Each tube extends to a different depth and is attached to a small screened sampling point that extends through the casing to draw water from the aquifer when suction is applied. A positive-displacement multilevel sampler is similar except that each sampling point is connected to a positive-displacement pumping device located inside the PVC casing adjacent to the screen. Use of the suction-type multilevel sampler is limited to zones where the water table is less than the suction-lift depth of 8 or 9 m. The positive-displacement sampler can be used even if the water table is at a much greater depth. A bundle-piezometer consists of 1.2-cm O.D. flexible polyethylene tubes, each with a short screened section at the bottom, fastened as a bundle around a semi-rigid center-piezometer constructed of

  11. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    PubMed Central

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  12. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    USGS Publications Warehouse

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal dumping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  13. Performance of a Portable Sleep Monitoring Device in Individuals with High Versus Low Sleep Efficiency

    PubMed Central

    Markwald, Rachel R.; Bessman, Sara C.; Reini, Seth A.; Drummond, Sean P.A.

    2016-01-01

    Study Objectives: Portable and automated sleep monitoring technology is becoming widely available to consumers, and one wireless system (WS) has recently surfaced as a research tool for sleep and sleep staging assessment outside the hospital/laboratory; however, previous research findings indicate low sensitivity for wakefulness detection. Because difficulty discriminating between wake and sleep is likely to affect staging performance, we sought to further evaluate the WS by comparing it to the gold-standard polysomnography (PSG) and actigraphy (ACT) for overall sleep/wakefulness detection and sleep staging, within high and low sleep efficiency sleepers. Methods: Twenty-nine healthy adults (eight females) underwent concurrent WS, PSG, and ACT assessment in an overnight laboratory study. Epoch-by-epoch agreement was determined by comparing sleep/wakefulness decisions between the WS to both PSG and ACT, and for detection of light, deep, and rapid eye movement (REM) sleep stages between the WS and PSG. Results: Sensitivity for wakefulness was low (40%), and an overestimation of total sleep time and underestimation of wake after sleep onset was observed. Prevalence and bias adjusted kappa statistic indicated moderate-to-high agreement between the WS and PSG for sleep staging. However, upon further inspection, WS performance varied by sleep efficiency, with the best performance during high sleep efficiency. Conclusions: The benefit of the WS as a sleep monitoring device over ACT is the ability to assess sleep stages, and our findings suggest this benefit is only realized within high sleep efficiency. Care should be taken to collect data under conditions where this is expected. Citation: Markwald RR, Bessman SC, Reini SA, Drummond SP. Performance of a portable sleep monitoring device in individuals with high versus low sleep efficiency. J Clin Sleep Med 2016;12(1):95–103. PMID:26285110

  14. The Use of Multiple Slate Devices to Support Active Reading Activities

    ERIC Educational Resources Information Center

    Chen, Nicholas Yen-Cherng

    2012-01-01

    Reading activities in the classroom and workplace occur predominantly on paper. Since existing electronic devices do not support these reading activities as well as paper, users have difficulty taking full advantage of the affordances of electronic documents. This dissertation makes three main contributions toward supporting active reading…

  15. Monitoring of organotin compounds in seawater using semipermeable membrane devices (SPMDs)--tentative results.

    PubMed

    Følsvik, N; Brevik, E M; Berge, J A

    2000-08-01

    The impact of anthropogenic pollutants on the marine ecosystem is related to the concentrations experienced by the biota in the seawater and the resulting concentration in the organism. Results from monitoring of pollutants in water samples provide snapshots that can be high or low depending on a wide range of variables. To provide more integrated information, semipermeable membrane devices, SPMDs, have been used to monitor different organic pollutants. In this survey, SPMDs were used to monitor organotin compounds in the marine environment. Time-integrated sampling using SPMDs and direct water sampling was carried out at six stations in the inner Oslofjord, Norway. The sample work-up procedure for both water and SPMDs was based on direct derivatisation using NaBEt4 and simultaneous extraction with an organic solvent. Analysis was performed using a gas chromatograph equipped with an atomic emission detector. The results show that SPMDs do accumulate organotin compounds from the water phase. Both tributyl- (TBT) and dibutyltin were detected in all of the analysed membranes while no monobutyltin was found. Levels found in SPMDs range from < 1 to 220 ng Sn SPMD(-1). Water concentrations range from 0.4 to 10 ng Sn L(-1). An investigation of relative levels of TBT showed a similar concentration gradient in the inner Oslofjord using either direct water sampling or passive sampling by SPMDs. As the membranes are able to accumulate the organotins from the water it will be possible to locate lower concentrations than with direct analyses of water samples.

  16. A simple and flexible device for housing water monitoring sensors at point discharges

    NASA Astrophysics Data System (ADS)

    Exner-Kittridge, M.; Niederreiter, R.; Eder, A.

    2012-04-01

    The Water Monitoring Enclosure (WME) provides a simple and flexible housing for measuring many types of water parameters (physical, chemical, or biological). The WME ensures a minimum water level to allow the devices to be continuously inundated even during periods when there is no flow entering the enclosure. The limited diameter of the inflow pipe and water volume in the WME buffers the flow velocity from dramatic changes. The device ensures that the sediment entering the enclosure from the inflow will be conveyed through the enclosure with minimal sediment accumulation. The device is powered purely from natural hydraulic forces, so it requires no power source, and requires little additional maintenance beyond occasional cleaning. If desired, the WME can also measure discharge entering the device through additional modifications. Water samples were taken throughout the year to validate the effectiveness of the WME. The differences of the receiving water to the water in the WME for all parameters were below the laboratory analysis standard error. Two design limitations were found during the assessment period. First, if the receiving water has a very low sustained discharge (< 0.04 l/s) and a high fine sediment load (> 100 mg/l) then the frequency of the flushings are not capable of continuously removing the sediment and a gradual accumulation of sediment of up to 2 cm per week can occur. A smaller volume of water within the WME would reduce the accumulated sediment due to very low discharges from an increased frequency of the flushings. Second, precipitated chemical solids can cause the mechanism to seize if not regularly cleaned.

  17. Active control of excessive sound emission on a mobile device.

    PubMed

    Jeon, Se-Woon; Youn, Dae Hee; Park, Young-cheol; Lee, Gun-Woo

    2015-04-01

    During a phone conversation, loud vocal emission from the far-end to the near-end space can disturb nearby people. In this paper, the possibility of actively controlling such unwanted sound emission using a control source placed on the mobile device is investigated. Two different approaches are tested: Global control, minimizing the potential energy measured along a volumetric space surface, and local control, minimizing the squared sound pressure at a discrete point on the phone. From the test results, both approaches can reduce the unwanted sound emission by more than 6 dB in the frequency range up to 2 kHz.

  18. Device for measuring oxygen activity in liquid sodium

    DOEpatents

    Roy, P.; Young, R.S.

    1973-12-01

    A composite ceramic electrolyte in a configuration (such as a closed end tube or a plate) suitable to separate liquid sodium from a reference electrode with a high impedance voltmeter connected to measure EMF between the sodium and the reference electrode as a measure of oxygen activity in the sodium is described. The composite electrolyte consists of zirconiacalcia with a bonded layer of thoria-yttria. The device is used with a gaseous reference electrode on the zirconia-calcia side and liquid sodium on the thoria-yttria side of the electrolyte. (Official Gazette)

  19. Chemical sensor platform for non-invasive monitoring of activity and dehydration.

    PubMed

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-14

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed.

  20. Infrared micro-thermography of an actively heated preconcentrator device

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, C. A.; Stepnowski, Stanley V.; Mott, David R.; McGill, R. Andrew

    2008-03-01

    We report infrared micro-thermography measurements and analysis of static and transient temperature maps of an actively heated micro-fabricated preconcentrator device that incorporates a dual serpentine platinum heater trace deposited on a perforated polyimide membrane and suspended over a silicon frame. The sorbent coated perforated membrane is used to collect vapors and gases that flow through the preconcentrator. After heating, a concentrated pulse of analyte is released into the detector. Due to its small thermal mass, precise thermal management of the preconcentrator is critical to its performance. The sizes of features, the semi-transparent membrane, the need to flow air through the device, and changes in surface emissivity on a micron scale present many challenges for traditional infrared micro-thermography. We report an improved experimental test-bed. The hardware incorporates a custom-designed miniature calibration oven which, in conjunction with spatial filtering and a simple calibration algorithm, allows accurate temperature maps to be obtained. The test-bed incorporates a micro-bolometer array as the infrared imager. Instrumentation design, calibration and image processing algorithms are discussed and analyzed. The procedure does not require prior knowledge of the emissivity. We show that relatively inexpensive uncooled bolometers arrays can be used in certain radiometric applications. Heating profiles were examined with both uniform and non-uniform air flow through the device. The conclusions from this study provide critical information for optimal integration of the preconcentrator within a detection system, and in the design of the heater trace layout to achieve a more even temperature distribution across the device.

  1. A Miniature-Implantable RF-Wireless Active Glaucoma Intraocular Pressure Monitor.

    PubMed

    Chow, Eric Y; Chlebowski, Arthur L; Irazoqui, Pedro P

    2010-12-01

    Glaucoma is a detrimental disease that causes blindness in millions of people worldwide. There are numerous treatments to slow the condition but none are totally effective and all have significant side effects. Currently, a continuous monitoring device is not available, but its development may open up new avenues for treatment. This work focuses on the design and fabrication of an active glaucoma intraocular pressure (IOP) monitor that is fully wireless and implantable. Major benefits of an active IOP monitoring device include the potential to operate independently from an external device for extended periods of time and the possibility of developing a closed-loop monitoring and treatment system. The fully wireless operation is based off using gigahertz-frequency electromagnetic wave propagation, which allows for an orientation independent transfer of power and data over reasonable distances. Our system is comprised of a micro-electromechanical systems (MEMS) pressure sensor, a capacitive power storage array, an application-specific integrated circuit designed on the Texas Instruments (TI) 130 nm process, and a monopole antenna all assembled into a biocompatible liquid-crystal polymer-based tadpole-shaped package.

  2. Use of a Far-Infrared Active Warming Device in Guinea Pigs (Cavia porcellus).

    PubMed

    Zarndt, Bethany S; Buchta, Jessica N; Garver, Lindsey S; Davidson, Silas A; Rowton, Edgar D; Despain, Kenneth E

    2015-11-01

    Small mammals have difficulty maintaining body temperature under anesthesia. This hypothermia is a potential detriment not only to the health and comfort of the animal but also to the integrity of any treatment given or data gathered during the anesthetic period. Using an external warming device to assist with temperature regulation can mitigate these effects. In this study, we investigated the ability of an advanced warming device that uses far-infrared (FIR) heating and responds to real-time core temperature monitoring to maintain a normothermic core temperature in guinea pigs. Body temperatures were measured during 30 min of ketamine-xylazine general anesthesia with and without application of the heating device. The loss of core body heat from anesthetized guinea pigs under typical (unwarmed) conditions was significant, and this loss was almost completely mitigated by application of the FIR heating pad. The significant difference between the temperatures of the actively warmed guinea pigs as compared with the control group began as early as 14 min after anesthetic administration, leading to a 2.6 °C difference at 30 min. Loss of core body temperature was not correlated with animals' body weight; however, weight influences the efficiency of FIR warming slightly. These study results show that the FIR heating device accurately controls core body temperature in guinea pigs, therefore potentially alleviating the effects of body heat loss on animal physiology.

  3. Inferring Human Activity in Mobile Devices by Computing Multiple Contexts.

    PubMed

    Chen, Ruizhi; Chu, Tianxing; Liu, Keqiang; Liu, Jingbin; Chen, Yuwei

    2015-08-28

    This paper introduces a framework for inferring human activities in mobile devices by computing spatial contexts, temporal contexts, spatiotemporal contexts, and user contexts. A spatial context is a significant location that is defined as a geofence, which can be a node associated with a circle, or a polygon; a temporal context contains time-related information that can be e.g., a local time tag, a time difference between geographical locations, or a timespan; a spatiotemporal context is defined as a dwelling length at a particular spatial context; and a user context includes user-related information that can be the user's mobility contexts, environmental contexts, psychological contexts or social contexts. Using the measurements of the built-in sensors and radio signals in mobile devices, we can snapshot a contextual tuple for every second including aforementioned contexts. Giving a contextual tuple, the framework evaluates the posteriori probability of each candidate activity in real-time using a Naïve Bayes classifier. A large dataset containing 710,436 contextual tuples has been recorded for one week from an experiment carried out at Texas A&M University Corpus Christi with three participants. The test results demonstrate that the multi-context solution significantly outperforms the spatial-context-only solution. A classification accuracy of 61.7% is achieved for the spatial-context-only solution, while 88.8% is achieved for the multi-context solution.

  4. Inferring Human Activity in Mobile Devices by Computing Multiple Contexts

    PubMed Central

    Chen, Ruizhi; Chu, Tianxing; Liu, Keqiang; Liu, Jingbin; Chen, Yuwei

    2015-01-01

    This paper introduces a framework for inferring human activities in mobile devices by computing spatial contexts, temporal contexts, spatiotemporal contexts, and user contexts. A spatial context is a significant location that is defined as a geofence, which can be a node associated with a circle, or a polygon; a temporal context contains time-related information that can be e.g., a local time tag, a time difference between geographical locations, or a timespan; a spatiotemporal context is defined as a dwelling length at a particular spatial context; and a user context includes user-related information that can be the user’s mobility contexts, environmental contexts, psychological contexts or social contexts. Using the measurements of the built-in sensors and radio signals in mobile devices, we can snapshot a contextual tuple for every second including aforementioned contexts. Giving a contextual tuple, the framework evaluates the posteriori probability of each candidate activity in real-time using a Naïve Bayes classifier. A large dataset containing 710,436 contextual tuples has been recorded for one week from an experiment carried out at Texas A&M University Corpus Christi with three participants. The test results demonstrate that the multi-context solution significantly outperforms the spatial-context-only solution. A classification accuracy of 61.7% is achieved for the spatial-context-only solution, while 88.8% is achieved for the multi-context solution. PMID:26343665

  5. Method and apparatus for actively controlling a micro-scale flexural plate wave device

    DOEpatents

    Dohner, Jeffrey L.

    2001-01-01

    An actively controlled flexural plate wave device provides a micro-scale pump. A method of actively controlling a flexural plate wave device produces traveling waves in the device by coordinating the interaction of a magnetic field with actively controlled currents. An actively-controlled flexural plate wave device can be placed in a fluid channel and adapted for use as a micro-scale fluid pump to cool or drive micro-scale systems, for example, micro-chips, micro-electrical-mechanical devices, micro-fluid circuits, or micro-scale chemical analysis devices.

  6. A household LOC device for online monitoring bacterial pathogens in drinking water with green design concept.

    PubMed

    Zhao, Xinyan; Dong, Tao

    2013-01-01

    Bacterial waterborne pathogens often threaten the water safety of the drinking water system. In order to protect the health of home users, a household lab-on-a-chip (LOC) device was developed for online monitoring bacterial pathogens in drinking water, which are in accord with green design concept. The chip integrated counter-flow micromixers, a T-junction droplet generator and time-delay channels (TD-Cs), which can mix water sample and reactants into droplets in air flow and incubate the droplets in the LOC for about 18 hours before observation. The detection module was simplified into a transparent observation chamber, from which the home users can evaluate the qualitative result by naked eyes. The liquid waste generated by the LOC system was sterilized and absorbed by quicklime powders. No secondary pollution was found. The preliminary test of the prototype system met its design requirements.

  7. Laser Transcutaneous Bilirubin Meter: A New Device For Bilirubin Monitoring In Neonatal Jaundice

    NASA Astrophysics Data System (ADS)

    Hamza, Mostafa; Hamza, Mohammad

    1988-06-01

    Neonates with jaundice require monitoring of serum bilirubin which should be repeated at frequent intervals. However, taking blood samples from neonates is not always an easy job, plus being an invasive and traumatising procedure with the additional risk of blood loss. In this paper the authors present the theory and design of a new noninvasive device for transcutaneous bilirubinometry, using a differential absorption laser system. The new technique depends upon illuminating the skin of the neonate with radiation from a two wave-length oscillation laser. The choice of the wavelengths follows the principles of optical bilirubinometry. For obtaining more accurate measurements, different pairs of two wave-lengths are incorporated in the design. The presence of hemoglobin is corrected for by appropriate selection of the laser wavelengths. The new design was tested for accuracy and precision using an argon ion laser. Correlation study between serum bilirubin determination by laser transcutaneous bilirubinometry and by American optical bilirubinometer was highly significant.

  8. Method and device for remotely monitoring an area using a low peak power optical pump

    DOEpatents

    Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.

    2014-07-22

    A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.

  9. An electronic device for monitoring escape behaviour in Musca and Drosophila.

    PubMed

    Snowball, M F; Holmqvist, M H

    1994-01-01

    This paper describes an effective device for detecting the presence of a fly or small insect on a specially constructed detector pad. It was used successfully with Musca domestica (house fly) and Drosophila melanogaster (fruit fly). The detector works by utilising the detector pad as a variable capacitor which forms part of an RC oscillator. Its capacitance changes as the fly comes in contact with it and this change in capacitance is detected by the circuit. The detector uses cheap and readily available components and can be constructed without expert knowledge in electronics. It can be used to detect and determine the timing of the jump of a fly escaping in response to, say, a visual stimulus. It can also be used for screening of mutants of Drosophila which show altered escape responses and for monitoring locomotion of small animals.

  10. Sensor Monitoring of Physical Activity to Improve Glucose Management in Diabetic Patients: A Review

    PubMed Central

    Ding, Sandrine; Schumacher, Michael

    2016-01-01

    Diabetic individuals need to tightly control their blood glucose concentration. Several methods have been developed for this purpose, such as the finger-prick or continuous glucose monitoring systems (CGMs). However, these methods present the disadvantage of being invasive. Moreover, CGMs have limited accuracy, notably to detect hypoglycemia. It is also known that physical exercise, and even daily activity, disrupt glucose dynamics and can generate problems with blood glucose regulation during and after exercise. In order to deal with these challenges, devices for monitoring patients’ physical activity are currently under development. This review focuses on non-invasive sensors using physiological parameters related to physical exercise that were used to improve glucose monitoring in type 1 diabetes (T1DM) patients. These devices are promising for diabetes management. Indeed they permit to estimate glucose concentration either based solely on physical activity parameters or in conjunction with CGM or non-invasive CGM (NI-CGM) systems. In these last cases, the vital signals are used to modulate glucose estimations provided by the CGM and NI-CGM devices. Finally, this review indicates possible limitations of these new biosensors and outlines directions for future technologic developments. PMID:27120602

  11. Radio telemetry devices to monitor breathing in non-sedated animals.

    PubMed

    Samson, Nathalie; Dumont, Sylvain; Specq, Marie-Laure; Praud, Jean-Paul

    2011-12-15

    Radio telemetry equipment has significantly improved over the last 10-15 years and is increasingly being used in research for monitoring a variety of physiological parameters in non-sedated animals. The aim of this review is to provide an update on the current state of development of radio telemetry for recording respiration. Our literature review found only rare reports of respiratory studies via radio telemetry. Much of this article will hence report our experience with our custom-built radio telemetry devices designed for recording respiratory signals, together with numerous other physiological signals in lambs. Our current radio telemetry system allows to record 24 simultaneous signals 24h/day for several days. To our knowledge, this is the highest number of physiological signals, which can be recorded wirelessly. Our devices have been invaluable for studying respiration in our ovine models of preterm birth, reflux laryngitis, postnatal exposure to cigarette smoke, respiratory syncytial virus infection and nasal ventilation, all of which are relevant to neonatal respiratory problems.

  12. Monitoring drip water isotope and element variability: A new device for automatic drip water collection

    NASA Astrophysics Data System (ADS)

    Breitenbach, S. F. M.; Gilbert, M.-J.; Kwiecien, O.; Seifert, R.; Fleitmann, D.

    2012-04-01

    Understanding cave drip water elemental and stable isotope composition (δD and δ18O) are vital for interpreting climate proxy records derived from stalagmites as palaeoclimate archives. Delineating the temporal changes in drip water chemistry to climatic and environmental fluctuations (such as rainfall amount, degassing, bioactivity etc.) is even more important if calibration is attempted between climatic parameters and stalagmite proxy records. Monitoring of remote study sites has often been limited by the ability to regularly and manually collect drip water samples over an extended period of time. One important complication to be considered for stable isotope analysis is that sampling vials must be closed air-tight, in order to avoid post-sampling evaporation of the sampled water. To overcome these limitations we developed an automated and programmable sampling device that can collect 12 ml of drip water at pre-defined time intervals. A total of 49 samples can be collected in a turret over a period of up to one year. The device is powered by widely available C-cell batteries and works in cave environments with positive air temperature. The autosampler has been installed and tested in Waldheim Cave, Switzerland, where we collected water at 24h intervals. We present preliminary data for the winter period December 2011 to March 2012.

  13. Evaluating the Safety Profile of Non-Active Implantable Medical Devices Compared with Medicines.

    PubMed

    Pane, Josep; Coloma, Preciosa M; Verhamme, Katia M C; Sturkenboom, Miriam C J M; Rebollo, Irene

    2017-01-01

    Recent safety issues involving non-active implantable medical devices (NAIMDs) have highlighted the need for better pre-market and post-market evaluation. Some stakeholders have argued that certain features of medicine safety evaluation should also be applied to medical devices. Our objectives were to compare the current processes and methodologies for the assessment of NAIMD safety profiles with those for medicines, identify potential gaps, and make recommendations for the adoption of new methodologies for the ongoing benefit-risk monitoring of these devices throughout their entire life cycle. A literature review served to examine the current tools for the safety evaluation of NAIMDs and those for medicines. We searched MEDLINE using these two categories. We supplemented this search with Google searches using the same key terms used in the MEDLINE search. Using a comparative approach, we summarized the new product design, development cycle (preclinical and clinical phases), and post-market phases for NAIMDs and drugs. We also evaluated and compared the respective processes to integrate and assess safety data during the life cycle of the products, including signal detection, signal management, and subsequent potential regulatory actions. The search identified a gap in NAIMD safety signal generation: no global program exists that collects and analyzes adverse events and product quality issues. Data sources in real-world settings, such as electronic health records, need to be effectively identified and explored as additional sources of safety information, particularly in some areas such as the EU and USA where there are plans to implement the unique device identifier (UDI). The UDI and other initiatives will enable more robust follow-up and assessment of long-term patient outcomes. The safety evaluation system for NAIMDs differs in many ways from those for drugs, but both systems face analogous challenges with respect to monitoring real-world usage. Certain features

  14. Device for monitoring the thickness of a dielectric coating on a dielectric substrate

    NASA Astrophysics Data System (ADS)

    Skripnik, Yu. A.; Dykov, A. N.; Sviridov, N. M.

    1992-03-01

    This invention is comprised of a device for monitoring the thickness of a dielectric coating on a dielectric substrate, comprising a capacitive sensor in the form of a dielectric substrate on which are mounted a high-potential and low-potential electrode, made in the form of coplanar, concentric rings. An additional electrode is located in such fashion that the initial capacitances between the high-potential electrode and the additional electrodes and between the additional electrode and the low-potential electrode are equal. Additional components are a switch whose middle contact is connected with the additional electrode, and the edge contacts are connected with high-potential and low-potential electrodes, a high-frequency generator, a bridge circuit connected to said generator, and a recorder. The invention may be used to monitor the thickness of a dielectric coating applied to a dielectric substrate, for example paint and polymer coatings on leather and textiles. The goal of the invention is to increase measurement accuracy.

  15. Continuous Flow Left Ventricular Assist Devices: Shared Care Goals of Monitoring and Treating Patients

    PubMed Central

    Estep, Jerry D.; Trachtenberg, Barry H.; Loza, Laurie P.; Bruckner, Brian A.

    2015-01-01

    Continuous-flow left ventricular assist devices (CF-LVADs) have been clinically adopted as a long-term standard of care therapy option for patients with end-stage heart failure. For many patients, shared care between the care providers at the implanting center and care providers in the community in which the patient resides is a clinical necessity. The aims of this review are to (1) provide a rationale for the outpatient follow-up exam and surveillance testing used at our center to monitor patients supported by the HeartMate II® CF-LVAD (Thoratec Corporation, Pleasanton, CA) and (2) provide the protocol/algorithms we use for blood pressure, driveline exit site, LVAD alarm history, surveillance blood work, and echocardiography monitoring in this patient population. In addition, we define our partnership outpatient follow-up protocol and the “shared care” specific responsibilities we use with referring health care providers to best manage many of our patients. PMID:25793028

  16. The design of a wireless portable device for personalized ultraviolet monitoring

    NASA Astrophysics Data System (ADS)

    Amini, Navid; Matthews, Jerrid E.; Vahdatpour, Alireza; Sarrafzadeh, Majid

    2009-08-01

    The skin care product market is growing due to the threat of ultraviolet (UV) radiation caused by the destruction of the ozone layer, increasing demand for tanning, and the tendency to wear less clothing. Accordingly, there is a potential demand for a personalized UV monitoring system, which can play a fundamental role in skin cancer prevention by providing measurements of UV radiation intensities and corresponding recommendations. Furthermore, the need for such device becomes more vital since it has turned out that in some places (e.g., on snowy mountains) the UV exposure gets doubled, while individuals are unaware of this fact. This paper highlights the development and initial validation of a wireless and portable embedded system for personalized UV monitoring which is based on a novel software architecture, a high-end UV sensor, and conventional PDA (or a cell phone). In terms of short-term applications, by calculating the UV index, it informs the users about their maximum recommended sun exposure time by taking their skin type and sun protection factor (SPF) of the applied sunscreen into consideration. As for long-term applications, given that the damage caused by UV light is accumulated over days, it is able to keep a record of the amount of UV received over a certain course of time, from a single day to a month. Low energy consumption and high accuracy in estimating the UV index are salient features of this system.

  17. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  18. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    PubMed

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  19. Assessment of the usefulness of semipermeable membrane devices for long-term watershed monitoring in an urban slough system

    USGS Publications Warehouse

    McCarthy, K.

    2006-01-01

    Semipermeable membrane devices (SPMDs) were deployed at eight sites within the Buffalo Slough, near Portland, Oregon, to (1) measure the spatial and seasonal distribution of dissolved polycyclic aromatic hydrocarbon (PAH) and organochlorine (OC) compounds in the slough, (2) assess the usefulness of SPMDs as a tool for investigating and monitoring hydrophobic compounds throughout the Columbia Slough system, and (3) evaluate the utility of SPMDs as a tool for measuring the long-term effects of watershed improvement activities. Data from the SPMDs revealed clear spatial and seasonal differences in water quality within the slough and indicate that for hydrophobic compounds, this time-integrated passive-sampling technique is a useful tool for long-term watershed monitoring. In addition, the data suggest that a spiking rate of 2-5 ??g/SPMD of permeability/performance reference compounds, including at least one compound that is not susceptible to photodegradation, may be optimum for the conditions encountered here. ?? Springer Science + Business Media, Inc. 2006.

  20. PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Findley, M. C.

    2013-12-01

    Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.

  1. Photocardiography: a novel method for monitoring cardiac activity in fish.

    PubMed

    Yoshida, Masayuki; Hirano, Ruriko; Shima, Takao

    2009-05-01

    A non-invasive technique to monitor cardiac activity in small fish, such as goldfish, zebrafish, and medaka, is needed. In the present study, we developed photocardiography (PCG), a non-invasive optical method, to record cardiac activity in small fish. The method monitors changes in near-infrared light transmission through the heart using a phototransistor located outside the body. With this technique, heartbeats in fish of various sizes (14-218 mm) were stably recorded. PCG was applied to monitor the heartbeat during fear-related classical heart rate conditioning in goldfish wherein an electrical shock was used as an unconditioned stimulus. The heartbeats were continuously monitored, even when the beat coincided with the electrical shock, showing that PCG is robust even in an electrically noisy environment. This technique is particularly useful when monitoring the heartbeats of fish of small size or in the presence of ambient electrical noise, conditions in which the use of conventional electrocardiography (ECG) is difficult.

  2. Monitoring activities of daily living based on wearable wireless body sensor network.

    PubMed

    Kańtoch, E; Augustyniak, P; Markiewicz, M; Prusak, D

    2014-01-01

    With recent advances in microprocessor chip technology, wireless communication, and biomedical engineering it is possible to develop miniaturized ubiquitous health monitoring devices that are capable of recording physiological and movement signals during daily life activities. The aim of the research is to implement and test the prototype of health monitoring system. The system consists of the body central unit with Bluetooth module and wearable sensors: the custom-designed ECG sensor, the temperature sensor, the skin humidity sensor and accelerometers placed on the human body or integrated with clothes and a network gateway to forward data to a remote medical server. The system includes custom-designed transmission protocol and remote web-based graphical user interface for remote real time data analysis. Experimental results for a group of humans who performed various activities (eg. working, running, etc.) showed maximum 5% absolute error compared to certified medical devices. The results are promising and indicate that developed wireless wearable monitoring system faces challenges of multi-sensor human health monitoring during performing daily activities and opens new opportunities in developing novel healthcare services.

  3. Construction monitoring activities in the ESF starter tunnel

    SciTech Connect

    Pott, J.; Carlisle, S.

    1994-05-01

    In situ design verification activities am being conducted in the North Ramp Starter Tunnel of the Yucca Mountain Project Exploratory Studies Facility. These activities include: monitoring the peak particle velocities and evaluating the damage to the rock mass associated with construction blasting, assessing the rock mass quality surrounding the tunnel, monitoring the performance of the installed ground support, and monitoring the stability of the tunnel. In this paper, examples of the data that have been collected and preliminary conclusions from the data are presented.

  4. Exploration of a Bayesian Updating Tool to Provide Real-Time Safety Monitoring for New Medical Devices

    PubMed Central

    Matheny, Michael E.; Ohno-Machado, Lucila; Resnic, Frederic S.

    2005-01-01

    Data Extraction and Longitudinal Time Analysis (DELTA) was developed to provide real-time safety monitoring of new devices in the domain of interventional cardiology. This field provides the necessary infrastructure for this type of endeavor. The American College of Cardiology National Cardiovascular Data Repository (ACC-NCDR) provides a national standardized data dictionary, and there is point of care data collection in many centers. The tool utilizes both Bayesian statistical updating and classical frequentist methods for automated event rate monitoring. PMID:16779332

  5. Exploration of a Bayesian updating tool to provide real-time safety monitoring for new medical devices.

    PubMed

    Matheny, Michael E; Ohno-Machado, Lucila; Resnic, Frederic S

    2005-01-01

    Data Extraction and Longitudinal Time Analysis (DELTA) was developed to provide real-time safety monitoring of new devices in the domain of interventional cardiology. This field provides the necessary infrastructure for this type of endeavor. The American College of Cardiology National Cardiovascular Data Repository (ACC-NCDR) provides a national standardized data dictionary, and there is point of care data collection in many centers. The tool utilizes both Bayesian statistical updating and classical frequentist methods for automated event rate monitoring.

  6. Bigelow Expandable Activity Module (BEAM) Monitoring System

    NASA Technical Reports Server (NTRS)

    Wells, Nathan

    2017-01-01

    What is Bigelow Expandable Activity Module (BEAM)? The Bigelow Expandable Activity Module (BEAM) is an expandable habitat technology demonstration on ISS; increase human-rated inflatable structure Technology Readiness Level (TRL) to level 9. NASA managed ISS payload project in partnership with Bigelow Aerospace. Launched to ISS on Space X 8 (April 8th, 2016). Fully expanded on May 28th, 2016. Jeff Williams/Exp. 48 Commander first entered BEAM on June 5th, 2016.

  7. Evaluation of accuracy and reliability of PulseOn optical heart rate monitoring device.

    PubMed

    Delgado-Gonzalo, Ricard; Parak, Jakub; Tarniceriu, Adrian; Renevey, Philippe; Bertschi, Mattia; Korhonen, Ilkka

    2015-08-01

    PulseOn is a wrist-worn optical heart rate (HR) monitor based on photoplethysmography. It utilizes multi-wavelength technology and optimized sensor geometry to monitor blood flow at different depths of skin tissue, and it dynamically adapts to an optimal measurement depth in different conditions. Movement artefacts are reduced by adaptive movement-cancellation algorithms and optimized mechanics, which stabilize the sensor-to-skin contact. In this paper, we evaluated the accuracy and reliability of PulseOn technology against ECG-derived HR in laboratory conditions during a wide range of physical activities and also during outdoor sports. In addition, we compared the performance to another on-the-shelf wrist-worn consumer product Mio LINK(®). The results showed PulseOn reliability (% of time with error <;10bpm) of 94.5% with accuracy (100% - mean absolute percentage error) 96.6% as compared to ECG (vs 86.6% and 94.4% for Mio LINK(®), correspondingly) during laboratory protocol. Similar or better reliability and accuracy was seen during normal outdoor sports activities. The results show that PulseOn provides reliability and accuracy similar to traditional chest strap ECG HR monitors during cardiovascular exercise.

  8. Activity Learning as a Foundation for Security Monitoring in Smart Homes.

    PubMed

    Dahmen, Jessamyn; Thomas, Brian L; Cook, Diane J; Wang, Xiaobo

    2017-03-31

    Smart environment technology has matured to the point where it is regularly used in everyday homes as well as research labs. With this maturation of the technology, we can consider using smart homes as a practical mechanism for improving home security. In this paper, we introduce an activity-aware approach to security monitoring and threat detection in smart homes. We describe our approach using the CASAS smart home framework and activity learning algorithms. By monitoring for activity-based anomalies we can detect possible threats and take appropriate action. We evaluate our proposed method using data collected in CASAS smart homes and demonstrate the partnership between activity-aware smart homes and biometric devices in the context of the CASAS on-campus smart apartment testbed.

  9. Measurement of active shoulder proprioception: dedicated system and device.

    PubMed

    Lubiatowski, Przemyslaw; Ogrodowicz, Piotr; Wojtaszek, Marcin; Kaniewski, Ryszard; Stefaniak, Jakub; Dudziński, Witold; Romanowski, Leszek

    2013-02-01

    Proprioception is an essential part of shoulder stability and neuromuscular control. The purpose of the study was the development of a precise system of shoulder proprioception assessment in the active mode (Propriometr). For that purpose, devices such as the electronic goniometer and computer software had been designed. A pilot study was carried out on a control group of 27 healthy subjects, the average age being 23.8 (22-29) in order to test the system. The result of the assessment was the finding of the error of active reproduction of the joint position (EARJP). EARJP was assessed for flexion, abduction, external and internal rotation. For every motion, reference positions were used at three different angles. The results showed EARJP to range in 3-6.1°. The proprioception evaluation system (propriometr) allows a precise measurement of active joint position sense. The designed system can be used to assess proprioception in both shoulder injuries and treatment. In addition, all achieved results of normal shoulders may serve as reference to be compared with the results of forthcoming studies.

  10. Towards Understanding Early Failures Behavior during Device Burn-In: Broadband RF Monitoring of Atomistic Changes in Materials

    PubMed Central

    Obeng, Yaw S.; Okoro, Chukwudi A.; Amoah, Papa K.; Dai, Johnny; Vartanian, Victor H.

    2016-01-01

    In this paper, we attempt to understand the physico-chemical changes that occur in devices during device “burn-in”. We discuss the use of low frequency dielectric spectroscopy to detect, characterize and monitor changes in electrical defects present in the dielectrics of through silicon vias (TSV) for three dimensional (3D) interconnected integrated circuit devices, as the devices are subjected to fluctuating thermal loads. The observed changes in the electrical characteristics of the interconnects were traceable to changes in the chemistry of the isolation dielectric used in the TSV construction. The observed changes provide phenomenological insights into the practice of burn-in. The data also suggest that these “chemical defects” inherent in the ‘as-manufactured’ products may be responsible for some of the unexplained early reliability failures observed in TSV enabled 3D devices. PMID:27738561

  11. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography

    PubMed Central

    Mantua, Janna; Gravel, Nickolas; Spencer, Rebecca M. C.

    2016-01-01

    Polysomnography (PSG) is the “gold standard” for monitoring sleep. Alternatives to PSG are of interest for clinical, research, and personal use. Wrist-worn actigraph devices have been utilized in research settings for measures of sleep for over two decades. Whether sleep measures from commercially available devices are similarly valid is unknown. We sought to determine the validity of five wearable devices: Basis Health Tracker, Misfit Shine, Fitbit Flex, Withings Pulse O2, and a research-based actigraph, Actiwatch Spectrum. We used Wilcoxon Signed Rank tests to assess differences between devices relative to PSG and correlational analysis to assess the strength of the relationship. Data loss was greatest for Fitbit and Misfit. For all devices, we found no difference and strong correlation of total sleep time with PSG. Sleep efficiency differed from PSG for Withings, Misfit, Fitbit, and Basis, while Actiwatch mean values did not differ from that of PSG. Only mean values of sleep efficiency (time asleep/time in bed) from Actiwatch correlated with PSG, yet this correlation was weak. Light sleep time differed from PSG (nREM1 + nREM2) for all devices. Measures of Deep sleep time did not differ from PSG (SWS + REM) for Basis. These results reveal the current strengths and limitations in sleep estimates produced by personal health monitoring devices and point to a need for future development. PMID:27164110

  12. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography.

    PubMed

    Mantua, Janna; Gravel, Nickolas; Spencer, Rebecca M C

    2016-05-05

    Polysomnography (PSG) is the "gold standard" for monitoring sleep. Alternatives to PSG are of interest for clinical, research, and personal use. Wrist-worn actigraph devices have been utilized in research settings for measures of sleep for over two decades. Whether sleep measures from commercially available devices are similarly valid is unknown. We sought to determine the validity of five wearable devices: Basis Health Tracker, Misfit Shine, Fitbit Flex, Withings Pulse O2, and a research-based actigraph, Actiwatch Spectrum. We used Wilcoxon Signed Rank tests to assess differences between devices relative to PSG and correlational analysis to assess the strength of the relationship. Data loss was greatest for Fitbit and Misfit. For all devices, we found no difference and strong correlation of total sleep time with PSG. Sleep efficiency differed from PSG for Withings, Misfit, Fitbit, and Basis, while Actiwatch mean values did not differ from that of PSG. Only mean values of sleep efficiency (time asleep/time in bed) from Actiwatch correlated with PSG, yet this correlation was weak. Light sleep time differed from PSG (nREM1 + nREM2) for all devices. Measures of Deep sleep time did not differ from PSG (SWS + REM) for Basis. These results reveal the current strengths and limitations in sleep estimates produced by personal health monitoring devices and point to a need for future development.

  13. Assessing Daily Physical Activity in Older Adults: Unraveling the Complexity of Monitors, Measures, and Methods.

    PubMed

    Schrack, Jennifer A; Cooper, Rachel; Koster, Annemarie; Shiroma, Eric J; Murabito, Joanne M; Rejeski, W Jack; Ferrucci, Luigi; Harris, Tamara B

    2016-08-01

    At the 67th Gerontological Society of America Annual Meeting, a preconference workshop was convened to discuss the challenges of accurately assessing physical activity in older populations. The advent of wearable technology (eg, accelerometers) to monitor physical activity has created unprecedented opportunities to observe, quantify, and define physical activity in the real-world setting. These devices enable researchers to better understand the associations of physical activity with aging, and subsequent health outcomes. However, a consensus on proper methodological use of these devices in older populations has not been established. To date, much of the validation research regarding device type, placement, and data interpretation has been performed in younger, healthier populations, and translation of these methods to older populations remains problematic. A better understanding of these devices, their measurement properties, and the data generated is imperative to furthering our understanding of daily physical activity, its effects on the aging process, and vice versa. The purpose of this article is to provide an overview of the highlights of the preconference workshop, including properties of the different types of accelerometers, the methodological challenges of employing accelerometers in older study populations, a brief summary of ongoing aging-related research projects that utilize different types of accelerometers, and recommendations for future research directions.

  14. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    PubMed Central

    Eitel, Jan U. H.; Keefe, Robert F.; Long, Dan S.; Davis, Anthony S.; Vierling, Lee A.

    2010-01-01

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and do not require spectral reference readings. Besides measuring red (590–670 nm) and near-infrared (>760 nm) reflectance AGORS devices have recently become available that also measure red-edge (730 nm) reflectance. We tested the hypothesis that the additional availability of red-edge reflectance information would improve AGORS of plant stress induced chlorophyll breakdown in Scots pine (Pinus sylvestris). Our results showed that the availability of red-edge reflectance information improved AGORS estimates of stress induced variation in chlorophyll concentration (r2 > 0.73, RMSE < 1.69) when compared to those without (r2 = 0.57, RMSE = 2.11). PMID:22319275

  15. Fiber bragg grating sensor based device for simultaneous measurement of respiratory and cardiac activities.

    PubMed

    Chethana, K; Guru Prasad, A S; Omkar, S N; Asokan, S

    2017-02-01

    This paper reports a novel optical ballistocardiography technique, which is non-invasive, for the simultaneous measurement of cardiac and respiratory activities using a Fiber Bragg Grating Heart Beat Device (FBGHBD). The unique design of FBGHBD offers additional capabilities such as monitoring nascent morphology of cardiac and breathing activity, heart rate variability, heart beat rhythm, etc., which can assist in early clinical diagnosis of many conditions associated with heart and lung malfunctioning. The results obtained from the FBGHBD positioned around the pulmonic area on the chest have been evaluated against an electronic stethoscope which detects and records sound pulses originated from the cardiac activity. In order to evaluate the performance of the FBGHBD, quantitative and qualitative studies have been carried out and the results are found to be reliable and accurate, validating its potential as a standalone medical diagnostic device. The developed FBGHBD is simple in design, robust, portable, EMI proof, shock proof and non-electric in its operation which are desired features for any clinical diagnostic tool used in hospital environment.

  16. Predicting Activity Energy Expenditure Using the Actical[R] Activity Monitor

    ERIC Educational Resources Information Center

    Heil, Daniel P.

    2006-01-01

    This study developed algorithms for predicting activity energy expenditure (AEE) in children (n = 24) and adults (n = 24) from the Actical[R] activity monitor. Each participant performed 10 activities (supine resting, three sitting, three house cleaning, and three locomotion) while wearing monitors on the ankle, hip, and wrist; AEE was computed…

  17. Remote monitoring as a key innovation in the management of cardiac patients including those with implantable electronic devices.

    PubMed

    Sutton, Richard

    2013-06-01

    This Introduction to the Supplement provides a brief history of remote monitoring, discusses its current status, and indicates the bright future that it possesses with a broad application in many branches of cardiology, at least including arrhythmias, heart failure, and ischaemic heart disease in addition to the management of implantable electronic devices.

  18. 40 CFR 63.497 - Back-end process provisions-monitoring provisions for control and recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Polymers and Resins § 63.497 Back-end process provisions—monitoring provisions for control and recovery devices. (a) An owner or operator complying with the residual organic HAP limitations in § 63.494(a) using... Notification of Compliance Status or the operating permit application, as required in § 63.506(e)(5) or...

  19. 78 FR 38058 - Guidance for Industry on Heparin for Drug and Medical Device Use: Monitoring Crude Heparin for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry on Heparin for Drug and Medical Device Use: Monitoring Crude Heparin for Quality; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the availability of...

  20. 40 CFR 63.11940 - What continuous monitoring requirements must I meet for control devices required to install CPMS...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... option to propose alternative monitoring parameters or procedures. (a) Flow indicator. If flow to a control device could be intermittent, you must install, calibrate, and operate a flow indicator at the... better kind and quality as the old catalyst then you must conduct a new performance test according...

  1. Non-invasive objective devices for monitoring the inflammatory, proliferative and remodelling phases of cutaneous wound healing and skin scarring.

    PubMed

    Ud-Din, Sara; Bayat, Ardeshir

    2016-08-01

    Objective evaluation of cutaneous wounds through the use of non-invasive devices is important for diagnosis, monitoring treatment response and can lead to the development of improved theranostic strategies. The need for objective monitoring of wound healing and scar formation is evident as this enables accurate diagnosis, evaluation and prognosis for clinicians and allows for the standardisation and validation of methodology for researchers. Therefore, this review provides an overview of the current application of non-invasive objective technologies for the assessment of wound healing through the different phases of repair. We propose that cutaneous healing parameters can be split into three core domains: anatomical, mechanical and physiological. These categories can be further subdivided with respect to specific phases of healing. There is no single instrument, which can measure all the parameters of healing simultaneously; thus, it is important to choose the correct device for the particular healing characteristics being monitored. However, multiprobe systems, which include a number of devices connected to one main unit, are useful as they enable multiple measurements of different parameters. Many of the devices have not been validated against histological examination. Additionally, some of the instruments have not been evaluated in all wound or scar types and may not be useful throughout all phases of cutaneous wound healing. In conclusion, non-invasive objective devices are useful in the assessment of cutaneous wound healing, as these tools can link the treatment and diagnosis by evaluating response to treatment and thus could aid as a marker for healing and scar maturation.

  2. Monitoring Global Precipitation through UCI CHRS's RainMapper App on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Nguyen, P.; Huynh, P.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.

    2014-12-01

    The Water and Development Information for Arid Lands-a Global Network (G-WADI) Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System (PERSIANN-CCS) GeoServer has been developed through a collaboration between the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine (UCI) and the UNESCO's International Hydrological Program (IHP). G-WADI PERSIANN-CCS GeoServer provides near real-time high resolution (0.04o, approx 4km) global (60oN - 60oS) satellite precipitation estimated by the PERSIANN-CCS algorithm developed by the scientists at CHRS. The G-WADI PERSIANN-CCS GeoServer utilizes the open-source MapServer software from the University of Minnesota to provide a user-friendly web-based mapping and visualization of satellite precipitation data. Recent efforts have been made by the scientists at CHRS to provide free on-the-go access to the PERSIANN-CCS precipitation data through an application named RainMapper for mobile devices. RainMapper provides visualization of global satellite precipitation of the most recent 3, 6, 12, 24, 48 and 72-hour periods overlaid with various basemaps. RainMapper uses the Google maps application programing interface (API) and embedded global positioning system (GPS) access to better monitor the global precipitation data on mobile devices. Functionalities include using geographical searching with voice recognition technologies make it easy for the user to explore near real-time precipitation in a certain location. RainMapper also allows for conveniently sharing the precipitation information and visualizations with the public through social networks such as Facebook and Twitter. RainMapper is available for iOS and Android devices and can be downloaded (free) from the App Store and Google Play. The usefulness of RainMapper was demonstrated through an application in tracking the evolution of the recent Rammasun Typhoon over the

  3. Smart interactive electronic system for monitoring the electromagnetic activities of biological systems

    NASA Astrophysics Data System (ADS)

    Popa, Sorin G.; Shahinpoor, Mohsen

    2001-08-01

    A novel electronic device capable of sensing and monitoring the myoelectric, polarization wave and electromagnetic activities of the biological systems and in particular the human body is presented. It is known that all the physical and chemical processes within biological systems are associated with polarization, depolarization waves from the brain, neural signals and myoelectric processes that manifest themselves in ionic and dipole motion. The technology developed in our laboratory is based on certain charge motion sensitive electronics. The electronic system developed is capable of sensing the electromagnetic activities of biological systems. The information obtained is then processed by specialized software in order to interpret it from physical and chemical point of view.

  4. Less invasive methods of advanced hemodynamic monitoring: principles, devices, and their role in the perioperative hemodynamic optimization

    PubMed Central

    2013-01-01

    The monitoring of the cardiac output (CO) and other hemodynamic parameters, traditionally performed with the thermodilution method via a pulmonary artery catheter (PAC), is now increasingly done with the aid of less invasive and much easier to use devices. When used within the context of a hemodynamic optimization protocol, they can positively influence the outcome in both surgical and non-surgical patient populations. While these monitoring tools have simplified the hemodynamic calculations, they are subject to limitations and can lead to erroneous results if not used properly. In this article we will review the commercially available minimally invasive CO monitoring devices, explore their technical characteristics and describe the limitations that should be taken into consideration when clinical decisions are made. PMID:24472443

  5. Monitoring of Diaphragm Position in Pulsatile Pnumatic Ventricular Assisted Device by Ultrasound Sensor

    NASA Astrophysics Data System (ADS)

    Kamimura, Tadayuki; Homma, Akihiko; Tsukiya, Tomonori; Kakuta, Yukihide; Lee, Hwansung; Tatsumi, Eisuke; Taenaka, Yoshiyuki; Kitamura, Soichiro

    A new method using ultrasound sensors to detect the diaphragm position of a ventricular assist device (VAD) was proposed. Two small ultrasound sensors of 2.4mm diameter were attached to the outside surface of blood chamber of a pneumatic VAD. The receiving crystal received the ultrasound from the transmitting crystal reflected by the diaphragm. The diaphragm position was calculated by using geometric relation among two sensors and ultrasound propagation time. Validity of this method was evaluated in a mock circulation test under various driving conditions of VAD by comparing the ultrasound signals with driving pressure waveforms. The ultrasound signals could detect full-fill (FF) and full-eject (FE) status shortly before the spikes appeared on pressure waves, which are currently available to detect FE and FF but accompanies excessive extension of the diaphragm. This method would be helpful to avoid overloading of diaphragm. Linear correlation was observed between the output from VAD and blood volume calculated from the change of diaphragm position multiplied by the heart rate. This monitoring method of diaphragm of a VAD was proven to have advantages over the current method toward better control of a pneumatic VAD.

  6. Evaluation of an oil-debris monitoring device for use in helicopter transmissions

    NASA Astrophysics Data System (ADS)

    Lewicki, David G.; Blanchette, Donald M.; Biron, Gilles

    1992-08-01

    Experimental tests were performed on an OH-58A helicopter main-rotor transmission to evaluate an oil-debris monitoring device (ODMD). The tests were performed in the NASA 500-hp Helicopter Transmission Test Stand. Five endurance tests were run as part of a U.S. Navy/NASA/Army advanced lubricants program. The tests were run at 100 percent design speed, 117-percent design torque, and 121 C (250 F) oil inlet temperature. Each test lasted between 29 and 122 hr. The oils that were used conformed to MIL-L-23699 and DOD-L-85734 specifications. One test produced a massive sun-gear fatigue failure; another test produced a small spall on one sun-gear tooth; and a third test produced a catastrophic planet-bearing cage failure. The ODMD results were compared with oil spectroscopy results. The capability of the ODMD to detect transmission component failures was not demonstrated. Two of the five tests produced large amounts of debris. For these two tests, two separate ODMD sensors failed, possibly because of prolonged exposure to relatively high oil temperatures. One test produced a small amount of debris and was not detected by the ODMD or by oil spectroscopy. In general, the ODMD results matched the oil spectroscopy results. The ODMD results were extremely sensitive to oil temperature and flow rate.

  7. Evaluation of an oil-debris monitoring device for use in helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Blanchette, Donald M.; Biron, Gilles

    1992-01-01

    Experimental tests were performed on an OH-58A helicopter main-rotor transmission to evaluate an oil-debris monitoring device (ODMD). The tests were performed in the NASA 500-hp Helicopter Transmission Test Stand. Five endurance tests were run as part of a U.S. Navy/NASA/Army advanced lubricants program. The tests were run at 100 percent design speed, 117-percent design torque, and 121 C (250 F) oil inlet temperature. Each test lasted between 29 and 122 hr. The oils that were used conformed to MIL-L-23699 and DOD-L-85734 specifications. One test produced a massive sun-gear fatigue failure; another test produced a small spall on one sun-gear tooth; and a third test produced a catastrophic planet-bearing cage failure. The ODMD results were compared with oil spectroscopy results. The capability of the ODMD to detect transmission component failures was not demonstrated. Two of the five tests produced large amounts of debris. For these two tests, two separate ODMD sensors failed, possibly because of prolonged exposure to relatively high oil temperatures. One test produced a small amount of debris and was not detected by the ODMD or by oil spectroscopy. In general, the ODMD results matched the oil spectroscopy results. The ODMD results were extremely sensitive to oil temperature and flow rate.

  8. Pre-operational environmental monitoring plan for the Device Assembly Facility at the Nevada Test Site

    SciTech Connect

    Ferate, F.D.

    1995-01-01

    Nuclear explosives operations have been and may continue to be an important component of the DOE mission at the NTS. This mission has been to conduct the nation`s nuclear testing program in a safe, secure, and efficient manner while assuring full compliance with state and federal regulations, and DOE order`s and directives. These operations have generally included assembly, disassembly or modification, staging, transportation, and tesbng of nuclear explosive devices. They may also include maintenance, repair, retrofit, and surveillance. The Device Assembly Facility (DAF) was constructed to provide a dedicated facility in which to prepare nuclear explosives assemblies for their intended disposition. This facility will provide for combined operations (replacing two separate facilities) and incorporates state-of-the-art safety and security features while minimizing the risks of environmental impacts. The facility has been completed but not yet operated, so the impacts to be considered will b e based on normal operations and not on the impacts of construction activities. The impacts will arise from nuclear explosives operations that require the handling of high explosives in combination with special nuclear materials. Wastes from operation of the earlier device assembly facilities have included grams of epoxies, pints of solvents, and small quantities of waste explosives. These are hazardous (includes radioactive) wastes and are disposed of in accordance with state and federal regulations. Assuming similar operations at the DAF, non-hazardous (includes non-radioactive) solid waste would be transported to a permitted landfill. Waste explosives would be sent to the Area 11 Explosive Ordnance Disposal Unit. Other hazardous waste would be sent to the Area 5 Radioactive Waste.Management Site for shipment or burial.

  9. Multisensor fusion for atrial and ventricular activity detection in coronary care monitoring

    PubMed Central

    Hernández, Alfredo I.; Carrault, Guy; Mora, Fernando; Thoraval, Laurent; Passariello, Gianfranco; Schleich, Jean-Marc

    1999-01-01

    Information management for critical care monitoring is still a very difficult task. Medical staff is often overwhelmed by the amount of data provided by the increased number of specific monitoring devices and instrumentation, and the lack of an effective automated system. Specifically, a basic task such as arrhythmia detection still produce an important amount of undesirable alarms, due in part to the mechanistic approach of current monitoring systems. In this work, multi-sensor and multi-source data fusion schemes to improve atrial and ventricular activity detection in critical care environments are presented. Applications of these schemes are quantitatively evaluated and compared with current methods, showing the potential advantages of data fusion techniques for event detection in noise corrupted signals. PMID:10513122

  10. Physical activity monitoring in obese people in the real life environment

    PubMed Central

    2009-01-01

    Background Obesity is a major problem especially in western countries and several studies underline the importance of physical activity to enhance diet. Currently there is increasing interest in instruments for monitoring daily physical activity. The purpose of this pilot study was to appraise the qualitative and quantitative differences in physical activities and gait analysis parameters in control and obese subjects by means of an innovative tool for the monitoring of physical activity. Methods Twenty-six obese patients, 16 women and 10 men, aged 22 to 69 years with Body Mass Index (BMI) between 30 and 51.4 kg/m2, were compared with 15 control subjects, 4 men and 11 women, aged 24 to 69 with BMI between 18 and 25 kg/m2 during daily physical activities. The IDEEA device (Minisun, Fresno, CA), based on a wearable system of biaxial accelerometers and able to continuously record the physical activities and energy expenditure of a subject in time was used. Time spent in different physical activities such as standing, sitting, walking, lying, reclining, stepping, energy expenditure and gait parameters (velocity, stance duration, etc) were measured during a 24-hours period. Results A trend toward a reduced number of steps was present, associated to reduced speed, reduced cadence and reduced rate of single and double limb support (SLS/DLS). Moreover, obese people spent significant less time stepping, less time lying and more time in a sitting or reclined position during the night. The energy expenditure during a 24-hours period was higher in the obese compared to controls. Conclusions The study provided objective parameters to differentiate the daily motor activity of obese subjects with respect to controls, even a larger population is required to confirm these findings. The device used can be of support in programming educational activities for life style modification in obese people as well as for monitoring the results of various kinds of intervention in these

  11. An overview of existing raptor contaminant monitoring activities in Europe.

    PubMed

    Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C

    2014-06-01

    Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable

  12. The VANILLA sensor as a beam monitoring device for X-ray radiation therapy.

    PubMed

    Velthuis, J J; Hugtenburg, R P; Cussans, D; Perry, M; Hall, C; Stevens, P; Lawrence, H; McKenzie, A

    2014-01-01

    Cancer treatments such as intensity-modulated radiotherapy (IMRT) require increasingly complex methods to verify the accuracy and precision of the treatment delivery. In vivo dosimetry based on measurements made in an electronic portal imaging device (EPID) has been demonstrated. The distorting effect of the patient anatomy on the beam intensity means it is difficult to separate changes in patient anatomy from changes in the beam intensity profile. Alternatively, upstream detectors scatter and attenuate the beam, changing the energy spectrum of the beam, and generate contaminant radiation such as electrons. We used the VANILLA device, a Monolithic Active Pixel Sensor (MAPS), to measure the 2D beam profile of a 6 MV X-ray beam at Bristol Hospital in real-time in an upstream position to the patient without clinically significant disturbance of the beam (0.1% attenuation). MAPSs can be made very thin (~20 μm) with still a very good signal-to-noise performance. The VANILLA can reconstruct the collimated beam edge with approximately 64 μm precision.

  13. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  14. Space Weather Monitors -- Preparing to Distribute Scientific Devices and Classroom Materials Worldwide for the IHY 2007

    NASA Astrophysics Data System (ADS)

    Scherrer, D. K.; Burress, B.

    2006-05-01

    Stanford's Solar Center, in conjunction with the Space, Telecommunications and Radioscience Laboratory and local educators, have developed inexpensive Space Weather Monitors that students around the world can use to track solar-induced changes to the Earth's ionosphere. Through the United Nations Basic Space Science Initiative (UNBSSI) and the IHY Education and Public Outreach Program, our Monitors have been designated for deployment to 191 countries for the International Heliophysical Year, 2007. In partnership with Chabot Space and Science Center, we are designing and developing classroom and educator support materials to accompany distribution of the monitors worldwide. Earth's ionosphere reacts strongly to the intense x-ray and ultraviolet radiation released by the Sun during solar events and by lightning during thunderstorms. Students anywhere in the world can directly monitor and track these sudden ionospheric disturbances (SIDs) by using a VLF radio receiver to monitor the signal strength from distant VLF transmitters and noting unusual changes as the waves bounce off the ionosphere. High school students "buy in" to the project by building their own antenna, a simple structure costing little and taking a couple hours to assemble. Data collection and analysis are handled by a local PC. Stanford is providing a centralized data repository where students and researchers can exchange and discuss data. Chabot Space & Science Center is an innovative teaching and learning center focusing on astronomy and the space sciences. Formed as a Joint Powers Agency with the City of Oakland (California), the Oakland Unified School District, the East Bay Regional Park District, and in collaboration with the Eastbay Astronomical Society, Chabot addresses the critical issue of broad access to the specialized information and facilities needed to improve K-12 science education and public science literacy. Up to 2,000 K-12 teachers annually take part in Chabot's professional

  15. Nanoporous noninvasive cellular electrical activity-based analysis devices.

    PubMed

    Prasad, Shalini; Quijano, Jorge

    2007-03-01

    In recent years, rapid advancements have been made in the biomedical applications of microtechnology and nanotechnology. While the focus of such technologies have been primarily on in vitro analytical and diagnostic tools, more recently in vivo therapeutic and sensing applications have gained attention. The long-term integration of cells with inorganic materials provides the basis for novel sensing platforms. The work presented here focuses on the ability to maintain cells long-term in nanoporous silicon-based microenvironments. This article describes the creation of nanoporous, biocompatible, alumina membranes as a platform for incorporation into a cell-based device targeted for in situ recording of cellular electrical activity variations due to the changes associated with the surrounding microenvironments. Studies described herein focus on the interaction of nanoporous alumina substrates embedded in silicon patterned with cells of interest. The fidelity of such a system is demonstrated in terms of viability, proliferation, and functionality. The capability of such microfabricated nanoporous membranes, as in vitro for cell-based assays for sensing and drug delivery applications, is also demonstrated. It has potential in vivo application for therapeutic immunoisolation.

  16. SHADE: A Shape-Memory-Activated Device Promoting Ankle Dorsiflexion

    NASA Astrophysics Data System (ADS)

    Pittaccio, S.; Viscuso, S.; Rossini, M.; Magoni, L.; Pirovano, S.; Villa, E.; Besseghini, S.; Molteni, F.

    2009-08-01

    Acute post-stroke rehabilitation protocols include passive mobilization as a means to prevent contractures. A device (SHADE) that provides repetitive passive motion to a flaccid ankle by using shape memory alloy actuators could be of great help in providing this treatment. A suitable actuator was designed as a cartridge of approximately 150 × 20 × 15 mm, containing 2.5 m of 0.25 mm diameter NiTi wire. This actuator was activated by Joule’s effect employing a 7 s current input at 0.7 A, which provided 10 N through 76 mm displacement. Cooling and reset by natural convection took 30 s. A prototype of SHADE was assembled with two thermoplastic shells hinged together at the ankle and strapped on the shin and foot. Two actuators were fixed on the upper shell while an inextensible thread connected each NiTi wire to the foot shell. The passive ankle motion (passive range of motion, PROM) generated by SHADE was evaluated optoelectronically on three flaccid patients (58 ± 5 years old); acceptability was assessed by a questionnaire presented to further three flaccid patients (44 ± 11.5 years old) who used SHADE for 5 days, 30 min a day. SHADE was well accepted by all patients, produced good PROM, and caused no pain. The results prove that suitable limb mobilization can be produced by SMA actuators.

  17. Active pixel as dosimetric device for interventional radiology

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Baldaccini, F.; Biasini, M.; Checcucci, B.; Chiocchini, S.; Cicioni, R.; Conti, E.; Di Lorenzo, R.; Dipilato, A. C.; Esposito, A.; Fanó, L.; Paolucci, M.; Passeri, D.; Pentiricci, A.; Placidi, P.

    2013-08-01

    Interventional Radiology (IR) is a subspecialty of radiology comprehensive of all minimally invasive diagnostic and therapeutic procedures performed using radiological devices to obtain image guidance. The interventional procedures are potentially harmful for interventional radiologists and medical staff due to the X-ray diffusion by the patient's body. The characteristic energy range of the diffused photons spans few tens of keV. In this work we will present a proposal for a new X-ray sensing element in the energy range of interest for IR procedures. The sensing element will then be assembled in a dosimeter prototype, capable of real-time measurement, packaged in a small form-factor, with wireless communication and no external power supply to be used for individual operators dosimetry for IR procedures. For the sensor, which is the heart of the system, we considered three different Active Pixel Sensors (APS). They have shown a good capability as single X-ray photon detectors, up to several tens keV photon energy. Two dosimetric quantities have been considered, the number of detected photons and the measured energy deposition. Both observables have a linear dependence with the dose, as measured by commercial dosimeters. The uncertainties in the measurement are dominated by statistic and can be pushed at ˜5% for all the sensors under test.

  18. Characterization of Custom-Designed Charge-Coupled Devices for Applications to Gas and Aerosol Monitoring Sensorcraft Instrument

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Farnsworth, Glenn R.; Garcia, Christopher S.; Zawodny, Joseph M.

    2005-01-01

    Custom-designed charge-coupled devices (CCD) for Gas and Aerosols Monitoring Sensorcraft instrument were developed. These custom-designed CCD devices are linear arrays with pixel format of 512x1 elements and pixel size of 10x200 sq m. These devices were characterized at NASA Langley Research Center to achieve a full well capacity as high as 6,000,000 e-. This met the aircraft flight mission requirements in terms of signal-to-noise performance and maximum dynamic range. Characterization and analysis of the electrical and optical properties of the CCDs were carried out at room temperature. This includes measurements of photon transfer curves, gain coefficient histograms, read noise, and spectral response. Test results obtained on these devices successfully demonstrated the objectives of the aircraft flight mission. In this paper, we describe the characterization results and also discuss their applications to future mission.

  19. Active monitoring as cognitive control of grinders design

    NASA Astrophysics Data System (ADS)

    Flizikowski, Jozef B.; Mrozinski, Adam; Tomporowski, Andrzej

    2017-03-01

    A general monitoring methodology applicable to plastics recyclates grinding processes development for energy engineering, has been presented in this work. The method includes two beings: mathematical aiding an invention and working of a novelty. The common set is composed of characteristics, structure, relationships of knowledge about states and transformations, effectiveness and progress of the devices and machinery engineering, e.g. breaking up in the energy-materials recycling process. This innovations theory is identified by the valuation, estimation, testing and creative archiving the elaborated character and structure of the invention and grinders construction development.

  20. Development of a laboratory demonstration model active cleaning device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1975-01-01

    A laboratory demonstration model of a device for removing contaminant films from optical surfaces in space was developed. The development of a plasma tube, which would produce the desired cleaning effects under high vacuum conditions, represented the major problem in the program. This plasma tube development is discussed, and the resulting laboratory demonstration-model device is described.

  1. Gasometer: An inexpensive device for continuous monitoring of dissolved gases and supersaturation

    USGS Publications Warehouse

    Bouck, G.R.

    1982-01-01

    The “gasometer” is a device that measures differential dissolved-gas pressures (δP) in water relative to barometric pressure (as does the “Weiss saturometer”), but operates continuously without human attention. The gasometer can be plumbed into a water-supply system and requires 8 liters/minute of water or more at 60 kilopascals. The gasometer's surfaces are nontoxic, and flow-through water can be used for fish culture. The gasometer may be connected to a small submersible pump and operated as a portable unit. The gasometer can activate an alarm system and thus protect fish from hyperbaric (supersaturation) or hypobaric gas pressures (usually due to low dissolved oxygen). Instructions are included for calculating and reporting data including the pressure and saturation of individual gases. Construction and performance standards are given for the gasometer. Occasional cleaning is required to remove biofouling from the gas-permeable tubing.PDF

  2. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of...

  3. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of...

  4. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of...

  5. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of...

  6. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of...

  7. Electronic security systems and active implantable medical devices.

    PubMed

    Irnich, Werner

    2002-08-01

    How do active implantable medical devices react in the presence of strong magnetic fields in the frequency range between extremely low frequency (ELF) to radiofrequency (RF) as they are emitted by electronic security systems (ESS)? There are three different sorts of ESSs: electronic article surveillance (EAS) devices, metal detector (MDS) devices, and radiofrequency identification (RFID) systems. Common to all is the production of magnetic fields. There is an abundance of literature concerning interference by ESS gates with respect to if there is an influence possible and if such an influence can bear a risk for the AIMD wearers. However, there has been no attempt to study the physical mechanism nor to develop a model of how and under which conditions magnetic fields can influence pacemakers and defibrillators and how they could be disarmed by technological means. It is too often assumed that interference of AIMD with ESS is inevitable. Exogenous signals of similar intensity and rhythm to heart signals can be misinterpreted and, thus, confuse the implant. Important for the interference coupling mechanism is the differentiation between a "unipolar" and a "bipolar" system. With respect to magnetic fields, the left side implanted pacemaker is the most unfavorable case as the lead forms approximately a semicircular area of maximum 225 cm2 into which a voltage can be induced. This assumption yields an interference coupling model that can be expressed by simple mathematics. The worst-case conditions for induced interference voltages are a coupling area of 225 cm2 that is representative for a large human, a homogeneous magnetic field perpendicular to the area formed by the lead, and a unipolar ventricular pacemaker system that is implanted on the left side of the thorax and has the highest interference sensitivity. In bipolar systems the fields must be 17 times larger when compared to a unipolar system to have the same effect. The magnetic field for interfering with ICDs

  8. EarthScope Content Module for IRIS Active Earth Monitor

    NASA Astrophysics Data System (ADS)

    McQuillan, P. J.; Welti, R.; Johnson, J. A.; Shiffman, C. R.; Olds, S. E.

    2012-12-01

    The Active Earth Monitor (AEM) is an interactive computer-based display for university lobbies, museums, visitor centers, schools and libraries. AEM runs in a standard Internet web browser in full screen mode. The display consists of a customizable set of content pages about plate tectonics, earthquakes, volcanoes and tsunamis. Low-cost and simple-to-implement, the Active Earth Monitor provides a way to engage audiences with earth science information without spending resources on a large exhibit. The EarthScope Active Earth Monitor content set highlights the connections between the landscape and the research and monitoring being conducted by EarthScope in partnership with regional monitoring networks. Modules consist of chapters that focus on What is EarthScope?, EarthScope Observatories, and EarthScope Research Results. Content topics are easily explored using a web page button type navigation interface via a touch screen or mouse. A formative evaluation of general public users informed the interface design. Chapters in the modules start with a general overview and proceed to detailed specifics. Each chapter utilizes at least one set of live or near real-time research data (often more than one). This exposes the general public to active ongoing research that is engaging, relevant to the individual user, and explained in easy to understand terms. All live content is updated each time a user accesses the individual page displaying the live data. Leading questions are presented allowing the user to examine the content before accessing the answer via pop-up box. Diagrams and charts of research data have explanatory keys that allow users to self explore all content. Content pages can be created and inserted in the Active Earth Monitor by utilizing the simple HTML/CSS coding.;

  9. PhysioDroid: Combining Wearable Health Sensors and Mobile Devices for a Ubiquitous, Continuous, and Personal Monitoring

    PubMed Central

    Villalonga, Claudia; Damas, Miguel

    2014-01-01

    Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices. PMID:25295301

  10. PhysioDroid: combining wearable health sensors and mobile devices for a ubiquitous, continuous, and personal monitoring.

    PubMed

    Banos, Oresti; Villalonga, Claudia; Damas, Miguel; Gloesekoetter, Peter; Pomares, Hector; Rojas, Ignacio

    2014-01-01

    Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices.

  11. Monitoring hemostasis parameters in left ventricular assist device recipients – a preliminary report

    PubMed Central

    Kaczmarski, Jacek; Pacholewicz, Jerzy; Zakliczyński, Michał; Gąsior, Mariusz; Zembala, Marian

    2016-01-01

    Introduction Mechanical circulatory support (MCS) therapy is associated with the improvement of long-term prognosis in patients with end-stage heart failure. For years it has been used as a bridge to transplant. However, more recently it is even being used as a destination therapy. Recently, clinicians have identified common MCS therapy-associated complications: pump thrombosis, bleeding, and hemolysis. These complications are very challenging with regard to both diagnosis and management. Aim To determine time-dependant changes of selected hemostasis/coagulation parameters in patients with end-stage heart failure treated with MCS and antithrombotic therapy. Material and methods Sixteen patients with end-stage heart failure on left ventricular assist device (LVAD) were followed for 6 weeks (six blood samples for each patient). Every week an extended hemostasis panel was assessed, including activated partial thromboplastin time, prothrombin time, international normalized ratio, von Willebrand factor (vWF) activity, factor VIII activity, fibrinogen level, D-dimer, platelet response to arachidonic acid (ASPI test) and adenosine diphosphate (ADP test), thrombin receptor activating peptide-6 (TRAP test) and collagen (COL test). Results The study population comprised 16 men. The median time from LVAD implantation was 120 days (100–150 days). During the study period the D-dimer and fibrinogen concentrations were elevated but remained similar throughout all six measurements. Meanwhile factor VIII and vWF activities were elevated in the first two measurements and then subsequently declined. Inhibition of platelet aggregation was greater early after LVAD implantation. During subsequent weeks the inhibition of platelet aggregation was less pronounced. No patient developed any bleeding or thrombo-embolic event during the study period. Conclusions Patients on MCS therapy demonstrate significant time-dependant changes in hemostasis parameters (both in the coagulation system and

  12. Hierarchical structural health monitoring system combining a fiber optic spinal cord network and distributed nerve cell devices

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo

    2009-03-01

    This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.

  13. Highly effective and accurate weak point monitoring method for advanced design rule (1x nm) devices

    NASA Astrophysics Data System (ADS)

    Ahn, Jeongho; Seong, ShiJin; Yoon, Minjung; Park, Il-Suk; Kim, HyungSeop; Ihm, Dongchul; Chin, Soobok; Sivaraman, Gangadharan; Li, Mingwei; Babulnath, Raghav; Lee, Chang Ho; Kurada, Satya; Brown, Christine; Galani, Rajiv; Kim, JaeHyun

    2014-04-01

    Historically when we used to manufacture semiconductor devices for 45 nm or above design rules, IC manufacturing yield was mainly determined by global random variations and therefore the chip manufacturers / manufacturing team were mainly responsible for yield improvement. With the introduction of sub-45 nm semiconductor technologies, yield started to be dominated by systematic variations, primarily centered on resolution problems, copper/low-k interconnects and CMP. These local systematic variations, which have become decisively greater than global random variations, are design-dependent [1, 2] and therefore designers now share the responsibility of increasing yield with manufacturers / manufacturing teams. A widening manufacturing gap has led to a dramatic increase in design rules that are either too restrictive or do not guarantee a litho/etch hotspot-free design. The semiconductor industry is currently limited to 193 nm scanners and no relief is expected from the equipment side to prevent / eliminate these systematic hotspots. Hence we have seen a lot of design houses coming up with innovative design products to check hotspots based on model based lithography checks to validate design manufacturability, which will also account for complex two-dimensional effects that stem from aggressive scaling of 193 nm lithography. Most of these hotspots (a.k.a., weak points) are especially seen on Back End of the Line (BEOL) process levels like Mx ADI, Mx Etch and Mx CMP. Inspecting some of these BEOL levels can be extremely challenging as there are lots of wafer noises or nuisances that can hinder an inspector's ability to detect and monitor the defects or weak points of interest. In this work we have attempted to accurately inspect the weak points using a novel broadband plasma optical inspection approach that enhances defect signal from patterns of interest (POI) and precisely suppresses surrounding wafer noises. This new approach is a paradigm shift in wafer inspection

  14. Accuracy of devices for self-monitoring of blood glucose: A stochastic error model.

    PubMed

    Vettoretti, M; Facchinetti, A; Sparacino, G; Cobelli, C

    2015-01-01

    Self-monitoring of blood glucose (SMBG) devices are portable systems that allow measuring glucose concentration in a small drop of blood obtained via finger-prick. SMBG measurements are key in type 1 diabetes (T1D) management, e.g. for tuning insulin dosing. A reliable model of SMBG accuracy would be important in several applications, e.g. in in silico design and optimization of insulin therapy. In the literature, the most used model to describe SMBG error is the Gaussian distribution, which however is simplistic to properly account for the observed variability. Here, a methodology to derive a stochastic model of SMBG accuracy is presented. The method consists in dividing the glucose range into zones in which absolute/relative error presents constant standard deviation (SD) and, then, fitting by maximum-likelihood a skew-normal distribution model to absolute/relative error distribution in each zone. The method was tested on a database of SMBG measurements collected by the One Touch Ultra 2 (Lifescan Inc., Milpitas, CA). In particular, two zones were identified: zone 1 (BG≤75 mg/dl) with constant-SD absolute error and zone 2 (BG>75mg/dl) with constant-SD relative error. Mean and SD of the identified skew-normal distributions are, respectively, 2.03 and 6.51 in zone 1, 4.78% and 10.09% in zone 2. Visual predictive check validation showed that the derived two-zone model accurately reproduces SMBG measurement error distribution, performing significantly better than the single-zone Gaussian model used previously in the literature. This stochastic model allows a more realistic SMBG scenario for in silico design and optimization of T1D insulin therapy.

  15. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Home uterine activity monitor. 884.2730 Section 884.2730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a...

  16. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Home uterine activity monitor. 884.2730 Section 884.2730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a...

  17. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment

    PubMed Central

    Holton, Angela Babetski; Sinatra, Francy L.; Altiok, Soner

    2017-01-01

    The tumor microenvironment is composed of cellular and stromal components such as tumor cells, mesenchymal cells, immune cells, cancer associated fibroblasts and the supporting extracellular matrix. The tumor microenvironment provides crucial support for growth and progression of tumor cells and affects tumor response to therapeutic interventions. To better understand tumor biology and to develop effective cancer therapeutic agents it is important to develop preclinical platforms that can faithfully recapitulate the tumor microenvironment and the complex interaction between the tumor and its surrounding stromal elements. Drug studies performed in vitro with conventional two-dimensional cancer cell line models do not optimally represent clinical drug response as they lack true tumor heterogeneity and are often performed in static culture conditions lacking stromal tumor components that significantly influence the metabolic activity and proliferation of cells. Recent microfluidic approaches aim to overcome such obstacles with the use of cell lines derived in artificial three-dimensional supportive gels or micro-chambers. However, absence of a true tumor microenvironment and full interstitial flow, leads to less than optimal evaluation of tumor response to drug treatment. Here we report a continuous perfusion microfluidic device coupled with microscopy and image analysis for the assessment of drug effects on intact fresh tumor tissue. We have demonstrated that fine needle aspirate biopsies obtained from patient-derived xenograft models of adenocarcinoma of the lung can successfully be analyzed for their response to ex vivo drug treatment within this biopsy trapping microfluidic device, wherein a protein kinase C inhibitor, staurosporine, was used to assess tumor cell death as a proof of principle. This approach has the potential to study tumor tissue within its intact microenvironment to better understand tumor response to drug treatments and eventually to choose the

  18. Review of information and communication technology devices for monitoring functional and cognitive decline in Alzheimer's disease clinical trials.

    PubMed

    Pillai, Jagan A; Bonner-Jackson, Aaron

    2015-01-01

    Detecting and monitoring early cognitive impairment in Alzheimer's disease (AD) is a significant need in the field of AD therapeutics. Successful AD clinical trial designs have to overcome challenges related to the subtle nature of early cognitive changes. Continuous unobtrusive assessments using Information and Communication Technology (ICT) devices to capture markers of intra-individual change over time to assess cognitive and functional disability therefore offers significant benefits. We review the literature and provide an overview on randomized clinical trials in AD that use intelligent systems to monitor functional decline, as well as strengths, weaknesses, and future directions for the use of ICTs in a new generation of AD clinical trials.

  19. Analysis of the comparison of lancing devices for self-monitoring of blood glucose regarding lancing pain.

    PubMed

    Lekarcyk, Joyce; Ghiloni, Suzanne

    2009-09-01

    Reducing barriers to self-monitoring of blood glucose (SMBG) remains an ongoing goal. One major reported barrier is lancing pain. This analysis was written in response to the article by Kocher and associates in this issue of Journal of Diabetes Science and Technology in which 157 patients with diabetes experienced in the use of SMBG compared high market share blood glucose monitoring systems and lancing devices. Upon review of their findings, we found that their conclusions-Accu-check systems and lancing devices were preferred-were valid within the limitations of the study. However, we noted some factors that would warrant further study and possibly change the outcome. Information from this and other studies on the topic will be useful as a reference for patients and providers in working towards removing barriers to SMBG.

  20. Accuracy of energy expenditure estimation by activity monitors differs with ethnicity.

    PubMed

    Brazeau, A-S; Suppere, C; Strychar, I; Belisle, V; Demers, S-P; Rabasa-Lhoret, R

    2014-09-01

    The aim of this project is to explore the accuracy of 2 activity monitors (SenseWear Armband & Actical) to estimate energy expenditure during rest and light to moderate intensity exercises in 2 ethnic groups. 18 Caucasian and 20 Black adults (age: 26.8±5.2 years; body mass index: 23.9±3.0 kg/m(2)) wore the 2 devices simultaneously during 3 standardised activities: 30-min rest, 45-min of treadmill at 40% of their V˙O2peak and 45-min of stationary cycling at 50% of their V˙O2peak. Energy estimated with the 2 devices was compared to indirect calorimetry measurements. Both devices overestimated energy expenditure during rest (SenseWear: 36% in Black vs. 16% in Caucasian; Actical: 26% vs. 11%, p<0.01 between groups) and treadmill (SenseWear: 50% vs. 25%; Actical: 67% vs. 32%, p<0.01 between groups). Both devices significantly underestimated energy expenditure during stationary cycling (SenseWear: 24% vs. 26%; Actical: 58% vs. 70%, p=NS between groups). Equations used to estimate energy expenditure from accelerometer data is less precise among Black adults than Caucasian adults. Ethnic-specific formulas are probably required.

  1. Preventing Healthcare-Associated Infections by Monitoring the Cleanliness of Medical Devices and Other Critical Points in a Sterilization Service.

    PubMed

    Veiga-Malta, Isabel

    2016-04-02

    It is well known that the common goal of all central sterile supply departments (CSSDs) is to prevent healthcare-associated infections. Such infections entail high costs to society, not only economic but also social. Therefore, delivering safe medical devices and guaranteeing a positive contribution to the control of healthcare-associated infections form the main responsibilities of a CSSD. The monitoring of the effectiveness of medical device cleaning processes is highly recommended. However, ensuring a flawless environment for the preparation, assembly, and packaging of medical devices and clean handling of sterilized items is crucial to achieving the goal of safe medical devices. This study analyzed not only the cleanliness of surgical instruments but also two critical aspects of the surrounding environment: the cleanliness of work surfaces and the cleanliness of workers' hands. To evaluate the cleanliness of surgical instruments, two methods were used: the adenosine triphosphate (ATP) detection method and a residual protein test. It was not the intention of this work to make an exhaustive comparison of these methods. The ATP bioluminescence method was also used for monitoring the cleanliness of work surfaces and workers' hands. The aims of this study were to establish the most suitable method of evaluating the cleanliness of reusable medical devices in the CSSD and to assess the quality of the environment. Assessing the surgical instruments, work surfaces, and staff hands for cleanliness allowed the identification of possible contamination sources and to correct them by improving cleaning/disinfection protocols. Furthermore, the use of ATP monitoring tests of workers' hands highlighted the importance of staff compliance with good practice guidelines. Thus, these results have a positive impact on the CSSD quality system and, consequently, on patient safety.

  2. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of...

  3. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of...

  4. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of...

  5. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of...

  6. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of...

  7. Monitoring cell concentration and activity by multiple excitation fluorometry.

    PubMed

    Li, J K; Asali, E C; Humphrey, A E; Horvath, J J

    1991-01-01

    Four key cellular metabolic fluorophores--tryptophan, pyridoxine, NAD(P)H, and riboflavin--were monitored on-line by a multiple excitation fluorometric system (MEFS) and a modified SLM 8000C scanning spectrofluorometer in three model yeast fermentation systems--bakers' yeast growing on glucose, Candida utilis growing on ethanol, and Saccharomyces cerevisiae RTY110/pRB58 growing on glucose. The measured fluorescence signals were compared with cell concentration, protein concentration, and cellular activity. The results indicate that the behavior and fluorescence intensity of various fluorophores differ in the various fermentation systems. Tryptophan fluorescence is the best signal for the monitoring of cell concentration in bakers' yeast and C. utilis fermentations. Pyridoxine fluoresce is the best signal for the monitoring of cell concentration in the S. cerevisiae RTY110/pRB58 fermentation. In bakers' yeast fermentations the pyridoxine fluorescence signal can be used to monitor cellular activity. The NAD(P)H fluorescence signal is a good indicator of cellular activity in the C. utilis fermentation. For this fermentation NAD(P)H fluorescence can be used to control ethanol feeding in a fed-batch process.

  8. A novel automatic method for monitoring Tourette motor tics through a wearable device.

    PubMed

    Bernabei, Michel; Preatoni, Ezio; Mendez, Martin; Piccini, Luca; Porta, Mauro; Andreoni, Giuseppe

    2010-09-15

    The aim of this study was to propose a novel automatic method for quantifying motor-tics caused by the Tourette Syndrome (TS). In this preliminary report, the feasibility of the monitoring process was tested over a series of standard clinical trials in a population of 12 subjects affected by TS. A wearable instrument with an embedded three-axial accelerometer was used to detect and classify motor tics during standing and walking activities. An algorithm was devised to analyze acceleration data by: eliminating noise; detecting peaks connected to pathological events; and classifying intensity and frequency of motor tics into quantitative scores. These indexes were compared with the video-based ones provided by expert clinicians, which were taken as the gold-standard. Sensitivity, specificity, and accuracy of tic detection were estimated, and an agreement analysis was performed through the least square regression and the Bland-Altman test. The tic recognition algorithm showed sensitivity = 80.8% ± 8.5% (mean ± SD), specificity = 75.8% ± 17.3%, and accuracy = 80.5% ± 12.2%. The agreement study showed that automatic detection tended to overestimate the number of tics occurred. Although, it appeared this may be a systematic error due to the different recognition principles of the wearable and video-based systems. Furthermore, there was substantial concurrency with the gold-standard in estimating the severity indexes. The proposed methodology gave promising performances in terms of automatic motor-tics detection and classification in a standard clinical context. The system may provide physicians with a quantitative aid for TS assessment. Further developments will focus on the extension of its application to everyday long-term monitoring out of clinical environments.

  9. Limited activity monitoring in toddlers with autism spectrum disorder.

    PubMed

    Shic, Frederick; Bradshaw, Jessica; Klin, Ami; Scassellati, Brian; Chawarska, Katarzyna

    2011-03-22

    This study used eye-tracking to examine how 20-month-old toddlers with autism spectrum disorder (ASD) (n=28), typical development (TD) (n=34), and non-autistic developmental delays (DD) (n=16) monitored the activities occurring in a context of an adult-child play interaction. Toddlers with ASD, in comparison to control groups, showed less attention to the activities of others and focused more on background objects (e.g., toys). In addition, while all groups spent the same time overall looking at people, toddlers with ASD looked less at people's heads and more at their bodies. In ASD, these patterns were associated with cognitive deficits and greater autism severity. These results suggest that the monitoring of the social activities of others is disrupted early in the developmental progression of autism, limiting future avenues for observational learning.

  10. Monitoring and evaluating school nutrition and physical activity policies.

    PubMed

    Taylor, Jennifer P; McKenna, Mary L; Butler, Gregory P

    2010-01-01

    Given the increase in the number of Canadian jurisdictions with school nutrition and/or physical activity policies, there is a need to assess the effectiveness of such policies. The objectives of this paper are to 1) provide an overview of key issues in monitoring and evaluating school nutrition and physical activity policies in Canada and 2) identify areas for further research needed to strengthen the evidence base and inform the development of effective approaches to monitoring and evaluation. Evaluation indicators, data sources and existing tools for evaluating nutrition and physical activity are reviewed. This paper has underscored the importance of identifying common indicators and approaches, using a comprehensive approach based on the WHO framework and ensuring that research capacity and funding is in place to facilitate high-quality evaluation efforts in the future.

  11. Using off-the-shelf medical devices for biomedical signal monitoring in a telemedicine system for emergency medical services.

    PubMed

    Thelen, Sebastian; Czaplik, Michael; Meisen, Philipp; Schilberg, Daniel; Jeschke, Sabina

    2015-01-01

    In order to study new methods of telemedicine usage in the context of emergency medical services, researchers need to prototype integrated telemedicine systems. To conduct a one-year trial phase-intended to study a new application of telemedicine in German emergency medical services-we used off-the-shelf medical devices and software to realize real-time patient monitoring within an integrated telemedicine system prototype. We demonstrate its feasibility by presenting the integrated real-time patient monitoring solution, by studying signal delay and transmission robustness regarding changing communication channel characteristics, and by evaluating issues reported by the physicians during the trial phase. Where standards like HL7 and the IEEE 11073 family are intended to enable interoperability of product grade medical devices, we show that research prototypes benefit from the use of web technologies and simple device interfaces, as they simplify product development for a manufacturer and ease integration efforts for research teams. Embracing this approach for the development of new medical devices eases the constraint to use off-the-shelf products for research trials investigating innovative use of telemedicine.

  12. Validation of a microwave radar system for the monitoring of locomotor activity in mice

    PubMed Central

    Pasquali, Vittorio; Scannapieco, Eugenio; Renzi, Paolo

    2006-01-01

    Background The general or spontaneous motor activity of animals is a useful parameter in chronobiology. Modified motion detectors can be used to monitor locomotor activity rhythms. We modified a commercial microwave-based detection device and validated the device by recording circadian and ultradian rhythms. Methods Movements were detected by microwave radar based on the Doppler effect. The equipment was designed to detect and record simultaneously 12 animals in separate cages. Radars were positioned at the bottom of aluminium bulkheads. Animal cages were positioned above the bulkheads. The radars were connected to a computer through a digital I/O board. Results The apparatus was evaluated by several tests. The first test showed the ability of the apparatus to detect the exact frequency of the standard moving object. The second test demonstrated the stability over time of the sensitivity of the radars. The third was performed by simultaneous observations of video-recording of a mouse and radar signals. We found that the radars are particularly sensitive to activities that involve a displacement of the whole body, as compared to movement of only a part of the body. In the fourth test, we recorded the locomotor activity of Balb/c mice. The results were in agreement with published studies. Conclusion Radar detectors can provide automatic monitoring of an animal's locomotor activity in its home cage without perturbing the pattern of its normal behaviour or initiating the spurt of exploration occasioned by transfer to a novel environment. Recording inside breeding cages enables long-term studies with uninterrupted monitoring. The use of electromagnetic waves allows contactless detection and freedom from interference of external stimuli. PMID:16674816

  13. Determining daily physical activity levels of youth with developmental disabilities: days of monitoring required?

    PubMed

    Kim, So-Yeun; Yun, Joonkoo

    2009-07-01

    This study examined sources of variability in physical activity (PA) of youth with developmental disabilities (DD), and determined the optimal number of days required for monitoring PA. Sixteen youth with DD wore two pedometers and two accelerometers for 9 days, including 5 weekdays (W) and 2 weekends (WK). A two-facet in fully crossed two-way ANOVAs were employed to estimate sources of variability across W, WK, and W and WK combined (WWK) for each device. Primary sources of variability were the person and the person by day interaction for both devices. Using a pedometer, four, six, and eight days of measurements were required to determine typical PA levels of the participants during W, WK, and WWK, respectively, Using one accelerometer, four days of measurements were estimated across all days.

  14. Monitoring of biofilm formation on different material surfaces of medical devices using hyperspectral imaging method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of the inner surface of indwelling (implanted) medical devices by microbial biofilm is a serious problem. Some microbial bacteria such as Escherichia coli form biofilms that lead to potentially life-threatening infections. Other types of medical devices such as bronchoscopes and duod...

  15. Efficacy of intrathoracic impedance and remote monitoring in patients with an implantable device after the 2011 great East Japan earthquake.

    PubMed

    Suzuki, Hitoshi; Yamada, Shinya; Kamiyama, Yoshiyuki; Takeishi, Yasuchika

    2014-01-01

    Several studies have revealed that stress after catastrophic disasters can trigger cardiovascular events, however, little is known about its association with the occurrence of heart failure in past earthquakes. The objective of the present study was to determine whether the Great East Japan Earthquake on March 11, 2011, increased the incidence of worsening heart failure in chronic heart failure (CHF) patients with implantable devices. Furthermore, we examined whether intrathoracic impedance using remote monitoring was effective for the management of CHF.We enrolled 44 CHF patients (32 males, mean age 63 ± 12 years) with implantable devices that can check intrathoracic impedance using remote monitoring. We defined the worsening heart failure as accumulated impedance under reference impedance exceeding 60 ohms-days (fluid index threshold), and compared the incidence of worsening heart failure and arrhythmic events 30 days before and after March 11.Within the 30 days after March 11, 10 patients exceeded the threshold compared with only 2 patients in the preceding 30 days (P < 0.05). Although 9 patients using remote monitoring among the 10 patients with threshold crossings were not hospitalized, one patient without the system was hospitalized due to acute decompensated heart failure. On the contrary, arrhythmic events did not change between before and after March 11.Our results suggest that earthquake-induced stress causes an increased risk of worsening heart failure without changes in arrhythmia. Furthermore, intrathoracic impedance using remote monitoring may be a useful tool for the management of CHF in catastrophic disasters.

  16. A new energy-harvesting device system for wireless sensors, adaptable to on-site monitoring of MR damper motion

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Peng, Youxiang; Wang, Siqi; Fu, Jie; Choi, S. B.

    2014-07-01

    Under extreme service conditions in vehicle suspension systems, some defects exist in the hardening, bodying, and poor temperature stability of magnetorheological (MR) fluid. These defects can cause weak and even invalid performance in the MR fluid damper (MR damper for short). To ensure the effective validity of the practical applicability of the MR damper, one must implement an online state-monitoring sensor to monitor several performance factors, such as acceleration. In this empirical work, we propose a new energy-harvesting device system for the wireless sensor system of an MR damper. The monitoring sensor system consists of several components, such as an energy-harvesting device, energy-management circuit, and wireless sensor node. The electrical energy harvested from the kinetic energy of the MR fluid that flows within the MR damper can be automatically charged and discharged with the help of an energy-management circuit for the wireless sensor node. After verifying good performance from each component, an experimental apparatus is built to evaluate the feasibility of the proposed self-powered wireless sensor system. The measured results of pressure, temperature, and acceleration data within the MR damper clearly demonstrate the practical applicability of monitoring the operating work states of the MR damper when it is subjected to sinusoidal excitation.

  17. Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks.

    PubMed

    Pinti, Paola; Aichelburg, Clarisse; Lind, Frida; Power, Sarah; Swingler, Elizabeth; Merla, Arcangelo; Hamilton, Antonia; Gilbert, Sam; Burgess, Paul; Tachtsidis, Ilias

    2015-12-02

    Functional Near Infrared Spectroscopy (fNIRS) is a neuroimaging technique that uses near-infrared light to monitor brain activity. Based on neurovascular coupling, fNIRS is able to measure the haemoglobin concentration changes secondary to neuronal activity. Compared to other neuroimaging techniques, fNIRS represents a good compromise in terms of spatial and temporal resolution. Moreover, it is portable, lightweight, less sensitive to motion artifacts and does not impose significant physical restraints. It is therefore appropriate to monitor a wide range of cognitive tasks (e.g., auditory, gait analysis, social interaction) and different age populations (e.g., new-borns, adults, elderly people). The recent development of fiberless fNIRS devices has opened the way to new applications in neuroscience research. This represents a unique opportunity to study functional activity during real-world tests, which can be more sensitive and accurate in assessing cognitive function and dysfunction than lab-based tests. This study explored the use of fiberless fNIRS to monitor brain activity during a real-world prospective memory task. This protocol is performed outside the lab and brain haemoglobin concentration changes are continuously measured over the prefrontal cortex while the subject walks around in order to accomplish several different tasks.

  18. Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks

    PubMed Central

    Pinti, Paola; Aichelburg, Clarisse; Lind, Frida; Power, Sarah; Swingler, Elizabeth; Merla, Arcangelo; Hamilton, Antonia; Gilbert, Sam; Burgess, Paul; Tachtsidis, Ilias

    2015-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is a neuroimaging technique that uses near-infrared light to monitor brain activity. Based on neurovascular coupling, fNIRS is able to measure the haemoglobin concentration changes secondary to neuronal activity. Compared to other neuroimaging techniques, fNIRS represents a good compromise in terms of spatial and temporal resolution. Moreover, it is portable, lightweight, less sensitive to motion artifacts and does not impose significant physical restraints. It is therefore appropriate to monitor a wide range of cognitive tasks (e.g., auditory, gait analysis, social interaction) and different age populations (e.g., new-borns, adults, elderly people). The recent development of fiberless fNIRS devices has opened the way to new applications in neuroscience research. This represents a unique opportunity to study functional activity during real-world tests, which can be more sensitive and accurate in assessing cognitive function and dysfunction than lab-based tests. This study explored the use of fiberless fNIRS to monitor brain activity during a real-world prospective memory task. This protocol is performed outside the lab and brain haemoglobin concentration changes are continuously measured over the prefrontal cortex while the subject walks around in order to accomplish several different tasks. PMID:26651025

  19. Noiseless Non-Reciprocity in a Parametric Active Device

    DTIC Science & Technology

    2011-04-01

    and isolators belong to an important class of microwave components employed in applications including the measurement of mesoscopic circuits at...devices such as circulators and isolators belong to an important class of microwave components employed in applications including the measurement of...class of microwave components employed in applications including the measurement of mesoscopic circuits at cryogenic temperatures. The measurement

  20. The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site

    SciTech Connect

    Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

    1995-02-01

    This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

  1. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  2. Sentinel-1 Contribution to Monitoring Maritime Activity in the Arctic

    NASA Astrophysics Data System (ADS)

    Santamaria, Carlos; Greidanus, Harm; Fournier, Melanie; Eriksen, Torkild; Vespe, Michele; Alvarez, Marlene; Arguedas, Virginia Fernandez; Delaney, Conor; Argentieri, Pietro

    2016-08-01

    This paper presents results on the use of Sentinel-1 combined with satellite AIS to monitor maritime activity in the Arctic. Such activities are expected to increase, even if not uniformly across the Arctic, as the ice cover in the region retreats due to changes in climate. The objectives of monitoring efforts in the region can vary from country to country, but are generally related to increasing awareness on non- cooperative, small and cruise ships, fisheries, safety at sea, and Search and Rescue. A ship monitoring study has been conducted, involving more than 2,000 Sentinel-1 images acquired during one year in the central Arctic, where the ship densities are high. The main challenges to SAR-based monitoring in this area are described, solutions for some of them are proposed, and analyses of the results are shown. With the high detection thresholds needed to prevent false alarms from sea ice, 16% of the ships detected overall in the Sentinel-1 images have not been correlated to AIS- transmitting ships, and 48% of the AIS-transmitting ships are not correlated to ships detected in the images.

  3. STS-55 MS1/PLC Ross monitors Payload Specialist Walter's Anthrorack activity

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 1 Ulrich Walter breathes into Rack 9 Anthrorack (AR) (Human Physiology Laboratory) device for Pulmonary Perfusion and Ventilation During Rest and Exercise experiment while working inside the Spacelab Deutsche 2 (SL-D2) science module aboard the Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. Seated on the bicycle ergometer, Walter utilizes the respiratory monitoring system, part of a broad battery of experiments designed to investigate human physiology under microgravity conditions. In the background, Mission Specialist 1 (MS1) and Payload Commander (PLC) Jerry L. Ross monitors Walter's activity. Walter represents the German Aerospace Research Establishment (DLR) on the 10-day SL-D2 mission. Visible on the aft end cone are a fire extinguisher and the Crew Telesupport Experiment (CTE) Macintosh portable computer mounted on an adjustable work platform.

  4. Toward Active Monitoring of Piping Using Ultrasonic Guided Waves

    SciTech Connect

    Park, Joon-Soo; Kim, Young H.; Song, Sung-Jin; Kim, Jae-Hee; Eom, Heung-Seop; Im, Kwang-Hee

    2004-02-26

    Piping in nuclear power plants is exposed to severe environmental conditions so that it is very susceptible to failure caused by the growth of defects. Thus, it is necessary to have thorough inspection of piping in order to detect defects before failure. Unfortunately, however, inspection of piping in nuclear power plants is not easy in practice because of its long length as well as the radioactive environment. To take care of this difficulty, a research endeavor to develop techniques to monitor piping in nuclear power plants continuously and actively using ultrasonic guided wave is currently undertaken. This paper reports initial results of our endeavor including design of an ultrasonic array system for active monitoring of piping.

  5. Energy monitoring system based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, Nur Hanim; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abdul; Othman, Mohd Azlishah; Malek, Fareq

    2015-05-01

    Human behaviors always related to day routine activities in a smart house directly give the significant factor to manage energy usage in human life. An Addition that, the factor will contribute to the best efficiency of the system. This paper will focus on the monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior at working place. Besides that, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy saving based on human behaviors. This scenario will help to see the human activity in the workplace in order to get the energy saving and support world green environment.

  6. A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices

    PubMed Central

    Schendel, Amelia A.; Thongpang, Sanitta; Brodnick, Sarah K.; Richner, Thomas J.; Lindevig, Bradley D.B.; Krugner-Higby, Lisa; Williams, Justin C.

    2013-01-01

    Implantable neural micro-electrode arrays have the potential to restore lost sensory or motor function to many different areas of the body. However, the invasiveness of these implants often results in scar tissue formation, which can have detrimental effects on recorded signal quality and longevity. Traditional histological techniques can be employed to study the tissue reaction to implanted micro-electrode arrays, but these techniques require removal of the brain from the skull, often causing damage to the meninges and cortical surface. This is especially unfavorable when studying the tissue response to electrode arrays such as the micro-electrocorticography (micro-ECoG) device, which sits on the surface of the cerebral cortex. In order to better understand the biological changes occurring around these types of devices, a cranial window implantation scheme has been developed, through which the tissue response can be studied in vivo over the entire implantation period. Rats were implanted with epidural micro-ECoG arrays, over which glass coverslips were placed and sealed to the skull, creating cranial windows. Vascular growth around the devices was monitored for one month after implantation. It was found that blood vessels grew through holes in the micro-ECoG substrate, spreading over the top of the device. Micro-hematomas were observed at varying time points after device implantation in every animal, and tissue growth between the micro-ECoG array and the window occurred in several cases. Use of the cranial window imaging technique with these devices enabled the observation of tissue changes that would normally go unnoticed with a standard device implantation scheme. PMID:23769960

  7. Active Geophysical Monitoring in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  8. Highly Sensitive and Long Term Stable Electrochemical Microelectrodes for Implantable Glucose Monitoring Devices

    NASA Astrophysics Data System (ADS)

    Qiang, Liangliang

    A miniature wireless implantable electrochemical glucose system for continuous glucose monitoring with good selectivity, sensitivity, linearity and long term stability was developed. First, highly sensitive, long-term stable and reusable planar H2O2 microelectrodes have been fabricated by microlithography. These electrodes composed of a 300 nm Pt black layer situated on a 5 um thick Au layer, provide effective protection to the underlying chromium adhesion layer. Using repeated cyclic voltammetric sweeps in flowing buffer solution, highly sensitive Pt black working electrodes were realized with five-decade linear dynamic range and low detection limit (10 nM) for H2O2 at low oxidation potentials. Second, a highly sensitive, low cost and flexible microwire biosensor was described using 25-mum thick gold wire as working electrode together with 125-mum thick Pt/Ir and Ag wires as counter and reference electrode, embedded within a PDMS-filled polyethylene tube. Surface area and activity of sensor was enhanced by converting gold electrode to nanoporous configuration followed by electrodeposition of platinum black. Glucose oxidase based biosensors by electrodeposition of poly(o-phenylenediamine) and glucose oxidase on the working electrode, displayed a higher glucose sensitivity (1.2 mA mM-1 cm-2) than highest literature reported. In addition it exhibits wide detection range (up to 20 mM) and selectivity (>95%). Third, novel miniaturized and flexible microelectrode arrays with 8 of 25 mum electrodes displayed the much needed 3D diffusion profiles similar to a single 25 mum microelectrode, but with one order increase in current levels. These microelectrode arrays displayed a H2O2 sensitivity of 13 mA mM-1 cm-2, a wide dynamic range of 100 nM to 10 mM, limit of detection of 10 nM. These microwire based edge plane microsensors incorporated flexibility, miniaturization and low operation potential are an promising approach for continuous in vivo metabolic monitoring. Fourth

  9. Integrated Electromechanical Devices for Active Control of Vibration and Sound

    DTIC Science & Technology

    1997-11-01

    of peak power • Minimize ambient noise generation broadband and narrowband • Standard temperature (-25C--55C) with possible extended operation • Must...operate in a vacuum and in non-volatile fluids • Minimize heat generation , EMI, and outgassing • Baseline for application to flat surfaces but allow... generation . An actuator integrated in an electromechanical device could generate sufficient internal heat to affect other components, or alter its

  10. A novel microfluidic anti-factor Xa assay device for monitoring anticoagulant therapy at the point-of-care

    NASA Astrophysics Data System (ADS)

    Harris, Leanne F.; Rainey, Paul; Castro-López, Vanessa; O'Donnell, James S.; Killard, Anthony J.

    2013-05-01

    Millions of patients worldwide are receiving anticoagulant therapy to treat hypercoagulable diseases. While standard testing is still performed in the central laboratory, point-of-care (POC) diagnostics are being developed due to the increasing number of patients requiring long-term anticoagulation and with a need for more personalized and targeted therapy. Many POC devices on the market focus on clot measurement, a technique which is limited in terms of variability, highlighting the need for more reliable assays of anticoagulant status. The anti-Xa assay, a factor specific optical assay, was developed to measure the extent to which exogenous factor Xa (FXa) is inhibited by heparinantithrombin complexes. We have developed a novel microfluidic device and assay for monitoring the effect of heparin anticoagulant therapy at the point-of-care. The assay which was also developed in our institute is based on the anti-Xa assay principle but uses fluorescence as the method of detection. Our device is a disposable laminate microfluidic strip, fabricated from the cyclic polyolefin (COP), Zeonor®, which is extremely suitable for application to fluorescent device platforms. We present data on the execution of the anti-Xa assay in this microfluidic format, demonstrating that the assay can be used to measure heparin in human plasma samples from 0 to 0.8 U/ml, with average assay reproducibility of 8% and a rapid result obtained within 60 seconds. Results indicate that with further development, the fluorogenic anti-Xa assay and device could become a successful method for monitoring anticoagulant therapy.

  11. Integrated active sensor system for real time vibration monitoring.

    PubMed

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  12. Integrated active sensor system for real time vibration monitoring

    PubMed Central

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  13. Impact of optical antennas on active optoelectronic devices.

    PubMed

    Bonakdar, Alireza; Mohseni, Hooman

    2014-10-07

    Remarkable progress has been made in the fabrication and characterization of optical antennas that are integrated with optoelectronic devices. Herein, we describe the fundamental reasons for and experimental evidence of the dramatic improvements that can be achieved by enhancing the light-matter interaction via an optical antenna in both photon-emitting and -detecting devices. In addition, integration of optical antennas with optoelectronic devices can lead to the realization of highly compact multifunctional platforms for future integrated photonics, such as low-cost lab-on-chip systems. In this review paper, we further focus on the effect of optical antennas on the detectivity of infrared photodetectors. One particular finding is that the antenna can have a dual effect on the specific detectivity, while it can elevate light absorption efficiency of sub-wavelength detectors, it can potentially increase the noise of the detectors due to the enhanced spontaneous emission rate. In particular, we predict that the detectivity of interband photon detectors can be negatively affected by the presence of optical antennas across a wide wavelength region covering visible to long wavelength infrared bands. In contrast, the detectivity of intersubband detectors could be generally improved with a properly designed optical antenna.

  14. Low-cost, portable open-source gas monitoring device based on chemosensory technology

    NASA Astrophysics Data System (ADS)

    Gotor, Raúl; Gaviña, Pablo; Costero, Ana M.

    2015-08-01

    We report herein the construction of an electronic device to perform the real-time digitalization of the color state of the optical chemosensors used in the detection of dangerous gases. To construct the device, we used open-source modular electronics, such as Arduino and Sparkfun components, as well as free and open-source software (FOSS). The basic principle of the operation of this device is the continuous color measurement of a chemosensor-doped sensing film, whose color changes in the presence of a specific gas. The chemosensor-sensing film can be prepared by using any of the widely available chemosensors for the desired gas. Color measurement is taken by two TCS230 color sensor ICs, reported to the microcontroller, and the results are displayed on an LCD display and pushed through a USB serial port. By using a cyanide optical chemosensor, we demonstrated the operation of the device as a HCN gas detector at low concentrations.

  15. Measuring steps with the Fitbit activity tracker: an inter-device reliability study.

    PubMed

    Dontje, Manon L; de Groot, Martijn; Lengton, Remko R; van der Schans, Cees P; Krijnen, Wim P

    2015-01-01

    Activity trackers like Fitbit are used for self-tracking of physical activity by an increasing number of individuals. Comparing physical activity scores with peers can contribute to the desired behavioural change. However, for meaningful social comparison a high inter-device reliability is paramount. This study aimed to determine the inter-device reliability of Fitbit activity trackers in measuring steps. Ten activity trackers (Fitbit Ultra) were worn by a single person (male, 46 years) during eight consecutive days. Inter-device reliability was assessed on three different levels of aggregation (minutes, hours, days) with various methods, including intra-class correlation coefficient (ICC), Bland-Altman plots, limits of agreement (LOA) and Mixed Model Analysis. Results showed that the inter-device reliability of the Fitbit in measuring steps is good at all levels of aggregation (minutes, hours, days), but especially when steps were measured per day. This implies that individuals can reliably compare their daily physical activity scores with peers.

  16. Increasing trend of wearables and multimodal interface for human activity monitoring: A review.

    PubMed

    Kumari, Preeti; Mathew, Lini; Syal, Poonam

    2017-04-15

    Activity recognition technology is one of the most important technologies for life-logging and for the care of elderly persons. Elderly people prefer to live in their own houses, within their own locality. If, they are capable to do so, several benefits can follow in terms of society and economy. However, living alone may have high risks. Wearable sensors have been developed to overcome these risks and these sensors are supposed to be ready for medical uses. It can help in monitoring the wellness of elderly persons living alone by unobtrusively monitoring their daily activities. The study aims to review the increasing trends of wearable devices and need of multimodal recognition for continuous or discontinuous monitoring of human activity, biological signals such as Electroencephalogram (EEG), Electrooculogram (EOG), Electromyogram (EMG), Electrocardiogram (ECG) and parameters along with other symptoms. This can provide necessary assistance in times of ominous need, which is crucial for the advancement of disease-diagnosis and treatment. Shared control architecture with multimodal interface can be used for application in more complex environment where more number of commands is to be used to control with better results in terms of controlling.

  17. A language activity monitor for supporting AAC evidence-based clinical practice.

    PubMed

    Hill, K J; Romich, B A

    2001-01-01

    Augmentative and alternative communication (AAC) evidence-based practice requires the collection and analysis of performance data. This article presents the development, evaluation, and application of automated performance monitoring tools for use in clinical practice. Language activity monitoring (LAM) is the systematic data collection of the actual language activity of an individual who relies on AAC. Work completed to date includes the development and evaluation of the language activity monitor function, which now is commercially available in three forms: (1) a standard feature built into modern high performance AAC systems, (2) an external add-on package for use with older AAC devices based on synthetic speech, and (3) software that allows the personal computer to serve as an LAM in the clinical environment. The LAM records the time and content of language events (the generation of one or more letters or words). A logging protocol suitable for clinical application has been in use since late 1998. The logged data is uploaded periodically to a computer for editing, analysis, and the generation of a summary measure report. The applications of this work in the areas of clinical service delivery are presented.

  18. Polymeric microfluidic devices for the monitoring and separation of water-borne pathogens utilizing insulative dielectrophoresis

    NASA Astrophysics Data System (ADS)

    McGraw, Greg J.; Davalos, Rafael V.; Brazzle, John D.; Hachman, John T.; Hunter, Marion C.; Chames, Jeffery M.; Fiechtner, Gregory J.; Cummings, Eric B.; Fintschenko, Yolanda; Simmons, Blake A.

    2005-01-01

    We have successfully demonstrated selective trapping, concentration, and release of various biological organisms and inert beads by insulator-based dielectrophoresis within a polymeric microfluidic device. The microfluidic channels and internal features, in this case arrays of insulating posts, were initially created through standard wet-etch techniques in glass. This glass chip was then transformed into a nickel stamp through the process of electroplating. The resultant nickel stamp was then used as the replication tool to produce the polymeric devices through injection molding. The polymeric devices were made of Zeonor 1060R, a polyolefin copolymer resin selected for its superior chemical resistance and optical properties. These devices were then optically aligned with another polymeric substrate that had been machined to form fluidic vias. These two polymeric substrates were then bonded together through thermal diffusion bonding. The sealed devices were utilized to selectively separate and concentrate a variety of biological pathogen simulants and organisms. These organisms include bacteria and spores that were selectively concentrated and released by simply applying D.C. voltages across the plastic replicates via platinum electrodes in inlet and outlet reservoirs. The dielectrophoretic response of the organisms is observed to be a function of the applied electric field and post size, geometry and spacing. Cells were selectively trapped against a background of labeled polystyrene beads and spores to demonstrate that samples of interest can be separated from a diverse background. We have implemented a methodology to determine the concentration factors obtained in these devices.

  19. Human psychophysiological activity monitoring methods using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  20. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care.

    PubMed

    Hu, Jie; Cui, Xingye; Gong, Yan; Xu, Xiayu; Gao, Bin; Wen, Ting; Lu, Tian Jian; Xu, Feng

    2016-01-01

    Cardiovascular diseases (CVDs) are the main causes of morbidity and mortality in the world where about 4 in every 5 CVD deaths happen in low- and middle-income countries (LMICs). Most CVDs are preventable and curable, which is largely dependent on timely and effective interventions, including diagnosis, prognosis and therapeutic monitoring. However, these interventions are high-cost in high income countries and are usually lacking in LMICs. Thanks to the rapid development of microfluidics and nanotechnology, lots of portable analytical devices are developed for detection of CVDs at the point-of-care (POC). In the meantime, smartphone, as a versatile and powerful handheld tool, has been employed not only as a reader for microfluidic assays, but also as an analyzer for physiological indexes. In this review, we present a comprehensive introduction of the current status and potential development direction on POC diagnostics for CVDs. First of all, we introduce some main facts about CVDs and their standard diagnostic procedures and methods. Second, we discuss about both commercially available POC devices and developed prototypes for detection of CVDs via immunoassays. Subsequently, we report the advances in smartphone-based readout for microfluidic assays. Finally, we present some examples using smartphone, individually or combined with other components or devices, for CVD monitoring. We envision an integrated smartphone-based system capable of functioning blood tests, disease examination, and imaging will come in the future.

  1. Self-Powered, One-Stop, and Multifunctional Implantable Triboelectric Active Sensor for Real-Time Biomedical Monitoring.

    PubMed

    Ma, Ye; Zheng, Qiang; Liu, Yang; Shi, Bojin; Xue, Xiang; Ji, Weiping; Liu, Zhuo; Jin, Yiming; Zou, Yang; An, Zhao; Zhang, Wei; Wang, Xinxin; Jiang, Wen; Xu, Zhiyun; Wang, Zhong Lin; Li, Zhou; Zhang, Hao

    2016-10-12

    Operation time of implantable electronic devices is largely constrained by the lifetime of batteries, which have to be replaced periodically by surgical procedures once exhausted, causing physical and mental suffering to patients and increasing healthcare costs. Besides the efficient scavenging of the mechanical energy of internal organs, this study proposes a self-powered, flexible, and one-stop implantable triboelectric active sensor (iTEAS) that can provide continuous monitoring of multiple physiological and pathological signs. As demonstrated in human-scale animals, the device can monitor heart rates, reaching an accuracy of ∼99%. Cardiac arrhythmias such as atrial fibrillation and ventricular premature contraction can be detected in real-time. Furthermore, a novel method of monitoring respiratory rates and phases is established by analyzing variations of the output peaks of the iTEAS. Blood pressure can be independently estimated and the velocity of blood flow calculated with the aid of a separate arterial pressure catheter. With the core-shell packaging strategy, monitoring functionality remains excellent during 72 h after closure of the chest. The in vivo biocompatibility of the device is examined after 2 weeks of implantation, proving suitability for practical use. As a multifunctional biomedical monitor that is exempt from needing an external power supply, the proposed iTEAS holds great potential in the future of the healthcare industry.

  2. In-vessel activation monitors in JET: Progress in modeling

    SciTech Connect

    Bonheure, Georges; Lengar, I.; Syme, B.; Popovichev, S.; Arnold, Dirk; Laubenstein, Matthias

    2008-10-15

    Activation studies were performed in JET with new in-vessel activation monitors. Though primarily dedicated to R and D in the challenging issue of lost {alpha} diagnostics for ITER, which is being addressed at JET with several techniques, these monitors provide for both neutron and charged particle fluences. A set of samples with different orientation with respect to the magnetic field is transported inside the torus by means of a manipulator arm (in contrast with the conventional JET activation system with pneumatic transport system). In this case, radionuclides with longer half-life were selected and ultralow background gamma-ray measurements were needed. The irradiation was closer to the plasma and this potentially reduces the neutron scattering problem. This approach could also be of interest for ITER, where the calibration methods have yet to be developed. The MCNP neutron transport model for JET was modified to include the activation probe and so provide calculations to help assess the new data. The neutron induced activity on the samples are well reproduced by the calculations.

  3. Emerging Vocabulary Learning: From a Perspective of Activities Facilitated by Mobile Devices

    ERIC Educational Resources Information Center

    Hu, Zengning

    2013-01-01

    This paper examines the current mobile vocabulary learning practice to discover how far mobile devices are being used to support vocabulary learning. An activity-centered perspective is undertaken, with the consideration of new practice against existing theories of learning activities including behaviorist activities, constructivist activities,…

  4. Design and Clinical Feasibility of Personal Wearable Monitor for Measurement of Activity and Environmental Exposure

    PubMed Central

    Ribón Fletcher, Richard; Oreskovic, Nicolas M.; Robinson, Alyssa I.

    2015-01-01

    Human exposure to specific environmental factors (e.g. air quality, lighting, and sound) is known to play an important role in the pathogenesis of many chronic diseases (e.g. asthma) and mental health disorders (e.g. anxiety). However, conventional fixed environmental monitoring stations are sparsely located and, despite environmental models, cannot adequately assess individual exposure levels. New forms of low-cost portable monitors have begun to emerge that enable the collection of higher spatial density “crowd sourced” data; however, the first generation of these low-cost environmental monitors have generally not been suitable for clinical environmental health studies due to practical challenges such as calibration, reproducibility, form factor, and battery life. In this paper, we present a wearable environmental monitor that overcomes these challenges and can be used in clinical studies The new device, called “Eco-Mini,” can be used without a smart phone and is capable of locally sampling and recording a variety of environmental parameters (Ozone, Sulfur Dioxide, Volatile Organic Compounds, humidity, temperature, ambient light color balance, and sound level) as well as individual activity (3-axis accelerometer) and location (GPS). In this paper, we also report findings and discuss lessons learned from a feasibility study conducted for one week with pediatric patients as part of an ongoing asthma research study. PMID:25570098

  5. Sensor Measurement Strategies for Monitoring Offshore Wind and Wave Energy Devices

    NASA Astrophysics Data System (ADS)

    O'Donnell, Deirdre; Srbinovsky, Bruno; Murphy, Jimmy; Popovici, Emanuel; Pakrashi, Vikram

    2015-07-01

    While the potential of offshore wind and wave energy devices is well established and accepted, operations and maintenance issues are still not very well researched or understood. In this regard, scaled model testing has gained popularity over time for such devices at various technological readiness levels. The dynamic response of these devices are typically measured by different instruments during such scaled tests but agreed sensor choice, measurement and placement guidelines are still not in place. This paper compared the dynamic responses of some of these sensors from a scaled ocean wave testing to highlight the importance of sensor measurement strategies. The possibility of using multiple, cheaper sensors of seemingly inferior performance as opposed to the deployment of a small number of expensive and accurate sensors are also explored. An energy aware adaptive sampling theory is applied to highlight the possibility of more efficient computing when large volumes of data are available from the tested structures. Efficient sensor measurement strategies are expected to have a positive impact on the development of an device at different technological readiness levels while it is expected to be helpful in reducing operation and maintenance costs if such an approach is considered for the devices when they are in operation.

  6. Logistics of using the Actiheart physical activity monitors in urban Mexico among 7- to 9-year-old children.

    PubMed

    Wilson, Hannah; Dickinson, Federico; Griffiths, Paula; Bogin, Barry; Varela-Silva, Maria Inês

    2011-01-01

    Logistics of using new measurement devices are important to understand when developing protocols. This paper discusses the logistics of using Actiheart physical activity monitors on children in an urban, tropical environment in a developing country. Actiheart monitoring of 36 children aged 7-9 years old was undertaken for 7 days in the city of Mérida, Yucatán, Mexico. The Actiheart proved fragile for children and difficult to mend in the field. The excessive sweating due to the tropical climate caused poor adherence of the electrode pads, requiring a pad change midway through and extra pads to be provided. Also extra time was needed to be allotted for increased instructions to participants and their mothers and for individual calibration. When collecting objectively measured physical activity data under harsh conditions, the protocol must accommodate local conditions and device limitations and allow increased time with participants to obtain good quality data.

  7. Diurnal patterns of salivary cortisol and DHEA using a novel collection device: Electronic monitoring confirms accurate recording of collection time using this device

    PubMed Central

    Laudenslager, Mark L.; Calderone, Jacqueline; Philips, Sam; Natvig, Crystal; Carlson, Nichole E.

    2013-01-01

    The accurate indication of saliva collection time is important for defining the diurnal decline in salivary cortisol as well as characterizing the cortisol awakening response.. We tested a convenient and novel collection device for collecting saliva on strips of filter paper in a specially constructed booklet for determination of both cortisol and DHEA. In the present study, 31 healthy adults (mean age 43.5 yrs.) collected saliva samples four times a day on three consecutive days using filter paper collection devices (Saliva Procurement and Integrated Testing (SPIT) booklet) which were maintained during the collection period in a large plastic bottle with an electronic monitoring cap. Subjects were asked to collect saliva samples at awakening, 30 min. after awakening, before lunch and 600 min. after awakening. The time of awakening and the time of collection before lunch were allowed to vary by each subjects’ schedule. A reliable relationship was observed between the time recorded by the subject directly on the booklet and the time recorded by electronic collection device (n = 286 observations; r2 = 0.98). However, subjects did not consistently collect the saliva samples at the two specific times requested, 30 and 600 min. after awakening. Both cortisol and DHEA revealed diurnal declines.. In spite of variance in collection times at 30 min. and 600 min. after awakening, the slope of the diurnal decline in both salivary cortisol and DHEA were similar when we compared collection tolerances of ± 7.5 and ± 15 min. for each steroid.. These unique collection booklets proved to be a reliable method for recording collection times by subjects as well as for estimating diurnal salivary cortisol and DHEA patterns. PMID:23490073

  8. Feasibility of using a compact elliptical device to increase energy expenditure during sedentary activities

    PubMed Central

    Rovniak, Liza S.; Denlinger, LeAnn; Duveneck, Ellen; Sciamanna, Christopher N.; Kong, Lan; Freivalds, Andris; Ray, Chester A.

    2013-01-01

    Objectives This study aimed to evaluate the feasibility of using a compact elliptical device to increase energy expenditure during sedentary activities. A secondary aim was to evaluate if two accelerometers attached to the elliptical device could provide reliable and valid assessments of participants’ frequency and duration of elliptical device use. Design Physically inactive adults (n = 32, age range = 25–65) were recruited through local advertisements and selected using stratified random sampling based on sex, body mass index (BMI), and age. Methods Indirect calorimetry was used to assess participants’ energy expenditure while seated and while using the elliptical device at a self-selected intensity level. Participants also self-reported their interest in using the elliptical device during sedentary activities. Two Actigraph GT3X accelerometers were attached to the elliptical device to record time-use patterns. Results Participants expended a median of 179.1 kilocalories per hour while using the elliptical device (range = 108.2–269.0), or a median of 87.9 more kilocalories (range = 19.7–178.6) than they would expend per hour of sedentary sitting. Participants reported high interest in using the elliptical device during TV watching and computer work, but relatively low interest in using the device during office meetings. Women reported greater interest in using the elliptical device than men. The two accelerometers recorded identical time-use patterns on the elliptical device and demonstrated concurrent validity with time-stamped computer records. Conclusions Compact elliptical devices could increase energy expenditure during sedentary activities, and may provide proximal environmental cues for increasing energy expenditure across multiple life domains. PMID:24035273

  9. Point-of-Care International Normalized Ratio (INR) Monitoring Devices for Patients on Long-term Oral Anticoagulation Therapy

    PubMed Central

    2009-01-01

    Executive Summary Subject of the Evidence-Based Analysis The purpose of this evidence based analysis report is to examine the safety and effectiveness of point-of-care (POC) international normalized ratio (INR) monitoring devices for patients on long-term oral anticoagulation therapy (OAT). Clinical Need: Target Population and Condition Long-term OAT is typically required by patients with mechanical heart valves, chronic atrial fibrillation, venous thromboembolism, myocardial infarction, stroke, and/or peripheral arterial occlusion. It is estimated that approximately 1% of the population receives anticoagulation treatment and, by applying this value to Ontario, there are an estimated 132,000 patients on OAT in the province, a figure that is expected to increase with the aging population. Patients on OAT are regularly monitored and their medications adjusted to ensure that their INR scores remain in the therapeutic range. This can be challenging due to the narrow therapeutic window of warfarin and variation in individual responses. Optimal INR scores depend on the underlying indication for treatment and patient level characteristics, but for most patients the therapeutic range is an INR score of between 2.0 and 3.0. The current standard of care in Ontario for patients on long-term OAT is laboratory-based INR determination with management carried out by primary care physicians or anticoagulation clinics (ACCs). Patients also regularly visit a hospital or community-based facility to provide a venous blood samples (venipuncture) that are then sent to a laboratory for INR analysis. Experts, however, have commented that there may be under-utilization of OAT due to patient factors, physician factors, or regional practice variations and that sub-optimal patient management may also occur. There is currently no population-based Ontario data to permit the assessment of patient care, but recent systematic reviews have estimated that less that 50% of patients receive OAT on a

  10. Complexity of Continuous Glucose Monitoring Data in Critically Ill Patients: Continuous Glucose Monitoring Devices, Sensor Locations, and Detrended Fluctuation Analysis Methods

    PubMed Central

    Signal, Matthew; Thomas, Felicity; Shaw, Geoffrey M.; Chase, J. Geoffrey

    2013-01-01

    Background Critically ill patients often experience high levels of insulin resistance and stress-induced hyperglycemia, which may negatively impact outcomes. However, evidence surrounding the causes of negative outcomes remains inconclusive. Continuous glucose monitoring (CGM) devices allow researchers to investigate glucose complexity, using detrended fluctuation analysis (DFA), to determine whether it is associated with negative outcomes. The aim of this study was to investigate the effects of CGM device type/calibration and CGM sensor location on results from DFA. Methods This study uses CGM data from critically ill patients who were each monitored concurrently using Medtronic iPro2s on the thigh and abdomen and a Medtronic Guardian REAL-Time on the abdomen. This allowed interdevice/calibration type and intersensor site variation to be assessed. Detrended fluctuation analysis is a technique that has previously been used to determine the complexity of CGM data in critically ill patients. Two variants of DFA, monofractal and multifractal, were used to assess the complexity of sensor glucose data as well as the precalibration raw sensor current. Monofractal DFA produces a scaling exponent (H), where H is inversely related to complexity. The results of multifractal DFA are presented graphically by the multifractal spectrum. Results From the 10 patients recruited, 26 CGM devices produced data suitable for analysis. The values of H from abdominal iPro2 data were 0.10 (0.03–0.20) higher than those from Guardian REAL-Time data, indicating consistently lower complexities in iPro2 data. However, repeating the analysis on the raw sensor current showed little or no difference in complexity. Sensor site had little effect on the scaling exponents in this data set. Finally, multifractal DFA revealed no significant associations between the multifractal spectrums and CGM device type/calibration or sensor location. Conclusions Monofractal DFA results are dependent on the device

  11. Nanostructure and strain effects in active thin films for novel electronic device applications

    NASA Astrophysics Data System (ADS)

    Yuan, Zheng

    2007-12-01

    There are many potential applications of ferroelectric thin films that take advantage of their unique dielectric and piezoelectric properties, such as tunable microwave devices and thin-film active sensors for structural health monitoring (SHM). However, many technical issues still restrict practical applications of ferroelectric thin films, including high insertion loss, limited figure of merit, soft mode effect, large temperature coefficients, and others. The main theme of this thesis is the advanced technique developments, and the new ferroelectric thin films syntheses and investigations for novel device applications. A novel method of additional doping has been adopted to (Ba,Sr)TiO 3 (BSTO) thin films on MgO. By introducing 2% Mn into the stoichiometric BSTO, Mn:BSTO thin films have shown a greatly enhanced dielectric tunability and a reduced insertion loss at high frequencies (10-30 GHz). A new record of a large tunability of 80% with a high dielectric constant of 3800 and an extra low dielectric loss of 0.001 at 1 MHz at room-temperature was achieved. Meanwhile, the new highly epitaxial ferroelectric (Pb,Sr)TiO3 (PSTO) thin films have been synthesized on (001) MgO substrates. PSTO films demonstrated excellent high frequency dielectric properties with high dielectric constants above 1420 and large dielectric tunabilities above 34% at room-temperature up to 20 GHz. In addition, a smaller temperature coefficient from 80 K to 300 K was observed in PSTO films compared to BSTO films. These results indicate that the Mn:BSTO and PSTO films are both good candidates for developing room-temperature tunable microwave devices. Furthermore, crystalline ferroelectric BaTiO3 (BTO) thin films have been deposited directly on metal substrate Ni through a unique in-situ substrate pre-oxidation treatment. The highly oriented nanopillar structural BTO films were grown on the buffered layers created by the pre-oxidation treatment. No interdiffusion or reaction was observed at the

  12. Design considerations in an active medical product safety monitoring system.

    PubMed

    Gagne, Joshua J; Fireman, Bruce; Ryan, Patrick B; Maclure, Malcolm; Gerhard, Tobias; Toh, Sengwee; Rassen, Jeremy A; Nelson, Jennifer C; Schneeweiss, Sebastian

    2012-01-01

    Active medical product monitoring systems, such as the Sentinel System, will utilize electronic healthcare data captured during routine health care. Safety signals that arise from these data may be spurious because of chance or bias, particularly confounding bias, given the observational nature of the data. Applying appropriate monitoring designs can filter out many false-positive and false-negative associations from the outset. Designs can be classified by whether they produce estimates based on between-person or within-person comparisons. In deciding which approach is more suitable for a given monitoring scenario, stakeholders must consider the characteristics of the monitored product, characteristics of the health outcome of interest (HOI), and characteristics of the potential link between these. Specifically, three factors drive design decisions: (i) strength of within-person and between-person confounding; (ii) whether circumstances exist that may predispose to misclassification of exposure or misclassification of the timing of the HOI; and (iii) whether the exposure of interest is predominantly transient or sustained. Additional design considerations include whether to focus on new users, the availability of appropriate active comparators, the presence of an exposure time trend, and the measure of association of interest. When the key assumptions of self-controlled designs are fulfilled (i.e., lack of within-person, time-varying confounding; abrupt HOI onset; and transient exposure), within-person comparisons are preferred because they inherently avoid confounding by fixed factors. The cohort approach generally is preferred in other situations and particularly when timing of exposure or outcome is uncertain because cohort approaches are less vulnerable to biases resulting from misclassification.

  13. Device for monitoring a change in mass in varying gravimetric environments

    NASA Technical Reports Server (NTRS)

    Valinsky, J. P. (Inventor)

    1974-01-01

    A remotely operable device for detecting changes as they occur in the mass of a selected specimen is described. The device is characterized by a balance beam including at one end a support for receiving a specimen having a changing mass and suspension means, including a flexure, supporting the beam near its center of gravity for pivotal movement proportional to changes occurring in the mass of the specimen. Strain gages coupled with the flexure provide a read-out indicative of the pivotal movement imparted to the beam.

  14. Accuracy of a Wrist-Worn Wearable Device for Monitoring Heart Rates in Hospital Inpatients: A Prospective Observational Study

    PubMed Central

    Kroll, Ryan R; Boyd, J Gordon

    2016-01-01

    Background As the sensing capabilities of wearable devices improve, there is increasing interest in their application in medical settings. Capabilities such as heart rate monitoring may be useful in hospitalized patients as a means of enhancing routine monitoring or as part of an early warning system to detect clinical deterioration. Objective To evaluate the accuracy of heart rate monitoring by a personal fitness tracker (PFT) among hospital inpatients. Methods We conducted a prospective observational study of 50 stable patients in the intensive care unit who each completed 24 hours of heart rate monitoring using a wrist-worn PFT. Accuracy of heart rate recordings was compared with gold standard measurements derived from continuous electrocardiographic (cECG) monitoring. The accuracy of heart rates measured by pulse oximetry (Spo2.R) was also measured as a positive control. Results On a per-patient basis, PFT-derived heart rate values were slightly lower than those derived from cECG monitoring (average bias of −1.14 beats per minute [bpm], with limits of agreement of 24 bpm). By comparison, Spo2.R recordings produced more accurate values (average bias of +0.15 bpm, limits of agreement of 13 bpm, P<.001 as compared with PFT). Personal fitness tracker device performance was significantly better in patients in sinus rhythm than in those who were not (average bias −0.99 bpm vs −5.02 bpm, P=.02). Conclusions Personal fitness tracker–derived heart rates were slightly lower than those derived from cECG monitoring in real-world testing and not as accurate as Spo2.R-derived heart rates. Performance was worse among patients who were not in sinus rhythm. Further clinical evaluation is indicated to see if PFTs can augment early warning systems in hospitals. Trial Registration ClinicalTrials.gov NCT02527408; https://clinicaltrials.gov/ct2/show/NCT02527408 (Archived by WebCite at  http://www.webcitation.org/6kOFez3on) PMID:27651304

  15. Monitoring of posture allocations and activities by a shoe-based wearable sensor.

    PubMed

    Sazonov, Edward S; Fulk, George; Hill, James; Schutz, Yves; Browning, Raymond

    2011-04-01

    Monitoring of posture allocations and activities enables accurate estimation of energy expenditure and may aid in obesity prevention and treatment. At present, accurate devices rely on multiple sensors distributed on the body and thus may be too obtrusive for everyday use. This paper presents a novel wearable sensor, which is capable of very accurate recognition of common postures and activities. The patterns of heel acceleration and plantar pressure uniquely characterize postures and typical activities while requiring minimal preprocessing and no feature extraction. The shoe sensor was tested in nine adults performing sitting and standing postures and while walking, running, stair ascent/descent and cycling. Support vector machines (SVMs) were used for classification. A fourfold validation of a six-class subject-independent group model showed 95.2% average accuracy of posture/activity classification on full sensor set and over 98% on optimized sensor set. Using a combination of acceleration/pressure also enabled a pronounced reduction of the sampling frequency (25 to 1 Hz) without significant loss of accuracy (98% versus 93%). Subjects had shoe sizes (US) M9.5-11 and W7-9 and body mass index from 18.1 to 39.4 kg/m2 and thus suggesting that the device can be used by individuals with varying anthropometric characteristics.

  16. Haptic device development based on electro static force of cellulose electro active paper

    NASA Astrophysics Data System (ADS)

    Yun, Gyu-young; Kim, Sang-Youn; Jang, Sang-Dong; Kim, Dong-Gu; Kim, Jaehwan

    2011-04-01

    Haptic is one of well-considered device which is suitable for demanding virtual reality applications such as medical equipment, mobile devices, the online marketing and so on. Nowadays, many of concepts for haptic devices have been suggested to meet the demand of industries. Cellulose has received much attention as an emerging smart material, named as electro-active paper (EAPap). The EAPap is attractive for mobile haptic devices due to its unique characteristics in terms of low actuation power, suitability for thin devices and transparency. In this paper, we suggest a new concept of haptic actuator with the use of cellulose EAPap. Its performance is evaluated depending on various actuation conditions. As a result, cellulose electrostatic force actuator shows a large output displacement and fast response, which is suitable for mobile haptic devices.

  17. MEMS Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  18. 40 CFR 65.162 - Nonflare control and recovery device monitoring records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cycle; and (ii) Records of the temperature of the carbon bed after each regeneration and within 15... recovery devices on Group 2A process vents and for absorbers, condensers, carbon adsorbers, or other... maintain a TRE index value greater than 1.0 but less than 4.0 or using an absorber, condenser,...

  19. 40 CFR 65.162 - Nonflare control and recovery device monitoring records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cycle; and (ii) Records of the temperature of the carbon bed after each regeneration and within 15... recovery devices on Group 2A process vents and for absorbers, condensers, carbon adsorbers, or other... maintain a TRE index value greater than 1.0 but less than 4.0 or using an absorber, condenser,...

  20. 78 FR 41065 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... HUMAN SERVICES Food and Drug Administration Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Devices; Third-Party Review Under the Food and Drug Administration Modernization Act AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and...

  1. Water Pollution Scrubber Activity Simulates Pollution Control Devices.

    ERIC Educational Resources Information Center

    Kennedy, Edward C., III; Waggoner, Todd C.

    2003-01-01

    A laboratory activity caused students to think actively about water pollution. The students realized that it would be easier to keep water clean than to remove pollutants. They created a water scrubbing system allowing them to pour water in one end and have it emerge clean at the other end. (JOW)

  2. COMPARISON OF TRUNK AND LOWER EXTREMITY MUSCLE ACTIVITY AMONG FOUR STATIONARY EQUIPMENT DEVICES: UPRIGHT BIKE, RECUMBENT BIKE, TREADMILL, AND ELLIPTIGO®

    PubMed Central

    Baker, Ryan; Gibson, Chris; Kearney, Andrew; Busemeyer, Tommy

    2016-01-01

    Background Stationary equipment devices are often used to improve fitness. The ElliptiGO® was recently developed that blends the elements of an elliptical trainer and bicycle, allowing reciprocal lower limb pedaling in an upright position. However, it is unknown whether the muscle activity used for the ElliptiGO® is similar to walking or cycling. To date, there is no information comparing muscle activity for exercise on the treadmill, stationary upright and recumbent bikes, and the ElliptiGO®. Purpose/Hypothesis The purpose of this study was to assess trunk and lower extremity muscle activity among treadmill walking, cycling (recumbent and upright) and the ElliptiGO® cycling. It was hypothesized that the ElliptiGO® and treadmill would elicit similar electromyographic muscle activity responses compared to the stationary bike and recumbent bike during an exercise session. Study Design Cohort, repeated measures Methods Twelve recreationally active volunteers participated in the study and were assigned a random order of exercise for each of the four devices (ElliptiGO®, stationary upright cycle ergometer, recumbent ergometer, and a treadmill). Two-dimensional video was used to monitor the start and stop of exercise and surface electromyography (SEMG) were used to assess muscle activity during two minutes of cycling or treadmill walking at 40-50% heart rate reserve (HRR). Eight muscles on the dominant limb were used for analysis: gluteus maximus (Gmax), gluteus medius (Gmed), biceps femoris (BF), lateral head of the gastrocnemius (LG), tibialis anterior (TA), rectus femoris (RF). Two trunk muscles were assessed on the same side; lumbar erector spinae at L3-4 level (LES) and rectus abdominus (RA). Maximal voluntary isometric contractions (MVIC) were determined for each muscle and SEMG data were expressed as %MVIC in order to normalize outputs. Results The %MVIC for RF during ElliptiGO® cycling was higher than recumbent cycling. The LG muscle activity was highest

  3. Comparing wearable devices with wet and textile electrodes for activity recognition.

    PubMed

    Lokare, Namita; Gonzalez, Laura; Lobaton, Edgar

    2016-08-01

    This paper explores the idea of identifying activities from muscle activation which is captured by wearable ECG recording devices that use wet and textile electrodes. Most of the devices available today filter out the high frequency components to retain only the signal related to an ECG. We explain how the high frequency components that correspond to muscle activation can be extracted from the recorded signal and can be used to identify activities. We notice that is possible to obtain good performance for both the wet and dry electrodes. However, we observed that signals from the dry textile electrodes introduce less artifacts associated with muscle activation.

  4. FRET-based optical assay for monitoring riboswitch activation.

    PubMed

    Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Davidson, Molly; Narayanan, Latha; Trott, Sandra; Chushak, Yaroslav G; Stone, Morley O

    2009-05-11

    Riboswitches are regulatory RNAs located in the 5'-untranslated region of mRNA sequences that recognize and bind to small molecules and regulate the expression of downstream genes. Creation of synthetic riboswitches to novel ligands depends on the ability to monitor riboswitch activation in the presence of analyte. In our work, we have coupled a synthetic riboswitch to an optical reporter assay based on fluorescence resonance energy transfer (FRET) between two genetically encoded fluorescent proteins. The theophylline-sensitive riboswitch was placed upstream of the Tobacco Etch Virus (TEV) protease coding sequence. Our FRET construct was composed of eGFP and a nonfluorescent yellow fluorescent protein mutant called REACh (for resonance energy-accepting chromoprotein) connected with a peptide linker containing a TEV protease cleavage site. Addition of theophylline to the E. coli cells activates the riboswitch and initiates the translation of mRNA. Synthesized protease cleaves the linker in the FRET-based fusion protein causing a change in the fluorescence signal. By this method, we observed an 11-fold increase in cellular extract fluorescence in the presence of theophylline. The advantage of using an eGFP-REACh pair is the elimination of acceptor fluorescence. This leads to an improved detection of FRET via better signal-to-noise ratio, allowing us to monitor riboswitch activation in a wide range of analyte concentrations from 0.01 to 2.5 mM.

  5. Monitoring Heparin Therapy with the Activated Partial Thromboplastin Time

    PubMed Central

    Stuart, R. K.; Michel, A.

    1971-01-01

    Difficulties associated with the whole blood clotting time (W.B.C.T.) as a method of monitoring heparin therapy have led to the investigation of the activated partial thromboplastin time (A.P.T.T.) as an alternative. The conclusion is reached that the latter procedure possesses several advantages. Using the method described and a citrate-preserved blood sample collected just prior to the administration of the next serial dose of heparin, the suggested therapeutic duration of the A.P.T.T. is 70 seconds or twice the mean control value. A practical range for this method is 60 to 70 seconds. PMID:5557913

  6. Monitoring rice farming activities in the Mekong Delta region

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  7. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  8. 40 CFR 62.15270 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false How do I monitor the temperature of....15270 How do I monitor the temperature of flue gases at the inlet of my particulate matter control... temperature of the flue gas stream at the inlet of each particulate matter control device....

  9. 40 CFR 62.15270 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false How do I monitor the temperature of....15270 How do I monitor the temperature of flue gases at the inlet of my particulate matter control... temperature of the flue gas stream at the inlet of each particulate matter control device....

  10. 40 CFR 62.15270 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false How do I monitor the temperature of....15270 How do I monitor the temperature of flue gases at the inlet of my particulate matter control... temperature of the flue gas stream at the inlet of each particulate matter control device....

  11. 40 CFR 62.15270 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false How do I monitor the temperature of....15270 How do I monitor the temperature of flue gases at the inlet of my particulate matter control... temperature of the flue gas stream at the inlet of each particulate matter control device....

  12. 40 CFR 62.15270 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false How do I monitor the temperature of....15270 How do I monitor the temperature of flue gases at the inlet of my particulate matter control... temperature of the flue gas stream at the inlet of each particulate matter control device....

  13. 40 CFR 63.5150 - If I use a control device to comply with the emission standards, what monitoring must I do?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... parameters (§ 63.5150(a)(4)). 3. Intermittently controllable work station Monitor parameters related to... you operate coil coating lines with intermittently-controllable work stations, you must follow at... associated with these work stations to monitor for potential bypass of the control device: (i) Flow...

  14. 40 CFR 63.5150 - If I use a control device to comply with the emission standards, what monitoring must I do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... parameters (§ 63.5150(a)(4)). 3. Intermittently controllable work station Monitor parameters related to... you operate coil coating lines with intermittently-controllable work stations, you must follow at... associated with these work stations to monitor for potential bypass of the control device: (i) Flow...

  15. 40 CFR 63.5150 - If I use a control device to comply with the emission standards, what monitoring must I do?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating parameters (§ 63.5150(a)(4)). 3. Intermittently controllable work station Monitor parameters... you operate coil coating lines with intermittently-controllable work stations, you must follow at... associated with these work stations to monitor for potential bypass of the control device: (i) Flow...

  16. Stress monitoring versus microseismic ruptures in an active deep mine

    NASA Astrophysics Data System (ADS)

    Tonnellier, Alice; Bouffier, Christian; Bigarré, Pascal; Nyström, Anders; Österberg, Anders; Fjellström, Peter

    2015-04-01

    monitoring data coming from the mine in quasi-real time and facilitates information exchanges and decision making for experts and stakeholders. On the basis of these data acquisition and sharing, preliminary analysis has been started to highlight whether stress variations and seismic sources behaviour might be directly bound with mine working evolution and could improve the knowledge on the equilibrium states inside the mine. Knowing such parameters indeed will be a potential solution to understand better the response of deep mining activities to the exploitation solicitations and to develop, if possible, methods to prevent from major hazards such as rock bursts and other ground failure phenomena.

  17. Measurements of the PLT and PDX device activation

    SciTech Connect

    Stavely, J.; Barnes, C.W.; Chrien, R.E.; Strachan, J.D.

    1981-09-01

    Measurements of the activation levels around the PLT and PDX tokamaks have been made using a Ge(Li) gamma spectrometer and a Geiger counter. The activation results from radiation induced in the plasma by 14 MeV neutrons from the d(t,n)..cap alpha.. fusion reaction, 14.7 MeV protons from the d(/sup 3/He,p)..cap alpha.. fusion reaction, 10 ..-->.. 20 MeV hard x-rays from runaway electron induced bremmstrahlung, and 2.5 MeV neutrons from the d(d,n)/sup 3/He fusion reaction. The magnitude of the activation is compared to that predicted for PDX on the basis of one-dimensional activation codes.

  18. Active devices based on organic semiconductors for wearable applications.

    PubMed

    Barbaro, Massimo; Caboni, Alessandra; Cosseddu, Piero; Mattana, Giorgio; Bonfiglio, Annalisa

    2010-05-01

    Plastic electronics is an enabling technology for obtaining active (transistor based) electronic circuits on flexible and/or nonplanar surfaces. For these reasons, it appears as a perfect candidate to promote future developments of wearable electronics toward the concept of fabrics and garments made by functional (in this case, active electronic) yarns. In this paper, a panoramic view of recent achievements and future perspectives is given.

  19. Use of a Wearable Activity Device in Rural Older Obese Adults

    PubMed Central

    Batsis, John A.; Naslund, John A.; Gill, Lydia E.; Masutani, Rebecca K.; Agarwal, Nayan; Bartels, Stephen J.

    2016-01-01

    Objective: Assess the feasibility and acceptability of Fitbit for supporting behavioral change in rural, older adults with obesity. Method: Eight adults aged ≥65 with a body mass index (BMI) ≥30kg/m2 were recruited from a rural practice and provided a Fitbit Zip device for 30 days. Participants completed validated questionnaires/interviews. Results: Mean age was 73.4 ± 4.0 years (50% female) with a mean BMI of 34.5 ± 4.5kg/m2. We observed reductions in exercise confidence (sticking to it: 34.5 ± 3.3 to 30.9 ± 4.3, p = .04; making time: 18.9 ± 1.3 to 17.0 ± 2.6, p = .03) but no changes in patient activation (45.4 ± 4.3 vs. 45.0 ± 3.9). All reported high satisfaction, seven (87.5%) found Fitbit easy to use, and five (62.5%) found the feedback useful. The majority (n = 6 [75.0%]) were mostly/very satisfied with the intervention. Consistent themes emerged regarding the benefit of self-monitoring and participant motivation. Common concerns included finding time to exercise and lack of a peer group. Conclusion: Use of Fitbit is feasible/acceptable for use among older rural obese adults but may lead to reduced confidence. PMID:28138502

  20. Use of a Wearable Activity Device in Rural Older Obese Adults: A Pilot Study.

    PubMed

    Batsis, John A; Naslund, John A; Gill, Lydia E; Masutani, Rebecca K; Agarwal, Nayan; Bartels, Stephen J

    2016-01-01

    Objective: Assess the feasibility and acceptability of Fitbit for supporting behavioral change in rural, older adults with obesity. Method: Eight adults aged ≥65 with a body mass index (BMI) ≥30kg/m(2) were recruited from a rural practice and provided a Fitbit Zip device for 30 days. Participants completed validated questionnaires/interviews. Results: Mean age was 73.4 ± 4.0 years (50% female) with a mean BMI of 34.5 ± 4.5kg/m(2). We observed reductions in exercise confidence (sticking to it: 34.5 ± 3.3 to 30.9 ± 4.3, p = .04; making time: 18.9 ± 1.3 to 17.0 ± 2.6, p = .03) but no changes in patient activation (45.4 ± 4.3 vs. 45.0 ± 3.9). All reported high satisfaction, seven (87.5%) found Fitbit easy to use, and five (62.5%) found the feedback useful. The majority (n = 6 [75.0%]) were mostly/very satisfied with the intervention. Consistent themes emerged regarding the benefit of self-monitoring and participant motivation. Common concerns included finding time to exercise and lack of a peer group. Conclusion: Use of Fitbit is feasible/acceptable for use among older rural obese adults but may lead to reduced confidence.